1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2016-2020 Intel Corporation 3 */ 4 5 #ifndef _RTE_CRYPTO_SYM_H_ 6 #define _RTE_CRYPTO_SYM_H_ 7 8 /** 9 * @file rte_crypto_sym.h 10 * 11 * RTE Definitions for Symmetric Cryptography 12 * 13 * Defines symmetric cipher and authentication algorithms and modes, as well 14 * as supported symmetric crypto operation combinations. 15 */ 16 17 #include <string.h> 18 19 #include <rte_compat.h> 20 #include <rte_mbuf.h> 21 #include <rte_memory.h> 22 #include <rte_mempool.h> 23 #include <rte_common.h> 24 25 #ifdef __cplusplus 26 extern "C" { 27 #endif 28 29 /** 30 * Crypto IO Vector (in analogy with struct iovec) 31 * Supposed be used to pass input/output data buffers for crypto data-path 32 * functions. 33 */ 34 struct rte_crypto_vec { 35 /** virtual address of the data buffer */ 36 void *base; 37 /** IOVA of the data buffer */ 38 rte_iova_t iova; 39 /** length of the data buffer */ 40 uint32_t len; 41 /** total buffer length */ 42 uint32_t tot_len; 43 }; 44 45 /** 46 * Crypto scatter-gather list descriptor. Consists of a pointer to an array 47 * of Crypto IO vectors with its size. 48 */ 49 struct rte_crypto_sgl { 50 /** start of an array of vectors */ 51 struct rte_crypto_vec *vec; 52 /** size of an array of vectors */ 53 uint32_t num; 54 }; 55 56 /** 57 * Crypto virtual and IOVA address descriptor, used to describe cryptographic 58 * data buffer without the length information. The length information is 59 * normally predefined during session creation. 60 */ 61 struct rte_crypto_va_iova_ptr { 62 void *va; 63 rte_iova_t iova; 64 }; 65 66 /** 67 * Raw data operation descriptor. 68 * Supposed to be used with synchronous CPU crypto API call or asynchronous 69 * RAW data path API call. 70 */ 71 struct rte_crypto_sym_vec { 72 /** number of operations to perform */ 73 uint32_t num; 74 /** array of SGL vectors */ 75 struct rte_crypto_sgl *src_sgl; 76 /** array of SGL vectors for OOP, keep it NULL for inplace*/ 77 struct rte_crypto_sgl *dest_sgl; 78 /** array of pointers to cipher IV */ 79 struct rte_crypto_va_iova_ptr *iv; 80 /** array of pointers to digest */ 81 struct rte_crypto_va_iova_ptr *digest; 82 83 __extension__ 84 union { 85 /** array of pointers to auth IV, used for chain operation */ 86 struct rte_crypto_va_iova_ptr *auth_iv; 87 /** array of pointers to AAD, used for AEAD operation */ 88 struct rte_crypto_va_iova_ptr *aad; 89 }; 90 91 /** 92 * array of statuses for each operation: 93 * - 0 on success 94 * - errno on error 95 */ 96 int32_t *status; 97 }; 98 99 /** 100 * used for cpu_crypto_process_bulk() to specify head/tail offsets 101 * for auth/cipher processing. 102 */ 103 union rte_crypto_sym_ofs { 104 uint64_t raw; 105 struct { 106 struct { 107 uint16_t head; 108 uint16_t tail; 109 } auth, cipher; 110 } ofs; 111 }; 112 113 /** Symmetric Cipher Algorithms 114 * 115 * Note, to avoid ABI breakage across releases 116 * - LIST_END should not be added to this enum 117 * - the order of enums should not be changed 118 * - new algorithms should only be added to the end 119 */ 120 enum rte_crypto_cipher_algorithm { 121 RTE_CRYPTO_CIPHER_NULL = 1, 122 /**< NULL cipher algorithm. No mode applies to the NULL algorithm. */ 123 124 RTE_CRYPTO_CIPHER_3DES_CBC, 125 /**< Triple DES algorithm in CBC mode */ 126 RTE_CRYPTO_CIPHER_3DES_CTR, 127 /**< Triple DES algorithm in CTR mode */ 128 RTE_CRYPTO_CIPHER_3DES_ECB, 129 /**< Triple DES algorithm in ECB mode */ 130 131 RTE_CRYPTO_CIPHER_AES_CBC, 132 /**< AES algorithm in CBC mode */ 133 RTE_CRYPTO_CIPHER_AES_CTR, 134 /**< AES algorithm in Counter mode */ 135 RTE_CRYPTO_CIPHER_AES_ECB, 136 /**< AES algorithm in ECB mode */ 137 RTE_CRYPTO_CIPHER_AES_F8, 138 /**< AES algorithm in F8 mode */ 139 RTE_CRYPTO_CIPHER_AES_XTS, 140 /**< AES algorithm in XTS mode */ 141 142 RTE_CRYPTO_CIPHER_ARC4, 143 /**< (A)RC4 cipher algorithm */ 144 145 RTE_CRYPTO_CIPHER_KASUMI_F8, 146 /**< KASUMI algorithm in F8 mode */ 147 148 RTE_CRYPTO_CIPHER_SNOW3G_UEA2, 149 /**< SNOW 3G algorithm in UEA2 mode */ 150 151 RTE_CRYPTO_CIPHER_ZUC_EEA3, 152 /**< ZUC algorithm in EEA3 mode */ 153 154 RTE_CRYPTO_CIPHER_DES_CBC, 155 /**< DES algorithm in CBC mode */ 156 157 RTE_CRYPTO_CIPHER_AES_DOCSISBPI, 158 /**< AES algorithm using modes required by 159 * DOCSIS Baseline Privacy Plus Spec. 160 * Chained mbufs are not supported in this mode, i.e. rte_mbuf.next 161 * for m_src and m_dst in the rte_crypto_sym_op must be NULL. 162 */ 163 164 RTE_CRYPTO_CIPHER_DES_DOCSISBPI, 165 /**< DES algorithm using modes required by 166 * DOCSIS Baseline Privacy Plus Spec. 167 * Chained mbufs are not supported in this mode, i.e. rte_mbuf.next 168 * for m_src and m_dst in the rte_crypto_sym_op must be NULL. 169 */ 170 171 RTE_CRYPTO_CIPHER_SM4_ECB, 172 /**< ShangMi 4 (SM4) algorithm in ECB mode */ 173 RTE_CRYPTO_CIPHER_SM4_CBC, 174 /**< ShangMi 4 (SM4) algorithm in CBC mode */ 175 RTE_CRYPTO_CIPHER_SM4_CTR, 176 /**< ShangMi 4 (SM4) algorithm in CTR mode */ 177 RTE_CRYPTO_CIPHER_SM4_OFB, 178 /**< ShangMi 4 (SM4) algorithm in OFB mode */ 179 RTE_CRYPTO_CIPHER_SM4_CFB, 180 /**< ShangMi 4 (SM4) algorithm in CFB mode */ 181 RTE_CRYPTO_CIPHER_SM4_XTS 182 /**< ShangMi 4 (SM4) algorithm in XTS mode */ 183 }; 184 185 /** Symmetric Cipher Direction */ 186 enum rte_crypto_cipher_operation { 187 RTE_CRYPTO_CIPHER_OP_ENCRYPT, 188 /**< Encrypt cipher operation */ 189 RTE_CRYPTO_CIPHER_OP_DECRYPT 190 /**< Decrypt cipher operation */ 191 }; 192 193 /** Cipher operation name strings */ 194 extern const char * 195 rte_crypto_cipher_operation_strings[]; 196 197 /** 198 * Symmetric Cipher Setup Data. 199 * 200 * This structure contains data relating to Cipher (Encryption and Decryption) 201 * use to create a session. 202 */ 203 struct rte_crypto_cipher_xform { 204 enum rte_crypto_cipher_operation op; 205 /**< This parameter determines if the cipher operation is an encrypt or 206 * a decrypt operation. For the RC4 algorithm and the F8/CTR modes, 207 * only encrypt operations are valid. 208 */ 209 enum rte_crypto_cipher_algorithm algo; 210 /**< Cipher algorithm */ 211 212 struct { 213 const uint8_t *data; /**< pointer to key data */ 214 uint16_t length; /**< key length in bytes */ 215 } key; 216 /**< Cipher key 217 * 218 * In case the PMD supports RTE_CRYPTODEV_FF_CIPHER_WRAPPED_KEY, the 219 * original key data provided may be wrapped(encrypted) using key wrap 220 * algorithm such as AES key wrap (rfc3394) and hence length of the key 221 * may increase beyond the PMD advertised supported key size. 222 * PMD shall validate the key length and report EMSGSIZE error while 223 * configuring the session and application can skip checking the 224 * capability key length in such cases. 225 * 226 * For the RTE_CRYPTO_CIPHER_AES_F8 mode of operation, key.data will 227 * point to a concatenation of the AES encryption key followed by a 228 * keymask. As per RFC3711, the keymask should be padded with trailing 229 * bytes to match the length of the encryption key used. 230 * 231 * Cipher key length is in bytes. For AES it can be 128 bits (16 bytes), 232 * 192 bits (24 bytes) or 256 bits (32 bytes). 233 * 234 * For the RTE_CRYPTO_CIPHER_AES_F8 mode of operation, key.length 235 * should be set to the combined length of the encryption key and the 236 * keymask. Since the keymask and the encryption key are the same size, 237 * key.length should be set to 2 x the AES encryption key length. 238 * 239 * For the AES-XTS mode of operation: 240 * - Two keys must be provided and key.length refers to total length of 241 * the two keys. 242 * - key.data must point to the two keys concatenated together 243 * (key1 || key2). 244 * - Each key can be either 128 bits (16 bytes) or 256 bits (32 bytes). 245 * - Both keys must have the same size. 246 */ 247 struct { 248 uint16_t offset; 249 /**< Starting point for Initialisation Vector or Counter, 250 * specified as number of bytes from start of crypto 251 * operation (rte_crypto_op). 252 * 253 * - For block ciphers in CBC or F8 mode, or for KASUMI 254 * in F8 mode, or for SNOW 3G in UEA2 mode, this is the 255 * Initialisation Vector (IV) value. 256 * 257 * - For block ciphers in CTR mode, this is the counter. 258 * 259 * - For CCM mode, the first byte is reserved, and the 260 * nonce should be written starting at &iv[1] (to allow 261 * space for the implementation to write in the flags 262 * in the first byte). Note that a full 16 bytes should 263 * be allocated, even though the length field will 264 * have a value less than this. Note that the PMDs may 265 * modify the memory reserved (the first byte and the 266 * final padding) 267 * 268 * - For AES-XTS, this is the 128bit tweak, i, from 269 * IEEE Std 1619-2007. 270 * 271 * For optimum performance, the data pointed to SHOULD 272 * be 8-byte aligned. 273 */ 274 uint16_t length; 275 /**< Length of valid IV data. 276 * 277 * - For block ciphers in CBC or F8 mode, or for KASUMI 278 * in F8 mode, or for SNOW 3G in UEA2 mode, this is the 279 * length of the IV (which must be the same as the 280 * block length of the cipher). 281 * 282 * - For block ciphers in CTR mode, this is the length 283 * of the counter (which must be the same as the block 284 * length of the cipher) or a 12-byte nonce (AES only) 285 * 286 * - For CCM mode, this is the length of the nonce, 287 * which can be in the range 7 to 13 inclusive. 288 */ 289 } iv; /**< Initialisation vector parameters */ 290 291 uint32_t dataunit_len; 292 /**< When RTE_CRYPTODEV_FF_CIPHER_MULTIPLE_DATA_UNITS is enabled, 293 * this is the data-unit length of the algorithm, 294 * otherwise or when the value is 0, use the operation length. 295 * The value should be in the range defined by the dataunit_set field 296 * in the cipher capability. 297 * 298 * - For AES-XTS it is the size of data-unit, from IEEE Std 1619-2007. 299 * For-each data-unit in the operation, the tweak (IV) value is 300 * assigned consecutively starting from the operation assigned IV. 301 */ 302 }; 303 304 /** Symmetric Authentication / Hash Algorithms 305 * 306 * Note, to avoid ABI breakage across releases 307 * - LIST_END should not be added to this enum 308 * - the order of enums should not be changed 309 * - new algorithms should only be added to the end 310 */ 311 enum rte_crypto_auth_algorithm { 312 RTE_CRYPTO_AUTH_NULL = 1, 313 /**< NULL hash algorithm. */ 314 315 RTE_CRYPTO_AUTH_AES_CBC_MAC, 316 /**< AES-CBC-MAC algorithm. Only 128-bit keys are supported. */ 317 RTE_CRYPTO_AUTH_AES_CMAC, 318 /**< AES CMAC algorithm. */ 319 RTE_CRYPTO_AUTH_AES_GMAC, 320 /**< AES GMAC algorithm. */ 321 RTE_CRYPTO_AUTH_AES_XCBC_MAC, 322 /**< AES XCBC algorithm. */ 323 324 RTE_CRYPTO_AUTH_KASUMI_F9, 325 /**< KASUMI algorithm in F9 mode. */ 326 327 RTE_CRYPTO_AUTH_MD5, 328 /**< MD5 algorithm */ 329 RTE_CRYPTO_AUTH_MD5_HMAC, 330 /**< HMAC using MD5 algorithm */ 331 332 RTE_CRYPTO_AUTH_SHA1, 333 /**< 160 bit SHA algorithm. */ 334 RTE_CRYPTO_AUTH_SHA1_HMAC, 335 /**< HMAC using 160 bit SHA algorithm. 336 * HMAC-SHA-1-96 can be generated by setting 337 * digest_length to 12 bytes in auth/aead xforms. 338 */ 339 RTE_CRYPTO_AUTH_SHA224, 340 /**< 224 bit SHA algorithm. */ 341 RTE_CRYPTO_AUTH_SHA224_HMAC, 342 /**< HMAC using 224 bit SHA algorithm. */ 343 RTE_CRYPTO_AUTH_SHA256, 344 /**< 256 bit SHA algorithm. */ 345 RTE_CRYPTO_AUTH_SHA256_HMAC, 346 /**< HMAC using 256 bit SHA algorithm. */ 347 RTE_CRYPTO_AUTH_SHA384, 348 /**< 384 bit SHA algorithm. */ 349 RTE_CRYPTO_AUTH_SHA384_HMAC, 350 /**< HMAC using 384 bit SHA algorithm. */ 351 RTE_CRYPTO_AUTH_SHA512, 352 /**< 512 bit SHA algorithm. */ 353 RTE_CRYPTO_AUTH_SHA512_HMAC, 354 /**< HMAC using 512 bit SHA algorithm. */ 355 356 RTE_CRYPTO_AUTH_SNOW3G_UIA2, 357 /**< SNOW 3G algorithm in UIA2 mode. */ 358 359 RTE_CRYPTO_AUTH_ZUC_EIA3, 360 /**< ZUC algorithm in EIA3 mode */ 361 362 RTE_CRYPTO_AUTH_SHA3_224, 363 /**< 224 bit SHA3 algorithm. */ 364 RTE_CRYPTO_AUTH_SHA3_224_HMAC, 365 /**< HMAC using 224 bit SHA3 algorithm. */ 366 RTE_CRYPTO_AUTH_SHA3_256, 367 /**< 256 bit SHA3 algorithm. */ 368 RTE_CRYPTO_AUTH_SHA3_256_HMAC, 369 /**< HMAC using 256 bit SHA3 algorithm. */ 370 RTE_CRYPTO_AUTH_SHA3_384, 371 /**< 384 bit SHA3 algorithm. */ 372 RTE_CRYPTO_AUTH_SHA3_384_HMAC, 373 /**< HMAC using 384 bit SHA3 algorithm. */ 374 RTE_CRYPTO_AUTH_SHA3_512, 375 /**< 512 bit SHA3 algorithm. */ 376 RTE_CRYPTO_AUTH_SHA3_512_HMAC, 377 /**< HMAC using 512 bit SHA3 algorithm. */ 378 RTE_CRYPTO_AUTH_SM3, 379 /**< ShangMi 3 (SM3) algorithm */ 380 381 RTE_CRYPTO_AUTH_SHAKE_128, 382 /**< 128 bit SHAKE algorithm. */ 383 RTE_CRYPTO_AUTH_SHAKE_256, 384 /**< 256 bit SHAKE algorithm. */ 385 RTE_CRYPTO_AUTH_SM3_HMAC, 386 /** < HMAC using ShangMi 3 (SM3) algorithm */ 387 }; 388 389 /** Symmetric Authentication / Hash Operations */ 390 enum rte_crypto_auth_operation { 391 RTE_CRYPTO_AUTH_OP_VERIFY, /**< Verify authentication digest */ 392 RTE_CRYPTO_AUTH_OP_GENERATE /**< Generate authentication digest */ 393 }; 394 395 /** Authentication operation name strings */ 396 extern const char * 397 rte_crypto_auth_operation_strings[]; 398 399 /** 400 * Authentication / Hash transform data. 401 * 402 * This structure contains data relating to an authentication/hash crypto 403 * transforms. The fields op, algo and digest_length are common to all 404 * authentication transforms and MUST be set. 405 */ 406 struct rte_crypto_auth_xform { 407 enum rte_crypto_auth_operation op; 408 /**< Authentication operation type */ 409 enum rte_crypto_auth_algorithm algo; 410 /**< Authentication algorithm selection */ 411 412 struct { 413 const uint8_t *data; /**< pointer to key data */ 414 uint16_t length; /**< key length in bytes */ 415 } key; 416 /**< Authentication key data. 417 * The authentication key length MUST be less than or equal to the 418 * block size of the algorithm. It is the callers responsibility to 419 * ensure that the key length is compliant with the standard being used 420 * (for example RFC 2104, FIPS 198a). 421 */ 422 423 struct { 424 uint16_t offset; 425 /**< Starting point for Initialisation Vector or Counter, 426 * specified as number of bytes from start of crypto 427 * operation (rte_crypto_op). 428 * 429 * - For SNOW 3G in UIA2 mode, for ZUC in EIA3 mode 430 * this is the authentication Initialisation Vector 431 * (IV) value. For AES-GMAC IV description please refer 432 * to the field `length` in iv struct. 433 * 434 * - For KASUMI in F9 mode and other authentication 435 * algorithms, this field is not used. 436 * 437 * For optimum performance, the data pointed to SHOULD 438 * be 8-byte aligned. 439 */ 440 uint16_t length; 441 /**< Length of valid IV data. 442 * 443 * - For SNOW3G in UIA2 mode, for ZUC in EIA3 mode and 444 * for AES-GMAC, this is the length of the IV. 445 * 446 * - For KASUMI in F9 mode and other authentication 447 * algorithms, this field is not used. 448 * 449 * - For GMAC mode, this is either: 450 * 1) Number greater or equal to one, which means that IV 451 * is used and J0 will be computed internally, a minimum 452 * of 16 bytes must be allocated. 453 * 2) Zero, in which case data points to J0. In this case 454 * 16 bytes of J0 should be passed where J0 is defined 455 * by NIST SP800-38D. 456 * 457 */ 458 } iv; /**< Initialisation vector parameters */ 459 460 uint16_t digest_length; 461 /**< Length of the digest to be returned. If the verify option is set, 462 * this specifies the length of the digest to be compared for the 463 * session. 464 * 465 * It is the caller's responsibility to ensure that the 466 * digest length is compliant with the hash algorithm being used. 467 * If the value is less than the maximum length allowed by the hash, 468 * the result shall be truncated. 469 */ 470 }; 471 472 473 /** Symmetric AEAD Algorithms 474 * 475 * Note, to avoid ABI breakage across releases 476 * - LIST_END should not be added to this enum 477 * - the order of enums should not be changed 478 * - new algorithms should only be added to the end 479 */ 480 enum rte_crypto_aead_algorithm { 481 RTE_CRYPTO_AEAD_AES_CCM = 1, 482 /**< AES algorithm in CCM mode. */ 483 RTE_CRYPTO_AEAD_AES_GCM, 484 /**< AES algorithm in GCM mode. */ 485 RTE_CRYPTO_AEAD_CHACHA20_POLY1305 486 /**< Chacha20 cipher with poly1305 authenticator */ 487 }; 488 489 /** Symmetric AEAD Operations */ 490 enum rte_crypto_aead_operation { 491 RTE_CRYPTO_AEAD_OP_ENCRYPT, 492 /**< Encrypt and generate digest */ 493 RTE_CRYPTO_AEAD_OP_DECRYPT 494 /**< Verify digest and decrypt */ 495 }; 496 497 /** Authentication operation name strings */ 498 extern const char * 499 rte_crypto_aead_operation_strings[]; 500 501 struct rte_crypto_aead_xform { 502 enum rte_crypto_aead_operation op; 503 /**< AEAD operation type */ 504 enum rte_crypto_aead_algorithm algo; 505 /**< AEAD algorithm selection */ 506 507 struct { 508 const uint8_t *data; /**< pointer to key data */ 509 uint16_t length; /**< key length in bytes */ 510 } key; 511 512 struct { 513 uint16_t offset; 514 /**< Starting point for Initialisation Vector or Counter, 515 * specified as number of bytes from start of crypto 516 * operation (rte_crypto_op). 517 * 518 * - For CCM mode, the first byte is reserved, and the 519 * nonce should be written starting at &iv[1] (to allow 520 * space for the implementation to write in the flags 521 * in the first byte). Note that a full 16 bytes should 522 * be allocated, even though the length field will 523 * have a value less than this. 524 * 525 * - For Chacha20-Poly1305 it is 96-bit nonce. 526 * PMD sets initial counter for Poly1305 key generation 527 * part to 0 and for Chacha20 encryption to 1 as per 528 * rfc8439 2.8. AEAD construction. 529 * 530 * For optimum performance, the data pointed to SHOULD 531 * be 8-byte aligned. 532 */ 533 uint16_t length; 534 /**< Length of valid IV data. 535 * 536 * - For GCM mode, this is either: 537 * 1) Number greater or equal to one, which means that IV 538 * is used and J0 will be computed internally, a minimum 539 * of 16 bytes must be allocated. 540 * 2) Zero, in which case data points to J0. In this case 541 * 16 bytes of J0 should be passed where J0 is defined 542 * by NIST SP800-38D. 543 * 544 * - For CCM mode, this is the length of the nonce, 545 * which can be in the range 7 to 13 inclusive. 546 * 547 * - For Chacha20-Poly1305 this field is always 12. 548 */ 549 } iv; /**< Initialisation vector parameters */ 550 551 uint16_t digest_length; 552 553 uint16_t aad_length; 554 /**< The length of the additional authenticated data (AAD) in bytes. 555 * For CCM mode, this is the length of the actual AAD, even though 556 * it is required to reserve 18 bytes before the AAD and padding 557 * at the end of it, so a multiple of 16 bytes is allocated. 558 */ 559 }; 560 561 /** Crypto transformation types */ 562 enum rte_crypto_sym_xform_type { 563 RTE_CRYPTO_SYM_XFORM_NOT_SPECIFIED = 0, /**< No xform specified */ 564 RTE_CRYPTO_SYM_XFORM_AUTH, /**< Authentication xform */ 565 RTE_CRYPTO_SYM_XFORM_CIPHER, /**< Cipher xform */ 566 RTE_CRYPTO_SYM_XFORM_AEAD /**< AEAD xform */ 567 }; 568 569 /** 570 * Symmetric crypto transform structure. 571 * 572 * This is used to specify the crypto transforms required, multiple transforms 573 * can be chained together to specify a chain transforms such as authentication 574 * then cipher, or cipher then authentication. Each transform structure can 575 * hold a single transform, the type field is used to specify which transform 576 * is contained within the union 577 */ 578 /* Structure rte_crypto_sym_xform 8< */ 579 struct rte_crypto_sym_xform { 580 struct rte_crypto_sym_xform *next; 581 /**< next xform in chain */ 582 enum rte_crypto_sym_xform_type type 583 ; /**< xform type */ 584 union { 585 struct rte_crypto_auth_xform auth; 586 /**< Authentication / hash xform */ 587 struct rte_crypto_cipher_xform cipher; 588 /**< Cipher xform */ 589 struct rte_crypto_aead_xform aead; 590 /**< AEAD xform */ 591 }; 592 }; 593 /* >8 End of structure rte_crypto_sym_xform. */ 594 595 /** 596 * Symmetric Cryptographic Operation. 597 * 598 * This structure contains data relating to performing symmetric cryptographic 599 * processing on a referenced mbuf data buffer. 600 * 601 * When a symmetric crypto operation is enqueued with the device for processing 602 * it must have a valid *rte_mbuf* structure attached, via m_src parameter, 603 * which contains the source data which the crypto operation is to be performed 604 * on. 605 * While the mbuf is in use by a crypto operation no part of the mbuf should be 606 * changed by the application as the device may read or write to any part of the 607 * mbuf. In the case of hardware crypto devices some or all of the mbuf 608 * may be DMAed in and out of the device, so writing over the original data, 609 * though only the part specified by the rte_crypto_sym_op for transformation 610 * will be changed. 611 * Out-of-place (OOP) operation, where the source mbuf is different to the 612 * destination mbuf, is a special case. Data will be copied from m_src to m_dst. 613 * The part copied includes all the parts of the source mbuf that will be 614 * operated on, based on the cipher.data.offset+cipher.data.length and 615 * auth.data.offset+auth.data.length values in the rte_crypto_sym_op. The part 616 * indicated by the cipher parameters will be transformed, any extra data around 617 * this indicated by the auth parameters will be copied unchanged from source to 618 * destination mbuf. 619 * Also in OOP operation the cipher.data.offset and auth.data.offset apply to 620 * both source and destination mbufs. As these offsets are relative to the 621 * data_off parameter in each mbuf this can result in the data written to the 622 * destination buffer being at a different alignment, relative to buffer start, 623 * to the data in the source buffer. 624 */ 625 /* Structure rte_crypto_sym_op 8< */ 626 struct rte_crypto_sym_op { 627 struct rte_mbuf *m_src; /**< source mbuf */ 628 struct rte_mbuf *m_dst; /**< destination mbuf */ 629 630 union { 631 void *session; 632 /**< Handle for the initialised crypto/security session context */ 633 struct rte_crypto_sym_xform *xform; 634 /**< Session-less API crypto operation parameters */ 635 }; 636 637 union { 638 struct { 639 struct { 640 uint32_t offset; 641 /**< Starting point for AEAD processing, specified as 642 * number of bytes from start of packet in source 643 * buffer. 644 */ 645 uint32_t length; 646 /**< The message length, in bytes, of the source buffer 647 * on which the cryptographic operation will be 648 * computed. 649 */ 650 } data; /**< Data offsets and length for AEAD */ 651 struct { 652 uint8_t *data; 653 /**< This points to the location where the digest result 654 * should be inserted (in the case of digest generation) 655 * or where the purported digest exists (in the case of 656 * digest verification). 657 * 658 * At session creation time, the client specified the 659 * digest result length with the digest_length member 660 * of the @ref rte_crypto_auth_xform structure. For 661 * physical crypto devices the caller must allocate at 662 * least digest_length of physically contiguous memory 663 * at this location. 664 * 665 * For digest generation, the digest result will 666 * overwrite any data at this location. 667 * 668 * @note 669 * For GCM (@ref RTE_CRYPTO_AEAD_AES_GCM), for 670 * "digest result" read "authentication tag T". 671 */ 672 rte_iova_t phys_addr; 673 /**< Physical address of digest */ 674 } digest; /**< Digest parameters */ 675 struct { 676 uint8_t *data; 677 /**< Pointer to Additional Authenticated Data (AAD) 678 * needed for authenticated cipher mechanisms (CCM and 679 * GCM) 680 * 681 * Specifically for CCM (@ref RTE_CRYPTO_AEAD_AES_CCM), 682 * the caller should setup this field as follows: 683 * 684 * - the additional authentication data itself should 685 * be written starting at an offset of 18 bytes into 686 * the array, leaving room for the first block (16 bytes) 687 * and the length encoding in the first two bytes of the 688 * second block. 689 * 690 * - Note that PMDs may modify the memory reserved 691 * (first 18 bytes and the final padding). 692 * 693 * Finally, for GCM (@ref RTE_CRYPTO_AEAD_AES_GCM), the 694 * caller should setup this field as follows: 695 * 696 */ 697 rte_iova_t phys_addr; /**< physical address */ 698 } aad; 699 /**< Additional authentication parameters */ 700 } aead; 701 702 struct { 703 struct { 704 struct { 705 uint32_t offset; 706 /**< Starting point for cipher processing, 707 * specified as number of bytes from start 708 * of data in the source buffer. 709 * The result of the cipher operation will be 710 * written back into the output buffer 711 * starting at this location. 712 * 713 * @note 714 * For SNOW 3G @ RTE_CRYPTO_CIPHER_SNOW3G_UEA2, 715 * KASUMI @ RTE_CRYPTO_CIPHER_KASUMI_F8 716 * and ZUC @ RTE_CRYPTO_CIPHER_ZUC_EEA3, 717 * this field should be in bits. For 718 * digest-encrypted cases this must be 719 * an 8-bit multiple. 720 */ 721 uint32_t length; 722 /**< The message length, in bytes, of the 723 * source buffer on which the cryptographic 724 * operation will be computed. 725 * This is also the same as the result length. 726 * For block ciphers, this must be a 727 * multiple of the block size, 728 * or for the AES-XTS a multiple of the data-unit length 729 * as described in xform. 730 * 731 * @note 732 * For SNOW 3G @ RTE_CRYPTO_AUTH_SNOW3G_UEA2, 733 * KASUMI @ RTE_CRYPTO_CIPHER_KASUMI_F8 734 * and ZUC @ RTE_CRYPTO_CIPHER_ZUC_EEA3, 735 * this field should be in bits. For 736 * digest-encrypted cases this must be 737 * an 8-bit multiple. 738 */ 739 } data; /**< Data offsets and length for ciphering */ 740 } cipher; 741 742 struct { 743 struct { 744 uint32_t offset; 745 /**< Starting point for hash processing, 746 * specified as number of bytes from start of 747 * packet in source buffer. 748 * 749 * @note 750 * For SNOW 3G @ RTE_CRYPTO_AUTH_SNOW3G_UIA2, 751 * KASUMI @ RTE_CRYPTO_AUTH_KASUMI_F9 752 * and ZUC @ RTE_CRYPTO_AUTH_ZUC_EIA3, 753 * this field should be in bits. For 754 * digest-encrypted cases this must be 755 * an 8-bit multiple. 756 * 757 * @note 758 * For KASUMI @ RTE_CRYPTO_AUTH_KASUMI_F9, 759 * this offset should be such that 760 * data to authenticate starts at COUNT. 761 * 762 * @note 763 * For DOCSIS security protocol, this 764 * offset is the DOCSIS header length 765 * and, therefore, also the CRC offset 766 * i.e. the number of bytes into the 767 * packet at which CRC calculation 768 * should begin. 769 */ 770 uint32_t length; 771 /**< The message length, in bytes, of the source 772 * buffer that the hash will be computed on. 773 * 774 * @note 775 * For SNOW 3G @ RTE_CRYPTO_AUTH_SNOW3G_UIA2, 776 * KASUMI @ RTE_CRYPTO_AUTH_KASUMI_F9 777 * and ZUC @ RTE_CRYPTO_AUTH_ZUC_EIA3, 778 * this field should be in bits. For 779 * digest-encrypted cases this must be 780 * an 8-bit multiple. 781 * 782 * @note 783 * For KASUMI @ RTE_CRYPTO_AUTH_KASUMI_F9, 784 * the length should include the COUNT, 785 * FRESH, message, direction bit and padding 786 * (to be multiple of 8 bits). 787 * 788 * @note 789 * For DOCSIS security protocol, this 790 * is the CRC length i.e. the number of 791 * bytes in the packet over which the 792 * CRC should be calculated 793 */ 794 } data; 795 /**< Data offsets and length for authentication */ 796 797 struct { 798 uint8_t *data; 799 /**< This points to the location where 800 * the digest result should be inserted 801 * (in the case of digest generation) 802 * or where the purported digest exists 803 * (in the case of digest verification). 804 * 805 * At session creation time, the client 806 * specified the digest result length with 807 * the digest_length member of the 808 * @ref rte_crypto_auth_xform structure. 809 * For physical crypto devices the caller 810 * must allocate at least digest_length of 811 * physically contiguous memory at this 812 * location. 813 * 814 * For digest generation, the digest result 815 * will overwrite any data at this location. 816 * 817 * @note 818 * Digest-encrypted case. 819 * Digest can be generated, appended to 820 * the end of raw data and encrypted 821 * together using chained digest 822 * generation 823 * (@ref RTE_CRYPTO_AUTH_OP_GENERATE) 824 * and encryption 825 * (@ref RTE_CRYPTO_CIPHER_OP_ENCRYPT) 826 * xforms. Similarly, authentication 827 * of the raw data against appended, 828 * decrypted digest, can be performed 829 * using decryption 830 * (@ref RTE_CRYPTO_CIPHER_OP_DECRYPT) 831 * and digest verification 832 * (@ref RTE_CRYPTO_AUTH_OP_VERIFY) 833 * chained xforms. 834 * To perform those operations, a few 835 * additional conditions must be met: 836 * - caller must allocate at least 837 * digest_length of memory at the end of 838 * source and (in case of out-of-place 839 * operations) destination buffer; those 840 * buffers can be linear or split using 841 * scatter-gather lists, 842 * - digest data pointer must point to 843 * the end of source or (in case of 844 * out-of-place operations) destination 845 * data, which is pointer to the 846 * data buffer + auth.data.offset + 847 * auth.data.length, 848 * - cipher.data.offset + 849 * cipher.data.length must be greater 850 * than auth.data.offset + 851 * auth.data.length and is typically 852 * equal to auth.data.offset + 853 * auth.data.length + digest_length. 854 * - for wireless algorithms, i.e. 855 * SNOW 3G, KASUMI and ZUC, as the 856 * cipher.data.length, 857 * cipher.data.offset, 858 * auth.data.length and 859 * auth.data.offset are in bits, they 860 * must be 8-bit multiples. 861 * 862 * Note, that for security reasons, it 863 * is PMDs' responsibility to not 864 * leave an unencrypted digest in any 865 * buffer after performing auth-cipher 866 * operations. 867 * 868 */ 869 rte_iova_t phys_addr; 870 /**< Physical address of digest */ 871 } digest; /**< Digest parameters */ 872 } auth; 873 }; 874 }; 875 }; 876 /* >8 End of structure rte_crypto_sym_op. */ 877 878 879 /** 880 * Reset the fields of a symmetric operation to their default values. 881 * 882 * @param op The crypto operation to be reset. 883 */ 884 static inline void 885 __rte_crypto_sym_op_reset(struct rte_crypto_sym_op *op) 886 { 887 memset(op, 0, sizeof(*op)); 888 } 889 890 891 /** 892 * Allocate space for symmetric crypto xforms in the private data space of the 893 * crypto operation. This also defaults the crypto xform type to 894 * RTE_CRYPTO_SYM_XFORM_NOT_SPECIFIED and configures the chaining of the xforms 895 * in the crypto operation 896 * 897 * @return 898 * - On success returns pointer to first crypto xform in crypto operations chain 899 * - On failure returns NULL 900 */ 901 static inline struct rte_crypto_sym_xform * 902 __rte_crypto_sym_op_sym_xforms_alloc(struct rte_crypto_sym_op *sym_op, 903 void *priv_data, uint8_t nb_xforms) 904 { 905 struct rte_crypto_sym_xform *xform; 906 907 sym_op->xform = xform = (struct rte_crypto_sym_xform *)priv_data; 908 909 do { 910 xform->type = RTE_CRYPTO_SYM_XFORM_NOT_SPECIFIED; 911 xform = xform->next = --nb_xforms > 0 ? xform + 1 : NULL; 912 } while (xform); 913 914 return sym_op->xform; 915 } 916 917 918 /** 919 * Attach a session to a symmetric crypto operation 920 * 921 * @param sym_op crypto operation 922 * @param sess cryptodev session 923 */ 924 static inline int 925 __rte_crypto_sym_op_attach_sym_session(struct rte_crypto_sym_op *sym_op, void *sess) 926 { 927 sym_op->session = sess; 928 929 return 0; 930 } 931 932 /** 933 * Converts portion of mbuf data into a vector representation. 934 * Each segment will be represented as a separate entry in *vec* array. 935 * Expects that provided *ofs* + *len* not to exceed mbuf's *pkt_len*. 936 * @param mb 937 * Pointer to the *rte_mbuf* object. 938 * @param ofs 939 * Offset within mbuf data to start with. 940 * @param len 941 * Length of data to represent. 942 * @param vec 943 * Pointer to an output array of IO vectors. 944 * @param num 945 * Size of an output array. 946 * @return 947 * - number of successfully filled entries in *vec* array. 948 * - negative number of elements in *vec* array required. 949 */ 950 __rte_experimental 951 static inline int 952 rte_crypto_mbuf_to_vec(const struct rte_mbuf *mb, uint32_t ofs, uint32_t len, 953 struct rte_crypto_vec vec[], uint32_t num) 954 { 955 uint32_t i; 956 struct rte_mbuf *nseg; 957 uint32_t left; 958 uint32_t seglen; 959 960 /* assuming that requested data starts in the first segment */ 961 RTE_ASSERT(mb->data_len > ofs); 962 963 if (mb->nb_segs > num) 964 return -mb->nb_segs; 965 966 vec[0].base = rte_pktmbuf_mtod_offset(mb, void *, ofs); 967 vec[0].iova = rte_pktmbuf_iova_offset(mb, ofs); 968 vec[0].tot_len = mb->buf_len - rte_pktmbuf_headroom(mb) - ofs; 969 970 /* whole data lies in the first segment */ 971 seglen = mb->data_len - ofs; 972 if (len <= seglen) { 973 vec[0].len = len; 974 return 1; 975 } 976 977 /* data spread across segments */ 978 vec[0].len = seglen; 979 left = len - seglen; 980 for (i = 1, nseg = mb->next; nseg != NULL; nseg = nseg->next, i++) { 981 982 vec[i].base = rte_pktmbuf_mtod(nseg, void *); 983 vec[i].iova = rte_pktmbuf_iova(nseg); 984 vec[i].tot_len = mb->buf_len - rte_pktmbuf_headroom(mb) - ofs; 985 986 seglen = nseg->data_len; 987 if (left <= seglen) { 988 /* whole requested data is completed */ 989 vec[i].len = left; 990 left = 0; 991 i++; 992 break; 993 } 994 995 /* use whole segment */ 996 vec[i].len = seglen; 997 left -= seglen; 998 } 999 1000 RTE_ASSERT(left == 0); 1001 return i; 1002 } 1003 1004 1005 #ifdef __cplusplus 1006 } 1007 #endif 1008 1009 #endif /* _RTE_CRYPTO_SYM_H_ */ 1010