xref: /netbsd-src/sys/dev/raidframe/rf_parityscan.c (revision 2d60d84a8c920144d6d404d3ea25163a0c59c3ac)
1 /*	$NetBSD: rf_parityscan.c,v 1.38 2021/08/08 21:45:53 andvar Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /*****************************************************************************
30  *
31  * rf_parityscan.c -- misc utilities related to parity verification
32  *
33  ****************************************************************************/
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_parityscan.c,v 1.38 2021/08/08 21:45:53 andvar Exp $");
37 
38 #include <dev/raidframe/raidframevar.h>
39 
40 #include "rf_raid.h"
41 #include "rf_dag.h"
42 #include "rf_dagfuncs.h"
43 #include "rf_dagutils.h"
44 #include "rf_mcpair.h"
45 #include "rf_general.h"
46 #include "rf_engine.h"
47 #include "rf_parityscan.h"
48 #include "rf_map.h"
49 #include "rf_paritymap.h"
50 
51 /*****************************************************************************
52  *
53  * walk through the entire array and write new parity.  This works by
54  * creating two DAGs, one to read a stripe of data and one to write
55  * new parity.  The first is executed, the data is xored together, and
56  * then the second is executed.  To avoid constantly building and
57  * tearing down the DAGs, we create them a priori and fill them in
58  * with the mapping information as we go along.
59  *
60  * there should never be more than one thread running this.
61  *
62  ****************************************************************************/
63 
64 int
rf_RewriteParity(RF_Raid_t * raidPtr)65 rf_RewriteParity(RF_Raid_t *raidPtr)
66 {
67 	if (raidPtr->parity_map != NULL)
68 		return rf_paritymap_rewrite(raidPtr->parity_map);
69 	else
70 		return rf_RewriteParityRange(raidPtr, 0, raidPtr->totalSectors);
71 }
72 
73 int
rf_RewriteParityRange(RF_Raid_t * raidPtr,RF_SectorNum_t sec_begin,RF_SectorNum_t sec_len)74 rf_RewriteParityRange(RF_Raid_t *raidPtr, RF_SectorNum_t sec_begin,
75     RF_SectorNum_t sec_len)
76 {
77 	/*
78 	 * Note: It is the caller's responsibility to ensure that
79 	 * sec_begin and sec_len are stripe-aligned.
80 	 */
81 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
82 	RF_AccessStripeMapHeader_t *asm_h;
83 	int ret_val;
84 	int rc;
85 	RF_SectorNum_t i;
86 
87 	if (raidPtr->Layout.map->faultsTolerated == 0) {
88 		/* There isn't any parity. Call it "okay." */
89 		return (RF_PARITY_OKAY);
90 	}
91 	if (raidPtr->status != rf_rs_optimal) {
92 		/*
93 		 * We're in degraded mode.  Don't try to verify parity now!
94 		 * XXX: this should be a "we don't want to", not a
95 		 * "we can't" error.
96 		 */
97 		return (RF_PARITY_COULD_NOT_VERIFY);
98 	}
99 
100 	ret_val = 0;
101 
102 	rc = RF_PARITY_OKAY;
103 
104 	for (i = sec_begin; i < sec_begin + sec_len &&
105 		     rc <= RF_PARITY_CORRECTED;
106 	     i += layoutPtr->dataSectorsPerStripe) {
107 		if (raidPtr->waitShutdown) {
108 			/* Someone is pulling the plug on this set...
109 			   abort the re-write */
110 			return (1);
111 		}
112 		asm_h = rf_MapAccess(raidPtr, i,
113 				     layoutPtr->dataSectorsPerStripe,
114 				     NULL, RF_DONT_REMAP);
115 		raidPtr->parity_rewrite_stripes_done =
116 			i / layoutPtr->dataSectorsPerStripe ;
117 		rc = rf_VerifyParity(raidPtr, asm_h->stripeMap, 1, 0);
118 
119 		switch (rc) {
120 		case RF_PARITY_OKAY:
121 		case RF_PARITY_CORRECTED:
122 			break;
123 		case RF_PARITY_BAD:
124 			printf("Parity bad during correction\n");
125 			ret_val = 1;
126 			break;
127 		case RF_PARITY_COULD_NOT_CORRECT:
128 			printf("Could not correct bad parity\n");
129 			ret_val = 1;
130 			break;
131 		case RF_PARITY_COULD_NOT_VERIFY:
132 			printf("Could not verify parity\n");
133 			ret_val = 1;
134 			break;
135 		default:
136 			printf("Bad rc=%d from VerifyParity in RewriteParity\n", rc);
137 			ret_val = 1;
138 		}
139 		rf_FreeAccessStripeMap(raidPtr, asm_h);
140 	}
141 	return (ret_val);
142 }
143 /*****************************************************************************
144  *
145  * verify that the parity in a particular stripe is correct.  we
146  * validate only the range of parity defined by parityPDA, since this
147  * is all we have locked.  The way we do this is to create an asm that
148  * maps the whole stripe and then range-restrict it to the parity
149  * region defined by the parityPDA.
150  *
151  ****************************************************************************/
152 int
rf_VerifyParity(RF_Raid_t * raidPtr,RF_AccessStripeMap_t * aasm,int correct_it,RF_RaidAccessFlags_t flags)153 rf_VerifyParity(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *aasm,
154 		int correct_it, RF_RaidAccessFlags_t flags)
155 {
156 	RF_PhysDiskAddr_t *parityPDA;
157 	RF_AccessStripeMap_t *doasm;
158 	const RF_LayoutSW_t *lp;
159 	int     lrc, rc;
160 
161 	lp = raidPtr->Layout.map;
162 	if (lp->faultsTolerated == 0) {
163 		/*
164 	         * There isn't any parity. Call it "okay."
165 	         */
166 		return (RF_PARITY_OKAY);
167 	}
168 	rc = RF_PARITY_OKAY;
169 	if (lp->VerifyParity) {
170 		for (doasm = aasm; doasm; doasm = doasm->next) {
171 			for (parityPDA = doasm->parityInfo; parityPDA;
172 			     parityPDA = parityPDA->next) {
173 				lrc = lp->VerifyParity(raidPtr,
174 						       doasm->raidAddress,
175 						       parityPDA,
176 						       correct_it, flags);
177 				if (lrc > rc) {
178 					/* see rf_parityscan.h for why this
179 					 * works */
180 					rc = lrc;
181 				}
182 			}
183 		}
184 	} else {
185 		rc = RF_PARITY_COULD_NOT_VERIFY;
186 	}
187 	return (rc);
188 }
189 
190 int
rf_VerifyParityBasic(RF_Raid_t * raidPtr,RF_RaidAddr_t raidAddr,RF_PhysDiskAddr_t * parityPDA,int correct_it,RF_RaidAccessFlags_t flags)191 rf_VerifyParityBasic(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddr,
192 		     RF_PhysDiskAddr_t *parityPDA, int correct_it,
193 		     RF_RaidAccessFlags_t flags)
194 {
195 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
196 	RF_RaidAddr_t startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
197 								     raidAddr);
198 	RF_SectorCount_t numsector = parityPDA->numSector;
199 	int     numbytes = rf_RaidAddressToByte(raidPtr, numsector);
200 	int     bytesPerStripe = numbytes * layoutPtr->numDataCol;
201 	RF_DagHeader_t *rd_dag_h, *wr_dag_h;	/* read, write dag */
202 	RF_DagNode_t *blockNode, *wrBlock;
203 	RF_AccessStripeMapHeader_t *asm_h;
204 	RF_AccessStripeMap_t *asmap;
205 	RF_AllocListElem_t *alloclist;
206 	RF_PhysDiskAddr_t *pda;
207 	char   *pbuf, *bf, *end_p, *p;
208 	int     i, retcode;
209 	RF_ReconUnitNum_t which_ru;
210 	RF_StripeNum_t psID = rf_RaidAddressToParityStripeID(layoutPtr,
211 							     raidAddr,
212 							     &which_ru);
213 	int     stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
214 #if RF_ACC_TRACE > 0
215 	RF_AccTraceEntry_t tracerec;
216 #endif
217 	RF_MCPair_t *mcpair;
218 
219 	retcode = RF_PARITY_OKAY;
220 
221 	mcpair = rf_AllocMCPair(raidPtr);
222 	rf_MakeAllocList(alloclist);
223 	bf = RF_MallocAndAdd(numbytes
224 	    * (layoutPtr->numDataCol + layoutPtr->numParityCol), alloclist);
225 	pbuf = RF_MallocAndAdd(numbytes, alloclist);
226 	end_p = bf + bytesPerStripe;
227 
228 	rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, numbytes, bf, rf_DiskReadFunc, rf_DiskReadUndoFunc,
229 	    "Rod", alloclist, flags, RF_IO_NORMAL_PRIORITY);
230 	blockNode = rd_dag_h->succedents[0];
231 
232 	/* map the stripe and fill in the PDAs in the dag */
233 	asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe, bf, RF_DONT_REMAP);
234 	asmap = asm_h->stripeMap;
235 
236 	for (pda = asmap->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) {
237 		RF_ASSERT(pda);
238 		rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
239 		RF_ASSERT(pda->numSector != 0);
240 		if (rf_TryToRedirectPDA(raidPtr, pda, 0))
241 			goto out;	/* no way to verify parity if disk is
242 					 * dead.  return w/ good status */
243 		blockNode->succedents[i]->params[0].p = pda;
244 		blockNode->succedents[i]->params[2].v = psID;
245 		blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
246 	}
247 
248 	RF_ASSERT(!asmap->parityInfo->next);
249 	rf_RangeRestrictPDA(raidPtr, parityPDA, asmap->parityInfo, 0, 1);
250 	RF_ASSERT(asmap->parityInfo->numSector != 0);
251 	if (rf_TryToRedirectPDA(raidPtr, asmap->parityInfo, 1))
252 		goto out;
253 	blockNode->succedents[layoutPtr->numDataCol]->params[0].p = asmap->parityInfo;
254 
255 	/* fire off the DAG */
256 #if RF_ACC_TRACE > 0
257 	memset(&tracerec, 0, sizeof(tracerec));
258 	rd_dag_h->tracerec = &tracerec;
259 #endif
260 #if 0
261 	if (rf_verifyParityDebug) {
262 		printf("Parity verify read dag:\n");
263 		rf_PrintDAGList(rd_dag_h);
264 	}
265 #endif
266 	RF_LOCK_MCPAIR(mcpair);
267 	mcpair->flag = 0;
268 	RF_UNLOCK_MCPAIR(mcpair);
269 
270 	rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
271 	    (void *) mcpair);
272 
273 	RF_LOCK_MCPAIR(mcpair);
274 	while (!mcpair->flag)
275 		RF_WAIT_MCPAIR(mcpair);
276 	RF_UNLOCK_MCPAIR(mcpair);
277 	if (rd_dag_h->status != rf_enable) {
278 		RF_ERRORMSG("Unable to verify parity:  can't read the stripe\n");
279 		retcode = RF_PARITY_COULD_NOT_VERIFY;
280 		goto out;
281 	}
282 	for (p = bf; p < end_p; p += numbytes) {
283 		rf_bxor(p, pbuf, numbytes);
284 	}
285 	for (i = 0; i < numbytes; i++) {
286 		if (pbuf[i] != bf[bytesPerStripe + i]) {
287 			if (!correct_it)
288 				RF_ERRORMSG3("Parity verify error: byte %d of parity is 0x%x should be 0x%x\n",
289 				    i, (u_char) bf[bytesPerStripe + i], (u_char) pbuf[i]);
290 			retcode = RF_PARITY_BAD;
291 			break;
292 		}
293 	}
294 
295 	if (retcode && correct_it) {
296 		wr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, numbytes, pbuf, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
297 		    "Wnp", alloclist, flags, RF_IO_NORMAL_PRIORITY);
298 		wrBlock = wr_dag_h->succedents[0];
299 		wrBlock->succedents[0]->params[0].p = asmap->parityInfo;
300 		wrBlock->succedents[0]->params[2].v = psID;
301 		wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
302 #if RF_ACC_TRACE > 0
303 		memset(&tracerec, 0, sizeof(tracerec));
304 		wr_dag_h->tracerec = &tracerec;
305 #endif
306 #if 0
307 		if (rf_verifyParityDebug) {
308 			printf("Parity verify write dag:\n");
309 			rf_PrintDAGList(wr_dag_h);
310 		}
311 #endif
312 		RF_LOCK_MCPAIR(mcpair);
313 		mcpair->flag = 0;
314 		RF_UNLOCK_MCPAIR(mcpair);
315 
316 		rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
317 		    (void *) mcpair);
318 
319 		RF_LOCK_MCPAIR(mcpair);
320 		while (!mcpair->flag)
321 			RF_WAIT_MCPAIR(mcpair);
322 		RF_UNLOCK_MCPAIR(mcpair);
323 		if (wr_dag_h->status != rf_enable) {
324 			RF_ERRORMSG("Unable to correct parity in VerifyParity:  can't write the stripe\n");
325 			retcode = RF_PARITY_COULD_NOT_CORRECT;
326 		}
327 		rf_FreeDAG(wr_dag_h);
328 		if (retcode == RF_PARITY_BAD)
329 			retcode = RF_PARITY_CORRECTED;
330 	}
331 out:
332 	rf_FreeAccessStripeMap(raidPtr, asm_h);
333 	rf_FreeAllocList(alloclist);
334 	rf_FreeDAG(rd_dag_h);
335 	rf_FreeMCPair(raidPtr, mcpair);
336 	return (retcode);
337 }
338 
339 int
rf_TryToRedirectPDA(RF_Raid_t * raidPtr,RF_PhysDiskAddr_t * pda,int parity)340 rf_TryToRedirectPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda,
341     int parity)
342 {
343 	if (raidPtr->Disks[pda->col].status == rf_ds_reconstructing) {
344 		if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
345 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
346 			if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
347 #if RF_DEBUG_VERIFYPARITY
348 				RF_RowCol_t oc = pda->col;
349 				RF_SectorNum_t os = pda->startSector;
350 #endif
351 				if (parity) {
352 					(raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
353 #if RF_DEBUG_VERIFYPARITY
354 					if (rf_verifyParityDebug)
355 						printf("VerifyParity: Redir P c %d sect %ld -> c %d sect %ld\n",
356 						    oc, (long) os, pda->col, (long) pda->startSector);
357 #endif
358 				} else {
359 					(raidPtr->Layout.map->MapSector) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
360 #if RF_DEBUG_VERIFYPARITY
361 					if (rf_verifyParityDebug)
362 						printf("VerifyParity: Redir D c %d sect %ld -> c %d sect %ld\n",
363 						   oc, (long) os, pda->col, (long) pda->startSector);
364 #endif
365 				}
366 			} else {
367 #endif
368 				RF_RowCol_t spCol = raidPtr->Disks[pda->col].spareCol;
369 				pda->col = spCol;
370 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
371 			}
372 #endif
373 		}
374 	}
375 	if (RF_DEAD_DISK(raidPtr->Disks[pda->col].status))
376 		return (1);
377 	return (0);
378 }
379 /*****************************************************************************
380  *
381  * currently a stub.
382  *
383  * takes as input an ASM describing a write operation and containing
384  * one failure, and verifies that the parity was correctly updated to
385  * reflect the write.
386  *
387  * if it's a data unit that's failed, we read the other data units in
388  * the stripe and the parity unit, XOR them together, and verify that
389  * we get the data intended for the failed disk.  Since it's easy, we
390  * also validate that the right data got written to the surviving data
391  * disks.
392  *
393  * If it's the parity that failed, there's really no validation we can
394  * do except the above verification that the right data got written to
395  * all disks.  This is because the new data intended for the failed
396  * disk is supplied in the ASM, but this is of course not the case for
397  * the new parity.
398  *
399  ****************************************************************************/
400 #if 0
401 int
402 rf_VerifyDegrModeWrite(RF_Raid_t *raidPtr, RF_AccessStripeMapHeader_t *asmh)
403 {
404 	return (0);
405 }
406 #endif
407 /* creates a simple DAG with a header, a block-recon node at level 1,
408  * nNodes nodes at level 2, an unblock-recon node at level 3, and a
409  * terminator node at level 4.  The stripe address field in the block
410  * and unblock nodes are not touched, nor are the pda fields in the
411  * second-level nodes, so they must be filled in later.
412  *
413  * commit point is established at unblock node - this means that any
414  * failure during dag execution causes the dag to fail
415  *
416  * name - node names at the second level
417  */
418 RF_DagHeader_t *
rf_MakeSimpleDAG(RF_Raid_t * raidPtr,int nNodes,int bytesPerSU,char * databuf,void (* doFunc)(RF_DagNode_t * node),void (* undoFunc)(RF_DagNode_t * node),const char * name,RF_AllocListElem_t * alloclist,RF_RaidAccessFlags_t flags,int priority)419 rf_MakeSimpleDAG(RF_Raid_t *raidPtr, int nNodes, int bytesPerSU, char *databuf,
420 		 void (*doFunc) (RF_DagNode_t * node),
421 		 void (*undoFunc) (RF_DagNode_t * node),
422 		 const char *name, RF_AllocListElem_t *alloclist,
423 		 RF_RaidAccessFlags_t flags, int priority)
424 {
425 	RF_DagHeader_t *dag_h;
426 	RF_DagNode_t *nodes, *termNode, *blockNode, *unblockNode, *tmpNode;
427 	int     i;
428 
429 	/* grab a DAG header... */
430 
431 	dag_h = rf_AllocDAGHeader(raidPtr);
432 	dag_h->raidPtr = (void *) raidPtr;
433 	dag_h->allocList = NULL;/* we won't use this alloc list */
434 	dag_h->status = rf_enable;
435 	dag_h->numSuccedents = 1;
436 	dag_h->creator = "SimpleDAG";
437 
438 	/* this dag can not commit until the unblock node is reached errors
439 	 * prior to the commit point imply the dag has failed */
440 	dag_h->numCommitNodes = 1;
441 	dag_h->numCommits = 0;
442 
443 	/* create the nodes, the block & unblock nodes, and the terminator
444 	 * node */
445 
446 	for (i = 0; i < nNodes; i++) {
447 		tmpNode = rf_AllocDAGNode(raidPtr);
448 		tmpNode->list_next = dag_h->nodes;
449 		dag_h->nodes = tmpNode;
450 	}
451 	nodes = dag_h->nodes;
452 
453 	blockNode = rf_AllocDAGNode(raidPtr);
454 	blockNode->list_next = dag_h->nodes;
455 	dag_h->nodes = blockNode;
456 
457 	unblockNode = rf_AllocDAGNode(raidPtr);
458 	unblockNode->list_next = dag_h->nodes;
459 	dag_h->nodes = unblockNode;
460 
461 	termNode = rf_AllocDAGNode(raidPtr);
462 	termNode->list_next = dag_h->nodes;
463 	dag_h->nodes = termNode;
464 
465 	dag_h->succedents[0] = blockNode;
466 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", alloclist);
467 	rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", alloclist);
468 	unblockNode->succedents[0] = termNode;
469 	tmpNode = nodes;
470 	for (i = 0; i < nNodes; i++) {
471 		blockNode->succedents[i] = unblockNode->antecedents[i] = tmpNode;
472 		unblockNode->antType[i] = rf_control;
473 		rf_InitNode(tmpNode, rf_wait, RF_FALSE, doFunc, undoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, alloclist);
474 		tmpNode->succedents[0] = unblockNode;
475 		tmpNode->antecedents[0] = blockNode;
476 		tmpNode->antType[0] = rf_control;
477 		tmpNode->params[1].p = (databuf + (i * bytesPerSU));
478 		tmpNode = tmpNode->list_next;
479 	}
480 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", alloclist);
481 	termNode->antecedents[0] = unblockNode;
482 	termNode->antType[0] = rf_control;
483 	return (dag_h);
484 }
485