xref: /netbsd-src/external/apache2/llvm/dist/llvm/include/llvm/CodeGen/TargetRegisterInfo.h (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //==- CodeGen/TargetRegisterInfo.h - Target Register Information -*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file describes an abstract interface used to get information about a
10 // target machines register file.  This information is used for a variety of
11 // purposed, especially register allocation.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_CODEGEN_TARGETREGISTERINFO_H
16 #define LLVM_CODEGEN_TARGETREGISTERINFO_H
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/IR/CallingConv.h"
24 #include "llvm/MC/LaneBitmask.h"
25 #include "llvm/MC/MCRegisterInfo.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MachineValueType.h"
28 #include "llvm/Support/MathExtras.h"
29 #include "llvm/Support/Printable.h"
30 #include <cassert>
31 #include <cstdint>
32 #include <functional>
33 
34 namespace llvm {
35 
36 class BitVector;
37 class DIExpression;
38 class LiveRegMatrix;
39 class MachineFunction;
40 class MachineInstr;
41 class RegScavenger;
42 class VirtRegMap;
43 class LiveIntervals;
44 class LiveInterval;
45 
46 class TargetRegisterClass {
47 public:
48   using iterator = const MCPhysReg *;
49   using const_iterator = const MCPhysReg *;
50   using sc_iterator = const TargetRegisterClass* const *;
51 
52   // Instance variables filled by tablegen, do not use!
53   const MCRegisterClass *MC;
54   const uint32_t *SubClassMask;
55   const uint16_t *SuperRegIndices;
56   const LaneBitmask LaneMask;
57   /// Classes with a higher priority value are assigned first by register
58   /// allocators using a greedy heuristic. The value is in the range [0,63].
59   const uint8_t AllocationPriority;
60   /// Whether the class supports two (or more) disjunct subregister indices.
61   const bool HasDisjunctSubRegs;
62   /// Whether a combination of subregisters can cover every register in the
63   /// class. See also the CoveredBySubRegs description in Target.td.
64   const bool CoveredBySubRegs;
65   const sc_iterator SuperClasses;
66   ArrayRef<MCPhysReg> (*OrderFunc)(const MachineFunction&);
67 
68   /// Return the register class ID number.
getID()69   unsigned getID() const { return MC->getID(); }
70 
71   /// begin/end - Return all of the registers in this class.
72   ///
begin()73   iterator       begin() const { return MC->begin(); }
end()74   iterator         end() const { return MC->end(); }
75 
76   /// Return the number of registers in this class.
getNumRegs()77   unsigned getNumRegs() const { return MC->getNumRegs(); }
78 
79   iterator_range<SmallVectorImpl<MCPhysReg>::const_iterator>
getRegisters()80   getRegisters() const {
81     return make_range(MC->begin(), MC->end());
82   }
83 
84   /// Return the specified register in the class.
getRegister(unsigned i)85   MCRegister getRegister(unsigned i) const {
86     return MC->getRegister(i);
87   }
88 
89   /// Return true if the specified register is included in this register class.
90   /// This does not include virtual registers.
contains(Register Reg)91   bool contains(Register Reg) const {
92     /// FIXME: Historically this function has returned false when given vregs
93     ///        but it should probably only receive physical registers
94     if (!Reg.isPhysical())
95       return false;
96     return MC->contains(Reg.asMCReg());
97   }
98 
99   /// Return true if both registers are in this class.
contains(Register Reg1,Register Reg2)100   bool contains(Register Reg1, Register Reg2) const {
101     /// FIXME: Historically this function has returned false when given a vregs
102     ///        but it should probably only receive physical registers
103     if (!Reg1.isPhysical() || !Reg2.isPhysical())
104       return false;
105     return MC->contains(Reg1.asMCReg(), Reg2.asMCReg());
106   }
107 
108   /// Return the cost of copying a value between two registers in this class.
109   /// A negative number means the register class is very expensive
110   /// to copy e.g. status flag register classes.
getCopyCost()111   int getCopyCost() const { return MC->getCopyCost(); }
112 
113   /// Return true if this register class may be used to create virtual
114   /// registers.
isAllocatable()115   bool isAllocatable() const { return MC->isAllocatable(); }
116 
117   /// Return true if the specified TargetRegisterClass
118   /// is a proper sub-class of this TargetRegisterClass.
hasSubClass(const TargetRegisterClass * RC)119   bool hasSubClass(const TargetRegisterClass *RC) const {
120     return RC != this && hasSubClassEq(RC);
121   }
122 
123   /// Returns true if RC is a sub-class of or equal to this class.
hasSubClassEq(const TargetRegisterClass * RC)124   bool hasSubClassEq(const TargetRegisterClass *RC) const {
125     unsigned ID = RC->getID();
126     return (SubClassMask[ID / 32] >> (ID % 32)) & 1;
127   }
128 
129   /// Return true if the specified TargetRegisterClass is a
130   /// proper super-class of this TargetRegisterClass.
hasSuperClass(const TargetRegisterClass * RC)131   bool hasSuperClass(const TargetRegisterClass *RC) const {
132     return RC->hasSubClass(this);
133   }
134 
135   /// Returns true if RC is a super-class of or equal to this class.
hasSuperClassEq(const TargetRegisterClass * RC)136   bool hasSuperClassEq(const TargetRegisterClass *RC) const {
137     return RC->hasSubClassEq(this);
138   }
139 
140   /// Returns a bit vector of subclasses, including this one.
141   /// The vector is indexed by class IDs.
142   ///
143   /// To use it, consider the returned array as a chunk of memory that
144   /// contains an array of bits of size NumRegClasses. Each 32-bit chunk
145   /// contains a bitset of the ID of the subclasses in big-endian style.
146 
147   /// I.e., the representation of the memory from left to right at the
148   /// bit level looks like:
149   /// [31 30 ... 1 0] [ 63 62 ... 33 32] ...
150   ///                     [ XXX NumRegClasses NumRegClasses - 1 ... ]
151   /// Where the number represents the class ID and XXX bits that
152   /// should be ignored.
153   ///
154   /// See the implementation of hasSubClassEq for an example of how it
155   /// can be used.
getSubClassMask()156   const uint32_t *getSubClassMask() const {
157     return SubClassMask;
158   }
159 
160   /// Returns a 0-terminated list of sub-register indices that project some
161   /// super-register class into this register class. The list has an entry for
162   /// each Idx such that:
163   ///
164   ///   There exists SuperRC where:
165   ///     For all Reg in SuperRC:
166   ///       this->contains(Reg:Idx)
getSuperRegIndices()167   const uint16_t *getSuperRegIndices() const {
168     return SuperRegIndices;
169   }
170 
171   /// Returns a NULL-terminated list of super-classes.  The
172   /// classes are ordered by ID which is also a topological ordering from large
173   /// to small classes.  The list does NOT include the current class.
getSuperClasses()174   sc_iterator getSuperClasses() const {
175     return SuperClasses;
176   }
177 
178   /// Return true if this TargetRegisterClass is a subset
179   /// class of at least one other TargetRegisterClass.
isASubClass()180   bool isASubClass() const {
181     return SuperClasses[0] != nullptr;
182   }
183 
184   /// Returns the preferred order for allocating registers from this register
185   /// class in MF. The raw order comes directly from the .td file and may
186   /// include reserved registers that are not allocatable.
187   /// Register allocators should also make sure to allocate
188   /// callee-saved registers only after all the volatiles are used. The
189   /// RegisterClassInfo class provides filtered allocation orders with
190   /// callee-saved registers moved to the end.
191   ///
192   /// The MachineFunction argument can be used to tune the allocatable
193   /// registers based on the characteristics of the function, subtarget, or
194   /// other criteria.
195   ///
196   /// By default, this method returns all registers in the class.
getRawAllocationOrder(const MachineFunction & MF)197   ArrayRef<MCPhysReg> getRawAllocationOrder(const MachineFunction &MF) const {
198     return OrderFunc ? OrderFunc(MF) : makeArrayRef(begin(), getNumRegs());
199   }
200 
201   /// Returns the combination of all lane masks of register in this class.
202   /// The lane masks of the registers are the combination of all lane masks
203   /// of their subregisters. Returns 1 if there are no subregisters.
getLaneMask()204   LaneBitmask getLaneMask() const {
205     return LaneMask;
206   }
207 };
208 
209 /// Extra information, not in MCRegisterDesc, about registers.
210 /// These are used by codegen, not by MC.
211 struct TargetRegisterInfoDesc {
212   const uint8_t *CostPerUse; // Extra cost of instructions using register.
213   unsigned NumCosts; // Number of cost values associated with each register.
214   const bool
215       *InAllocatableClass; // Register belongs to an allocatable regclass.
216 };
217 
218 /// Each TargetRegisterClass has a per register weight, and weight
219 /// limit which must be less than the limits of its pressure sets.
220 struct RegClassWeight {
221   unsigned RegWeight;
222   unsigned WeightLimit;
223 };
224 
225 /// TargetRegisterInfo base class - We assume that the target defines a static
226 /// array of TargetRegisterDesc objects that represent all of the machine
227 /// registers that the target has.  As such, we simply have to track a pointer
228 /// to this array so that we can turn register number into a register
229 /// descriptor.
230 ///
231 class TargetRegisterInfo : public MCRegisterInfo {
232 public:
233   using regclass_iterator = const TargetRegisterClass * const *;
234   using vt_iterator = const MVT::SimpleValueType *;
235   struct RegClassInfo {
236     unsigned RegSize, SpillSize, SpillAlignment;
237     vt_iterator VTList;
238   };
239 private:
240   const TargetRegisterInfoDesc *InfoDesc;     // Extra desc array for codegen
241   const char *const *SubRegIndexNames;        // Names of subreg indexes.
242   // Pointer to array of lane masks, one per sub-reg index.
243   const LaneBitmask *SubRegIndexLaneMasks;
244 
245   regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
246   LaneBitmask CoveringLanes;
247   const RegClassInfo *const RCInfos;
248   unsigned HwMode;
249 
250 protected:
251   TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
252                      regclass_iterator RCB,
253                      regclass_iterator RCE,
254                      const char *const *SRINames,
255                      const LaneBitmask *SRILaneMasks,
256                      LaneBitmask CoveringLanes,
257                      const RegClassInfo *const RCIs,
258                      unsigned Mode = 0);
259   virtual ~TargetRegisterInfo();
260 
261 public:
262   // Register numbers can represent physical registers, virtual registers, and
263   // sometimes stack slots. The unsigned values are divided into these ranges:
264   //
265   //   0           Not a register, can be used as a sentinel.
266   //   [1;2^30)    Physical registers assigned by TableGen.
267   //   [2^30;2^31) Stack slots. (Rarely used.)
268   //   [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
269   //
270   // Further sentinels can be allocated from the small negative integers.
271   // DenseMapInfo<unsigned> uses -1u and -2u.
272 
273   /// Return the size in bits of a register from class RC.
getRegSizeInBits(const TargetRegisterClass & RC)274   unsigned getRegSizeInBits(const TargetRegisterClass &RC) const {
275     return getRegClassInfo(RC).RegSize;
276   }
277 
278   /// Return the size in bytes of the stack slot allocated to hold a spilled
279   /// copy of a register from class RC.
getSpillSize(const TargetRegisterClass & RC)280   unsigned getSpillSize(const TargetRegisterClass &RC) const {
281     return getRegClassInfo(RC).SpillSize / 8;
282   }
283 
284   /// Return the minimum required alignment in bytes for a spill slot for
285   /// a register of this class.
getSpillAlign(const TargetRegisterClass & RC)286   Align getSpillAlign(const TargetRegisterClass &RC) const {
287     return Align(getRegClassInfo(RC).SpillAlignment / 8);
288   }
289 
290   /// Return true if the given TargetRegisterClass has the ValueType T.
isTypeLegalForClass(const TargetRegisterClass & RC,MVT T)291   bool isTypeLegalForClass(const TargetRegisterClass &RC, MVT T) const {
292     for (auto I = legalclasstypes_begin(RC); *I != MVT::Other; ++I)
293       if (MVT(*I) == T)
294         return true;
295     return false;
296   }
297 
298   /// Return true if the given TargetRegisterClass is compatible with LLT T.
isTypeLegalForClass(const TargetRegisterClass & RC,LLT T)299   bool isTypeLegalForClass(const TargetRegisterClass &RC, LLT T) const {
300     for (auto I = legalclasstypes_begin(RC); *I != MVT::Other; ++I) {
301       MVT VT(*I);
302       if (VT == MVT::Untyped)
303         return true;
304 
305       if (LLT(VT) == T)
306         return true;
307     }
308     return false;
309   }
310 
311   /// Loop over all of the value types that can be represented by values
312   /// in the given register class.
legalclasstypes_begin(const TargetRegisterClass & RC)313   vt_iterator legalclasstypes_begin(const TargetRegisterClass &RC) const {
314     return getRegClassInfo(RC).VTList;
315   }
316 
legalclasstypes_end(const TargetRegisterClass & RC)317   vt_iterator legalclasstypes_end(const TargetRegisterClass &RC) const {
318     vt_iterator I = legalclasstypes_begin(RC);
319     while (*I != MVT::Other)
320       ++I;
321     return I;
322   }
323 
324   /// Returns the Register Class of a physical register of the given type,
325   /// picking the most sub register class of the right type that contains this
326   /// physreg.
327   const TargetRegisterClass *getMinimalPhysRegClass(MCRegister Reg,
328                                                     MVT VT = MVT::Other) const;
329 
330   /// Returns the Register Class of a physical register of the given type,
331   /// picking the most sub register class of the right type that contains this
332   /// physreg. If there is no register class compatible with the given type,
333   /// returns nullptr.
334   const TargetRegisterClass *getMinimalPhysRegClassLLT(MCRegister Reg,
335                                                        LLT Ty = LLT()) const;
336 
337   /// Return the maximal subclass of the given register class that is
338   /// allocatable or NULL.
339   const TargetRegisterClass *
340     getAllocatableClass(const TargetRegisterClass *RC) const;
341 
342   /// Returns a bitset indexed by register number indicating if a register is
343   /// allocatable or not. If a register class is specified, returns the subset
344   /// for the class.
345   BitVector getAllocatableSet(const MachineFunction &MF,
346                               const TargetRegisterClass *RC = nullptr) const;
347 
348   /// Get a list of cost values for all registers that correspond to the index
349   /// returned by RegisterCostTableIndex.
getRegisterCosts(const MachineFunction & MF)350   ArrayRef<uint8_t> getRegisterCosts(const MachineFunction &MF) const {
351     unsigned Idx = getRegisterCostTableIndex(MF);
352     unsigned NumRegs = getNumRegs();
353     assert(Idx < InfoDesc->NumCosts && "CostPerUse index out of bounds");
354 
355     return makeArrayRef(&InfoDesc->CostPerUse[Idx * NumRegs], NumRegs);
356   }
357 
358   /// Return true if the register is in the allocation of any register class.
isInAllocatableClass(MCRegister RegNo)359   bool isInAllocatableClass(MCRegister RegNo) const {
360     return InfoDesc->InAllocatableClass[RegNo];
361   }
362 
363   /// Return the human-readable symbolic target-specific
364   /// name for the specified SubRegIndex.
getSubRegIndexName(unsigned SubIdx)365   const char *getSubRegIndexName(unsigned SubIdx) const {
366     assert(SubIdx && SubIdx < getNumSubRegIndices() &&
367            "This is not a subregister index");
368     return SubRegIndexNames[SubIdx-1];
369   }
370 
371   /// Return a bitmask representing the parts of a register that are covered by
372   /// SubIdx \see LaneBitmask.
373   ///
374   /// SubIdx == 0 is allowed, it has the lane mask ~0u.
getSubRegIndexLaneMask(unsigned SubIdx)375   LaneBitmask getSubRegIndexLaneMask(unsigned SubIdx) const {
376     assert(SubIdx < getNumSubRegIndices() && "This is not a subregister index");
377     return SubRegIndexLaneMasks[SubIdx];
378   }
379 
380   /// Try to find one or more subregister indexes to cover \p LaneMask.
381   ///
382   /// If this is possible, returns true and appends the best matching set of
383   /// indexes to \p Indexes. If this is not possible, returns false.
384   bool getCoveringSubRegIndexes(const MachineRegisterInfo &MRI,
385                                 const TargetRegisterClass *RC,
386                                 LaneBitmask LaneMask,
387                                 SmallVectorImpl<unsigned> &Indexes) const;
388 
389   /// The lane masks returned by getSubRegIndexLaneMask() above can only be
390   /// used to determine if sub-registers overlap - they can't be used to
391   /// determine if a set of sub-registers completely cover another
392   /// sub-register.
393   ///
394   /// The X86 general purpose registers have two lanes corresponding to the
395   /// sub_8bit and sub_8bit_hi sub-registers. Both sub_32bit and sub_16bit have
396   /// lane masks '3', but the sub_16bit sub-register doesn't fully cover the
397   /// sub_32bit sub-register.
398   ///
399   /// On the other hand, the ARM NEON lanes fully cover their registers: The
400   /// dsub_0 sub-register is completely covered by the ssub_0 and ssub_1 lanes.
401   /// This is related to the CoveredBySubRegs property on register definitions.
402   ///
403   /// This function returns a bit mask of lanes that completely cover their
404   /// sub-registers. More precisely, given:
405   ///
406   ///   Covering = getCoveringLanes();
407   ///   MaskA = getSubRegIndexLaneMask(SubA);
408   ///   MaskB = getSubRegIndexLaneMask(SubB);
409   ///
410   /// If (MaskA & ~(MaskB & Covering)) == 0, then SubA is completely covered by
411   /// SubB.
getCoveringLanes()412   LaneBitmask getCoveringLanes() const { return CoveringLanes; }
413 
414   /// Returns true if the two registers are equal or alias each other.
415   /// The registers may be virtual registers.
regsOverlap(Register regA,Register regB)416   bool regsOverlap(Register regA, Register regB) const {
417     if (regA == regB) return true;
418     if (!regA.isPhysical() || !regB.isPhysical())
419       return false;
420 
421     // Regunits are numerically ordered. Find a common unit.
422     MCRegUnitIterator RUA(regA.asMCReg(), this);
423     MCRegUnitIterator RUB(regB.asMCReg(), this);
424     do {
425       if (*RUA == *RUB) return true;
426       if (*RUA < *RUB) ++RUA;
427       else             ++RUB;
428     } while (RUA.isValid() && RUB.isValid());
429     return false;
430   }
431 
432   /// Returns true if Reg contains RegUnit.
hasRegUnit(MCRegister Reg,Register RegUnit)433   bool hasRegUnit(MCRegister Reg, Register RegUnit) const {
434     for (MCRegUnitIterator Units(Reg, this); Units.isValid(); ++Units)
435       if (Register(*Units) == RegUnit)
436         return true;
437     return false;
438   }
439 
440   /// Returns the original SrcReg unless it is the target of a copy-like
441   /// operation, in which case we chain backwards through all such operations
442   /// to the ultimate source register.  If a physical register is encountered,
443   /// we stop the search.
444   virtual Register lookThruCopyLike(Register SrcReg,
445                                     const MachineRegisterInfo *MRI) const;
446 
447   /// Find the original SrcReg unless it is the target of a copy-like operation,
448   /// in which case we chain backwards through all such operations to the
449   /// ultimate source register. If a physical register is encountered, we stop
450   /// the search.
451   /// Return the original SrcReg if all the definitions in the chain only have
452   /// one user and not a physical register.
453   virtual Register
454   lookThruSingleUseCopyChain(Register SrcReg,
455                              const MachineRegisterInfo *MRI) const;
456 
457   /// Return a null-terminated list of all of the callee-saved registers on
458   /// this target. The register should be in the order of desired callee-save
459   /// stack frame offset. The first register is closest to the incoming stack
460   /// pointer if stack grows down, and vice versa.
461   /// Notice: This function does not take into account disabled CSRs.
462   ///         In most cases you will want to use instead the function
463   ///         getCalleeSavedRegs that is implemented in MachineRegisterInfo.
464   virtual const MCPhysReg*
465   getCalleeSavedRegs(const MachineFunction *MF) const = 0;
466 
467   /// Return a mask of call-preserved registers for the given calling convention
468   /// on the current function. The mask should include all call-preserved
469   /// aliases. This is used by the register allocator to determine which
470   /// registers can be live across a call.
471   ///
472   /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries.
473   /// A set bit indicates that all bits of the corresponding register are
474   /// preserved across the function call.  The bit mask is expected to be
475   /// sub-register complete, i.e. if A is preserved, so are all its
476   /// sub-registers.
477   ///
478   /// Bits are numbered from the LSB, so the bit for physical register Reg can
479   /// be found as (Mask[Reg / 32] >> Reg % 32) & 1.
480   ///
481   /// A NULL pointer means that no register mask will be used, and call
482   /// instructions should use implicit-def operands to indicate call clobbered
483   /// registers.
484   ///
getCallPreservedMask(const MachineFunction & MF,CallingConv::ID)485   virtual const uint32_t *getCallPreservedMask(const MachineFunction &MF,
486                                                CallingConv::ID) const {
487     // The default mask clobbers everything.  All targets should override.
488     return nullptr;
489   }
490 
491   /// Return a register mask for the registers preserved by the unwinder,
492   /// or nullptr if no custom mask is needed.
493   virtual const uint32_t *
getCustomEHPadPreservedMask(const MachineFunction & MF)494   getCustomEHPadPreservedMask(const MachineFunction &MF) const {
495     return nullptr;
496   }
497 
498   /// Return a register mask that clobbers everything.
getNoPreservedMask()499   virtual const uint32_t *getNoPreservedMask() const {
500     llvm_unreachable("target does not provide no preserved mask");
501   }
502 
503   /// Return a list of all of the registers which are clobbered "inside" a call
504   /// to the given function. For example, these might be needed for PLT
505   /// sequences of long-branch veneers.
506   virtual ArrayRef<MCPhysReg>
getIntraCallClobberedRegs(const MachineFunction * MF)507   getIntraCallClobberedRegs(const MachineFunction *MF) const {
508     return {};
509   }
510 
511   /// Return true if all bits that are set in mask \p mask0 are also set in
512   /// \p mask1.
513   bool regmaskSubsetEqual(const uint32_t *mask0, const uint32_t *mask1) const;
514 
515   /// Return all the call-preserved register masks defined for this target.
516   virtual ArrayRef<const uint32_t *> getRegMasks() const = 0;
517   virtual ArrayRef<const char *> getRegMaskNames() const = 0;
518 
519   /// Returns a bitset indexed by physical register number indicating if a
520   /// register is a special register that has particular uses and should be
521   /// considered unavailable at all times, e.g. stack pointer, return address.
522   /// A reserved register:
523   /// - is not allocatable
524   /// - is considered always live
525   /// - is ignored by liveness tracking
526   /// It is often necessary to reserve the super registers of a reserved
527   /// register as well, to avoid them getting allocated indirectly. You may use
528   /// markSuperRegs() and checkAllSuperRegsMarked() in this case.
529   virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
530 
531   /// Returns false if we can't guarantee that Physreg, specified as an IR asm
532   /// clobber constraint, will be preserved across the statement.
isAsmClobberable(const MachineFunction & MF,MCRegister PhysReg)533   virtual bool isAsmClobberable(const MachineFunction &MF,
534                                 MCRegister PhysReg) const {
535     return true;
536   }
537 
538   /// Returns true if PhysReg cannot be written to in inline asm statements.
isInlineAsmReadOnlyReg(const MachineFunction & MF,unsigned PhysReg)539   virtual bool isInlineAsmReadOnlyReg(const MachineFunction &MF,
540                                       unsigned PhysReg) const {
541     return false;
542   }
543 
544   /// Returns true if PhysReg is unallocatable and constant throughout the
545   /// function.  Used by MachineRegisterInfo::isConstantPhysReg().
isConstantPhysReg(MCRegister PhysReg)546   virtual bool isConstantPhysReg(MCRegister PhysReg) const { return false; }
547 
548   /// Returns true if the register class is considered divergent.
isDivergentRegClass(const TargetRegisterClass * RC)549   virtual bool isDivergentRegClass(const TargetRegisterClass *RC) const {
550     return false;
551   }
552 
553   /// Physical registers that may be modified within a function but are
554   /// guaranteed to be restored before any uses. This is useful for targets that
555   /// have call sequences where a GOT register may be updated by the caller
556   /// prior to a call and is guaranteed to be restored (also by the caller)
557   /// after the call.
isCallerPreservedPhysReg(MCRegister PhysReg,const MachineFunction & MF)558   virtual bool isCallerPreservedPhysReg(MCRegister PhysReg,
559                                         const MachineFunction &MF) const {
560     return false;
561   }
562 
563   /// This is a wrapper around getCallPreservedMask().
564   /// Return true if the register is preserved after the call.
565   virtual bool isCalleeSavedPhysReg(MCRegister PhysReg,
566                                     const MachineFunction &MF) const;
567 
568   /// Prior to adding the live-out mask to a stackmap or patchpoint
569   /// instruction, provide the target the opportunity to adjust it (mainly to
570   /// remove pseudo-registers that should be ignored).
adjustStackMapLiveOutMask(uint32_t * Mask)571   virtual void adjustStackMapLiveOutMask(uint32_t *Mask) const {}
572 
573   /// Return a super-register of the specified register
574   /// Reg so its sub-register of index SubIdx is Reg.
getMatchingSuperReg(MCRegister Reg,unsigned SubIdx,const TargetRegisterClass * RC)575   MCRegister getMatchingSuperReg(MCRegister Reg, unsigned SubIdx,
576                                  const TargetRegisterClass *RC) const {
577     return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC);
578   }
579 
580   /// Return a subclass of the specified register
581   /// class A so that each register in it has a sub-register of the
582   /// specified sub-register index which is in the specified register class B.
583   ///
584   /// TableGen will synthesize missing A sub-classes.
585   virtual const TargetRegisterClass *
586   getMatchingSuperRegClass(const TargetRegisterClass *A,
587                            const TargetRegisterClass *B, unsigned Idx) const;
588 
589   // For a copy-like instruction that defines a register of class DefRC with
590   // subreg index DefSubReg, reading from another source with class SrcRC and
591   // subregister SrcSubReg return true if this is a preferable copy
592   // instruction or an earlier use should be used.
593   virtual bool shouldRewriteCopySrc(const TargetRegisterClass *DefRC,
594                                     unsigned DefSubReg,
595                                     const TargetRegisterClass *SrcRC,
596                                     unsigned SrcSubReg) const;
597 
598   /// Returns the largest legal sub-class of RC that
599   /// supports the sub-register index Idx.
600   /// If no such sub-class exists, return NULL.
601   /// If all registers in RC already have an Idx sub-register, return RC.
602   ///
603   /// TableGen generates a version of this function that is good enough in most
604   /// cases.  Targets can override if they have constraints that TableGen
605   /// doesn't understand.  For example, the x86 sub_8bit sub-register index is
606   /// supported by the full GR32 register class in 64-bit mode, but only by the
607   /// GR32_ABCD regiister class in 32-bit mode.
608   ///
609   /// TableGen will synthesize missing RC sub-classes.
610   virtual const TargetRegisterClass *
getSubClassWithSubReg(const TargetRegisterClass * RC,unsigned Idx)611   getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const {
612     assert(Idx == 0 && "Target has no sub-registers");
613     return RC;
614   }
615 
616   /// Return the subregister index you get from composing
617   /// two subregister indices.
618   ///
619   /// The special null sub-register index composes as the identity.
620   ///
621   /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
622   /// returns c. Note that composeSubRegIndices does not tell you about illegal
623   /// compositions. If R does not have a subreg a, or R:a does not have a subreg
624   /// b, composeSubRegIndices doesn't tell you.
625   ///
626   /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
627   /// ssub_0:S0 - ssub_3:S3 subregs.
628   /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
composeSubRegIndices(unsigned a,unsigned b)629   unsigned composeSubRegIndices(unsigned a, unsigned b) const {
630     if (!a) return b;
631     if (!b) return a;
632     return composeSubRegIndicesImpl(a, b);
633   }
634 
635   /// Transforms a LaneMask computed for one subregister to the lanemask that
636   /// would have been computed when composing the subsubregisters with IdxA
637   /// first. @sa composeSubRegIndices()
composeSubRegIndexLaneMask(unsigned IdxA,LaneBitmask Mask)638   LaneBitmask composeSubRegIndexLaneMask(unsigned IdxA,
639                                          LaneBitmask Mask) const {
640     if (!IdxA)
641       return Mask;
642     return composeSubRegIndexLaneMaskImpl(IdxA, Mask);
643   }
644 
645   /// Transform a lanemask given for a virtual register to the corresponding
646   /// lanemask before using subregister with index \p IdxA.
647   /// This is the reverse of composeSubRegIndexLaneMask(), assuming Mask is a
648   /// valie lane mask (no invalid bits set) the following holds:
649   /// X0 = composeSubRegIndexLaneMask(Idx, Mask)
650   /// X1 = reverseComposeSubRegIndexLaneMask(Idx, X0)
651   /// => X1 == Mask
reverseComposeSubRegIndexLaneMask(unsigned IdxA,LaneBitmask LaneMask)652   LaneBitmask reverseComposeSubRegIndexLaneMask(unsigned IdxA,
653                                                 LaneBitmask LaneMask) const {
654     if (!IdxA)
655       return LaneMask;
656     return reverseComposeSubRegIndexLaneMaskImpl(IdxA, LaneMask);
657   }
658 
659   /// Debugging helper: dump register in human readable form to dbgs() stream.
660   static void dumpReg(Register Reg, unsigned SubRegIndex = 0,
661                       const TargetRegisterInfo *TRI = nullptr);
662 
663 protected:
664   /// Overridden by TableGen in targets that have sub-registers.
composeSubRegIndicesImpl(unsigned,unsigned)665   virtual unsigned composeSubRegIndicesImpl(unsigned, unsigned) const {
666     llvm_unreachable("Target has no sub-registers");
667   }
668 
669   /// Overridden by TableGen in targets that have sub-registers.
670   virtual LaneBitmask
composeSubRegIndexLaneMaskImpl(unsigned,LaneBitmask)671   composeSubRegIndexLaneMaskImpl(unsigned, LaneBitmask) const {
672     llvm_unreachable("Target has no sub-registers");
673   }
674 
reverseComposeSubRegIndexLaneMaskImpl(unsigned,LaneBitmask)675   virtual LaneBitmask reverseComposeSubRegIndexLaneMaskImpl(unsigned,
676                                                             LaneBitmask) const {
677     llvm_unreachable("Target has no sub-registers");
678   }
679 
680   /// Return the register cost table index. This implementation is sufficient
681   /// for most architectures and can be overriden by targets in case there are
682   /// multiple cost values associated with each register.
getRegisterCostTableIndex(const MachineFunction & MF)683   virtual unsigned getRegisterCostTableIndex(const MachineFunction &MF) const {
684     return 0;
685   }
686 
687 public:
688   /// Find a common super-register class if it exists.
689   ///
690   /// Find a register class, SuperRC and two sub-register indices, PreA and
691   /// PreB, such that:
692   ///
693   ///   1. PreA + SubA == PreB + SubB  (using composeSubRegIndices()), and
694   ///
695   ///   2. For all Reg in SuperRC: Reg:PreA in RCA and Reg:PreB in RCB, and
696   ///
697   ///   3. SuperRC->getSize() >= max(RCA->getSize(), RCB->getSize()).
698   ///
699   /// SuperRC will be chosen such that no super-class of SuperRC satisfies the
700   /// requirements, and there is no register class with a smaller spill size
701   /// that satisfies the requirements.
702   ///
703   /// SubA and SubB must not be 0. Use getMatchingSuperRegClass() instead.
704   ///
705   /// Either of the PreA and PreB sub-register indices may be returned as 0. In
706   /// that case, the returned register class will be a sub-class of the
707   /// corresponding argument register class.
708   ///
709   /// The function returns NULL if no register class can be found.
710   const TargetRegisterClass*
711   getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
712                          const TargetRegisterClass *RCB, unsigned SubB,
713                          unsigned &PreA, unsigned &PreB) const;
714 
715   //===--------------------------------------------------------------------===//
716   // Register Class Information
717   //
718 protected:
getRegClassInfo(const TargetRegisterClass & RC)719   const RegClassInfo &getRegClassInfo(const TargetRegisterClass &RC) const {
720     return RCInfos[getNumRegClasses() * HwMode + RC.getID()];
721   }
722 
723 public:
724   /// Register class iterators
regclass_begin()725   regclass_iterator regclass_begin() const { return RegClassBegin; }
regclass_end()726   regclass_iterator regclass_end() const { return RegClassEnd; }
regclasses()727   iterator_range<regclass_iterator> regclasses() const {
728     return make_range(regclass_begin(), regclass_end());
729   }
730 
getNumRegClasses()731   unsigned getNumRegClasses() const {
732     return (unsigned)(regclass_end()-regclass_begin());
733   }
734 
735   /// Returns the register class associated with the enumeration value.
736   /// See class MCOperandInfo.
getRegClass(unsigned i)737   const TargetRegisterClass *getRegClass(unsigned i) const {
738     assert(i < getNumRegClasses() && "Register Class ID out of range");
739     return RegClassBegin[i];
740   }
741 
742   /// Returns the name of the register class.
getRegClassName(const TargetRegisterClass * Class)743   const char *getRegClassName(const TargetRegisterClass *Class) const {
744     return MCRegisterInfo::getRegClassName(Class->MC);
745   }
746 
747   /// Find the largest common subclass of A and B.
748   /// Return NULL if there is no common subclass.
749   const TargetRegisterClass *
750   getCommonSubClass(const TargetRegisterClass *A,
751                     const TargetRegisterClass *B) const;
752 
753   /// Returns a TargetRegisterClass used for pointer values.
754   /// If a target supports multiple different pointer register classes,
755   /// kind specifies which one is indicated.
756   virtual const TargetRegisterClass *
757   getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const {
758     llvm_unreachable("Target didn't implement getPointerRegClass!");
759   }
760 
761   /// Returns a legal register class to copy a register in the specified class
762   /// to or from. If it is possible to copy the register directly without using
763   /// a cross register class copy, return the specified RC. Returns NULL if it
764   /// is not possible to copy between two registers of the specified class.
765   virtual const TargetRegisterClass *
getCrossCopyRegClass(const TargetRegisterClass * RC)766   getCrossCopyRegClass(const TargetRegisterClass *RC) const {
767     return RC;
768   }
769 
770   /// Returns the largest super class of RC that is legal to use in the current
771   /// sub-target and has the same spill size.
772   /// The returned register class can be used to create virtual registers which
773   /// means that all its registers can be copied and spilled.
774   virtual const TargetRegisterClass *
getLargestLegalSuperClass(const TargetRegisterClass * RC,const MachineFunction &)775   getLargestLegalSuperClass(const TargetRegisterClass *RC,
776                             const MachineFunction &) const {
777     /// The default implementation is very conservative and doesn't allow the
778     /// register allocator to inflate register classes.
779     return RC;
780   }
781 
782   /// Return the register pressure "high water mark" for the specific register
783   /// class. The scheduler is in high register pressure mode (for the specific
784   /// register class) if it goes over the limit.
785   ///
786   /// Note: this is the old register pressure model that relies on a manually
787   /// specified representative register class per value type.
getRegPressureLimit(const TargetRegisterClass * RC,MachineFunction & MF)788   virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
789                                        MachineFunction &MF) const {
790     return 0;
791   }
792 
793   /// Return a heuristic for the machine scheduler to compare the profitability
794   /// of increasing one register pressure set versus another.  The scheduler
795   /// will prefer increasing the register pressure of the set which returns
796   /// the largest value for this function.
getRegPressureSetScore(const MachineFunction & MF,unsigned PSetID)797   virtual unsigned getRegPressureSetScore(const MachineFunction &MF,
798                                           unsigned PSetID) const {
799     return PSetID;
800   }
801 
802   /// Get the weight in units of pressure for this register class.
803   virtual const RegClassWeight &getRegClassWeight(
804     const TargetRegisterClass *RC) const = 0;
805 
806   /// Returns size in bits of a phys/virtual/generic register.
807   unsigned getRegSizeInBits(Register Reg, const MachineRegisterInfo &MRI) const;
808 
809   /// Get the weight in units of pressure for this register unit.
810   virtual unsigned getRegUnitWeight(unsigned RegUnit) const = 0;
811 
812   /// Get the number of dimensions of register pressure.
813   virtual unsigned getNumRegPressureSets() const = 0;
814 
815   /// Get the name of this register unit pressure set.
816   virtual const char *getRegPressureSetName(unsigned Idx) const = 0;
817 
818   /// Get the register unit pressure limit for this dimension.
819   /// This limit must be adjusted dynamically for reserved registers.
820   virtual unsigned getRegPressureSetLimit(const MachineFunction &MF,
821                                           unsigned Idx) const = 0;
822 
823   /// Get the dimensions of register pressure impacted by this register class.
824   /// Returns a -1 terminated array of pressure set IDs.
825   virtual const int *getRegClassPressureSets(
826     const TargetRegisterClass *RC) const = 0;
827 
828   /// Get the dimensions of register pressure impacted by this register unit.
829   /// Returns a -1 terminated array of pressure set IDs.
830   virtual const int *getRegUnitPressureSets(unsigned RegUnit) const = 0;
831 
832   /// Get a list of 'hint' registers that the register allocator should try
833   /// first when allocating a physical register for the virtual register
834   /// VirtReg. These registers are effectively moved to the front of the
835   /// allocation order. If true is returned, regalloc will try to only use
836   /// hints to the greatest extent possible even if it means spilling.
837   ///
838   /// The Order argument is the allocation order for VirtReg's register class
839   /// as returned from RegisterClassInfo::getOrder(). The hint registers must
840   /// come from Order, and they must not be reserved.
841   ///
842   /// The default implementation of this function will only add target
843   /// independent register allocation hints. Targets that override this
844   /// function should typically call this default implementation as well and
845   /// expect to see generic copy hints added.
846   virtual bool
847   getRegAllocationHints(Register VirtReg, ArrayRef<MCPhysReg> Order,
848                         SmallVectorImpl<MCPhysReg> &Hints,
849                         const MachineFunction &MF,
850                         const VirtRegMap *VRM = nullptr,
851                         const LiveRegMatrix *Matrix = nullptr) const;
852 
853   /// A callback to allow target a chance to update register allocation hints
854   /// when a register is "changed" (e.g. coalesced) to another register.
855   /// e.g. On ARM, some virtual registers should target register pairs,
856   /// if one of pair is coalesced to another register, the allocation hint of
857   /// the other half of the pair should be changed to point to the new register.
updateRegAllocHint(Register Reg,Register NewReg,MachineFunction & MF)858   virtual void updateRegAllocHint(Register Reg, Register NewReg,
859                                   MachineFunction &MF) const {
860     // Do nothing.
861   }
862 
863   /// Allow the target to reverse allocation order of local live ranges. This
864   /// will generally allocate shorter local live ranges first. For targets with
865   /// many registers, this could reduce regalloc compile time by a large
866   /// factor. It is disabled by default for three reasons:
867   /// (1) Top-down allocation is simpler and easier to debug for targets that
868   /// don't benefit from reversing the order.
869   /// (2) Bottom-up allocation could result in poor evicition decisions on some
870   /// targets affecting the performance of compiled code.
871   /// (3) Bottom-up allocation is no longer guaranteed to optimally color.
reverseLocalAssignment()872   virtual bool reverseLocalAssignment() const { return false; }
873 
874   /// Allow the target to override the cost of using a callee-saved register for
875   /// the first time. Default value of 0 means we will use a callee-saved
876   /// register if it is available.
getCSRFirstUseCost()877   virtual unsigned getCSRFirstUseCost() const { return 0; }
878 
879   /// Returns true if the target requires (and can make use of) the register
880   /// scavenger.
requiresRegisterScavenging(const MachineFunction & MF)881   virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
882     return false;
883   }
884 
885   /// Returns true if the target wants to use frame pointer based accesses to
886   /// spill to the scavenger emergency spill slot.
useFPForScavengingIndex(const MachineFunction & MF)887   virtual bool useFPForScavengingIndex(const MachineFunction &MF) const {
888     return true;
889   }
890 
891   /// Returns true if the target requires post PEI scavenging of registers for
892   /// materializing frame index constants.
requiresFrameIndexScavenging(const MachineFunction & MF)893   virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
894     return false;
895   }
896 
897   /// Returns true if the target requires using the RegScavenger directly for
898   /// frame elimination despite using requiresFrameIndexScavenging.
requiresFrameIndexReplacementScavenging(const MachineFunction & MF)899   virtual bool requiresFrameIndexReplacementScavenging(
900       const MachineFunction &MF) const {
901     return false;
902   }
903 
904   /// Returns true if the target wants the LocalStackAllocation pass to be run
905   /// and virtual base registers used for more efficient stack access.
requiresVirtualBaseRegisters(const MachineFunction & MF)906   virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
907     return false;
908   }
909 
910   /// Return true if target has reserved a spill slot in the stack frame of
911   /// the given function for the specified register. e.g. On x86, if the frame
912   /// register is required, the first fixed stack object is reserved as its
913   /// spill slot. This tells PEI not to create a new stack frame
914   /// object for the given register. It should be called only after
915   /// determineCalleeSaves().
hasReservedSpillSlot(const MachineFunction & MF,Register Reg,int & FrameIdx)916   virtual bool hasReservedSpillSlot(const MachineFunction &MF, Register Reg,
917                                     int &FrameIdx) const {
918     return false;
919   }
920 
921   /// Returns true if the live-ins should be tracked after register allocation.
trackLivenessAfterRegAlloc(const MachineFunction & MF)922   virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const {
923     return true;
924   }
925 
926   /// True if the stack can be realigned for the target.
927   virtual bool canRealignStack(const MachineFunction &MF) const;
928 
929   /// True if storage within the function requires the stack pointer to be
930   /// aligned more than the normal calling convention calls for.
931   virtual bool shouldRealignStack(const MachineFunction &MF) const;
932 
933   /// True if stack realignment is required and still possible.
hasStackRealignment(const MachineFunction & MF)934   bool hasStackRealignment(const MachineFunction &MF) const {
935     return shouldRealignStack(MF) && canRealignStack(MF);
936   }
937 
938   /// Get the offset from the referenced frame index in the instruction,
939   /// if there is one.
getFrameIndexInstrOffset(const MachineInstr * MI,int Idx)940   virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
941                                            int Idx) const {
942     return 0;
943   }
944 
945   /// Returns true if the instruction's frame index reference would be better
946   /// served by a base register other than FP or SP.
947   /// Used by LocalStackFrameAllocation to determine which frame index
948   /// references it should create new base registers for.
needsFrameBaseReg(MachineInstr * MI,int64_t Offset)949   virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
950     return false;
951   }
952 
953   /// Insert defining instruction(s) for a pointer to FrameIdx before
954   /// insertion point I. Return materialized frame pointer.
materializeFrameBaseRegister(MachineBasicBlock * MBB,int FrameIdx,int64_t Offset)955   virtual Register materializeFrameBaseRegister(MachineBasicBlock *MBB,
956                                                 int FrameIdx,
957                                                 int64_t Offset) const {
958     llvm_unreachable("materializeFrameBaseRegister does not exist on this "
959                      "target");
960   }
961 
962   /// Resolve a frame index operand of an instruction
963   /// to reference the indicated base register plus offset instead.
resolveFrameIndex(MachineInstr & MI,Register BaseReg,int64_t Offset)964   virtual void resolveFrameIndex(MachineInstr &MI, Register BaseReg,
965                                  int64_t Offset) const {
966     llvm_unreachable("resolveFrameIndex does not exist on this target");
967   }
968 
969   /// Determine whether a given base register plus offset immediate is
970   /// encodable to resolve a frame index.
isFrameOffsetLegal(const MachineInstr * MI,Register BaseReg,int64_t Offset)971   virtual bool isFrameOffsetLegal(const MachineInstr *MI, Register BaseReg,
972                                   int64_t Offset) const {
973     llvm_unreachable("isFrameOffsetLegal does not exist on this target");
974   }
975 
976   /// Gets the DWARF expression opcodes for \p Offset.
977   virtual void getOffsetOpcodes(const StackOffset &Offset,
978                                 SmallVectorImpl<uint64_t> &Ops) const;
979 
980   /// Prepends a DWARF expression for \p Offset to DIExpression \p Expr.
981   DIExpression *
982   prependOffsetExpression(const DIExpression *Expr, unsigned PrependFlags,
983                           const StackOffset &Offset) const;
984 
985   /// Spill the register so it can be used by the register scavenger.
986   /// Return true if the register was spilled, false otherwise.
987   /// If this function does not spill the register, the scavenger
988   /// will instead spill it to the emergency spill slot.
saveScavengerRegister(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,MachineBasicBlock::iterator & UseMI,const TargetRegisterClass * RC,Register Reg)989   virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
990                                      MachineBasicBlock::iterator I,
991                                      MachineBasicBlock::iterator &UseMI,
992                                      const TargetRegisterClass *RC,
993                                      Register Reg) const {
994     return false;
995   }
996 
997   /// This method must be overriden to eliminate abstract frame indices from
998   /// instructions which may use them. The instruction referenced by the
999   /// iterator contains an MO_FrameIndex operand which must be eliminated by
1000   /// this method. This method may modify or replace the specified instruction,
1001   /// as long as it keeps the iterator pointing at the finished product.
1002   /// SPAdj is the SP adjustment due to call frame setup instruction.
1003   /// FIOperandNum is the FI operand number.
1004   virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
1005                                    int SPAdj, unsigned FIOperandNum,
1006                                    RegScavenger *RS = nullptr) const = 0;
1007 
1008   /// Return the assembly name for \p Reg.
getRegAsmName(MCRegister Reg)1009   virtual StringRef getRegAsmName(MCRegister Reg) const {
1010     // FIXME: We are assuming that the assembly name is equal to the TableGen
1011     // name converted to lower case
1012     //
1013     // The TableGen name is the name of the definition for this register in the
1014     // target's tablegen files.  For example, the TableGen name of
1015     // def EAX : Register <...>; is "EAX"
1016     return StringRef(getName(Reg));
1017   }
1018 
1019   //===--------------------------------------------------------------------===//
1020   /// Subtarget Hooks
1021 
1022   /// SrcRC and DstRC will be morphed into NewRC if this returns true.
shouldCoalesce(MachineInstr * MI,const TargetRegisterClass * SrcRC,unsigned SubReg,const TargetRegisterClass * DstRC,unsigned DstSubReg,const TargetRegisterClass * NewRC,LiveIntervals & LIS)1023   virtual bool shouldCoalesce(MachineInstr *MI,
1024                               const TargetRegisterClass *SrcRC,
1025                               unsigned SubReg,
1026                               const TargetRegisterClass *DstRC,
1027                               unsigned DstSubReg,
1028                               const TargetRegisterClass *NewRC,
1029                               LiveIntervals &LIS) const
1030   { return true; }
1031 
1032   /// Region split has a high compile time cost especially for large live range.
1033   /// This method is used to decide whether or not \p VirtReg should
1034   /// go through this expensive splitting heuristic.
1035   virtual bool shouldRegionSplitForVirtReg(const MachineFunction &MF,
1036                                            const LiveInterval &VirtReg) const;
1037 
1038   /// Last chance recoloring has a high compile time cost especially for
1039   /// targets with a lot of registers.
1040   /// This method is used to decide whether or not \p VirtReg should
1041   /// go through this expensive heuristic.
1042   /// When this target hook is hit, by returning false, there is a high
1043   /// chance that the register allocation will fail altogether (usually with
1044   /// "ran out of registers").
1045   /// That said, this error usually points to another problem in the
1046   /// optimization pipeline.
1047   virtual bool
shouldUseLastChanceRecoloringForVirtReg(const MachineFunction & MF,const LiveInterval & VirtReg)1048   shouldUseLastChanceRecoloringForVirtReg(const MachineFunction &MF,
1049                                           const LiveInterval &VirtReg) const {
1050     return true;
1051   }
1052 
1053   /// Deferred spilling delays the spill insertion of a virtual register
1054   /// after every other allocation. By deferring the spilling, it is
1055   /// sometimes possible to eliminate that spilling altogether because
1056   /// something else could have been eliminated, thus leaving some space
1057   /// for the virtual register.
1058   /// However, this comes with a compile time impact because it adds one
1059   /// more stage to the greedy register allocator.
1060   /// This method is used to decide whether \p VirtReg should use the deferred
1061   /// spilling stage instead of being spilled right away.
1062   virtual bool
shouldUseDeferredSpillingForVirtReg(const MachineFunction & MF,const LiveInterval & VirtReg)1063   shouldUseDeferredSpillingForVirtReg(const MachineFunction &MF,
1064                                       const LiveInterval &VirtReg) const {
1065     return false;
1066   }
1067 
1068   //===--------------------------------------------------------------------===//
1069   /// Debug information queries.
1070 
1071   /// getFrameRegister - This method should return the register used as a base
1072   /// for values allocated in the current stack frame.
1073   virtual Register getFrameRegister(const MachineFunction &MF) const = 0;
1074 
1075   /// Mark a register and all its aliases as reserved in the given set.
1076   void markSuperRegs(BitVector &RegisterSet, MCRegister Reg) const;
1077 
1078   /// Returns true if for every register in the set all super registers are part
1079   /// of the set as well.
1080   bool checkAllSuperRegsMarked(const BitVector &RegisterSet,
1081       ArrayRef<MCPhysReg> Exceptions = ArrayRef<MCPhysReg>()) const;
1082 
1083   virtual const TargetRegisterClass *
getConstrainedRegClassForOperand(const MachineOperand & MO,const MachineRegisterInfo & MRI)1084   getConstrainedRegClassForOperand(const MachineOperand &MO,
1085                                    const MachineRegisterInfo &MRI) const {
1086     return nullptr;
1087   }
1088 
1089   /// Returns the physical register number of sub-register "Index"
1090   /// for physical register RegNo. Return zero if the sub-register does not
1091   /// exist.
getSubReg(MCRegister Reg,unsigned Idx)1092   inline MCRegister getSubReg(MCRegister Reg, unsigned Idx) const {
1093     return static_cast<const MCRegisterInfo *>(this)->getSubReg(Reg, Idx);
1094   }
1095 };
1096 
1097 //===----------------------------------------------------------------------===//
1098 //                           SuperRegClassIterator
1099 //===----------------------------------------------------------------------===//
1100 //
1101 // Iterate over the possible super-registers for a given register class. The
1102 // iterator will visit a list of pairs (Idx, Mask) corresponding to the
1103 // possible classes of super-registers.
1104 //
1105 // Each bit mask will have at least one set bit, and each set bit in Mask
1106 // corresponds to a SuperRC such that:
1107 //
1108 //   For all Reg in SuperRC: Reg:Idx is in RC.
1109 //
1110 // The iterator can include (O, RC->getSubClassMask()) as the first entry which
1111 // also satisfies the above requirement, assuming Reg:0 == Reg.
1112 //
1113 class SuperRegClassIterator {
1114   const unsigned RCMaskWords;
1115   unsigned SubReg = 0;
1116   const uint16_t *Idx;
1117   const uint32_t *Mask;
1118 
1119 public:
1120   /// Create a SuperRegClassIterator that visits all the super-register classes
1121   /// of RC. When IncludeSelf is set, also include the (0, sub-classes) entry.
1122   SuperRegClassIterator(const TargetRegisterClass *RC,
1123                         const TargetRegisterInfo *TRI,
1124                         bool IncludeSelf = false)
1125     : RCMaskWords((TRI->getNumRegClasses() + 31) / 32),
1126       Idx(RC->getSuperRegIndices()), Mask(RC->getSubClassMask()) {
1127     if (!IncludeSelf)
1128       ++*this;
1129   }
1130 
1131   /// Returns true if this iterator is still pointing at a valid entry.
isValid()1132   bool isValid() const { return Idx; }
1133 
1134   /// Returns the current sub-register index.
getSubReg()1135   unsigned getSubReg() const { return SubReg; }
1136 
1137   /// Returns the bit mask of register classes that getSubReg() projects into
1138   /// RC.
1139   /// See TargetRegisterClass::getSubClassMask() for how to use it.
getMask()1140   const uint32_t *getMask() const { return Mask; }
1141 
1142   /// Advance iterator to the next entry.
1143   void operator++() {
1144     assert(isValid() && "Cannot move iterator past end.");
1145     Mask += RCMaskWords;
1146     SubReg = *Idx++;
1147     if (!SubReg)
1148       Idx = nullptr;
1149   }
1150 };
1151 
1152 //===----------------------------------------------------------------------===//
1153 //                           BitMaskClassIterator
1154 //===----------------------------------------------------------------------===//
1155 /// This class encapuslates the logic to iterate over bitmask returned by
1156 /// the various RegClass related APIs.
1157 /// E.g., this class can be used to iterate over the subclasses provided by
1158 /// TargetRegisterClass::getSubClassMask or SuperRegClassIterator::getMask.
1159 class BitMaskClassIterator {
1160   /// Total number of register classes.
1161   const unsigned NumRegClasses;
1162   /// Base index of CurrentChunk.
1163   /// In other words, the number of bit we read to get at the
1164   /// beginning of that chunck.
1165   unsigned Base = 0;
1166   /// Adjust base index of CurrentChunk.
1167   /// Base index + how many bit we read within CurrentChunk.
1168   unsigned Idx = 0;
1169   /// Current register class ID.
1170   unsigned ID = 0;
1171   /// Mask we are iterating over.
1172   const uint32_t *Mask;
1173   /// Current chunk of the Mask we are traversing.
1174   uint32_t CurrentChunk;
1175 
1176   /// Move ID to the next set bit.
moveToNextID()1177   void moveToNextID() {
1178     // If the current chunk of memory is empty, move to the next one,
1179     // while making sure we do not go pass the number of register
1180     // classes.
1181     while (!CurrentChunk) {
1182       // Move to the next chunk.
1183       Base += 32;
1184       if (Base >= NumRegClasses) {
1185         ID = NumRegClasses;
1186         return;
1187       }
1188       CurrentChunk = *++Mask;
1189       Idx = Base;
1190     }
1191     // Otherwise look for the first bit set from the right
1192     // (representation of the class ID is big endian).
1193     // See getSubClassMask for more details on the representation.
1194     unsigned Offset = countTrailingZeros(CurrentChunk);
1195     // Add the Offset to the adjusted base number of this chunk: Idx.
1196     // This is the ID of the register class.
1197     ID = Idx + Offset;
1198 
1199     // Consume the zeros, if any, and the bit we just read
1200     // so that we are at the right spot for the next call.
1201     // Do not do Offset + 1 because Offset may be 31 and 32
1202     // will be UB for the shift, though in that case we could
1203     // have make the chunk being equal to 0, but that would
1204     // have introduced a if statement.
1205     moveNBits(Offset);
1206     moveNBits(1);
1207   }
1208 
1209   /// Move \p NumBits Bits forward in CurrentChunk.
moveNBits(unsigned NumBits)1210   void moveNBits(unsigned NumBits) {
1211     assert(NumBits < 32 && "Undefined behavior spotted!");
1212     // Consume the bit we read for the next call.
1213     CurrentChunk >>= NumBits;
1214     // Adjust the base for the chunk.
1215     Idx += NumBits;
1216   }
1217 
1218 public:
1219   /// Create a BitMaskClassIterator that visits all the register classes
1220   /// represented by \p Mask.
1221   ///
1222   /// \pre \p Mask != nullptr
BitMaskClassIterator(const uint32_t * Mask,const TargetRegisterInfo & TRI)1223   BitMaskClassIterator(const uint32_t *Mask, const TargetRegisterInfo &TRI)
1224       : NumRegClasses(TRI.getNumRegClasses()), Mask(Mask), CurrentChunk(*Mask) {
1225     // Move to the first ID.
1226     moveToNextID();
1227   }
1228 
1229   /// Returns true if this iterator is still pointing at a valid entry.
isValid()1230   bool isValid() const { return getID() != NumRegClasses; }
1231 
1232   /// Returns the current register class ID.
getID()1233   unsigned getID() const { return ID; }
1234 
1235   /// Advance iterator to the next entry.
1236   void operator++() {
1237     assert(isValid() && "Cannot move iterator past end.");
1238     moveToNextID();
1239   }
1240 };
1241 
1242 // This is useful when building IndexedMaps keyed on virtual registers
1243 struct VirtReg2IndexFunctor {
1244   using argument_type = Register;
operatorVirtReg2IndexFunctor1245   unsigned operator()(Register Reg) const {
1246     return Register::virtReg2Index(Reg);
1247   }
1248 };
1249 
1250 /// Prints virtual and physical registers with or without a TRI instance.
1251 ///
1252 /// The format is:
1253 ///   %noreg          - NoRegister
1254 ///   %5              - a virtual register.
1255 ///   %5:sub_8bit     - a virtual register with sub-register index (with TRI).
1256 ///   %eax            - a physical register
1257 ///   %physreg17      - a physical register when no TRI instance given.
1258 ///
1259 /// Usage: OS << printReg(Reg, TRI, SubRegIdx) << '\n';
1260 Printable printReg(Register Reg, const TargetRegisterInfo *TRI = nullptr,
1261                    unsigned SubIdx = 0,
1262                    const MachineRegisterInfo *MRI = nullptr);
1263 
1264 /// Create Printable object to print register units on a \ref raw_ostream.
1265 ///
1266 /// Register units are named after their root registers:
1267 ///
1268 ///   al      - Single root.
1269 ///   fp0~st7 - Dual roots.
1270 ///
1271 /// Usage: OS << printRegUnit(Unit, TRI) << '\n';
1272 Printable printRegUnit(unsigned Unit, const TargetRegisterInfo *TRI);
1273 
1274 /// Create Printable object to print virtual registers and physical
1275 /// registers on a \ref raw_ostream.
1276 Printable printVRegOrUnit(unsigned VRegOrUnit, const TargetRegisterInfo *TRI);
1277 
1278 /// Create Printable object to print register classes or register banks
1279 /// on a \ref raw_ostream.
1280 Printable printRegClassOrBank(Register Reg, const MachineRegisterInfo &RegInfo,
1281                               const TargetRegisterInfo *TRI);
1282 
1283 } // end namespace llvm
1284 
1285 #endif // LLVM_CODEGEN_TARGETREGISTERINFO_H
1286