xref: /llvm-project/llvm/lib/Target/PowerPC/PPCVSXSwapRemoval.cpp (revision f71cb9dbb739bb58ce7e52e49fe384ff2ff11687)
1 //===----------- PPCVSXSwapRemoval.cpp - Remove VSX LE Swaps -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===---------------------------------------------------------------------===//
8 //
9 // This pass analyzes vector computations and removes unnecessary
10 // doubleword swaps (xxswapd instructions).  This pass is performed
11 // only for little-endian VSX code generation.
12 //
13 // For this specific case, loads and stores of v4i32, v4f32, v2i64,
14 // and v2f64 vectors are inefficient.  These are implemented using
15 // the lxvd2x and stxvd2x instructions, which invert the order of
16 // doublewords in a vector register.  Thus code generation inserts
17 // an xxswapd after each such load, and prior to each such store.
18 //
19 // The extra xxswapd instructions reduce performance.  The purpose
20 // of this pass is to reduce the number of xxswapd instructions
21 // required for correctness.
22 //
23 // The primary insight is that much code that operates on vectors
24 // does not care about the relative order of elements in a register,
25 // so long as the correct memory order is preserved.  If we have a
26 // computation where all input values are provided by lxvd2x/xxswapd,
27 // all outputs are stored using xxswapd/lxvd2x, and all intermediate
28 // computations are lane-insensitive (independent of element order),
29 // then all the xxswapd instructions associated with the loads and
30 // stores may be removed without changing observable semantics.
31 //
32 // This pass uses standard equivalence class infrastructure to create
33 // maximal webs of computations fitting the above description.  Each
34 // such web is then optimized by removing its unnecessary xxswapd
35 // instructions.
36 //
37 // There are some lane-sensitive operations for which we can still
38 // permit the optimization, provided we modify those operations
39 // accordingly.  Such operations are identified as using "special
40 // handling" within this module.
41 //
42 //===---------------------------------------------------------------------===//
43 
44 #include "PPC.h"
45 #include "PPCInstrInfo.h"
46 #include "PPCTargetMachine.h"
47 #include "llvm/ADT/DenseMap.h"
48 #include "llvm/ADT/EquivalenceClasses.h"
49 #include "llvm/CodeGen/MachineFunctionPass.h"
50 #include "llvm/CodeGen/MachineInstrBuilder.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/Config/llvm-config.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/Format.h"
55 #include "llvm/Support/raw_ostream.h"
56 
57 using namespace llvm;
58 
59 #define DEBUG_TYPE "ppc-vsx-swaps"
60 
61 namespace {
62 
63 // A PPCVSXSwapEntry is created for each machine instruction that
64 // is relevant to a vector computation.
65 struct PPCVSXSwapEntry {
66   // Pointer to the instruction.
67   MachineInstr *VSEMI;
68 
69   // Unique ID (position in the swap vector).
70   int VSEId;
71 
72   // Attributes of this node.
73   unsigned int IsLoad : 1;
74   unsigned int IsStore : 1;
75   unsigned int IsSwap : 1;
76   unsigned int MentionsPhysVR : 1;
77   unsigned int IsSwappable : 1;
78   unsigned int MentionsPartialVR : 1;
79   unsigned int SpecialHandling : 3;
80   unsigned int WebRejected : 1;
81   unsigned int WillRemove : 1;
82 };
83 
84 enum SHValues {
85   SH_NONE = 0,
86   SH_EXTRACT,
87   SH_INSERT,
88   SH_NOSWAP_LD,
89   SH_NOSWAP_ST,
90   SH_SPLAT,
91   SH_XXPERMDI,
92   SH_COPYWIDEN
93 };
94 
95 struct PPCVSXSwapRemoval : public MachineFunctionPass {
96 
97   static char ID;
98   const PPCInstrInfo *TII;
99   MachineFunction *MF;
100   MachineRegisterInfo *MRI;
101 
102   // Swap entries are allocated in a vector for better performance.
103   std::vector<PPCVSXSwapEntry> SwapVector;
104 
105   // A mapping is maintained between machine instructions and
106   // their swap entries.  The key is the address of the MI.
107   DenseMap<MachineInstr*, int> SwapMap;
108 
109   // Equivalence classes are used to gather webs of related computation.
110   // Swap entries are represented by their VSEId fields.
111   EquivalenceClasses<int> *EC;
112 
113   PPCVSXSwapRemoval() : MachineFunctionPass(ID) {
114     initializePPCVSXSwapRemovalPass(*PassRegistry::getPassRegistry());
115   }
116 
117 private:
118   // Initialize data structures.
119   void initialize(MachineFunction &MFParm);
120 
121   // Walk the machine instructions to gather vector usage information.
122   // Return true iff vector mentions are present.
123   bool gatherVectorInstructions();
124 
125   // Add an entry to the swap vector and swap map.
126   int addSwapEntry(MachineInstr *MI, PPCVSXSwapEntry &SwapEntry);
127 
128   // Hunt backwards through COPY and SUBREG_TO_REG chains for a
129   // source register.  VecIdx indicates the swap vector entry to
130   // mark as mentioning a physical register if the search leads
131   // to one.
132   unsigned lookThruCopyLike(unsigned SrcReg, unsigned VecIdx);
133 
134   // Generate equivalence classes for related computations (webs).
135   void formWebs();
136 
137   // Analyze webs and determine those that cannot be optimized.
138   void recordUnoptimizableWebs();
139 
140   // Record which swap instructions can be safely removed.
141   void markSwapsForRemoval();
142 
143   // Remove swaps and update other instructions requiring special
144   // handling.  Return true iff any changes are made.
145   bool removeSwaps();
146 
147   // Insert a swap instruction from SrcReg to DstReg at the given
148   // InsertPoint.
149   void insertSwap(MachineInstr *MI, MachineBasicBlock::iterator InsertPoint,
150                   unsigned DstReg, unsigned SrcReg);
151 
152   // Update instructions requiring special handling.
153   void handleSpecialSwappables(int EntryIdx);
154 
155   // Dump a description of the entries in the swap vector.
156   void dumpSwapVector();
157 
158   // Return true iff the given register is in the given class.
159   bool isRegInClass(unsigned Reg, const TargetRegisterClass *RC) {
160     if (Register::isVirtualRegister(Reg))
161       return RC->hasSubClassEq(MRI->getRegClass(Reg));
162     return RC->contains(Reg);
163   }
164 
165   // Return true iff the given register is a full vector register.
166   bool isVecReg(unsigned Reg) {
167     return (isRegInClass(Reg, &PPC::VSRCRegClass) ||
168             isRegInClass(Reg, &PPC::VRRCRegClass));
169   }
170 
171   // Return true iff the given register is a partial vector register.
172   bool isScalarVecReg(unsigned Reg) {
173     return (isRegInClass(Reg, &PPC::VSFRCRegClass) ||
174             isRegInClass(Reg, &PPC::VSSRCRegClass));
175   }
176 
177   // Return true iff the given register mentions all or part of a
178   // vector register.  Also sets Partial to true if the mention
179   // is for just the floating-point register overlap of the register.
180   bool isAnyVecReg(unsigned Reg, bool &Partial) {
181     if (isScalarVecReg(Reg))
182       Partial = true;
183     return isScalarVecReg(Reg) || isVecReg(Reg);
184   }
185 
186 public:
187   // Main entry point for this pass.
188   bool runOnMachineFunction(MachineFunction &MF) override {
189     if (skipFunction(MF.getFunction()))
190       return false;
191 
192     // If we don't have VSX on the subtarget, don't do anything.
193     // Also, on Power 9 the load and store ops preserve element order and so
194     // the swaps are not required.
195     const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>();
196     if (!STI.hasVSX() || !STI.needsSwapsForVSXMemOps())
197       return false;
198 
199     bool Changed = false;
200     initialize(MF);
201 
202     if (gatherVectorInstructions()) {
203       formWebs();
204       recordUnoptimizableWebs();
205       markSwapsForRemoval();
206       Changed = removeSwaps();
207     }
208 
209     // FIXME: See the allocation of EC in initialize().
210     delete EC;
211     return Changed;
212   }
213 };
214 
215 // Initialize data structures for this pass.  In particular, clear the
216 // swap vector and allocate the equivalence class mapping before
217 // processing each function.
218 void PPCVSXSwapRemoval::initialize(MachineFunction &MFParm) {
219   MF = &MFParm;
220   MRI = &MF->getRegInfo();
221   TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
222 
223   // An initial vector size of 256 appears to work well in practice.
224   // Small/medium functions with vector content tend not to incur a
225   // reallocation at this size.  Three of the vector tests in
226   // projects/test-suite reallocate, which seems like a reasonable rate.
227   const int InitialVectorSize(256);
228   SwapVector.clear();
229   SwapVector.reserve(InitialVectorSize);
230 
231   // FIXME: Currently we allocate EC each time because we don't have
232   // access to the set representation on which to call clear().  Should
233   // consider adding a clear() method to the EquivalenceClasses class.
234   EC = new EquivalenceClasses<int>;
235 }
236 
237 // Create an entry in the swap vector for each instruction that mentions
238 // a full vector register, recording various characteristics of the
239 // instructions there.
240 bool PPCVSXSwapRemoval::gatherVectorInstructions() {
241   bool RelevantFunction = false;
242 
243   for (MachineBasicBlock &MBB : *MF) {
244     for (MachineInstr &MI : MBB) {
245 
246       if (MI.isDebugInstr())
247         continue;
248 
249       bool RelevantInstr = false;
250       bool Partial = false;
251 
252       for (const MachineOperand &MO : MI.operands()) {
253         if (!MO.isReg())
254           continue;
255         Register Reg = MO.getReg();
256         // All operands need to be checked because there are instructions that
257         // operate on a partial register and produce a full register (such as
258         // XXPERMDIs).
259         if (isAnyVecReg(Reg, Partial))
260           RelevantInstr = true;
261       }
262 
263       if (!RelevantInstr)
264         continue;
265 
266       RelevantFunction = true;
267 
268       // Create a SwapEntry initialized to zeros, then fill in the
269       // instruction and ID fields before pushing it to the back
270       // of the swap vector.
271       PPCVSXSwapEntry SwapEntry{};
272       int VecIdx = addSwapEntry(&MI, SwapEntry);
273 
274       switch(MI.getOpcode()) {
275       default:
276         // Unless noted otherwise, an instruction is considered
277         // safe for the optimization.  There are a large number of
278         // such true-SIMD instructions (all vector math, logical,
279         // select, compare, etc.).  However, if the instruction
280         // mentions a partial vector register and does not have
281         // special handling defined, it is not swappable.
282         if (Partial)
283           SwapVector[VecIdx].MentionsPartialVR = 1;
284         else
285           SwapVector[VecIdx].IsSwappable = 1;
286         break;
287       case PPC::XXPERMDI: {
288         // This is a swap if it is of the form XXPERMDI t, s, s, 2.
289         // Unfortunately, MachineCSE ignores COPY and SUBREG_TO_REG, so we
290         // can also see XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), 2,
291         // for example.  We have to look through chains of COPY and
292         // SUBREG_TO_REG to find the real source value for comparison.
293         // If the real source value is a physical register, then mark the
294         // XXPERMDI as mentioning a physical register.
295         int immed = MI.getOperand(3).getImm();
296         if (immed == 2) {
297           unsigned trueReg1 = lookThruCopyLike(MI.getOperand(1).getReg(),
298                                                VecIdx);
299           unsigned trueReg2 = lookThruCopyLike(MI.getOperand(2).getReg(),
300                                                VecIdx);
301           if (trueReg1 == trueReg2)
302             SwapVector[VecIdx].IsSwap = 1;
303           else {
304             // We can still handle these if the two registers are not
305             // identical, by adjusting the form of the XXPERMDI.
306             SwapVector[VecIdx].IsSwappable = 1;
307             SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI;
308           }
309         // This is a doubleword splat if it is of the form
310         // XXPERMDI t, s, s, 0 or XXPERMDI t, s, s, 3.  As above we
311         // must look through chains of copy-likes to find the source
312         // register.  We turn off the marking for mention of a physical
313         // register, because splatting it is safe; the optimization
314         // will not swap the value in the physical register.  Whether
315         // or not the two input registers are identical, we can handle
316         // these by adjusting the form of the XXPERMDI.
317         } else if (immed == 0 || immed == 3) {
318 
319           SwapVector[VecIdx].IsSwappable = 1;
320           SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI;
321 
322           unsigned trueReg1 = lookThruCopyLike(MI.getOperand(1).getReg(),
323                                                VecIdx);
324           unsigned trueReg2 = lookThruCopyLike(MI.getOperand(2).getReg(),
325                                                VecIdx);
326           if (trueReg1 == trueReg2)
327             SwapVector[VecIdx].MentionsPhysVR = 0;
328 
329         } else {
330           // We can still handle these by adjusting the form of the XXPERMDI.
331           SwapVector[VecIdx].IsSwappable = 1;
332           SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI;
333         }
334         break;
335       }
336       case PPC::LVX:
337         // Non-permuting loads are currently unsafe.  We can use special
338         // handling for this in the future.  By not marking these as
339         // IsSwap, we ensure computations containing them will be rejected
340         // for now.
341         SwapVector[VecIdx].IsLoad = 1;
342         break;
343       case PPC::LXVD2X:
344       case PPC::LXVW4X:
345         // Permuting loads are marked as both load and swap, and are
346         // safe for optimization.
347         SwapVector[VecIdx].IsLoad = 1;
348         SwapVector[VecIdx].IsSwap = 1;
349         break;
350       case PPC::LXSDX:
351       case PPC::LXSSPX:
352       case PPC::XFLOADf64:
353       case PPC::XFLOADf32:
354         // A load of a floating-point value into the high-order half of
355         // a vector register is safe, provided that we introduce a swap
356         // following the load, which will be done by the SUBREG_TO_REG
357         // support.  So just mark these as safe.
358         SwapVector[VecIdx].IsLoad = 1;
359         SwapVector[VecIdx].IsSwappable = 1;
360         break;
361       case PPC::STVX:
362         // Non-permuting stores are currently unsafe.  We can use special
363         // handling for this in the future.  By not marking these as
364         // IsSwap, we ensure computations containing them will be rejected
365         // for now.
366         SwapVector[VecIdx].IsStore = 1;
367         break;
368       case PPC::STXVD2X:
369       case PPC::STXVW4X:
370         // Permuting stores are marked as both store and swap, and are
371         // safe for optimization.
372         SwapVector[VecIdx].IsStore = 1;
373         SwapVector[VecIdx].IsSwap = 1;
374         break;
375       case PPC::COPY:
376         // These are fine provided they are moving between full vector
377         // register classes.
378         if (isVecReg(MI.getOperand(0).getReg()) &&
379             isVecReg(MI.getOperand(1).getReg()))
380           SwapVector[VecIdx].IsSwappable = 1;
381         // If we have a copy from one scalar floating-point register
382         // to another, we can accept this even if it is a physical
383         // register.  The only way this gets involved is if it feeds
384         // a SUBREG_TO_REG, which is handled by introducing a swap.
385         else if (isScalarVecReg(MI.getOperand(0).getReg()) &&
386                  isScalarVecReg(MI.getOperand(1).getReg()))
387           SwapVector[VecIdx].IsSwappable = 1;
388         break;
389       case PPC::SUBREG_TO_REG: {
390         // These are fine provided they are moving between full vector
391         // register classes.  If they are moving from a scalar
392         // floating-point class to a vector class, we can handle those
393         // as well, provided we introduce a swap.  It is generally the
394         // case that we will introduce fewer swaps than we remove, but
395         // (FIXME) a cost model could be used.  However, introduced
396         // swaps could potentially be CSEd, so this is not trivial.
397         if (isVecReg(MI.getOperand(0).getReg()) &&
398             isVecReg(MI.getOperand(2).getReg()))
399           SwapVector[VecIdx].IsSwappable = 1;
400         else if (isVecReg(MI.getOperand(0).getReg()) &&
401                  isScalarVecReg(MI.getOperand(2).getReg())) {
402           SwapVector[VecIdx].IsSwappable = 1;
403           SwapVector[VecIdx].SpecialHandling = SHValues::SH_COPYWIDEN;
404         }
405         break;
406       }
407       case PPC::VSPLTB:
408       case PPC::VSPLTH:
409       case PPC::VSPLTW:
410       case PPC::XXSPLTW:
411         // Splats are lane-sensitive, but we can use special handling
412         // to adjust the source lane for the splat.
413         SwapVector[VecIdx].IsSwappable = 1;
414         SwapVector[VecIdx].SpecialHandling = SHValues::SH_SPLAT;
415         break;
416       // The presence of the following lane-sensitive operations in a
417       // web will kill the optimization, at least for now.  For these
418       // we do nothing, causing the optimization to fail.
419       // FIXME: Some of these could be permitted with special handling,
420       // and will be phased in as time permits.
421       // FIXME: There is no simple and maintainable way to express a set
422       // of opcodes having a common attribute in TableGen.  Should this
423       // change, this is a prime candidate to use such a mechanism.
424       case PPC::INLINEASM:
425       case PPC::INLINEASM_BR:
426       case PPC::EXTRACT_SUBREG:
427       case PPC::INSERT_SUBREG:
428       case PPC::COPY_TO_REGCLASS:
429       case PPC::LVEBX:
430       case PPC::LVEHX:
431       case PPC::LVEWX:
432       case PPC::LVSL:
433       case PPC::LVSR:
434       case PPC::LVXL:
435       case PPC::STVEBX:
436       case PPC::STVEHX:
437       case PPC::STVEWX:
438       case PPC::STVXL:
439         // We can handle STXSDX and STXSSPX similarly to LXSDX and LXSSPX,
440         // by adding special handling for narrowing copies as well as
441         // widening ones.  However, I've experimented with this, and in
442         // practice we currently do not appear to use STXSDX fed by
443         // a narrowing copy from a full vector register.  Since I can't
444         // generate any useful test cases, I've left this alone for now.
445       case PPC::STXSDX:
446       case PPC::STXSSPX:
447       case PPC::VCIPHER:
448       case PPC::VCIPHERLAST:
449       case PPC::VMRGHB:
450       case PPC::VMRGHH:
451       case PPC::VMRGHW:
452       case PPC::VMRGLB:
453       case PPC::VMRGLH:
454       case PPC::VMRGLW:
455       case PPC::VMULESB:
456       case PPC::VMULESH:
457       case PPC::VMULESW:
458       case PPC::VMULEUB:
459       case PPC::VMULEUH:
460       case PPC::VMULEUW:
461       case PPC::VMULOSB:
462       case PPC::VMULOSH:
463       case PPC::VMULOSW:
464       case PPC::VMULOUB:
465       case PPC::VMULOUH:
466       case PPC::VMULOUW:
467       case PPC::VNCIPHER:
468       case PPC::VNCIPHERLAST:
469       case PPC::VPERM:
470       case PPC::VPERMXOR:
471       case PPC::VPKPX:
472       case PPC::VPKSHSS:
473       case PPC::VPKSHUS:
474       case PPC::VPKSDSS:
475       case PPC::VPKSDUS:
476       case PPC::VPKSWSS:
477       case PPC::VPKSWUS:
478       case PPC::VPKUDUM:
479       case PPC::VPKUDUS:
480       case PPC::VPKUHUM:
481       case PPC::VPKUHUS:
482       case PPC::VPKUWUM:
483       case PPC::VPKUWUS:
484       case PPC::VPMSUMB:
485       case PPC::VPMSUMD:
486       case PPC::VPMSUMH:
487       case PPC::VPMSUMW:
488       case PPC::VRLB:
489       case PPC::VRLD:
490       case PPC::VRLH:
491       case PPC::VRLW:
492       case PPC::VSBOX:
493       case PPC::VSHASIGMAD:
494       case PPC::VSHASIGMAW:
495       case PPC::VSL:
496       case PPC::VSLDOI:
497       case PPC::VSLO:
498       case PPC::VSR:
499       case PPC::VSRO:
500       case PPC::VSUM2SWS:
501       case PPC::VSUM4SBS:
502       case PPC::VSUM4SHS:
503       case PPC::VSUM4UBS:
504       case PPC::VSUMSWS:
505       case PPC::VUPKHPX:
506       case PPC::VUPKHSB:
507       case PPC::VUPKHSH:
508       case PPC::VUPKHSW:
509       case PPC::VUPKLPX:
510       case PPC::VUPKLSB:
511       case PPC::VUPKLSH:
512       case PPC::VUPKLSW:
513       case PPC::XXMRGHW:
514       case PPC::XXMRGLW:
515       // XXSLDWI could be replaced by a general permute with one of three
516       // permute control vectors (for shift values 1, 2, 3).  However,
517       // VPERM has a more restrictive register class.
518       case PPC::XXSLDWI:
519       case PPC::XSCVDPSPN:
520       case PPC::XSCVSPDPN:
521       case PPC::MTVSCR:
522       case PPC::MFVSCR:
523         break;
524       }
525     }
526   }
527 
528   if (RelevantFunction) {
529     LLVM_DEBUG(dbgs() << "Swap vector when first built\n\n");
530     LLVM_DEBUG(dumpSwapVector());
531   }
532 
533   return RelevantFunction;
534 }
535 
536 // Add an entry to the swap vector and swap map, and make a
537 // singleton equivalence class for the entry.
538 int PPCVSXSwapRemoval::addSwapEntry(MachineInstr *MI,
539                                   PPCVSXSwapEntry& SwapEntry) {
540   SwapEntry.VSEMI = MI;
541   SwapEntry.VSEId = SwapVector.size();
542   SwapVector.push_back(SwapEntry);
543   EC->insert(SwapEntry.VSEId);
544   SwapMap[MI] = SwapEntry.VSEId;
545   return SwapEntry.VSEId;
546 }
547 
548 // This is used to find the "true" source register for an
549 // XXPERMDI instruction, since MachineCSE does not handle the
550 // "copy-like" operations (Copy and SubregToReg).  Returns
551 // the original SrcReg unless it is the target of a copy-like
552 // operation, in which case we chain backwards through all
553 // such operations to the ultimate source register.  If a
554 // physical register is encountered, we stop the search and
555 // flag the swap entry indicated by VecIdx (the original
556 // XXPERMDI) as mentioning a physical register.
557 unsigned PPCVSXSwapRemoval::lookThruCopyLike(unsigned SrcReg,
558                                              unsigned VecIdx) {
559   MachineInstr *MI = MRI->getVRegDef(SrcReg);
560   if (!MI->isCopyLike())
561     return SrcReg;
562 
563   unsigned CopySrcReg;
564   if (MI->isCopy())
565     CopySrcReg = MI->getOperand(1).getReg();
566   else {
567     assert(MI->isSubregToReg() && "bad opcode for lookThruCopyLike");
568     CopySrcReg = MI->getOperand(2).getReg();
569   }
570 
571   if (!Register::isVirtualRegister(CopySrcReg)) {
572     if (!isScalarVecReg(CopySrcReg))
573       SwapVector[VecIdx].MentionsPhysVR = 1;
574     return CopySrcReg;
575   }
576 
577   return lookThruCopyLike(CopySrcReg, VecIdx);
578 }
579 
580 // Generate equivalence classes for related computations (webs) by
581 // def-use relationships of virtual registers.  Mention of a physical
582 // register terminates the generation of equivalence classes as this
583 // indicates a use of a parameter, definition of a return value, use
584 // of a value returned from a call, or definition of a parameter to a
585 // call.  Computations with physical register mentions are flagged
586 // as such so their containing webs will not be optimized.
587 void PPCVSXSwapRemoval::formWebs() {
588 
589   LLVM_DEBUG(dbgs() << "\n*** Forming webs for swap removal ***\n\n");
590 
591   for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
592 
593     MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
594 
595     LLVM_DEBUG(dbgs() << "\n" << SwapVector[EntryIdx].VSEId << " ");
596     LLVM_DEBUG(MI->dump());
597 
598     // It's sufficient to walk vector uses and join them to their unique
599     // definitions.  In addition, check full vector register operands
600     // for physical regs.  We exclude partial-vector register operands
601     // because we can handle them if copied to a full vector.
602     for (const MachineOperand &MO : MI->operands()) {
603       if (!MO.isReg())
604         continue;
605 
606       Register Reg = MO.getReg();
607       if (!isVecReg(Reg) && !isScalarVecReg(Reg))
608         continue;
609 
610       if (!Reg.isVirtual()) {
611         if (!(MI->isCopy() && isScalarVecReg(Reg)))
612           SwapVector[EntryIdx].MentionsPhysVR = 1;
613         continue;
614       }
615 
616       if (!MO.isUse())
617         continue;
618 
619       MachineInstr* DefMI = MRI->getVRegDef(Reg);
620       assert(SwapMap.contains(DefMI) &&
621              "Inconsistency: def of vector reg not found in swap map!");
622       int DefIdx = SwapMap[DefMI];
623       (void)EC->unionSets(SwapVector[DefIdx].VSEId,
624                           SwapVector[EntryIdx].VSEId);
625 
626       LLVM_DEBUG(dbgs() << format("Unioning %d with %d\n",
627                                   SwapVector[DefIdx].VSEId,
628                                   SwapVector[EntryIdx].VSEId));
629       LLVM_DEBUG(dbgs() << "  Def: ");
630       LLVM_DEBUG(DefMI->dump());
631     }
632   }
633 }
634 
635 // Walk the swap vector entries looking for conditions that prevent their
636 // containing computations from being optimized.  When such conditions are
637 // found, mark the representative of the computation's equivalence class
638 // as rejected.
639 void PPCVSXSwapRemoval::recordUnoptimizableWebs() {
640 
641   LLVM_DEBUG(dbgs() << "\n*** Rejecting webs for swap removal ***\n\n");
642 
643   for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
644     int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
645 
646     // If representative is already rejected, don't waste further time.
647     if (SwapVector[Repr].WebRejected)
648       continue;
649 
650     // Reject webs containing mentions of physical or partial registers, or
651     // containing operations that we don't know how to handle in a lane-
652     // permuted region.
653     if (SwapVector[EntryIdx].MentionsPhysVR ||
654         SwapVector[EntryIdx].MentionsPartialVR ||
655         !(SwapVector[EntryIdx].IsSwappable || SwapVector[EntryIdx].IsSwap)) {
656 
657       SwapVector[Repr].WebRejected = 1;
658 
659       LLVM_DEBUG(
660           dbgs() << format("Web %d rejected for physreg, partial reg, or not "
661                            "swap[pable]\n",
662                            Repr));
663       LLVM_DEBUG(dbgs() << "  in " << EntryIdx << ": ");
664       LLVM_DEBUG(SwapVector[EntryIdx].VSEMI->dump());
665       LLVM_DEBUG(dbgs() << "\n");
666     }
667 
668     // Reject webs than contain swapping loads that feed something other
669     // than a swap instruction.
670     else if (SwapVector[EntryIdx].IsLoad && SwapVector[EntryIdx].IsSwap) {
671       MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
672       Register DefReg = MI->getOperand(0).getReg();
673 
674       // We skip debug instructions in the analysis.  (Note that debug
675       // location information is still maintained by this optimization
676       // because it remains on the LXVD2X and STXVD2X instructions after
677       // the XXPERMDIs are removed.)
678       for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) {
679         int UseIdx = SwapMap[&UseMI];
680 
681         if (!SwapVector[UseIdx].IsSwap || SwapVector[UseIdx].IsLoad ||
682             SwapVector[UseIdx].IsStore) {
683 
684           SwapVector[Repr].WebRejected = 1;
685 
686           LLVM_DEBUG(dbgs() << format(
687                          "Web %d rejected for load not feeding swap\n", Repr));
688           LLVM_DEBUG(dbgs() << "  def " << EntryIdx << ": ");
689           LLVM_DEBUG(MI->dump());
690           LLVM_DEBUG(dbgs() << "  use " << UseIdx << ": ");
691           LLVM_DEBUG(UseMI.dump());
692           LLVM_DEBUG(dbgs() << "\n");
693         }
694 
695         // It is possible that the load feeds a swap and that swap feeds a
696         // store. In such a case, the code is actually trying to store a swapped
697         // vector. We must reject such webs.
698         if (SwapVector[UseIdx].IsSwap && !SwapVector[UseIdx].IsLoad &&
699             !SwapVector[UseIdx].IsStore) {
700           Register SwapDefReg = UseMI.getOperand(0).getReg();
701           for (MachineInstr &UseOfUseMI :
702                MRI->use_nodbg_instructions(SwapDefReg)) {
703             int UseOfUseIdx = SwapMap[&UseOfUseMI];
704             if (SwapVector[UseOfUseIdx].IsStore) {
705               SwapVector[Repr].WebRejected = 1;
706               LLVM_DEBUG(
707                   dbgs() << format(
708                       "Web %d rejected for load/swap feeding a store\n", Repr));
709               LLVM_DEBUG(dbgs() << "  def " << EntryIdx << ": ");
710               LLVM_DEBUG(MI->dump());
711               LLVM_DEBUG(dbgs() << "  use " << UseIdx << ": ");
712               LLVM_DEBUG(UseMI.dump());
713               LLVM_DEBUG(dbgs() << "\n");
714             }
715           }
716         }
717       }
718 
719     // Reject webs that contain swapping stores that are fed by something
720     // other than a swap instruction.
721     } else if (SwapVector[EntryIdx].IsStore && SwapVector[EntryIdx].IsSwap) {
722       MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
723       Register UseReg = MI->getOperand(0).getReg();
724       MachineInstr *DefMI = MRI->getVRegDef(UseReg);
725       Register DefReg = DefMI->getOperand(0).getReg();
726       int DefIdx = SwapMap[DefMI];
727 
728       if (!SwapVector[DefIdx].IsSwap || SwapVector[DefIdx].IsLoad ||
729           SwapVector[DefIdx].IsStore) {
730 
731         SwapVector[Repr].WebRejected = 1;
732 
733         LLVM_DEBUG(dbgs() << format(
734                        "Web %d rejected for store not fed by swap\n", Repr));
735         LLVM_DEBUG(dbgs() << "  def " << DefIdx << ": ");
736         LLVM_DEBUG(DefMI->dump());
737         LLVM_DEBUG(dbgs() << "  use " << EntryIdx << ": ");
738         LLVM_DEBUG(MI->dump());
739         LLVM_DEBUG(dbgs() << "\n");
740       }
741 
742       // Ensure all uses of the register defined by DefMI feed store
743       // instructions
744       for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) {
745         int UseIdx = SwapMap[&UseMI];
746 
747         if (SwapVector[UseIdx].VSEMI->getOpcode() != MI->getOpcode()) {
748           SwapVector[Repr].WebRejected = 1;
749 
750           LLVM_DEBUG(
751               dbgs() << format(
752                   "Web %d rejected for swap not feeding only stores\n", Repr));
753           LLVM_DEBUG(dbgs() << "  def "
754                             << " : ");
755           LLVM_DEBUG(DefMI->dump());
756           LLVM_DEBUG(dbgs() << "  use " << UseIdx << ": ");
757           LLVM_DEBUG(SwapVector[UseIdx].VSEMI->dump());
758           LLVM_DEBUG(dbgs() << "\n");
759         }
760       }
761     }
762   }
763 
764   LLVM_DEBUG(dbgs() << "Swap vector after web analysis:\n\n");
765   LLVM_DEBUG(dumpSwapVector());
766 }
767 
768 // Walk the swap vector entries looking for swaps fed by permuting loads
769 // and swaps that feed permuting stores.  If the containing computation
770 // has not been marked rejected, mark each such swap for removal.
771 // (Removal is delayed in case optimization has disturbed the pattern,
772 // such that multiple loads feed the same swap, etc.)
773 void PPCVSXSwapRemoval::markSwapsForRemoval() {
774 
775   LLVM_DEBUG(dbgs() << "\n*** Marking swaps for removal ***\n\n");
776 
777   for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
778 
779     if (SwapVector[EntryIdx].IsLoad && SwapVector[EntryIdx].IsSwap) {
780       int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
781 
782       if (!SwapVector[Repr].WebRejected) {
783         MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
784         Register DefReg = MI->getOperand(0).getReg();
785 
786         for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) {
787           int UseIdx = SwapMap[&UseMI];
788           SwapVector[UseIdx].WillRemove = 1;
789 
790           LLVM_DEBUG(dbgs() << "Marking swap fed by load for removal: ");
791           LLVM_DEBUG(UseMI.dump());
792         }
793       }
794 
795     } else if (SwapVector[EntryIdx].IsStore && SwapVector[EntryIdx].IsSwap) {
796       int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
797 
798       if (!SwapVector[Repr].WebRejected) {
799         MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
800         Register UseReg = MI->getOperand(0).getReg();
801         MachineInstr *DefMI = MRI->getVRegDef(UseReg);
802         int DefIdx = SwapMap[DefMI];
803         SwapVector[DefIdx].WillRemove = 1;
804 
805         LLVM_DEBUG(dbgs() << "Marking swap feeding store for removal: ");
806         LLVM_DEBUG(DefMI->dump());
807       }
808 
809     } else if (SwapVector[EntryIdx].IsSwappable &&
810                SwapVector[EntryIdx].SpecialHandling != 0) {
811       int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
812 
813       if (!SwapVector[Repr].WebRejected)
814         handleSpecialSwappables(EntryIdx);
815     }
816   }
817 }
818 
819 // Create an xxswapd instruction and insert it prior to the given point.
820 // MI is used to determine basic block and debug loc information.
821 // FIXME: When inserting a swap, we should check whether SrcReg is
822 // defined by another swap:  SrcReg = XXPERMDI Reg, Reg, 2;  If so,
823 // then instead we should generate a copy from Reg to DstReg.
824 void PPCVSXSwapRemoval::insertSwap(MachineInstr *MI,
825                                    MachineBasicBlock::iterator InsertPoint,
826                                    unsigned DstReg, unsigned SrcReg) {
827   BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(),
828           TII->get(PPC::XXPERMDI), DstReg)
829     .addReg(SrcReg)
830     .addReg(SrcReg)
831     .addImm(2);
832 }
833 
834 // The identified swap entry requires special handling to allow its
835 // containing computation to be optimized.  Perform that handling
836 // here.
837 // FIXME: Additional opportunities will be phased in with subsequent
838 // patches.
839 void PPCVSXSwapRemoval::handleSpecialSwappables(int EntryIdx) {
840   switch (SwapVector[EntryIdx].SpecialHandling) {
841 
842   default:
843     llvm_unreachable("Unexpected special handling type");
844 
845   // For splats based on an index into a vector, add N/2 modulo N
846   // to the index, where N is the number of vector elements.
847   case SHValues::SH_SPLAT: {
848     MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
849     unsigned NElts;
850 
851     LLVM_DEBUG(dbgs() << "Changing splat: ");
852     LLVM_DEBUG(MI->dump());
853 
854     switch (MI->getOpcode()) {
855     default:
856       llvm_unreachable("Unexpected splat opcode");
857     case PPC::VSPLTB: NElts = 16; break;
858     case PPC::VSPLTH: NElts = 8;  break;
859     case PPC::VSPLTW:
860     case PPC::XXSPLTW: NElts = 4;  break;
861     }
862 
863     unsigned EltNo;
864     if (MI->getOpcode() == PPC::XXSPLTW)
865       EltNo = MI->getOperand(2).getImm();
866     else
867       EltNo = MI->getOperand(1).getImm();
868 
869     EltNo = (EltNo + NElts / 2) % NElts;
870     if (MI->getOpcode() == PPC::XXSPLTW)
871       MI->getOperand(2).setImm(EltNo);
872     else
873       MI->getOperand(1).setImm(EltNo);
874 
875     LLVM_DEBUG(dbgs() << "  Into: ");
876     LLVM_DEBUG(MI->dump());
877     break;
878   }
879 
880   // For an XXPERMDI that isn't handled otherwise, we need to
881   // reverse the order of the operands.  If the selector operand
882   // has a value of 0 or 3, we need to change it to 3 or 0,
883   // respectively.  Otherwise we should leave it alone.  (This
884   // is equivalent to reversing the two bits of the selector
885   // operand and complementing the result.)
886   case SHValues::SH_XXPERMDI: {
887     MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
888 
889     LLVM_DEBUG(dbgs() << "Changing XXPERMDI: ");
890     LLVM_DEBUG(MI->dump());
891 
892     unsigned Selector = MI->getOperand(3).getImm();
893     if (Selector == 0 || Selector == 3)
894       Selector = 3 - Selector;
895     MI->getOperand(3).setImm(Selector);
896 
897     Register Reg1 = MI->getOperand(1).getReg();
898     Register Reg2 = MI->getOperand(2).getReg();
899     MI->getOperand(1).setReg(Reg2);
900     MI->getOperand(2).setReg(Reg1);
901 
902     // We also need to swap kill flag associated with the register.
903     bool IsKill1 = MI->getOperand(1).isKill();
904     bool IsKill2 = MI->getOperand(2).isKill();
905     MI->getOperand(1).setIsKill(IsKill2);
906     MI->getOperand(2).setIsKill(IsKill1);
907 
908     LLVM_DEBUG(dbgs() << "  Into: ");
909     LLVM_DEBUG(MI->dump());
910     break;
911   }
912 
913   // For a copy from a scalar floating-point register to a vector
914   // register, removing swaps will leave the copied value in the
915   // wrong lane.  Insert a swap following the copy to fix this.
916   case SHValues::SH_COPYWIDEN: {
917     MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
918 
919     LLVM_DEBUG(dbgs() << "Changing SUBREG_TO_REG: ");
920     LLVM_DEBUG(MI->dump());
921 
922     Register DstReg = MI->getOperand(0).getReg();
923     const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
924     Register NewVReg = MRI->createVirtualRegister(DstRC);
925 
926     MI->getOperand(0).setReg(NewVReg);
927     LLVM_DEBUG(dbgs() << "  Into: ");
928     LLVM_DEBUG(MI->dump());
929 
930     auto InsertPoint = ++MachineBasicBlock::iterator(MI);
931 
932     // Note that an XXPERMDI requires a VSRC, so if the SUBREG_TO_REG
933     // is copying to a VRRC, we need to be careful to avoid a register
934     // assignment problem.  In this case we must copy from VRRC to VSRC
935     // prior to the swap, and from VSRC to VRRC following the swap.
936     // Coalescing will usually remove all this mess.
937     if (DstRC == &PPC::VRRCRegClass) {
938       Register VSRCTmp1 = MRI->createVirtualRegister(&PPC::VSRCRegClass);
939       Register VSRCTmp2 = MRI->createVirtualRegister(&PPC::VSRCRegClass);
940 
941       BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(),
942               TII->get(PPC::COPY), VSRCTmp1)
943         .addReg(NewVReg);
944       LLVM_DEBUG(std::prev(InsertPoint)->dump());
945 
946       insertSwap(MI, InsertPoint, VSRCTmp2, VSRCTmp1);
947       LLVM_DEBUG(std::prev(InsertPoint)->dump());
948 
949       BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(),
950               TII->get(PPC::COPY), DstReg)
951         .addReg(VSRCTmp2);
952       LLVM_DEBUG(std::prev(InsertPoint)->dump());
953 
954     } else {
955       insertSwap(MI, InsertPoint, DstReg, NewVReg);
956       LLVM_DEBUG(std::prev(InsertPoint)->dump());
957     }
958     break;
959   }
960   }
961 }
962 
963 // Walk the swap vector and replace each entry marked for removal with
964 // a copy operation.
965 bool PPCVSXSwapRemoval::removeSwaps() {
966 
967   LLVM_DEBUG(dbgs() << "\n*** Removing swaps ***\n\n");
968 
969   bool Changed = false;
970 
971   for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
972     if (SwapVector[EntryIdx].WillRemove) {
973       Changed = true;
974       MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
975       MachineBasicBlock *MBB = MI->getParent();
976       BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(TargetOpcode::COPY),
977               MI->getOperand(0).getReg())
978           .add(MI->getOperand(1));
979 
980       LLVM_DEBUG(dbgs() << format("Replaced %d with copy: ",
981                                   SwapVector[EntryIdx].VSEId));
982       LLVM_DEBUG(MI->dump());
983 
984       MI->eraseFromParent();
985     }
986   }
987 
988   return Changed;
989 }
990 
991 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
992 // For debug purposes, dump the contents of the swap vector.
993 LLVM_DUMP_METHOD void PPCVSXSwapRemoval::dumpSwapVector() {
994 
995   for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
996 
997     MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
998     int ID = SwapVector[EntryIdx].VSEId;
999 
1000     dbgs() << format("%6d", ID);
1001     dbgs() << format("%6d", EC->getLeaderValue(ID));
1002     dbgs() << format(" %bb.%3d", MI->getParent()->getNumber());
1003     dbgs() << format("  %14s  ", TII->getName(MI->getOpcode()).str().c_str());
1004 
1005     if (SwapVector[EntryIdx].IsLoad)
1006       dbgs() << "load ";
1007     if (SwapVector[EntryIdx].IsStore)
1008       dbgs() << "store ";
1009     if (SwapVector[EntryIdx].IsSwap)
1010       dbgs() << "swap ";
1011     if (SwapVector[EntryIdx].MentionsPhysVR)
1012       dbgs() << "physreg ";
1013     if (SwapVector[EntryIdx].MentionsPartialVR)
1014       dbgs() << "partialreg ";
1015 
1016     if (SwapVector[EntryIdx].IsSwappable) {
1017       dbgs() << "swappable ";
1018       switch(SwapVector[EntryIdx].SpecialHandling) {
1019       default:
1020         dbgs() << "special:**unknown**";
1021         break;
1022       case SH_NONE:
1023         break;
1024       case SH_EXTRACT:
1025         dbgs() << "special:extract ";
1026         break;
1027       case SH_INSERT:
1028         dbgs() << "special:insert ";
1029         break;
1030       case SH_NOSWAP_LD:
1031         dbgs() << "special:load ";
1032         break;
1033       case SH_NOSWAP_ST:
1034         dbgs() << "special:store ";
1035         break;
1036       case SH_SPLAT:
1037         dbgs() << "special:splat ";
1038         break;
1039       case SH_XXPERMDI:
1040         dbgs() << "special:xxpermdi ";
1041         break;
1042       case SH_COPYWIDEN:
1043         dbgs() << "special:copywiden ";
1044         break;
1045       }
1046     }
1047 
1048     if (SwapVector[EntryIdx].WebRejected)
1049       dbgs() << "rejected ";
1050     if (SwapVector[EntryIdx].WillRemove)
1051       dbgs() << "remove ";
1052 
1053     dbgs() << "\n";
1054 
1055     // For no-asserts builds.
1056     (void)MI;
1057     (void)ID;
1058   }
1059 
1060   dbgs() << "\n";
1061 }
1062 #endif
1063 
1064 } // end default namespace
1065 
1066 INITIALIZE_PASS_BEGIN(PPCVSXSwapRemoval, DEBUG_TYPE,
1067                       "PowerPC VSX Swap Removal", false, false)
1068 INITIALIZE_PASS_END(PPCVSXSwapRemoval, DEBUG_TYPE,
1069                     "PowerPC VSX Swap Removal", false, false)
1070 
1071 char PPCVSXSwapRemoval::ID = 0;
1072 FunctionPass*
1073 llvm::createPPCVSXSwapRemovalPass() { return new PPCVSXSwapRemoval(); }
1074