1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* This file contains two passes of the compiler: reg_scan and reg_class.
24 It also defines some tables of information about the hardware registers
25 and a function init_reg_sets to initialize the tables. */
26
27 #include "config.h"
28 #include "system.h"
29 #include "hard-reg-set.h"
30 #include "rtl.h"
31 #include "expr.h"
32 #include "tm_p.h"
33 #include "flags.h"
34 #include "basic-block.h"
35 #include "regs.h"
36 #include "function.h"
37 #include "insn-config.h"
38 #include "recog.h"
39 #include "reload.h"
40 #include "real.h"
41 #include "toplev.h"
42 #include "output.h"
43 #include "ggc.h"
44 #include "hashtab.h"
45
46 #ifndef REGISTER_MOVE_COST
47 #define REGISTER_MOVE_COST(m, x, y) 2
48 #endif
49
50 static void init_reg_sets_1 PARAMS ((void));
51 static void init_reg_modes PARAMS ((void));
52 static void init_reg_autoinc PARAMS ((void));
53
54 /* If we have auto-increment or auto-decrement and we can have secondary
55 reloads, we are not allowed to use classes requiring secondary
56 reloads for pseudos auto-incremented since reload can't handle it. */
57
58 #ifdef AUTO_INC_DEC
59 #if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
60 #define FORBIDDEN_INC_DEC_CLASSES
61 #endif
62 #endif
63
64 /* Register tables used by many passes. */
65
66 /* Indexed by hard register number, contains 1 for registers
67 that are fixed use (stack pointer, pc, frame pointer, etc.).
68 These are the registers that cannot be used to allocate
69 a pseudo reg for general use. */
70
71 char fixed_regs[FIRST_PSEUDO_REGISTER];
72
73 /* Same info as a HARD_REG_SET. */
74
75 HARD_REG_SET fixed_reg_set;
76
77 /* Data for initializing the above. */
78
79 static const char initial_fixed_regs[] = FIXED_REGISTERS;
80
81 /* Indexed by hard register number, contains 1 for registers
82 that are fixed use or are clobbered by function calls.
83 These are the registers that cannot be used to allocate
84 a pseudo reg whose life crosses calls unless we are able
85 to save/restore them across the calls. */
86
87 char call_used_regs[FIRST_PSEUDO_REGISTER];
88
89 /* Same info as a HARD_REG_SET. */
90
91 HARD_REG_SET call_used_reg_set;
92
93 /* HARD_REG_SET of registers we want to avoid caller saving. */
94 HARD_REG_SET losing_caller_save_reg_set;
95
96 /* Data for initializing the above. */
97
98 static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
99
100 /* This is much like call_used_regs, except it doesn't have to
101 be a superset of FIXED_REGISTERS. This vector indicates
102 what is really call clobbered, and is used when defining
103 regs_invalidated_by_call. */
104
105 #ifdef CALL_REALLY_USED_REGISTERS
106 char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
107 #endif
108
109 #ifdef CALL_REALLY_USED_REGISTERS
110 #define CALL_REALLY_USED_REGNO_P(X) call_really_used_regs[X]
111 #else
112 #define CALL_REALLY_USED_REGNO_P(X) call_used_regs[X]
113 #endif
114
115
116 /* Indexed by hard register number, contains 1 for registers that are
117 fixed use or call used registers that cannot hold quantities across
118 calls even if we are willing to save and restore them. call fixed
119 registers are a subset of call used registers. */
120
121 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
122
123 /* The same info as a HARD_REG_SET. */
124
125 HARD_REG_SET call_fixed_reg_set;
126
127 /* Number of non-fixed registers. */
128
129 int n_non_fixed_regs;
130
131 /* Indexed by hard register number, contains 1 for registers
132 that are being used for global register decls.
133 These must be exempt from ordinary flow analysis
134 and are also considered fixed. */
135
136 char global_regs[FIRST_PSEUDO_REGISTER];
137
138 /* Contains 1 for registers that are set or clobbered by calls. */
139 /* ??? Ideally, this would be just call_used_regs plus global_regs, but
140 for someone's bright idea to have call_used_regs strictly include
141 fixed_regs. Which leaves us guessing as to the set of fixed_regs
142 that are actually preserved. We know for sure that those associated
143 with the local stack frame are safe, but scant others. */
144
145 HARD_REG_SET regs_invalidated_by_call;
146
147 /* Table of register numbers in the order in which to try to use them. */
148 #ifdef REG_ALLOC_ORDER
149 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
150
151 /* The inverse of reg_alloc_order. */
152 int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
153 #endif
154
155 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
156
157 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
158
159 /* The same information, but as an array of unsigned ints. We copy from
160 these unsigned ints to the table above. We do this so the tm.h files
161 do not have to be aware of the wordsize for machines with <= 64 regs.
162 Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
163
164 #define N_REG_INTS \
165 ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
166
167 static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
168 = REG_CLASS_CONTENTS;
169
170 /* For each reg class, number of regs it contains. */
171
172 unsigned int reg_class_size[N_REG_CLASSES];
173
174 /* For each reg class, table listing all the containing classes. */
175
176 enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
177
178 /* For each reg class, table listing all the classes contained in it. */
179
180 enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
181
182 /* For each pair of reg classes,
183 a largest reg class contained in their union. */
184
185 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
186
187 /* For each pair of reg classes,
188 the smallest reg class containing their union. */
189
190 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
191
192 /* Array containing all of the register names. Unless
193 DEBUG_REGISTER_NAMES is defined, use the copy in print-rtl.c. */
194
195 #ifdef DEBUG_REGISTER_NAMES
196 const char * reg_names[] = REGISTER_NAMES;
197 #endif
198
199 /* For each hard register, the widest mode object that it can contain.
200 This will be a MODE_INT mode if the register can hold integers. Otherwise
201 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
202 register. */
203
204 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
205
206 /* 1 if class does contain register of given mode. */
207
208 static char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
209
210 /* Maximum cost of moving from a register in one class to a register in
211 another class. Based on REGISTER_MOVE_COST. */
212
213 static int move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
214
215 /* Similar, but here we don't have to move if the first index is a subset
216 of the second so in that case the cost is zero. */
217
218 static int may_move_in_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
219
220 /* Similar, but here we don't have to move if the first index is a superset
221 of the second so in that case the cost is zero. */
222
223 static int may_move_out_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
224
225 #ifdef FORBIDDEN_INC_DEC_CLASSES
226
227 /* These are the classes that regs which are auto-incremented or decremented
228 cannot be put in. */
229
230 static int forbidden_inc_dec_class[N_REG_CLASSES];
231
232 /* Indexed by n, is nonzero if (REG n) is used in an auto-inc or auto-dec
233 context. */
234
235 static char *in_inc_dec;
236
237 #endif /* FORBIDDEN_INC_DEC_CLASSES */
238
239 /* Sample MEM values for use by memory_move_secondary_cost. */
240
241 static GTY(()) rtx top_of_stack[MAX_MACHINE_MODE];
242
243 /* Linked list of reg_info structures allocated for reg_n_info array.
244 Grouping all of the allocated structures together in one lump
245 means only one call to bzero to clear them, rather than n smaller
246 calls. */
247 struct reg_info_data {
248 struct reg_info_data *next; /* next set of reg_info structures */
249 size_t min_index; /* minimum index # */
250 size_t max_index; /* maximum index # */
251 char used_p; /* nonzero if this has been used previously */
252 reg_info data[1]; /* beginning of the reg_info data */
253 };
254
255 static struct reg_info_data *reg_info_head;
256
257 /* No more global register variables may be declared; true once
258 regclass has been initialized. */
259
260 static int no_global_reg_vars = 0;
261
262
263 /* Function called only once to initialize the above data on reg usage.
264 Once this is done, various switches may override. */
265
266 void
init_reg_sets()267 init_reg_sets ()
268 {
269 int i, j;
270
271 /* First copy the register information from the initial int form into
272 the regsets. */
273
274 for (i = 0; i < N_REG_CLASSES; i++)
275 {
276 CLEAR_HARD_REG_SET (reg_class_contents[i]);
277
278 /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
279 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
280 if (int_reg_class_contents[i][j / 32]
281 & ((unsigned) 1 << (j % 32)))
282 SET_HARD_REG_BIT (reg_class_contents[i], j);
283 }
284
285 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
286 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
287 memset (global_regs, 0, sizeof global_regs);
288
289 /* Do any additional initialization regsets may need. */
290 INIT_ONCE_REG_SET ();
291
292 #ifdef REG_ALLOC_ORDER
293 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
294 inv_reg_alloc_order[reg_alloc_order[i]] = i;
295 #endif
296 }
297
298 /* After switches have been processed, which perhaps alter
299 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
300
301 static void
init_reg_sets_1()302 init_reg_sets_1 ()
303 {
304 unsigned int i, j;
305 unsigned int /* enum machine_mode */ m;
306 char allocatable_regs_of_mode [MAX_MACHINE_MODE];
307
308 /* This macro allows the fixed or call-used registers
309 and the register classes to depend on target flags. */
310
311 #ifdef CONDITIONAL_REGISTER_USAGE
312 CONDITIONAL_REGISTER_USAGE;
313 #endif
314
315 /* Compute number of hard regs in each class. */
316
317 memset ((char *) reg_class_size, 0, sizeof reg_class_size);
318 for (i = 0; i < N_REG_CLASSES; i++)
319 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
320 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
321 reg_class_size[i]++;
322
323 /* Initialize the table of subunions.
324 reg_class_subunion[I][J] gets the largest-numbered reg-class
325 that is contained in the union of classes I and J. */
326
327 for (i = 0; i < N_REG_CLASSES; i++)
328 {
329 for (j = 0; j < N_REG_CLASSES; j++)
330 {
331 #ifdef HARD_REG_SET
332 register /* Declare it register if it's a scalar. */
333 #endif
334 HARD_REG_SET c;
335 int k;
336
337 COPY_HARD_REG_SET (c, reg_class_contents[i]);
338 IOR_HARD_REG_SET (c, reg_class_contents[j]);
339 for (k = 0; k < N_REG_CLASSES; k++)
340 {
341 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
342 subclass1);
343 continue;
344
345 subclass1:
346 /* keep the largest subclass */ /* SPEE 900308 */
347 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
348 reg_class_contents[(int) reg_class_subunion[i][j]],
349 subclass2);
350 reg_class_subunion[i][j] = (enum reg_class) k;
351 subclass2:
352 ;
353 }
354 }
355 }
356
357 /* Initialize the table of superunions.
358 reg_class_superunion[I][J] gets the smallest-numbered reg-class
359 containing the union of classes I and J. */
360
361 for (i = 0; i < N_REG_CLASSES; i++)
362 {
363 for (j = 0; j < N_REG_CLASSES; j++)
364 {
365 #ifdef HARD_REG_SET
366 register /* Declare it register if it's a scalar. */
367 #endif
368 HARD_REG_SET c;
369 int k;
370
371 COPY_HARD_REG_SET (c, reg_class_contents[i]);
372 IOR_HARD_REG_SET (c, reg_class_contents[j]);
373 for (k = 0; k < N_REG_CLASSES; k++)
374 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
375
376 superclass:
377 reg_class_superunion[i][j] = (enum reg_class) k;
378 }
379 }
380
381 /* Initialize the tables of subclasses and superclasses of each reg class.
382 First clear the whole table, then add the elements as they are found. */
383
384 for (i = 0; i < N_REG_CLASSES; i++)
385 {
386 for (j = 0; j < N_REG_CLASSES; j++)
387 {
388 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
389 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
390 }
391 }
392
393 for (i = 0; i < N_REG_CLASSES; i++)
394 {
395 if (i == (int) NO_REGS)
396 continue;
397
398 for (j = i + 1; j < N_REG_CLASSES; j++)
399 {
400 enum reg_class *p;
401
402 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
403 subclass);
404 continue;
405 subclass:
406 /* Reg class I is a subclass of J.
407 Add J to the table of superclasses of I. */
408 p = ®_class_superclasses[i][0];
409 while (*p != LIM_REG_CLASSES) p++;
410 *p = (enum reg_class) j;
411 /* Add I to the table of superclasses of J. */
412 p = ®_class_subclasses[j][0];
413 while (*p != LIM_REG_CLASSES) p++;
414 *p = (enum reg_class) i;
415 }
416 }
417
418 /* Initialize "constant" tables. */
419
420 CLEAR_HARD_REG_SET (fixed_reg_set);
421 CLEAR_HARD_REG_SET (call_used_reg_set);
422 CLEAR_HARD_REG_SET (call_fixed_reg_set);
423 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
424
425 memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
426
427 n_non_fixed_regs = 0;
428
429 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
430 {
431 if (fixed_regs[i])
432 SET_HARD_REG_BIT (fixed_reg_set, i);
433 else
434 n_non_fixed_regs++;
435
436 if (call_used_regs[i])
437 SET_HARD_REG_BIT (call_used_reg_set, i);
438 if (call_fixed_regs[i])
439 SET_HARD_REG_BIT (call_fixed_reg_set, i);
440 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
441 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
442
443 /* There are a couple of fixed registers that we know are safe to
444 exclude from being clobbered by calls:
445
446 The frame pointer is always preserved across calls. The arg pointer
447 is if it is fixed. The stack pointer usually is, unless
448 RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
449 If we are generating PIC code, the PIC offset table register is
450 preserved across calls, though the target can override that. */
451
452 if (i == STACK_POINTER_REGNUM)
453 ;
454 else if (global_regs[i])
455 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
456 else if (i == FRAME_POINTER_REGNUM)
457 ;
458 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
459 else if (i == HARD_FRAME_POINTER_REGNUM)
460 ;
461 #endif
462 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
463 else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
464 ;
465 #endif
466 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
467 else if (i == PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
468 ;
469 #endif
470 else if (CALL_REALLY_USED_REGNO_P (i))
471 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
472 }
473
474 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
475 memset (allocatable_regs_of_mode, 0, sizeof (allocatable_regs_of_mode));
476 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
477 for (i = 0; i < N_REG_CLASSES; i++)
478 if ((unsigned) CLASS_MAX_NREGS (i, m) <= reg_class_size[i])
479 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
480 if (!fixed_regs [j] && TEST_HARD_REG_BIT (reg_class_contents[i], j)
481 && HARD_REGNO_MODE_OK (j, m))
482 {
483 contains_reg_of_mode [i][m] = 1;
484 allocatable_regs_of_mode [m] = 1;
485 break;
486 }
487
488 /* Initialize the move cost table. Find every subset of each class
489 and take the maximum cost of moving any subset to any other. */
490
491 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
492 if (allocatable_regs_of_mode [m])
493 {
494 for (i = 0; i < N_REG_CLASSES; i++)
495 if (contains_reg_of_mode [i][m])
496 for (j = 0; j < N_REG_CLASSES; j++)
497 {
498 int cost;
499 enum reg_class *p1, *p2;
500
501 if (!contains_reg_of_mode [j][m])
502 {
503 move_cost[m][i][j] = 65536;
504 may_move_in_cost[m][i][j] = 65536;
505 may_move_out_cost[m][i][j] = 65536;
506 }
507 else
508 {
509 cost = REGISTER_MOVE_COST (m, i, j);
510
511 for (p2 = ®_class_subclasses[j][0];
512 *p2 != LIM_REG_CLASSES;
513 p2++)
514 if (*p2 != i && contains_reg_of_mode [*p2][m])
515 cost = MAX (cost, move_cost [m][i][*p2]);
516
517 for (p1 = ®_class_subclasses[i][0];
518 *p1 != LIM_REG_CLASSES;
519 p1++)
520 if (*p1 != j && contains_reg_of_mode [*p1][m])
521 cost = MAX (cost, move_cost [m][*p1][j]);
522
523 move_cost[m][i][j] = cost;
524
525 if (reg_class_subset_p (i, j))
526 may_move_in_cost[m][i][j] = 0;
527 else
528 may_move_in_cost[m][i][j] = cost;
529
530 if (reg_class_subset_p (j, i))
531 may_move_out_cost[m][i][j] = 0;
532 else
533 may_move_out_cost[m][i][j] = cost;
534 }
535 }
536 else
537 for (j = 0; j < N_REG_CLASSES; j++)
538 {
539 move_cost[m][i][j] = 65536;
540 may_move_in_cost[m][i][j] = 65536;
541 may_move_out_cost[m][i][j] = 65536;
542 }
543 }
544 }
545
546 /* Compute the table of register modes.
547 These values are used to record death information for individual registers
548 (as opposed to a multi-register mode). */
549
550 static void
init_reg_modes()551 init_reg_modes ()
552 {
553 int i;
554
555 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
556 {
557 reg_raw_mode[i] = choose_hard_reg_mode (i, 1);
558
559 /* If we couldn't find a valid mode, just use the previous mode.
560 ??? One situation in which we need to do this is on the mips where
561 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
562 to use DF mode for the even registers and VOIDmode for the odd
563 (for the cpu models where the odd ones are inaccessible). */
564 if (reg_raw_mode[i] == VOIDmode)
565 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
566 }
567 }
568
569 /* Finish initializing the register sets and
570 initialize the register modes. */
571
572 void
init_regs()573 init_regs ()
574 {
575 /* This finishes what was started by init_reg_sets, but couldn't be done
576 until after register usage was specified. */
577 init_reg_sets_1 ();
578
579 init_reg_modes ();
580
581 init_reg_autoinc ();
582 }
583
584 /* Initialize some fake stack-frame MEM references for use in
585 memory_move_secondary_cost. */
586
587 void
init_fake_stack_mems()588 init_fake_stack_mems ()
589 {
590 #ifdef HAVE_SECONDARY_RELOADS
591 {
592 int i;
593
594 for (i = 0; i < MAX_MACHINE_MODE; i++)
595 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
596 }
597 #endif
598 }
599
600 #ifdef HAVE_SECONDARY_RELOADS
601
602 /* Compute extra cost of moving registers to/from memory due to reloads.
603 Only needed if secondary reloads are required for memory moves. */
604
605 int
memory_move_secondary_cost(mode,class,in)606 memory_move_secondary_cost (mode, class, in)
607 enum machine_mode mode;
608 enum reg_class class;
609 int in;
610 {
611 enum reg_class altclass;
612 int partial_cost = 0;
613 /* We need a memory reference to feed to SECONDARY... macros. */
614 /* mem may be unused even if the SECONDARY_ macros are defined. */
615 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
616
617
618 if (in)
619 {
620 #ifdef SECONDARY_INPUT_RELOAD_CLASS
621 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
622 #else
623 altclass = NO_REGS;
624 #endif
625 }
626 else
627 {
628 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
629 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
630 #else
631 altclass = NO_REGS;
632 #endif
633 }
634
635 if (altclass == NO_REGS)
636 return 0;
637
638 if (in)
639 partial_cost = REGISTER_MOVE_COST (mode, altclass, class);
640 else
641 partial_cost = REGISTER_MOVE_COST (mode, class, altclass);
642
643 if (class == altclass)
644 /* This isn't simply a copy-to-temporary situation. Can't guess
645 what it is, so MEMORY_MOVE_COST really ought not to be calling
646 here in that case.
647
648 I'm tempted to put in an abort here, but returning this will
649 probably only give poor estimates, which is what we would've
650 had before this code anyways. */
651 return partial_cost;
652
653 /* Check if the secondary reload register will also need a
654 secondary reload. */
655 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
656 }
657 #endif
658
659 /* Return a machine mode that is legitimate for hard reg REGNO and large
660 enough to save nregs. If we can't find one, return VOIDmode. */
661
662 enum machine_mode
choose_hard_reg_mode(regno,nregs)663 choose_hard_reg_mode (regno, nregs)
664 unsigned int regno ATTRIBUTE_UNUSED;
665 unsigned int nregs;
666 {
667 unsigned int /* enum machine_mode */ m;
668 enum machine_mode found_mode = VOIDmode, mode;
669
670 /* We first look for the largest integer mode that can be validly
671 held in REGNO. If none, we look for the largest floating-point mode.
672 If we still didn't find a valid mode, try CCmode. */
673
674 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
675 mode != VOIDmode;
676 mode = GET_MODE_WIDER_MODE (mode))
677 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
678 && HARD_REGNO_MODE_OK (regno, mode))
679 found_mode = mode;
680
681 if (found_mode != VOIDmode)
682 return found_mode;
683
684 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
685 mode != VOIDmode;
686 mode = GET_MODE_WIDER_MODE (mode))
687 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
688 && HARD_REGNO_MODE_OK (regno, mode))
689 found_mode = mode;
690
691 if (found_mode != VOIDmode)
692 return found_mode;
693
694 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
695 mode != VOIDmode;
696 mode = GET_MODE_WIDER_MODE (mode))
697 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
698 && HARD_REGNO_MODE_OK (regno, mode))
699 found_mode = mode;
700
701 if (found_mode != VOIDmode)
702 return found_mode;
703
704 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
705 mode != VOIDmode;
706 mode = GET_MODE_WIDER_MODE (mode))
707 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
708 && HARD_REGNO_MODE_OK (regno, mode))
709 found_mode = mode;
710
711 if (found_mode != VOIDmode)
712 return found_mode;
713
714 /* Iterate over all of the CCmodes. */
715 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
716 {
717 mode = (enum machine_mode) m;
718 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
719 && HARD_REGNO_MODE_OK (regno, mode))
720 return mode;
721 }
722
723 /* We can't find a mode valid for this register. */
724 return VOIDmode;
725 }
726
727 /* Specify the usage characteristics of the register named NAME.
728 It should be a fixed register if FIXED and a
729 call-used register if CALL_USED. */
730
731 void
fix_register(name,fixed,call_used)732 fix_register (name, fixed, call_used)
733 const char *name;
734 int fixed, call_used;
735 {
736 int i;
737
738 /* Decode the name and update the primary form of
739 the register info. */
740
741 if ((i = decode_reg_name (name)) >= 0)
742 {
743 if ((i == STACK_POINTER_REGNUM
744 #ifdef HARD_FRAME_POINTER_REGNUM
745 || i == HARD_FRAME_POINTER_REGNUM
746 #else
747 || i == FRAME_POINTER_REGNUM
748 #endif
749 )
750 && (fixed == 0 || call_used == 0))
751 {
752 static const char * const what_option[2][2] = {
753 { "call-saved", "call-used" },
754 { "no-such-option", "fixed" }};
755
756 error ("can't use '%s' as a %s register", name,
757 what_option[fixed][call_used]);
758 }
759 else
760 {
761 fixed_regs[i] = fixed;
762 call_used_regs[i] = call_used;
763 #ifdef CALL_REALLY_USED_REGISTERS
764 if (fixed == 0)
765 call_really_used_regs[i] = call_used;
766 #endif
767 }
768 }
769 else
770 {
771 warning ("unknown register name: %s", name);
772 }
773 }
774
775 /* Mark register number I as global. */
776
777 void
globalize_reg(i)778 globalize_reg (i)
779 int i;
780 {
781 if (fixed_regs[i] == 0 && no_global_reg_vars)
782 error ("global register variable follows a function definition");
783
784 if (global_regs[i])
785 {
786 warning ("register used for two global register variables");
787 return;
788 }
789
790 if (call_used_regs[i] && ! fixed_regs[i])
791 warning ("call-clobbered register used for global register variable");
792
793 global_regs[i] = 1;
794
795 /* If we're globalizing the frame pointer, we need to set the
796 appropriate regs_invalidated_by_call bit, even if it's already
797 set in fixed_regs. */
798 if (i != STACK_POINTER_REGNUM)
799 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
800
801 /* If already fixed, nothing else to do. */
802 if (fixed_regs[i])
803 return;
804
805 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
806 n_non_fixed_regs--;
807
808 SET_HARD_REG_BIT (fixed_reg_set, i);
809 SET_HARD_REG_BIT (call_used_reg_set, i);
810 SET_HARD_REG_BIT (call_fixed_reg_set, i);
811 }
812
813 /* Now the data and code for the `regclass' pass, which happens
814 just before local-alloc. */
815
816 /* The `costs' struct records the cost of using a hard register of each class
817 and of using memory for each pseudo. We use this data to set up
818 register class preferences. */
819
820 struct costs
821 {
822 int cost[N_REG_CLASSES];
823 int mem_cost;
824 };
825
826 /* Structure used to record preferrences of given pseudo. */
827 struct reg_pref
828 {
829 /* (enum reg_class) prefclass is the preferred class. */
830 char prefclass;
831
832 /* altclass is a register class that we should use for allocating
833 pseudo if no register in the preferred class is available.
834 If no register in this class is available, memory is preferred.
835
836 It might appear to be more general to have a bitmask of classes here,
837 but since it is recommended that there be a class corresponding to the
838 union of most major pair of classes, that generality is not required. */
839 char altclass;
840 };
841
842 /* Record the cost of each class for each pseudo. */
843
844 static struct costs *costs;
845
846 /* Initialized once, and used to initialize cost values for each insn. */
847
848 static struct costs init_cost;
849
850 /* Record preferrences of each pseudo.
851 This is available after `regclass' is run. */
852
853 static struct reg_pref *reg_pref;
854
855 /* Allocated buffers for reg_pref. */
856
857 static struct reg_pref *reg_pref_buffer;
858
859 /* Frequency of executions of current insn. */
860
861 static int frequency;
862
863 static rtx scan_one_insn PARAMS ((rtx, int));
864 static void record_operand_costs PARAMS ((rtx, struct costs *, struct reg_pref *));
865 static void dump_regclass PARAMS ((FILE *));
866 static void record_reg_classes PARAMS ((int, int, rtx *, enum machine_mode *,
867 const char **, rtx,
868 struct costs *, struct reg_pref *));
869 static int copy_cost PARAMS ((rtx, enum machine_mode,
870 enum reg_class, int));
871 static void record_address_regs PARAMS ((rtx, enum reg_class, int));
872 #ifdef FORBIDDEN_INC_DEC_CLASSES
873 static int auto_inc_dec_reg_p PARAMS ((rtx, enum machine_mode));
874 #endif
875 static void reg_scan_mark_refs PARAMS ((rtx, rtx, int, unsigned int));
876
877 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
878 This function is sometimes called before the info has been computed.
879 When that happens, just return GENERAL_REGS, which is innocuous. */
880
881 enum reg_class
reg_preferred_class(regno)882 reg_preferred_class (regno)
883 int regno;
884 {
885 if (reg_pref == 0)
886 return GENERAL_REGS;
887 return (enum reg_class) reg_pref[regno].prefclass;
888 }
889
890 enum reg_class
reg_alternate_class(regno)891 reg_alternate_class (regno)
892 int regno;
893 {
894 if (reg_pref == 0)
895 return ALL_REGS;
896
897 return (enum reg_class) reg_pref[regno].altclass;
898 }
899
900 /* Initialize some global data for this pass. */
901
902 void
regclass_init()903 regclass_init ()
904 {
905 int i;
906
907 init_cost.mem_cost = 10000;
908 for (i = 0; i < N_REG_CLASSES; i++)
909 init_cost.cost[i] = 10000;
910
911 /* This prevents dump_flow_info from losing if called
912 before regclass is run. */
913 reg_pref = NULL;
914
915 /* No more global register variables may be declared. */
916 no_global_reg_vars = 1;
917 }
918
919 /* Dump register costs. */
920 static void
dump_regclass(dump)921 dump_regclass (dump)
922 FILE *dump;
923 {
924 static const char *const reg_class_names[] = REG_CLASS_NAMES;
925 int i;
926 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
927 {
928 int /* enum reg_class */ class;
929 if (REG_N_REFS (i))
930 {
931 fprintf (dump, " Register %i costs:", i);
932 for (class = 0; class < (int) N_REG_CLASSES; class++)
933 if (contains_reg_of_mode [(enum reg_class) class][PSEUDO_REGNO_MODE (i)]
934 #ifdef FORBIDDEN_INC_DEC_CLASSES
935 && (!in_inc_dec[i]
936 || !forbidden_inc_dec_class[(enum reg_class) class])
937 #endif
938 #ifdef CANNOT_CHANGE_MODE_CLASS
939 && ! invalid_mode_change_p (i, (enum reg_class) class,
940 PSEUDO_REGNO_MODE (i))
941 #endif
942 )
943 fprintf (dump, " %s:%i", reg_class_names[class],
944 costs[i].cost[(enum reg_class) class]);
945 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
946 }
947 }
948 }
949
950
951 /* Calculate the costs of insn operands. */
952
953 static void
record_operand_costs(insn,op_costs,reg_pref)954 record_operand_costs (insn, op_costs, reg_pref)
955 rtx insn;
956 struct costs *op_costs;
957 struct reg_pref *reg_pref;
958 {
959 const char *constraints[MAX_RECOG_OPERANDS];
960 enum machine_mode modes[MAX_RECOG_OPERANDS];
961 int i;
962
963 for (i = 0; i < recog_data.n_operands; i++)
964 {
965 constraints[i] = recog_data.constraints[i];
966 modes[i] = recog_data.operand_mode[i];
967 }
968
969 /* If we get here, we are set up to record the costs of all the
970 operands for this insn. Start by initializing the costs.
971 Then handle any address registers. Finally record the desired
972 classes for any pseudos, doing it twice if some pair of
973 operands are commutative. */
974
975 for (i = 0; i < recog_data.n_operands; i++)
976 {
977 op_costs[i] = init_cost;
978
979 if (GET_CODE (recog_data.operand[i]) == SUBREG)
980 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
981
982 if (GET_CODE (recog_data.operand[i]) == MEM)
983 record_address_regs (XEXP (recog_data.operand[i], 0),
984 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
985 else if (constraints[i][0] == 'p'
986 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0]))
987 record_address_regs (recog_data.operand[i],
988 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
989 }
990
991 /* Check for commutative in a separate loop so everything will
992 have been initialized. We must do this even if one operand
993 is a constant--see addsi3 in m68k.md. */
994
995 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
996 if (constraints[i][0] == '%')
997 {
998 const char *xconstraints[MAX_RECOG_OPERANDS];
999 int j;
1000
1001 /* Handle commutative operands by swapping the constraints.
1002 We assume the modes are the same. */
1003
1004 for (j = 0; j < recog_data.n_operands; j++)
1005 xconstraints[j] = constraints[j];
1006
1007 xconstraints[i] = constraints[i+1];
1008 xconstraints[i+1] = constraints[i];
1009 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1010 recog_data.operand, modes,
1011 xconstraints, insn, op_costs, reg_pref);
1012 }
1013
1014 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1015 recog_data.operand, modes,
1016 constraints, insn, op_costs, reg_pref);
1017 }
1018
1019 /* Subroutine of regclass, processes one insn INSN. Scan it and record each
1020 time it would save code to put a certain register in a certain class.
1021 PASS, when nonzero, inhibits some optimizations which need only be done
1022 once.
1023 Return the last insn processed, so that the scan can be continued from
1024 there. */
1025
1026 static rtx
scan_one_insn(insn,pass)1027 scan_one_insn (insn, pass)
1028 rtx insn;
1029 int pass;
1030 {
1031 enum rtx_code code = GET_CODE (insn);
1032 enum rtx_code pat_code;
1033 rtx set, note;
1034 int i, j;
1035 struct costs op_costs[MAX_RECOG_OPERANDS];
1036
1037 if (GET_RTX_CLASS (code) != 'i')
1038 return insn;
1039
1040 pat_code = GET_CODE (PATTERN (insn));
1041 if (pat_code == USE
1042 || pat_code == CLOBBER
1043 || pat_code == ASM_INPUT
1044 || pat_code == ADDR_VEC
1045 || pat_code == ADDR_DIFF_VEC)
1046 return insn;
1047
1048 set = single_set (insn);
1049 extract_insn (insn);
1050
1051 /* If this insn loads a parameter from its stack slot, then
1052 it represents a savings, rather than a cost, if the
1053 parameter is stored in memory. Record this fact. */
1054
1055 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
1056 && GET_CODE (SET_SRC (set)) == MEM
1057 && (note = find_reg_note (insn, REG_EQUIV,
1058 NULL_RTX)) != 0
1059 && GET_CODE (XEXP (note, 0)) == MEM)
1060 {
1061 costs[REGNO (SET_DEST (set))].mem_cost
1062 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
1063 GENERAL_REGS, 1)
1064 * frequency);
1065 record_address_regs (XEXP (SET_SRC (set), 0),
1066 MODE_BASE_REG_CLASS (VOIDmode), frequency * 2);
1067 return insn;
1068 }
1069
1070 /* Improve handling of two-address insns such as
1071 (set X (ashift CONST Y)) where CONST must be made to
1072 match X. Change it into two insns: (set X CONST)
1073 (set X (ashift X Y)). If we left this for reloading, it
1074 would probably get three insns because X and Y might go
1075 in the same place. This prevents X and Y from receiving
1076 the same hard reg.
1077
1078 We can only do this if the modes of operands 0 and 1
1079 (which might not be the same) are tieable and we only need
1080 do this during our first pass. */
1081
1082 if (pass == 0 && optimize
1083 && recog_data.n_operands >= 3
1084 && recog_data.constraints[1][0] == '0'
1085 && recog_data.constraints[1][1] == 0
1086 && CONSTANT_P (recog_data.operand[1])
1087 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
1088 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
1089 && GET_CODE (recog_data.operand[0]) == REG
1090 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
1091 recog_data.operand_mode[1]))
1092 {
1093 rtx previnsn = prev_real_insn (insn);
1094 rtx dest
1095 = gen_lowpart (recog_data.operand_mode[1],
1096 recog_data.operand[0]);
1097 rtx newinsn
1098 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
1099
1100 /* If this insn was the start of a basic block,
1101 include the new insn in that block.
1102 We need not check for code_label here;
1103 while a basic block can start with a code_label,
1104 INSN could not be at the beginning of that block. */
1105 if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
1106 {
1107 basic_block b;
1108 FOR_EACH_BB (b)
1109 if (insn == b->head)
1110 b->head = newinsn;
1111 }
1112
1113 /* This makes one more setting of new insns's dest. */
1114 REG_N_SETS (REGNO (recog_data.operand[0]))++;
1115 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1116 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1117
1118 *recog_data.operand_loc[1] = recog_data.operand[0];
1119 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1120 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1121 for (i = recog_data.n_dups - 1; i >= 0; i--)
1122 if (recog_data.dup_num[i] == 1)
1123 {
1124 *recog_data.dup_loc[i] = recog_data.operand[0];
1125 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1126 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1127 }
1128
1129 return PREV_INSN (newinsn);
1130 }
1131
1132 record_operand_costs (insn, op_costs, reg_pref);
1133
1134 /* Now add the cost for each operand to the total costs for
1135 its register. */
1136
1137 for (i = 0; i < recog_data.n_operands; i++)
1138 if (GET_CODE (recog_data.operand[i]) == REG
1139 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1140 {
1141 int regno = REGNO (recog_data.operand[i]);
1142 struct costs *p = &costs[regno], *q = &op_costs[i];
1143
1144 p->mem_cost += q->mem_cost * frequency;
1145 for (j = 0; j < N_REG_CLASSES; j++)
1146 p->cost[j] += q->cost[j] * frequency;
1147 }
1148
1149 return insn;
1150 }
1151
1152 /* Initialize information about which register classes can be used for
1153 pseudos that are auto-incremented or auto-decremented. */
1154
1155 static void
init_reg_autoinc()1156 init_reg_autoinc ()
1157 {
1158 #ifdef FORBIDDEN_INC_DEC_CLASSES
1159 int i;
1160
1161 for (i = 0; i < N_REG_CLASSES; i++)
1162 {
1163 rtx r = gen_rtx_raw_REG (VOIDmode, 0);
1164 enum machine_mode m;
1165 int j;
1166
1167 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1168 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1169 {
1170 REGNO (r) = j;
1171
1172 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
1173 m = (enum machine_mode) ((int) m + 1))
1174 if (HARD_REGNO_MODE_OK (j, m))
1175 {
1176 PUT_MODE (r, m);
1177
1178 /* If a register is not directly suitable for an
1179 auto-increment or decrement addressing mode and
1180 requires secondary reloads, disallow its class from
1181 being used in such addresses. */
1182
1183 if ((0
1184 #ifdef SECONDARY_RELOAD_CLASS
1185 || (SECONDARY_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1186 != NO_REGS)
1187 #else
1188 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1189 || (SECONDARY_INPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1190 != NO_REGS)
1191 #endif
1192 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1193 || (SECONDARY_OUTPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1194 != NO_REGS)
1195 #endif
1196 #endif
1197 )
1198 && ! auto_inc_dec_reg_p (r, m))
1199 forbidden_inc_dec_class[i] = 1;
1200 }
1201 }
1202 }
1203 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1204 }
1205
1206 /* This is a pass of the compiler that scans all instructions
1207 and calculates the preferred class for each pseudo-register.
1208 This information can be accessed later by calling `reg_preferred_class'.
1209 This pass comes just before local register allocation. */
1210
1211 void
regclass(f,nregs,dump)1212 regclass (f, nregs, dump)
1213 rtx f;
1214 int nregs;
1215 FILE *dump;
1216 {
1217 rtx insn;
1218 int i;
1219 int pass;
1220
1221 init_recog ();
1222
1223 costs = (struct costs *) xmalloc (nregs * sizeof (struct costs));
1224
1225 #ifdef FORBIDDEN_INC_DEC_CLASSES
1226
1227 in_inc_dec = (char *) xmalloc (nregs);
1228
1229 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1230
1231 /* Normally we scan the insns once and determine the best class to use for
1232 each register. However, if -fexpensive_optimizations are on, we do so
1233 twice, the second time using the tentative best classes to guide the
1234 selection. */
1235
1236 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1237 {
1238 basic_block bb;
1239
1240 if (dump)
1241 fprintf (dump, "\n\nPass %i\n\n",pass);
1242 /* Zero out our accumulation of the cost of each class for each reg. */
1243
1244 memset ((char *) costs, 0, nregs * sizeof (struct costs));
1245
1246 #ifdef FORBIDDEN_INC_DEC_CLASSES
1247 memset (in_inc_dec, 0, nregs);
1248 #endif
1249
1250 /* Scan the instructions and record each time it would
1251 save code to put a certain register in a certain class. */
1252
1253 if (!optimize)
1254 {
1255 frequency = REG_FREQ_MAX;
1256 for (insn = f; insn; insn = NEXT_INSN (insn))
1257 insn = scan_one_insn (insn, pass);
1258 }
1259 else
1260 FOR_EACH_BB (bb)
1261 {
1262 /* Show that an insn inside a loop is likely to be executed three
1263 times more than insns outside a loop. This is much more
1264 aggressive than the assumptions made elsewhere and is being
1265 tried as an experiment. */
1266 frequency = REG_FREQ_FROM_BB (bb);
1267 for (insn = bb->head; ; insn = NEXT_INSN (insn))
1268 {
1269 insn = scan_one_insn (insn, pass);
1270 if (insn == bb->end)
1271 break;
1272 }
1273 }
1274
1275 /* Now for each register look at how desirable each class is
1276 and find which class is preferred. Store that in
1277 `prefclass'. Record in `altclass' the largest register
1278 class any of whose registers is better than memory. */
1279
1280 if (pass == 0)
1281 reg_pref = reg_pref_buffer;
1282
1283 if (dump)
1284 {
1285 dump_regclass (dump);
1286 fprintf (dump,"\n");
1287 }
1288 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1289 {
1290 int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1291 enum reg_class best = ALL_REGS, alt = NO_REGS;
1292 /* This is an enum reg_class, but we call it an int
1293 to save lots of casts. */
1294 int class;
1295 struct costs *p = &costs[i];
1296
1297 /* In non-optimizing compilation REG_N_REFS is not initialized
1298 yet. */
1299 if (optimize && !REG_N_REFS (i) && !REG_N_SETS (i))
1300 continue;
1301
1302 for (class = (int) ALL_REGS - 1; class > 0; class--)
1303 {
1304 /* Ignore classes that are too small for this operand or
1305 invalid for an operand that was auto-incremented. */
1306 if (!contains_reg_of_mode [class][PSEUDO_REGNO_MODE (i)]
1307 #ifdef FORBIDDEN_INC_DEC_CLASSES
1308 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1309 #endif
1310 #ifdef CANNOT_CHANGE_MODE_CLASS
1311 || invalid_mode_change_p (i, (enum reg_class) class,
1312 PSEUDO_REGNO_MODE (i))
1313 #endif
1314 )
1315 ;
1316 else if (p->cost[class] < best_cost)
1317 {
1318 best_cost = p->cost[class];
1319 best = (enum reg_class) class;
1320 }
1321 else if (p->cost[class] == best_cost)
1322 best = reg_class_subunion[(int) best][class];
1323 }
1324
1325 /* Record the alternate register class; i.e., a class for which
1326 every register in it is better than using memory. If adding a
1327 class would make a smaller class (i.e., no union of just those
1328 classes exists), skip that class. The major unions of classes
1329 should be provided as a register class. Don't do this if we
1330 will be doing it again later. */
1331
1332 if ((pass == 1 || dump) || ! flag_expensive_optimizations)
1333 for (class = 0; class < N_REG_CLASSES; class++)
1334 if (p->cost[class] < p->mem_cost
1335 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1336 > reg_class_size[(int) alt])
1337 #ifdef FORBIDDEN_INC_DEC_CLASSES
1338 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1339 #endif
1340 #ifdef CANNOT_CHANGE_MODE_CLASS
1341 && ! invalid_mode_change_p (i, (enum reg_class) class,
1342 PSEUDO_REGNO_MODE (i))
1343 #endif
1344 )
1345 alt = reg_class_subunion[(int) alt][class];
1346
1347 /* If we don't add any classes, nothing to try. */
1348 if (alt == best)
1349 alt = NO_REGS;
1350
1351 if (dump
1352 && (reg_pref[i].prefclass != (int) best
1353 || reg_pref[i].altclass != (int) alt))
1354 {
1355 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1356 fprintf (dump, " Register %i", i);
1357 if (alt == ALL_REGS || best == ALL_REGS)
1358 fprintf (dump, " pref %s\n", reg_class_names[(int) best]);
1359 else if (alt == NO_REGS)
1360 fprintf (dump, " pref %s or none\n", reg_class_names[(int) best]);
1361 else
1362 fprintf (dump, " pref %s, else %s\n",
1363 reg_class_names[(int) best],
1364 reg_class_names[(int) alt]);
1365 }
1366
1367 /* We cast to (int) because (char) hits bugs in some compilers. */
1368 reg_pref[i].prefclass = (int) best;
1369 reg_pref[i].altclass = (int) alt;
1370 }
1371 }
1372
1373 #ifdef FORBIDDEN_INC_DEC_CLASSES
1374 free (in_inc_dec);
1375 #endif
1376 free (costs);
1377 }
1378
1379 /* Record the cost of using memory or registers of various classes for
1380 the operands in INSN.
1381
1382 N_ALTS is the number of alternatives.
1383
1384 N_OPS is the number of operands.
1385
1386 OPS is an array of the operands.
1387
1388 MODES are the modes of the operands, in case any are VOIDmode.
1389
1390 CONSTRAINTS are the constraints to use for the operands. This array
1391 is modified by this procedure.
1392
1393 This procedure works alternative by alternative. For each alternative
1394 we assume that we will be able to allocate all pseudos to their ideal
1395 register class and calculate the cost of using that alternative. Then
1396 we compute for each operand that is a pseudo-register, the cost of
1397 having the pseudo allocated to each register class and using it in that
1398 alternative. To this cost is added the cost of the alternative.
1399
1400 The cost of each class for this insn is its lowest cost among all the
1401 alternatives. */
1402
1403 static void
record_reg_classes(n_alts,n_ops,ops,modes,constraints,insn,op_costs,reg_pref)1404 record_reg_classes (n_alts, n_ops, ops, modes,
1405 constraints, insn, op_costs, reg_pref)
1406 int n_alts;
1407 int n_ops;
1408 rtx *ops;
1409 enum machine_mode *modes;
1410 const char **constraints;
1411 rtx insn;
1412 struct costs *op_costs;
1413 struct reg_pref *reg_pref;
1414 {
1415 int alt;
1416 int i, j;
1417 rtx set;
1418
1419 /* Process each alternative, each time minimizing an operand's cost with
1420 the cost for each operand in that alternative. */
1421
1422 for (alt = 0; alt < n_alts; alt++)
1423 {
1424 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1425 int alt_fail = 0;
1426 int alt_cost = 0;
1427 enum reg_class classes[MAX_RECOG_OPERANDS];
1428 int allows_mem[MAX_RECOG_OPERANDS];
1429 int class;
1430
1431 for (i = 0; i < n_ops; i++)
1432 {
1433 const char *p = constraints[i];
1434 rtx op = ops[i];
1435 enum machine_mode mode = modes[i];
1436 int allows_addr = 0;
1437 int win = 0;
1438 unsigned char c;
1439
1440 /* Initially show we know nothing about the register class. */
1441 classes[i] = NO_REGS;
1442 allows_mem[i] = 0;
1443
1444 /* If this operand has no constraints at all, we can conclude
1445 nothing about it since anything is valid. */
1446
1447 if (*p == 0)
1448 {
1449 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1450 memset ((char *) &this_op_costs[i], 0, sizeof this_op_costs[i]);
1451
1452 continue;
1453 }
1454
1455 /* If this alternative is only relevant when this operand
1456 matches a previous operand, we do different things depending
1457 on whether this operand is a pseudo-reg or not. We must process
1458 any modifiers for the operand before we can make this test. */
1459
1460 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
1461 p++;
1462
1463 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1464 {
1465 /* Copy class and whether memory is allowed from the matching
1466 alternative. Then perform any needed cost computations
1467 and/or adjustments. */
1468 j = p[0] - '0';
1469 classes[i] = classes[j];
1470 allows_mem[i] = allows_mem[j];
1471
1472 if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
1473 {
1474 /* If this matches the other operand, we have no added
1475 cost and we win. */
1476 if (rtx_equal_p (ops[j], op))
1477 win = 1;
1478
1479 /* If we can put the other operand into a register, add to
1480 the cost of this alternative the cost to copy this
1481 operand to the register used for the other operand. */
1482
1483 else if (classes[j] != NO_REGS)
1484 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
1485 }
1486 else if (GET_CODE (ops[j]) != REG
1487 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1488 {
1489 /* This op is a pseudo but the one it matches is not. */
1490
1491 /* If we can't put the other operand into a register, this
1492 alternative can't be used. */
1493
1494 if (classes[j] == NO_REGS)
1495 alt_fail = 1;
1496
1497 /* Otherwise, add to the cost of this alternative the cost
1498 to copy the other operand to the register used for this
1499 operand. */
1500
1501 else
1502 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1503 }
1504 else
1505 {
1506 /* The costs of this operand are not the same as the other
1507 operand since move costs are not symmetric. Moreover,
1508 if we cannot tie them, this alternative needs to do a
1509 copy, which is one instruction. */
1510
1511 struct costs *pp = &this_op_costs[i];
1512
1513 for (class = 0; class < N_REG_CLASSES; class++)
1514 pp->cost[class]
1515 = ((recog_data.operand_type[i] != OP_OUT
1516 ? may_move_in_cost[mode][class][(int) classes[i]]
1517 : 0)
1518 + (recog_data.operand_type[i] != OP_IN
1519 ? may_move_out_cost[mode][(int) classes[i]][class]
1520 : 0));
1521
1522 /* If the alternative actually allows memory, make things
1523 a bit cheaper since we won't need an extra insn to
1524 load it. */
1525
1526 pp->mem_cost
1527 = ((recog_data.operand_type[i] != OP_IN
1528 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1529 : 0)
1530 + (recog_data.operand_type[i] != OP_OUT
1531 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1532 : 0) - allows_mem[i]);
1533
1534 /* If we have assigned a class to this register in our
1535 first pass, add a cost to this alternative corresponding
1536 to what we would add if this register were not in the
1537 appropriate class. */
1538
1539 if (reg_pref)
1540 alt_cost
1541 += (may_move_in_cost[mode]
1542 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1543 [(int) classes[i]]);
1544
1545 if (REGNO (ops[i]) != REGNO (ops[j])
1546 && ! find_reg_note (insn, REG_DEAD, op))
1547 alt_cost += 2;
1548
1549 /* This is in place of ordinary cost computation
1550 for this operand, so skip to the end of the
1551 alternative (should be just one character). */
1552 while (*p && *p++ != ',')
1553 ;
1554
1555 constraints[i] = p;
1556 continue;
1557 }
1558 }
1559
1560 /* Scan all the constraint letters. See if the operand matches
1561 any of the constraints. Collect the valid register classes
1562 and see if this operand accepts memory. */
1563
1564 while (*p && (c = *p++) != ',')
1565 switch (c)
1566 {
1567 case '*':
1568 /* Ignore the next letter for this pass. */
1569 p++;
1570 break;
1571
1572 case '?':
1573 alt_cost += 2;
1574 case '!': case '#': case '&':
1575 case '0': case '1': case '2': case '3': case '4':
1576 case '5': case '6': case '7': case '8': case '9':
1577 break;
1578
1579 case 'p':
1580 allows_addr = 1;
1581 win = address_operand (op, GET_MODE (op));
1582 /* We know this operand is an address, so we want it to be
1583 allocated to a register that can be the base of an
1584 address, ie BASE_REG_CLASS. */
1585 classes[i]
1586 = reg_class_subunion[(int) classes[i]]
1587 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1588 break;
1589
1590 case 'm': case 'o': case 'V':
1591 /* It doesn't seem worth distinguishing between offsettable
1592 and non-offsettable addresses here. */
1593 allows_mem[i] = 1;
1594 if (GET_CODE (op) == MEM)
1595 win = 1;
1596 break;
1597
1598 case '<':
1599 if (GET_CODE (op) == MEM
1600 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1601 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1602 win = 1;
1603 break;
1604
1605 case '>':
1606 if (GET_CODE (op) == MEM
1607 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1608 || GET_CODE (XEXP (op, 0)) == POST_INC))
1609 win = 1;
1610 break;
1611
1612 case 'E':
1613 case 'F':
1614 if (GET_CODE (op) == CONST_DOUBLE
1615 || (GET_CODE (op) == CONST_VECTOR
1616 && (GET_MODE_CLASS (GET_MODE (op))
1617 == MODE_VECTOR_FLOAT)))
1618 win = 1;
1619 break;
1620
1621 case 'G':
1622 case 'H':
1623 if (GET_CODE (op) == CONST_DOUBLE
1624 && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
1625 win = 1;
1626 break;
1627
1628 case 's':
1629 if (GET_CODE (op) == CONST_INT
1630 || (GET_CODE (op) == CONST_DOUBLE
1631 && GET_MODE (op) == VOIDmode))
1632 break;
1633 case 'i':
1634 if (CONSTANT_P (op)
1635 #ifdef LEGITIMATE_PIC_OPERAND_P
1636 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1637 #endif
1638 )
1639 win = 1;
1640 break;
1641
1642 case 'n':
1643 if (GET_CODE (op) == CONST_INT
1644 || (GET_CODE (op) == CONST_DOUBLE
1645 && GET_MODE (op) == VOIDmode))
1646 win = 1;
1647 break;
1648
1649 case 'I':
1650 case 'J':
1651 case 'K':
1652 case 'L':
1653 case 'M':
1654 case 'N':
1655 case 'O':
1656 case 'P':
1657 if (GET_CODE (op) == CONST_INT
1658 && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
1659 win = 1;
1660 break;
1661
1662 case 'X':
1663 win = 1;
1664 break;
1665
1666 case 'g':
1667 if (GET_CODE (op) == MEM
1668 || (CONSTANT_P (op)
1669 #ifdef LEGITIMATE_PIC_OPERAND_P
1670 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1671 #endif
1672 ))
1673 win = 1;
1674 allows_mem[i] = 1;
1675 case 'r':
1676 classes[i]
1677 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1678 break;
1679
1680 default:
1681 if (REG_CLASS_FROM_LETTER (c) != NO_REGS)
1682 classes[i]
1683 = reg_class_subunion[(int) classes[i]]
1684 [(int) REG_CLASS_FROM_LETTER (c)];
1685 #ifdef EXTRA_CONSTRAINT
1686 else if (EXTRA_CONSTRAINT (op, c))
1687 win = 1;
1688
1689 if (EXTRA_MEMORY_CONSTRAINT (c))
1690 {
1691 /* Every MEM can be reloaded to fit. */
1692 allows_mem[i] = 1;
1693 if (GET_CODE (op) == MEM)
1694 win = 1;
1695 }
1696 if (EXTRA_ADDRESS_CONSTRAINT (c))
1697 {
1698 /* Every address can be reloaded to fit. */
1699 allows_addr = 1;
1700 if (address_operand (op, GET_MODE (op)))
1701 win = 1;
1702 /* We know this operand is an address, so we want it to be
1703 allocated to a register that can be the base of an
1704 address, ie BASE_REG_CLASS. */
1705 classes[i]
1706 = reg_class_subunion[(int) classes[i]]
1707 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1708 }
1709 #endif
1710 break;
1711 }
1712
1713 constraints[i] = p;
1714
1715 /* How we account for this operand now depends on whether it is a
1716 pseudo register or not. If it is, we first check if any
1717 register classes are valid. If not, we ignore this alternative,
1718 since we want to assume that all pseudos get allocated for
1719 register preferencing. If some register class is valid, compute
1720 the costs of moving the pseudo into that class. */
1721
1722 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1723 {
1724 if (classes[i] == NO_REGS)
1725 {
1726 /* We must always fail if the operand is a REG, but
1727 we did not find a suitable class.
1728
1729 Otherwise we may perform an uninitialized read
1730 from this_op_costs after the `continue' statement
1731 below. */
1732 alt_fail = 1;
1733 }
1734 else
1735 {
1736 struct costs *pp = &this_op_costs[i];
1737
1738 for (class = 0; class < N_REG_CLASSES; class++)
1739 pp->cost[class]
1740 = ((recog_data.operand_type[i] != OP_OUT
1741 ? may_move_in_cost[mode][class][(int) classes[i]]
1742 : 0)
1743 + (recog_data.operand_type[i] != OP_IN
1744 ? may_move_out_cost[mode][(int) classes[i]][class]
1745 : 0));
1746
1747 /* If the alternative actually allows memory, make things
1748 a bit cheaper since we won't need an extra insn to
1749 load it. */
1750
1751 pp->mem_cost
1752 = ((recog_data.operand_type[i] != OP_IN
1753 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1754 : 0)
1755 + (recog_data.operand_type[i] != OP_OUT
1756 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1757 : 0) - allows_mem[i]);
1758
1759 /* If we have assigned a class to this register in our
1760 first pass, add a cost to this alternative corresponding
1761 to what we would add if this register were not in the
1762 appropriate class. */
1763
1764 if (reg_pref)
1765 alt_cost
1766 += (may_move_in_cost[mode]
1767 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1768 [(int) classes[i]]);
1769 }
1770 }
1771
1772 /* Otherwise, if this alternative wins, either because we
1773 have already determined that or if we have a hard register of
1774 the proper class, there is no cost for this alternative. */
1775
1776 else if (win
1777 || (GET_CODE (op) == REG
1778 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1779 ;
1780
1781 /* If registers are valid, the cost of this alternative includes
1782 copying the object to and/or from a register. */
1783
1784 else if (classes[i] != NO_REGS)
1785 {
1786 if (recog_data.operand_type[i] != OP_OUT)
1787 alt_cost += copy_cost (op, mode, classes[i], 1);
1788
1789 if (recog_data.operand_type[i] != OP_IN)
1790 alt_cost += copy_cost (op, mode, classes[i], 0);
1791 }
1792
1793 /* The only other way this alternative can be used is if this is a
1794 constant that could be placed into memory. */
1795
1796 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1797 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1798 else
1799 alt_fail = 1;
1800 }
1801
1802 if (alt_fail)
1803 continue;
1804
1805 /* Finally, update the costs with the information we've calculated
1806 about this alternative. */
1807
1808 for (i = 0; i < n_ops; i++)
1809 if (GET_CODE (ops[i]) == REG
1810 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1811 {
1812 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1813 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1814
1815 pp->mem_cost = MIN (pp->mem_cost,
1816 (qq->mem_cost + alt_cost) * scale);
1817
1818 for (class = 0; class < N_REG_CLASSES; class++)
1819 pp->cost[class] = MIN (pp->cost[class],
1820 (qq->cost[class] + alt_cost) * scale);
1821 }
1822 }
1823
1824 /* If this insn is a single set copying operand 1 to operand 0
1825 and one operand is a pseudo with the other a hard reg or a pseudo
1826 that prefers a register that is in its own register class then
1827 we may want to adjust the cost of that register class to -1.
1828
1829 Avoid the adjustment if the source does not die to avoid stressing of
1830 register allocator by preferrencing two coliding registers into single
1831 class.
1832
1833 Also avoid the adjustment if a copy between registers of the class
1834 is expensive (ten times the cost of a default copy is considered
1835 arbitrarily expensive). This avoids losing when the preferred class
1836 is very expensive as the source of a copy instruction. */
1837
1838 if ((set = single_set (insn)) != 0
1839 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1840 && GET_CODE (ops[0]) == REG && GET_CODE (ops[1]) == REG
1841 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
1842 for (i = 0; i <= 1; i++)
1843 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1844 {
1845 unsigned int regno = REGNO (ops[!i]);
1846 enum machine_mode mode = GET_MODE (ops[!i]);
1847 int class;
1848 unsigned int nr;
1849
1850 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0)
1851 {
1852 enum reg_class pref = reg_pref[regno].prefclass;
1853
1854 if ((reg_class_size[(unsigned char) pref]
1855 == (unsigned) CLASS_MAX_NREGS (pref, mode))
1856 && REGISTER_MOVE_COST (mode, pref, pref) < 10 * 2)
1857 op_costs[i].cost[(unsigned char) pref] = -1;
1858 }
1859 else if (regno < FIRST_PSEUDO_REGISTER)
1860 for (class = 0; class < N_REG_CLASSES; class++)
1861 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1862 && reg_class_size[class] == (unsigned) CLASS_MAX_NREGS (class, mode))
1863 {
1864 if (reg_class_size[class] == 1)
1865 op_costs[i].cost[class] = -1;
1866 else
1867 {
1868 for (nr = 0; nr < (unsigned) HARD_REGNO_NREGS (regno, mode); nr++)
1869 {
1870 if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1871 regno + nr))
1872 break;
1873 }
1874
1875 if (nr == (unsigned) HARD_REGNO_NREGS (regno,mode))
1876 op_costs[i].cost[class] = -1;
1877 }
1878 }
1879 }
1880 }
1881
1882 /* Compute the cost of loading X into (if TO_P is nonzero) or from (if
1883 TO_P is zero) a register of class CLASS in mode MODE.
1884
1885 X must not be a pseudo. */
1886
1887 static int
copy_cost(x,mode,class,to_p)1888 copy_cost (x, mode, class, to_p)
1889 rtx x;
1890 enum machine_mode mode ATTRIBUTE_UNUSED;
1891 enum reg_class class;
1892 int to_p ATTRIBUTE_UNUSED;
1893 {
1894 #ifdef HAVE_SECONDARY_RELOADS
1895 enum reg_class secondary_class = NO_REGS;
1896 #endif
1897
1898 /* If X is a SCRATCH, there is actually nothing to move since we are
1899 assuming optimal allocation. */
1900
1901 if (GET_CODE (x) == SCRATCH)
1902 return 0;
1903
1904 /* Get the class we will actually use for a reload. */
1905 class = PREFERRED_RELOAD_CLASS (x, class);
1906
1907 #ifdef HAVE_SECONDARY_RELOADS
1908 /* If we need a secondary reload (we assume here that we are using
1909 the secondary reload as an intermediate, not a scratch register), the
1910 cost is that to load the input into the intermediate register, then
1911 to copy them. We use a special value of TO_P to avoid recursion. */
1912
1913 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1914 if (to_p == 1)
1915 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1916 #endif
1917
1918 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1919 if (! to_p)
1920 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1921 #endif
1922
1923 if (secondary_class != NO_REGS)
1924 return (move_cost[mode][(int) secondary_class][(int) class]
1925 + copy_cost (x, mode, secondary_class, 2));
1926 #endif /* HAVE_SECONDARY_RELOADS */
1927
1928 /* For memory, use the memory move cost, for (hard) registers, use the
1929 cost to move between the register classes, and use 2 for everything
1930 else (constants). */
1931
1932 if (GET_CODE (x) == MEM || class == NO_REGS)
1933 return MEMORY_MOVE_COST (mode, class, to_p);
1934
1935 else if (GET_CODE (x) == REG)
1936 return move_cost[mode][(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1937
1938 else
1939 /* If this is a constant, we may eventually want to call rtx_cost here. */
1940 return COSTS_N_INSNS (1);
1941 }
1942
1943 /* Record the pseudo registers we must reload into hard registers
1944 in a subexpression of a memory address, X.
1945
1946 CLASS is the class that the register needs to be in and is either
1947 BASE_REG_CLASS or INDEX_REG_CLASS.
1948
1949 SCALE is twice the amount to multiply the cost by (it is twice so we
1950 can represent half-cost adjustments). */
1951
1952 static void
record_address_regs(x,class,scale)1953 record_address_regs (x, class, scale)
1954 rtx x;
1955 enum reg_class class;
1956 int scale;
1957 {
1958 enum rtx_code code = GET_CODE (x);
1959
1960 switch (code)
1961 {
1962 case CONST_INT:
1963 case CONST:
1964 case CC0:
1965 case PC:
1966 case SYMBOL_REF:
1967 case LABEL_REF:
1968 return;
1969
1970 case PLUS:
1971 /* When we have an address that is a sum,
1972 we must determine whether registers are "base" or "index" regs.
1973 If there is a sum of two registers, we must choose one to be
1974 the "base". Luckily, we can use the REG_POINTER to make a good
1975 choice most of the time. We only need to do this on machines
1976 that can have two registers in an address and where the base
1977 and index register classes are different.
1978
1979 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1980 that seems bogus since it should only be set when we are sure
1981 the register is being used as a pointer. */
1982
1983 {
1984 rtx arg0 = XEXP (x, 0);
1985 rtx arg1 = XEXP (x, 1);
1986 enum rtx_code code0 = GET_CODE (arg0);
1987 enum rtx_code code1 = GET_CODE (arg1);
1988
1989 /* Look inside subregs. */
1990 if (code0 == SUBREG)
1991 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1992 if (code1 == SUBREG)
1993 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1994
1995 /* If this machine only allows one register per address, it must
1996 be in the first operand. */
1997
1998 if (MAX_REGS_PER_ADDRESS == 1)
1999 record_address_regs (arg0, class, scale);
2000
2001 /* If index and base registers are the same on this machine, just
2002 record registers in any non-constant operands. We assume here,
2003 as well as in the tests below, that all addresses are in
2004 canonical form. */
2005
2006 else if (INDEX_REG_CLASS == MODE_BASE_REG_CLASS (VOIDmode))
2007 {
2008 record_address_regs (arg0, class, scale);
2009 if (! CONSTANT_P (arg1))
2010 record_address_regs (arg1, class, scale);
2011 }
2012
2013 /* If the second operand is a constant integer, it doesn't change
2014 what class the first operand must be. */
2015
2016 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
2017 record_address_regs (arg0, class, scale);
2018
2019 /* If the second operand is a symbolic constant, the first operand
2020 must be an index register. */
2021
2022 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
2023 record_address_regs (arg0, INDEX_REG_CLASS, scale);
2024
2025 /* If both operands are registers but one is already a hard register
2026 of index or base class, give the other the class that the hard
2027 register is not. */
2028
2029 #ifdef REG_OK_FOR_BASE_P
2030 else if (code0 == REG && code1 == REG
2031 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
2032 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
2033 record_address_regs (arg1,
2034 REG_OK_FOR_BASE_P (arg0)
2035 ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
2036 scale);
2037 else if (code0 == REG && code1 == REG
2038 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
2039 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
2040 record_address_regs (arg0,
2041 REG_OK_FOR_BASE_P (arg1)
2042 ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
2043 scale);
2044 #endif
2045
2046 /* If one operand is known to be a pointer, it must be the base
2047 with the other operand the index. Likewise if the other operand
2048 is a MULT. */
2049
2050 else if ((code0 == REG && REG_POINTER (arg0))
2051 || code1 == MULT)
2052 {
2053 record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode), scale);
2054 record_address_regs (arg1, INDEX_REG_CLASS, scale);
2055 }
2056 else if ((code1 == REG && REG_POINTER (arg1))
2057 || code0 == MULT)
2058 {
2059 record_address_regs (arg0, INDEX_REG_CLASS, scale);
2060 record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode), scale);
2061 }
2062
2063 /* Otherwise, count equal chances that each might be a base
2064 or index register. This case should be rare. */
2065
2066 else
2067 {
2068 record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode),
2069 scale / 2);
2070 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
2071 record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode),
2072 scale / 2);
2073 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
2074 }
2075 }
2076 break;
2077
2078 /* Double the importance of a pseudo register that is incremented
2079 or decremented, since it would take two extra insns
2080 if it ends up in the wrong place. */
2081 case POST_MODIFY:
2082 case PRE_MODIFY:
2083 record_address_regs (XEXP (x, 0), MODE_BASE_REG_CLASS (VOIDmode),
2084 2 * scale);
2085 if (REG_P (XEXP (XEXP (x, 1), 1)))
2086 record_address_regs (XEXP (XEXP (x, 1), 1),
2087 INDEX_REG_CLASS, 2 * scale);
2088 break;
2089
2090 case POST_INC:
2091 case PRE_INC:
2092 case POST_DEC:
2093 case PRE_DEC:
2094 /* Double the importance of a pseudo register that is incremented
2095 or decremented, since it would take two extra insns
2096 if it ends up in the wrong place. If the operand is a pseudo,
2097 show it is being used in an INC_DEC context. */
2098
2099 #ifdef FORBIDDEN_INC_DEC_CLASSES
2100 if (GET_CODE (XEXP (x, 0)) == REG
2101 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
2102 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
2103 #endif
2104
2105 record_address_regs (XEXP (x, 0), class, 2 * scale);
2106 break;
2107
2108 case REG:
2109 {
2110 struct costs *pp = &costs[REGNO (x)];
2111 int i;
2112
2113 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
2114
2115 for (i = 0; i < N_REG_CLASSES; i++)
2116 pp->cost[i] += (may_move_in_cost[Pmode][i][(int) class] * scale) / 2;
2117 }
2118 break;
2119
2120 default:
2121 {
2122 const char *fmt = GET_RTX_FORMAT (code);
2123 int i;
2124 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2125 if (fmt[i] == 'e')
2126 record_address_regs (XEXP (x, i), class, scale);
2127 }
2128 }
2129 }
2130
2131 #ifdef FORBIDDEN_INC_DEC_CLASSES
2132
2133 /* Return 1 if REG is valid as an auto-increment memory reference
2134 to an object of MODE. */
2135
2136 static int
auto_inc_dec_reg_p(reg,mode)2137 auto_inc_dec_reg_p (reg, mode)
2138 rtx reg;
2139 enum machine_mode mode;
2140 {
2141 if (HAVE_POST_INCREMENT
2142 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
2143 return 1;
2144
2145 if (HAVE_POST_DECREMENT
2146 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
2147 return 1;
2148
2149 if (HAVE_PRE_INCREMENT
2150 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
2151 return 1;
2152
2153 if (HAVE_PRE_DECREMENT
2154 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
2155 return 1;
2156
2157 return 0;
2158 }
2159 #endif
2160
2161 static short *renumber;
2162 static size_t regno_allocated;
2163 static unsigned int reg_n_max;
2164
2165 /* Allocate enough space to hold NUM_REGS registers for the tables used for
2166 reg_scan and flow_analysis that are indexed by the register number. If
2167 NEW_P is nonzero, initialize all of the registers, otherwise only
2168 initialize the new registers allocated. The same table is kept from
2169 function to function, only reallocating it when we need more room. If
2170 RENUMBER_P is nonzero, allocate the reg_renumber array also. */
2171
2172 void
allocate_reg_info(num_regs,new_p,renumber_p)2173 allocate_reg_info (num_regs, new_p, renumber_p)
2174 size_t num_regs;
2175 int new_p;
2176 int renumber_p;
2177 {
2178 size_t size_info;
2179 size_t size_renumber;
2180 size_t min = (new_p) ? 0 : reg_n_max;
2181 struct reg_info_data *reg_data;
2182
2183 if (num_regs > regno_allocated)
2184 {
2185 size_t old_allocated = regno_allocated;
2186
2187 regno_allocated = num_regs + (num_regs / 20); /* add some slop space */
2188 size_renumber = regno_allocated * sizeof (short);
2189
2190 if (!reg_n_info)
2191 {
2192 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
2193 renumber = (short *) xmalloc (size_renumber);
2194 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2195 * sizeof (struct reg_pref));
2196 }
2197
2198 else
2199 {
2200 VARRAY_GROW (reg_n_info, regno_allocated);
2201
2202 if (new_p) /* if we're zapping everything, no need to realloc */
2203 {
2204 free ((char *) renumber);
2205 free ((char *) reg_pref);
2206 renumber = (short *) xmalloc (size_renumber);
2207 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2208 * sizeof (struct reg_pref));
2209 }
2210
2211 else
2212 {
2213 renumber = (short *) xrealloc ((char *) renumber, size_renumber);
2214 reg_pref_buffer = (struct reg_pref *) xrealloc ((char *) reg_pref_buffer,
2215 regno_allocated
2216 * sizeof (struct reg_pref));
2217 }
2218 }
2219
2220 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2221 + sizeof (struct reg_info_data) - sizeof (reg_info);
2222 reg_data = (struct reg_info_data *) xcalloc (size_info, 1);
2223 reg_data->min_index = old_allocated;
2224 reg_data->max_index = regno_allocated - 1;
2225 reg_data->next = reg_info_head;
2226 reg_info_head = reg_data;
2227 }
2228
2229 reg_n_max = num_regs;
2230 if (min < num_regs)
2231 {
2232 /* Loop through each of the segments allocated for the actual
2233 reg_info pages, and set up the pointers, zero the pages, etc. */
2234 for (reg_data = reg_info_head;
2235 reg_data && reg_data->max_index >= min;
2236 reg_data = reg_data->next)
2237 {
2238 size_t min_index = reg_data->min_index;
2239 size_t max_index = reg_data->max_index;
2240 size_t max = MIN (max_index, num_regs);
2241 size_t local_min = min - min_index;
2242 size_t i;
2243
2244 if (reg_data->min_index > num_regs)
2245 continue;
2246
2247 if (min < min_index)
2248 local_min = 0;
2249 if (!reg_data->used_p) /* page just allocated with calloc */
2250 reg_data->used_p = 1; /* no need to zero */
2251 else
2252 memset ((char *) ®_data->data[local_min], 0,
2253 sizeof (reg_info) * (max - min_index - local_min + 1));
2254
2255 for (i = min_index+local_min; i <= max; i++)
2256 {
2257 VARRAY_REG (reg_n_info, i) = ®_data->data[i-min_index];
2258 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2259 renumber[i] = -1;
2260 reg_pref_buffer[i].prefclass = (char) NO_REGS;
2261 reg_pref_buffer[i].altclass = (char) NO_REGS;
2262 }
2263 }
2264 }
2265
2266 /* If {pref,alt}class have already been allocated, update the pointers to
2267 the newly realloced ones. */
2268 if (reg_pref)
2269 reg_pref = reg_pref_buffer;
2270
2271 if (renumber_p)
2272 reg_renumber = renumber;
2273
2274 /* Tell the regset code about the new number of registers. */
2275 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
2276 }
2277
2278 /* Free up the space allocated by allocate_reg_info. */
2279 void
free_reg_info()2280 free_reg_info ()
2281 {
2282 if (reg_n_info)
2283 {
2284 struct reg_info_data *reg_data;
2285 struct reg_info_data *reg_next;
2286
2287 VARRAY_FREE (reg_n_info);
2288 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2289 {
2290 reg_next = reg_data->next;
2291 free ((char *) reg_data);
2292 }
2293
2294 free (reg_pref_buffer);
2295 reg_pref_buffer = (struct reg_pref *) 0;
2296 reg_info_head = (struct reg_info_data *) 0;
2297 renumber = (short *) 0;
2298 }
2299 regno_allocated = 0;
2300 reg_n_max = 0;
2301 }
2302
2303 /* This is the `regscan' pass of the compiler, run just before cse
2304 and again just before loop.
2305
2306 It finds the first and last use of each pseudo-register
2307 and records them in the vectors regno_first_uid, regno_last_uid
2308 and counts the number of sets in the vector reg_n_sets.
2309
2310 REPEAT is nonzero the second time this is called. */
2311
2312 /* Maximum number of parallel sets and clobbers in any insn in this fn.
2313 Always at least 3, since the combiner could put that many together
2314 and we want this to remain correct for all the remaining passes.
2315 This corresponds to the maximum number of times note_stores will call
2316 a function for any insn. */
2317
2318 int max_parallel;
2319
2320 /* Used as a temporary to record the largest number of registers in
2321 PARALLEL in a SET_DEST. This is added to max_parallel. */
2322
2323 static int max_set_parallel;
2324
2325 void
reg_scan(f,nregs,repeat)2326 reg_scan (f, nregs, repeat)
2327 rtx f;
2328 unsigned int nregs;
2329 int repeat ATTRIBUTE_UNUSED;
2330 {
2331 rtx insn;
2332
2333 allocate_reg_info (nregs, TRUE, FALSE);
2334 max_parallel = 3;
2335 max_set_parallel = 0;
2336
2337 for (insn = f; insn; insn = NEXT_INSN (insn))
2338 if (GET_CODE (insn) == INSN
2339 || GET_CODE (insn) == CALL_INSN
2340 || GET_CODE (insn) == JUMP_INSN)
2341 {
2342 if (GET_CODE (PATTERN (insn)) == PARALLEL
2343 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2344 max_parallel = XVECLEN (PATTERN (insn), 0);
2345 reg_scan_mark_refs (PATTERN (insn), insn, 0, 0);
2346
2347 if (REG_NOTES (insn))
2348 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2349 }
2350
2351 max_parallel += max_set_parallel;
2352 }
2353
2354 /* Update 'regscan' information by looking at the insns
2355 from FIRST to LAST. Some new REGs have been created,
2356 and any REG with number greater than OLD_MAX_REGNO is
2357 such a REG. We only update information for those. */
2358
2359 void
reg_scan_update(first,last,old_max_regno)2360 reg_scan_update (first, last, old_max_regno)
2361 rtx first;
2362 rtx last;
2363 unsigned int old_max_regno;
2364 {
2365 rtx insn;
2366
2367 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2368
2369 for (insn = first; insn != last; insn = NEXT_INSN (insn))
2370 if (GET_CODE (insn) == INSN
2371 || GET_CODE (insn) == CALL_INSN
2372 || GET_CODE (insn) == JUMP_INSN)
2373 {
2374 if (GET_CODE (PATTERN (insn)) == PARALLEL
2375 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2376 max_parallel = XVECLEN (PATTERN (insn), 0);
2377 reg_scan_mark_refs (PATTERN (insn), insn, 0, old_max_regno);
2378
2379 if (REG_NOTES (insn))
2380 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
2381 }
2382 }
2383
2384 /* X is the expression to scan. INSN is the insn it appears in.
2385 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2386 We should only record information for REGs with numbers
2387 greater than or equal to MIN_REGNO. */
2388
2389 static void
reg_scan_mark_refs(x,insn,note_flag,min_regno)2390 reg_scan_mark_refs (x, insn, note_flag, min_regno)
2391 rtx x;
2392 rtx insn;
2393 int note_flag;
2394 unsigned int min_regno;
2395 {
2396 enum rtx_code code;
2397 rtx dest;
2398 rtx note;
2399
2400 if (!x)
2401 return;
2402 code = GET_CODE (x);
2403 switch (code)
2404 {
2405 case CONST:
2406 case CONST_INT:
2407 case CONST_DOUBLE:
2408 case CONST_VECTOR:
2409 case CC0:
2410 case PC:
2411 case SYMBOL_REF:
2412 case LABEL_REF:
2413 case ADDR_VEC:
2414 case ADDR_DIFF_VEC:
2415 return;
2416
2417 case REG:
2418 {
2419 unsigned int regno = REGNO (x);
2420
2421 if (regno >= min_regno)
2422 {
2423 /* While the following 3 lines means that the inequality
2424 REGNO_LAST_UID (regno) <= REGNO_LAST_NOTE_UID (regno)
2425 is true at the end of the scanning, it may be subsequently
2426 invalidated (e.g. in load_mems) so it should not be relied
2427 upon. */
2428 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2429 if (!note_flag)
2430 REGNO_LAST_UID (regno) = INSN_UID (insn);
2431
2432 if (REGNO_FIRST_UID (regno) == 0)
2433 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2434 /* If we are called by reg_scan_update() (indicated by min_regno
2435 being set), we also need to update the reference count. */
2436 if (min_regno)
2437 REG_N_REFS (regno)++;
2438 }
2439 }
2440 break;
2441
2442 case EXPR_LIST:
2443 if (XEXP (x, 0))
2444 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
2445 if (XEXP (x, 1))
2446 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2447 break;
2448
2449 case INSN_LIST:
2450 if (XEXP (x, 1))
2451 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2452 break;
2453
2454 case CLOBBER:
2455 {
2456 rtx reg = XEXP (x, 0);
2457 if (REG_P (reg)
2458 && REGNO (reg) >= min_regno)
2459 {
2460 REG_N_SETS (REGNO (reg))++;
2461 REG_N_REFS (REGNO (reg))++;
2462 }
2463 }
2464 break;
2465
2466 case SET:
2467 /* Count a set of the destination if it is a register. */
2468 for (dest = SET_DEST (x);
2469 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2470 || GET_CODE (dest) == ZERO_EXTEND;
2471 dest = XEXP (dest, 0))
2472 ;
2473
2474 /* For a PARALLEL, record the number of things (less the usual one for a
2475 SET) that are set. */
2476 if (GET_CODE (dest) == PARALLEL)
2477 max_set_parallel = MAX (max_set_parallel, XVECLEN (dest, 0) - 1);
2478
2479 if (GET_CODE (dest) == REG
2480 && REGNO (dest) >= min_regno)
2481 {
2482 REG_N_SETS (REGNO (dest))++;
2483 REG_N_REFS (REGNO (dest))++;
2484 }
2485
2486 /* If this is setting a pseudo from another pseudo or the sum of a
2487 pseudo and a constant integer and the other pseudo is known to be
2488 a pointer, set the destination to be a pointer as well.
2489
2490 Likewise if it is setting the destination from an address or from a
2491 value equivalent to an address or to the sum of an address and
2492 something else.
2493
2494 But don't do any of this if the pseudo corresponds to a user
2495 variable since it should have already been set as a pointer based
2496 on the type. */
2497
2498 if (GET_CODE (SET_DEST (x)) == REG
2499 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2500 && REGNO (SET_DEST (x)) >= min_regno
2501 /* If the destination pseudo is set more than once, then other
2502 sets might not be to a pointer value (consider access to a
2503 union in two threads of control in the presense of global
2504 optimizations). So only set REG_POINTER on the destination
2505 pseudo if this is the only set of that pseudo. */
2506 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
2507 && ! REG_USERVAR_P (SET_DEST (x))
2508 && ! REG_POINTER (SET_DEST (x))
2509 && ((GET_CODE (SET_SRC (x)) == REG
2510 && REG_POINTER (SET_SRC (x)))
2511 || ((GET_CODE (SET_SRC (x)) == PLUS
2512 || GET_CODE (SET_SRC (x)) == LO_SUM)
2513 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2514 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
2515 && REG_POINTER (XEXP (SET_SRC (x), 0)))
2516 || GET_CODE (SET_SRC (x)) == CONST
2517 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2518 || GET_CODE (SET_SRC (x)) == LABEL_REF
2519 || (GET_CODE (SET_SRC (x)) == HIGH
2520 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2521 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2522 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2523 || ((GET_CODE (SET_SRC (x)) == PLUS
2524 || GET_CODE (SET_SRC (x)) == LO_SUM)
2525 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2526 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2527 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2528 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2529 && (GET_CODE (XEXP (note, 0)) == CONST
2530 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2531 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2532 REG_POINTER (SET_DEST (x)) = 1;
2533
2534 /* If this is setting a register from a register or from a simple
2535 conversion of a register, propagate REG_DECL. */
2536 if (GET_CODE (dest) == REG)
2537 {
2538 rtx src = SET_SRC (x);
2539
2540 while (GET_CODE (src) == SIGN_EXTEND
2541 || GET_CODE (src) == ZERO_EXTEND
2542 || GET_CODE (src) == TRUNCATE
2543 || (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
2544 src = XEXP (src, 0);
2545
2546 if (GET_CODE (src) == REG && REGNO_DECL (REGNO (src)) == 0)
2547 REGNO_DECL (REGNO (src)) = REGNO_DECL (REGNO (dest));
2548 else if (GET_CODE (src) == REG && REGNO_DECL (REGNO (dest)) == 0)
2549 REGNO_DECL (REGNO (dest)) = REGNO_DECL (REGNO (src));
2550 }
2551
2552 /* ... fall through ... */
2553
2554 default:
2555 {
2556 const char *fmt = GET_RTX_FORMAT (code);
2557 int i;
2558 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2559 {
2560 if (fmt[i] == 'e')
2561 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
2562 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2563 {
2564 int j;
2565 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2566 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
2567 }
2568 }
2569 }
2570 }
2571 }
2572
2573 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2574 is also in C2. */
2575
2576 int
reg_class_subset_p(c1,c2)2577 reg_class_subset_p (c1, c2)
2578 enum reg_class c1;
2579 enum reg_class c2;
2580 {
2581 if (c1 == c2) return 1;
2582
2583 if (c2 == ALL_REGS)
2584 win:
2585 return 1;
2586 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) c1],
2587 reg_class_contents[(int) c2],
2588 win);
2589 return 0;
2590 }
2591
2592 /* Return nonzero if there is a register that is in both C1 and C2. */
2593
2594 int
reg_classes_intersect_p(c1,c2)2595 reg_classes_intersect_p (c1, c2)
2596 enum reg_class c1;
2597 enum reg_class c2;
2598 {
2599 #ifdef HARD_REG_SET
2600 register
2601 #endif
2602 HARD_REG_SET c;
2603
2604 if (c1 == c2) return 1;
2605
2606 if (c1 == ALL_REGS || c2 == ALL_REGS)
2607 return 1;
2608
2609 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2610 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2611
2612 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2613 return 1;
2614
2615 lose:
2616 return 0;
2617 }
2618
2619 /* Release any memory allocated by register sets. */
2620
2621 void
regset_release_memory()2622 regset_release_memory ()
2623 {
2624 bitmap_release_memory ();
2625 }
2626
2627 #ifdef CANNOT_CHANGE_MODE_CLASS
2628
2629 struct subregs_of_mode_node
2630 {
2631 unsigned int block;
2632 unsigned char modes[MAX_MACHINE_MODE];
2633 };
2634
2635 static htab_t subregs_of_mode;
2636
2637 static hashval_t som_hash PARAMS ((const void *));
2638 static int som_eq PARAMS ((const void *, const void *));
2639
2640 static hashval_t
som_hash(x)2641 som_hash (x)
2642 const void *x;
2643 {
2644 const struct subregs_of_mode_node *a = x;
2645 return a->block;
2646 }
2647
2648 static int
som_eq(x,y)2649 som_eq (x, y)
2650 const void *x;
2651 const void *y;
2652 {
2653 const struct subregs_of_mode_node *a = x;
2654 const struct subregs_of_mode_node *b = y;
2655 return a->block == b->block;
2656 }
2657
2658 void
init_subregs_of_mode()2659 init_subregs_of_mode ()
2660 {
2661 if (subregs_of_mode)
2662 htab_empty (subregs_of_mode);
2663 else
2664 subregs_of_mode = htab_create (100, som_hash, som_eq, free);
2665 }
2666
2667 void
record_subregs_of_mode(subreg)2668 record_subregs_of_mode (subreg)
2669 rtx subreg;
2670 {
2671 struct subregs_of_mode_node dummy, *node;
2672 enum machine_mode mode;
2673 unsigned int regno;
2674 void **slot;
2675
2676 if (!REG_P (SUBREG_REG (subreg)))
2677 return;
2678
2679 regno = REGNO (SUBREG_REG (subreg));
2680 mode = GET_MODE (subreg);
2681
2682 if (regno < FIRST_PSEUDO_REGISTER)
2683 return;
2684
2685 dummy.block = regno & -8;
2686 slot = htab_find_slot_with_hash (subregs_of_mode, &dummy,
2687 dummy.block, INSERT);
2688 node = *slot;
2689 if (node == NULL)
2690 {
2691 node = xcalloc (1, sizeof (*node));
2692 node->block = regno & -8;
2693 *slot = node;
2694 }
2695
2696 node->modes[mode] |= 1 << (regno & 7);
2697 }
2698
2699 /* Set bits in *USED which correspond to registers which can't change
2700 their mode from FROM to any mode in which REGNO was encountered. */
2701
2702 void
cannot_change_mode_set_regs(used,from,regno)2703 cannot_change_mode_set_regs (used, from, regno)
2704 HARD_REG_SET *used;
2705 enum machine_mode from;
2706 unsigned int regno;
2707 {
2708 struct subregs_of_mode_node dummy, *node;
2709 enum machine_mode to;
2710 unsigned char mask;
2711 unsigned int i;
2712
2713 dummy.block = regno & -8;
2714 node = htab_find_with_hash (subregs_of_mode, &dummy, dummy.block);
2715 if (node == NULL)
2716 return;
2717
2718 mask = 1 << (regno & 7);
2719 for (to = VOIDmode; to < NUM_MACHINE_MODES; to++)
2720 if (node->modes[to] & mask)
2721 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2722 if (!TEST_HARD_REG_BIT (*used, i)
2723 && REG_CANNOT_CHANGE_MODE_P (i, from, to))
2724 SET_HARD_REG_BIT (*used, i);
2725 }
2726
2727 /* Return 1 if REGNO has had an invalid mode change in CLASS from FROM
2728 mode. */
2729
2730 bool
invalid_mode_change_p(regno,class,from)2731 invalid_mode_change_p (regno, class, from)
2732 unsigned int regno;
2733 enum reg_class class;
2734 enum machine_mode from;
2735 {
2736 struct subregs_of_mode_node dummy, *node;
2737 enum machine_mode to;
2738 unsigned char mask;
2739
2740 dummy.block = regno & -8;
2741 node = htab_find_with_hash (subregs_of_mode, &dummy, dummy.block);
2742 if (node == NULL)
2743 return false;
2744
2745 mask = 1 << (regno & 7);
2746 for (to = VOIDmode; to < NUM_MACHINE_MODES; to++)
2747 if (node->modes[to] & mask)
2748 if (CANNOT_CHANGE_MODE_CLASS (from, to, class))
2749 return true;
2750
2751 return false;
2752 }
2753 #endif /* CANNOT_CHANGE_MODE_CLASS */
2754
2755 #include "gt-regclass.h"
2756