xref: /llvm-project/llvm/lib/Object/ELFObjectFile.cpp (revision 61ea63baafb503470fccef2712f0f9a449943bcd)
1 //===- ELFObjectFile.cpp - ELF object file implementation -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Part of the ELFObjectFile class implementation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Object/ELFObjectFile.h"
14 #include "llvm/BinaryFormat/ELF.h"
15 #include "llvm/MC/MCInstrAnalysis.h"
16 #include "llvm/MC/TargetRegistry.h"
17 #include "llvm/Object/ELF.h"
18 #include "llvm/Object/ELFTypes.h"
19 #include "llvm/Object/Error.h"
20 #include "llvm/Support/ARMAttributeParser.h"
21 #include "llvm/Support/ARMBuildAttributes.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/Support/HexagonAttributeParser.h"
24 #include "llvm/Support/RISCVAttributeParser.h"
25 #include "llvm/Support/RISCVAttributes.h"
26 #include "llvm/TargetParser/RISCVISAInfo.h"
27 #include "llvm/TargetParser/SubtargetFeature.h"
28 #include "llvm/TargetParser/Triple.h"
29 #include <algorithm>
30 #include <cstddef>
31 #include <cstdint>
32 #include <memory>
33 #include <optional>
34 #include <string>
35 #include <utility>
36 
37 using namespace llvm;
38 using namespace object;
39 
40 const EnumEntry<unsigned> llvm::object::ElfSymbolTypes[NumElfSymbolTypes] = {
41     {"None", "NOTYPE", ELF::STT_NOTYPE},
42     {"Object", "OBJECT", ELF::STT_OBJECT},
43     {"Function", "FUNC", ELF::STT_FUNC},
44     {"Section", "SECTION", ELF::STT_SECTION},
45     {"File", "FILE", ELF::STT_FILE},
46     {"Common", "COMMON", ELF::STT_COMMON},
47     {"TLS", "TLS", ELF::STT_TLS},
48     {"Unknown", "<unknown>: 7", 7},
49     {"Unknown", "<unknown>: 8", 8},
50     {"Unknown", "<unknown>: 9", 9},
51     {"GNU_IFunc", "IFUNC", ELF::STT_GNU_IFUNC},
52     {"OS Specific", "<OS specific>: 11", 11},
53     {"OS Specific", "<OS specific>: 12", 12},
54     {"Proc Specific", "<processor specific>: 13", 13},
55     {"Proc Specific", "<processor specific>: 14", 14},
56     {"Proc Specific", "<processor specific>: 15", 15}
57 };
58 
59 ELFObjectFileBase::ELFObjectFileBase(unsigned int Type, MemoryBufferRef Source)
60     : ObjectFile(Type, Source) {}
61 
62 template <class ELFT>
63 static Expected<std::unique_ptr<ELFObjectFile<ELFT>>>
64 createPtr(MemoryBufferRef Object, bool InitContent) {
65   auto Ret = ELFObjectFile<ELFT>::create(Object, InitContent);
66   if (Error E = Ret.takeError())
67     return std::move(E);
68   return std::make_unique<ELFObjectFile<ELFT>>(std::move(*Ret));
69 }
70 
71 Expected<std::unique_ptr<ObjectFile>>
72 ObjectFile::createELFObjectFile(MemoryBufferRef Obj, bool InitContent) {
73   std::pair<unsigned char, unsigned char> Ident =
74       getElfArchType(Obj.getBuffer());
75   std::size_t MaxAlignment =
76       1ULL << llvm::countr_zero(
77           reinterpret_cast<uintptr_t>(Obj.getBufferStart()));
78 
79   if (MaxAlignment < 2)
80     return createError("Insufficient alignment");
81 
82   if (Ident.first == ELF::ELFCLASS32) {
83     if (Ident.second == ELF::ELFDATA2LSB)
84       return createPtr<ELF32LE>(Obj, InitContent);
85     else if (Ident.second == ELF::ELFDATA2MSB)
86       return createPtr<ELF32BE>(Obj, InitContent);
87     else
88       return createError("Invalid ELF data");
89   } else if (Ident.first == ELF::ELFCLASS64) {
90     if (Ident.second == ELF::ELFDATA2LSB)
91       return createPtr<ELF64LE>(Obj, InitContent);
92     else if (Ident.second == ELF::ELFDATA2MSB)
93       return createPtr<ELF64BE>(Obj, InitContent);
94     else
95       return createError("Invalid ELF data");
96   }
97   return createError("Invalid ELF class");
98 }
99 
100 SubtargetFeatures ELFObjectFileBase::getMIPSFeatures() const {
101   SubtargetFeatures Features;
102   unsigned PlatformFlags = getPlatformFlags();
103 
104   switch (PlatformFlags & ELF::EF_MIPS_ARCH) {
105   case ELF::EF_MIPS_ARCH_1:
106     break;
107   case ELF::EF_MIPS_ARCH_2:
108     Features.AddFeature("mips2");
109     break;
110   case ELF::EF_MIPS_ARCH_3:
111     Features.AddFeature("mips3");
112     break;
113   case ELF::EF_MIPS_ARCH_4:
114     Features.AddFeature("mips4");
115     break;
116   case ELF::EF_MIPS_ARCH_5:
117     Features.AddFeature("mips5");
118     break;
119   case ELF::EF_MIPS_ARCH_32:
120     Features.AddFeature("mips32");
121     break;
122   case ELF::EF_MIPS_ARCH_64:
123     Features.AddFeature("mips64");
124     break;
125   case ELF::EF_MIPS_ARCH_32R2:
126     Features.AddFeature("mips32r2");
127     break;
128   case ELF::EF_MIPS_ARCH_64R2:
129     Features.AddFeature("mips64r2");
130     break;
131   case ELF::EF_MIPS_ARCH_32R6:
132     Features.AddFeature("mips32r6");
133     break;
134   case ELF::EF_MIPS_ARCH_64R6:
135     Features.AddFeature("mips64r6");
136     break;
137   default:
138     llvm_unreachable("Unknown EF_MIPS_ARCH value");
139   }
140 
141   switch (PlatformFlags & ELF::EF_MIPS_MACH) {
142   case ELF::EF_MIPS_MACH_NONE:
143     // No feature associated with this value.
144     break;
145   case ELF::EF_MIPS_MACH_OCTEON:
146     Features.AddFeature("cnmips");
147     break;
148   default:
149     llvm_unreachable("Unknown EF_MIPS_ARCH value");
150   }
151 
152   if (PlatformFlags & ELF::EF_MIPS_ARCH_ASE_M16)
153     Features.AddFeature("mips16");
154   if (PlatformFlags & ELF::EF_MIPS_MICROMIPS)
155     Features.AddFeature("micromips");
156 
157   return Features;
158 }
159 
160 SubtargetFeatures ELFObjectFileBase::getARMFeatures() const {
161   SubtargetFeatures Features;
162   ARMAttributeParser Attributes;
163   if (Error E = getBuildAttributes(Attributes)) {
164     consumeError(std::move(E));
165     return SubtargetFeatures();
166   }
167 
168   // both ARMv7-M and R have to support thumb hardware div
169   bool isV7 = false;
170   std::optional<unsigned> Attr =
171       Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
172   if (Attr)
173     isV7 = *Attr == ARMBuildAttrs::v7;
174 
175   Attr = Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch_profile);
176   if (Attr) {
177     switch (*Attr) {
178     case ARMBuildAttrs::ApplicationProfile:
179       Features.AddFeature("aclass");
180       break;
181     case ARMBuildAttrs::RealTimeProfile:
182       Features.AddFeature("rclass");
183       if (isV7)
184         Features.AddFeature("hwdiv");
185       break;
186     case ARMBuildAttrs::MicroControllerProfile:
187       Features.AddFeature("mclass");
188       if (isV7)
189         Features.AddFeature("hwdiv");
190       break;
191     }
192   }
193 
194   Attr = Attributes.getAttributeValue(ARMBuildAttrs::THUMB_ISA_use);
195   if (Attr) {
196     switch (*Attr) {
197     default:
198       break;
199     case ARMBuildAttrs::Not_Allowed:
200       Features.AddFeature("thumb", false);
201       Features.AddFeature("thumb2", false);
202       break;
203     case ARMBuildAttrs::AllowThumb32:
204       Features.AddFeature("thumb2");
205       break;
206     }
207   }
208 
209   Attr = Attributes.getAttributeValue(ARMBuildAttrs::FP_arch);
210   if (Attr) {
211     switch (*Attr) {
212     default:
213       break;
214     case ARMBuildAttrs::Not_Allowed:
215       Features.AddFeature("vfp2sp", false);
216       Features.AddFeature("vfp3d16sp", false);
217       Features.AddFeature("vfp4d16sp", false);
218       break;
219     case ARMBuildAttrs::AllowFPv2:
220       Features.AddFeature("vfp2");
221       break;
222     case ARMBuildAttrs::AllowFPv3A:
223     case ARMBuildAttrs::AllowFPv3B:
224       Features.AddFeature("vfp3");
225       break;
226     case ARMBuildAttrs::AllowFPv4A:
227     case ARMBuildAttrs::AllowFPv4B:
228       Features.AddFeature("vfp4");
229       break;
230     }
231   }
232 
233   Attr = Attributes.getAttributeValue(ARMBuildAttrs::Advanced_SIMD_arch);
234   if (Attr) {
235     switch (*Attr) {
236     default:
237       break;
238     case ARMBuildAttrs::Not_Allowed:
239       Features.AddFeature("neon", false);
240       Features.AddFeature("fp16", false);
241       break;
242     case ARMBuildAttrs::AllowNeon:
243       Features.AddFeature("neon");
244       break;
245     case ARMBuildAttrs::AllowNeon2:
246       Features.AddFeature("neon");
247       Features.AddFeature("fp16");
248       break;
249     }
250   }
251 
252   Attr = Attributes.getAttributeValue(ARMBuildAttrs::MVE_arch);
253   if (Attr) {
254     switch (*Attr) {
255     default:
256       break;
257     case ARMBuildAttrs::Not_Allowed:
258       Features.AddFeature("mve", false);
259       Features.AddFeature("mve.fp", false);
260       break;
261     case ARMBuildAttrs::AllowMVEInteger:
262       Features.AddFeature("mve.fp", false);
263       Features.AddFeature("mve");
264       break;
265     case ARMBuildAttrs::AllowMVEIntegerAndFloat:
266       Features.AddFeature("mve.fp");
267       break;
268     }
269   }
270 
271   Attr = Attributes.getAttributeValue(ARMBuildAttrs::DIV_use);
272   if (Attr) {
273     switch (*Attr) {
274     default:
275       break;
276     case ARMBuildAttrs::DisallowDIV:
277       Features.AddFeature("hwdiv", false);
278       Features.AddFeature("hwdiv-arm", false);
279       break;
280     case ARMBuildAttrs::AllowDIVExt:
281       Features.AddFeature("hwdiv");
282       Features.AddFeature("hwdiv-arm");
283       break;
284     }
285   }
286 
287   return Features;
288 }
289 
290 static std::optional<std::string> hexagonAttrToFeatureString(unsigned Attr) {
291   switch (Attr) {
292   case 5:
293     return "v5";
294   case 55:
295     return "v55";
296   case 60:
297     return "v60";
298   case 62:
299     return "v62";
300   case 65:
301     return "v65";
302   case 67:
303     return "v67";
304   case 68:
305     return "v68";
306   case 69:
307     return "v69";
308   case 71:
309     return "v71";
310   case 73:
311     return "v73";
312   case 75:
313     return "v75";
314   default:
315     return {};
316   }
317 }
318 
319 SubtargetFeatures ELFObjectFileBase::getHexagonFeatures() const {
320   SubtargetFeatures Features;
321   HexagonAttributeParser Parser;
322   if (Error E = getBuildAttributes(Parser)) {
323     // Return no attributes if none can be read.
324     // This behavior is important for backwards compatibility.
325     consumeError(std::move(E));
326     return Features;
327   }
328   std::optional<unsigned> Attr;
329 
330   if ((Attr = Parser.getAttributeValue(HexagonAttrs::ARCH))) {
331     if (std::optional<std::string> FeatureString =
332             hexagonAttrToFeatureString(*Attr))
333       Features.AddFeature(*FeatureString);
334   }
335 
336   if ((Attr = Parser.getAttributeValue(HexagonAttrs::HVXARCH))) {
337     std::optional<std::string> FeatureString =
338         hexagonAttrToFeatureString(*Attr);
339     // There is no corresponding hvx arch for v5 and v55.
340     if (FeatureString && *Attr >= 60)
341       Features.AddFeature("hvx" + *FeatureString);
342   }
343 
344   if ((Attr = Parser.getAttributeValue(HexagonAttrs::HVXIEEEFP)))
345     if (*Attr)
346       Features.AddFeature("hvx-ieee-fp");
347 
348   if ((Attr = Parser.getAttributeValue(HexagonAttrs::HVXQFLOAT)))
349     if (*Attr)
350       Features.AddFeature("hvx-qfloat");
351 
352   if ((Attr = Parser.getAttributeValue(HexagonAttrs::ZREG)))
353     if (*Attr)
354       Features.AddFeature("zreg");
355 
356   if ((Attr = Parser.getAttributeValue(HexagonAttrs::AUDIO)))
357     if (*Attr)
358       Features.AddFeature("audio");
359 
360   if ((Attr = Parser.getAttributeValue(HexagonAttrs::CABAC)))
361     if (*Attr)
362       Features.AddFeature("cabac");
363 
364   return Features;
365 }
366 
367 Expected<SubtargetFeatures> ELFObjectFileBase::getRISCVFeatures() const {
368   SubtargetFeatures Features;
369   unsigned PlatformFlags = getPlatformFlags();
370 
371   if (PlatformFlags & ELF::EF_RISCV_RVC) {
372     Features.AddFeature("zca");
373   }
374 
375   RISCVAttributeParser Attributes;
376   if (Error E = getBuildAttributes(Attributes)) {
377     return std::move(E);
378   }
379 
380   std::optional<StringRef> Attr =
381       Attributes.getAttributeString(RISCVAttrs::ARCH);
382   if (Attr) {
383     auto ParseResult = RISCVISAInfo::parseNormalizedArchString(*Attr);
384     if (!ParseResult)
385       return ParseResult.takeError();
386     auto &ISAInfo = *ParseResult;
387 
388     if (ISAInfo->getXLen() == 32)
389       Features.AddFeature("64bit", false);
390     else if (ISAInfo->getXLen() == 64)
391       Features.AddFeature("64bit");
392     else
393       llvm_unreachable("XLEN should be 32 or 64.");
394 
395     Features.addFeaturesVector(ISAInfo->toFeatures());
396   }
397 
398   return Features;
399 }
400 
401 SubtargetFeatures ELFObjectFileBase::getLoongArchFeatures() const {
402   SubtargetFeatures Features;
403 
404   switch (getPlatformFlags() & ELF::EF_LOONGARCH_ABI_MODIFIER_MASK) {
405   case ELF::EF_LOONGARCH_ABI_SOFT_FLOAT:
406     break;
407   case ELF::EF_LOONGARCH_ABI_DOUBLE_FLOAT:
408     Features.AddFeature("d");
409     // D implies F according to LoongArch ISA spec.
410     [[fallthrough]];
411   case ELF::EF_LOONGARCH_ABI_SINGLE_FLOAT:
412     Features.AddFeature("f");
413     break;
414   }
415 
416   return Features;
417 }
418 
419 Expected<SubtargetFeatures> ELFObjectFileBase::getFeatures() const {
420   switch (getEMachine()) {
421   case ELF::EM_MIPS:
422     return getMIPSFeatures();
423   case ELF::EM_ARM:
424     return getARMFeatures();
425   case ELF::EM_RISCV:
426     return getRISCVFeatures();
427   case ELF::EM_LOONGARCH:
428     return getLoongArchFeatures();
429   case ELF::EM_HEXAGON:
430     return getHexagonFeatures();
431   default:
432     return SubtargetFeatures();
433   }
434 }
435 
436 std::optional<StringRef> ELFObjectFileBase::tryGetCPUName() const {
437   switch (getEMachine()) {
438   case ELF::EM_AMDGPU:
439     return getAMDGPUCPUName();
440   case ELF::EM_CUDA:
441     return getNVPTXCPUName();
442   case ELF::EM_PPC:
443   case ELF::EM_PPC64:
444     return StringRef("future");
445   case ELF::EM_BPF:
446     return StringRef("v4");
447   default:
448     return std::nullopt;
449   }
450 }
451 
452 StringRef ELFObjectFileBase::getAMDGPUCPUName() const {
453   assert(getEMachine() == ELF::EM_AMDGPU);
454   unsigned CPU = getPlatformFlags() & ELF::EF_AMDGPU_MACH;
455 
456   switch (CPU) {
457   // Radeon HD 2000/3000 Series (R600).
458   case ELF::EF_AMDGPU_MACH_R600_R600:
459     return "r600";
460   case ELF::EF_AMDGPU_MACH_R600_R630:
461     return "r630";
462   case ELF::EF_AMDGPU_MACH_R600_RS880:
463     return "rs880";
464   case ELF::EF_AMDGPU_MACH_R600_RV670:
465     return "rv670";
466 
467   // Radeon HD 4000 Series (R700).
468   case ELF::EF_AMDGPU_MACH_R600_RV710:
469     return "rv710";
470   case ELF::EF_AMDGPU_MACH_R600_RV730:
471     return "rv730";
472   case ELF::EF_AMDGPU_MACH_R600_RV770:
473     return "rv770";
474 
475   // Radeon HD 5000 Series (Evergreen).
476   case ELF::EF_AMDGPU_MACH_R600_CEDAR:
477     return "cedar";
478   case ELF::EF_AMDGPU_MACH_R600_CYPRESS:
479     return "cypress";
480   case ELF::EF_AMDGPU_MACH_R600_JUNIPER:
481     return "juniper";
482   case ELF::EF_AMDGPU_MACH_R600_REDWOOD:
483     return "redwood";
484   case ELF::EF_AMDGPU_MACH_R600_SUMO:
485     return "sumo";
486 
487   // Radeon HD 6000 Series (Northern Islands).
488   case ELF::EF_AMDGPU_MACH_R600_BARTS:
489     return "barts";
490   case ELF::EF_AMDGPU_MACH_R600_CAICOS:
491     return "caicos";
492   case ELF::EF_AMDGPU_MACH_R600_CAYMAN:
493     return "cayman";
494   case ELF::EF_AMDGPU_MACH_R600_TURKS:
495     return "turks";
496 
497   // AMDGCN GFX6.
498   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX600:
499     return "gfx600";
500   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX601:
501     return "gfx601";
502   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX602:
503     return "gfx602";
504 
505   // AMDGCN GFX7.
506   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX700:
507     return "gfx700";
508   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX701:
509     return "gfx701";
510   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX702:
511     return "gfx702";
512   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX703:
513     return "gfx703";
514   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX704:
515     return "gfx704";
516   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX705:
517     return "gfx705";
518 
519   // AMDGCN GFX8.
520   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX801:
521     return "gfx801";
522   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX802:
523     return "gfx802";
524   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX803:
525     return "gfx803";
526   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX805:
527     return "gfx805";
528   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX810:
529     return "gfx810";
530 
531   // AMDGCN GFX9.
532   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX900:
533     return "gfx900";
534   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX902:
535     return "gfx902";
536   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX904:
537     return "gfx904";
538   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX906:
539     return "gfx906";
540   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX908:
541     return "gfx908";
542   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX909:
543     return "gfx909";
544   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX90A:
545     return "gfx90a";
546   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX90C:
547     return "gfx90c";
548   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX940:
549     return "gfx940";
550   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX941:
551     return "gfx941";
552   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX942:
553     return "gfx942";
554   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX950:
555     return "gfx950";
556 
557   // AMDGCN GFX10.
558   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1010:
559     return "gfx1010";
560   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1011:
561     return "gfx1011";
562   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1012:
563     return "gfx1012";
564   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1013:
565     return "gfx1013";
566   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1030:
567     return "gfx1030";
568   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1031:
569     return "gfx1031";
570   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1032:
571     return "gfx1032";
572   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1033:
573     return "gfx1033";
574   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1034:
575     return "gfx1034";
576   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1035:
577     return "gfx1035";
578   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1036:
579     return "gfx1036";
580 
581   // AMDGCN GFX11.
582   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1100:
583     return "gfx1100";
584   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1101:
585     return "gfx1101";
586   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1102:
587     return "gfx1102";
588   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1103:
589     return "gfx1103";
590   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1150:
591     return "gfx1150";
592   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1151:
593     return "gfx1151";
594   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1152:
595     return "gfx1152";
596   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1153:
597     return "gfx1153";
598 
599   // AMDGCN GFX12.
600   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1200:
601     return "gfx1200";
602   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1201:
603     return "gfx1201";
604 
605   // Generic AMDGCN targets
606   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX9_GENERIC:
607     return "gfx9-generic";
608   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX9_4_GENERIC:
609     return "gfx9-4-generic";
610   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX10_1_GENERIC:
611     return "gfx10-1-generic";
612   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX10_3_GENERIC:
613     return "gfx10-3-generic";
614   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX11_GENERIC:
615     return "gfx11-generic";
616   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX12_GENERIC:
617     return "gfx12-generic";
618   default:
619     llvm_unreachable("Unknown EF_AMDGPU_MACH value");
620   }
621 }
622 
623 StringRef ELFObjectFileBase::getNVPTXCPUName() const {
624   assert(getEMachine() == ELF::EM_CUDA);
625   unsigned SM = getPlatformFlags() & ELF::EF_CUDA_SM;
626 
627   switch (SM) {
628   // Fermi architecture.
629   case ELF::EF_CUDA_SM20:
630     return "sm_20";
631   case ELF::EF_CUDA_SM21:
632     return "sm_21";
633 
634   // Kepler architecture.
635   case ELF::EF_CUDA_SM30:
636     return "sm_30";
637   case ELF::EF_CUDA_SM32:
638     return "sm_32";
639   case ELF::EF_CUDA_SM35:
640     return "sm_35";
641   case ELF::EF_CUDA_SM37:
642     return "sm_37";
643 
644   // Maxwell architecture.
645   case ELF::EF_CUDA_SM50:
646     return "sm_50";
647   case ELF::EF_CUDA_SM52:
648     return "sm_52";
649   case ELF::EF_CUDA_SM53:
650     return "sm_53";
651 
652   // Pascal architecture.
653   case ELF::EF_CUDA_SM60:
654     return "sm_60";
655   case ELF::EF_CUDA_SM61:
656     return "sm_61";
657   case ELF::EF_CUDA_SM62:
658     return "sm_62";
659 
660   // Volta architecture.
661   case ELF::EF_CUDA_SM70:
662     return "sm_70";
663   case ELF::EF_CUDA_SM72:
664     return "sm_72";
665 
666   // Turing architecture.
667   case ELF::EF_CUDA_SM75:
668     return "sm_75";
669 
670   // Ampere architecture.
671   case ELF::EF_CUDA_SM80:
672     return "sm_80";
673   case ELF::EF_CUDA_SM86:
674     return "sm_86";
675   case ELF::EF_CUDA_SM87:
676     return "sm_87";
677 
678   // Ada architecture.
679   case ELF::EF_CUDA_SM89:
680     return "sm_89";
681 
682   // Hopper architecture.
683   case ELF::EF_CUDA_SM90:
684     return getPlatformFlags() & ELF::EF_CUDA_ACCELERATORS ? "sm_90a" : "sm_90";
685   default:
686     llvm_unreachable("Unknown EF_CUDA_SM value");
687   }
688 }
689 
690 // FIXME Encode from a tablegen description or target parser.
691 void ELFObjectFileBase::setARMSubArch(Triple &TheTriple) const {
692   if (TheTriple.getSubArch() != Triple::NoSubArch)
693     return;
694 
695   ARMAttributeParser Attributes;
696   if (Error E = getBuildAttributes(Attributes)) {
697     // TODO Propagate Error.
698     consumeError(std::move(E));
699     return;
700   }
701 
702   std::string Triple;
703   // Default to ARM, but use the triple if it's been set.
704   if (TheTriple.isThumb())
705     Triple = "thumb";
706   else
707     Triple = "arm";
708 
709   std::optional<unsigned> Attr =
710       Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
711   if (Attr) {
712     switch (*Attr) {
713     case ARMBuildAttrs::v4:
714       Triple += "v4";
715       break;
716     case ARMBuildAttrs::v4T:
717       Triple += "v4t";
718       break;
719     case ARMBuildAttrs::v5T:
720       Triple += "v5t";
721       break;
722     case ARMBuildAttrs::v5TE:
723       Triple += "v5te";
724       break;
725     case ARMBuildAttrs::v5TEJ:
726       Triple += "v5tej";
727       break;
728     case ARMBuildAttrs::v6:
729       Triple += "v6";
730       break;
731     case ARMBuildAttrs::v6KZ:
732       Triple += "v6kz";
733       break;
734     case ARMBuildAttrs::v6T2:
735       Triple += "v6t2";
736       break;
737     case ARMBuildAttrs::v6K:
738       Triple += "v6k";
739       break;
740     case ARMBuildAttrs::v7: {
741       std::optional<unsigned> ArchProfileAttr =
742           Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch_profile);
743       if (ArchProfileAttr &&
744           *ArchProfileAttr == ARMBuildAttrs::MicroControllerProfile)
745         Triple += "v7m";
746       else
747         Triple += "v7";
748       break;
749     }
750     case ARMBuildAttrs::v6_M:
751       Triple += "v6m";
752       break;
753     case ARMBuildAttrs::v6S_M:
754       Triple += "v6sm";
755       break;
756     case ARMBuildAttrs::v7E_M:
757       Triple += "v7em";
758       break;
759     case ARMBuildAttrs::v8_A:
760       Triple += "v8a";
761       break;
762     case ARMBuildAttrs::v8_R:
763       Triple += "v8r";
764       break;
765     case ARMBuildAttrs::v8_M_Base:
766       Triple += "v8m.base";
767       break;
768     case ARMBuildAttrs::v8_M_Main:
769       Triple += "v8m.main";
770       break;
771     case ARMBuildAttrs::v8_1_M_Main:
772       Triple += "v8.1m.main";
773       break;
774     case ARMBuildAttrs::v9_A:
775       Triple += "v9a";
776       break;
777     }
778   }
779   if (!isLittleEndian())
780     Triple += "eb";
781 
782   TheTriple.setArchName(Triple);
783 }
784 
785 std::vector<ELFPltEntry> ELFObjectFileBase::getPltEntries() const {
786   std::string Err;
787   const auto Triple = makeTriple();
788   const auto *T = TargetRegistry::lookupTarget(Triple.str(), Err);
789   if (!T)
790     return {};
791   uint32_t JumpSlotReloc = 0, GlobDatReloc = 0;
792   switch (Triple.getArch()) {
793     case Triple::x86:
794       JumpSlotReloc = ELF::R_386_JUMP_SLOT;
795       GlobDatReloc = ELF::R_386_GLOB_DAT;
796       break;
797     case Triple::x86_64:
798       JumpSlotReloc = ELF::R_X86_64_JUMP_SLOT;
799       GlobDatReloc = ELF::R_X86_64_GLOB_DAT;
800       break;
801     case Triple::aarch64:
802     case Triple::aarch64_be:
803       JumpSlotReloc = ELF::R_AARCH64_JUMP_SLOT;
804       break;
805     case Triple::hexagon:
806       JumpSlotReloc = ELF::R_HEX_JMP_SLOT;
807       GlobDatReloc = ELF::R_HEX_GLOB_DAT;
808       break;
809     default:
810       return {};
811   }
812   std::unique_ptr<const MCInstrInfo> MII(T->createMCInstrInfo());
813   std::unique_ptr<const MCInstrAnalysis> MIA(
814       T->createMCInstrAnalysis(MII.get()));
815   if (!MIA)
816     return {};
817   std::vector<std::pair<uint64_t, uint64_t>> PltEntries;
818   std::optional<SectionRef> RelaPlt, RelaDyn;
819   uint64_t GotBaseVA = 0;
820   for (const SectionRef &Section : sections()) {
821     Expected<StringRef> NameOrErr = Section.getName();
822     if (!NameOrErr) {
823       consumeError(NameOrErr.takeError());
824       continue;
825     }
826     StringRef Name = *NameOrErr;
827 
828     if (Name == ".rela.plt" || Name == ".rel.plt") {
829       RelaPlt = Section;
830     } else if (Name == ".rela.dyn" || Name == ".rel.dyn") {
831       RelaDyn = Section;
832     } else if (Name == ".got.plt") {
833       GotBaseVA = Section.getAddress();
834     } else if (Name == ".plt" || Name == ".plt.got") {
835       Expected<StringRef> PltContents = Section.getContents();
836       if (!PltContents) {
837         consumeError(PltContents.takeError());
838         return {};
839       }
840       llvm::append_range(
841           PltEntries,
842           MIA->findPltEntries(Section.getAddress(),
843                               arrayRefFromStringRef(*PltContents), Triple));
844     }
845   }
846 
847   // Build a map from GOT entry virtual address to PLT entry virtual address.
848   DenseMap<uint64_t, uint64_t> GotToPlt;
849   for (auto [Plt, GotPlt] : PltEntries) {
850     uint64_t GotPltEntry = GotPlt;
851     // An x86-32 PIC PLT uses jmp DWORD PTR [ebx-offset]. Add
852     // _GLOBAL_OFFSET_TABLE_ (EBX) to get the .got.plt (or .got) entry address.
853     // See X86MCTargetDesc.cpp:findPltEntries for the 1 << 32 bit.
854     if (GotPltEntry & (uint64_t(1) << 32) && getEMachine() == ELF::EM_386)
855       GotPltEntry = static_cast<int32_t>(GotPltEntry) + GotBaseVA;
856     GotToPlt.insert(std::make_pair(GotPltEntry, Plt));
857   }
858 
859   // Find the relocations in the dynamic relocation table that point to
860   // locations in the GOT for which we know the corresponding PLT entry.
861   std::vector<ELFPltEntry> Result;
862   auto handleRels = [&](iterator_range<relocation_iterator> Rels,
863                         uint32_t RelType, StringRef PltSec) {
864     for (const auto &R : Rels) {
865       if (R.getType() != RelType)
866         continue;
867       auto PltEntryIter = GotToPlt.find(R.getOffset());
868       if (PltEntryIter != GotToPlt.end()) {
869         symbol_iterator Sym = R.getSymbol();
870         if (Sym == symbol_end())
871           Result.push_back(
872               ELFPltEntry{PltSec, std::nullopt, PltEntryIter->second});
873         else
874           Result.push_back(ELFPltEntry{PltSec, Sym->getRawDataRefImpl(),
875                                        PltEntryIter->second});
876       }
877     }
878   };
879 
880   if (RelaPlt)
881     handleRels(RelaPlt->relocations(), JumpSlotReloc, ".plt");
882 
883   // If a symbol needing a PLT entry also needs a GLOB_DAT relocation, GNU ld's
884   // x86 port places the PLT entry in the .plt.got section.
885   if (RelaDyn)
886     handleRels(RelaDyn->relocations(), GlobDatReloc, ".plt.got");
887 
888   return Result;
889 }
890 
891 template <class ELFT>
892 Expected<std::vector<BBAddrMap>> static readBBAddrMapImpl(
893     const ELFFile<ELFT> &EF, std::optional<unsigned> TextSectionIndex,
894     std::vector<PGOAnalysisMap> *PGOAnalyses) {
895   using Elf_Shdr = typename ELFT::Shdr;
896   bool IsRelocatable = EF.getHeader().e_type == ELF::ET_REL;
897   std::vector<BBAddrMap> BBAddrMaps;
898   if (PGOAnalyses)
899     PGOAnalyses->clear();
900 
901   const auto &Sections = cantFail(EF.sections());
902   auto IsMatch = [&](const Elf_Shdr &Sec) -> Expected<bool> {
903     if (Sec.sh_type != ELF::SHT_LLVM_BB_ADDR_MAP &&
904         Sec.sh_type != ELF::SHT_LLVM_BB_ADDR_MAP_V0)
905       return false;
906     if (!TextSectionIndex)
907       return true;
908     Expected<const Elf_Shdr *> TextSecOrErr = EF.getSection(Sec.sh_link);
909     if (!TextSecOrErr)
910       return createError("unable to get the linked-to section for " +
911                          describe(EF, Sec) + ": " +
912                          toString(TextSecOrErr.takeError()));
913     assert(*TextSecOrErr >= Sections.begin() &&
914            "Text section pointer outside of bounds");
915     if (*TextSectionIndex !=
916         (unsigned)std::distance(Sections.begin(), *TextSecOrErr))
917       return false;
918     return true;
919   };
920 
921   Expected<MapVector<const Elf_Shdr *, const Elf_Shdr *>> SectionRelocMapOrErr =
922       EF.getSectionAndRelocations(IsMatch);
923   if (!SectionRelocMapOrErr)
924     return SectionRelocMapOrErr.takeError();
925 
926   for (auto const &[Sec, RelocSec] : *SectionRelocMapOrErr) {
927     if (IsRelocatable && !RelocSec)
928       return createError("unable to get relocation section for " +
929                          describe(EF, *Sec));
930     Expected<std::vector<BBAddrMap>> BBAddrMapOrErr =
931         EF.decodeBBAddrMap(*Sec, RelocSec, PGOAnalyses);
932     if (!BBAddrMapOrErr) {
933       if (PGOAnalyses)
934         PGOAnalyses->clear();
935       return createError("unable to read " + describe(EF, *Sec) + ": " +
936                          toString(BBAddrMapOrErr.takeError()));
937     }
938     std::move(BBAddrMapOrErr->begin(), BBAddrMapOrErr->end(),
939               std::back_inserter(BBAddrMaps));
940   }
941   if (PGOAnalyses)
942     assert(PGOAnalyses->size() == BBAddrMaps.size() &&
943            "The same number of BBAddrMaps and PGOAnalysisMaps should be "
944            "returned when PGO information is requested");
945   return BBAddrMaps;
946 }
947 
948 template <class ELFT>
949 static Expected<std::vector<VersionEntry>>
950 readDynsymVersionsImpl(const ELFFile<ELFT> &EF,
951                        ELFObjectFileBase::elf_symbol_iterator_range Symbols) {
952   using Elf_Shdr = typename ELFT::Shdr;
953   const Elf_Shdr *VerSec = nullptr;
954   const Elf_Shdr *VerNeedSec = nullptr;
955   const Elf_Shdr *VerDefSec = nullptr;
956   // The user should ensure sections() can't fail here.
957   for (const Elf_Shdr &Sec : cantFail(EF.sections())) {
958     if (Sec.sh_type == ELF::SHT_GNU_versym)
959       VerSec = &Sec;
960     else if (Sec.sh_type == ELF::SHT_GNU_verdef)
961       VerDefSec = &Sec;
962     else if (Sec.sh_type == ELF::SHT_GNU_verneed)
963       VerNeedSec = &Sec;
964   }
965   if (!VerSec)
966     return std::vector<VersionEntry>();
967 
968   Expected<SmallVector<std::optional<VersionEntry>, 0>> MapOrErr =
969       EF.loadVersionMap(VerNeedSec, VerDefSec);
970   if (!MapOrErr)
971     return MapOrErr.takeError();
972 
973   std::vector<VersionEntry> Ret;
974   size_t I = 0;
975   for (const ELFSymbolRef &Sym : Symbols) {
976     ++I;
977     Expected<const typename ELFT::Versym *> VerEntryOrErr =
978         EF.template getEntry<typename ELFT::Versym>(*VerSec, I);
979     if (!VerEntryOrErr)
980       return createError("unable to read an entry with index " + Twine(I) +
981                          " from " + describe(EF, *VerSec) + ": " +
982                          toString(VerEntryOrErr.takeError()));
983 
984     Expected<uint32_t> FlagsOrErr = Sym.getFlags();
985     if (!FlagsOrErr)
986       return createError("unable to read flags for symbol with index " +
987                          Twine(I) + ": " + toString(FlagsOrErr.takeError()));
988 
989     bool IsDefault;
990     Expected<StringRef> VerOrErr = EF.getSymbolVersionByIndex(
991         (*VerEntryOrErr)->vs_index, IsDefault, *MapOrErr,
992         (*FlagsOrErr) & SymbolRef::SF_Undefined);
993     if (!VerOrErr)
994       return createError("unable to get a version for entry " + Twine(I) +
995                          " of " + describe(EF, *VerSec) + ": " +
996                          toString(VerOrErr.takeError()));
997 
998     Ret.push_back({(*VerOrErr).str(), IsDefault});
999   }
1000 
1001   return Ret;
1002 }
1003 
1004 Expected<std::vector<VersionEntry>>
1005 ELFObjectFileBase::readDynsymVersions() const {
1006   elf_symbol_iterator_range Symbols = getDynamicSymbolIterators();
1007   if (const auto *Obj = dyn_cast<ELF32LEObjectFile>(this))
1008     return readDynsymVersionsImpl(Obj->getELFFile(), Symbols);
1009   if (const auto *Obj = dyn_cast<ELF32BEObjectFile>(this))
1010     return readDynsymVersionsImpl(Obj->getELFFile(), Symbols);
1011   if (const auto *Obj = dyn_cast<ELF64LEObjectFile>(this))
1012     return readDynsymVersionsImpl(Obj->getELFFile(), Symbols);
1013   return readDynsymVersionsImpl(cast<ELF64BEObjectFile>(this)->getELFFile(),
1014                                 Symbols);
1015 }
1016 
1017 Expected<std::vector<BBAddrMap>> ELFObjectFileBase::readBBAddrMap(
1018     std::optional<unsigned> TextSectionIndex,
1019     std::vector<PGOAnalysisMap> *PGOAnalyses) const {
1020   if (const auto *Obj = dyn_cast<ELF32LEObjectFile>(this))
1021     return readBBAddrMapImpl(Obj->getELFFile(), TextSectionIndex, PGOAnalyses);
1022   if (const auto *Obj = dyn_cast<ELF64LEObjectFile>(this))
1023     return readBBAddrMapImpl(Obj->getELFFile(), TextSectionIndex, PGOAnalyses);
1024   if (const auto *Obj = dyn_cast<ELF32BEObjectFile>(this))
1025     return readBBAddrMapImpl(Obj->getELFFile(), TextSectionIndex, PGOAnalyses);
1026   return readBBAddrMapImpl(cast<ELF64BEObjectFile>(this)->getELFFile(),
1027                            TextSectionIndex, PGOAnalyses);
1028 }
1029 
1030 StringRef ELFObjectFileBase::getCrelDecodeProblem(SectionRef Sec) const {
1031   auto Data = Sec.getRawDataRefImpl();
1032   if (const auto *Obj = dyn_cast<ELF32LEObjectFile>(this))
1033     return Obj->getCrelDecodeProblem(Data);
1034   if (const auto *Obj = dyn_cast<ELF32BEObjectFile>(this))
1035     return Obj->getCrelDecodeProblem(Data);
1036   if (const auto *Obj = dyn_cast<ELF64LEObjectFile>(this))
1037     return Obj->getCrelDecodeProblem(Data);
1038   return cast<ELF64BEObjectFile>(this)->getCrelDecodeProblem(Data);
1039 }
1040