xref: /freebsd-src/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIModeRegister.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===-- SIModeRegister.cpp - Mode Register --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This pass inserts changes to the Mode register settings as required.
10 /// Note that currently it only deals with the Double Precision Floating Point
11 /// rounding mode setting, but is intended to be generic enough to be easily
12 /// expanded.
13 ///
14 //===----------------------------------------------------------------------===//
15 //
16 #include "AMDGPU.h"
17 #include "GCNSubtarget.h"
18 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include <queue>
22 
23 #define DEBUG_TYPE "si-mode-register"
24 
25 STATISTIC(NumSetregInserted, "Number of setreg of mode register inserted.");
26 
27 using namespace llvm;
28 
29 struct Status {
30   // Mask is a bitmask where a '1' indicates the corresponding Mode bit has a
31   // known value
32   unsigned Mask = 0;
33   unsigned Mode = 0;
34 
35   Status() = default;
36 
37   Status(unsigned NewMask, unsigned NewMode) : Mask(NewMask), Mode(NewMode) {
38     Mode &= Mask;
39   };
40 
41   // merge two status values such that only values that don't conflict are
42   // preserved
43   Status merge(const Status &S) const {
44     return Status((Mask | S.Mask), ((Mode & ~S.Mask) | (S.Mode & S.Mask)));
45   }
46 
47   // merge an unknown value by using the unknown value's mask to remove bits
48   // from the result
49   Status mergeUnknown(unsigned newMask) {
50     return Status(Mask & ~newMask, Mode & ~newMask);
51   }
52 
53   // intersect two Status values to produce a mode and mask that is a subset
54   // of both values
55   Status intersect(const Status &S) const {
56     unsigned NewMask = (Mask & S.Mask) & (Mode ^ ~S.Mode);
57     unsigned NewMode = (Mode & NewMask);
58     return Status(NewMask, NewMode);
59   }
60 
61   // produce the delta required to change the Mode to the required Mode
62   Status delta(const Status &S) const {
63     return Status((S.Mask & (Mode ^ S.Mode)) | (~Mask & S.Mask), S.Mode);
64   }
65 
66   bool operator==(const Status &S) const {
67     return (Mask == S.Mask) && (Mode == S.Mode);
68   }
69 
70   bool operator!=(const Status &S) const { return !(*this == S); }
71 
72   bool isCompatible(Status &S) {
73     return ((Mask & S.Mask) == S.Mask) && ((Mode & S.Mask) == S.Mode);
74   }
75 
76   bool isCombinable(Status &S) { return !(Mask & S.Mask) || isCompatible(S); }
77 };
78 
79 class BlockData {
80 public:
81   // The Status that represents the mode register settings required by the
82   // FirstInsertionPoint (if any) in this block. Calculated in Phase 1.
83   Status Require;
84 
85   // The Status that represents the net changes to the Mode register made by
86   // this block, Calculated in Phase 1.
87   Status Change;
88 
89   // The Status that represents the mode register settings on exit from this
90   // block. Calculated in Phase 2.
91   Status Exit;
92 
93   // The Status that represents the intersection of exit Mode register settings
94   // from all predecessor blocks. Calculated in Phase 2, and used by Phase 3.
95   Status Pred;
96 
97   // In Phase 1 we record the first instruction that has a mode requirement,
98   // which is used in Phase 3 if we need to insert a mode change.
99   MachineInstr *FirstInsertionPoint = nullptr;
100 
101   // A flag to indicate whether an Exit value has been set (we can't tell by
102   // examining the Exit value itself as all values may be valid results).
103   bool ExitSet = false;
104 
105   BlockData() = default;
106 };
107 
108 namespace {
109 
110 class SIModeRegister : public MachineFunctionPass {
111 public:
112   static char ID;
113 
114   std::vector<std::unique_ptr<BlockData>> BlockInfo;
115   std::queue<MachineBasicBlock *> Phase2List;
116 
117   // The default mode register setting currently only caters for the floating
118   // point double precision rounding mode.
119   // We currently assume the default rounding mode is Round to Nearest
120   // NOTE: this should come from a per function rounding mode setting once such
121   // a setting exists.
122   unsigned DefaultMode = FP_ROUND_ROUND_TO_NEAREST;
123   Status DefaultStatus =
124       Status(FP_ROUND_MODE_DP(0x3), FP_ROUND_MODE_DP(DefaultMode));
125 
126   bool Changed = false;
127 
128 public:
129   SIModeRegister() : MachineFunctionPass(ID) {}
130 
131   bool runOnMachineFunction(MachineFunction &MF) override;
132 
133   void getAnalysisUsage(AnalysisUsage &AU) const override {
134     AU.setPreservesCFG();
135     MachineFunctionPass::getAnalysisUsage(AU);
136   }
137 
138   void processBlockPhase1(MachineBasicBlock &MBB, const SIInstrInfo *TII);
139 
140   void processBlockPhase2(MachineBasicBlock &MBB, const SIInstrInfo *TII);
141 
142   void processBlockPhase3(MachineBasicBlock &MBB, const SIInstrInfo *TII);
143 
144   Status getInstructionMode(MachineInstr &MI, const SIInstrInfo *TII);
145 
146   void insertSetreg(MachineBasicBlock &MBB, MachineInstr *I,
147                     const SIInstrInfo *TII, Status InstrMode);
148 };
149 } // End anonymous namespace.
150 
151 INITIALIZE_PASS(SIModeRegister, DEBUG_TYPE,
152                 "Insert required mode register values", false, false)
153 
154 char SIModeRegister::ID = 0;
155 
156 char &llvm::SIModeRegisterID = SIModeRegister::ID;
157 
158 FunctionPass *llvm::createSIModeRegisterPass() { return new SIModeRegister(); }
159 
160 // Determine the Mode register setting required for this instruction.
161 // Instructions which don't use the Mode register return a null Status.
162 // Note this currently only deals with instructions that use the floating point
163 // double precision setting.
164 Status SIModeRegister::getInstructionMode(MachineInstr &MI,
165                                           const SIInstrInfo *TII) {
166   if (TII->usesFPDPRounding(MI) ||
167       MI.getOpcode() == AMDGPU::FPTRUNC_UPWARD_PSEUDO ||
168       MI.getOpcode() == AMDGPU::FPTRUNC_DOWNWARD_PSEUDO) {
169     switch (MI.getOpcode()) {
170     case AMDGPU::V_INTERP_P1LL_F16:
171     case AMDGPU::V_INTERP_P1LV_F16:
172     case AMDGPU::V_INTERP_P2_F16:
173       // f16 interpolation instructions need double precision round to zero
174       return Status(FP_ROUND_MODE_DP(3),
175                     FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_ZERO));
176     case AMDGPU::FPTRUNC_UPWARD_PSEUDO: {
177       // Replacing the pseudo by a real instruction in place
178       if (TII->getSubtarget().hasTrue16BitInsts()) {
179         MachineBasicBlock &MBB = *MI.getParent();
180         MachineInstrBuilder B(*MBB.getParent(), MI);
181         MI.setDesc(TII->get(AMDGPU::V_CVT_F16_F32_t16_e64));
182         MachineOperand Src0 = MI.getOperand(1);
183         MI.removeOperand(1);
184         B.addImm(0); // src0_modifiers
185         B.add(Src0); // re-add src0 operand
186         B.addImm(0); // clamp
187         B.addImm(0); // omod
188       } else
189         MI.setDesc(TII->get(AMDGPU::V_CVT_F16_F32_e32));
190       return Status(FP_ROUND_MODE_DP(3),
191                     FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_INF));
192     }
193     case AMDGPU::FPTRUNC_DOWNWARD_PSEUDO: {
194       // Replacing the pseudo by a real instruction in place
195       if (TII->getSubtarget().hasTrue16BitInsts()) {
196         MachineBasicBlock &MBB = *MI.getParent();
197         MachineInstrBuilder B(*MBB.getParent(), MI);
198         MI.setDesc(TII->get(AMDGPU::V_CVT_F16_F32_t16_e64));
199         MachineOperand Src0 = MI.getOperand(1);
200         MI.removeOperand(1);
201         B.addImm(0); // src0_modifiers
202         B.add(Src0); // re-add src0 operand
203         B.addImm(0); // clamp
204         B.addImm(0); // omod
205       } else
206         MI.setDesc(TII->get(AMDGPU::V_CVT_F16_F32_e32));
207       return Status(FP_ROUND_MODE_DP(3),
208                     FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_NEGINF));
209     }
210     default:
211       return DefaultStatus;
212     }
213   }
214   return Status();
215 }
216 
217 // Insert a setreg instruction to update the Mode register.
218 // It is possible (though unlikely) for an instruction to require a change to
219 // the value of disjoint parts of the Mode register when we don't know the
220 // value of the intervening bits. In that case we need to use more than one
221 // setreg instruction.
222 void SIModeRegister::insertSetreg(MachineBasicBlock &MBB, MachineInstr *MI,
223                                   const SIInstrInfo *TII, Status InstrMode) {
224   while (InstrMode.Mask) {
225     unsigned Offset = llvm::countr_zero<unsigned>(InstrMode.Mask);
226     unsigned Width = llvm::countr_one<unsigned>(InstrMode.Mask >> Offset);
227     unsigned Value = (InstrMode.Mode >> Offset) & ((1 << Width) - 1);
228     using namespace AMDGPU::Hwreg;
229     BuildMI(MBB, MI, nullptr, TII->get(AMDGPU::S_SETREG_IMM32_B32))
230         .addImm(Value)
231         .addImm(HwregEncoding::encode(ID_MODE, Offset, Width));
232     ++NumSetregInserted;
233     Changed = true;
234     InstrMode.Mask &= ~(((1 << Width) - 1) << Offset);
235   }
236 }
237 
238 // In Phase 1 we iterate through the instructions of the block and for each
239 // instruction we get its mode usage. If the instruction uses the Mode register
240 // we:
241 // - update the Change status, which tracks the changes to the Mode register
242 //   made by this block
243 // - if this instruction's requirements are compatible with the current setting
244 //   of the Mode register we merge the modes
245 // - if it isn't compatible and an InsertionPoint isn't set, then we set the
246 //   InsertionPoint to the current instruction, and we remember the current
247 //   mode
248 // - if it isn't compatible and InsertionPoint is set we insert a seteg before
249 //   that instruction (unless this instruction forms part of the block's
250 //   entry requirements in which case the insertion is deferred until Phase 3
251 //   when predecessor exit values are known), and move the insertion point to
252 //   this instruction
253 // - if this is a setreg instruction we treat it as an incompatible instruction.
254 //   This is sub-optimal but avoids some nasty corner cases, and is expected to
255 //   occur very rarely.
256 // - on exit we have set the Require, Change, and initial Exit modes.
257 void SIModeRegister::processBlockPhase1(MachineBasicBlock &MBB,
258                                         const SIInstrInfo *TII) {
259   auto NewInfo = std::make_unique<BlockData>();
260   MachineInstr *InsertionPoint = nullptr;
261   // RequirePending is used to indicate whether we are collecting the initial
262   // requirements for the block, and need to defer the first InsertionPoint to
263   // Phase 3. It is set to false once we have set FirstInsertionPoint, or when
264   // we discover an explicit setreg that means this block doesn't have any
265   // initial requirements.
266   bool RequirePending = true;
267   Status IPChange;
268   for (MachineInstr &MI : MBB) {
269     Status InstrMode = getInstructionMode(MI, TII);
270     if (MI.getOpcode() == AMDGPU::S_SETREG_B32 ||
271         MI.getOpcode() == AMDGPU::S_SETREG_B32_mode ||
272         MI.getOpcode() == AMDGPU::S_SETREG_IMM32_B32 ||
273         MI.getOpcode() == AMDGPU::S_SETREG_IMM32_B32_mode) {
274       // We preserve any explicit mode register setreg instruction we encounter,
275       // as we assume it has been inserted by a higher authority (this is
276       // likely to be a very rare occurrence).
277       unsigned Dst = TII->getNamedOperand(MI, AMDGPU::OpName::simm16)->getImm();
278       using namespace AMDGPU::Hwreg;
279       auto [Id, Offset, Width] = HwregEncoding::decode(Dst);
280       if (Id != ID_MODE)
281         continue;
282 
283       unsigned Mask = maskTrailingOnes<unsigned>(Width) << Offset;
284 
285       // If an InsertionPoint is set we will insert a setreg there.
286       if (InsertionPoint) {
287         insertSetreg(MBB, InsertionPoint, TII, IPChange.delta(NewInfo->Change));
288         InsertionPoint = nullptr;
289       }
290       // If this is an immediate then we know the value being set, but if it is
291       // not an immediate then we treat the modified bits of the mode register
292       // as unknown.
293       if (MI.getOpcode() == AMDGPU::S_SETREG_IMM32_B32 ||
294           MI.getOpcode() == AMDGPU::S_SETREG_IMM32_B32_mode) {
295         unsigned Val = TII->getNamedOperand(MI, AMDGPU::OpName::imm)->getImm();
296         unsigned Mode = (Val << Offset) & Mask;
297         Status Setreg = Status(Mask, Mode);
298         // If we haven't already set the initial requirements for the block we
299         // don't need to as the requirements start from this explicit setreg.
300         RequirePending = false;
301         NewInfo->Change = NewInfo->Change.merge(Setreg);
302       } else {
303         NewInfo->Change = NewInfo->Change.mergeUnknown(Mask);
304       }
305     } else if (!NewInfo->Change.isCompatible(InstrMode)) {
306       // This instruction uses the Mode register and its requirements aren't
307       // compatible with the current mode.
308       if (InsertionPoint) {
309         // If the required mode change cannot be included in the current
310         // InsertionPoint changes, we need a setreg and start a new
311         // InsertionPoint.
312         if (!IPChange.delta(NewInfo->Change).isCombinable(InstrMode)) {
313           if (RequirePending) {
314             // This is the first insertionPoint in the block so we will defer
315             // the insertion of the setreg to Phase 3 where we know whether or
316             // not it is actually needed.
317             NewInfo->FirstInsertionPoint = InsertionPoint;
318             NewInfo->Require = NewInfo->Change;
319             RequirePending = false;
320           } else {
321             insertSetreg(MBB, InsertionPoint, TII,
322                          IPChange.delta(NewInfo->Change));
323             IPChange = NewInfo->Change;
324           }
325           // Set the new InsertionPoint
326           InsertionPoint = &MI;
327         }
328         NewInfo->Change = NewInfo->Change.merge(InstrMode);
329       } else {
330         // No InsertionPoint is currently set - this is either the first in
331         // the block or we have previously seen an explicit setreg.
332         InsertionPoint = &MI;
333         IPChange = NewInfo->Change;
334         NewInfo->Change = NewInfo->Change.merge(InstrMode);
335       }
336     }
337   }
338   if (RequirePending) {
339     // If we haven't yet set the initial requirements for the block we set them
340     // now.
341     NewInfo->FirstInsertionPoint = InsertionPoint;
342     NewInfo->Require = NewInfo->Change;
343   } else if (InsertionPoint) {
344     // We need to insert a setreg at the InsertionPoint
345     insertSetreg(MBB, InsertionPoint, TII, IPChange.delta(NewInfo->Change));
346   }
347   NewInfo->Exit = NewInfo->Change;
348   BlockInfo[MBB.getNumber()] = std::move(NewInfo);
349 }
350 
351 // In Phase 2 we revisit each block and calculate the common Mode register
352 // value provided by all predecessor blocks. If the Exit value for the block
353 // is changed, then we add the successor blocks to the worklist so that the
354 // exit value is propagated.
355 void SIModeRegister::processBlockPhase2(MachineBasicBlock &MBB,
356                                         const SIInstrInfo *TII) {
357   bool RevisitRequired = false;
358   bool ExitSet = false;
359   unsigned ThisBlock = MBB.getNumber();
360   if (MBB.pred_empty()) {
361     // There are no predecessors, so use the default starting status.
362     BlockInfo[ThisBlock]->Pred = DefaultStatus;
363     ExitSet = true;
364   } else {
365     // Build a status that is common to all the predecessors by intersecting
366     // all the predecessor exit status values.
367     // Mask bits (which represent the Mode bits with a known value) can only be
368     // added by explicit SETREG instructions or the initial default value -
369     // the intersection process may remove Mask bits.
370     // If we find a predecessor that has not yet had an exit value determined
371     // (this can happen for example if a block is its own predecessor) we defer
372     // use of that value as the Mask will be all zero, and we will revisit this
373     // block again later (unless the only predecessor without an exit value is
374     // this block).
375     MachineBasicBlock::pred_iterator P = MBB.pred_begin(), E = MBB.pred_end();
376     MachineBasicBlock &PB = *(*P);
377     unsigned PredBlock = PB.getNumber();
378     if ((ThisBlock == PredBlock) && (std::next(P) == E)) {
379       BlockInfo[ThisBlock]->Pred = DefaultStatus;
380       ExitSet = true;
381     } else if (BlockInfo[PredBlock]->ExitSet) {
382       BlockInfo[ThisBlock]->Pred = BlockInfo[PredBlock]->Exit;
383       ExitSet = true;
384     } else if (PredBlock != ThisBlock)
385       RevisitRequired = true;
386 
387     for (P = std::next(P); P != E; P = std::next(P)) {
388       MachineBasicBlock *Pred = *P;
389       unsigned PredBlock = Pred->getNumber();
390       if (BlockInfo[PredBlock]->ExitSet) {
391         if (BlockInfo[ThisBlock]->ExitSet) {
392           BlockInfo[ThisBlock]->Pred =
393               BlockInfo[ThisBlock]->Pred.intersect(BlockInfo[PredBlock]->Exit);
394         } else {
395           BlockInfo[ThisBlock]->Pred = BlockInfo[PredBlock]->Exit;
396         }
397         ExitSet = true;
398       } else if (PredBlock != ThisBlock)
399         RevisitRequired = true;
400     }
401   }
402   Status TmpStatus =
403       BlockInfo[ThisBlock]->Pred.merge(BlockInfo[ThisBlock]->Change);
404   if (BlockInfo[ThisBlock]->Exit != TmpStatus) {
405     BlockInfo[ThisBlock]->Exit = TmpStatus;
406     // Add the successors to the work list so we can propagate the changed exit
407     // status.
408     for (MachineBasicBlock *Succ : MBB.successors())
409       Phase2List.push(Succ);
410   }
411   BlockInfo[ThisBlock]->ExitSet = ExitSet;
412   if (RevisitRequired)
413     Phase2List.push(&MBB);
414 }
415 
416 // In Phase 3 we revisit each block and if it has an insertion point defined we
417 // check whether the predecessor mode meets the block's entry requirements. If
418 // not we insert an appropriate setreg instruction to modify the Mode register.
419 void SIModeRegister::processBlockPhase3(MachineBasicBlock &MBB,
420                                         const SIInstrInfo *TII) {
421   unsigned ThisBlock = MBB.getNumber();
422   if (!BlockInfo[ThisBlock]->Pred.isCompatible(BlockInfo[ThisBlock]->Require)) {
423     Status Delta =
424         BlockInfo[ThisBlock]->Pred.delta(BlockInfo[ThisBlock]->Require);
425     if (BlockInfo[ThisBlock]->FirstInsertionPoint)
426       insertSetreg(MBB, BlockInfo[ThisBlock]->FirstInsertionPoint, TII, Delta);
427     else
428       insertSetreg(MBB, &MBB.instr_front(), TII, Delta);
429   }
430 }
431 
432 bool SIModeRegister::runOnMachineFunction(MachineFunction &MF) {
433   // Constrained FP intrinsics are used to support non-default rounding modes.
434   // strictfp attribute is required to mark functions with strict FP semantics
435   // having constrained FP intrinsics. This pass fixes up operations that uses
436   // a non-default rounding mode for non-strictfp functions. But it should not
437   // assume or modify any default rounding modes in case of strictfp functions.
438   const Function &F = MF.getFunction();
439   if (F.hasFnAttribute(llvm::Attribute::StrictFP))
440     return Changed;
441   BlockInfo.resize(MF.getNumBlockIDs());
442   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
443   const SIInstrInfo *TII = ST.getInstrInfo();
444 
445   // Processing is performed in a number of phases
446 
447   // Phase 1 - determine the initial mode required by each block, and add setreg
448   // instructions for intra block requirements.
449   for (MachineBasicBlock &BB : MF)
450     processBlockPhase1(BB, TII);
451 
452   // Phase 2 - determine the exit mode from each block. We add all blocks to the
453   // list here, but will also add any that need to be revisited during Phase 2
454   // processing.
455   for (MachineBasicBlock &BB : MF)
456     Phase2List.push(&BB);
457   while (!Phase2List.empty()) {
458     processBlockPhase2(*Phase2List.front(), TII);
459     Phase2List.pop();
460   }
461 
462   // Phase 3 - add an initial setreg to each block where the required entry mode
463   // is not satisfied by the exit mode of all its predecessors.
464   for (MachineBasicBlock &BB : MF)
465     processBlockPhase3(BB, TII);
466 
467   BlockInfo.clear();
468 
469   return Changed;
470 }
471