1.. role:: raw-html(raw) 2 :format: html 3 4======================== 5LLVM Bitcode File Format 6======================== 7 8.. contents:: 9 :local: 10 11Abstract 12======== 13 14This document describes the LLVM bitstream file format and the encoding of the 15LLVM IR into it. 16 17Overview 18======== 19 20What is commonly known as the LLVM bitcode file format (also, sometimes 21anachronistically known as bytecode) is actually two things: a `bitstream 22container format`_ and an `encoding of LLVM IR`_ into the container format. 23 24The bitstream format is an abstract encoding of structured data, very similar to 25XML in some ways. Like XML, bitstream files contain tags, and nested 26structures, and you can parse the file without having to understand the tags. 27Unlike XML, the bitstream format is a binary encoding, and unlike XML it 28provides a mechanism for the file to self-describe "abbreviations", which are 29effectively size optimizations for the content. 30 31LLVM IR files may be optionally embedded into a `wrapper`_ structure, or in a 32`native object file`_. Both of these mechanisms make it easy to embed extra 33data along with LLVM IR files. 34 35This document first describes the LLVM bitstream format, describes the wrapper 36format, then describes the record structure used by LLVM IR files. 37 38.. _bitstream container format: 39 40Bitstream Format 41================ 42 43The bitstream format is literally a stream of bits, with a very simple 44structure. This structure consists of the following concepts: 45 46* A "`magic number`_" that identifies the contents of the stream. 47 48* Encoding `primitives`_ like variable bit-rate integers. 49 50* `Blocks`_, which define nested content. 51 52* `Data Records`_, which describe entities within the file. 53 54* Abbreviations, which specify compression optimizations for the file. 55 56Note that the :doc:`llvm-bcanalyzer <CommandGuide/llvm-bcanalyzer>` tool can be 57used to dump and inspect arbitrary bitstreams, which is very useful for 58understanding the encoding. 59 60.. _magic number: 61 62Magic Numbers 63------------- 64 65The first four bytes of a bitstream are used as an application-specific magic 66number. Generic bitcode tools may look at the first four bytes to determine 67whether the stream is a known stream type. However, these tools should *not* 68determine whether a bitstream is valid based on its magic number alone. New 69application-specific bitstream formats are being developed all the time; tools 70should not reject them just because they have a hitherto unseen magic number. 71 72.. _primitives: 73 74Primitives 75---------- 76 77A bitstream literally consists of a stream of bits, which are read in order 78starting with the least significant bit of each byte. The stream is made up of 79a number of primitive values that encode a stream of unsigned integer values. 80These integers are encoded in two ways: either as `Fixed Width Integers`_ or as 81`Variable Width Integers`_. 82 83.. _Fixed Width Integers: 84.. _fixed-width value: 85 86Fixed Width Integers 87^^^^^^^^^^^^^^^^^^^^ 88 89Fixed-width integer values have their low bits emitted directly to the file. 90For example, a 3-bit integer value encodes 1 as 001. Fixed width integers are 91used when there are a well-known number of options for a field. For example, 92boolean values are usually encoded with a 1-bit wide integer. 93 94.. _Variable Width Integers: 95.. _Variable Width Integer: 96.. _variable-width value: 97 98Variable Width Integers 99^^^^^^^^^^^^^^^^^^^^^^^ 100 101Variable-width integer (VBR) values encode values of arbitrary size, optimizing 102for the case where the values are small. Given a 4-bit VBR field, any 3-bit 103value (0 through 7) is encoded directly, with the high bit set to zero. Values 104larger than N-1 bits emit their bits in a series of N-1 bit chunks, where all 105but the last set the high bit. 106 107For example, the value 30 (0x1E) is encoded as 62 (0b0011'1110) when emitted as 108a vbr4 value. The first set of four bits starting from the least significant 109indicates the value 6 (110) with a continuation piece (indicated by a high bit 110of 1). The next set of four bits indicates a value of 24 (011 << 3) with no 111continuation. The sum (6+24) yields the value 30. 112 113.. _char6-encoded value: 114 1156-bit characters 116^^^^^^^^^^^^^^^^ 117 1186-bit characters encode common characters into a fixed 6-bit field. They 119represent the following characters with the following 6-bit values: 120 121:: 122 123 'a' .. 'z' --- 0 .. 25 124 'A' .. 'Z' --- 26 .. 51 125 '0' .. '9' --- 52 .. 61 126 '.' --- 62 127 '_' --- 63 128 129This encoding is only suitable for encoding characters and strings that consist 130only of the above characters. It is completely incapable of encoding characters 131not in the set. 132 133Word Alignment 134^^^^^^^^^^^^^^ 135 136Occasionally, it is useful to emit zero bits until the bitstream is a multiple 137of 32 bits. This ensures that the bit position in the stream can be represented 138as a multiple of 32-bit words. 139 140Abbreviation IDs 141---------------- 142 143A bitstream is a sequential series of `Blocks`_ and `Data Records`_. Both of 144these start with an abbreviation ID encoded as a fixed-bitwidth field. The 145width is specified by the current block, as described below. The value of the 146abbreviation ID specifies either a builtin ID (which have special meanings, 147defined below) or one of the abbreviation IDs defined for the current block by 148the stream itself. 149 150The set of builtin abbrev IDs is: 151 152* 0 - `END_BLOCK`_ --- This abbrev ID marks the end of the current block. 153 154* 1 - `ENTER_SUBBLOCK`_ --- This abbrev ID marks the beginning of a new 155 block. 156 157* 2 - `DEFINE_ABBREV`_ --- This defines a new abbreviation. 158 159* 3 - `UNABBREV_RECORD`_ --- This ID specifies the definition of an 160 unabbreviated record. 161 162Abbreviation IDs 4 and above are defined by the stream itself, and specify an 163`abbreviated record encoding`_. 164 165.. _Blocks: 166 167Blocks 168------ 169 170Blocks in a bitstream denote nested regions of the stream, and are identified by 171a content-specific id number (for example, LLVM IR uses an ID of 12 to represent 172function bodies). Block IDs 0-7 are reserved for `standard blocks`_ whose 173meaning is defined by Bitcode; block IDs 8 and greater are application 174specific. Nested blocks capture the hierarchical structure of the data encoded 175in it, and various properties are associated with blocks as the file is parsed. 176Block definitions allow the reader to efficiently skip blocks in constant time 177if the reader wants a summary of blocks, or if it wants to efficiently skip data 178it does not understand. The LLVM IR reader uses this mechanism to skip function 179bodies, lazily reading them on demand. 180 181When reading and encoding the stream, several properties are maintained for the 182block. In particular, each block maintains: 183 184#. A current abbrev id width. This value starts at 2 at the beginning of the 185 stream, and is set every time a block record is entered. The block entry 186 specifies the abbrev id width for the body of the block. 187 188#. A set of abbreviations. Abbreviations may be defined within a block, in 189 which case they are only defined in that block (neither subblocks nor 190 enclosing blocks see the abbreviation). Abbreviations can also be defined 191 inside a `BLOCKINFO`_ block, in which case they are defined in all blocks 192 that match the ID that the ``BLOCKINFO`` block is describing. 193 194As sub blocks are entered, these properties are saved and the new sub-block has 195its own set of abbreviations, and its own abbrev id width. When a sub-block is 196popped, the saved values are restored. 197 198.. _ENTER_SUBBLOCK: 199 200ENTER_SUBBLOCK Encoding 201^^^^^^^^^^^^^^^^^^^^^^^ 202 203:raw-html:`<tt>` 204[ENTER_SUBBLOCK, blockid\ :sub:`vbr8`, newabbrevlen\ :sub:`vbr4`, <align32bits>, blocklen_32] 205:raw-html:`</tt>` 206 207The ``ENTER_SUBBLOCK`` abbreviation ID specifies the start of a new block 208record. The ``blockid`` value is encoded as an 8-bit VBR identifier, and 209indicates the type of block being entered, which can be a `standard block`_ or 210an application-specific block. The ``newabbrevlen`` value is a 4-bit VBR, which 211specifies the abbrev id width for the sub-block. The ``blocklen`` value is a 21232-bit aligned value that specifies the size of the subblock in 32-bit 213words. This value allows the reader to skip over the entire block in one jump. 214 215.. _END_BLOCK: 216 217END_BLOCK Encoding 218^^^^^^^^^^^^^^^^^^ 219 220``[END_BLOCK, <align32bits>]`` 221 222The ``END_BLOCK`` abbreviation ID specifies the end of the current block record. 223Its end is aligned to 32-bits to ensure that the size of the block is an even 224multiple of 32-bits. 225 226.. _Data Records: 227 228Data Records 229------------ 230 231Data records consist of a record code and a number of (up to) 64-bit integer 232values. The interpretation of the code and values is application specific and 233may vary between different block types. Records can be encoded either using an 234unabbrev record, or with an abbreviation. In the LLVM IR format, for example, 235there is a record which encodes the target triple of a module. The code is 236``MODULE_CODE_TRIPLE``, and the values of the record are the ASCII codes for the 237characters in the string. 238 239.. _UNABBREV_RECORD: 240 241UNABBREV_RECORD Encoding 242^^^^^^^^^^^^^^^^^^^^^^^^ 243 244:raw-html:`<tt>` 245[UNABBREV_RECORD, code\ :sub:`vbr6`, numops\ :sub:`vbr6`, op0\ :sub:`vbr6`, op1\ :sub:`vbr6`, ...] 246:raw-html:`</tt>` 247 248An ``UNABBREV_RECORD`` provides a default fallback encoding, which is both 249completely general and extremely inefficient. It can describe an arbitrary 250record by emitting the code and operands as VBRs. 251 252For example, emitting an LLVM IR target triple as an unabbreviated record 253requires emitting the ``UNABBREV_RECORD`` abbrevid, a vbr6 for the 254``MODULE_CODE_TRIPLE`` code, a vbr6 for the length of the string, which is equal 255to the number of operands, and a vbr6 for each character. Because there are no 256letters with values less than 32, each letter would need to be emitted as at 257least a two-part VBR, which means that each letter would require at least 12 258bits. This is not an efficient encoding, but it is fully general. 259 260.. _abbreviated record encoding: 261 262Abbreviated Record Encoding 263^^^^^^^^^^^^^^^^^^^^^^^^^^^ 264 265``[<abbrevid>, fields...]`` 266 267An abbreviated record is an abbreviation id followed by a set of fields that are 268encoded according to the `abbreviation definition`_. This allows records to be 269encoded significantly more densely than records encoded with the 270`UNABBREV_RECORD`_ type, and allows the abbreviation types to be specified in 271the stream itself, which allows the files to be completely self describing. The 272actual encoding of abbreviations is defined below. 273 274The record code, which is the first field of an abbreviated record, may be 275encoded in the abbreviation definition (as a literal operand) or supplied in the 276abbreviated record (as a Fixed or VBR operand value). 277 278.. _abbreviation definition: 279 280Abbreviations 281------------- 282 283Abbreviations are an important form of compression for bitstreams. The idea is 284to specify a dense encoding for a class of records once, then use that encoding 285to emit many records. It takes space to emit the encoding into the file, but 286the space is recouped (hopefully plus some) when the records that use it are 287emitted. 288 289Abbreviations can be determined dynamically per client, per file. Because the 290abbreviations are stored in the bitstream itself, different streams of the same 291format can contain different sets of abbreviations according to the needs of the 292specific stream. As a concrete example, LLVM IR files usually emit an 293abbreviation for binary operators. If a specific LLVM module contained no or 294few binary operators, the abbreviation does not need to be emitted. 295 296.. _DEFINE_ABBREV: 297 298DEFINE_ABBREV Encoding 299^^^^^^^^^^^^^^^^^^^^^^ 300 301:raw-html:`<tt>` 302[DEFINE_ABBREV, numabbrevops\ :sub:`vbr5`, abbrevop0, abbrevop1, ...] 303:raw-html:`</tt>` 304 305A ``DEFINE_ABBREV`` record adds an abbreviation to the list of currently defined 306abbreviations in the scope of this block. This definition only exists inside 307this immediate block --- it is not visible in subblocks or enclosing blocks. 308Abbreviations are implicitly assigned IDs sequentially starting from 4 (the 309first application-defined abbreviation ID). Any abbreviations defined in a 310``BLOCKINFO`` record for the particular block type receive IDs first, in order, 311followed by any abbreviations defined within the block itself. Abbreviated data 312records reference this ID to indicate what abbreviation they are invoking. 313 314An abbreviation definition consists of the ``DEFINE_ABBREV`` abbrevid followed 315by a VBR that specifies the number of abbrev operands, then the abbrev operands 316themselves. Abbreviation operands come in three forms. They all start with a 317single bit that indicates whether the abbrev operand is a literal operand (when 318the bit is 1) or an encoding operand (when the bit is 0). 319 320#. Literal operands --- :raw-html:`<tt>` [1\ :sub:`1`, litvalue\ 321 :sub:`vbr8`] :raw-html:`</tt>` --- Literal operands specify that the value in 322 the result is always a single specific value. This specific value is emitted 323 as a vbr8 after the bit indicating that it is a literal operand. 324 325#. Encoding info without data --- :raw-html:`<tt>` [0\ :sub:`1`, encoding\ 326 :sub:`3`] :raw-html:`</tt>` --- Operand encodings that do not have extra data 327 are just emitted as their code. 328 329#. Encoding info with data --- :raw-html:`<tt>` [0\ :sub:`1`, encoding\ 330 :sub:`3`, value\ :sub:`vbr5`] :raw-html:`</tt>` --- Operand encodings that do 331 have extra data are emitted as their code, followed by the extra data. 332 333The possible operand encodings are: 334 335* Fixed (code 1): The field should be emitted as a `fixed-width value`_, whose 336 width is specified by the operand's extra data. 337 338* VBR (code 2): The field should be emitted as a `variable-width value`_, whose 339 width is specified by the operand's extra data. 340 341* Array (code 3): This field is an array of values. The array operand has no 342 extra data, but expects another operand to follow it, indicating the element 343 type of the array. When reading an array in an abbreviated record, the first 344 integer is a vbr6 that indicates the array length, followed by the encoded 345 elements of the array. An array may only occur as the last operand of an 346 abbreviation (except for the one final operand that gives the array's 347 type). 348 349* Char6 (code 4): This field should be emitted as a `char6-encoded value`_. 350 This operand type takes no extra data. Char6 encoding is normally used as an 351 array element type. 352 353* Blob (code 5): This field is emitted as a vbr6, followed by padding to a 354 32-bit boundary (for alignment) and an array of 8-bit objects. The array of 355 bytes is further followed by tail padding to ensure that its total length is a 356 multiple of 4 bytes. This makes it very efficient for the reader to decode 357 the data without having to make a copy of it: it can use a pointer to the data 358 in the mapped in file and poke directly at it. A blob may only occur as the 359 last operand of an abbreviation. 360 361For example, target triples in LLVM modules are encoded as a record of the form 362``[TRIPLE, 'a', 'b', 'c', 'd']``. Consider if the bitstream emitted the 363following abbrev entry: 364 365:: 366 367 [0, Fixed, 4] 368 [0, Array] 369 [0, Char6] 370 371When emitting a record with this abbreviation, the above entry would be emitted 372as: 373 374:raw-html:`<tt><blockquote>` 375[4\ :sub:`abbrevwidth`, 2\ :sub:`4`, 4\ :sub:`vbr6`, 0\ :sub:`6`, 1\ :sub:`6`, 2\ :sub:`6`, 3\ :sub:`6`] 376:raw-html:`</blockquote></tt>` 377 378These values are: 379 380#. The first value, 4, is the abbreviation ID for this abbreviation. 381 382#. The second value, 2, is the record code for ``TRIPLE`` records within LLVM IR 383 file ``MODULE_BLOCK`` blocks. 384 385#. The third value, 4, is the length of the array. 386 387#. The rest of the values are the char6 encoded values for ``"abcd"``. 388 389With this abbreviation, the triple is emitted with only 37 bits (assuming a 390abbrev id width of 3). Without the abbreviation, significantly more space would 391be required to emit the target triple. Also, because the ``TRIPLE`` value is 392not emitted as a literal in the abbreviation, the abbreviation can also be used 393for any other string value. 394 395.. _standard blocks: 396.. _standard block: 397 398Standard Blocks 399--------------- 400 401In addition to the basic block structure and record encodings, the bitstream 402also defines specific built-in block types. These block types specify how the 403stream is to be decoded or other metadata. In the future, new standard blocks 404may be added. Block IDs 0-7 are reserved for standard blocks. 405 406.. _BLOCKINFO: 407 408#0 - BLOCKINFO Block 409^^^^^^^^^^^^^^^^^^^^ 410 411The ``BLOCKINFO`` block allows the description of metadata for other blocks. 412The currently specified records are: 413 414:: 415 416 [SETBID (#1), blockid] 417 [DEFINE_ABBREV, ...] 418 [BLOCKNAME, ...name...] 419 [SETRECORDNAME, RecordID, ...name...] 420 421The ``SETBID`` record (code 1) indicates which block ID is being described. 422``SETBID`` records can occur multiple times throughout the block to change which 423block ID is being described. There must be a ``SETBID`` record prior to any 424other records. 425 426Standard ``DEFINE_ABBREV`` records can occur inside ``BLOCKINFO`` blocks, but 427unlike their occurrence in normal blocks, the abbreviation is defined for blocks 428matching the block ID we are describing, *not* the ``BLOCKINFO`` block 429itself. The abbreviations defined in ``BLOCKINFO`` blocks receive abbreviation 430IDs as described in `DEFINE_ABBREV`_. 431 432The ``BLOCKNAME`` record (code 2) can optionally occur in this block. The 433elements of the record are the bytes of the string name of the block. 434llvm-bcanalyzer can use this to dump out bitcode files symbolically. 435 436The ``SETRECORDNAME`` record (code 3) can also optionally occur in this block. 437The first operand value is a record ID number, and the rest of the elements of 438the record are the bytes for the string name of the record. llvm-bcanalyzer can 439use this to dump out bitcode files symbolically. 440 441Note that although the data in ``BLOCKINFO`` blocks is described as "metadata," 442the abbreviations they contain are essential for parsing records from the 443corresponding blocks. It is not safe to skip them. 444 445.. _wrapper: 446 447Bitcode Wrapper Format 448====================== 449 450Bitcode files for LLVM IR may optionally be wrapped in a simple wrapper 451structure. This structure contains a simple header that indicates the offset 452and size of the embedded BC file. This allows additional information to be 453stored alongside the BC file. The structure of this file header is: 454 455:raw-html:`<tt><blockquote>` 456[Magic\ :sub:`32`, Version\ :sub:`32`, Offset\ :sub:`32`, Size\ :sub:`32`, CPUType\ :sub:`32`] 457:raw-html:`</blockquote></tt>` 458 459Each of the fields are 32-bit fields stored in little endian form (as with the 460rest of the bitcode file fields). The Magic number is always ``0x0B17C0DE`` and 461the version is currently always ``0``. The Offset field is the offset in bytes 462to the start of the bitcode stream in the file, and the Size field is the size 463in bytes of the stream. CPUType is a target-specific value that can be used to 464encode the CPU of the target. 465 466.. _native object file: 467 468Native Object File Wrapper Format 469================================= 470 471Bitcode files for LLVM IR may also be wrapped in a native object file 472(i.e. ELF, COFF, Mach-O). The bitcode must be stored in a section of the object 473file named ``__LLVM,__bitcode`` for MachO and ``.llvmbc`` for the other object 474formats. This wrapper format is useful for accommodating LTO in compilation 475pipelines where intermediate objects must be native object files which contain 476metadata in other sections. 477 478Not all tools support this format. For example, lld and the gold plugin will 479ignore these sections when linking object files. 480 481.. _encoding of LLVM IR: 482 483LLVM IR Encoding 484================ 485 486LLVM IR is encoded into a bitstream by defining blocks and records. It uses 487blocks for things like constant pools, functions, symbol tables, etc. It uses 488records for things like instructions, global variable descriptors, type 489descriptions, etc. This document does not describe the set of abbreviations 490that the writer uses, as these are fully self-described in the file, and the 491reader is not allowed to build in any knowledge of this. 492 493Basics 494------ 495 496LLVM IR Magic Number 497^^^^^^^^^^^^^^^^^^^^ 498 499The magic number for LLVM IR files is: 500 501:raw-html:`<tt><blockquote>` 502['B'\ :sub:`8`, 'C'\ :sub:`8`, 0x0\ :sub:`4`, 0xC\ :sub:`4`, 0xE\ :sub:`4`, 0xD\ :sub:`4`] 503:raw-html:`</blockquote></tt>` 504 505.. _Signed VBRs: 506 507Signed VBRs 508^^^^^^^^^^^ 509 510`Variable Width Integer`_ encoding is an efficient way to encode arbitrary sized 511unsigned values, but is an extremely inefficient for encoding signed values, as 512signed values are otherwise treated as maximally large unsigned values. 513 514As such, signed VBR values of a specific width are emitted as follows: 515 516* Positive values are emitted as VBRs of the specified width, but with their 517 value shifted left by one. 518 519* Negative values are emitted as VBRs of the specified width, but the negated 520 value is shifted left by one, and the low bit is set. 521 522With this encoding, small positive and small negative values can both be emitted 523efficiently. Signed VBR encoding is used in ``CST_CODE_INTEGER`` and 524``CST_CODE_WIDE_INTEGER`` records within ``CONSTANTS_BLOCK`` blocks. 525It is also used for phi instruction operands in `MODULE_CODE_VERSION`_ 1. 526 527LLVM IR Blocks 528^^^^^^^^^^^^^^ 529 530LLVM IR is defined with the following blocks: 531 532* 8 --- `MODULE_BLOCK`_ --- This is the top-level block that contains the entire 533 module, and describes a variety of per-module information. 534 535* 9 --- `PARAMATTR_BLOCK`_ --- This enumerates the parameter attributes. 536 537* 10 --- `PARAMATTR_GROUP_BLOCK`_ --- This describes the attribute group table. 538 539* 11 --- `CONSTANTS_BLOCK`_ --- This describes constants for a module or 540 function. 541 542* 12 --- `FUNCTION_BLOCK`_ --- This describes a function body. 543 544* 14 --- `VALUE_SYMTAB_BLOCK`_ --- This describes a value symbol table. 545 546* 15 --- `METADATA_BLOCK`_ --- This describes metadata items. 547 548* 16 --- `METADATA_ATTACHMENT`_ --- This contains records associating metadata 549 with function instruction values. 550 551* 17 --- `TYPE_BLOCK`_ --- This describes all of the types in the module. 552 553* 23 --- `STRTAB_BLOCK`_ --- The bitcode file's string table. 554 555.. _MODULE_BLOCK: 556 557MODULE_BLOCK Contents 558--------------------- 559 560The ``MODULE_BLOCK`` block (id 8) is the top-level block for LLVM bitcode files, 561and each module in a bitcode file must contain exactly one. A bitcode file with 562multi-module bitcode is valid. In addition to records (described below) 563containing information about the module, a ``MODULE_BLOCK`` block may contain 564the following sub-blocks: 565 566* `BLOCKINFO`_ 567* `PARAMATTR_BLOCK`_ 568* `PARAMATTR_GROUP_BLOCK`_ 569* `TYPE_BLOCK`_ 570* `VALUE_SYMTAB_BLOCK`_ 571* `CONSTANTS_BLOCK`_ 572* `FUNCTION_BLOCK`_ 573* `METADATA_BLOCK`_ 574 575.. _MODULE_CODE_VERSION: 576 577MODULE_CODE_VERSION Record 578^^^^^^^^^^^^^^^^^^^^^^^^^^ 579 580``[VERSION, version#]`` 581 582The ``VERSION`` record (code 1) contains a single value indicating the format 583version. Versions 0, 1 and 2 are supported at this time. The difference between 584version 0 and 1 is in the encoding of instruction operands in 585each `FUNCTION_BLOCK`_. 586 587In version 0, each value defined by an instruction is assigned an ID 588unique to the function. Function-level value IDs are assigned starting from 589``NumModuleValues`` since they share the same namespace as module-level 590values. The value enumerator resets after each function. When a value is 591an operand of an instruction, the value ID is used to represent the operand. 592For large functions or large modules, these operand values can be large. 593 594The encoding in version 1 attempts to avoid large operand values 595in common cases. Instead of using the value ID directly, operands are 596encoded as relative to the current instruction. Thus, if an operand 597is the value defined by the previous instruction, the operand 598will be encoded as 1. 599 600For example, instead of 601 602.. code-block:: none 603 604 #n = load #n-1 605 #n+1 = icmp eq #n, #const0 606 br #n+1, label #(bb1), label #(bb2) 607 608version 1 will encode the instructions as 609 610.. code-block:: none 611 612 #n = load #1 613 #n+1 = icmp eq #1, (#n+1)-#const0 614 br #1, label #(bb1), label #(bb2) 615 616Note in the example that operands which are constants also use 617the relative encoding, while operands like basic block labels 618do not use the relative encoding. 619 620Forward references will result in a negative value. 621This can be inefficient, as operands are normally encoded 622as unsigned VBRs. However, forward references are rare, except in the 623case of phi instructions. For phi instructions, operands are encoded as 624`Signed VBRs`_ to deal with forward references. 625 626In version 2, the meaning of module records ``FUNCTION``, ``GLOBALVAR``, 627``ALIAS``, ``IFUNC`` and ``COMDAT`` change such that the first two operands 628specify an offset and size of a string in a string table (see `STRTAB_BLOCK 629Contents`_), the function name is removed from the ``FNENTRY`` record in the 630value symbol table, and the top-level ``VALUE_SYMTAB_BLOCK`` may only contain 631``FNENTRY`` records. 632 633MODULE_CODE_TRIPLE Record 634^^^^^^^^^^^^^^^^^^^^^^^^^ 635 636``[TRIPLE, ...string...]`` 637 638The ``TRIPLE`` record (code 2) contains a variable number of values representing 639the bytes of the ``target triple`` specification string. 640 641MODULE_CODE_DATALAYOUT Record 642^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 643 644``[DATALAYOUT, ...string...]`` 645 646The ``DATALAYOUT`` record (code 3) contains a variable number of values 647representing the bytes of the ``target datalayout`` specification string. 648 649MODULE_CODE_ASM Record 650^^^^^^^^^^^^^^^^^^^^^^ 651 652``[ASM, ...string...]`` 653 654The ``ASM`` record (code 4) contains a variable number of values representing 655the bytes of ``module asm`` strings, with individual assembly blocks separated 656by newline (ASCII 10) characters. 657 658.. _MODULE_CODE_SECTIONNAME: 659 660MODULE_CODE_SECTIONNAME Record 661^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 662 663``[SECTIONNAME, ...string...]`` 664 665The ``SECTIONNAME`` record (code 5) contains a variable number of values 666representing the bytes of a single section name string. There should be one 667``SECTIONNAME`` record for each section name referenced (e.g., in global 668variable or function ``section`` attributes) within the module. These records 669can be referenced by the 1-based index in the *section* fields of ``GLOBALVAR`` 670or ``FUNCTION`` records. 671 672MODULE_CODE_DEPLIB Record 673^^^^^^^^^^^^^^^^^^^^^^^^^ 674 675``[DEPLIB, ...string...]`` 676 677The ``DEPLIB`` record (code 6) contains a variable number of values representing 678the bytes of a single dependent library name string, one of the libraries 679mentioned in a ``deplibs`` declaration. There should be one ``DEPLIB`` record 680for each library name referenced. 681 682MODULE_CODE_GLOBALVAR Record 683^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 684 685``[GLOBALVAR, strtab offset, strtab size, pointer type, isconst, initid, linkage, alignment, section, visibility, threadlocal, unnamed_addr, externally_initialized, dllstorageclass, comdat, attributes, preemptionspecifier]`` 686 687The ``GLOBALVAR`` record (code 7) marks the declaration or definition of a 688global variable. The operand fields are: 689 690* *strtab offset*, *strtab size*: Specifies the name of the global variable. 691 See `STRTAB_BLOCK Contents`_. 692 693* *pointer type*: The type index of the pointer type used to point to this 694 global variable 695 696* *isconst*: Non-zero if the variable is treated as constant within the module, 697 or zero if it is not 698 699* *initid*: If non-zero, the value index of the initializer for this variable, 700 plus 1. 701 702.. _linkage type: 703 704* *linkage*: An encoding of the linkage type for this variable: 705 706 * ``external``: code 0 707 * ``weak``: code 1 708 * ``appending``: code 2 709 * ``internal``: code 3 710 * ``linkonce``: code 4 711 * ``dllimport``: code 5 712 * ``dllexport``: code 6 713 * ``extern_weak``: code 7 714 * ``common``: code 8 715 * ``private``: code 9 716 * ``weak_odr``: code 10 717 * ``linkonce_odr``: code 11 718 * ``available_externally``: code 12 719 * deprecated : code 13 720 * deprecated : code 14 721 722* alignment*: The logarithm base 2 of the variable's requested alignment, plus 1 723 724* *section*: If non-zero, the 1-based section index in the table of 725 `MODULE_CODE_SECTIONNAME`_ entries. 726 727.. _visibility: 728 729* *visibility*: If present, an encoding of the visibility of this variable: 730 731 * ``default``: code 0 732 * ``hidden``: code 1 733 * ``protected``: code 2 734 735.. _bcthreadlocal: 736 737* *threadlocal*: If present, an encoding of the thread local storage mode of the 738 variable: 739 740 * ``not thread local``: code 0 741 * ``thread local; default TLS model``: code 1 742 * ``localdynamic``: code 2 743 * ``initialexec``: code 3 744 * ``localexec``: code 4 745 746.. _bcunnamedaddr: 747 748* *unnamed_addr*: If present, an encoding of the ``unnamed_addr`` attribute of this 749 variable: 750 751 * not ``unnamed_addr``: code 0 752 * ``unnamed_addr``: code 1 753 * ``local_unnamed_addr``: code 2 754 755.. _bcdllstorageclass: 756 757* *dllstorageclass*: If present, an encoding of the DLL storage class of this variable: 758 759 * ``default``: code 0 760 * ``dllimport``: code 1 761 * ``dllexport``: code 2 762 763* *comdat*: An encoding of the COMDAT of this function 764 765* *attributes*: If nonzero, the 1-based index into the table of AttributeLists. 766 767.. _bcpreemptionspecifier: 768 769* *preemptionspecifier*: If present, an encoding of the runtime preemption specifier of this variable: 770 771 * ``dso_preemptable``: code 0 772 * ``dso_local``: code 1 773 774.. _FUNCTION: 775 776MODULE_CODE_FUNCTION Record 777^^^^^^^^^^^^^^^^^^^^^^^^^^^ 778 779``[FUNCTION, strtab offset, strtab size, type, callingconv, isproto, linkage, paramattr, alignment, section, visibility, gc, prologuedata, dllstorageclass, comdat, prefixdata, personalityfn, preemptionspecifier]`` 780 781The ``FUNCTION`` record (code 8) marks the declaration or definition of a 782function. The operand fields are: 783 784* *strtab offset*, *strtab size*: Specifies the name of the function. 785 See `STRTAB_BLOCK Contents`_. 786 787* *type*: The type index of the function type describing this function 788 789* *callingconv*: The calling convention number: 790 * ``ccc``: code 0 791 * ``fastcc``: code 8 792 * ``coldcc``: code 9 793 * ``webkit_jscc``: code 12 794 * ``anyregcc``: code 13 795 * ``preserve_mostcc``: code 14 796 * ``preserve_allcc``: code 15 797 * ``swiftcc`` : code 16 798 * ``cxx_fast_tlscc``: code 17 799 * ``tailcc`` : code 18 800 * ``cfguard_checkcc`` : code 19 801 * ``swifttailcc`` : code 20 802 * ``x86_stdcallcc``: code 64 803 * ``x86_fastcallcc``: code 65 804 * ``arm_apcscc``: code 66 805 * ``arm_aapcscc``: code 67 806 * ``arm_aapcs_vfpcc``: code 68 807 808* isproto*: Non-zero if this entry represents a declaration rather than a 809 definition 810 811* *linkage*: An encoding of the `linkage type`_ for this function 812 813* *paramattr*: If nonzero, the 1-based parameter attribute index into the table 814 of `PARAMATTR_CODE_ENTRY`_ entries. 815 816* *alignment*: The logarithm base 2 of the function's requested alignment, plus 817 1 818 819* *section*: If non-zero, the 1-based section index in the table of 820 `MODULE_CODE_SECTIONNAME`_ entries. 821 822* *visibility*: An encoding of the `visibility`_ of this function 823 824* *gc*: If present and nonzero, the 1-based garbage collector index in the table 825 of `MODULE_CODE_GCNAME`_ entries. 826 827* *unnamed_addr*: If present, an encoding of the 828 :ref:`unnamed_addr<bcunnamedaddr>` attribute of this function 829 830* *prologuedata*: If non-zero, the value index of the prologue data for this function, 831 plus 1. 832 833* *dllstorageclass*: An encoding of the 834 :ref:`dllstorageclass<bcdllstorageclass>` of this function 835 836* *comdat*: An encoding of the COMDAT of this function 837 838* *prefixdata*: If non-zero, the value index of the prefix data for this function, 839 plus 1. 840 841* *personalityfn*: If non-zero, the value index of the personality function for this function, 842 plus 1. 843 844* *preemptionspecifier*: If present, an encoding of the :ref:`runtime preemption specifier<bcpreemptionspecifier>` of this function. 845 846MODULE_CODE_ALIAS Record 847^^^^^^^^^^^^^^^^^^^^^^^^ 848 849``[ALIAS, strtab offset, strtab size, alias type, aliasee val#, linkage, visibility, dllstorageclass, threadlocal, unnamed_addr, preemptionspecifier]`` 850 851The ``ALIAS`` record (code 9) marks the definition of an alias. The operand 852fields are 853 854* *strtab offset*, *strtab size*: Specifies the name of the alias. 855 See `STRTAB_BLOCK Contents`_. 856 857* *alias type*: The type index of the alias 858 859* *aliasee val#*: The value index of the aliased value 860 861* *linkage*: An encoding of the `linkage type`_ for this alias 862 863* *visibility*: If present, an encoding of the `visibility`_ of the alias 864 865* *dllstorageclass*: If present, an encoding of the 866 :ref:`dllstorageclass<bcdllstorageclass>` of the alias 867 868* *threadlocal*: If present, an encoding of the 869 :ref:`thread local property<bcthreadlocal>` of the alias 870 871* *unnamed_addr*: If present, an encoding of the 872 :ref:`unnamed_addr<bcunnamedaddr>` attribute of this alias 873 874* *preemptionspecifier*: If present, an encoding of the :ref:`runtime preemption specifier<bcpreemptionspecifier>` of this alias. 875 876.. _MODULE_CODE_GCNAME: 877 878MODULE_CODE_GCNAME Record 879^^^^^^^^^^^^^^^^^^^^^^^^^ 880 881``[GCNAME, ...string...]`` 882 883The ``GCNAME`` record (code 11) contains a variable number of values 884representing the bytes of a single garbage collector name string. There should 885be one ``GCNAME`` record for each garbage collector name referenced in function 886``gc`` attributes within the module. These records can be referenced by 1-based 887index in the *gc* fields of ``FUNCTION`` records. 888 889.. _PARAMATTR_BLOCK: 890 891PARAMATTR_BLOCK Contents 892------------------------ 893 894The ``PARAMATTR_BLOCK`` block (id 9) contains a table of entries describing the 895attributes of function parameters. These entries are referenced by 1-based index 896in the *paramattr* field of module block `FUNCTION`_ records, or within the 897*attr* field of function block ``INST_INVOKE`` and ``INST_CALL`` records. 898 899Entries within ``PARAMATTR_BLOCK`` are constructed to ensure that each is unique 900(i.e., no two indices represent equivalent attribute lists). 901 902.. _PARAMATTR_CODE_ENTRY: 903 904PARAMATTR_CODE_ENTRY Record 905^^^^^^^^^^^^^^^^^^^^^^^^^^^ 906 907``[ENTRY, attrgrp0, attrgrp1, ...]`` 908 909The ``ENTRY`` record (code 2) contains a variable number of values describing a 910unique set of function parameter attributes. Each *attrgrp* value is used as a 911key with which to look up an entry in the attribute group table described 912in the ``PARAMATTR_GROUP_BLOCK`` block. 913 914.. _PARAMATTR_CODE_ENTRY_OLD: 915 916PARAMATTR_CODE_ENTRY_OLD Record 917^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 918 919.. note:: 920 This is a legacy encoding for attributes, produced by LLVM versions 3.2 and 921 earlier. It is guaranteed to be understood by the current LLVM version, as 922 specified in the :ref:`IR backwards compatibility` policy. 923 924``[ENTRY, paramidx0, attr0, paramidx1, attr1...]`` 925 926The ``ENTRY`` record (code 1) contains an even number of values describing a 927unique set of function parameter attributes. Each *paramidx* value indicates 928which set of attributes is represented, with 0 representing the return value 929attributes, 0xFFFFFFFF representing function attributes, and other values 930representing 1-based function parameters. Each *attr* value is a bitmap with the 931following interpretation: 932 933* bit 0: ``zeroext`` 934* bit 1: ``signext`` 935* bit 2: ``noreturn`` 936* bit 3: ``inreg`` 937* bit 4: ``sret`` 938* bit 5: ``nounwind`` 939* bit 6: ``noalias`` 940* bit 7: ``byval`` 941* bit 8: ``nest`` 942* bit 9: ``readnone`` 943* bit 10: ``readonly`` 944* bit 11: ``noinline`` 945* bit 12: ``alwaysinline`` 946* bit 13: ``optsize`` 947* bit 14: ``ssp`` 948* bit 15: ``sspreq`` 949* bits 16-31: ``align n`` 950* bit 32: ``nocapture`` 951* bit 33: ``noredzone`` 952* bit 34: ``noimplicitfloat`` 953* bit 35: ``naked`` 954* bit 36: ``inlinehint`` 955* bits 37-39: ``alignstack n``, represented as the logarithm 956 base 2 of the requested alignment, plus 1 957 958.. _PARAMATTR_GROUP_BLOCK: 959 960PARAMATTR_GROUP_BLOCK Contents 961------------------------------ 962 963The ``PARAMATTR_GROUP_BLOCK`` block (id 10) contains a table of entries 964describing the attribute groups present in the module. These entries can be 965referenced within ``PARAMATTR_CODE_ENTRY`` entries. 966 967.. _PARAMATTR_GRP_CODE_ENTRY: 968 969PARAMATTR_GRP_CODE_ENTRY Record 970^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 971 972``[ENTRY, grpid, paramidx, attr0, attr1, ...]`` 973 974The ``ENTRY`` record (code 3) contains *grpid* and *paramidx* values, followed 975by a variable number of values describing a unique group of attributes. The 976*grpid* value is a unique key for the attribute group, which can be referenced 977within ``PARAMATTR_CODE_ENTRY`` entries. The *paramidx* value indicates which 978set of attributes is represented, with 0 representing the return value 979attributes, 0xFFFFFFFF representing function attributes, and other values 980representing 1-based function parameters. 981 982Each *attr* is itself represented as a variable number of values: 983 984``kind, key [, ...], [value [, ...]]`` 985 986Each attribute is either a well-known LLVM attribute (possibly with an integer 987value associated with it), or an arbitrary string (possibly with an arbitrary 988string value associated with it). The *kind* value is an integer code 989distinguishing between these possibilities: 990 991* code 0: well-known attribute 992* code 1: well-known attribute with an integer value 993* code 3: string attribute 994* code 4: string attribute with a string value 995 996For well-known attributes (code 0 or 1), the *key* value is an integer code 997identifying the attribute. For attributes with an integer argument (code 1), 998the *value* value indicates the argument. 999 1000For string attributes (code 3 or 4), the *key* value is actually a variable 1001number of values representing the bytes of a null-terminated string. For 1002attributes with a string argument (code 4), the *value* value is similarly a 1003variable number of values representing the bytes of a null-terminated string. 1004 1005The integer codes are mapped to well-known attributes as follows. 1006 1007* code 1: ``align(<n>)`` 1008* code 2: ``alwaysinline`` 1009* code 3: ``byval`` 1010* code 4: ``inlinehint`` 1011* code 5: ``inreg`` 1012* code 6: ``minsize`` 1013* code 7: ``naked`` 1014* code 8: ``nest`` 1015* code 9: ``noalias`` 1016* code 10: ``nobuiltin`` 1017* code 11: ``nocapture`` 1018* code 12: ``nodeduplicate`` 1019* code 13: ``noimplicitfloat`` 1020* code 14: ``noinline`` 1021* code 15: ``nonlazybind`` 1022* code 16: ``noredzone`` 1023* code 17: ``noreturn`` 1024* code 18: ``nounwind`` 1025* code 19: ``optsize`` 1026* code 20: ``readnone`` 1027* code 21: ``readonly`` 1028* code 22: ``returned`` 1029* code 23: ``returns_twice`` 1030* code 24: ``signext`` 1031* code 25: ``alignstack(<n>)`` 1032* code 26: ``ssp`` 1033* code 27: ``sspreq`` 1034* code 28: ``sspstrong`` 1035* code 29: ``sret`` 1036* code 30: ``sanitize_address`` 1037* code 31: ``sanitize_thread`` 1038* code 32: ``sanitize_memory`` 1039* code 33: ``uwtable`` 1040* code 34: ``zeroext`` 1041* code 35: ``builtin`` 1042* code 36: ``cold`` 1043* code 37: ``optnone`` 1044* code 38: ``inalloca`` 1045* code 39: ``nonnull`` 1046* code 40: ``jumptable`` 1047* code 41: ``dereferenceable(<n>)`` 1048* code 42: ``dereferenceable_or_null(<n>)`` 1049* code 43: ``convergent`` 1050* code 44: ``safestack`` 1051* code 45: ``argmemonly`` 1052* code 46: ``swiftself`` 1053* code 47: ``swifterror`` 1054* code 48: ``norecurse`` 1055* code 49: ``inaccessiblememonly`` 1056* code 50: ``inaccessiblememonly_or_argmemonly`` 1057* code 51: ``allocsize(<EltSizeParam>[, <NumEltsParam>])`` 1058* code 52: ``writeonly`` 1059* code 53: ``speculatable`` 1060* code 54: ``strictfp`` 1061* code 55: ``sanitize_hwaddress`` 1062* code 56: ``nocf_check`` 1063* code 57: ``optforfuzzing`` 1064* code 58: ``shadowcallstack`` 1065* code 59: ``speculative_load_hardening`` 1066* code 60: ``immarg`` 1067* code 61: ``willreturn`` 1068* code 62: ``nofree`` 1069* code 63: ``nosync`` 1070* code 64: ``sanitize_memtag`` 1071* code 65: ``preallocated`` 1072* code 66: ``no_merge`` 1073* code 67: ``null_pointer_is_valid`` 1074* code 68: ``noundef`` 1075* code 69: ``byref`` 1076* code 70: ``mustprogress`` 1077* code 74: ``vscale_range(<Min>[, <Max>])`` 1078* code 75: ``swiftasync`` 1079* code 76: ``nosanitize_coverage`` 1080* code 77: ``elementtype`` 1081* code 78: ``disable_sanitizer_instrumentation`` 1082* code 79: ``nosanitize_bounds`` 1083 1084.. note:: 1085 The ``allocsize`` attribute has a special encoding for its arguments. Its two 1086 arguments, which are 32-bit integers, are packed into one 64-bit integer value 1087 (i.e. ``(EltSizeParam << 32) | NumEltsParam``), with ``NumEltsParam`` taking on 1088 the sentinel value -1 if it is not specified. 1089 1090.. note:: 1091 The ``vscale_range`` attribute has a special encoding for its arguments. Its two 1092 arguments, which are 32-bit integers, are packed into one 64-bit integer value 1093 (i.e. ``(Min << 32) | Max``), with ``Max`` taking on the value of ``Min`` if 1094 it is not specified. 1095 1096.. _TYPE_BLOCK: 1097 1098TYPE_BLOCK Contents 1099------------------- 1100 1101The ``TYPE_BLOCK`` block (id 17) contains records which constitute a table of 1102type operator entries used to represent types referenced within an LLVM 1103module. Each record (with the exception of `NUMENTRY`_) generates a single type 1104table entry, which may be referenced by 0-based index from instructions, 1105constants, metadata, type symbol table entries, or other type operator records. 1106 1107Entries within ``TYPE_BLOCK`` are constructed to ensure that each entry is 1108unique (i.e., no two indices represent structurally equivalent types). 1109 1110.. _TYPE_CODE_NUMENTRY: 1111.. _NUMENTRY: 1112 1113TYPE_CODE_NUMENTRY Record 1114^^^^^^^^^^^^^^^^^^^^^^^^^ 1115 1116``[NUMENTRY, numentries]`` 1117 1118The ``NUMENTRY`` record (code 1) contains a single value which indicates the 1119total number of type code entries in the type table of the module. If present, 1120``NUMENTRY`` should be the first record in the block. 1121 1122TYPE_CODE_VOID Record 1123^^^^^^^^^^^^^^^^^^^^^ 1124 1125``[VOID]`` 1126 1127The ``VOID`` record (code 2) adds a ``void`` type to the type table. 1128 1129TYPE_CODE_HALF Record 1130^^^^^^^^^^^^^^^^^^^^^ 1131 1132``[HALF]`` 1133 1134The ``HALF`` record (code 10) adds a ``half`` (16-bit floating point) type to 1135the type table. 1136 1137TYPE_CODE_BFLOAT Record 1138^^^^^^^^^^^^^^^^^^^^^^^ 1139 1140``[BFLOAT]`` 1141 1142The ``BFLOAT`` record (code 23) adds a ``bfloat`` (16-bit brain floating point) 1143type to the type table. 1144 1145TYPE_CODE_FLOAT Record 1146^^^^^^^^^^^^^^^^^^^^^^ 1147 1148``[FLOAT]`` 1149 1150The ``FLOAT`` record (code 3) adds a ``float`` (32-bit floating point) type to 1151the type table. 1152 1153TYPE_CODE_DOUBLE Record 1154^^^^^^^^^^^^^^^^^^^^^^^ 1155 1156``[DOUBLE]`` 1157 1158The ``DOUBLE`` record (code 4) adds a ``double`` (64-bit floating point) type to 1159the type table. 1160 1161TYPE_CODE_LABEL Record 1162^^^^^^^^^^^^^^^^^^^^^^ 1163 1164``[LABEL]`` 1165 1166The ``LABEL`` record (code 5) adds a ``label`` type to the type table. 1167 1168TYPE_CODE_OPAQUE Record 1169^^^^^^^^^^^^^^^^^^^^^^^ 1170 1171``[OPAQUE]`` 1172 1173The ``OPAQUE`` record (code 6) adds an ``opaque`` type to the type table, with 1174a name defined by a previously encountered ``STRUCT_NAME`` record. Note that 1175distinct ``opaque`` types are not unified. 1176 1177TYPE_CODE_INTEGER Record 1178^^^^^^^^^^^^^^^^^^^^^^^^ 1179 1180``[INTEGER, width]`` 1181 1182The ``INTEGER`` record (code 7) adds an integer type to the type table. The 1183single *width* field indicates the width of the integer type. 1184 1185TYPE_CODE_POINTER Record 1186^^^^^^^^^^^^^^^^^^^^^^^^ 1187 1188``[POINTER, pointee type, address space]`` 1189 1190The ``POINTER`` record (code 8) adds a pointer type to the type table. The 1191operand fields are 1192 1193* *pointee type*: The type index of the pointed-to type 1194 1195* *address space*: If supplied, the target-specific numbered address space where 1196 the pointed-to object resides. Otherwise, the default address space is zero. 1197 1198TYPE_CODE_FUNCTION_OLD Record 1199^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1200 1201.. note:: 1202 This is a legacy encoding for functions, produced by LLVM versions 3.0 and 1203 earlier. It is guaranteed to be understood by the current LLVM version, as 1204 specified in the :ref:`IR backwards compatibility` policy. 1205 1206``[FUNCTION_OLD, vararg, ignored, retty, ...paramty... ]`` 1207 1208The ``FUNCTION_OLD`` record (code 9) adds a function type to the type table. 1209The operand fields are 1210 1211* *vararg*: Non-zero if the type represents a varargs function 1212 1213* *ignored*: This value field is present for backward compatibility only, and is 1214 ignored 1215 1216* *retty*: The type index of the function's return type 1217 1218* *paramty*: Zero or more type indices representing the parameter types of the 1219 function 1220 1221TYPE_CODE_ARRAY Record 1222^^^^^^^^^^^^^^^^^^^^^^ 1223 1224``[ARRAY, numelts, eltty]`` 1225 1226The ``ARRAY`` record (code 11) adds an array type to the type table. The 1227operand fields are 1228 1229* *numelts*: The number of elements in arrays of this type 1230 1231* *eltty*: The type index of the array element type 1232 1233TYPE_CODE_VECTOR Record 1234^^^^^^^^^^^^^^^^^^^^^^^ 1235 1236``[VECTOR, numelts, eltty]`` 1237 1238The ``VECTOR`` record (code 12) adds a vector type to the type table. The 1239operand fields are 1240 1241* *numelts*: The number of elements in vectors of this type 1242 1243* *eltty*: The type index of the vector element type 1244 1245TYPE_CODE_X86_FP80 Record 1246^^^^^^^^^^^^^^^^^^^^^^^^^ 1247 1248``[X86_FP80]`` 1249 1250The ``X86_FP80`` record (code 13) adds an ``x86_fp80`` (80-bit floating point) 1251type to the type table. 1252 1253TYPE_CODE_FP128 Record 1254^^^^^^^^^^^^^^^^^^^^^^ 1255 1256``[FP128]`` 1257 1258The ``FP128`` record (code 14) adds an ``fp128`` (128-bit floating point) type 1259to the type table. 1260 1261TYPE_CODE_PPC_FP128 Record 1262^^^^^^^^^^^^^^^^^^^^^^^^^^ 1263 1264``[PPC_FP128]`` 1265 1266The ``PPC_FP128`` record (code 15) adds a ``ppc_fp128`` (128-bit floating point) 1267type to the type table. 1268 1269TYPE_CODE_METADATA Record 1270^^^^^^^^^^^^^^^^^^^^^^^^^ 1271 1272``[METADATA]`` 1273 1274The ``METADATA`` record (code 16) adds a ``metadata`` type to the type table. 1275 1276TYPE_CODE_X86_MMX Record 1277^^^^^^^^^^^^^^^^^^^^^^^^ 1278 1279``[X86_MMX]`` 1280 1281The ``X86_MMX`` record (code 17) adds an ``x86_mmx`` type to the type table. 1282 1283TYPE_CODE_STRUCT_ANON Record 1284^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1285 1286``[STRUCT_ANON, ispacked, ...eltty...]`` 1287 1288The ``STRUCT_ANON`` record (code 18) adds a literal struct type to the type 1289table. The operand fields are 1290 1291* *ispacked*: Non-zero if the type represents a packed structure 1292 1293* *eltty*: Zero or more type indices representing the element types of the 1294 structure 1295 1296TYPE_CODE_STRUCT_NAME Record 1297^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1298 1299``[STRUCT_NAME, ...string...]`` 1300 1301The ``STRUCT_NAME`` record (code 19) contains a variable number of values 1302representing the bytes of a struct name. The next ``OPAQUE`` or 1303``STRUCT_NAMED`` record will use this name. 1304 1305TYPE_CODE_STRUCT_NAMED Record 1306^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1307 1308``[STRUCT_NAMED, ispacked, ...eltty...]`` 1309 1310The ``STRUCT_NAMED`` record (code 20) adds an identified struct type to the 1311type table, with a name defined by a previously encountered ``STRUCT_NAME`` 1312record. The operand fields are 1313 1314* *ispacked*: Non-zero if the type represents a packed structure 1315 1316* *eltty*: Zero or more type indices representing the element types of the 1317 structure 1318 1319TYPE_CODE_FUNCTION Record 1320^^^^^^^^^^^^^^^^^^^^^^^^^ 1321 1322``[FUNCTION, vararg, retty, ...paramty... ]`` 1323 1324The ``FUNCTION`` record (code 21) adds a function type to the type table. The 1325operand fields are 1326 1327* *vararg*: Non-zero if the type represents a varargs function 1328 1329* *retty*: The type index of the function's return type 1330 1331* *paramty*: Zero or more type indices representing the parameter types of the 1332 function 1333 1334TYPE_CODE_X86_AMX Record 1335^^^^^^^^^^^^^^^^^^^^^^^^ 1336 1337``[X86_AMX]`` 1338 1339The ``X86_AMX`` record (code 24) adds an ``x86_amx`` type to the type table. 1340 1341TYPE_CODE_TARGET_TYPE Record 1342^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1343 1344``[TARGET_TYPE, num_tys, ...ty_params..., ...int_params... ]`` 1345 1346The ``TARGET_TYPE`` record (code 26) adds a target extension type to the type 1347table, with a name defined by a previously encountered ``STRUCT_NAME`` record. 1348The operand fields are 1349 1350* *num_tys*: The number of parameters that are types (as opposed to integers) 1351 1352* *ty_params*: Type indices that represent type parameters 1353 1354* *int_params*: Numbers that correspond to the integer parameters. 1355 1356.. _CONSTANTS_BLOCK: 1357 1358CONSTANTS_BLOCK Contents 1359------------------------ 1360 1361The ``CONSTANTS_BLOCK`` block (id 11) ... 1362 1363.. _FUNCTION_BLOCK: 1364 1365FUNCTION_BLOCK Contents 1366----------------------- 1367 1368The ``FUNCTION_BLOCK`` block (id 12) ... 1369 1370In addition to the record types described below, a ``FUNCTION_BLOCK`` block may 1371contain the following sub-blocks: 1372 1373* `CONSTANTS_BLOCK`_ 1374* `VALUE_SYMTAB_BLOCK`_ 1375* `METADATA_ATTACHMENT`_ 1376 1377.. _VALUE_SYMTAB_BLOCK: 1378 1379VALUE_SYMTAB_BLOCK Contents 1380--------------------------- 1381 1382The ``VALUE_SYMTAB_BLOCK`` block (id 14) ... 1383 1384.. _METADATA_BLOCK: 1385 1386METADATA_BLOCK Contents 1387----------------------- 1388 1389The ``METADATA_BLOCK`` block (id 15) ... 1390 1391.. _METADATA_ATTACHMENT: 1392 1393METADATA_ATTACHMENT Contents 1394---------------------------- 1395 1396The ``METADATA_ATTACHMENT`` block (id 16) ... 1397 1398.. _STRTAB_BLOCK: 1399 1400STRTAB_BLOCK Contents 1401--------------------- 1402 1403The ``STRTAB`` block (id 23) contains a single record (``STRTAB_BLOB``, id 1) 1404with a single blob operand containing the bitcode file's string table. 1405 1406Strings in the string table are not null terminated. A record's *strtab 1407offset* and *strtab size* operands specify the byte offset and size of a 1408string within the string table. 1409 1410The string table is used by all preceding blocks in the bitcode file that are 1411not succeeded by another intervening ``STRTAB`` block. Normally a bitcode 1412file will have a single string table, but it may have more than one if it 1413was created by binary concatenation of multiple bitcode files. 1414