1 /* $NetBSD: if_bge.c,v 1.397 2024/11/10 11:44:08 mlelstv Exp $ */ 2 3 /* 4 * Copyright (c) 2001 Wind River Systems 5 * Copyright (c) 1997, 1998, 1999, 2001 6 * Bill Paul <wpaul@windriver.com>. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by Bill Paul. 19 * 4. Neither the name of the author nor the names of any co-contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 33 * THE POSSIBILITY OF SUCH DAMAGE. 34 * 35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $ 36 */ 37 38 /* 39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD. 40 * 41 * NetBSD version by: 42 * 43 * Frank van der Linden <fvdl@wasabisystems.com> 44 * Jason Thorpe <thorpej@wasabisystems.com> 45 * Jonathan Stone <jonathan@dsg.stanford.edu> 46 * 47 * Originally written for FreeBSD by Bill Paul <wpaul@windriver.com> 48 * Senior Engineer, Wind River Systems 49 */ 50 51 /* 52 * The Broadcom BCM5700 is based on technology originally developed by 53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet 54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has 55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external 56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo 57 * frames, highly configurable RX filtering, and 16 RX and TX queues 58 * (which, along with RX filter rules, can be used for QOS applications). 59 * Other features, such as TCP segmentation, may be available as part 60 * of value-added firmware updates. Unlike the Tigon I and Tigon II, 61 * firmware images can be stored in hardware and need not be compiled 62 * into the driver. 63 * 64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will 65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus. 66 * 67 * The BCM5701 is a single-chip solution incorporating both the BCM5700 68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701 69 * does not support external SSRAM. 70 * 71 * Broadcom also produces a variation of the BCM5700 under the "Altima" 72 * brand name, which is functionally similar but lacks PCI-X support. 73 * 74 * Without external SSRAM, you can only have at most 4 TX rings, 75 * and the use of the mini RX ring is disabled. This seems to imply 76 * that these features are simply not available on the BCM5701. As a 77 * result, this driver does not implement any support for the mini RX 78 * ring. 79 */ 80 81 #include <sys/cdefs.h> 82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.397 2024/11/10 11:44:08 mlelstv Exp $"); 83 84 #include <sys/param.h> 85 #include <sys/types.h> 86 87 #include <sys/callout.h> 88 #include <sys/device.h> 89 #include <sys/kernel.h> 90 #include <sys/kmem.h> 91 #include <sys/mbuf.h> 92 #include <sys/rndsource.h> 93 #include <sys/socket.h> 94 #include <sys/sockio.h> 95 #include <sys/sysctl.h> 96 #include <sys/systm.h> 97 98 #include <net/if.h> 99 #include <net/if_dl.h> 100 #include <net/if_media.h> 101 #include <net/if_ether.h> 102 #include <net/bpf.h> 103 104 /* Headers for TCP Segmentation Offload (TSO) */ 105 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */ 106 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */ 107 #include <netinet/ip.h> /* for struct ip */ 108 #include <netinet/tcp.h> /* for struct tcphdr */ 109 110 #include <dev/pci/pcireg.h> 111 #include <dev/pci/pcivar.h> 112 #include <dev/pci/pcidevs.h> 113 114 #include <dev/mii/mii.h> 115 #include <dev/mii/miivar.h> 116 #include <dev/mii/miidevs.h> 117 #include <dev/mii/brgphyreg.h> 118 119 #include <dev/pci/if_bgereg.h> 120 #include <dev/pci/if_bgevar.h> 121 122 #include <prop/proplib.h> 123 124 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */ 125 126 127 /* 128 * Tunable thresholds for rx-side bge interrupt mitigation. 129 */ 130 131 /* 132 * The pairs of values below were obtained from empirical measurement 133 * on bcm5700 rev B2; they ar designed to give roughly 1 receive 134 * interrupt for every N packets received, where N is, approximately, 135 * the second value (rx_max_bds) in each pair. The values are chosen 136 * such that moving from one pair to the succeeding pair was observed 137 * to roughly halve interrupt rate under sustained input packet load. 138 * The values were empirically chosen to avoid overflowing internal 139 * limits on the bcm5700: increasing rx_ticks much beyond 600 140 * results in internal wrapping and higher interrupt rates. 141 * The limit of 46 frames was chosen to match NFS workloads. 142 * 143 * These values also work well on bcm5701, bcm5704C, and (less 144 * tested) bcm5703. On other chipsets, (including the Altima chip 145 * family), the larger values may overflow internal chip limits, 146 * leading to increasing interrupt rates rather than lower interrupt 147 * rates. 148 * 149 * Applications using heavy interrupt mitigation (interrupting every 150 * 32 or 46 frames) in both directions may need to increase the TCP 151 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain 152 * full link bandwidth, due to ACKs and window updates lingering 153 * in the RX queue during the 30-to-40-frame interrupt-mitigation window. 154 */ 155 static const struct bge_load_rx_thresh { 156 int rx_ticks; 157 int rx_max_bds; } 158 bge_rx_threshes[] = { 159 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */ 160 { 32, 2 }, 161 { 50, 4 }, 162 { 100, 8 }, 163 { 192, 16 }, 164 { 416, 32 }, 165 { 598, 46 } 166 }; 167 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0])) 168 169 /* XXX patchable; should be sysctl'able */ 170 static int bge_auto_thresh = 1; 171 static int bge_rx_thresh_lvl; 172 173 static int bge_rxthresh_nodenum; 174 175 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]); 176 177 static uint32_t bge_chipid(const struct pci_attach_args *); 178 static int bge_can_use_msi(struct bge_softc *); 179 static int bge_probe(device_t, cfdata_t, void *); 180 static void bge_attach(device_t, device_t, void *); 181 static int bge_detach(device_t, int); 182 static void bge_release_resources(struct bge_softc *); 183 184 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]); 185 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]); 186 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]); 187 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]); 188 static int bge_get_eaddr(struct bge_softc *, uint8_t[]); 189 190 static void bge_txeof(struct bge_softc *); 191 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *); 192 static void bge_rxeof(struct bge_softc *); 193 194 static void bge_asf_driver_up (struct bge_softc *); 195 static void bge_tick(void *); 196 static void bge_stats_update(struct bge_softc *); 197 static void bge_stats_update_regs(struct bge_softc *); 198 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *); 199 200 static int bge_intr(void *); 201 static void bge_start(struct ifnet *); 202 static void bge_start_locked(struct ifnet *); 203 static int bge_ifflags_cb(struct ethercom *); 204 static int bge_ioctl(struct ifnet *, u_long, void *); 205 static int bge_init(struct ifnet *); 206 static void bge_stop(struct ifnet *, int); 207 static bool bge_watchdog_tick(struct ifnet *); 208 static int bge_ifmedia_upd(struct ifnet *); 209 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *); 210 static void bge_handle_reset_work(struct work *, void *); 211 212 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *); 213 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int); 214 215 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *); 216 static int bge_read_eeprom(struct bge_softc *, void *, int, int); 217 static void bge_setmulti(struct bge_softc *); 218 219 static void bge_handle_events(struct bge_softc *); 220 static int bge_alloc_jumbo_mem(struct bge_softc *); 221 static void bge_free_jumbo_mem(struct bge_softc *); 222 static void *bge_jalloc(struct bge_softc *); 223 static void bge_jfree(struct mbuf *, void *, size_t, void *); 224 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *); 225 static int bge_init_rx_ring_jumbo(struct bge_softc *); 226 static void bge_free_rx_ring_jumbo(struct bge_softc *); 227 228 static int bge_newbuf_std(struct bge_softc *, int); 229 static int bge_init_rx_ring_std(struct bge_softc *); 230 static void bge_fill_rx_ring_std(struct bge_softc *); 231 static void bge_free_rx_ring_std(struct bge_softc *m); 232 233 static void bge_free_tx_ring(struct bge_softc *m, bool); 234 static int bge_init_tx_ring(struct bge_softc *); 235 236 static int bge_chipinit(struct bge_softc *); 237 static int bge_blockinit(struct bge_softc *); 238 static int bge_phy_addr(struct bge_softc *); 239 static uint32_t bge_readmem_ind(struct bge_softc *, int); 240 static void bge_writemem_ind(struct bge_softc *, int, int); 241 static void bge_writembx(struct bge_softc *, int, int); 242 static void bge_writembx_flush(struct bge_softc *, int, int); 243 static void bge_writemem_direct(struct bge_softc *, int, int); 244 static void bge_writereg_ind(struct bge_softc *, int, int); 245 static void bge_set_max_readrq(struct bge_softc *); 246 247 static int bge_miibus_readreg(device_t, int, int, uint16_t *); 248 static int bge_miibus_writereg(device_t, int, int, uint16_t); 249 static void bge_miibus_statchg(struct ifnet *); 250 251 #define BGE_RESET_SHUTDOWN 0 252 #define BGE_RESET_START 1 253 #define BGE_RESET_SUSPEND 2 254 static void bge_sig_post_reset(struct bge_softc *, int); 255 static void bge_sig_legacy(struct bge_softc *, int); 256 static void bge_sig_pre_reset(struct bge_softc *, int); 257 static void bge_wait_for_event_ack(struct bge_softc *); 258 static void bge_stop_fw(struct bge_softc *); 259 static int bge_reset(struct bge_softc *); 260 static void bge_link_upd(struct bge_softc *); 261 static void bge_sysctl_init(struct bge_softc *); 262 static int bge_sysctl_verify(SYSCTLFN_PROTO); 263 264 static void bge_ape_lock_init(struct bge_softc *); 265 static void bge_ape_read_fw_ver(struct bge_softc *); 266 static int bge_ape_lock(struct bge_softc *, int); 267 static void bge_ape_unlock(struct bge_softc *, int); 268 static void bge_ape_send_event(struct bge_softc *, uint32_t); 269 static void bge_ape_driver_state_change(struct bge_softc *, int); 270 271 #ifdef BGE_DEBUG 272 #define DPRINTF(x) if (bgedebug) printf x 273 #define DPRINTFN(n, x) if (bgedebug >= (n)) printf x 274 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0) 275 int bgedebug = 0; 276 int bge_tso_debug = 0; 277 void bge_debug_info(struct bge_softc *); 278 #else 279 #define DPRINTF(x) 280 #define DPRINTFN(n, x) 281 #define BGE_TSO_PRINTF(x) 282 #endif 283 284 #ifdef BGE_EVENT_COUNTERS 285 #define BGE_EVCNT_INCR(ev) (ev).ev_count++ 286 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val) 287 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val) 288 #else 289 #define BGE_EVCNT_INCR(ev) /* nothing */ 290 #define BGE_EVCNT_ADD(ev, val) /* nothing */ 291 #define BGE_EVCNT_UPD(ev, val) /* nothing */ 292 #endif 293 294 #define VIDDID(a, b) PCI_VENDOR_ ## a, PCI_PRODUCT_ ## a ## _ ## b 295 /* 296 * The BCM5700 documentation seems to indicate that the hardware still has the 297 * Alteon vendor ID burned into it, though it should always be overridden by 298 * the value in the EEPROM. We'll check for it anyway. 299 */ 300 static const struct bge_product { 301 pci_vendor_id_t bp_vendor; 302 pci_product_id_t bp_product; 303 const char *bp_name; 304 } bge_products[] = { 305 { VIDDID(ALTEON, BCM5700), "Broadcom BCM5700 Gigabit" }, 306 { VIDDID(ALTEON, BCM5701), "Broadcom BCM5701 Gigabit" }, 307 { VIDDID(ALTIMA, AC1000), "Altima AC1000 Gigabit" }, 308 { VIDDID(ALTIMA, AC1001), "Altima AC1001 Gigabit" }, 309 { VIDDID(ALTIMA, AC1003), "Altima AC1003 Gigabit" }, 310 { VIDDID(ALTIMA, AC9100), "Altima AC9100 Gigabit" }, 311 { VIDDID(APPLE, BCM5701), "APPLE BCM5701 Gigabit" }, 312 { VIDDID(BROADCOM, BCM5700), "Broadcom BCM5700 Gigabit" }, 313 { VIDDID(BROADCOM, BCM5701), "Broadcom BCM5701 Gigabit" }, 314 { VIDDID(BROADCOM, BCM5702), "Broadcom BCM5702 Gigabit" }, 315 { VIDDID(BROADCOM, BCM5702FE), "Broadcom BCM5702FE Fast" }, 316 { VIDDID(BROADCOM, BCM5702X), "Broadcom BCM5702X Gigabit" }, 317 { VIDDID(BROADCOM, BCM5703), "Broadcom BCM5703 Gigabit" }, 318 { VIDDID(BROADCOM, BCM5703X), "Broadcom BCM5703X Gigabit" }, 319 { VIDDID(BROADCOM, BCM5703_ALT),"Broadcom BCM5703 Gigabit" }, 320 { VIDDID(BROADCOM, BCM5704C), "Broadcom BCM5704C Dual Gigabit" }, 321 { VIDDID(BROADCOM, BCM5704S), "Broadcom BCM5704S Dual Gigabit" }, 322 { VIDDID(BROADCOM, BCM5704S_ALT),"Broadcom BCM5704S Dual Gigabit" }, 323 { VIDDID(BROADCOM, BCM5705), "Broadcom BCM5705 Gigabit" }, 324 { VIDDID(BROADCOM, BCM5705F), "Broadcom BCM5705F Gigabit" }, 325 { VIDDID(BROADCOM, BCM5705K), "Broadcom BCM5705K Gigabit" }, 326 { VIDDID(BROADCOM, BCM5705M), "Broadcom BCM5705M Gigabit" }, 327 { VIDDID(BROADCOM, BCM5705M_ALT),"Broadcom BCM5705M Gigabit" }, 328 { VIDDID(BROADCOM, BCM5714), "Broadcom BCM5714 Gigabit" }, 329 { VIDDID(BROADCOM, BCM5714S), "Broadcom BCM5714S Gigabit" }, 330 { VIDDID(BROADCOM, BCM5715), "Broadcom BCM5715 Gigabit" }, 331 { VIDDID(BROADCOM, BCM5715S), "Broadcom BCM5715S Gigabit" }, 332 { VIDDID(BROADCOM, BCM5717), "Broadcom BCM5717 Gigabit" }, 333 { VIDDID(BROADCOM, BCM5717C), "Broadcom BCM5717 Gigabit" }, 334 { VIDDID(BROADCOM, BCM5718), "Broadcom BCM5718 Gigabit" }, 335 { VIDDID(BROADCOM, BCM5719), "Broadcom BCM5719 Gigabit" }, 336 { VIDDID(BROADCOM, BCM5720), "Broadcom BCM5720 Gigabit" }, 337 { VIDDID(BROADCOM, BCM5721), "Broadcom BCM5721 Gigabit" }, 338 { VIDDID(BROADCOM, BCM5722), "Broadcom BCM5722 Gigabit" }, 339 { VIDDID(BROADCOM, BCM5723), "Broadcom BCM5723 Gigabit" }, 340 { VIDDID(BROADCOM, BCM5725), "Broadcom BCM5725 Gigabit" }, 341 { VIDDID(BROADCOM, BCM5727), "Broadcom BCM5727 Gigabit" }, 342 { VIDDID(BROADCOM, BCM5750), "Broadcom BCM5750 Gigabit" }, 343 { VIDDID(BROADCOM, BCM5751), "Broadcom BCM5751 Gigabit" }, 344 { VIDDID(BROADCOM, BCM5751F), "Broadcom BCM5751F Gigabit" }, 345 { VIDDID(BROADCOM, BCM5751M), "Broadcom BCM5751M Gigabit" }, 346 { VIDDID(BROADCOM, BCM5752), "Broadcom BCM5752 Gigabit" }, 347 { VIDDID(BROADCOM, BCM5752M), "Broadcom BCM5752M Gigabit" }, 348 { VIDDID(BROADCOM, BCM5753), "Broadcom BCM5753 Gigabit" }, 349 { VIDDID(BROADCOM, BCM5753F), "Broadcom BCM5753F Gigabit" }, 350 { VIDDID(BROADCOM, BCM5753M), "Broadcom BCM5753M Gigabit" }, 351 { VIDDID(BROADCOM, BCM5754), "Broadcom BCM5754 Gigabit" }, 352 { VIDDID(BROADCOM, BCM5754M), "Broadcom BCM5754M Gigabit" }, 353 { VIDDID(BROADCOM, BCM5755), "Broadcom BCM5755 Gigabit" }, 354 { VIDDID(BROADCOM, BCM5755M), "Broadcom BCM5755M Gigabit" }, 355 { VIDDID(BROADCOM, BCM5756), "Broadcom BCM5756 Gigabit" }, 356 { VIDDID(BROADCOM, BCM5761), "Broadcom BCM5761 Gigabit" }, 357 { VIDDID(BROADCOM, BCM5761E), "Broadcom BCM5761E Gigabit" }, 358 { VIDDID(BROADCOM, BCM5761S), "Broadcom BCM5761S Gigabit" }, 359 { VIDDID(BROADCOM, BCM5761SE), "Broadcom BCM5761SE Gigabit" }, 360 { VIDDID(BROADCOM, BCM5762), "Broadcom BCM5762 Gigabit" }, 361 { VIDDID(BROADCOM, BCM5764), "Broadcom BCM5764 Gigabit" }, 362 { VIDDID(BROADCOM, BCM5780), "Broadcom BCM5780 Gigabit" }, 363 { VIDDID(BROADCOM, BCM5780S), "Broadcom BCM5780S Gigabit" }, 364 { VIDDID(BROADCOM, BCM5781), "Broadcom BCM5781 Gigabit" }, 365 { VIDDID(BROADCOM, BCM5782), "Broadcom BCM5782 Gigabit" }, 366 { VIDDID(BROADCOM, BCM5784M), "BCM5784M NetLink 1000baseT" }, 367 { VIDDID(BROADCOM, BCM5785F), "BCM5785F NetLink 10/100" }, 368 { VIDDID(BROADCOM, BCM5785G), "BCM5785G NetLink 1000baseT" }, 369 { VIDDID(BROADCOM, BCM5786), "Broadcom BCM5786 Gigabit" }, 370 { VIDDID(BROADCOM, BCM5787), "Broadcom BCM5787 Gigabit" }, 371 { VIDDID(BROADCOM, BCM5787F), "Broadcom BCM5787F 10/100" }, 372 { VIDDID(BROADCOM, BCM5787M), "Broadcom BCM5787M Gigabit" }, 373 { VIDDID(BROADCOM, BCM5788), "Broadcom BCM5788 Gigabit" }, 374 { VIDDID(BROADCOM, BCM5789), "Broadcom BCM5789 Gigabit" }, 375 { VIDDID(BROADCOM, BCM5901), "Broadcom BCM5901 Fast" }, 376 { VIDDID(BROADCOM, BCM5901A2), "Broadcom BCM5901A2 Fast" }, 377 { VIDDID(BROADCOM, BCM5903M), "Broadcom BCM5903M Fast" }, 378 { VIDDID(BROADCOM, BCM5906), "Broadcom BCM5906 Fast" }, 379 { VIDDID(BROADCOM, BCM5906M), "Broadcom BCM5906M Fast" }, 380 { VIDDID(BROADCOM, BCM57760), "Broadcom BCM57760 Gigabit" }, 381 { VIDDID(BROADCOM, BCM57761), "Broadcom BCM57761 Gigabit" }, 382 { VIDDID(BROADCOM, BCM57762), "Broadcom BCM57762 Gigabit" }, 383 { VIDDID(BROADCOM, BCM57764), "Broadcom BCM57764 Gigabit" }, 384 { VIDDID(BROADCOM, BCM57765), "Broadcom BCM57765 Gigabit" }, 385 { VIDDID(BROADCOM, BCM57766), "Broadcom BCM57766 Gigabit" }, 386 { VIDDID(BROADCOM, BCM57767), "Broadcom BCM57767 Gigabit" }, 387 { VIDDID(BROADCOM, BCM57780), "Broadcom BCM57780 Gigabit" }, 388 { VIDDID(BROADCOM, BCM57781), "Broadcom BCM57781 Gigabit" }, 389 { VIDDID(BROADCOM, BCM57782), "Broadcom BCM57782 Gigabit" }, 390 { VIDDID(BROADCOM, BCM57785), "Broadcom BCM57785 Gigabit" }, 391 { VIDDID(BROADCOM, BCM57786), "Broadcom BCM57786 Gigabit" }, 392 { VIDDID(BROADCOM, BCM57787), "Broadcom BCM57787 Gigabit" }, 393 { VIDDID(BROADCOM, BCM57788), "Broadcom BCM57788 Gigabit" }, 394 { VIDDID(BROADCOM, BCM57790), "Broadcom BCM57790 Gigabit" }, 395 { VIDDID(BROADCOM, BCM57791), "Broadcom BCM57791 Gigabit" }, 396 { VIDDID(BROADCOM, BCM57795), "Broadcom BCM57795 Gigabit" }, 397 { VIDDID(SCHNEIDERKOCH, SK_9DX1),"SysKonnect SK-9Dx1 Gigabit" }, 398 { VIDDID(SCHNEIDERKOCH, SK_9MXX),"SysKonnect SK-9Mxx Gigabit" }, 399 { VIDDID(3COM, 3C996), "3Com 3c996 Gigabit" }, 400 { VIDDID(FUJITSU4, PW008GE4), "Fujitsu PW008GE4 Gigabit" }, 401 { VIDDID(FUJITSU4, PW008GE5), "Fujitsu PW008GE5 Gigabit" }, 402 { VIDDID(FUJITSU4, PP250_450_LAN),"Fujitsu Primepower 250/450 Gigabit" }, 403 { 0, 0, NULL }, 404 }; 405 406 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGEF_JUMBO_CAPABLE) 407 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGEF_5700_FAMILY) 408 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGEF_5705_PLUS) 409 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGEF_5714_FAMILY) 410 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGEF_575X_PLUS) 411 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGEF_5755_PLUS) 412 #define BGE_IS_57765_FAMILY(sc) ((sc)->bge_flags & BGEF_57765_FAMILY) 413 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGEF_57765_PLUS) 414 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGEF_5717_PLUS) 415 416 static const struct bge_revision { 417 uint32_t br_chipid; 418 const char *br_name; 419 } bge_revisions[] = { 420 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" }, 421 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" }, 422 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" }, 423 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" }, 424 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" }, 425 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" }, 426 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" }, 427 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" }, 428 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" }, 429 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" }, 430 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" }, 431 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" }, 432 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" }, 433 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" }, 434 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" }, 435 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" }, 436 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" }, 437 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" }, 438 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" }, 439 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" }, 440 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" }, 441 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" }, 442 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" }, 443 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" }, 444 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" }, 445 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" }, 446 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" }, 447 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" }, 448 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" }, 449 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" }, 450 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" }, 451 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" }, 452 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" }, 453 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" }, 454 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" }, 455 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" }, 456 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" }, 457 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" }, 458 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" }, 459 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" }, 460 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" }, 461 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" }, 462 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" }, 463 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" }, 464 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" }, 465 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" }, 466 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" }, 467 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" }, 468 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" }, 469 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" }, 470 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" }, 471 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" }, 472 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" }, 473 { BGE_CHIPID_BCM5762_A0, "BCM5762 A0" }, 474 { BGE_CHIPID_BCM5762_B0, "BCM5762 B0" }, 475 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" }, 476 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" }, 477 { BGE_CHIPID_BCM5784_B0, "BCM5784 B0" }, 478 /* 5754 and 5787 share the same ASIC ID */ 479 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" }, 480 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" }, 481 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" }, 482 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" }, 483 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" }, 484 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" }, 485 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" }, 486 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" }, 487 { BGE_CHIPID_BCM57766_A0, "BCM57766 A0" }, 488 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" }, 489 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" }, 490 491 { 0, NULL } 492 }; 493 494 /* 495 * Some defaults for major revisions, so that newer steppings 496 * that we don't know about have a shot at working. 497 */ 498 static const struct bge_revision bge_majorrevs[] = { 499 { BGE_ASICREV_BCM5700, "unknown BCM5700" }, 500 { BGE_ASICREV_BCM5701, "unknown BCM5701" }, 501 { BGE_ASICREV_BCM5703, "unknown BCM5703" }, 502 { BGE_ASICREV_BCM5704, "unknown BCM5704" }, 503 { BGE_ASICREV_BCM5705, "unknown BCM5705" }, 504 { BGE_ASICREV_BCM5750, "unknown BCM5750" }, 505 { BGE_ASICREV_BCM5714, "unknown BCM5714" }, 506 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" }, 507 { BGE_ASICREV_BCM5752, "unknown BCM5752" }, 508 { BGE_ASICREV_BCM5780, "unknown BCM5780" }, 509 { BGE_ASICREV_BCM5755, "unknown BCM5755" }, 510 { BGE_ASICREV_BCM5761, "unknown BCM5761" }, 511 { BGE_ASICREV_BCM5784, "unknown BCM5784" }, 512 { BGE_ASICREV_BCM5785, "unknown BCM5785" }, 513 /* 5754 and 5787 share the same ASIC ID */ 514 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" }, 515 { BGE_ASICREV_BCM5906, "unknown BCM5906" }, 516 { BGE_ASICREV_BCM57765, "unknown BCM57765" }, 517 { BGE_ASICREV_BCM57766, "unknown BCM57766" }, 518 { BGE_ASICREV_BCM57780, "unknown BCM57780" }, 519 { BGE_ASICREV_BCM5717, "unknown BCM5717" }, 520 { BGE_ASICREV_BCM5719, "unknown BCM5719" }, 521 { BGE_ASICREV_BCM5720, "unknown BCM5720" }, 522 { BGE_ASICREV_BCM5762, "unknown BCM5762" }, 523 524 { 0, NULL } 525 }; 526 527 static int bge_allow_asf = 1; 528 529 #ifndef BGE_WATCHDOG_TIMEOUT 530 #define BGE_WATCHDOG_TIMEOUT 5 531 #endif 532 static int bge_watchdog_timeout = BGE_WATCHDOG_TIMEOUT; 533 534 535 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc), 536 bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN); 537 538 static uint32_t 539 bge_readmem_ind(struct bge_softc *sc, int off) 540 { 541 pcireg_t val; 542 543 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 && 544 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4) 545 return 0; 546 547 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off); 548 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA); 549 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0); 550 return val; 551 } 552 553 static void 554 bge_writemem_ind(struct bge_softc *sc, int off, int val) 555 { 556 557 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off); 558 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val); 559 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0); 560 } 561 562 /* 563 * PCI Express only 564 */ 565 static void 566 bge_set_max_readrq(struct bge_softc *sc) 567 { 568 pcireg_t val; 569 570 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap 571 + PCIE_DCSR); 572 val &= ~PCIE_DCSR_MAX_READ_REQ; 573 switch (sc->bge_expmrq) { 574 case 2048: 575 val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048; 576 break; 577 case 4096: 578 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096; 579 break; 580 default: 581 panic("incorrect expmrq value(%d)", sc->bge_expmrq); 582 break; 583 } 584 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap 585 + PCIE_DCSR, val); 586 } 587 588 #ifdef notdef 589 static uint32_t 590 bge_readreg_ind(struct bge_softc *sc, int off) 591 { 592 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off); 593 return pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA); 594 } 595 #endif 596 597 static void 598 bge_writereg_ind(struct bge_softc *sc, int off, int val) 599 { 600 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off); 601 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val); 602 } 603 604 static void 605 bge_writemem_direct(struct bge_softc *sc, int off, int val) 606 { 607 CSR_WRITE_4(sc, off, val); 608 } 609 610 static void 611 bge_writembx(struct bge_softc *sc, int off, int val) 612 { 613 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) 614 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI; 615 616 CSR_WRITE_4(sc, off, val); 617 } 618 619 static void 620 bge_writembx_flush(struct bge_softc *sc, int off, int val) 621 { 622 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) 623 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI; 624 625 CSR_WRITE_4_FLUSH(sc, off, val); 626 } 627 628 /* 629 * Clear all stale locks and select the lock for this driver instance. 630 */ 631 void 632 bge_ape_lock_init(struct bge_softc *sc) 633 { 634 struct pci_attach_args *pa = &(sc->bge_pa); 635 uint32_t bit, regbase; 636 int i; 637 638 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) 639 regbase = BGE_APE_LOCK_GRANT; 640 else 641 regbase = BGE_APE_PER_LOCK_GRANT; 642 643 /* Clear any stale locks. */ 644 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) { 645 switch (i) { 646 case BGE_APE_LOCK_PHY0: 647 case BGE_APE_LOCK_PHY1: 648 case BGE_APE_LOCK_PHY2: 649 case BGE_APE_LOCK_PHY3: 650 bit = BGE_APE_LOCK_GRANT_DRIVER0; 651 break; 652 default: 653 if (pa->pa_function == 0) 654 bit = BGE_APE_LOCK_GRANT_DRIVER0; 655 else 656 bit = (1 << pa->pa_function); 657 } 658 APE_WRITE_4(sc, regbase + 4 * i, bit); 659 } 660 661 /* Select the PHY lock based on the device's function number. */ 662 switch (pa->pa_function) { 663 case 0: 664 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0; 665 break; 666 case 1: 667 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1; 668 break; 669 case 2: 670 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2; 671 break; 672 case 3: 673 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3; 674 break; 675 default: 676 printf("%s: PHY lock not supported on function\n", 677 device_xname(sc->bge_dev)); 678 break; 679 } 680 } 681 682 /* 683 * Check for APE firmware, set flags, and print version info. 684 */ 685 void 686 bge_ape_read_fw_ver(struct bge_softc *sc) 687 { 688 const char *fwtype; 689 uint32_t apedata, features; 690 691 /* Check for a valid APE signature in shared memory. */ 692 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG); 693 if (apedata != BGE_APE_SEG_SIG_MAGIC) { 694 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE; 695 return; 696 } 697 698 /* Check if APE firmware is running. */ 699 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS); 700 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) { 701 printf("%s: APE signature found but FW status not ready! " 702 "0x%08x\n", device_xname(sc->bge_dev), apedata); 703 return; 704 } 705 706 sc->bge_mfw_flags |= BGE_MFW_ON_APE; 707 708 /* Fetch the APE firmware type and version. */ 709 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION); 710 features = APE_READ_4(sc, BGE_APE_FW_FEATURES); 711 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) { 712 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI; 713 fwtype = "NCSI"; 714 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) { 715 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH; 716 fwtype = "DASH"; 717 } else 718 fwtype = "UNKN"; 719 720 /* Print the APE firmware version. */ 721 aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype, 722 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT, 723 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT, 724 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT, 725 (apedata & BGE_APE_FW_VERSION_BLDMSK)); 726 } 727 728 int 729 bge_ape_lock(struct bge_softc *sc, int locknum) 730 { 731 struct pci_attach_args *pa = &(sc->bge_pa); 732 uint32_t bit, gnt, req, status; 733 int i, off; 734 735 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) 736 return 0; 737 738 /* Lock request/grant registers have different bases. */ 739 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) { 740 req = BGE_APE_LOCK_REQ; 741 gnt = BGE_APE_LOCK_GRANT; 742 } else { 743 req = BGE_APE_PER_LOCK_REQ; 744 gnt = BGE_APE_PER_LOCK_GRANT; 745 } 746 747 off = 4 * locknum; 748 749 switch (locknum) { 750 case BGE_APE_LOCK_GPIO: 751 /* Lock required when using GPIO. */ 752 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) 753 return 0; 754 if (pa->pa_function == 0) 755 bit = BGE_APE_LOCK_REQ_DRIVER0; 756 else 757 bit = (1 << pa->pa_function); 758 break; 759 case BGE_APE_LOCK_GRC: 760 /* Lock required to reset the device. */ 761 if (pa->pa_function == 0) 762 bit = BGE_APE_LOCK_REQ_DRIVER0; 763 else 764 bit = (1 << pa->pa_function); 765 break; 766 case BGE_APE_LOCK_MEM: 767 /* Lock required when accessing certain APE memory. */ 768 if (pa->pa_function == 0) 769 bit = BGE_APE_LOCK_REQ_DRIVER0; 770 else 771 bit = (1 << pa->pa_function); 772 break; 773 case BGE_APE_LOCK_PHY0: 774 case BGE_APE_LOCK_PHY1: 775 case BGE_APE_LOCK_PHY2: 776 case BGE_APE_LOCK_PHY3: 777 /* Lock required when accessing PHYs. */ 778 bit = BGE_APE_LOCK_REQ_DRIVER0; 779 break; 780 default: 781 return EINVAL; 782 } 783 784 /* Request a lock. */ 785 APE_WRITE_4_FLUSH(sc, req + off, bit); 786 787 /* Wait up to 1 second to acquire lock. */ 788 for (i = 0; i < 20000; i++) { 789 status = APE_READ_4(sc, gnt + off); 790 if (status == bit) 791 break; 792 DELAY(50); 793 } 794 795 /* Handle any errors. */ 796 if (status != bit) { 797 printf("%s: APE lock %d request failed! " 798 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n", 799 device_xname(sc->bge_dev), 800 locknum, req + off, bit & 0xFFFF, gnt + off, 801 status & 0xFFFF); 802 /* Revoke the lock request. */ 803 APE_WRITE_4(sc, gnt + off, bit); 804 return EBUSY; 805 } 806 807 return 0; 808 } 809 810 void 811 bge_ape_unlock(struct bge_softc *sc, int locknum) 812 { 813 struct pci_attach_args *pa = &(sc->bge_pa); 814 uint32_t bit, gnt; 815 int off; 816 817 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) 818 return; 819 820 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) 821 gnt = BGE_APE_LOCK_GRANT; 822 else 823 gnt = BGE_APE_PER_LOCK_GRANT; 824 825 off = 4 * locknum; 826 827 switch (locknum) { 828 case BGE_APE_LOCK_GPIO: 829 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) 830 return; 831 if (pa->pa_function == 0) 832 bit = BGE_APE_LOCK_GRANT_DRIVER0; 833 else 834 bit = (1 << pa->pa_function); 835 break; 836 case BGE_APE_LOCK_GRC: 837 if (pa->pa_function == 0) 838 bit = BGE_APE_LOCK_GRANT_DRIVER0; 839 else 840 bit = (1 << pa->pa_function); 841 break; 842 case BGE_APE_LOCK_MEM: 843 if (pa->pa_function == 0) 844 bit = BGE_APE_LOCK_GRANT_DRIVER0; 845 else 846 bit = (1 << pa->pa_function); 847 break; 848 case BGE_APE_LOCK_PHY0: 849 case BGE_APE_LOCK_PHY1: 850 case BGE_APE_LOCK_PHY2: 851 case BGE_APE_LOCK_PHY3: 852 bit = BGE_APE_LOCK_GRANT_DRIVER0; 853 break; 854 default: 855 return; 856 } 857 858 /* Write and flush for consecutive bge_ape_lock() */ 859 APE_WRITE_4_FLUSH(sc, gnt + off, bit); 860 } 861 862 /* 863 * Send an event to the APE firmware. 864 */ 865 void 866 bge_ape_send_event(struct bge_softc *sc, uint32_t event) 867 { 868 uint32_t apedata; 869 int i; 870 871 /* NCSI does not support APE events. */ 872 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) 873 return; 874 875 /* Wait up to 1ms for APE to service previous event. */ 876 for (i = 10; i > 0; i--) { 877 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0) 878 break; 879 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS); 880 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) { 881 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event | 882 BGE_APE_EVENT_STATUS_EVENT_PENDING); 883 bge_ape_unlock(sc, BGE_APE_LOCK_MEM); 884 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1); 885 break; 886 } 887 bge_ape_unlock(sc, BGE_APE_LOCK_MEM); 888 DELAY(100); 889 } 890 if (i == 0) { 891 printf("%s: APE event 0x%08x send timed out\n", 892 device_xname(sc->bge_dev), event); 893 } 894 } 895 896 void 897 bge_ape_driver_state_change(struct bge_softc *sc, int kind) 898 { 899 uint32_t apedata, event; 900 901 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) 902 return; 903 904 switch (kind) { 905 case BGE_RESET_START: 906 /* If this is the first load, clear the load counter. */ 907 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG); 908 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC) 909 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0); 910 else { 911 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT); 912 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata); 913 } 914 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG, 915 BGE_APE_HOST_SEG_SIG_MAGIC); 916 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN, 917 BGE_APE_HOST_SEG_LEN_MAGIC); 918 919 /* Add some version info if bge(4) supports it. */ 920 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID, 921 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0)); 922 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR, 923 BGE_APE_HOST_BEHAV_NO_PHYLOCK); 924 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS, 925 BGE_APE_HOST_HEARTBEAT_INT_DISABLE); 926 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE, 927 BGE_APE_HOST_DRVR_STATE_START); 928 event = BGE_APE_EVENT_STATUS_STATE_START; 929 break; 930 case BGE_RESET_SHUTDOWN: 931 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE, 932 BGE_APE_HOST_DRVR_STATE_UNLOAD); 933 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD; 934 break; 935 case BGE_RESET_SUSPEND: 936 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND; 937 break; 938 default: 939 return; 940 } 941 942 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT | 943 BGE_APE_EVENT_STATUS_STATE_CHNGE); 944 } 945 946 static uint8_t 947 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest) 948 { 949 uint32_t access, byte = 0; 950 int i; 951 952 /* Lock. */ 953 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1); 954 for (i = 0; i < 8000; i++) { 955 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1) 956 break; 957 DELAY(20); 958 } 959 if (i == 8000) 960 return 1; 961 962 /* Enable access. */ 963 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS); 964 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE); 965 966 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc); 967 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD); 968 for (i = 0; i < BGE_TIMEOUT * 10; i++) { 969 DELAY(10); 970 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) { 971 DELAY(10); 972 break; 973 } 974 } 975 976 if (i == BGE_TIMEOUT * 10) { 977 aprint_error_dev(sc->bge_dev, "nvram read timed out\n"); 978 return 1; 979 } 980 981 /* Get result. */ 982 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA); 983 984 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF; 985 986 /* Disable access. */ 987 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access); 988 989 /* Unlock. */ 990 CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1); 991 992 return 0; 993 } 994 995 /* 996 * Read a sequence of bytes from NVRAM. 997 */ 998 static int 999 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt) 1000 { 1001 int error = 0, i; 1002 uint8_t byte = 0; 1003 1004 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906) 1005 return 1; 1006 1007 for (i = 0; i < cnt; i++) { 1008 error = bge_nvram_getbyte(sc, off + i, &byte); 1009 if (error) 1010 break; 1011 *(dest + i) = byte; 1012 } 1013 1014 return error ? 1 : 0; 1015 } 1016 1017 /* 1018 * Read a byte of data stored in the EEPROM at address 'addr.' The 1019 * BCM570x supports both the traditional bitbang interface and an 1020 * auto access interface for reading the EEPROM. We use the auto 1021 * access method. 1022 */ 1023 static uint8_t 1024 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest) 1025 { 1026 int i; 1027 uint32_t byte = 0; 1028 1029 /* 1030 * Enable use of auto EEPROM access so we can avoid 1031 * having to use the bitbang method. 1032 */ 1033 BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM); 1034 1035 /* Reset the EEPROM, load the clock period. */ 1036 CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR, 1037 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL)); 1038 DELAY(20); 1039 1040 /* Issue the read EEPROM command. */ 1041 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr); 1042 1043 /* Wait for completion */ 1044 for (i = 0; i < BGE_TIMEOUT * 10; i++) { 1045 DELAY(10); 1046 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE) 1047 break; 1048 } 1049 1050 if (i == BGE_TIMEOUT * 10) { 1051 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n"); 1052 return 1; 1053 } 1054 1055 /* Get result. */ 1056 byte = CSR_READ_4(sc, BGE_EE_DATA); 1057 1058 *dest = (byte >> ((addr % 4) * 8)) & 0xFF; 1059 1060 return 0; 1061 } 1062 1063 /* 1064 * Read a sequence of bytes from the EEPROM. 1065 */ 1066 static int 1067 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt) 1068 { 1069 int error = 0, i; 1070 uint8_t byte = 0; 1071 char *dest = destv; 1072 1073 for (i = 0; i < cnt; i++) { 1074 error = bge_eeprom_getbyte(sc, off + i, &byte); 1075 if (error) 1076 break; 1077 *(dest + i) = byte; 1078 } 1079 1080 return error ? 1 : 0; 1081 } 1082 1083 static int 1084 bge_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val) 1085 { 1086 struct bge_softc * const sc = device_private(dev); 1087 uint32_t data; 1088 uint32_t autopoll; 1089 int rv = 0; 1090 int i; 1091 1092 KASSERT(mutex_owned(sc->sc_intr_lock)); 1093 1094 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0) 1095 return -1; 1096 1097 /* Reading with autopolling on may trigger PCI errors */ 1098 autopoll = CSR_READ_4(sc, BGE_MI_MODE); 1099 if (autopoll & BGE_MIMODE_AUTOPOLL) { 1100 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL); 1101 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); 1102 DELAY(80); 1103 } 1104 1105 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY | 1106 BGE_MIPHY(phy) | BGE_MIREG(reg)); 1107 1108 for (i = 0; i < BGE_TIMEOUT; i++) { 1109 delay(10); 1110 data = CSR_READ_4(sc, BGE_MI_COMM); 1111 if (!(data & BGE_MICOMM_BUSY)) { 1112 DELAY(5); 1113 data = CSR_READ_4(sc, BGE_MI_COMM); 1114 break; 1115 } 1116 } 1117 1118 if (i == BGE_TIMEOUT) { 1119 aprint_error_dev(sc->bge_dev, "PHY read timed out\n"); 1120 rv = ETIMEDOUT; 1121 } else if ((data & BGE_MICOMM_READFAIL) != 0) { 1122 /* XXX This error occurs on some devices while attaching. */ 1123 aprint_debug_dev(sc->bge_dev, "PHY read I/O error\n"); 1124 rv = EIO; 1125 } else 1126 *val = data & BGE_MICOMM_DATA; 1127 1128 if (autopoll & BGE_MIMODE_AUTOPOLL) { 1129 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL); 1130 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); 1131 DELAY(80); 1132 } 1133 1134 bge_ape_unlock(sc, sc->bge_phy_ape_lock); 1135 1136 return rv; 1137 } 1138 1139 static int 1140 bge_miibus_writereg(device_t dev, int phy, int reg, uint16_t val) 1141 { 1142 struct bge_softc * const sc = device_private(dev); 1143 uint32_t data, autopoll; 1144 int rv = 0; 1145 int i; 1146 1147 KASSERT(mutex_owned(sc->sc_intr_lock)); 1148 1149 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 && 1150 (reg == MII_GTCR || reg == BRGPHY_MII_AUXCTL)) 1151 return 0; 1152 1153 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0) 1154 return -1; 1155 1156 /* Reading with autopolling on may trigger PCI errors */ 1157 autopoll = CSR_READ_4(sc, BGE_MI_MODE); 1158 if (autopoll & BGE_MIMODE_AUTOPOLL) { 1159 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL); 1160 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); 1161 DELAY(80); 1162 } 1163 1164 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY | 1165 BGE_MIPHY(phy) | BGE_MIREG(reg) | val); 1166 1167 for (i = 0; i < BGE_TIMEOUT; i++) { 1168 delay(10); 1169 data = CSR_READ_4(sc, BGE_MI_COMM); 1170 if (!(data & BGE_MICOMM_BUSY)) { 1171 delay(5); 1172 data = CSR_READ_4(sc, BGE_MI_COMM); 1173 break; 1174 } 1175 } 1176 1177 if (i == BGE_TIMEOUT) { 1178 aprint_error_dev(sc->bge_dev, "PHY write timed out\n"); 1179 rv = ETIMEDOUT; 1180 } else if ((data & BGE_MICOMM_READFAIL) != 0) { 1181 aprint_error_dev(sc->bge_dev, "PHY write I/O error\n"); 1182 rv = EIO; 1183 } 1184 1185 if (autopoll & BGE_MIMODE_AUTOPOLL) { 1186 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL); 1187 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); 1188 delay(80); 1189 } 1190 1191 bge_ape_unlock(sc, sc->bge_phy_ape_lock); 1192 1193 return rv; 1194 } 1195 1196 static void 1197 bge_miibus_statchg(struct ifnet *ifp) 1198 { 1199 struct bge_softc * const sc = ifp->if_softc; 1200 struct mii_data *mii = &sc->bge_mii; 1201 uint32_t mac_mode, rx_mode, tx_mode; 1202 1203 KASSERT(mutex_owned(sc->sc_intr_lock)); 1204 1205 /* 1206 * Get flow control negotiation result. 1207 */ 1208 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO && 1209 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) 1210 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK; 1211 1212 if (!BGE_STS_BIT(sc, BGE_STS_LINK) && 1213 mii->mii_media_status & IFM_ACTIVE && 1214 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) 1215 BGE_STS_SETBIT(sc, BGE_STS_LINK); 1216 else if (BGE_STS_BIT(sc, BGE_STS_LINK) && 1217 (!(mii->mii_media_status & IFM_ACTIVE) || 1218 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) 1219 BGE_STS_CLRBIT(sc, BGE_STS_LINK); 1220 1221 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) 1222 return; 1223 1224 /* Set the port mode (MII/GMII) to match the link speed. */ 1225 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & 1226 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX); 1227 tx_mode = CSR_READ_4(sc, BGE_TX_MODE); 1228 rx_mode = CSR_READ_4(sc, BGE_RX_MODE); 1229 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || 1230 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) 1231 mac_mode |= BGE_PORTMODE_GMII; 1232 else 1233 mac_mode |= BGE_PORTMODE_MII; 1234 1235 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE; 1236 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE; 1237 if ((mii->mii_media_active & IFM_FDX) != 0) { 1238 if (sc->bge_flowflags & IFM_ETH_TXPAUSE) 1239 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE; 1240 if (sc->bge_flowflags & IFM_ETH_RXPAUSE) 1241 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE; 1242 } else 1243 mac_mode |= BGE_MACMODE_HALF_DUPLEX; 1244 1245 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode); 1246 DELAY(40); 1247 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode); 1248 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode); 1249 } 1250 1251 /* 1252 * Update rx threshold levels to values in a particular slot 1253 * of the interrupt-mitigation table bge_rx_threshes. 1254 */ 1255 static void 1256 bge_set_thresh(struct ifnet *ifp, int lvl) 1257 { 1258 struct bge_softc * const sc = ifp->if_softc; 1259 1260 /* 1261 * For now, just save the new Rx-intr thresholds and record 1262 * that a threshold update is pending. Updating the hardware 1263 * registers here (even at splhigh()) is observed to 1264 * occasionally cause glitches where Rx-interrupts are not 1265 * honoured for up to 10 seconds. jonathan@NetBSD.org, 2003-04-05 1266 */ 1267 mutex_enter(sc->sc_intr_lock); 1268 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks; 1269 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds; 1270 sc->bge_pending_rxintr_change = true; 1271 mutex_exit(sc->sc_intr_lock); 1272 } 1273 1274 1275 /* 1276 * Update Rx thresholds of all bge devices 1277 */ 1278 static void 1279 bge_update_all_threshes(int lvl) 1280 { 1281 const char * const namebuf = "bge"; 1282 const size_t namelen = strlen(namebuf); 1283 struct ifnet *ifp; 1284 1285 if (lvl < 0) 1286 lvl = 0; 1287 else if (lvl >= NBGE_RX_THRESH) 1288 lvl = NBGE_RX_THRESH - 1; 1289 1290 /* 1291 * Now search all the interfaces for this name/number 1292 */ 1293 int s = pserialize_read_enter(); 1294 IFNET_READER_FOREACH(ifp) { 1295 if (strncmp(ifp->if_xname, namebuf, namelen) != 0) 1296 continue; 1297 /* We got a match: update if doing auto-threshold-tuning */ 1298 if (bge_auto_thresh) 1299 bge_set_thresh(ifp, lvl); 1300 } 1301 pserialize_read_exit(s); 1302 } 1303 1304 /* 1305 * Handle events that have triggered interrupts. 1306 */ 1307 static void 1308 bge_handle_events(struct bge_softc *sc) 1309 { 1310 1311 return; 1312 } 1313 1314 /* 1315 * Memory management for jumbo frames. 1316 */ 1317 1318 static int 1319 bge_alloc_jumbo_mem(struct bge_softc *sc) 1320 { 1321 char *ptr, *kva; 1322 int i, rseg, state, error; 1323 struct bge_jpool_entry *entry; 1324 1325 state = error = 0; 1326 1327 /* Grab a big chunk o' storage. */ 1328 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0, 1329 &sc->bge_cdata.bge_rx_jumbo_seg, 1, &rseg, BUS_DMA_WAITOK)) { 1330 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n"); 1331 return ENOBUFS; 1332 } 1333 1334 state = 1; 1335 if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_cdata.bge_rx_jumbo_seg, 1336 rseg, BGE_JMEM, (void **)&kva, BUS_DMA_WAITOK)) { 1337 aprint_error_dev(sc->bge_dev, 1338 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM); 1339 error = ENOBUFS; 1340 goto out; 1341 } 1342 1343 state = 2; 1344 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0, 1345 BUS_DMA_WAITOK, &sc->bge_cdata.bge_rx_jumbo_map)) { 1346 aprint_error_dev(sc->bge_dev, "can't create DMA map\n"); 1347 error = ENOBUFS; 1348 goto out; 1349 } 1350 1351 state = 3; 1352 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map, 1353 kva, BGE_JMEM, NULL, BUS_DMA_WAITOK)) { 1354 aprint_error_dev(sc->bge_dev, "can't load DMA map\n"); 1355 error = ENOBUFS; 1356 goto out; 1357 } 1358 1359 state = 4; 1360 sc->bge_cdata.bge_jumbo_buf = (void *)kva; 1361 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf)); 1362 1363 SLIST_INIT(&sc->bge_jfree_listhead); 1364 SLIST_INIT(&sc->bge_jinuse_listhead); 1365 1366 /* 1367 * Now divide it up into 9K pieces and save the addresses 1368 * in an array. 1369 */ 1370 ptr = sc->bge_cdata.bge_jumbo_buf; 1371 for (i = 0; i < BGE_JSLOTS; i++) { 1372 sc->bge_cdata.bge_jslots[i] = ptr; 1373 ptr += BGE_JLEN; 1374 entry = kmem_alloc(sizeof(*entry), KM_SLEEP); 1375 entry->slot = i; 1376 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, 1377 entry, jpool_entries); 1378 } 1379 out: 1380 if (error != 0) { 1381 switch (state) { 1382 case 4: 1383 bus_dmamap_unload(sc->bge_dmatag, 1384 sc->bge_cdata.bge_rx_jumbo_map); 1385 /* FALLTHROUGH */ 1386 case 3: 1387 bus_dmamap_destroy(sc->bge_dmatag, 1388 sc->bge_cdata.bge_rx_jumbo_map); 1389 /* FALLTHROUGH */ 1390 case 2: 1391 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM); 1392 /* FALLTHROUGH */ 1393 case 1: 1394 bus_dmamem_free(sc->bge_dmatag, 1395 &sc->bge_cdata.bge_rx_jumbo_seg, rseg); 1396 break; 1397 default: 1398 break; 1399 } 1400 } 1401 1402 return error; 1403 } 1404 1405 static void 1406 bge_free_jumbo_mem(struct bge_softc *sc) 1407 { 1408 struct bge_jpool_entry *entry, *tmp; 1409 1410 KASSERT(SLIST_EMPTY(&sc->bge_jinuse_listhead)); 1411 1412 SLIST_FOREACH_SAFE(entry, &sc->bge_jfree_listhead, jpool_entries, tmp) { 1413 kmem_free(entry, sizeof(*entry)); 1414 } 1415 1416 bus_dmamap_unload(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map); 1417 1418 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map); 1419 1420 bus_dmamem_unmap(sc->bge_dmatag, sc->bge_cdata.bge_jumbo_buf, BGE_JMEM); 1421 1422 bus_dmamem_free(sc->bge_dmatag, &sc->bge_cdata.bge_rx_jumbo_seg, 1); 1423 } 1424 1425 /* 1426 * Allocate a jumbo buffer. 1427 */ 1428 static void * 1429 bge_jalloc(struct bge_softc *sc) 1430 { 1431 struct bge_jpool_entry *entry; 1432 1433 entry = SLIST_FIRST(&sc->bge_jfree_listhead); 1434 1435 if (entry == NULL) { 1436 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n"); 1437 return NULL; 1438 } 1439 1440 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries); 1441 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries); 1442 return sc->bge_cdata.bge_jslots[entry->slot]; 1443 } 1444 1445 /* 1446 * Release a jumbo buffer. 1447 */ 1448 static void 1449 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg) 1450 { 1451 struct bge_jpool_entry *entry; 1452 struct bge_softc * const sc = arg; 1453 1454 if (sc == NULL) 1455 panic("bge_jfree: can't find softc pointer!"); 1456 1457 /* calculate the slot this buffer belongs to */ 1458 int i = ((char *)buf - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN; 1459 1460 if (i < 0 || i >= BGE_JSLOTS) 1461 panic("bge_jfree: asked to free buffer that we don't manage!"); 1462 1463 mutex_enter(sc->sc_intr_lock); 1464 entry = SLIST_FIRST(&sc->bge_jinuse_listhead); 1465 if (entry == NULL) 1466 panic("bge_jfree: buffer not in use!"); 1467 entry->slot = i; 1468 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries); 1469 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries); 1470 mutex_exit(sc->sc_intr_lock); 1471 1472 if (__predict_true(m != NULL)) 1473 pool_cache_put(mb_cache, m); 1474 } 1475 1476 1477 /* 1478 * Initialize a standard receive ring descriptor. 1479 */ 1480 static int 1481 bge_newbuf_std(struct bge_softc *sc, int i) 1482 { 1483 const bus_dmamap_t dmamap = sc->bge_cdata.bge_rx_std_map[i]; 1484 struct mbuf *m; 1485 1486 MGETHDR(m, M_DONTWAIT, MT_DATA); 1487 if (m == NULL) 1488 return ENOBUFS; 1489 MCLAIM(m, &sc->ethercom.ec_rx_mowner); 1490 1491 MCLGET(m, M_DONTWAIT); 1492 if (!(m->m_flags & M_EXT)) { 1493 m_freem(m); 1494 return ENOBUFS; 1495 } 1496 m->m_len = m->m_pkthdr.len = MCLBYTES; 1497 1498 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG)) 1499 m_adj(m, ETHER_ALIGN); 1500 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m, 1501 BUS_DMA_READ | BUS_DMA_NOWAIT)) { 1502 m_freem(m); 1503 return ENOBUFS; 1504 } 1505 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize, 1506 BUS_DMASYNC_PREREAD); 1507 sc->bge_cdata.bge_rx_std_chain[i] = m; 1508 1509 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, 1510 offsetof(struct bge_ring_data, bge_rx_std_ring) + 1511 i * sizeof(struct bge_rx_bd), 1512 sizeof(struct bge_rx_bd), 1513 BUS_DMASYNC_POSTWRITE); 1514 1515 struct bge_rx_bd * const r = &sc->bge_rdata->bge_rx_std_ring[i]; 1516 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr); 1517 r->bge_flags = BGE_RXBDFLAG_END; 1518 r->bge_len = m->m_len; 1519 r->bge_idx = i; 1520 1521 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, 1522 offsetof(struct bge_ring_data, bge_rx_std_ring) + 1523 i * sizeof(struct bge_rx_bd), 1524 sizeof(struct bge_rx_bd), 1525 BUS_DMASYNC_PREWRITE); 1526 1527 sc->bge_std_cnt++; 1528 1529 return 0; 1530 } 1531 1532 /* 1533 * Initialize a jumbo receive ring descriptor. This allocates 1534 * a jumbo buffer from the pool managed internally by the driver. 1535 */ 1536 static int 1537 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m) 1538 { 1539 struct mbuf *m_new = NULL; 1540 struct bge_rx_bd *r; 1541 void *buf = NULL; 1542 1543 if (m == NULL) { 1544 1545 /* Allocate the mbuf. */ 1546 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 1547 if (m_new == NULL) 1548 return ENOBUFS; 1549 MCLAIM(m, &sc->ethercom.ec_rx_mowner); 1550 1551 /* Allocate the jumbo buffer */ 1552 buf = bge_jalloc(sc); 1553 if (buf == NULL) { 1554 m_freem(m_new); 1555 aprint_error_dev(sc->bge_dev, 1556 "jumbo allocation failed -- packet dropped!\n"); 1557 return ENOBUFS; 1558 } 1559 1560 /* Attach the buffer to the mbuf. */ 1561 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN; 1562 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF, 1563 bge_jfree, sc); 1564 m_new->m_flags |= M_EXT_RW; 1565 } else { 1566 m_new = m; 1567 buf = m_new->m_data = m_new->m_ext.ext_buf; 1568 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN; 1569 } 1570 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG)) 1571 m_adj(m_new, ETHER_ALIGN); 1572 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map, 1573 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, 1574 BGE_JLEN, BUS_DMASYNC_PREREAD); 1575 1576 /* Set up the descriptor. */ 1577 r = &sc->bge_rdata->bge_rx_jumbo_ring[i]; 1578 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new; 1579 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new)); 1580 r->bge_flags = BGE_RXBDFLAG_END | BGE_RXBDFLAG_JUMBO_RING; 1581 r->bge_len = m_new->m_len; 1582 r->bge_idx = i; 1583 1584 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, 1585 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) + 1586 i * sizeof(struct bge_rx_bd), 1587 sizeof(struct bge_rx_bd), 1588 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); 1589 1590 return 0; 1591 } 1592 1593 static int 1594 bge_init_rx_ring_std(struct bge_softc *sc) 1595 { 1596 bus_dmamap_t dmamap; 1597 int error = 0; 1598 u_int i; 1599 1600 if (sc->bge_flags & BGEF_RXRING_VALID) 1601 return 0; 1602 1603 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 1604 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1, 1605 MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dmamap); 1606 if (error) 1607 goto uncreate; 1608 1609 sc->bge_cdata.bge_rx_std_map[i] = dmamap; 1610 memset(&sc->bge_rdata->bge_rx_std_ring[i], 0, 1611 sizeof(struct bge_rx_bd)); 1612 } 1613 1614 sc->bge_std = i - 1; 1615 sc->bge_std_cnt = 0; 1616 bge_fill_rx_ring_std(sc); 1617 1618 sc->bge_flags |= BGEF_RXRING_VALID; 1619 1620 return 0; 1621 1622 uncreate: 1623 while (--i) { 1624 bus_dmamap_destroy(sc->bge_dmatag, 1625 sc->bge_cdata.bge_rx_std_map[i]); 1626 } 1627 return error; 1628 } 1629 1630 static void 1631 bge_fill_rx_ring_std(struct bge_softc *sc) 1632 { 1633 int i = sc->bge_std; 1634 bool post = false; 1635 1636 while (sc->bge_std_cnt < BGE_STD_RX_RING_CNT) { 1637 BGE_INC(i, BGE_STD_RX_RING_CNT); 1638 1639 if (bge_newbuf_std(sc, i) != 0) 1640 break; 1641 1642 sc->bge_std = i; 1643 post = true; 1644 } 1645 1646 if (post) 1647 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std); 1648 } 1649 1650 1651 static void 1652 bge_free_rx_ring_std(struct bge_softc *sc) 1653 { 1654 1655 if (!(sc->bge_flags & BGEF_RXRING_VALID)) 1656 return; 1657 1658 for (u_int i = 0; i < BGE_STD_RX_RING_CNT; i++) { 1659 const bus_dmamap_t dmap = sc->bge_cdata.bge_rx_std_map[i]; 1660 struct mbuf * const m = sc->bge_cdata.bge_rx_std_chain[i]; 1661 if (m != NULL) { 1662 bus_dmamap_sync(sc->bge_dmatag, dmap, 0, 1663 dmap->dm_mapsize, BUS_DMASYNC_POSTREAD); 1664 bus_dmamap_unload(sc->bge_dmatag, dmap); 1665 m_freem(m); 1666 sc->bge_cdata.bge_rx_std_chain[i] = NULL; 1667 } 1668 bus_dmamap_destroy(sc->bge_dmatag, 1669 sc->bge_cdata.bge_rx_std_map[i]); 1670 sc->bge_cdata.bge_rx_std_map[i] = NULL; 1671 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0, 1672 sizeof(struct bge_rx_bd)); 1673 } 1674 1675 sc->bge_flags &= ~BGEF_RXRING_VALID; 1676 } 1677 1678 static int 1679 bge_init_rx_ring_jumbo(struct bge_softc *sc) 1680 { 1681 int i; 1682 volatile struct bge_rcb *rcb; 1683 1684 if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID) 1685 return 0; 1686 1687 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 1688 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS) 1689 return ENOBUFS; 1690 } 1691 1692 sc->bge_jumbo = i - 1; 1693 sc->bge_flags |= BGEF_JUMBO_RXRING_VALID; 1694 1695 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb; 1696 rcb->bge_maxlen_flags = 0; 1697 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); 1698 1699 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo); 1700 1701 return 0; 1702 } 1703 1704 static void 1705 bge_free_rx_ring_jumbo(struct bge_softc *sc) 1706 { 1707 int i; 1708 1709 if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID)) 1710 return; 1711 1712 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 1713 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]); 1714 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL; 1715 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0, 1716 sizeof(struct bge_rx_bd)); 1717 } 1718 1719 sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID; 1720 } 1721 1722 static void 1723 bge_free_tx_ring(struct bge_softc *sc, bool disable) 1724 { 1725 int i; 1726 struct txdmamap_pool_entry *dma; 1727 1728 if (!(sc->bge_flags & BGEF_TXRING_VALID)) 1729 return; 1730 1731 for (i = 0; i < BGE_TX_RING_CNT; i++) { 1732 if (sc->bge_cdata.bge_tx_chain[i] != NULL) { 1733 m_freem(sc->bge_cdata.bge_tx_chain[i]); 1734 sc->bge_cdata.bge_tx_chain[i] = NULL; 1735 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i], 1736 link); 1737 sc->txdma[i] = 0; 1738 } 1739 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0, 1740 sizeof(struct bge_tx_bd)); 1741 } 1742 1743 if (disable) { 1744 while ((dma = SLIST_FIRST(&sc->txdma_list))) { 1745 SLIST_REMOVE_HEAD(&sc->txdma_list, link); 1746 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap); 1747 if (sc->bge_dma64) { 1748 bus_dmamap_destroy(sc->bge_dmatag32, 1749 dma->dmamap32); 1750 } 1751 kmem_free(dma, sizeof(*dma)); 1752 } 1753 SLIST_INIT(&sc->txdma_list); 1754 } 1755 1756 sc->bge_flags &= ~BGEF_TXRING_VALID; 1757 } 1758 1759 static int 1760 bge_init_tx_ring(struct bge_softc *sc) 1761 { 1762 struct ifnet * const ifp = &sc->ethercom.ec_if; 1763 int i; 1764 bus_dmamap_t dmamap, dmamap32; 1765 bus_size_t maxsegsz; 1766 struct txdmamap_pool_entry *dma; 1767 1768 if (sc->bge_flags & BGEF_TXRING_VALID) 1769 return 0; 1770 1771 sc->bge_txcnt = 0; 1772 sc->bge_tx_saved_considx = 0; 1773 1774 /* Initialize transmit producer index for host-memory send ring. */ 1775 sc->bge_tx_prodidx = 0; 1776 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx); 1777 /* 5700 b2 errata */ 1778 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) 1779 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx); 1780 1781 /* NIC-memory send ring not used; initialize to zero. */ 1782 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); 1783 /* 5700 b2 errata */ 1784 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) 1785 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); 1786 1787 /* Limit DMA segment size for some chips */ 1788 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) && 1789 (ifp->if_mtu <= ETHERMTU)) 1790 maxsegsz = 2048; 1791 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) 1792 maxsegsz = 4096; 1793 else 1794 maxsegsz = ETHER_MAX_LEN_JUMBO; 1795 1796 if (SLIST_FIRST(&sc->txdma_list) != NULL) 1797 goto alloc_done; 1798 1799 for (i = 0; i < BGE_TX_RING_CNT; i++) { 1800 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX, 1801 BGE_NTXSEG, maxsegsz, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, 1802 &dmamap)) 1803 return ENOBUFS; 1804 if (dmamap == NULL) 1805 panic("dmamap NULL in bge_init_tx_ring"); 1806 if (sc->bge_dma64) { 1807 if (bus_dmamap_create(sc->bge_dmatag32, BGE_TXDMA_MAX, 1808 BGE_NTXSEG, maxsegsz, 0, 1809 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, 1810 &dmamap32)) { 1811 bus_dmamap_destroy(sc->bge_dmatag, dmamap); 1812 return ENOBUFS; 1813 } 1814 if (dmamap32 == NULL) 1815 panic("dmamap32 NULL in bge_init_tx_ring"); 1816 } else 1817 dmamap32 = dmamap; 1818 dma = kmem_alloc(sizeof(*dma), KM_NOSLEEP); 1819 if (dma == NULL) { 1820 aprint_error_dev(sc->bge_dev, 1821 "can't alloc txdmamap_pool_entry\n"); 1822 bus_dmamap_destroy(sc->bge_dmatag, dmamap); 1823 if (sc->bge_dma64) 1824 bus_dmamap_destroy(sc->bge_dmatag32, dmamap32); 1825 return ENOMEM; 1826 } 1827 dma->dmamap = dmamap; 1828 dma->dmamap32 = dmamap32; 1829 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link); 1830 } 1831 alloc_done: 1832 sc->bge_flags |= BGEF_TXRING_VALID; 1833 1834 return 0; 1835 } 1836 1837 static void 1838 bge_setmulti(struct bge_softc *sc) 1839 { 1840 struct ethercom * const ec = &sc->ethercom; 1841 struct ether_multi *enm; 1842 struct ether_multistep step; 1843 uint32_t hashes[4] = { 0, 0, 0, 0 }; 1844 uint32_t h; 1845 int i; 1846 1847 KASSERT(mutex_owned(sc->sc_mcast_lock)); 1848 if (sc->bge_if_flags & IFF_PROMISC) 1849 goto allmulti; 1850 1851 /* Now program new ones. */ 1852 ETHER_LOCK(ec); 1853 ETHER_FIRST_MULTI(step, ec, enm); 1854 while (enm != NULL) { 1855 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 1856 /* 1857 * We must listen to a range of multicast addresses. 1858 * For now, just accept all multicasts, rather than 1859 * trying to set only those filter bits needed to match 1860 * the range. (At this time, the only use of address 1861 * ranges is for IP multicast routing, for which the 1862 * range is big enough to require all bits set.) 1863 */ 1864 ETHER_UNLOCK(ec); 1865 goto allmulti; 1866 } 1867 1868 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN); 1869 1870 /* Just want the 7 least-significant bits. */ 1871 h &= 0x7f; 1872 1873 hashes[(h & 0x60) >> 5] |= 1U << (h & 0x1F); 1874 ETHER_NEXT_MULTI(step, enm); 1875 } 1876 ec->ec_flags &= ~ETHER_F_ALLMULTI; 1877 ETHER_UNLOCK(ec); 1878 1879 goto setit; 1880 1881 allmulti: 1882 ETHER_LOCK(ec); 1883 ec->ec_flags |= ETHER_F_ALLMULTI; 1884 ETHER_UNLOCK(ec); 1885 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff; 1886 1887 setit: 1888 for (i = 0; i < 4; i++) 1889 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]); 1890 } 1891 1892 static void 1893 bge_sig_pre_reset(struct bge_softc *sc, int type) 1894 { 1895 1896 /* 1897 * Some chips don't like this so only do this if ASF is enabled 1898 */ 1899 if (sc->bge_asf_mode) 1900 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC); 1901 1902 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) { 1903 switch (type) { 1904 case BGE_RESET_START: 1905 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1906 BGE_FW_DRV_STATE_START); 1907 break; 1908 case BGE_RESET_SHUTDOWN: 1909 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1910 BGE_FW_DRV_STATE_UNLOAD); 1911 break; 1912 case BGE_RESET_SUSPEND: 1913 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1914 BGE_FW_DRV_STATE_SUSPEND); 1915 break; 1916 } 1917 } 1918 1919 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND) 1920 bge_ape_driver_state_change(sc, type); 1921 } 1922 1923 static void 1924 bge_sig_post_reset(struct bge_softc *sc, int type) 1925 { 1926 1927 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) { 1928 switch (type) { 1929 case BGE_RESET_START: 1930 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1931 BGE_FW_DRV_STATE_START_DONE); 1932 /* START DONE */ 1933 break; 1934 case BGE_RESET_SHUTDOWN: 1935 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1936 BGE_FW_DRV_STATE_UNLOAD_DONE); 1937 break; 1938 } 1939 } 1940 1941 if (type == BGE_RESET_SHUTDOWN) 1942 bge_ape_driver_state_change(sc, type); 1943 } 1944 1945 static void 1946 bge_sig_legacy(struct bge_softc *sc, int type) 1947 { 1948 1949 if (sc->bge_asf_mode) { 1950 switch (type) { 1951 case BGE_RESET_START: 1952 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1953 BGE_FW_DRV_STATE_START); 1954 break; 1955 case BGE_RESET_SHUTDOWN: 1956 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1957 BGE_FW_DRV_STATE_UNLOAD); 1958 break; 1959 } 1960 } 1961 } 1962 1963 static void 1964 bge_wait_for_event_ack(struct bge_softc *sc) 1965 { 1966 int i; 1967 1968 /* wait up to 2500usec */ 1969 for (i = 0; i < 250; i++) { 1970 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) & 1971 BGE_RX_CPU_DRV_EVENT)) 1972 break; 1973 DELAY(10); 1974 } 1975 } 1976 1977 static void 1978 bge_stop_fw(struct bge_softc *sc) 1979 { 1980 1981 if (sc->bge_asf_mode) { 1982 bge_wait_for_event_ack(sc); 1983 1984 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE); 1985 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT, 1986 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT); 1987 1988 bge_wait_for_event_ack(sc); 1989 } 1990 } 1991 1992 static int 1993 bge_poll_fw(struct bge_softc *sc) 1994 { 1995 uint32_t val; 1996 int i; 1997 1998 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) { 1999 for (i = 0; i < BGE_TIMEOUT; i++) { 2000 val = CSR_READ_4(sc, BGE_VCPU_STATUS); 2001 if (val & BGE_VCPU_STATUS_INIT_DONE) 2002 break; 2003 DELAY(100); 2004 } 2005 if (i >= BGE_TIMEOUT) { 2006 aprint_error_dev(sc->bge_dev, "reset timed out\n"); 2007 return -1; 2008 } 2009 } else { 2010 /* 2011 * Poll the value location we just wrote until 2012 * we see the 1's complement of the magic number. 2013 * This indicates that the firmware initialization 2014 * is complete. 2015 * XXX 1000ms for Flash and 10000ms for SEEPROM. 2016 */ 2017 for (i = 0; i < BGE_TIMEOUT; i++) { 2018 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB); 2019 if (val == ~BGE_SRAM_FW_MB_MAGIC) 2020 break; 2021 DELAY(10); 2022 } 2023 2024 if ((i >= BGE_TIMEOUT) 2025 && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) { 2026 aprint_error_dev(sc->bge_dev, 2027 "firmware handshake timed out, val = %x\n", val); 2028 return -1; 2029 } 2030 } 2031 2032 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) { 2033 /* tg3 says we have to wait extra time */ 2034 delay(10 * 1000); 2035 } 2036 2037 return 0; 2038 } 2039 2040 int 2041 bge_phy_addr(struct bge_softc *sc) 2042 { 2043 struct pci_attach_args *pa = &(sc->bge_pa); 2044 int phy_addr = 1; 2045 2046 /* 2047 * PHY address mapping for various devices. 2048 * 2049 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr | 2050 * ---------+-------+-------+-------+-------+ 2051 * BCM57XX | 1 | X | X | X | 2052 * BCM5704 | 1 | X | 1 | X | 2053 * BCM5717 | 1 | 8 | 2 | 9 | 2054 * BCM5719 | 1 | 8 | 2 | 9 | 2055 * BCM5720 | 1 | 8 | 2 | 9 | 2056 * 2057 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr | 2058 * ---------+-------+-------+-------+-------+ 2059 * BCM57XX | X | X | X | X | 2060 * BCM5704 | X | X | X | X | 2061 * BCM5717 | X | X | X | X | 2062 * BCM5719 | 3 | 10 | 4 | 11 | 2063 * BCM5720 | X | X | X | X | 2064 * 2065 * Other addresses may respond but they are not 2066 * IEEE compliant PHYs and should be ignored. 2067 */ 2068 switch (BGE_ASICREV(sc->bge_chipid)) { 2069 case BGE_ASICREV_BCM5717: 2070 case BGE_ASICREV_BCM5719: 2071 case BGE_ASICREV_BCM5720: 2072 phy_addr = pa->pa_function; 2073 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) { 2074 phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) & 2075 BGE_SGDIGSTS_IS_SERDES) ? 8 : 1; 2076 } else { 2077 phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) & 2078 BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1; 2079 } 2080 } 2081 2082 return phy_addr; 2083 } 2084 2085 /* 2086 * Do endian, PCI and DMA initialization. Also check the on-board ROM 2087 * self-test results. 2088 */ 2089 static int 2090 bge_chipinit(struct bge_softc *sc) 2091 { 2092 uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg; 2093 int i; 2094 2095 /* Set endianness before we access any non-PCI registers. */ 2096 misc_ctl = BGE_INIT; 2097 if (sc->bge_flags & BGEF_TAGGED_STATUS) 2098 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS; 2099 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL, 2100 misc_ctl); 2101 2102 /* 2103 * Clear the MAC statistics block in the NIC's 2104 * internal memory. 2105 */ 2106 for (i = BGE_STATS_BLOCK; 2107 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t)) 2108 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0); 2109 2110 for (i = BGE_STATUS_BLOCK; 2111 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t)) 2112 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0); 2113 2114 /* 5717 workaround from tg3 */ 2115 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) { 2116 /* Save */ 2117 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL); 2118 2119 /* Temporary modify MODE_CTL to control TLP */ 2120 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK; 2121 CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1); 2122 2123 /* Control TLP */ 2124 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG + 2125 BGE_TLP_PHYCTL1); 2126 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1, 2127 reg | BGE_TLP_PHYCTL1_EN_L1PLLPD); 2128 2129 /* Restore */ 2130 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl); 2131 } 2132 2133 if (BGE_IS_57765_FAMILY(sc)) { 2134 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) { 2135 /* Save */ 2136 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL); 2137 2138 /* Temporary modify MODE_CTL to control TLP */ 2139 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK; 2140 CSR_WRITE_4(sc, BGE_MODE_CTL, 2141 reg | BGE_MODECTL_PCIE_TLPADDR1); 2142 2143 /* Control TLP */ 2144 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG + 2145 BGE_TLP_PHYCTL5); 2146 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5, 2147 reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ); 2148 2149 /* Restore */ 2150 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl); 2151 } 2152 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) { 2153 /* 2154 * For the 57766 and non Ax versions of 57765, bootcode 2155 * needs to setup the PCIE Fast Training Sequence (FTS) 2156 * value to prevent transmit hangs. 2157 */ 2158 reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL); 2159 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL, 2160 reg | BGE_CPMU_PADRNG_CTL_RDIV2); 2161 2162 /* Save */ 2163 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL); 2164 2165 /* Temporary modify MODE_CTL to control TLP */ 2166 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK; 2167 CSR_WRITE_4(sc, BGE_MODE_CTL, 2168 reg | BGE_MODECTL_PCIE_TLPADDR0); 2169 2170 /* Control TLP */ 2171 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG + 2172 BGE_TLP_FTSMAX); 2173 reg &= ~BGE_TLP_FTSMAX_MSK; 2174 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX, 2175 reg | BGE_TLP_FTSMAX_VAL); 2176 2177 /* Restore */ 2178 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl); 2179 } 2180 2181 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK); 2182 reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK; 2183 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25; 2184 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg); 2185 } 2186 2187 /* Set up the PCI DMA control register. */ 2188 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD; 2189 if (sc->bge_flags & BGEF_PCIE) { 2190 /* Read watermark not used, 128 bytes for write. */ 2191 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n", 2192 device_xname(sc->bge_dev))); 2193 if (sc->bge_mps >= 256) 2194 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7); 2195 else 2196 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); 2197 } else if (sc->bge_flags & BGEF_PCIX) { 2198 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n", 2199 device_xname(sc->bge_dev))); 2200 /* PCI-X bus */ 2201 if (BGE_IS_5714_FAMILY(sc)) { 2202 /* 256 bytes for read and write. */ 2203 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) | 2204 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2); 2205 2206 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780) 2207 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL; 2208 else 2209 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL; 2210 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) { 2211 /* 2212 * In the BCM5703, the DMA read watermark should 2213 * be set to less than or equal to the maximum 2214 * memory read byte count of the PCI-X command 2215 * register. 2216 */ 2217 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) | 2218 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); 2219 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) { 2220 /* 1536 bytes for read, 384 bytes for write. */ 2221 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) | 2222 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); 2223 } else { 2224 /* 384 bytes for read and write. */ 2225 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) | 2226 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) | 2227 (0x0F); 2228 } 2229 2230 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 || 2231 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) { 2232 uint32_t tmp; 2233 2234 /* Set ONEDMA_ATONCE for hardware workaround. */ 2235 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f; 2236 if (tmp == 6 || tmp == 7) 2237 dma_rw_ctl |= 2238 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL; 2239 2240 /* Set PCI-X DMA write workaround. */ 2241 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE; 2242 } 2243 } else { 2244 /* Conventional PCI bus: 256 bytes for read and write. */ 2245 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n", 2246 device_xname(sc->bge_dev))); 2247 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) | 2248 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7); 2249 2250 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 && 2251 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750) 2252 dma_rw_ctl |= 0x0F; 2253 } 2254 2255 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 || 2256 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) 2257 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM | 2258 BGE_PCIDMARWCTL_ASRT_ALL_BE; 2259 2260 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 || 2261 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) 2262 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA; 2263 2264 if (BGE_IS_57765_PLUS(sc)) { 2265 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT; 2266 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) 2267 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK; 2268 2269 /* 2270 * Enable HW workaround for controllers that misinterpret 2271 * a status tag update and leave interrupts permanently 2272 * disabled. 2273 */ 2274 if (!BGE_IS_57765_FAMILY(sc) && 2275 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 && 2276 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5762) 2277 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA; 2278 } 2279 2280 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL, 2281 dma_rw_ctl); 2282 2283 /* 2284 * Set up general mode register. 2285 */ 2286 mode_ctl = BGE_DMA_SWAP_OPTIONS; 2287 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 || 2288 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) { 2289 /* Retain Host-2-BMC settings written by APE firmware. */ 2290 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) & 2291 (BGE_MODECTL_BYTESWAP_B2HRX_DATA | 2292 BGE_MODECTL_WORDSWAP_B2HRX_DATA | 2293 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE); 2294 } 2295 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS | 2296 BGE_MODECTL_TX_NO_PHDR_CSUM; 2297 2298 /* 2299 * BCM5701 B5 have a bug causing data corruption when using 2300 * 64-bit DMA reads, which can be terminated early and then 2301 * completed later as 32-bit accesses, in combination with 2302 * certain bridges. 2303 */ 2304 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 && 2305 sc->bge_chipid == BGE_CHIPID_BCM5701_B5) 2306 mode_ctl |= BGE_MODECTL_FORCE_PCI32; 2307 2308 /* 2309 * Tell the firmware the driver is running 2310 */ 2311 if (sc->bge_asf_mode & ASF_STACKUP) 2312 mode_ctl |= BGE_MODECTL_STACKUP; 2313 2314 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl); 2315 2316 /* 2317 * Disable memory write invalidate. Apparently it is not supported 2318 * properly by these devices. 2319 */ 2320 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, 2321 PCI_COMMAND_INVALIDATE_ENABLE); 2322 2323 #ifdef __brokenalpha__ 2324 /* 2325 * Must insure that we do not cross an 8K (bytes) boundary 2326 * for DMA reads. Our highest limit is 1K bytes. This is a 2327 * restriction on some ALPHA platforms with early revision 2328 * 21174 PCI chipsets, such as the AlphaPC 164lx 2329 */ 2330 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4); 2331 #endif 2332 2333 /* Set the timer prescaler (always 66MHz) */ 2334 CSR_WRITE_4_FLUSH(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ); 2335 2336 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) { 2337 DELAY(40); /* XXX */ 2338 2339 /* Put PHY into ready state */ 2340 BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ); 2341 DELAY(40); 2342 } 2343 2344 return 0; 2345 } 2346 2347 static int 2348 bge_blockinit(struct bge_softc *sc) 2349 { 2350 volatile struct bge_rcb *rcb; 2351 bus_size_t rcb_addr; 2352 struct ifnet * const ifp = &sc->ethercom.ec_if; 2353 bge_hostaddr taddr; 2354 uint32_t dmactl, rdmareg, mimode, val; 2355 int i, limit; 2356 2357 /* 2358 * Initialize the memory window pointer register so that 2359 * we can access the first 32K of internal NIC RAM. This will 2360 * allow us to set up the TX send ring RCBs and the RX return 2361 * ring RCBs, plus other things which live in NIC memory. 2362 */ 2363 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0); 2364 2365 if (!BGE_IS_5705_PLUS(sc)) { 2366 /* 57XX step 33 */ 2367 /* Configure mbuf memory pool */ 2368 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1); 2369 2370 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) 2371 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000); 2372 else 2373 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000); 2374 2375 /* 57XX step 34 */ 2376 /* Configure DMA resource pool */ 2377 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, 2378 BGE_DMA_DESCRIPTORS); 2379 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000); 2380 } 2381 2382 /* 5718 step 11, 57XX step 35 */ 2383 /* 2384 * Configure mbuf pool watermarks. New broadcom docs strongly 2385 * recommend these. 2386 */ 2387 if (BGE_IS_5717_PLUS(sc)) { 2388 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); 2389 if (ifp->if_mtu > ETHERMTU) { 2390 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e); 2391 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea); 2392 } else { 2393 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a); 2394 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0); 2395 } 2396 } else if (BGE_IS_5705_PLUS(sc)) { 2397 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); 2398 2399 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) { 2400 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04); 2401 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10); 2402 } else { 2403 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10); 2404 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); 2405 } 2406 } else { 2407 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50); 2408 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20); 2409 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); 2410 } 2411 2412 /* 57XX step 36 */ 2413 /* Configure DMA resource watermarks */ 2414 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5); 2415 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10); 2416 2417 /* 5718 step 13, 57XX step 38 */ 2418 /* Enable buffer manager */ 2419 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN; 2420 /* 2421 * Change the arbitration algorithm of TXMBUF read request to 2422 * round-robin instead of priority based for BCM5719. When 2423 * TXFIFO is almost empty, RDMA will hold its request until 2424 * TXFIFO is not almost empty. 2425 */ 2426 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) 2427 val |= BGE_BMANMODE_NO_TX_UNDERRUN; 2428 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 || 2429 sc->bge_chipid == BGE_CHIPID_BCM5719_A0 || 2430 sc->bge_chipid == BGE_CHIPID_BCM5720_A0) 2431 val |= BGE_BMANMODE_LOMBUF_ATTN; 2432 CSR_WRITE_4(sc, BGE_BMAN_MODE, val); 2433 2434 /* 57XX step 39 */ 2435 /* Poll for buffer manager start indication */ 2436 for (i = 0; i < BGE_TIMEOUT * 2; i++) { 2437 DELAY(10); 2438 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE) 2439 break; 2440 } 2441 2442 if (i == BGE_TIMEOUT * 2) { 2443 aprint_error_dev(sc->bge_dev, 2444 "buffer manager failed to start\n"); 2445 return ENXIO; 2446 } 2447 2448 /* 57XX step 40 */ 2449 /* Enable flow-through queues */ 2450 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); 2451 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); 2452 2453 /* Wait until queue initialization is complete */ 2454 for (i = 0; i < BGE_TIMEOUT * 2; i++) { 2455 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0) 2456 break; 2457 DELAY(10); 2458 } 2459 2460 if (i == BGE_TIMEOUT * 2) { 2461 aprint_error_dev(sc->bge_dev, 2462 "flow-through queue init failed\n"); 2463 return ENXIO; 2464 } 2465 2466 /* 2467 * Summary of rings supported by the controller: 2468 * 2469 * Standard Receive Producer Ring 2470 * - This ring is used to feed receive buffers for "standard" 2471 * sized frames (typically 1536 bytes) to the controller. 2472 * 2473 * Jumbo Receive Producer Ring 2474 * - This ring is used to feed receive buffers for jumbo sized 2475 * frames (i.e. anything bigger than the "standard" frames) 2476 * to the controller. 2477 * 2478 * Mini Receive Producer Ring 2479 * - This ring is used to feed receive buffers for "mini" 2480 * sized frames to the controller. 2481 * - This feature required external memory for the controller 2482 * but was never used in a production system. Should always 2483 * be disabled. 2484 * 2485 * Receive Return Ring 2486 * - After the controller has placed an incoming frame into a 2487 * receive buffer that buffer is moved into a receive return 2488 * ring. The driver is then responsible to passing the 2489 * buffer up to the stack. Many versions of the controller 2490 * support multiple RR rings. 2491 * 2492 * Send Ring 2493 * - This ring is used for outgoing frames. Many versions of 2494 * the controller support multiple send rings. 2495 */ 2496 2497 /* 5718 step 15, 57XX step 41 */ 2498 /* Initialize the standard RX ring control block */ 2499 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb; 2500 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring)); 2501 /* 5718 step 16 */ 2502 if (BGE_IS_57765_PLUS(sc)) { 2503 /* 2504 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32) 2505 * Bits 15-2 : Maximum RX frame size 2506 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled 2507 * Bit 0 : Reserved 2508 */ 2509 rcb->bge_maxlen_flags = 2510 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2); 2511 } else if (BGE_IS_5705_PLUS(sc)) { 2512 /* 2513 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32) 2514 * Bits 15-2 : Reserved (should be 0) 2515 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled 2516 * Bit 0 : Reserved 2517 */ 2518 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0); 2519 } else { 2520 /* 2521 * Ring size is always XXX entries 2522 * Bits 31-16: Maximum RX frame size 2523 * Bits 15-2 : Reserved (should be 0) 2524 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled 2525 * Bit 0 : Reserved 2526 */ 2527 rcb->bge_maxlen_flags = 2528 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0); 2529 } 2530 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 || 2531 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 || 2532 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) 2533 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717; 2534 else 2535 rcb->bge_nicaddr = BGE_STD_RX_RINGS; 2536 /* Write the standard receive producer ring control block. */ 2537 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi); 2538 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo); 2539 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); 2540 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr); 2541 2542 /* Reset the standard receive producer ring producer index. */ 2543 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0); 2544 2545 /* 57XX step 42 */ 2546 /* 2547 * Initialize the jumbo RX ring control block 2548 * We set the 'ring disabled' bit in the flags 2549 * field until we're actually ready to start 2550 * using this ring (i.e. once we set the MTU 2551 * high enough to require it). 2552 */ 2553 if (BGE_IS_JUMBO_CAPABLE(sc)) { 2554 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb; 2555 BGE_HOSTADDR(rcb->bge_hostaddr, 2556 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring)); 2557 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 2558 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED); 2559 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 || 2560 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 || 2561 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) 2562 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717; 2563 else 2564 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS; 2565 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, 2566 rcb->bge_hostaddr.bge_addr_hi); 2567 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, 2568 rcb->bge_hostaddr.bge_addr_lo); 2569 /* Program the jumbo receive producer ring RCB parameters. */ 2570 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, 2571 rcb->bge_maxlen_flags); 2572 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr); 2573 /* Reset the jumbo receive producer ring producer index. */ 2574 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0); 2575 } 2576 2577 /* 57XX step 43 */ 2578 /* Disable the mini receive producer ring RCB. */ 2579 if (BGE_IS_5700_FAMILY(sc)) { 2580 /* Set up dummy disabled mini ring RCB */ 2581 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb; 2582 rcb->bge_maxlen_flags = 2583 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED); 2584 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, 2585 rcb->bge_maxlen_flags); 2586 /* Reset the mini receive producer ring producer index. */ 2587 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0); 2588 2589 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, 2590 offsetof(struct bge_ring_data, bge_info), 2591 sizeof(struct bge_gib), 2592 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2593 } 2594 2595 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */ 2596 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) { 2597 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 || 2598 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 || 2599 sc->bge_chipid == BGE_CHIPID_BCM5906_A2) 2600 CSR_WRITE_4(sc, BGE_ISO_PKT_TX, 2601 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2); 2602 } 2603 /* 5718 step 14, 57XX step 44 */ 2604 /* 2605 * The BD ring replenish thresholds control how often the 2606 * hardware fetches new BD's from the producer rings in host 2607 * memory. Setting the value too low on a busy system can 2608 * starve the hardware and reduce the throughput. 2609 * 2610 * Set the BD ring replenish thresholds. The recommended 2611 * values are 1/8th the number of descriptors allocated to 2612 * each ring, but since we try to avoid filling the entire 2613 * ring we set these to the minimal value of 8. This needs to 2614 * be done on several of the supported chip revisions anyway, 2615 * to work around HW bugs. 2616 */ 2617 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8); 2618 if (BGE_IS_JUMBO_CAPABLE(sc)) 2619 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8); 2620 2621 /* 5718 step 18 */ 2622 if (BGE_IS_5717_PLUS(sc)) { 2623 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4); 2624 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4); 2625 } 2626 2627 /* 57XX step 45 */ 2628 /* 2629 * Disable all send rings by setting the 'ring disabled' bit 2630 * in the flags field of all the TX send ring control blocks, 2631 * located in NIC memory. 2632 */ 2633 if (BGE_IS_5700_FAMILY(sc)) { 2634 /* 5700 to 5704 had 16 send rings. */ 2635 limit = BGE_TX_RINGS_EXTSSRAM_MAX; 2636 } else if (BGE_IS_5717_PLUS(sc)) { 2637 limit = BGE_TX_RINGS_5717_MAX; 2638 } else if (BGE_IS_57765_FAMILY(sc) || 2639 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) { 2640 limit = BGE_TX_RINGS_57765_MAX; 2641 } else 2642 limit = 1; 2643 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB; 2644 for (i = 0; i < limit; i++) { 2645 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags, 2646 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED)); 2647 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0); 2648 rcb_addr += sizeof(struct bge_rcb); 2649 } 2650 2651 /* 57XX step 46 and 47 */ 2652 /* Configure send ring RCB 0 (we use only the first ring) */ 2653 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB; 2654 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring)); 2655 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi); 2656 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo); 2657 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 || 2658 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 || 2659 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) 2660 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717); 2661 else 2662 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 2663 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT)); 2664 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags, 2665 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0)); 2666 2667 /* 57XX step 48 */ 2668 /* 2669 * Disable all receive return rings by setting the 2670 * 'ring disabled' bit in the flags field of all the receive 2671 * return ring control blocks, located in NIC memory. 2672 */ 2673 if (BGE_IS_5717_PLUS(sc)) { 2674 /* Should be 17, use 16 until we get an SRAM map. */ 2675 limit = 16; 2676 } else if (BGE_IS_5700_FAMILY(sc)) 2677 limit = BGE_RX_RINGS_MAX; 2678 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 || 2679 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762 || 2680 BGE_IS_57765_FAMILY(sc)) 2681 limit = 4; 2682 else 2683 limit = 1; 2684 /* Disable all receive return rings */ 2685 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB; 2686 for (i = 0; i < limit; i++) { 2687 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0); 2688 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0); 2689 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags, 2690 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 2691 BGE_RCB_FLAG_RING_DISABLED)); 2692 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0); 2693 bge_writembx(sc, BGE_MBX_RX_CONS0_LO + 2694 (i * (sizeof(uint64_t))), 0); 2695 rcb_addr += sizeof(struct bge_rcb); 2696 } 2697 2698 /* 57XX step 49 */ 2699 /* 2700 * Set up receive return ring 0. Note that the NIC address 2701 * for RX return rings is 0x0. The return rings live entirely 2702 * within the host, so the nicaddr field in the RCB isn't used. 2703 */ 2704 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB; 2705 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring)); 2706 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi); 2707 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo); 2708 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000); 2709 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags, 2710 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0)); 2711 2712 /* 5718 step 24, 57XX step 53 */ 2713 /* Set random backoff seed for TX */ 2714 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF, 2715 (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] + 2716 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] + 2717 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) & 2718 BGE_TX_BACKOFF_SEED_MASK); 2719 2720 /* 5718 step 26, 57XX step 55 */ 2721 /* Set inter-packet gap */ 2722 val = 0x2620; 2723 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 || 2724 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) 2725 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) & 2726 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK); 2727 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val); 2728 2729 /* 5718 step 27, 57XX step 56 */ 2730 /* 2731 * Specify which ring to use for packets that don't match 2732 * any RX rules. 2733 */ 2734 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08); 2735 2736 /* 5718 step 28, 57XX step 57 */ 2737 /* 2738 * Configure number of RX lists. One interrupt distribution 2739 * list, sixteen active lists, one bad frames class. 2740 */ 2741 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181); 2742 2743 /* 5718 step 29, 57XX step 58 */ 2744 /* Initialize RX list placement stats mask. */ 2745 if (BGE_IS_575X_PLUS(sc)) { 2746 val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK); 2747 val &= ~BGE_RXLPSTATCONTROL_DACK_FIX; 2748 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val); 2749 } else 2750 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF); 2751 2752 /* 5718 step 30, 57XX step 59 */ 2753 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1); 2754 2755 /* 5718 step 33, 57XX step 62 */ 2756 /* Disable host coalescing until we get it set up */ 2757 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000); 2758 2759 /* 5718 step 34, 57XX step 63 */ 2760 /* Poll to make sure it's shut down. */ 2761 for (i = 0; i < BGE_TIMEOUT * 2; i++) { 2762 DELAY(10); 2763 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE)) 2764 break; 2765 } 2766 2767 if (i == BGE_TIMEOUT * 2) { 2768 aprint_error_dev(sc->bge_dev, 2769 "host coalescing engine failed to idle\n"); 2770 return ENXIO; 2771 } 2772 2773 /* 5718 step 35, 36, 37 */ 2774 /* Set up host coalescing defaults */ 2775 mutex_enter(sc->sc_intr_lock); 2776 const uint32_t rx_coal_ticks = sc->bge_rx_coal_ticks; 2777 const uint32_t tx_coal_ticks = sc->bge_tx_coal_ticks; 2778 const uint32_t rx_max_coal_bds = sc->bge_rx_max_coal_bds; 2779 const uint32_t tx_max_coal_bds = sc->bge_tx_max_coal_bds; 2780 mutex_exit(sc->sc_intr_lock); 2781 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_coal_ticks); 2782 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, tx_coal_ticks); 2783 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_max_coal_bds); 2784 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, tx_max_coal_bds); 2785 if (!(BGE_IS_5705_PLUS(sc))) { 2786 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0); 2787 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0); 2788 } 2789 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0); 2790 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0); 2791 2792 /* Set up address of statistics block */ 2793 if (BGE_IS_5700_FAMILY(sc)) { 2794 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats)); 2795 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks); 2796 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK); 2797 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi); 2798 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo); 2799 } 2800 2801 /* 5718 step 38 */ 2802 /* Set up address of status block */ 2803 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block)); 2804 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK); 2805 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi); 2806 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo); 2807 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0; 2808 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0; 2809 2810 /* Set up status block size. */ 2811 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 && 2812 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) { 2813 val = BGE_STATBLKSZ_FULL; 2814 bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ); 2815 } else { 2816 val = BGE_STATBLKSZ_32BYTE; 2817 bzero(&sc->bge_rdata->bge_status_block, 32); 2818 } 2819 2820 /* 5718 step 39, 57XX step 73 */ 2821 /* Turn on host coalescing state machine */ 2822 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE); 2823 2824 /* 5718 step 40, 57XX step 74 */ 2825 /* Turn on RX BD completion state machine and enable attentions */ 2826 CSR_WRITE_4(sc, BGE_RBDC_MODE, 2827 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN); 2828 2829 /* 5718 step 41, 57XX step 75 */ 2830 /* Turn on RX list placement state machine */ 2831 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); 2832 2833 /* 57XX step 76 */ 2834 /* Turn on RX list selector state machine. */ 2835 if (!(BGE_IS_5705_PLUS(sc))) 2836 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); 2837 2838 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB | 2839 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR | 2840 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB | 2841 BGE_MACMODE_FRMHDR_DMA_ENB; 2842 2843 if (sc->bge_flags & BGEF_FIBER_TBI) 2844 val |= BGE_PORTMODE_TBI; 2845 else if (sc->bge_flags & BGEF_FIBER_MII) 2846 val |= BGE_PORTMODE_GMII; 2847 else 2848 val |= BGE_PORTMODE_MII; 2849 2850 /* 5718 step 42 and 43, 57XX step 77 and 78 */ 2851 /* Allow APE to send/receive frames. */ 2852 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0) 2853 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN; 2854 2855 /* Turn on DMA, clear stats */ 2856 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val); 2857 /* 5718 step 44 */ 2858 DELAY(40); 2859 2860 /* 5718 step 45, 57XX step 79 */ 2861 /* Set misc. local control, enable interrupts on attentions */ 2862 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN); 2863 if (BGE_IS_5717_PLUS(sc)) { 2864 CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */ 2865 /* 5718 step 46 */ 2866 DELAY(100); 2867 } 2868 2869 /* 57XX step 81 */ 2870 /* Turn on DMA completion state machine */ 2871 if (!(BGE_IS_5705_PLUS(sc))) 2872 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); 2873 2874 /* 5718 step 47, 57XX step 82 */ 2875 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS; 2876 2877 /* 5718 step 48 */ 2878 /* Enable host coalescing bug fix. */ 2879 if (BGE_IS_5755_PLUS(sc)) 2880 val |= BGE_WDMAMODE_STATUS_TAG_FIX; 2881 2882 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) 2883 val |= BGE_WDMAMODE_BURST_ALL_DATA; 2884 2885 /* Turn on write DMA state machine */ 2886 CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val); 2887 /* 5718 step 49 */ 2888 DELAY(40); 2889 2890 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS; 2891 2892 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717) 2893 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS; 2894 2895 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 || 2896 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 || 2897 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) 2898 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN | 2899 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN | 2900 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN; 2901 2902 if (sc->bge_flags & BGEF_PCIE) 2903 val |= BGE_RDMAMODE_FIFO_LONG_BURST; 2904 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) { 2905 if (ifp->if_mtu <= ETHERMTU) 2906 val |= BGE_RDMAMODE_JMB_2K_MMRR; 2907 } 2908 if (sc->bge_flags & BGEF_TSO) { 2909 val |= BGE_RDMAMODE_TSO4_ENABLE; 2910 if (BGE_IS_5717_PLUS(sc)) 2911 val |= BGE_RDMAMODE_TSO6_ENABLE; 2912 } 2913 2914 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 || 2915 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) { 2916 val |= CSR_READ_4(sc, BGE_RDMA_MODE) & 2917 BGE_RDMAMODE_H2BNC_VLAN_DET; 2918 /* 2919 * Allow multiple outstanding read requests from 2920 * non-LSO read DMA engine. 2921 */ 2922 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS; 2923 } 2924 2925 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 || 2926 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 || 2927 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 || 2928 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 || 2929 BGE_IS_57765_PLUS(sc)) { 2930 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) 2931 rdmareg = BGE_RDMA_RSRVCTRL_REG2; 2932 else 2933 rdmareg = BGE_RDMA_RSRVCTRL; 2934 dmactl = CSR_READ_4(sc, rdmareg); 2935 /* 2936 * Adjust tx margin to prevent TX data corruption and 2937 * fix internal FIFO overflow. 2938 */ 2939 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 || 2940 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) { 2941 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK | 2942 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK | 2943 BGE_RDMA_RSRVCTRL_TXMRGN_MASK); 2944 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K | 2945 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K | 2946 BGE_RDMA_RSRVCTRL_TXMRGN_320B; 2947 } 2948 /* 2949 * Enable fix for read DMA FIFO overruns. 2950 * The fix is to limit the number of RX BDs 2951 * the hardware would fetch at a time. 2952 */ 2953 CSR_WRITE_4(sc, rdmareg, dmactl | 2954 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX); 2955 } 2956 2957 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) { 2958 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, 2959 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) | 2960 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K | 2961 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K); 2962 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) { 2963 /* 2964 * Allow 4KB burst length reads for non-LSO frames. 2965 * Enable 512B burst length reads for buffer descriptors. 2966 */ 2967 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, 2968 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) | 2969 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 | 2970 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K); 2971 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) { 2972 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2, 2973 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) | 2974 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K | 2975 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K); 2976 } 2977 /* Turn on read DMA state machine */ 2978 CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val); 2979 /* 5718 step 52 */ 2980 delay(40); 2981 2982 if (sc->bge_flags & BGEF_RDMA_BUG) { 2983 for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) { 2984 val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4); 2985 if ((val & 0xFFFF) > BGE_FRAMELEN) 2986 break; 2987 if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN) 2988 break; 2989 } 2990 if (i != BGE_NUM_RDMA_CHANNELS / 2) { 2991 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL); 2992 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) 2993 val |= BGE_RDMA_TX_LENGTH_WA_5719; 2994 else 2995 val |= BGE_RDMA_TX_LENGTH_WA_5720; 2996 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val); 2997 } 2998 } 2999 3000 /* 5718 step 56, 57XX step 84 */ 3001 /* Turn on RX data completion state machine */ 3002 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); 3003 3004 /* Turn on RX data and RX BD initiator state machine */ 3005 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE); 3006 3007 /* 57XX step 85 */ 3008 /* Turn on Mbuf cluster free state machine */ 3009 if (!BGE_IS_5705_PLUS(sc)) 3010 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); 3011 3012 /* 5718 step 57, 57XX step 86 */ 3013 /* Turn on send data completion state machine */ 3014 val = BGE_SDCMODE_ENABLE; 3015 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) 3016 val |= BGE_SDCMODE_CDELAY; 3017 CSR_WRITE_4(sc, BGE_SDC_MODE, val); 3018 3019 /* 5718 step 58 */ 3020 /* Turn on send BD completion state machine */ 3021 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); 3022 3023 /* 57XX step 88 */ 3024 /* Turn on RX BD initiator state machine */ 3025 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); 3026 3027 /* 5718 step 60, 57XX step 90 */ 3028 /* Turn on send data initiator state machine */ 3029 if (sc->bge_flags & BGEF_TSO) { 3030 /* XXX: magic value from Linux driver */ 3031 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 3032 BGE_SDIMODE_HW_LSO_PRE_DMA); 3033 } else 3034 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); 3035 3036 /* 5718 step 61, 57XX step 91 */ 3037 /* Turn on send BD initiator state machine */ 3038 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); 3039 3040 /* 5718 step 62, 57XX step 92 */ 3041 /* Turn on send BD selector state machine */ 3042 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); 3043 3044 /* 5718 step 31, 57XX step 60 */ 3045 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF); 3046 /* 5718 step 32, 57XX step 61 */ 3047 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL, 3048 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER); 3049 3050 /* ack/clear link change events */ 3051 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | 3052 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | 3053 BGE_MACSTAT_LINK_CHANGED); 3054 CSR_WRITE_4(sc, BGE_MI_STS, 0); 3055 3056 /* 3057 * Enable attention when the link has changed state for 3058 * devices that use auto polling. 3059 */ 3060 if (sc->bge_flags & BGEF_FIBER_TBI) { 3061 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK); 3062 } else { 3063 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0) 3064 mimode = BGE_MIMODE_500KHZ_CONST; 3065 else 3066 mimode = BGE_MIMODE_BASE; 3067 /* 5718 step 68. 5718 step 69 (optionally). */ 3068 if (BGE_IS_5700_FAMILY(sc) || 3069 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) { 3070 mimode |= BGE_MIMODE_AUTOPOLL; 3071 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL); 3072 } 3073 mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr); 3074 CSR_WRITE_4(sc, BGE_MI_MODE, mimode); 3075 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) 3076 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, 3077 BGE_EVTENB_MI_INTERRUPT); 3078 } 3079 3080 /* 3081 * Clear any pending link state attention. 3082 * Otherwise some link state change events may be lost until attention 3083 * is cleared by bge_intr() -> bge_link_upd() sequence. 3084 * It's not necessary on newer BCM chips - perhaps enabling link 3085 * state change attentions implies clearing pending attention. 3086 */ 3087 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | 3088 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | 3089 BGE_MACSTAT_LINK_CHANGED); 3090 3091 /* Enable link state change attentions. */ 3092 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED); 3093 3094 return 0; 3095 } 3096 3097 static const struct bge_revision * 3098 bge_lookup_rev(uint32_t chipid) 3099 { 3100 const struct bge_revision *br; 3101 3102 for (br = bge_revisions; br->br_name != NULL; br++) { 3103 if (br->br_chipid == chipid) 3104 return br; 3105 } 3106 3107 for (br = bge_majorrevs; br->br_name != NULL; br++) { 3108 if (br->br_chipid == BGE_ASICREV(chipid)) 3109 return br; 3110 } 3111 3112 return NULL; 3113 } 3114 3115 static const struct bge_product * 3116 bge_lookup(const struct pci_attach_args *pa) 3117 { 3118 const struct bge_product *bp; 3119 3120 for (bp = bge_products; bp->bp_name != NULL; bp++) { 3121 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor && 3122 PCI_PRODUCT(pa->pa_id) == bp->bp_product) 3123 return bp; 3124 } 3125 3126 return NULL; 3127 } 3128 3129 static uint32_t 3130 bge_chipid(const struct pci_attach_args *pa) 3131 { 3132 uint32_t id; 3133 3134 id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) 3135 >> BGE_PCIMISCCTL_ASICREV_SHIFT; 3136 3137 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) { 3138 switch (PCI_PRODUCT(pa->pa_id)) { 3139 case PCI_PRODUCT_BROADCOM_BCM5717: 3140 case PCI_PRODUCT_BROADCOM_BCM5718: 3141 case PCI_PRODUCT_BROADCOM_BCM5719: 3142 case PCI_PRODUCT_BROADCOM_BCM5720: 3143 case PCI_PRODUCT_BROADCOM_BCM5725: 3144 case PCI_PRODUCT_BROADCOM_BCM5727: 3145 case PCI_PRODUCT_BROADCOM_BCM5762: 3146 case PCI_PRODUCT_BROADCOM_BCM57764: 3147 case PCI_PRODUCT_BROADCOM_BCM57767: 3148 case PCI_PRODUCT_BROADCOM_BCM57787: 3149 id = pci_conf_read(pa->pa_pc, pa->pa_tag, 3150 BGE_PCI_GEN2_PRODID_ASICREV); 3151 break; 3152 case PCI_PRODUCT_BROADCOM_BCM57761: 3153 case PCI_PRODUCT_BROADCOM_BCM57762: 3154 case PCI_PRODUCT_BROADCOM_BCM57765: 3155 case PCI_PRODUCT_BROADCOM_BCM57766: 3156 case PCI_PRODUCT_BROADCOM_BCM57781: 3157 case PCI_PRODUCT_BROADCOM_BCM57782: 3158 case PCI_PRODUCT_BROADCOM_BCM57785: 3159 case PCI_PRODUCT_BROADCOM_BCM57786: 3160 case PCI_PRODUCT_BROADCOM_BCM57791: 3161 case PCI_PRODUCT_BROADCOM_BCM57795: 3162 id = pci_conf_read(pa->pa_pc, pa->pa_tag, 3163 BGE_PCI_GEN15_PRODID_ASICREV); 3164 break; 3165 default: 3166 id = pci_conf_read(pa->pa_pc, pa->pa_tag, 3167 BGE_PCI_PRODID_ASICREV); 3168 break; 3169 } 3170 } 3171 3172 return id; 3173 } 3174 3175 /* 3176 * Return true if MSI can be used with this device. 3177 */ 3178 static int 3179 bge_can_use_msi(struct bge_softc *sc) 3180 { 3181 int can_use_msi = 0; 3182 3183 switch (BGE_ASICREV(sc->bge_chipid)) { 3184 case BGE_ASICREV_BCM5714_A0: 3185 case BGE_ASICREV_BCM5714: 3186 /* 3187 * Apparently, MSI doesn't work when these chips are 3188 * configured in single-port mode. 3189 */ 3190 break; 3191 case BGE_ASICREV_BCM5750: 3192 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX && 3193 BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX) 3194 can_use_msi = 1; 3195 break; 3196 default: 3197 if (BGE_IS_575X_PLUS(sc)) 3198 can_use_msi = 1; 3199 } 3200 return can_use_msi; 3201 } 3202 3203 /* 3204 * Probe for a Broadcom chip. Check the PCI vendor and device IDs 3205 * against our list and return its name if we find a match. Note 3206 * that since the Broadcom controller contains VPD support, we 3207 * can get the device name string from the controller itself instead 3208 * of the compiled-in string. This is a little slow, but it guarantees 3209 * we'll always announce the right product name. 3210 */ 3211 static int 3212 bge_probe(device_t parent, cfdata_t match, void *aux) 3213 { 3214 struct pci_attach_args *pa = (struct pci_attach_args *)aux; 3215 3216 if (bge_lookup(pa) != NULL) 3217 return 1; 3218 3219 return 0; 3220 } 3221 3222 static void 3223 bge_attach(device_t parent, device_t self, void *aux) 3224 { 3225 struct bge_softc * const sc = device_private(self); 3226 struct pci_attach_args * const pa = aux; 3227 prop_dictionary_t dict; 3228 const struct bge_product *bp; 3229 const struct bge_revision *br; 3230 pci_chipset_tag_t pc; 3231 const char *intrstr = NULL; 3232 uint32_t hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5; 3233 uint32_t command; 3234 struct ifnet *ifp; 3235 struct mii_data * const mii = &sc->bge_mii; 3236 uint32_t misccfg, mimode, macmode; 3237 void * kva; 3238 u_char eaddr[ETHER_ADDR_LEN]; 3239 pcireg_t memtype, subid, reg; 3240 bus_addr_t memaddr; 3241 uint32_t pm_ctl; 3242 bool no_seeprom; 3243 int capmask, trys; 3244 int mii_flags; 3245 int map_flags; 3246 char intrbuf[PCI_INTRSTR_LEN]; 3247 3248 bp = bge_lookup(pa); 3249 KASSERT(bp != NULL); 3250 3251 sc->sc_pc = pa->pa_pc; 3252 sc->sc_pcitag = pa->pa_tag; 3253 sc->bge_dev = self; 3254 3255 sc->bge_pa = *pa; 3256 pc = sc->sc_pc; 3257 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG); 3258 3259 aprint_naive(": Ethernet controller\n"); 3260 aprint_normal(": %s Ethernet\n", bp->bp_name); 3261 3262 /* 3263 * Map control/status registers. 3264 */ 3265 DPRINTFN(5, ("Map control/status regs\n")); 3266 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG); 3267 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE; 3268 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command); 3269 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG); 3270 3271 if (!(command & PCI_COMMAND_MEM_ENABLE)) { 3272 aprint_error_dev(sc->bge_dev, 3273 "failed to enable memory mapping!\n"); 3274 return; 3275 } 3276 3277 DPRINTFN(5, ("pci_mem_find\n")); 3278 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0); 3279 switch (memtype) { 3280 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT: 3281 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT: 3282 #if 0 3283 if (pci_mapreg_map(pa, BGE_PCI_BAR0, 3284 memtype, 0, &sc->bge_btag, &sc->bge_bhandle, 3285 &memaddr, &sc->bge_bsize) == 0) 3286 break; 3287 #else 3288 /* 3289 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based 3290 * system get NMI on boot (PR#48451). This problem might not be 3291 * the driver's bug but our PCI common part's bug. Until we 3292 * find a real reason, we ignore the prefetchable bit. 3293 */ 3294 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0, 3295 memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) { 3296 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE; 3297 if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize, 3298 map_flags, &sc->bge_bhandle) == 0) { 3299 sc->bge_btag = pa->pa_memt; 3300 break; 3301 } 3302 } 3303 #endif 3304 /* FALLTHROUGH */ 3305 default: 3306 aprint_error_dev(sc->bge_dev, "can't find mem space\n"); 3307 return; 3308 } 3309 3310 sc->bge_txrx_stopping = false; 3311 3312 /* Save various chip information. */ 3313 sc->bge_chipid = bge_chipid(pa); 3314 sc->bge_phy_addr = bge_phy_addr(sc); 3315 3316 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS, 3317 &sc->bge_pciecap, NULL) != 0) { 3318 /* PCIe */ 3319 sc->bge_flags |= BGEF_PCIE; 3320 /* Extract supported maximum payload size. */ 3321 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, 3322 sc->bge_pciecap + PCIE_DCAP); 3323 sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD); 3324 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 || 3325 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) 3326 sc->bge_expmrq = 2048; 3327 else 3328 sc->bge_expmrq = 4096; 3329 bge_set_max_readrq(sc); 3330 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) { 3331 /* PCIe without PCIe cap */ 3332 sc->bge_flags |= BGEF_PCIE; 3333 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) & 3334 BGE_PCISTATE_PCI_BUSMODE) == 0) { 3335 /* PCI-X */ 3336 sc->bge_flags |= BGEF_PCIX; 3337 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX, 3338 &sc->bge_pcixcap, NULL) == 0) 3339 aprint_error_dev(sc->bge_dev, 3340 "unable to find PCIX capability\n"); 3341 } 3342 3343 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) { 3344 /* 3345 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?) 3346 * can clobber the chip's PCI config-space power control 3347 * registers, leaving the card in D3 powersave state. We do 3348 * not have memory-mapped registers in this state, so force 3349 * device into D0 state before starting initialization. 3350 */ 3351 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD); 3352 pm_ctl &= ~(PCI_PWR_D0 | PCI_PWR_D1 | PCI_PWR_D2 | PCI_PWR_D3); 3353 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */ 3354 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl); 3355 DELAY(1000); /* 27 usec is allegedly sufficient */ 3356 } 3357 3358 /* Save chipset family. */ 3359 switch (BGE_ASICREV(sc->bge_chipid)) { 3360 case BGE_ASICREV_BCM5717: 3361 case BGE_ASICREV_BCM5719: 3362 case BGE_ASICREV_BCM5720: 3363 sc->bge_flags |= BGEF_5717_PLUS; 3364 /* FALLTHROUGH */ 3365 case BGE_ASICREV_BCM5762: 3366 case BGE_ASICREV_BCM57765: 3367 case BGE_ASICREV_BCM57766: 3368 if (!BGE_IS_5717_PLUS(sc)) 3369 sc->bge_flags |= BGEF_57765_FAMILY; 3370 sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS | 3371 BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE; 3372 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 || 3373 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) { 3374 /* 3375 * Enable work around for DMA engine miscalculation 3376 * of TXMBUF available space. 3377 */ 3378 sc->bge_flags |= BGEF_RDMA_BUG; 3379 3380 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) && 3381 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0)) { 3382 /* Jumbo frame on BCM5719 A0 does not work. */ 3383 sc->bge_flags &= ~BGEF_JUMBO_CAPABLE; 3384 } 3385 } 3386 break; 3387 case BGE_ASICREV_BCM5755: 3388 case BGE_ASICREV_BCM5761: 3389 case BGE_ASICREV_BCM5784: 3390 case BGE_ASICREV_BCM5785: 3391 case BGE_ASICREV_BCM5787: 3392 case BGE_ASICREV_BCM57780: 3393 sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS; 3394 break; 3395 case BGE_ASICREV_BCM5700: 3396 case BGE_ASICREV_BCM5701: 3397 case BGE_ASICREV_BCM5703: 3398 case BGE_ASICREV_BCM5704: 3399 sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE; 3400 break; 3401 case BGE_ASICREV_BCM5714_A0: 3402 case BGE_ASICREV_BCM5780: 3403 case BGE_ASICREV_BCM5714: 3404 sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE; 3405 /* FALLTHROUGH */ 3406 case BGE_ASICREV_BCM5750: 3407 case BGE_ASICREV_BCM5752: 3408 case BGE_ASICREV_BCM5906: 3409 sc->bge_flags |= BGEF_575X_PLUS; 3410 /* FALLTHROUGH */ 3411 case BGE_ASICREV_BCM5705: 3412 sc->bge_flags |= BGEF_5705_PLUS; 3413 break; 3414 } 3415 3416 /* Identify chips with APE processor. */ 3417 switch (BGE_ASICREV(sc->bge_chipid)) { 3418 case BGE_ASICREV_BCM5717: 3419 case BGE_ASICREV_BCM5719: 3420 case BGE_ASICREV_BCM5720: 3421 case BGE_ASICREV_BCM5761: 3422 case BGE_ASICREV_BCM5762: 3423 sc->bge_flags |= BGEF_APE; 3424 break; 3425 } 3426 3427 /* 3428 * The 40bit DMA bug applies to the 5714/5715 controllers and is 3429 * not actually a MAC controller bug but an issue with the embedded 3430 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround. 3431 */ 3432 if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0)) 3433 sc->bge_flags |= BGEF_40BIT_BUG; 3434 3435 /* Chips with APE need BAR2 access for APE registers/memory. */ 3436 if ((sc->bge_flags & BGEF_APE) != 0) { 3437 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2); 3438 #if 0 3439 if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0, 3440 &sc->bge_apetag, &sc->bge_apehandle, NULL, 3441 &sc->bge_apesize)) { 3442 aprint_error_dev(sc->bge_dev, 3443 "couldn't map BAR2 memory\n"); 3444 return; 3445 } 3446 #else 3447 /* 3448 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based 3449 * system get NMI on boot (PR#48451). This problem might not be 3450 * the driver's bug but our PCI common part's bug. Until we 3451 * find a real reason, we ignore the prefetchable bit. 3452 */ 3453 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2, 3454 memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) { 3455 aprint_error_dev(sc->bge_dev, 3456 "couldn't map BAR2 memory\n"); 3457 return; 3458 } 3459 3460 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE; 3461 if (bus_space_map(pa->pa_memt, memaddr, 3462 sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) { 3463 aprint_error_dev(sc->bge_dev, 3464 "couldn't map BAR2 memory\n"); 3465 return; 3466 } 3467 sc->bge_apetag = pa->pa_memt; 3468 #endif 3469 3470 /* Enable APE register/memory access by host driver. */ 3471 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE); 3472 reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR | 3473 BGE_PCISTATE_ALLOW_APE_SHMEM_WR | 3474 BGE_PCISTATE_ALLOW_APE_PSPACE_WR; 3475 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg); 3476 3477 bge_ape_lock_init(sc); 3478 bge_ape_read_fw_ver(sc); 3479 } 3480 3481 /* Identify the chips that use an CPMU. */ 3482 if (BGE_IS_5717_PLUS(sc) || 3483 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 || 3484 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 || 3485 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 || 3486 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) 3487 sc->bge_flags |= BGEF_CPMU_PRESENT; 3488 3489 /* 3490 * When using the BCM5701 in PCI-X mode, data corruption has 3491 * been observed in the first few bytes of some received packets. 3492 * Aligning the packet buffer in memory eliminates the corruption. 3493 * Unfortunately, this misaligns the packet payloads. On platforms 3494 * which do not support unaligned accesses, we will realign the 3495 * payloads by copying the received packets. 3496 */ 3497 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 && 3498 sc->bge_flags & BGEF_PCIX) 3499 sc->bge_flags |= BGEF_RX_ALIGNBUG; 3500 3501 if (BGE_IS_5700_FAMILY(sc)) 3502 sc->bge_flags |= BGEF_JUMBO_CAPABLE; 3503 3504 misccfg = CSR_READ_4(sc, BGE_MISC_CFG); 3505 misccfg &= BGE_MISCCFG_BOARD_ID_MASK; 3506 3507 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 && 3508 (misccfg == BGE_MISCCFG_BOARD_ID_5788 || 3509 misccfg == BGE_MISCCFG_BOARD_ID_5788M)) 3510 sc->bge_flags |= BGEF_IS_5788; 3511 3512 /* 3513 * Some controllers seem to require a special firmware to use 3514 * TSO. But the firmware is not available to FreeBSD and Linux 3515 * claims that the TSO performed by the firmware is slower than 3516 * hardware based TSO. Moreover the firmware based TSO has one 3517 * known bug which can't handle TSO if ethernet header + IP/TCP 3518 * header is greater than 80 bytes. The workaround for the TSO 3519 * bug exist but it seems it's too expensive than not using 3520 * TSO at all. Some hardware also have the TSO bug so limit 3521 * the TSO to the controllers that are not affected TSO issues 3522 * (e.g. 5755 or higher). 3523 */ 3524 if (BGE_IS_5755_PLUS(sc)) { 3525 /* 3526 * BCM5754 and BCM5787 shares the same ASIC id so 3527 * explicit device id check is required. 3528 */ 3529 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) && 3530 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M)) 3531 sc->bge_flags |= BGEF_TSO; 3532 /* TSO on BCM5719 A0 does not work. */ 3533 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) && 3534 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0)) 3535 sc->bge_flags &= ~BGEF_TSO; 3536 } 3537 3538 capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */ 3539 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 && 3540 (misccfg == 0x4000 || misccfg == 0x8000)) || 3541 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 && 3542 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM && 3543 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 || 3544 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 || 3545 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) || 3546 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM && 3547 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F || 3548 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F || 3549 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) || 3550 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 || 3551 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 || 3552 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 || 3553 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) { 3554 /* These chips are 10/100 only. */ 3555 capmask &= ~BMSR_EXTSTAT; 3556 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED; 3557 } 3558 3559 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 || 3560 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 && 3561 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 && 3562 sc->bge_chipid != BGE_CHIPID_BCM5705_A1))) 3563 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED; 3564 3565 /* Set various PHY bug flags. */ 3566 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 || 3567 sc->bge_chipid == BGE_CHIPID_BCM5701_B0) 3568 sc->bge_phy_flags |= BGEPHYF_CRC_BUG; 3569 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX || 3570 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX) 3571 sc->bge_phy_flags |= BGEPHYF_ADC_BUG; 3572 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0) 3573 sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG; 3574 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 || 3575 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) && 3576 PCI_VENDOR(subid) == PCI_VENDOR_DELL) 3577 sc->bge_phy_flags |= BGEPHYF_NO_3LED; 3578 if (BGE_IS_5705_PLUS(sc) && 3579 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 && 3580 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 && 3581 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 && 3582 !BGE_IS_57765_PLUS(sc)) { 3583 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 || 3584 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 || 3585 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 || 3586 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) { 3587 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 && 3588 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756) 3589 sc->bge_phy_flags |= BGEPHYF_JITTER_BUG; 3590 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M) 3591 sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM; 3592 } else 3593 sc->bge_phy_flags |= BGEPHYF_BER_BUG; 3594 } 3595 3596 /* 3597 * SEEPROM check. 3598 * First check if firmware knows we do not have SEEPROM. 3599 */ 3600 if (prop_dictionary_get_bool(device_properties(self), 3601 "without-seeprom", &no_seeprom) && no_seeprom) 3602 sc->bge_flags |= BGEF_NO_EEPROM; 3603 3604 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) 3605 sc->bge_flags |= BGEF_NO_EEPROM; 3606 3607 /* Now check the 'ROM failed' bit on the RX CPU */ 3608 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) 3609 sc->bge_flags |= BGEF_NO_EEPROM; 3610 3611 sc->bge_asf_mode = 0; 3612 /* No ASF if APE present. */ 3613 if ((sc->bge_flags & BGEF_APE) == 0) { 3614 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == 3615 BGE_SRAM_DATA_SIG_MAGIC)) { 3616 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) & 3617 BGE_HWCFG_ASF) { 3618 sc->bge_asf_mode |= ASF_ENABLE; 3619 sc->bge_asf_mode |= ASF_STACKUP; 3620 if (BGE_IS_575X_PLUS(sc)) 3621 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE; 3622 } 3623 } 3624 } 3625 3626 int counts[PCI_INTR_TYPE_SIZE] = { 3627 [PCI_INTR_TYPE_INTX] = 1, 3628 [PCI_INTR_TYPE_MSI] = 1, 3629 [PCI_INTR_TYPE_MSIX] = 1, 3630 }; 3631 int max_type = PCI_INTR_TYPE_MSIX; 3632 3633 if (!bge_can_use_msi(sc)) { 3634 /* MSI broken, allow only INTx */ 3635 max_type = PCI_INTR_TYPE_INTX; 3636 } 3637 3638 if (pci_intr_alloc(pa, &sc->bge_pihp, counts, max_type) != 0) { 3639 aprint_error_dev(sc->bge_dev, "couldn't alloc interrupt\n"); 3640 return; 3641 } 3642 3643 DPRINTFN(5, ("pci_intr_string\n")); 3644 intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf, 3645 sizeof(intrbuf)); 3646 DPRINTFN(5, ("pci_intr_establish\n")); 3647 sc->bge_intrhand = pci_intr_establish_xname(pc, sc->bge_pihp[0], 3648 IPL_NET, bge_intr, sc, device_xname(sc->bge_dev)); 3649 if (sc->bge_intrhand == NULL) { 3650 pci_intr_release(pc, sc->bge_pihp, 1); 3651 sc->bge_pihp = NULL; 3652 3653 aprint_error_dev(self, "couldn't establish interrupt"); 3654 if (intrstr != NULL) 3655 aprint_error(" at %s", intrstr); 3656 aprint_error("\n"); 3657 return; 3658 } 3659 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr); 3660 3661 switch (pci_intr_type(pc, sc->bge_pihp[0])) { 3662 case PCI_INTR_TYPE_MSIX: 3663 case PCI_INTR_TYPE_MSI: 3664 KASSERT(bge_can_use_msi(sc)); 3665 sc->bge_flags |= BGEF_MSI; 3666 break; 3667 default: 3668 /* nothing to do */ 3669 break; 3670 } 3671 3672 char wqname[MAXCOMLEN]; 3673 snprintf(wqname, sizeof(wqname), "%sReset", device_xname(sc->bge_dev)); 3674 int error = workqueue_create(&sc->sc_reset_wq, wqname, 3675 bge_handle_reset_work, sc, PRI_NONE, IPL_SOFTCLOCK, 3676 WQ_MPSAFE); 3677 if (error) { 3678 aprint_error_dev(sc->bge_dev, 3679 "unable to create reset workqueue\n"); 3680 return; 3681 } 3682 3683 3684 /* 3685 * All controllers except BCM5700 supports tagged status but 3686 * we use tagged status only for MSI case on BCM5717. Otherwise 3687 * MSI on BCM5717 does not work. 3688 */ 3689 if (BGE_IS_57765_PLUS(sc) && sc->bge_flags & BGEF_MSI) 3690 sc->bge_flags |= BGEF_TAGGED_STATUS; 3691 3692 /* 3693 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM 3694 * lock in bge_reset(). 3695 */ 3696 CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR, 3697 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL)); 3698 delay(1000); 3699 BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM); 3700 3701 bge_stop_fw(sc); 3702 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN); 3703 if (bge_reset(sc)) 3704 aprint_error_dev(sc->bge_dev, "chip reset failed\n"); 3705 3706 /* 3707 * Read the hardware config word in the first 32k of NIC internal 3708 * memory, or fall back to the config word in the EEPROM. 3709 * Note: on some BCM5700 cards, this value appears to be unset. 3710 */ 3711 hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0; 3712 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == 3713 BGE_SRAM_DATA_SIG_MAGIC) { 3714 uint32_t tmp; 3715 3716 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG); 3717 tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >> 3718 BGE_SRAM_DATA_VER_SHIFT; 3719 if ((0 < tmp) && (tmp < 0x100)) 3720 hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2); 3721 if (sc->bge_flags & BGEF_PCIE) 3722 hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3); 3723 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) 3724 hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4); 3725 if (BGE_IS_5717_PLUS(sc)) 3726 hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5); 3727 } else if (!(sc->bge_flags & BGEF_NO_EEPROM)) { 3728 bge_read_eeprom(sc, (void *)&hwcfg, 3729 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg)); 3730 hwcfg = be32toh(hwcfg); 3731 } 3732 aprint_normal_dev(sc->bge_dev, 3733 "HW config %08x, %08x, %08x, %08x %08x\n", 3734 hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5); 3735 3736 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN); 3737 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN); 3738 3739 if (bge_chipinit(sc)) { 3740 aprint_error_dev(sc->bge_dev, "chip initialization failed\n"); 3741 bge_release_resources(sc); 3742 return; 3743 } 3744 3745 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) { 3746 BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, 3747 BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUTEN1); 3748 DELAY(100); 3749 } 3750 3751 /* Set MI_MODE */ 3752 mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr); 3753 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0) 3754 mimode |= BGE_MIMODE_500KHZ_CONST; 3755 else 3756 mimode |= BGE_MIMODE_BASE; 3757 CSR_WRITE_4_FLUSH(sc, BGE_MI_MODE, mimode); 3758 DELAY(80); 3759 3760 /* 3761 * Get station address from the EEPROM. 3762 */ 3763 if (bge_get_eaddr(sc, eaddr)) { 3764 aprint_error_dev(sc->bge_dev, 3765 "failed to read station address\n"); 3766 bge_release_resources(sc); 3767 return; 3768 } 3769 3770 br = bge_lookup_rev(sc->bge_chipid); 3771 3772 if (br == NULL) { 3773 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)", 3774 sc->bge_chipid); 3775 } else { 3776 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)", 3777 br->br_name, sc->bge_chipid); 3778 } 3779 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr)); 3780 3781 /* Allocate the general information block and ring buffers. */ 3782 if (pci_dma64_available(pa)) { 3783 sc->bge_dmatag = pa->pa_dmat64; 3784 sc->bge_dmatag32 = pa->pa_dmat; 3785 sc->bge_dma64 = true; 3786 } else { 3787 sc->bge_dmatag = pa->pa_dmat; 3788 sc->bge_dmatag32 = pa->pa_dmat; 3789 sc->bge_dma64 = false; 3790 } 3791 3792 /* 40bit DMA workaround */ 3793 if (sizeof(bus_addr_t) > 4) { 3794 if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) { 3795 bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */ 3796 3797 if (bus_dmatag_subregion(olddmatag, 0, 3798 (bus_addr_t)__MASK(40), 3799 &(sc->bge_dmatag), BUS_DMA_WAITOK) != 0) { 3800 aprint_error_dev(self, 3801 "WARNING: failed to restrict dma range," 3802 " falling back to parent bus dma range\n"); 3803 sc->bge_dmatag = olddmatag; 3804 } 3805 } 3806 } 3807 SLIST_INIT(&sc->txdma_list); 3808 DPRINTFN(5, ("bus_dmamem_alloc\n")); 3809 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data), 3810 PAGE_SIZE, 0, &sc->bge_ring_seg, 1, 3811 &sc->bge_ring_rseg, BUS_DMA_WAITOK)) { 3812 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n"); 3813 return; 3814 } 3815 DPRINTFN(5, ("bus_dmamem_map\n")); 3816 if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg, 3817 sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva, 3818 BUS_DMA_WAITOK)) { 3819 aprint_error_dev(sc->bge_dev, 3820 "can't map DMA buffers (%zu bytes)\n", 3821 sizeof(struct bge_ring_data)); 3822 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg, 3823 sc->bge_ring_rseg); 3824 return; 3825 } 3826 DPRINTFN(5, ("bus_dmamap_create\n")); 3827 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1, 3828 sizeof(struct bge_ring_data), 0, 3829 BUS_DMA_WAITOK, &sc->bge_ring_map)) { 3830 aprint_error_dev(sc->bge_dev, "can't create DMA map\n"); 3831 bus_dmamem_unmap(sc->bge_dmatag, kva, 3832 sizeof(struct bge_ring_data)); 3833 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg, 3834 sc->bge_ring_rseg); 3835 return; 3836 } 3837 DPRINTFN(5, ("bus_dmamap_load\n")); 3838 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva, 3839 sizeof(struct bge_ring_data), NULL, 3840 BUS_DMA_WAITOK)) { 3841 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map); 3842 bus_dmamem_unmap(sc->bge_dmatag, kva, 3843 sizeof(struct bge_ring_data)); 3844 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg, 3845 sc->bge_ring_rseg); 3846 return; 3847 } 3848 3849 DPRINTFN(5, ("bzero\n")); 3850 sc->bge_rdata = (struct bge_ring_data *)kva; 3851 3852 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data)); 3853 3854 /* Try to allocate memory for jumbo buffers. */ 3855 if (BGE_IS_JUMBO_CAPABLE(sc)) { 3856 if (bge_alloc_jumbo_mem(sc)) { 3857 aprint_error_dev(sc->bge_dev, 3858 "jumbo buffer allocation failed\n"); 3859 } else 3860 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU; 3861 } 3862 3863 /* Set default tuneable values. */ 3864 sc->bge_stat_ticks = BGE_TICKS_PER_SEC; 3865 sc->bge_rx_coal_ticks = 150; 3866 sc->bge_rx_max_coal_bds = 64; 3867 sc->bge_tx_coal_ticks = 300; 3868 sc->bge_tx_max_coal_bds = 400; 3869 if (BGE_IS_5705_PLUS(sc)) { 3870 sc->bge_tx_coal_ticks = (12 * 5); 3871 sc->bge_tx_max_coal_bds = (12 * 5); 3872 aprint_verbose_dev(sc->bge_dev, 3873 "setting short Tx thresholds\n"); 3874 } 3875 3876 if (BGE_IS_5717_PLUS(sc)) 3877 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT; 3878 else if (BGE_IS_5705_PLUS(sc)) 3879 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705; 3880 else 3881 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT; 3882 3883 sc->sc_mcast_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET); 3884 sc->sc_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET); 3885 3886 /* Set up ifnet structure */ 3887 ifp = &sc->ethercom.ec_if; 3888 ifp->if_softc = sc; 3889 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 3890 ifp->if_extflags = IFEF_MPSAFE; 3891 ifp->if_ioctl = bge_ioctl; 3892 ifp->if_stop = bge_stop; 3893 ifp->if_start = bge_start; 3894 ifp->if_init = bge_init; 3895 IFQ_SET_MAXLEN(&ifp->if_snd, uimax(BGE_TX_RING_CNT - 1, IFQ_MAXLEN)); 3896 IFQ_SET_READY(&ifp->if_snd); 3897 DPRINTFN(5, ("strcpy if_xname\n")); 3898 strcpy(ifp->if_xname, device_xname(sc->bge_dev)); 3899 3900 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0) 3901 sc->ethercom.ec_if.if_capabilities |= 3902 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx; 3903 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */ 3904 sc->ethercom.ec_if.if_capabilities |= 3905 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx | 3906 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx; 3907 #endif 3908 sc->ethercom.ec_capabilities |= 3909 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU; 3910 sc->ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING; 3911 3912 if (sc->bge_flags & BGEF_TSO) 3913 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4; 3914 3915 /* 3916 * Do MII setup. 3917 */ 3918 DPRINTFN(5, ("mii setup\n")); 3919 mii->mii_ifp = ifp; 3920 mii->mii_readreg = bge_miibus_readreg; 3921 mii->mii_writereg = bge_miibus_writereg; 3922 mii->mii_statchg = bge_miibus_statchg; 3923 3924 /* 3925 * Figure out what sort of media we have by checking the hardware 3926 * config word. Note: on some BCM5700 cards, this value appears to be 3927 * unset. If that's the case, we have to rely on identifying the NIC 3928 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41. 3929 * The SysKonnect SK-9D41 is a 1000baseSX card. 3930 */ 3931 if (PCI_PRODUCT(subid) == SK_SUBSYSID_9D41 || 3932 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) { 3933 if (BGE_IS_5705_PLUS(sc)) { 3934 sc->bge_flags |= BGEF_FIBER_MII; 3935 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED; 3936 } else 3937 sc->bge_flags |= BGEF_FIBER_TBI; 3938 } 3939 3940 /* Set bge_phy_flags before prop_dictionary_set_uint32() */ 3941 if (BGE_IS_JUMBO_CAPABLE(sc)) 3942 sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE; 3943 3944 /* set phyflags and chipid before mii_attach() */ 3945 dict = device_properties(self); 3946 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags); 3947 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid); 3948 3949 macmode = CSR_READ_4(sc, BGE_MAC_MODE); 3950 macmode &= ~BGE_MACMODE_PORTMODE; 3951 /* Initialize ifmedia structures. */ 3952 if (sc->bge_flags & BGEF_FIBER_TBI) { 3953 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, 3954 macmode | BGE_PORTMODE_TBI); 3955 DELAY(40); 3956 3957 struct ifmedia * const ifm = &sc->bge_ifmedia; 3958 sc->ethercom.ec_ifmedia = ifm; 3959 3960 ifmedia_init_with_lock(ifm, IFM_IMASK, 3961 bge_ifmedia_upd, bge_ifmedia_sts, sc->sc_intr_lock); 3962 ifmedia_add(ifm, IFM_ETHER | IFM_1000_SX, 0, NULL); 3963 ifmedia_add(ifm, IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL); 3964 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL); 3965 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO); 3966 /* Pretend the user requested this setting */ 3967 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media; 3968 } else { 3969 uint16_t phyreg; 3970 int rv; 3971 /* 3972 * Do transceiver setup and tell the firmware the 3973 * driver is down so we can try to get access the 3974 * probe if ASF is running. Retry a couple of times 3975 * if we get a conflict with the ASF firmware accessing 3976 * the PHY. 3977 */ 3978 if (sc->bge_flags & BGEF_FIBER_MII) 3979 macmode |= BGE_PORTMODE_GMII; 3980 else 3981 macmode |= BGE_PORTMODE_MII; 3982 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, macmode); 3983 DELAY(40); 3984 3985 /* 3986 * Do transceiver setup and tell the firmware the 3987 * driver is down so we can try to get access the 3988 * probe if ASF is running. Retry a couple of times 3989 * if we get a conflict with the ASF firmware accessing 3990 * the PHY. 3991 */ 3992 trys = 0; 3993 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 3994 sc->ethercom.ec_mii = mii; 3995 ifmedia_init_with_lock(&mii->mii_media, 0, bge_ifmedia_upd, 3996 bge_ifmedia_sts, sc->sc_intr_lock); 3997 mii_flags = MIIF_DOPAUSE; 3998 if (sc->bge_flags & BGEF_FIBER_MII) 3999 mii_flags |= MIIF_HAVEFIBER; 4000 again: 4001 bge_asf_driver_up(sc); 4002 mutex_enter(sc->sc_intr_lock); 4003 rv = bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr, 4004 MII_BMCR, &phyreg); 4005 if ((rv != 0) || ((phyreg & BMCR_PDOWN) != 0)) { 4006 int i; 4007 4008 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr, 4009 MII_BMCR, BMCR_RESET); 4010 /* Wait up to 500ms for it to complete. */ 4011 for (i = 0; i < 500; i++) { 4012 bge_miibus_readreg(sc->bge_dev, 4013 sc->bge_phy_addr, MII_BMCR, &phyreg); 4014 if ((phyreg & BMCR_RESET) == 0) 4015 break; 4016 DELAY(1000); 4017 } 4018 } 4019 mutex_exit(sc->sc_intr_lock); 4020 4021 mii_attach(sc->bge_dev, mii, capmask, sc->bge_phy_addr, 4022 MII_OFFSET_ANY, mii_flags); 4023 4024 if (LIST_EMPTY(&mii->mii_phys) && (trys++ < 4)) 4025 goto again; 4026 4027 if (LIST_EMPTY(&mii->mii_phys)) { 4028 aprint_error_dev(sc->bge_dev, "no PHY found!\n"); 4029 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 4030 0, NULL); 4031 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL); 4032 } else 4033 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); 4034 4035 /* 4036 * Now tell the firmware we are going up after probing the PHY 4037 */ 4038 if (sc->bge_asf_mode & ASF_STACKUP) 4039 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 4040 } 4041 4042 /* 4043 * Call MI attach routine. 4044 */ 4045 DPRINTFN(5, ("if_initialize\n")); 4046 if_initialize(ifp); 4047 ifp->if_percpuq = if_percpuq_create(ifp); 4048 if_deferred_start_init(ifp, NULL); 4049 if_register(ifp); 4050 4051 DPRINTFN(5, ("ether_ifattach\n")); 4052 ether_ifattach(ifp, eaddr); 4053 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb); 4054 4055 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev), 4056 RND_TYPE_NET, RND_FLAG_DEFAULT); 4057 #ifdef BGE_EVENT_COUNTERS 4058 /* 4059 * Attach event counters. 4060 */ 4061 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR, 4062 NULL, device_xname(sc->bge_dev), "intr"); 4063 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious, EVCNT_TYPE_INTR, 4064 NULL, device_xname(sc->bge_dev), "intr_spurious"); 4065 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious2, EVCNT_TYPE_INTR, 4066 NULL, device_xname(sc->bge_dev), "intr_spurious2"); 4067 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC, 4068 NULL, device_xname(sc->bge_dev), "tx_xoff"); 4069 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC, 4070 NULL, device_xname(sc->bge_dev), "tx_xon"); 4071 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC, 4072 NULL, device_xname(sc->bge_dev), "rx_xoff"); 4073 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC, 4074 NULL, device_xname(sc->bge_dev), "rx_xon"); 4075 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC, 4076 NULL, device_xname(sc->bge_dev), "rx_macctl"); 4077 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC, 4078 NULL, device_xname(sc->bge_dev), "xoffentered"); 4079 #endif /* BGE_EVENT_COUNTERS */ 4080 DPRINTFN(5, ("callout_init\n")); 4081 callout_init(&sc->bge_timeout, CALLOUT_MPSAFE); 4082 callout_setfunc(&sc->bge_timeout, bge_tick, sc); 4083 4084 if (pmf_device_register(self, NULL, NULL)) 4085 pmf_class_network_register(self, ifp); 4086 else 4087 aprint_error_dev(self, "couldn't establish power handler\n"); 4088 4089 bge_sysctl_init(sc); 4090 4091 #ifdef BGE_DEBUG 4092 bge_debug_info(sc); 4093 #endif 4094 4095 sc->bge_attached = true; 4096 } 4097 4098 /* 4099 * Stop all chip I/O so that the kernel's probe routines don't 4100 * get confused by errant DMAs when rebooting. 4101 */ 4102 static int 4103 bge_detach(device_t self, int flags __unused) 4104 { 4105 struct bge_softc * const sc = device_private(self); 4106 struct ifnet * const ifp = &sc->ethercom.ec_if; 4107 4108 if (!sc->bge_attached) 4109 return 0; 4110 4111 IFNET_LOCK(ifp); 4112 4113 /* Stop the interface. Callouts are stopped in it. */ 4114 bge_stop(ifp, 1); 4115 sc->bge_detaching = true; 4116 4117 IFNET_UNLOCK(ifp); 4118 4119 mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY); 4120 4121 ether_ifdetach(ifp); 4122 if_detach(ifp); 4123 4124 /* Delete all remaining media. */ 4125 ifmedia_fini(&sc->bge_mii.mii_media); 4126 4127 bge_release_resources(sc); 4128 4129 return 0; 4130 } 4131 4132 static void 4133 bge_release_resources(struct bge_softc *sc) 4134 { 4135 4136 /* Detach sysctl */ 4137 if (sc->bge_log != NULL) 4138 sysctl_teardown(&sc->bge_log); 4139 4140 callout_destroy(&sc->bge_timeout); 4141 4142 #ifdef BGE_EVENT_COUNTERS 4143 /* Detach event counters. */ 4144 evcnt_detach(&sc->bge_ev_intr); 4145 evcnt_detach(&sc->bge_ev_intr_spurious); 4146 evcnt_detach(&sc->bge_ev_intr_spurious2); 4147 evcnt_detach(&sc->bge_ev_tx_xoff); 4148 evcnt_detach(&sc->bge_ev_tx_xon); 4149 evcnt_detach(&sc->bge_ev_rx_xoff); 4150 evcnt_detach(&sc->bge_ev_rx_xon); 4151 evcnt_detach(&sc->bge_ev_rx_macctl); 4152 evcnt_detach(&sc->bge_ev_xoffentered); 4153 #endif /* BGE_EVENT_COUNTERS */ 4154 4155 /* Disestablish the interrupt handler */ 4156 if (sc->bge_intrhand != NULL) { 4157 pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand); 4158 pci_intr_release(sc->sc_pc, sc->bge_pihp, 1); 4159 sc->bge_intrhand = NULL; 4160 } 4161 4162 if (sc->bge_cdata.bge_jumbo_buf != NULL) 4163 bge_free_jumbo_mem(sc); 4164 4165 if (sc->bge_dmatag != NULL) { 4166 bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map); 4167 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map); 4168 bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata, 4169 sizeof(struct bge_ring_data)); 4170 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg, 4171 sc->bge_ring_rseg); 4172 } 4173 4174 /* Unmap the device registers */ 4175 if (sc->bge_bsize != 0) { 4176 bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize); 4177 sc->bge_bsize = 0; 4178 } 4179 4180 /* Unmap the APE registers */ 4181 if (sc->bge_apesize != 0) { 4182 bus_space_unmap(sc->bge_apetag, sc->bge_apehandle, 4183 sc->bge_apesize); 4184 sc->bge_apesize = 0; 4185 } 4186 if (sc->sc_intr_lock) { 4187 mutex_obj_free(sc->sc_intr_lock); 4188 sc->sc_intr_lock = NULL; 4189 } 4190 if (sc->sc_mcast_lock) { 4191 mutex_obj_free(sc->sc_mcast_lock); 4192 sc->sc_mcast_lock = NULL; 4193 } 4194 } 4195 4196 static int 4197 bge_reset(struct bge_softc *sc) 4198 { 4199 uint32_t cachesize, command; 4200 uint32_t reset, mac_mode, mac_mode_mask; 4201 pcireg_t devctl, reg; 4202 int i, val; 4203 void (*write_op)(struct bge_softc *, int, int); 4204 4205 /* Make mask for BGE_MAC_MODE register. */ 4206 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE; 4207 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0) 4208 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN; 4209 /* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */ 4210 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask; 4211 4212 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) && 4213 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) { 4214 if (sc->bge_flags & BGEF_PCIE) 4215 write_op = bge_writemem_direct; 4216 else 4217 write_op = bge_writemem_ind; 4218 } else 4219 write_op = bge_writereg_ind; 4220 4221 /* 57XX step 4 */ 4222 /* Acquire the NVM lock */ 4223 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 && 4224 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 && 4225 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) { 4226 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1); 4227 for (i = 0; i < 8000; i++) { 4228 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & 4229 BGE_NVRAMSWARB_GNT1) 4230 break; 4231 DELAY(20); 4232 } 4233 if (i == 8000) { 4234 printf("%s: NVRAM lock timedout!\n", 4235 device_xname(sc->bge_dev)); 4236 } 4237 } 4238 4239 /* Take APE lock when performing reset. */ 4240 bge_ape_lock(sc, BGE_APE_LOCK_GRC); 4241 4242 /* 57XX step 3 */ 4243 /* Save some important PCI state. */ 4244 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ); 4245 /* 5718 reset step 3 */ 4246 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD); 4247 4248 /* 5718 reset step 5, 57XX step 5b-5d */ 4249 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL, 4250 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR | 4251 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW); 4252 4253 /* XXX ???: Disable fastboot on controllers that support it. */ 4254 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 || 4255 BGE_IS_5755_PLUS(sc)) 4256 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0); 4257 4258 /* 5718 reset step 2, 57XX step 6 */ 4259 /* 4260 * Write the magic number to SRAM at offset 0xB50. 4261 * When firmware finishes its initialization it will 4262 * write ~BGE_MAGIC_NUMBER to the same location. 4263 */ 4264 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC); 4265 4266 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) { 4267 val = CSR_READ_4(sc, BGE_PCIE_LINKCTL); 4268 val = (val & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN) 4269 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS; 4270 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, val); 4271 } 4272 4273 /* 5718 reset step 6, 57XX step 7 */ 4274 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ; 4275 /* 4276 * XXX: from FreeBSD/Linux; no documentation 4277 */ 4278 if (sc->bge_flags & BGEF_PCIE) { 4279 if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) && 4280 !BGE_IS_57765_PLUS(sc) && 4281 (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) == 4282 (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) { 4283 /* PCI Express 1.0 system */ 4284 CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG, 4285 BGE_PHY_PCIE_SCRAM_MODE); 4286 } 4287 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) { 4288 /* 4289 * Prevent PCI Express link training 4290 * during global reset. 4291 */ 4292 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29); 4293 reset |= (1 << 29); 4294 } 4295 } 4296 4297 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) { 4298 i = CSR_READ_4(sc, BGE_VCPU_STATUS); 4299 CSR_WRITE_4(sc, BGE_VCPU_STATUS, 4300 i | BGE_VCPU_STATUS_DRV_RESET); 4301 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL); 4302 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL, 4303 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU); 4304 } 4305 4306 /* 4307 * Set GPHY Power Down Override to leave GPHY 4308 * powered up in D0 uninitialized. 4309 */ 4310 if (BGE_IS_5705_PLUS(sc) && 4311 (sc->bge_flags & BGEF_CPMU_PRESENT) == 0) 4312 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE; 4313 4314 /* Issue global reset */ 4315 write_op(sc, BGE_MISC_CFG, reset); 4316 4317 /* 5718 reset step 7, 57XX step 8 */ 4318 if (sc->bge_flags & BGEF_PCIE) 4319 delay(100*1000); /* too big */ 4320 else 4321 delay(1000); 4322 4323 if (sc->bge_flags & BGEF_PCIE) { 4324 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) { 4325 DELAY(500000); 4326 /* XXX: Magic Numbers */ 4327 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, 4328 BGE_PCI_UNKNOWN0); 4329 pci_conf_write(sc->sc_pc, sc->sc_pcitag, 4330 BGE_PCI_UNKNOWN0, 4331 reg | (1 << 15)); 4332 } 4333 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag, 4334 sc->bge_pciecap + PCIE_DCSR); 4335 /* Clear enable no snoop and disable relaxed ordering. */ 4336 devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD | 4337 PCIE_DCSR_ENA_NO_SNOOP); 4338 4339 /* Set PCIE max payload size to 128 for older PCIe devices */ 4340 if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0) 4341 devctl &= ~(0x00e0); 4342 /* Clear device status register. Write 1b to clear */ 4343 devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED 4344 | PCIE_DCSR_NFED | PCIE_DCSR_CED; 4345 pci_conf_write(sc->sc_pc, sc->sc_pcitag, 4346 sc->bge_pciecap + PCIE_DCSR, devctl); 4347 bge_set_max_readrq(sc); 4348 } 4349 4350 /* From Linux: dummy read to flush PCI posted writes */ 4351 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD); 4352 4353 /* 4354 * Reset some of the PCI state that got zapped by reset 4355 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be 4356 * set, too. 4357 */ 4358 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL, 4359 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR | 4360 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW); 4361 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE; 4362 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 && 4363 (sc->bge_flags & BGEF_PCIX) != 0) 4364 val |= BGE_PCISTATE_RETRY_SAME_DMA; 4365 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0) 4366 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR | 4367 BGE_PCISTATE_ALLOW_APE_SHMEM_WR | 4368 BGE_PCISTATE_ALLOW_APE_PSPACE_WR; 4369 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val); 4370 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize); 4371 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command); 4372 4373 /* 57xx step 11: disable PCI-X Relaxed Ordering. */ 4374 if (sc->bge_flags & BGEF_PCIX) { 4375 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap 4376 + PCIX_CMD); 4377 /* Set max memory read byte count to 2K */ 4378 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) { 4379 reg &= ~PCIX_CMD_BYTECNT_MASK; 4380 reg |= PCIX_CMD_BCNT_2048; 4381 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){ 4382 /* 4383 * For 5704, set max outstanding split transaction 4384 * field to 0 (0 means it supports 1 request) 4385 */ 4386 reg &= ~(PCIX_CMD_SPLTRANS_MASK 4387 | PCIX_CMD_BYTECNT_MASK); 4388 reg |= PCIX_CMD_BCNT_2048; 4389 } 4390 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap 4391 + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER); 4392 } 4393 4394 /* 5718 reset step 10, 57XX step 12 */ 4395 /* Enable memory arbiter. */ 4396 if (BGE_IS_5714_FAMILY(sc)) { 4397 val = CSR_READ_4(sc, BGE_MARB_MODE); 4398 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val); 4399 } else 4400 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); 4401 4402 /* XXX 5721, 5751 and 5752 */ 4403 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) { 4404 /* Step 19: */ 4405 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25); 4406 /* Step 20: */ 4407 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT); 4408 } 4409 4410 /* 5718 reset step 12, 57XX step 15 and 16 */ 4411 /* Fix up byte swapping */ 4412 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS); 4413 4414 /* 5718 reset step 13, 57XX step 17 */ 4415 /* Poll until the firmware initialization is complete */ 4416 bge_poll_fw(sc); 4417 4418 /* 57XX step 21 */ 4419 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) { 4420 pcireg_t msidata; 4421 4422 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag, 4423 BGE_PCI_MSI_DATA); 4424 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16); 4425 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA, 4426 msidata); 4427 } 4428 4429 /* 57XX step 18 */ 4430 /* Write mac mode. */ 4431 val = CSR_READ_4(sc, BGE_MAC_MODE); 4432 /* Restore mac_mode_mask's bits using mac_mode */ 4433 val = (val & ~mac_mode_mask) | mac_mode; 4434 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val); 4435 DELAY(40); 4436 4437 bge_ape_unlock(sc, BGE_APE_LOCK_GRC); 4438 4439 /* 4440 * The 5704 in TBI mode apparently needs some special 4441 * adjustment to insure the SERDES drive level is set 4442 * to 1.2V. 4443 */ 4444 if (sc->bge_flags & BGEF_FIBER_TBI && 4445 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) { 4446 uint32_t serdescfg; 4447 4448 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG); 4449 serdescfg = (serdescfg & ~0xFFF) | 0x880; 4450 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg); 4451 } 4452 4453 if (sc->bge_flags & BGEF_PCIE && 4454 !BGE_IS_57765_PLUS(sc) && 4455 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 && 4456 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) { 4457 uint32_t v; 4458 4459 /* Enable PCI Express bug fix */ 4460 v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG); 4461 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG, 4462 v | BGE_TLP_DATA_FIFO_PROTECT); 4463 } 4464 4465 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) 4466 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE, 4467 CPMU_CLCK_ORIDE_MAC_ORIDE_EN); 4468 4469 return 0; 4470 } 4471 4472 /* 4473 * Frame reception handling. This is called if there's a frame 4474 * on the receive return list. 4475 * 4476 * Note: we have to be able to handle two possibilities here: 4477 * 1) the frame is from the jumbo receive ring 4478 * 2) the frame is from the standard receive ring 4479 */ 4480 4481 static void 4482 bge_rxeof(struct bge_softc *sc) 4483 { 4484 struct ifnet * const ifp = &sc->ethercom.ec_if; 4485 uint16_t rx_prod, rx_cons; 4486 int stdcnt = 0, jumbocnt = 0; 4487 bus_dmamap_t dmamap; 4488 bus_addr_t offset, toff; 4489 bus_size_t tlen; 4490 int tosync; 4491 4492 KASSERT(mutex_owned(sc->sc_intr_lock)); 4493 4494 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, 4495 offsetof(struct bge_ring_data, bge_status_block), 4496 sizeof(struct bge_status_block), 4497 BUS_DMASYNC_POSTREAD); 4498 4499 rx_cons = sc->bge_rx_saved_considx; 4500 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx; 4501 4502 /* Nothing to do */ 4503 if (rx_cons == rx_prod) 4504 return; 4505 4506 offset = offsetof(struct bge_ring_data, bge_rx_return_ring); 4507 tosync = rx_prod - rx_cons; 4508 4509 if (tosync != 0) 4510 rnd_add_uint32(&sc->rnd_source, tosync); 4511 4512 toff = offset + (rx_cons * sizeof(struct bge_rx_bd)); 4513 4514 if (tosync < 0) { 4515 tlen = (sc->bge_return_ring_cnt - rx_cons) * 4516 sizeof(struct bge_rx_bd); 4517 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, 4518 toff, tlen, BUS_DMASYNC_POSTREAD); 4519 tosync = rx_prod; 4520 toff = offset; 4521 } 4522 4523 if (tosync != 0) { 4524 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, 4525 toff, tosync * sizeof(struct bge_rx_bd), 4526 BUS_DMASYNC_POSTREAD); 4527 } 4528 4529 while (rx_cons != rx_prod) { 4530 struct bge_rx_bd *cur_rx; 4531 uint32_t rxidx; 4532 struct mbuf *m = NULL; 4533 4534 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons]; 4535 4536 rxidx = cur_rx->bge_idx; 4537 BGE_INC(rx_cons, sc->bge_return_ring_cnt); 4538 4539 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) { 4540 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); 4541 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx]; 4542 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL; 4543 jumbocnt++; 4544 bus_dmamap_sync(sc->bge_dmatag, 4545 sc->bge_cdata.bge_rx_jumbo_map, 4546 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, 4547 BGE_JLEN, BUS_DMASYNC_POSTREAD); 4548 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { 4549 if_statinc(ifp, if_ierrors); 4550 bge_newbuf_jumbo(sc, sc->bge_jumbo, m); 4551 continue; 4552 } 4553 if (bge_newbuf_jumbo(sc, sc->bge_jumbo, 4554 NULL) == ENOBUFS) { 4555 if_statinc(ifp, if_ierrors); 4556 bge_newbuf_jumbo(sc, sc->bge_jumbo, m); 4557 continue; 4558 } 4559 } else { 4560 m = sc->bge_cdata.bge_rx_std_chain[rxidx]; 4561 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL; 4562 4563 stdcnt++; 4564 sc->bge_std_cnt--; 4565 4566 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx]; 4567 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, 4568 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 4569 bus_dmamap_unload(sc->bge_dmatag, dmamap); 4570 4571 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { 4572 m_free(m); 4573 if_statinc(ifp, if_ierrors); 4574 continue; 4575 } 4576 } 4577 4578 #ifndef __NO_STRICT_ALIGNMENT 4579 /* 4580 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect, 4581 * the Rx buffer has the layer-2 header unaligned. 4582 * If our CPU requires alignment, re-align by copying. 4583 */ 4584 if (sc->bge_flags & BGEF_RX_ALIGNBUG) { 4585 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data, 4586 cur_rx->bge_len); 4587 m->m_data += ETHER_ALIGN; 4588 } 4589 #endif 4590 4591 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN; 4592 m_set_rcvif(m, ifp); 4593 4594 bge_rxcsum(sc, cur_rx, m); 4595 4596 /* 4597 * If we received a packet with a vlan tag, pass it 4598 * to vlan_input() instead of ether_input(). 4599 */ 4600 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) 4601 vlan_set_tag(m, cur_rx->bge_vlan_tag); 4602 4603 if_percpuq_enqueue(ifp->if_percpuq, m); 4604 } 4605 4606 sc->bge_rx_saved_considx = rx_cons; 4607 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx); 4608 if (stdcnt) 4609 bge_fill_rx_ring_std(sc); 4610 if (jumbocnt) 4611 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo); 4612 } 4613 4614 static void 4615 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m) 4616 { 4617 4618 if (BGE_IS_57765_PLUS(sc)) { 4619 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) { 4620 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0) 4621 m->m_pkthdr.csum_flags = M_CSUM_IPv4; 4622 if ((cur_rx->bge_error_flag & 4623 BGE_RXERRFLAG_IP_CSUM_NOK) != 0) 4624 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD; 4625 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) { 4626 m->m_pkthdr.csum_data = 4627 cur_rx->bge_tcp_udp_csum; 4628 m->m_pkthdr.csum_flags |= 4629 (M_CSUM_TCPv4 | M_CSUM_UDPv4 |M_CSUM_DATA); 4630 } 4631 } 4632 } else { 4633 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0) 4634 m->m_pkthdr.csum_flags = M_CSUM_IPv4; 4635 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0) 4636 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD; 4637 /* 4638 * Rx transport checksum-offload may also 4639 * have bugs with packets which, when transmitted, 4640 * were `runts' requiring padding. 4641 */ 4642 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM && 4643 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/ 4644 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) { 4645 m->m_pkthdr.csum_data = 4646 cur_rx->bge_tcp_udp_csum; 4647 m->m_pkthdr.csum_flags |= 4648 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_DATA); 4649 } 4650 } 4651 } 4652 4653 static void 4654 bge_txeof(struct bge_softc *sc) 4655 { 4656 struct ifnet * const ifp = &sc->ethercom.ec_if; 4657 struct bge_tx_bd *cur_tx = NULL; 4658 struct txdmamap_pool_entry *dma; 4659 bus_addr_t offset, toff; 4660 bus_size_t tlen; 4661 int tosync; 4662 struct mbuf *m; 4663 4664 KASSERT(mutex_owned(sc->sc_intr_lock)); 4665 4666 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, 4667 offsetof(struct bge_ring_data, bge_status_block), 4668 sizeof(struct bge_status_block), 4669 BUS_DMASYNC_POSTREAD); 4670 4671 const uint16_t hw_cons_idx = 4672 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx; 4673 offset = offsetof(struct bge_ring_data, bge_tx_ring); 4674 tosync = hw_cons_idx - sc->bge_tx_saved_considx; 4675 4676 if (tosync != 0) 4677 rnd_add_uint32(&sc->rnd_source, tosync); 4678 4679 toff = offset + (sc->bge_tx_saved_considx * sizeof(struct bge_tx_bd)); 4680 4681 if (tosync < 0) { 4682 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) * 4683 sizeof(struct bge_tx_bd); 4684 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, 4685 toff, tlen, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 4686 tosync = hw_cons_idx; 4687 toff = offset; 4688 } 4689 4690 if (tosync != 0) { 4691 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, 4692 toff, tosync * sizeof(struct bge_tx_bd), 4693 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 4694 } 4695 4696 /* 4697 * Go through our tx ring and free mbufs for those 4698 * frames that have been sent. 4699 */ 4700 while (sc->bge_tx_saved_considx != hw_cons_idx) { 4701 uint32_t idx = sc->bge_tx_saved_considx; 4702 cur_tx = &sc->bge_rdata->bge_tx_ring[idx]; 4703 if (cur_tx->bge_flags & BGE_TXBDFLAG_END) 4704 if_statinc(ifp, if_opackets); 4705 m = sc->bge_cdata.bge_tx_chain[idx]; 4706 if (m != NULL) { 4707 sc->bge_cdata.bge_tx_chain[idx] = NULL; 4708 dma = sc->txdma[idx]; 4709 if (dma->is_dma32) { 4710 bus_dmamap_sync(sc->bge_dmatag32, dma->dmamap32, 4711 0, dma->dmamap32->dm_mapsize, 4712 BUS_DMASYNC_POSTWRITE); 4713 bus_dmamap_unload( 4714 sc->bge_dmatag32, dma->dmamap32); 4715 } else { 4716 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 4717 0, dma->dmamap->dm_mapsize, 4718 BUS_DMASYNC_POSTWRITE); 4719 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap); 4720 } 4721 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link); 4722 sc->txdma[idx] = NULL; 4723 4724 m_freem(m); 4725 } 4726 sc->bge_txcnt--; 4727 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT); 4728 sc->bge_tx_sending = false; 4729 } 4730 } 4731 4732 static int 4733 bge_intr(void *xsc) 4734 { 4735 struct bge_softc * const sc = xsc; 4736 struct ifnet * const ifp = &sc->ethercom.ec_if; 4737 uint32_t pcistate, statusword, statustag; 4738 uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE; 4739 4740 /* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */ 4741 if (BGE_IS_5717_PLUS(sc)) 4742 intrmask = 0; 4743 4744 mutex_enter(sc->sc_intr_lock); 4745 if (sc->bge_txrx_stopping) { 4746 mutex_exit(sc->sc_intr_lock); 4747 return 1; 4748 } 4749 4750 /* 4751 * It is possible for the interrupt to arrive before 4752 * the status block is updated prior to the interrupt. 4753 * Reading the PCI State register will confirm whether the 4754 * interrupt is ours and will flush the status block. 4755 */ 4756 pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE); 4757 4758 /* read status word from status block */ 4759 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, 4760 offsetof(struct bge_ring_data, bge_status_block), 4761 sizeof(struct bge_status_block), 4762 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 4763 statusword = sc->bge_rdata->bge_status_block.bge_status; 4764 statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24; 4765 4766 if (sc->bge_flags & BGEF_TAGGED_STATUS) { 4767 if (sc->bge_lasttag == statustag && 4768 (~pcistate & intrmask)) { 4769 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious); 4770 mutex_exit(sc->sc_intr_lock); 4771 return 0; 4772 } 4773 sc->bge_lasttag = statustag; 4774 } else { 4775 if (!(statusword & BGE_STATFLAG_UPDATED) && 4776 !(~pcistate & intrmask)) { 4777 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious2); 4778 mutex_exit(sc->sc_intr_lock); 4779 return 0; 4780 } 4781 statustag = 0; 4782 } 4783 /* Ack interrupt and stop others from occurring. */ 4784 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1); 4785 BGE_EVCNT_INCR(sc->bge_ev_intr); 4786 4787 /* clear status word */ 4788 sc->bge_rdata->bge_status_block.bge_status = 0; 4789 4790 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, 4791 offsetof(struct bge_ring_data, bge_status_block), 4792 sizeof(struct bge_status_block), 4793 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 4794 4795 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 || 4796 statusword & BGE_STATFLAG_LINKSTATE_CHANGED || 4797 BGE_STS_BIT(sc, BGE_STS_LINK_EVT)) 4798 bge_link_upd(sc); 4799 4800 /* Check RX return ring producer/consumer */ 4801 bge_rxeof(sc); 4802 4803 /* Check TX ring producer/consumer */ 4804 bge_txeof(sc); 4805 4806 if (sc->bge_pending_rxintr_change) { 4807 uint32_t rx_ticks = sc->bge_rx_coal_ticks; 4808 uint32_t rx_bds = sc->bge_rx_max_coal_bds; 4809 4810 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks); 4811 DELAY(10); 4812 (void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS); 4813 4814 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds); 4815 DELAY(10); 4816 (void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS); 4817 4818 sc->bge_pending_rxintr_change = false; 4819 } 4820 bge_handle_events(sc); 4821 4822 /* Re-enable interrupts. */ 4823 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag); 4824 4825 if_schedule_deferred_start(ifp); 4826 4827 mutex_exit(sc->sc_intr_lock); 4828 4829 return 1; 4830 } 4831 4832 static void 4833 bge_asf_driver_up(struct bge_softc *sc) 4834 { 4835 if (sc->bge_asf_mode & ASF_STACKUP) { 4836 /* Send ASF heartbeat approx. every 2s */ 4837 if (sc->bge_asf_count) 4838 sc->bge_asf_count --; 4839 else { 4840 sc->bge_asf_count = 2; 4841 4842 bge_wait_for_event_ack(sc); 4843 4844 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, 4845 BGE_FW_CMD_DRV_ALIVE3); 4846 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4); 4847 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB, 4848 BGE_FW_HB_TIMEOUT_SEC); 4849 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT, 4850 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | 4851 BGE_RX_CPU_DRV_EVENT); 4852 } 4853 } 4854 } 4855 4856 static void 4857 bge_tick(void *xsc) 4858 { 4859 struct bge_softc * const sc = xsc; 4860 struct ifnet * const ifp = &sc->ethercom.ec_if; 4861 struct mii_data * const mii = &sc->bge_mii; 4862 4863 mutex_enter(sc->sc_intr_lock); 4864 4865 if (BGE_IS_5705_PLUS(sc)) 4866 bge_stats_update_regs(sc); 4867 else 4868 bge_stats_update(sc); 4869 4870 if (sc->bge_flags & BGEF_FIBER_TBI) { 4871 /* 4872 * Since in TBI mode auto-polling can't be used we should poll 4873 * link status manually. Here we register pending link event 4874 * and trigger interrupt. 4875 */ 4876 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT); 4877 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET); 4878 } else { 4879 /* 4880 * Do not touch PHY if we have link up. This could break 4881 * IPMI/ASF mode or produce extra input errors. 4882 * (extra input errors was reported for bcm5701 & bcm5704). 4883 */ 4884 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) { 4885 mii_tick(mii); 4886 } 4887 } 4888 4889 bge_asf_driver_up(sc); 4890 4891 const bool ok = bge_watchdog_tick(ifp); 4892 if (ok) 4893 callout_schedule(&sc->bge_timeout, hz); 4894 mutex_exit(sc->sc_intr_lock); 4895 } 4896 4897 static void 4898 bge_stats_update_regs(struct bge_softc *sc) 4899 { 4900 struct ifnet * const ifp = &sc->ethercom.ec_if; 4901 4902 net_stat_ref_t nsr = IF_STAT_GETREF(ifp); 4903 4904 if_statadd_ref(ifp, nsr, if_collisions, 4905 CSR_READ_4(sc, BGE_MAC_STATS + 4906 offsetof(struct bge_mac_stats_regs, etherStatsCollisions))); 4907 4908 /* 4909 * On BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0, 4910 * RXLP_LOCSTAT_IFIN_DROPS includes unwanted multicast frames 4911 * (silicon bug). There's no reliable workaround so just 4912 * ignore the counter 4913 */ 4914 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 && 4915 sc->bge_chipid != BGE_CHIPID_BCM5719_A0 && 4916 sc->bge_chipid != BGE_CHIPID_BCM5720_A0) { 4917 if_statadd_ref(ifp, nsr, if_ierrors, 4918 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS)); 4919 } 4920 if_statadd_ref(ifp, nsr, if_ierrors, 4921 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS)); 4922 if_statadd_ref(ifp, nsr, if_ierrors, 4923 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS)); 4924 4925 IF_STAT_PUTREF(ifp); 4926 4927 if (sc->bge_flags & BGEF_RDMA_BUG) { 4928 uint32_t val, ucast, mcast, bcast; 4929 4930 ucast = CSR_READ_4(sc, BGE_MAC_STATS + 4931 offsetof(struct bge_mac_stats_regs, ifHCOutUcastPkts)); 4932 mcast = CSR_READ_4(sc, BGE_MAC_STATS + 4933 offsetof(struct bge_mac_stats_regs, ifHCOutMulticastPkts)); 4934 bcast = CSR_READ_4(sc, BGE_MAC_STATS + 4935 offsetof(struct bge_mac_stats_regs, ifHCOutBroadcastPkts)); 4936 4937 /* 4938 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS 4939 * frames, it's safe to disable workaround for DMA engine's 4940 * miscalculation of TXMBUF space. 4941 */ 4942 if (ucast + mcast + bcast > BGE_NUM_RDMA_CHANNELS) { 4943 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL); 4944 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) 4945 val &= ~BGE_RDMA_TX_LENGTH_WA_5719; 4946 else 4947 val &= ~BGE_RDMA_TX_LENGTH_WA_5720; 4948 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val); 4949 sc->bge_flags &= ~BGEF_RDMA_BUG; 4950 } 4951 } 4952 } 4953 4954 static void 4955 bge_stats_update(struct bge_softc *sc) 4956 { 4957 struct ifnet * const ifp = &sc->ethercom.ec_if; 4958 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK; 4959 4960 #define READ_STAT(sc, stats, stat) \ 4961 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat)) 4962 4963 uint64_t collisions = 4964 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) + 4965 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) + 4966 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) + 4967 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)); 4968 4969 if_statadd(ifp, if_collisions, collisions - sc->bge_if_collisions); 4970 sc->bge_if_collisions = collisions; 4971 4972 4973 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff, 4974 READ_STAT(sc, stats, outXoffSent.bge_addr_lo)); 4975 BGE_EVCNT_UPD(sc->bge_ev_tx_xon, 4976 READ_STAT(sc, stats, outXonSent.bge_addr_lo)); 4977 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff, 4978 READ_STAT(sc, stats, 4979 xoffPauseFramesReceived.bge_addr_lo)); 4980 BGE_EVCNT_UPD(sc->bge_ev_rx_xon, 4981 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo)); 4982 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl, 4983 READ_STAT(sc, stats, 4984 macControlFramesReceived.bge_addr_lo)); 4985 BGE_EVCNT_UPD(sc->bge_ev_xoffentered, 4986 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo)); 4987 4988 #undef READ_STAT 4989 } 4990 4991 /* 4992 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason. 4993 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD, 4994 * but when such padded frames employ the bge IP/TCP checksum offload, 4995 * the hardware checksum assist gives incorrect results (possibly 4996 * from incorporating its own padding into the UDP/TCP checksum; who knows). 4997 * If we pad such runts with zeros, the onboard checksum comes out correct. 4998 */ 4999 static inline int 5000 bge_cksum_pad(struct mbuf *pkt) 5001 { 5002 struct mbuf *last = NULL; 5003 int padlen; 5004 5005 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len; 5006 5007 /* if there's only the packet-header and we can pad there, use it. */ 5008 if (pkt->m_pkthdr.len == pkt->m_len && 5009 M_TRAILINGSPACE(pkt) >= padlen) { 5010 last = pkt; 5011 } else { 5012 /* 5013 * Walk packet chain to find last mbuf. We will either 5014 * pad there, or append a new mbuf and pad it 5015 * (thus perhaps avoiding the bcm5700 dma-min bug). 5016 */ 5017 for (last = pkt; last->m_next != NULL; last = last->m_next) { 5018 continue; /* do nothing */ 5019 } 5020 5021 /* `last' now points to last in chain. */ 5022 if (M_TRAILINGSPACE(last) < padlen) { 5023 /* Allocate new empty mbuf, pad it. Compact later. */ 5024 struct mbuf *n; 5025 MGET(n, M_DONTWAIT, MT_DATA); 5026 if (n == NULL) 5027 return ENOBUFS; 5028 MCLAIM(n, last->m_owner); 5029 n->m_len = 0; 5030 last->m_next = n; 5031 last = n; 5032 } 5033 } 5034 5035 KDASSERT(!M_READONLY(last)); 5036 KDASSERT(M_TRAILINGSPACE(last) >= padlen); 5037 5038 /* Now zero the pad area, to avoid the bge cksum-assist bug */ 5039 memset(mtod(last, char *) + last->m_len, 0, padlen); 5040 last->m_len += padlen; 5041 pkt->m_pkthdr.len += padlen; 5042 return 0; 5043 } 5044 5045 /* 5046 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes. 5047 */ 5048 static inline int 5049 bge_compact_dma_runt(struct mbuf *pkt) 5050 { 5051 struct mbuf *m, *prev; 5052 int totlen; 5053 5054 prev = NULL; 5055 totlen = 0; 5056 5057 for (m = pkt; m != NULL; prev = m, m = m->m_next) { 5058 int mlen = m->m_len; 5059 int shortfall = 8 - mlen ; 5060 5061 totlen += mlen; 5062 if (mlen == 0) 5063 continue; 5064 if (mlen >= 8) 5065 continue; 5066 5067 /* 5068 * If we get here, mbuf data is too small for DMA engine. 5069 * Try to fix by shuffling data to prev or next in chain. 5070 * If that fails, do a compacting deep-copy of the whole chain. 5071 */ 5072 5073 /* Internal frag. If fits in prev, copy it there. */ 5074 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) { 5075 memcpy(prev->m_data + prev->m_len, m->m_data, mlen); 5076 prev->m_len += mlen; 5077 m->m_len = 0; 5078 /* XXX stitch chain */ 5079 prev->m_next = m_free(m); 5080 m = prev; 5081 continue; 5082 } else if (m->m_next != NULL && 5083 M_TRAILINGSPACE(m) >= shortfall && 5084 m->m_next->m_len >= (8 + shortfall)) { 5085 /* m is writable and have enough data in next, pull up. */ 5086 5087 memcpy(m->m_data + m->m_len, m->m_next->m_data, 5088 shortfall); 5089 m->m_len += shortfall; 5090 m->m_next->m_len -= shortfall; 5091 m->m_next->m_data += shortfall; 5092 } else if (m->m_next == NULL || 1) { 5093 /* 5094 * Got a runt at the very end of the packet. 5095 * borrow data from the tail of the preceding mbuf and 5096 * update its length in-place. (The original data is 5097 * still valid, so we can do this even if prev is not 5098 * writable.) 5099 */ 5100 5101 /* 5102 * If we'd make prev a runt, just move all of its data. 5103 */ 5104 KASSERT(prev != NULL /*, ("runt but null PREV")*/); 5105 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/); 5106 5107 if ((prev->m_len - shortfall) < 8) 5108 shortfall = prev->m_len; 5109 5110 #ifdef notyet /* just do the safe slow thing for now */ 5111 if (!M_READONLY(m)) { 5112 if (M_LEADINGSPACE(m) < shorfall) { 5113 void *m_dat; 5114 m_dat = M_BUFADDR(m); 5115 memmove(m_dat, mtod(m, void*), 5116 m->m_len); 5117 m->m_data = m_dat; 5118 } 5119 } else 5120 #endif /* just do the safe slow thing */ 5121 { 5122 struct mbuf * n = NULL; 5123 int newprevlen = prev->m_len - shortfall; 5124 5125 MGET(n, M_NOWAIT, MT_DATA); 5126 if (n == NULL) 5127 return ENOBUFS; 5128 MCLAIM(n, prev->m_owner); 5129 KASSERT(m->m_len + shortfall < MLEN 5130 /*, 5131 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/); 5132 5133 /* first copy the data we're stealing from prev */ 5134 memcpy(n->m_data, prev->m_data + newprevlen, 5135 shortfall); 5136 5137 /* update prev->m_len accordingly */ 5138 prev->m_len -= shortfall; 5139 5140 /* copy data from runt m */ 5141 memcpy(n->m_data + shortfall, m->m_data, 5142 m->m_len); 5143 5144 /* n holds what we stole from prev, plus m */ 5145 n->m_len = shortfall + m->m_len; 5146 5147 /* stitch n into chain and free m */ 5148 n->m_next = m->m_next; 5149 prev->m_next = n; 5150 /* KASSERT(m->m_next == NULL); */ 5151 m->m_next = NULL; 5152 m_free(m); 5153 m = n; /* for continuing loop */ 5154 } 5155 } 5156 } 5157 return 0; 5158 } 5159 5160 /* 5161 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data 5162 * pointers to descriptors. 5163 */ 5164 static int 5165 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx) 5166 { 5167 struct bge_tx_bd *f, *prev_f; 5168 uint32_t frag, cur; 5169 uint16_t csum_flags = 0; 5170 uint16_t txbd_tso_flags = 0; 5171 struct txdmamap_pool_entry *dma; 5172 bus_dmamap_t dmamap; 5173 bus_dma_tag_t dmatag; 5174 int i = 0; 5175 int use_tso, maxsegsize, error; 5176 bool have_vtag; 5177 uint16_t vtag; 5178 bool remap; 5179 5180 KASSERT(mutex_owned(sc->sc_intr_lock)); 5181 5182 if (m_head->m_pkthdr.csum_flags) { 5183 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) 5184 csum_flags |= BGE_TXBDFLAG_IP_CSUM; 5185 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 |M_CSUM_UDPv4)) 5186 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM; 5187 } 5188 5189 /* 5190 * If we were asked to do an outboard checksum, and the NIC 5191 * has the bug where it sometimes adds in the Ethernet padding, 5192 * explicitly pad with zeros so the cksum will be correct either way. 5193 * (For now, do this for all chip versions, until newer 5194 * are confirmed to not require the workaround.) 5195 */ 5196 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 || 5197 #ifdef notyet 5198 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 || 5199 #endif 5200 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD) 5201 goto check_dma_bug; 5202 5203 if (bge_cksum_pad(m_head) != 0) 5204 return ENOBUFS; 5205 5206 check_dma_bug: 5207 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)) 5208 goto doit; 5209 5210 /* 5211 * bcm5700 Revision B silicon cannot handle DMA descriptors with 5212 * less than eight bytes. If we encounter a teeny mbuf 5213 * at the end of a chain, we can pad. Otherwise, copy. 5214 */ 5215 if (bge_compact_dma_runt(m_head) != 0) 5216 return ENOBUFS; 5217 5218 doit: 5219 dma = SLIST_FIRST(&sc->txdma_list); 5220 if (dma == NULL) { 5221 return ENOBUFS; 5222 } 5223 dmamap = dma->dmamap; 5224 dmatag = sc->bge_dmatag; 5225 dma->is_dma32 = false; 5226 5227 /* 5228 * Set up any necessary TSO state before we start packing... 5229 */ 5230 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0; 5231 if (!use_tso) { 5232 maxsegsize = 0; 5233 } else { /* TSO setup */ 5234 unsigned mss; 5235 struct ether_header *eh; 5236 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset; 5237 unsigned bge_hlen; 5238 struct mbuf * m0 = m_head; 5239 struct ip *ip; 5240 struct tcphdr *th; 5241 int iphl, hlen; 5242 5243 /* 5244 * XXX It would be nice if the mbuf pkthdr had offset 5245 * fields for the protocol headers. 5246 */ 5247 5248 eh = mtod(m0, struct ether_header *); 5249 switch (htons(eh->ether_type)) { 5250 case ETHERTYPE_IP: 5251 offset = ETHER_HDR_LEN; 5252 break; 5253 5254 case ETHERTYPE_VLAN: 5255 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 5256 break; 5257 5258 default: 5259 /* 5260 * Don't support this protocol or encapsulation. 5261 */ 5262 return ENOBUFS; 5263 } 5264 5265 /* 5266 * TCP/IP headers are in the first mbuf; we can do 5267 * this the easy way. 5268 */ 5269 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data); 5270 hlen = iphl + offset; 5271 if (__predict_false(m0->m_len < 5272 (hlen + sizeof(struct tcphdr)))) { 5273 5274 aprint_error_dev(sc->bge_dev, 5275 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd," 5276 "not handled yet\n", 5277 m0->m_len, hlen+ sizeof(struct tcphdr)); 5278 #ifdef NOTYET 5279 /* 5280 * XXX jonathan@NetBSD.org: untested. 5281 * how to force this branch to be taken? 5282 */ 5283 BGE_EVCNT_INCR(sc->bge_ev_txtsopain); 5284 5285 m_copydata(m0, offset, sizeof(ip), &ip); 5286 m_copydata(m0, hlen, sizeof(th), &th); 5287 5288 ip.ip_len = 0; 5289 5290 m_copyback(m0, hlen + offsetof(struct ip, ip_len), 5291 sizeof(ip.ip_len), &ip.ip_len); 5292 5293 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr, 5294 ip.ip_dst.s_addr, htons(IPPROTO_TCP)); 5295 5296 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum), 5297 sizeof(th.th_sum), &th.th_sum); 5298 5299 hlen += th.th_off << 2; 5300 iptcp_opt_words = hlen; 5301 #else 5302 /* 5303 * if_wm "hard" case not yet supported, can we not 5304 * mandate it out of existence? 5305 */ 5306 (void) ip; (void)th; (void) ip_tcp_hlen; 5307 5308 return ENOBUFS; 5309 #endif 5310 } else { 5311 ip = (struct ip *) (mtod(m0, char *) + offset); 5312 th = (struct tcphdr *) (mtod(m0, char *) + hlen); 5313 ip_tcp_hlen = iphl + (th->th_off << 2); 5314 5315 /* Total IP/TCP options, in 32-bit words */ 5316 iptcp_opt_words = (ip_tcp_hlen 5317 - sizeof(struct tcphdr) 5318 - sizeof(struct ip)) >> 2; 5319 } 5320 if (BGE_IS_575X_PLUS(sc)) { 5321 th->th_sum = 0; 5322 csum_flags = 0; 5323 } else { 5324 /* 5325 * XXX jonathan@NetBSD.org: 5705 untested. 5326 * Requires TSO firmware patch for 5701/5703/5704. 5327 */ 5328 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr, 5329 ip->ip_dst.s_addr, htons(IPPROTO_TCP)); 5330 } 5331 5332 mss = m_head->m_pkthdr.segsz; 5333 txbd_tso_flags |= 5334 BGE_TXBDFLAG_CPU_PRE_DMA | 5335 BGE_TXBDFLAG_CPU_POST_DMA; 5336 5337 /* 5338 * Our NIC TSO-assist assumes TSO has standard, optionless 5339 * IPv4 and TCP headers, which total 40 bytes. By default, 5340 * the NIC copies 40 bytes of IP/TCP header from the 5341 * supplied header into the IP/TCP header portion of 5342 * each post-TSO-segment. If the supplied packet has IP or 5343 * TCP options, we need to tell the NIC to copy those extra 5344 * bytes into each post-TSO header, in addition to the normal 5345 * 40-byte IP/TCP header (and to leave space accordingly). 5346 * Unfortunately, the driver encoding of option length 5347 * varies across different ASIC families. 5348 */ 5349 tcp_seg_flags = 0; 5350 bge_hlen = ip_tcp_hlen >> 2; 5351 if (BGE_IS_5717_PLUS(sc)) { 5352 tcp_seg_flags = (bge_hlen & 0x3) << 14; 5353 txbd_tso_flags |= 5354 ((bge_hlen & 0xF8) << 7) | ((bge_hlen & 0x4) << 2); 5355 } else if (BGE_IS_5705_PLUS(sc)) { 5356 tcp_seg_flags = bge_hlen << 11; 5357 } else { 5358 /* XXX iptcp_opt_words or bge_hlen ? */ 5359 txbd_tso_flags |= iptcp_opt_words << 12; 5360 } 5361 maxsegsize = mss | tcp_seg_flags; 5362 ip->ip_len = htons(mss + ip_tcp_hlen); 5363 ip->ip_sum = 0; 5364 5365 } /* TSO setup */ 5366 5367 have_vtag = vlan_has_tag(m_head); 5368 if (have_vtag) 5369 vtag = vlan_get_tag(m_head); 5370 5371 /* 5372 * Start packing the mbufs in this chain into 5373 * the fragment pointers. Stop when we run out 5374 * of fragments or hit the end of the mbuf chain. 5375 */ 5376 remap = true; 5377 load_again: 5378 error = bus_dmamap_load_mbuf(dmatag, dmamap, m_head, BUS_DMA_NOWAIT); 5379 if (__predict_false(error)) { 5380 if (error == EFBIG && remap) { 5381 struct mbuf *m; 5382 remap = false; 5383 m = m_defrag(m_head, M_NOWAIT); 5384 if (m != NULL) { 5385 KASSERT(m == m_head); 5386 goto load_again; 5387 } 5388 } 5389 return error; 5390 } 5391 /* 5392 * Sanity check: avoid coming within 16 descriptors 5393 * of the end of the ring. 5394 */ 5395 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) { 5396 BGE_TSO_PRINTF(("%s: " 5397 " dmamap_load_mbuf too close to ring wrap\n", 5398 device_xname(sc->bge_dev))); 5399 goto fail_unload; 5400 } 5401 5402 /* Iterate over dmap-map fragments. */ 5403 f = prev_f = NULL; 5404 cur = frag = *txidx; 5405 5406 for (i = 0; i < dmamap->dm_nsegs; i++) { 5407 f = &sc->bge_rdata->bge_tx_ring[frag]; 5408 if (sc->bge_cdata.bge_tx_chain[frag] != NULL) 5409 break; 5410 5411 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr); 5412 f->bge_len = dmamap->dm_segs[i].ds_len; 5413 if (sizeof(bus_addr_t) > 4 && dma->is_dma32 == false && use_tso && ( 5414 (dmamap->dm_segs[i].ds_addr & 0xffffffff00000000) != 5415 ((dmamap->dm_segs[i].ds_addr + f->bge_len) & 0xffffffff00000000) || 5416 (prev_f != NULL && 5417 prev_f->bge_addr.bge_addr_hi != f->bge_addr.bge_addr_hi)) 5418 ) { 5419 /* 5420 * watchdog timeout issue was observed with TSO, 5421 * limiting DMA address space to 32bits seems to 5422 * address the issue. 5423 */ 5424 bus_dmamap_unload(dmatag, dmamap); 5425 dmatag = sc->bge_dmatag32; 5426 dmamap = dma->dmamap32; 5427 dma->is_dma32 = true; 5428 remap = true; 5429 goto load_again; 5430 } 5431 5432 /* 5433 * For 5751 and follow-ons, for TSO we must turn 5434 * off checksum-assist flag in the tx-descr, and 5435 * supply the ASIC-revision-specific encoding 5436 * of TSO flags and segsize. 5437 */ 5438 if (use_tso) { 5439 if (BGE_IS_575X_PLUS(sc) || i == 0) { 5440 f->bge_rsvd = maxsegsize; 5441 f->bge_flags = csum_flags | txbd_tso_flags; 5442 } else { 5443 f->bge_rsvd = 0; 5444 f->bge_flags = 5445 (csum_flags | txbd_tso_flags) & 0x0fff; 5446 } 5447 } else { 5448 f->bge_rsvd = 0; 5449 f->bge_flags = csum_flags; 5450 } 5451 5452 if (have_vtag) { 5453 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG; 5454 f->bge_vlan_tag = vtag; 5455 } else { 5456 f->bge_vlan_tag = 0; 5457 } 5458 prev_f = f; 5459 cur = frag; 5460 BGE_INC(frag, BGE_TX_RING_CNT); 5461 } 5462 5463 if (i < dmamap->dm_nsegs) { 5464 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n", 5465 device_xname(sc->bge_dev), i, dmamap->dm_nsegs)); 5466 goto fail_unload; 5467 } 5468 5469 bus_dmamap_sync(dmatag, dmamap, 0, dmamap->dm_mapsize, 5470 BUS_DMASYNC_PREWRITE); 5471 5472 if (frag == sc->bge_tx_saved_considx) { 5473 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n", 5474 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx)); 5475 5476 goto fail_unload; 5477 } 5478 5479 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END; 5480 sc->bge_cdata.bge_tx_chain[cur] = m_head; 5481 SLIST_REMOVE_HEAD(&sc->txdma_list, link); 5482 sc->txdma[cur] = dma; 5483 sc->bge_txcnt += dmamap->dm_nsegs; 5484 5485 *txidx = frag; 5486 5487 return 0; 5488 5489 fail_unload: 5490 bus_dmamap_unload(dmatag, dmamap); 5491 5492 return ENOBUFS; 5493 } 5494 5495 5496 static void 5497 bge_start(struct ifnet *ifp) 5498 { 5499 struct bge_softc * const sc = ifp->if_softc; 5500 5501 mutex_enter(sc->sc_intr_lock); 5502 if (!sc->bge_txrx_stopping) 5503 bge_start_locked(ifp); 5504 mutex_exit(sc->sc_intr_lock); 5505 } 5506 5507 /* 5508 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 5509 * to the mbuf data regions directly in the transmit descriptors. 5510 */ 5511 static void 5512 bge_start_locked(struct ifnet *ifp) 5513 { 5514 struct bge_softc * const sc = ifp->if_softc; 5515 struct mbuf *m_head = NULL; 5516 struct mbuf *m; 5517 uint32_t prodidx; 5518 int pkts = 0; 5519 int error; 5520 5521 KASSERT(mutex_owned(sc->sc_intr_lock)); 5522 5523 prodidx = sc->bge_tx_prodidx; 5524 5525 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) { 5526 IFQ_POLL(&ifp->if_snd, m_head); 5527 if (m_head == NULL) 5528 break; 5529 5530 #if 0 5531 /* 5532 * XXX 5533 * safety overkill. If this is a fragmented packet chain 5534 * with delayed TCP/UDP checksums, then only encapsulate 5535 * it if we have enough descriptors to handle the entire 5536 * chain at once. 5537 * (paranoia -- may not actually be needed) 5538 */ 5539 if (m_head->m_flags & M_FIRSTFRAG && 5540 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) { 5541 if ((BGE_TX_RING_CNT - sc->bge_txcnt) < 5542 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) { 5543 ifp->if_flags |= IFF_OACTIVE; 5544 break; 5545 } 5546 } 5547 #endif 5548 5549 /* 5550 * Pack the data into the transmit ring. If we 5551 * don't have room, set the OACTIVE flag and wait 5552 * for the NIC to drain the ring. 5553 */ 5554 error = bge_encap(sc, m_head, &prodidx); 5555 if (__predict_false(error)) { 5556 if (SLIST_EMPTY(&sc->txdma_list)) { 5557 /* just wait for the transmit ring to drain */ 5558 break; 5559 } 5560 IFQ_DEQUEUE(&ifp->if_snd, m); 5561 KASSERT(m == m_head); 5562 m_freem(m_head); 5563 continue; 5564 } 5565 5566 /* now we are committed to transmit the packet */ 5567 IFQ_DEQUEUE(&ifp->if_snd, m); 5568 KASSERT(m == m_head); 5569 pkts++; 5570 5571 /* 5572 * If there's a BPF listener, bounce a copy of this frame 5573 * to him. 5574 */ 5575 bpf_mtap(ifp, m_head, BPF_D_OUT); 5576 } 5577 if (pkts == 0) 5578 return; 5579 5580 /* Transmit */ 5581 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); 5582 /* 5700 b2 errata */ 5583 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) 5584 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); 5585 5586 sc->bge_tx_prodidx = prodidx; 5587 sc->bge_tx_lastsent = time_uptime; 5588 sc->bge_tx_sending = true; 5589 } 5590 5591 static int 5592 bge_init(struct ifnet *ifp) 5593 { 5594 struct bge_softc * const sc = ifp->if_softc; 5595 const uint16_t *m; 5596 uint32_t mode, reg; 5597 int error = 0; 5598 5599 ASSERT_SLEEPABLE(); 5600 KASSERT(IFNET_LOCKED(ifp)); 5601 KASSERT(ifp == &sc->ethercom.ec_if); 5602 5603 if (sc->bge_detaching) 5604 return ENXIO; 5605 5606 /* Cancel pending I/O and flush buffers. */ 5607 bge_stop(ifp, 0); 5608 5609 bge_stop_fw(sc); 5610 bge_sig_pre_reset(sc, BGE_RESET_START); 5611 bge_reset(sc); 5612 bge_sig_legacy(sc, BGE_RESET_START); 5613 5614 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) { 5615 reg = CSR_READ_4(sc, BGE_CPMU_CTRL); 5616 reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE | 5617 BGE_CPMU_CTRL_LINK_IDLE_MODE); 5618 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg); 5619 5620 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK); 5621 reg &= ~BGE_CPMU_LSPD_10MB_CLK; 5622 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25; 5623 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg); 5624 5625 reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD); 5626 reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK; 5627 reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25; 5628 CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg); 5629 5630 reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC); 5631 reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK; 5632 reg |= BGE_CPMU_HST_ACC_MACCLK_6_25; 5633 CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg); 5634 } 5635 5636 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) { 5637 pcireg_t aercap; 5638 5639 reg = CSR_READ_4(sc, BGE_PCIE_PWRMNG_THRESH); 5640 reg = (reg & ~BGE_PCIE_PWRMNG_L1THRESH_MASK) 5641 | BGE_PCIE_PWRMNG_L1THRESH_4MS 5642 | BGE_PCIE_PWRMNG_EXTASPMTMR_EN; 5643 CSR_WRITE_4(sc, BGE_PCIE_PWRMNG_THRESH, reg); 5644 5645 reg = CSR_READ_4(sc, BGE_PCIE_EIDLE_DELAY); 5646 reg = (reg & ~BGE_PCIE_EIDLE_DELAY_MASK) 5647 | BGE_PCIE_EIDLE_DELAY_13CLK; 5648 CSR_WRITE_4(sc, BGE_PCIE_EIDLE_DELAY, reg); 5649 5650 /* Clear correctable error */ 5651 if (pci_get_ext_capability(sc->sc_pc, sc->sc_pcitag, 5652 PCI_EXTCAP_AER, &aercap, NULL) != 0) 5653 pci_conf_write(sc->sc_pc, sc->sc_pcitag, 5654 aercap + PCI_AER_COR_STATUS, 0xffffffff); 5655 5656 reg = CSR_READ_4(sc, BGE_PCIE_LINKCTL); 5657 reg = (reg & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN) 5658 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS; 5659 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, reg); 5660 } 5661 5662 bge_sig_post_reset(sc, BGE_RESET_START); 5663 5664 bge_chipinit(sc); 5665 5666 /* 5667 * Init the various state machines, ring 5668 * control blocks and firmware. 5669 */ 5670 error = bge_blockinit(sc); 5671 if (error != 0) { 5672 aprint_error_dev(sc->bge_dev, "initialization error %d\n", 5673 error); 5674 return error; 5675 } 5676 5677 /* 5718 step 25, 57XX step 54 */ 5678 /* Specify MTU. */ 5679 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu + 5680 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN); 5681 5682 /* 5718 step 23 */ 5683 /* Load our MAC address. */ 5684 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]); 5685 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0])); 5686 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, 5687 ((uint32_t)htons(m[1]) << 16) | htons(m[2])); 5688 5689 /* Enable or disable promiscuous mode as needed. */ 5690 if (ifp->if_flags & IFF_PROMISC) 5691 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 5692 else 5693 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 5694 5695 /* Program multicast filter. */ 5696 mutex_enter(sc->sc_mcast_lock); 5697 bge_setmulti(sc); 5698 mutex_exit(sc->sc_mcast_lock); 5699 5700 /* Init RX ring. */ 5701 bge_init_rx_ring_std(sc); 5702 5703 /* 5704 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's 5705 * memory to insure that the chip has in fact read the first 5706 * entry of the ring. 5707 */ 5708 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) { 5709 u_int i; 5710 for (i = 0; i < 10; i++) { 5711 DELAY(20); 5712 uint32_t v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8); 5713 if (v == (MCLBYTES - ETHER_ALIGN)) 5714 break; 5715 } 5716 if (i == 10) 5717 aprint_error_dev(sc->bge_dev, 5718 "5705 A0 chip failed to load RX ring\n"); 5719 } 5720 5721 /* Init jumbo RX ring. */ 5722 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) 5723 bge_init_rx_ring_jumbo(sc); 5724 5725 /* Init our RX return ring index */ 5726 sc->bge_rx_saved_considx = 0; 5727 5728 /* Init TX ring. */ 5729 bge_init_tx_ring(sc); 5730 5731 /* 5718 step 63, 57XX step 94 */ 5732 /* Enable TX MAC state machine lockup fix. */ 5733 mode = CSR_READ_4(sc, BGE_TX_MODE); 5734 if (BGE_IS_5755_PLUS(sc) || 5735 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) 5736 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX; 5737 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 || 5738 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) { 5739 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE); 5740 mode |= CSR_READ_4(sc, BGE_TX_MODE) & 5741 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE); 5742 } 5743 5744 /* Turn on transmitter */ 5745 CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE); 5746 /* 5718 step 64 */ 5747 DELAY(100); 5748 5749 /* 5718 step 65, 57XX step 95 */ 5750 /* Turn on receiver */ 5751 mode = CSR_READ_4(sc, BGE_RX_MODE); 5752 if (BGE_IS_5755_PLUS(sc)) 5753 mode |= BGE_RXMODE_IPV6_ENABLE; 5754 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) 5755 mode |= BGE_RXMODE_IPV4_FRAG_FIX; 5756 CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE); 5757 /* 5718 step 66 */ 5758 DELAY(10); 5759 5760 /* 5718 step 12, 57XX step 37 */ 5761 /* 5762 * XXX Documents of 5718 series and 577xx say the recommended value 5763 * is 1, but tg3 set 1 only on 57765 series. 5764 */ 5765 if (BGE_IS_57765_PLUS(sc)) 5766 reg = 1; 5767 else 5768 reg = 2; 5769 CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg); 5770 5771 /* Tell firmware we're alive. */ 5772 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 5773 5774 /* Enable host interrupts. */ 5775 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA); 5776 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); 5777 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0); 5778 5779 mutex_enter(sc->sc_intr_lock); 5780 if ((error = bge_ifmedia_upd(ifp)) == 0) { 5781 sc->bge_txrx_stopping = false; 5782 5783 /* IFNET_LOCKED asserted above */ 5784 ifp->if_flags |= IFF_RUNNING; 5785 5786 callout_schedule(&sc->bge_timeout, hz); 5787 } 5788 mutex_exit(sc->sc_intr_lock); 5789 5790 mutex_enter(sc->sc_mcast_lock); 5791 sc->bge_if_flags = ifp->if_flags; 5792 mutex_exit(sc->sc_mcast_lock); 5793 5794 return error; 5795 } 5796 5797 /* 5798 * Set media options. 5799 */ 5800 static int 5801 bge_ifmedia_upd(struct ifnet *ifp) 5802 { 5803 struct bge_softc * const sc = ifp->if_softc; 5804 struct mii_data * const mii = &sc->bge_mii; 5805 struct ifmedia * const ifm = &sc->bge_ifmedia; 5806 int rc; 5807 5808 KASSERT(mutex_owned(sc->sc_intr_lock)); 5809 5810 /* If this is a 1000baseX NIC, enable the TBI port. */ 5811 if (sc->bge_flags & BGEF_FIBER_TBI) { 5812 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) 5813 return EINVAL; 5814 switch (IFM_SUBTYPE(ifm->ifm_media)) { 5815 case IFM_AUTO: 5816 /* 5817 * The BCM5704 ASIC appears to have a special 5818 * mechanism for programming the autoneg 5819 * advertisement registers in TBI mode. 5820 */ 5821 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) { 5822 uint32_t sgdig; 5823 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS); 5824 if (sgdig & BGE_SGDIGSTS_DONE) { 5825 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0); 5826 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG); 5827 sgdig |= BGE_SGDIGCFG_AUTO | 5828 BGE_SGDIGCFG_PAUSE_CAP | 5829 BGE_SGDIGCFG_ASYM_PAUSE; 5830 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG, 5831 sgdig | BGE_SGDIGCFG_SEND); 5832 DELAY(5); 5833 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG, 5834 sgdig); 5835 } 5836 } 5837 break; 5838 case IFM_1000_SX: 5839 if ((ifm->ifm_media & IFM_FDX) != 0) { 5840 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, 5841 BGE_MACMODE_HALF_DUPLEX); 5842 } else { 5843 BGE_SETBIT_FLUSH(sc, BGE_MAC_MODE, 5844 BGE_MACMODE_HALF_DUPLEX); 5845 } 5846 DELAY(40); 5847 break; 5848 default: 5849 return EINVAL; 5850 } 5851 /* XXX 802.3x flow control for 1000BASE-SX */ 5852 return 0; 5853 } 5854 5855 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) && 5856 (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) { 5857 uint32_t reg; 5858 5859 reg = CSR_READ_4(sc, BGE_CPMU_CTRL); 5860 if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) { 5861 reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY; 5862 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg); 5863 } 5864 } 5865 5866 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT); 5867 if ((rc = mii_mediachg(mii)) == ENXIO) 5868 return 0; 5869 5870 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) { 5871 uint32_t reg; 5872 5873 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK); 5874 if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK) 5875 == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) { 5876 reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK; 5877 delay(40); 5878 CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg); 5879 } 5880 } 5881 5882 /* 5883 * Force an interrupt so that we will call bge_link_upd 5884 * if needed and clear any pending link state attention. 5885 * Without this we are not getting any further interrupts 5886 * for link state changes and thus will not UP the link and 5887 * not be able to send in bge_start. The only way to get 5888 * things working was to receive a packet and get a RX intr. 5889 */ 5890 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 || 5891 sc->bge_flags & BGEF_IS_5788) 5892 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET); 5893 else 5894 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW); 5895 5896 return rc; 5897 } 5898 5899 /* 5900 * Report current media status. 5901 */ 5902 static void 5903 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 5904 { 5905 struct bge_softc * const sc = ifp->if_softc; 5906 struct mii_data * const mii = &sc->bge_mii; 5907 5908 KASSERT(mutex_owned(sc->sc_intr_lock)); 5909 5910 if (sc->bge_flags & BGEF_FIBER_TBI) { 5911 ifmr->ifm_status = IFM_AVALID; 5912 ifmr->ifm_active = IFM_ETHER; 5913 if (CSR_READ_4(sc, BGE_MAC_STS) & 5914 BGE_MACSTAT_TBI_PCS_SYNCHED) 5915 ifmr->ifm_status |= IFM_ACTIVE; 5916 ifmr->ifm_active |= IFM_1000_SX; 5917 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX) 5918 ifmr->ifm_active |= IFM_HDX; 5919 else 5920 ifmr->ifm_active |= IFM_FDX; 5921 return; 5922 } 5923 5924 mii_pollstat(mii); 5925 ifmr->ifm_status = mii->mii_media_status; 5926 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) | 5927 sc->bge_flowflags; 5928 } 5929 5930 static int 5931 bge_ifflags_cb(struct ethercom *ec) 5932 { 5933 struct ifnet * const ifp = &ec->ec_if; 5934 struct bge_softc * const sc = ifp->if_softc; 5935 int ret = 0; 5936 5937 KASSERT(IFNET_LOCKED(ifp)); 5938 mutex_enter(sc->sc_mcast_lock); 5939 5940 u_short change = ifp->if_flags ^ sc->bge_if_flags; 5941 sc->bge_if_flags = ifp->if_flags; 5942 5943 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) { 5944 ret = ENETRESET; 5945 } else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { 5946 if ((ifp->if_flags & IFF_PROMISC) == 0) 5947 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 5948 else 5949 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 5950 5951 bge_setmulti(sc); 5952 } 5953 5954 mutex_exit(sc->sc_mcast_lock); 5955 5956 return ret; 5957 } 5958 5959 static int 5960 bge_ioctl(struct ifnet *ifp, u_long command, void *data) 5961 { 5962 struct bge_softc * const sc = ifp->if_softc; 5963 struct ifreq * const ifr = (struct ifreq *) data; 5964 int error = 0; 5965 5966 switch (command) { 5967 case SIOCADDMULTI: 5968 case SIOCDELMULTI: 5969 break; 5970 default: 5971 KASSERT(IFNET_LOCKED(ifp)); 5972 } 5973 5974 const int s = splnet(); 5975 5976 switch (command) { 5977 case SIOCSIFMEDIA: 5978 mutex_enter(sc->sc_intr_lock); 5979 /* XXX Flow control is not supported for 1000BASE-SX */ 5980 if (sc->bge_flags & BGEF_FIBER_TBI) { 5981 ifr->ifr_media &= ~IFM_ETH_FMASK; 5982 sc->bge_flowflags = 0; 5983 } 5984 5985 /* Flow control requires full-duplex mode. */ 5986 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO || 5987 (ifr->ifr_media & IFM_FDX) == 0) { 5988 ifr->ifr_media &= ~IFM_ETH_FMASK; 5989 } 5990 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) { 5991 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) { 5992 /* We can do both TXPAUSE and RXPAUSE. */ 5993 ifr->ifr_media |= 5994 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE; 5995 } 5996 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK; 5997 } 5998 mutex_exit(sc->sc_intr_lock); 5999 6000 if (sc->bge_flags & BGEF_FIBER_TBI) { 6001 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia, 6002 command); 6003 } else { 6004 struct mii_data * const mii = &sc->bge_mii; 6005 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, 6006 command); 6007 } 6008 break; 6009 default: 6010 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET) 6011 break; 6012 6013 error = 0; 6014 6015 if (command == SIOCADDMULTI || command == SIOCDELMULTI) { 6016 mutex_enter(sc->sc_mcast_lock); 6017 if (sc->bge_if_flags & IFF_RUNNING) { 6018 bge_setmulti(sc); 6019 } 6020 mutex_exit(sc->sc_mcast_lock); 6021 } 6022 break; 6023 } 6024 6025 splx(s); 6026 6027 return error; 6028 } 6029 6030 static bool 6031 bge_watchdog_check(struct bge_softc * const sc) 6032 { 6033 6034 KASSERT(mutex_owned(sc->sc_intr_lock)); 6035 6036 if (!sc->bge_tx_sending) 6037 return true; 6038 6039 if (time_uptime - sc->bge_tx_lastsent <= bge_watchdog_timeout) 6040 return true; 6041 6042 /* If pause frames are active then don't reset the hardware. */ 6043 if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) { 6044 const uint32_t status = CSR_READ_4(sc, BGE_RX_STS); 6045 if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) { 6046 /* 6047 * If link partner has us in XOFF state then wait for 6048 * the condition to clear. 6049 */ 6050 CSR_WRITE_4(sc, BGE_RX_STS, status); 6051 sc->bge_tx_lastsent = time_uptime; 6052 return true; 6053 } else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 && 6054 (status & BGE_RXSTAT_RCVD_XON) != 0) { 6055 /* 6056 * If link partner has us in XOFF state then wait for 6057 * the condition to clear. 6058 */ 6059 CSR_WRITE_4(sc, BGE_RX_STS, status); 6060 sc->bge_tx_lastsent = time_uptime; 6061 return true; 6062 } 6063 /* 6064 * Any other condition is unexpected and the controller 6065 * should be reset. 6066 */ 6067 } 6068 6069 return false; 6070 } 6071 6072 static bool 6073 bge_watchdog_tick(struct ifnet *ifp) 6074 { 6075 struct bge_softc * const sc = ifp->if_softc; 6076 6077 KASSERT(mutex_owned(sc->sc_intr_lock)); 6078 6079 if (!sc->sc_trigger_reset && bge_watchdog_check(sc)) 6080 return true; 6081 6082 if (atomic_swap_uint(&sc->sc_reset_pending, 1) == 0) 6083 workqueue_enqueue(sc->sc_reset_wq, &sc->sc_reset_work, NULL); 6084 6085 return false; 6086 } 6087 6088 /* 6089 * Perform an interface watchdog reset. 6090 */ 6091 static void 6092 bge_handle_reset_work(struct work *work, void *arg) 6093 { 6094 struct bge_softc * const sc = arg; 6095 struct ifnet * const ifp = &sc->ethercom.ec_if; 6096 6097 printf("%s: watchdog timeout -- resetting\n", ifp->if_xname); 6098 6099 /* Don't want ioctl operations to happen */ 6100 IFNET_LOCK(ifp); 6101 6102 /* reset the interface. */ 6103 bge_init(ifp); 6104 6105 IFNET_UNLOCK(ifp); 6106 6107 /* 6108 * There are still some upper layer processing which call 6109 * ifp->if_start(). e.g. ALTQ or one CPU system 6110 */ 6111 /* Try to get more packets going. */ 6112 ifp->if_start(ifp); 6113 6114 atomic_store_relaxed(&sc->sc_reset_pending, 0); 6115 } 6116 6117 static void 6118 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit) 6119 { 6120 int i; 6121 6122 BGE_CLRBIT_FLUSH(sc, reg, bit); 6123 6124 for (i = 0; i < 1000; i++) { 6125 delay(100); 6126 if ((CSR_READ_4(sc, reg) & bit) == 0) 6127 return; 6128 } 6129 6130 /* 6131 * Doesn't print only when the register is BGE_SRS_MODE. It occurs 6132 * on some environment (and once after boot?) 6133 */ 6134 if (reg != BGE_SRS_MODE) 6135 aprint_error_dev(sc->bge_dev, 6136 "block failed to stop: reg 0x%lx, bit 0x%08x\n", 6137 (u_long)reg, bit); 6138 } 6139 6140 /* 6141 * Stop the adapter and free any mbufs allocated to the 6142 * RX and TX lists. 6143 */ 6144 static void 6145 bge_stop(struct ifnet *ifp, int disable) 6146 { 6147 struct bge_softc * const sc = ifp->if_softc; 6148 6149 ASSERT_SLEEPABLE(); 6150 KASSERT(IFNET_LOCKED(ifp)); 6151 6152 mutex_enter(sc->sc_intr_lock); 6153 sc->bge_txrx_stopping = true; 6154 mutex_exit(sc->sc_intr_lock); 6155 6156 callout_halt(&sc->bge_timeout, NULL); 6157 6158 /* Disable host interrupts. */ 6159 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); 6160 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1); 6161 6162 /* 6163 * Tell firmware we're shutting down. 6164 */ 6165 bge_stop_fw(sc); 6166 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN); 6167 6168 /* 6169 * Disable all of the receiver blocks. 6170 */ 6171 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); 6172 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); 6173 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); 6174 if (BGE_IS_5700_FAMILY(sc)) 6175 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); 6176 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE); 6177 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); 6178 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE); 6179 6180 /* 6181 * Disable all of the transmit blocks. 6182 */ 6183 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); 6184 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); 6185 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); 6186 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE); 6187 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE); 6188 if (BGE_IS_5700_FAMILY(sc)) 6189 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); 6190 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); 6191 6192 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB); 6193 delay(40); 6194 6195 bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE); 6196 6197 /* 6198 * Shut down all of the memory managers and related 6199 * state machines. 6200 */ 6201 /* 5718 step 5a,5b */ 6202 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE); 6203 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE); 6204 if (BGE_IS_5700_FAMILY(sc)) 6205 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); 6206 6207 /* 5718 step 5c,5d */ 6208 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); 6209 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); 6210 6211 if (BGE_IS_5700_FAMILY(sc)) { 6212 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE); 6213 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); 6214 } 6215 6216 bge_reset(sc); 6217 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN); 6218 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN); 6219 6220 /* 6221 * Keep the ASF firmware running if up. 6222 */ 6223 if (sc->bge_asf_mode & ASF_STACKUP) 6224 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 6225 else 6226 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 6227 6228 /* Free the RX lists. */ 6229 bge_free_rx_ring_std(sc); 6230 6231 /* Free jumbo RX list. */ 6232 if (BGE_IS_JUMBO_CAPABLE(sc)) 6233 bge_free_rx_ring_jumbo(sc); 6234 6235 /* Free TX buffers. */ 6236 bge_free_tx_ring(sc, disable); 6237 6238 /* 6239 * Isolate/power down the PHY. 6240 */ 6241 if (!(sc->bge_flags & BGEF_FIBER_TBI)) { 6242 mutex_enter(sc->sc_intr_lock); 6243 mii_down(&sc->bge_mii); 6244 mutex_exit(sc->sc_intr_lock); 6245 } 6246 6247 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET; 6248 6249 /* Clear MAC's link state (PHY may still have link UP). */ 6250 BGE_STS_CLRBIT(sc, BGE_STS_LINK); 6251 6252 ifp->if_flags &= ~IFF_RUNNING; 6253 6254 mutex_enter(sc->sc_mcast_lock); 6255 sc->bge_if_flags = ifp->if_flags; 6256 mutex_exit(sc->sc_mcast_lock); 6257 } 6258 6259 static void 6260 bge_link_upd(struct bge_softc *sc) 6261 { 6262 struct ifnet * const ifp = &sc->ethercom.ec_if; 6263 struct mii_data * const mii = &sc->bge_mii; 6264 uint32_t status; 6265 uint16_t phyval; 6266 int link; 6267 6268 KASSERT(sc->sc_intr_lock); 6269 6270 /* Clear 'pending link event' flag */ 6271 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT); 6272 6273 /* 6274 * Process link state changes. 6275 * Grrr. The link status word in the status block does 6276 * not work correctly on the BCM5700 rev AX and BX chips, 6277 * according to all available information. Hence, we have 6278 * to enable MII interrupts in order to properly obtain 6279 * async link changes. Unfortunately, this also means that 6280 * we have to read the MAC status register to detect link 6281 * changes, thereby adding an additional register access to 6282 * the interrupt handler. 6283 */ 6284 6285 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) { 6286 status = CSR_READ_4(sc, BGE_MAC_STS); 6287 if (status & BGE_MACSTAT_MI_INTERRUPT) { 6288 mii_pollstat(mii); 6289 6290 if (!BGE_STS_BIT(sc, BGE_STS_LINK) && 6291 mii->mii_media_status & IFM_ACTIVE && 6292 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) 6293 BGE_STS_SETBIT(sc, BGE_STS_LINK); 6294 else if (BGE_STS_BIT(sc, BGE_STS_LINK) && 6295 (!(mii->mii_media_status & IFM_ACTIVE) || 6296 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) 6297 BGE_STS_CLRBIT(sc, BGE_STS_LINK); 6298 6299 /* Clear the interrupt */ 6300 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, 6301 BGE_EVTENB_MI_INTERRUPT); 6302 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr, 6303 BRGPHY_MII_ISR, &phyval); 6304 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr, 6305 BRGPHY_MII_IMR, BRGPHY_INTRS); 6306 } 6307 return; 6308 } 6309 6310 if (sc->bge_flags & BGEF_FIBER_TBI) { 6311 status = CSR_READ_4(sc, BGE_MAC_STS); 6312 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) { 6313 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) { 6314 BGE_STS_SETBIT(sc, BGE_STS_LINK); 6315 if (BGE_ASICREV(sc->bge_chipid) 6316 == BGE_ASICREV_BCM5704) { 6317 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, 6318 BGE_MACMODE_TBI_SEND_CFGS); 6319 DELAY(40); 6320 } 6321 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF); 6322 if_link_state_change(ifp, LINK_STATE_UP); 6323 } 6324 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) { 6325 BGE_STS_CLRBIT(sc, BGE_STS_LINK); 6326 if_link_state_change(ifp, LINK_STATE_DOWN); 6327 } 6328 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) { 6329 /* 6330 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED 6331 * bit in status word always set. Workaround this bug by 6332 * reading PHY link status directly. 6333 */ 6334 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)? 6335 BGE_STS_LINK : 0; 6336 6337 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) { 6338 mii_pollstat(mii); 6339 6340 if (!BGE_STS_BIT(sc, BGE_STS_LINK) && 6341 mii->mii_media_status & IFM_ACTIVE && 6342 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) 6343 BGE_STS_SETBIT(sc, BGE_STS_LINK); 6344 else if (BGE_STS_BIT(sc, BGE_STS_LINK) && 6345 (!(mii->mii_media_status & IFM_ACTIVE) || 6346 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) 6347 BGE_STS_CLRBIT(sc, BGE_STS_LINK); 6348 } 6349 } else { 6350 /* 6351 * For controllers that call mii_tick, we have to poll 6352 * link status. 6353 */ 6354 mii_pollstat(mii); 6355 } 6356 6357 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) { 6358 uint32_t reg, scale; 6359 6360 reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) & 6361 BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK; 6362 if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5) 6363 scale = 65; 6364 else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25) 6365 scale = 6; 6366 else 6367 scale = 12; 6368 6369 reg = CSR_READ_4(sc, BGE_MISC_CFG) & 6370 ~BGE_MISCCFG_TIMER_PRESCALER; 6371 reg |= scale << 1; 6372 CSR_WRITE_4(sc, BGE_MISC_CFG, reg); 6373 } 6374 /* Clear the attention */ 6375 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | 6376 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | 6377 BGE_MACSTAT_LINK_CHANGED); 6378 } 6379 6380 static int 6381 bge_sysctl_verify(SYSCTLFN_ARGS) 6382 { 6383 int error, t; 6384 struct sysctlnode node; 6385 6386 node = *rnode; 6387 t = *(int*)rnode->sysctl_data; 6388 node.sysctl_data = &t; 6389 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 6390 if (error || newp == NULL) 6391 return error; 6392 6393 #if 0 6394 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t, 6395 node.sysctl_num, rnode->sysctl_num)); 6396 #endif 6397 6398 if (node.sysctl_num == bge_rxthresh_nodenum) { 6399 if (t < 0 || t >= NBGE_RX_THRESH) 6400 return EINVAL; 6401 bge_update_all_threshes(t); 6402 } else 6403 return EINVAL; 6404 6405 *(int*)rnode->sysctl_data = t; 6406 6407 return 0; 6408 } 6409 6410 /* 6411 * Set up sysctl(3) MIB, hw.bge.*. 6412 */ 6413 static void 6414 bge_sysctl_init(struct bge_softc *sc) 6415 { 6416 int rc, bge_root_num; 6417 const struct sysctlnode *node; 6418 6419 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node, 6420 0, CTLTYPE_NODE, "bge", 6421 SYSCTL_DESCR("BGE interface controls"), 6422 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) { 6423 goto out; 6424 } 6425 6426 bge_root_num = node->sysctl_num; 6427 6428 /* BGE Rx interrupt mitigation level */ 6429 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node, 6430 CTLFLAG_READWRITE, 6431 CTLTYPE_INT, "rx_lvl", 6432 SYSCTL_DESCR("BGE receive interrupt mitigation level"), 6433 bge_sysctl_verify, 0, 6434 &bge_rx_thresh_lvl, 6435 0, CTL_HW, bge_root_num, CTL_CREATE, 6436 CTL_EOL)) != 0) { 6437 goto out; 6438 } 6439 6440 bge_rxthresh_nodenum = node->sysctl_num; 6441 6442 #ifdef BGE_DEBUG 6443 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node, 6444 CTLFLAG_READWRITE, 6445 CTLTYPE_BOOL, "trigger_reset", 6446 SYSCTL_DESCR("Trigger an interface reset"), 6447 NULL, 0, &sc->sc_trigger_reset, 0, CTL_CREATE, 6448 CTL_EOL)) != 0) { 6449 goto out; 6450 } 6451 #endif 6452 return; 6453 6454 out: 6455 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc); 6456 } 6457 6458 #ifdef BGE_DEBUG 6459 void 6460 bge_debug_info(struct bge_softc *sc) 6461 { 6462 6463 printf("Hardware Flags:\n"); 6464 if (BGE_IS_57765_PLUS(sc)) 6465 printf(" - 57765 Plus\n"); 6466 if (BGE_IS_5717_PLUS(sc)) 6467 printf(" - 5717 Plus\n"); 6468 if (BGE_IS_5755_PLUS(sc)) 6469 printf(" - 5755 Plus\n"); 6470 if (BGE_IS_575X_PLUS(sc)) 6471 printf(" - 575X Plus\n"); 6472 if (BGE_IS_5705_PLUS(sc)) 6473 printf(" - 5705 Plus\n"); 6474 if (BGE_IS_5714_FAMILY(sc)) 6475 printf(" - 5714 Family\n"); 6476 if (BGE_IS_5700_FAMILY(sc)) 6477 printf(" - 5700 Family\n"); 6478 if (sc->bge_flags & BGEF_IS_5788) 6479 printf(" - 5788\n"); 6480 if (sc->bge_flags & BGEF_JUMBO_CAPABLE) 6481 printf(" - Supports Jumbo Frames\n"); 6482 if (sc->bge_flags & BGEF_NO_EEPROM) 6483 printf(" - No EEPROM\n"); 6484 if (sc->bge_flags & BGEF_PCIX) 6485 printf(" - PCI-X Bus\n"); 6486 if (sc->bge_flags & BGEF_PCIE) 6487 printf(" - PCI Express Bus\n"); 6488 if (sc->bge_flags & BGEF_RX_ALIGNBUG) 6489 printf(" - RX Alignment Bug\n"); 6490 if (sc->bge_flags & BGEF_APE) 6491 printf(" - APE\n"); 6492 if (sc->bge_flags & BGEF_CPMU_PRESENT) 6493 printf(" - CPMU\n"); 6494 if (sc->bge_flags & BGEF_TSO) 6495 printf(" - TSO\n"); 6496 if (sc->bge_flags & BGEF_TAGGED_STATUS) 6497 printf(" - TAGGED_STATUS\n"); 6498 6499 /* PHY related */ 6500 if (sc->bge_phy_flags & BGEPHYF_NO_3LED) 6501 printf(" - No 3 LEDs\n"); 6502 if (sc->bge_phy_flags & BGEPHYF_CRC_BUG) 6503 printf(" - CRC bug\n"); 6504 if (sc->bge_phy_flags & BGEPHYF_ADC_BUG) 6505 printf(" - ADC bug\n"); 6506 if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG) 6507 printf(" - 5704 A0 bug\n"); 6508 if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG) 6509 printf(" - jitter bug\n"); 6510 if (sc->bge_phy_flags & BGEPHYF_BER_BUG) 6511 printf(" - BER bug\n"); 6512 if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM) 6513 printf(" - adjust trim\n"); 6514 if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED) 6515 printf(" - no wirespeed\n"); 6516 6517 /* ASF related */ 6518 if (sc->bge_asf_mode & ASF_ENABLE) 6519 printf(" - ASF enable\n"); 6520 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) 6521 printf(" - ASF new handshake\n"); 6522 if (sc->bge_asf_mode & ASF_STACKUP) 6523 printf(" - ASF stackup\n"); 6524 } 6525 #endif /* BGE_DEBUG */ 6526 6527 static int 6528 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]) 6529 { 6530 prop_dictionary_t dict; 6531 prop_data_t ea; 6532 6533 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0) 6534 return 1; 6535 6536 dict = device_properties(sc->bge_dev); 6537 ea = prop_dictionary_get(dict, "mac-address"); 6538 if (ea != NULL) { 6539 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA); 6540 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN); 6541 memcpy(ether_addr, prop_data_value(ea), ETHER_ADDR_LEN); 6542 return 0; 6543 } 6544 6545 return 1; 6546 } 6547 6548 static int 6549 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[]) 6550 { 6551 uint32_t mac_addr; 6552 6553 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB); 6554 if ((mac_addr >> 16) == 0x484b) { 6555 ether_addr[0] = (uint8_t)(mac_addr >> 8); 6556 ether_addr[1] = (uint8_t)mac_addr; 6557 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB); 6558 ether_addr[2] = (uint8_t)(mac_addr >> 24); 6559 ether_addr[3] = (uint8_t)(mac_addr >> 16); 6560 ether_addr[4] = (uint8_t)(mac_addr >> 8); 6561 ether_addr[5] = (uint8_t)mac_addr; 6562 return 0; 6563 } 6564 return 1; 6565 } 6566 6567 static int 6568 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[]) 6569 { 6570 int mac_offset = BGE_EE_MAC_OFFSET; 6571 6572 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) 6573 mac_offset = BGE_EE_MAC_OFFSET_5906; 6574 6575 return (bge_read_nvram(sc, ether_addr, mac_offset + 2, 6576 ETHER_ADDR_LEN)); 6577 } 6578 6579 static int 6580 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[]) 6581 { 6582 6583 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) 6584 return 1; 6585 6586 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2, 6587 ETHER_ADDR_LEN)); 6588 } 6589 6590 static int 6591 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[]) 6592 { 6593 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = { 6594 /* NOTE: Order is critical */ 6595 bge_get_eaddr_fw, 6596 bge_get_eaddr_mem, 6597 bge_get_eaddr_nvram, 6598 bge_get_eaddr_eeprom, 6599 NULL 6600 }; 6601 const bge_eaddr_fcn_t *func; 6602 6603 for (func = bge_eaddr_funcs; *func != NULL; ++func) { 6604 if ((*func)(sc, eaddr) == 0) 6605 break; 6606 } 6607 return *func == NULL ? ENXIO : 0; 6608 } 6609