xref: /netbsd-src/sys/external/bsd/drm2/dist/drm/nouveau/nvkm/subdev/fb/nouveau_nvkm_subdev_fb_ramnv50.c (revision 41ec02673d281bbb3d38e6c78504ce6e30c228c1)
1 /*	$NetBSD: nouveau_nvkm_subdev_fb_ramnv50.c,v 1.3 2021/12/18 23:45:39 riastradh Exp $	*/
2 
3 /*
4  * Copyright 2013 Red Hat Inc.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Ben Skeggs
25  */
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: nouveau_nvkm_subdev_fb_ramnv50.c,v 1.3 2021/12/18 23:45:39 riastradh Exp $");
28 
29 #define nv50_ram(p) container_of((p), struct nv50_ram, base)
30 #include "ram.h"
31 #include "ramseq.h"
32 #include "nv50.h"
33 
34 #include <core/option.h>
35 #include <subdev/bios.h>
36 #include <subdev/bios/perf.h>
37 #include <subdev/bios/pll.h>
38 #include <subdev/bios/rammap.h>
39 #include <subdev/bios/timing.h>
40 #include <subdev/clk/pll.h>
41 #include <subdev/gpio.h>
42 
43 struct nv50_ramseq {
44 	struct hwsq base;
45 	struct hwsq_reg r_0x002504;
46 	struct hwsq_reg r_0x004008;
47 	struct hwsq_reg r_0x00400c;
48 	struct hwsq_reg r_0x00c040;
49 	struct hwsq_reg r_0x100200;
50 	struct hwsq_reg r_0x100210;
51 	struct hwsq_reg r_0x10021c;
52 	struct hwsq_reg r_0x1002d0;
53 	struct hwsq_reg r_0x1002d4;
54 	struct hwsq_reg r_0x1002dc;
55 	struct hwsq_reg r_0x10053c;
56 	struct hwsq_reg r_0x1005a0;
57 	struct hwsq_reg r_0x1005a4;
58 	struct hwsq_reg r_0x100710;
59 	struct hwsq_reg r_0x100714;
60 	struct hwsq_reg r_0x100718;
61 	struct hwsq_reg r_0x10071c;
62 	struct hwsq_reg r_0x100da0;
63 	struct hwsq_reg r_0x100e20;
64 	struct hwsq_reg r_0x100e24;
65 	struct hwsq_reg r_0x611200;
66 	struct hwsq_reg r_timing[9];
67 	struct hwsq_reg r_mr[4];
68 	struct hwsq_reg r_gpio[4];
69 };
70 
71 struct nv50_ram {
72 	struct nvkm_ram base;
73 	struct nv50_ramseq hwsq;
74 };
75 
76 #define T(t) cfg->timing_10_##t
77 static int
nv50_ram_timing_calc(struct nv50_ram * ram,u32 * timing)78 nv50_ram_timing_calc(struct nv50_ram *ram, u32 *timing)
79 {
80 	struct nvbios_ramcfg *cfg = &ram->base.target.bios;
81 	struct nvkm_subdev *subdev = &ram->base.fb->subdev;
82 	struct nvkm_device *device = subdev->device;
83 	u32 cur2, cur4, cur7, cur8;
84 	u8 unkt3b;
85 
86 	cur2 = nvkm_rd32(device, 0x100228);
87 	cur4 = nvkm_rd32(device, 0x100230);
88 	cur7 = nvkm_rd32(device, 0x10023c);
89 	cur8 = nvkm_rd32(device, 0x100240);
90 
91 	switch ((!T(CWL)) * ram->base.type) {
92 	case NVKM_RAM_TYPE_DDR2:
93 		T(CWL) = T(CL) - 1;
94 		break;
95 	case NVKM_RAM_TYPE_GDDR3:
96 		T(CWL) = ((cur2 & 0xff000000) >> 24) + 1;
97 		break;
98 	}
99 
100 	/* XXX: N=1 is not proper statistics */
101 	if (device->chipset == 0xa0) {
102 		unkt3b = 0x19 + ram->base.next->bios.rammap_00_16_40;
103 		timing[6] = (0x2d + T(CL) - T(CWL) +
104 				ram->base.next->bios.rammap_00_16_40) << 16 |
105 			    T(CWL) << 8 |
106 			    (0x2f + T(CL) - T(CWL));
107 	} else {
108 		unkt3b = 0x16;
109 		timing[6] = (0x2b + T(CL) - T(CWL)) << 16 |
110 			    max_t(s8, T(CWL) - 2, 1) << 8 |
111 			    (0x2e + T(CL) - T(CWL));
112 	}
113 
114 	timing[0] = (T(RP) << 24 | T(RAS) << 16 | T(RFC) << 8 | T(RC));
115 	timing[1] = (T(WR) + 1 + T(CWL)) << 24 |
116 		    max_t(u8, T(18), 1) << 16 |
117 		    (T(WTR) + 1 + T(CWL)) << 8 |
118 		    (3 + T(CL) - T(CWL));
119 	timing[2] = (T(CWL) - 1) << 24 |
120 		    (T(RRD) << 16) |
121 		    (T(RCDWR) << 8) |
122 		    T(RCDRD);
123 	timing[3] = (unkt3b - 2 + T(CL)) << 24 |
124 		    unkt3b << 16 |
125 		    (T(CL) - 1) << 8 |
126 		    (T(CL) - 1);
127 	timing[4] = (cur4 & 0xffff0000) |
128 		    T(13) << 8 |
129 		    T(13);
130 	timing[5] = T(RFC) << 24 |
131 		    max_t(u8, T(RCDRD), T(RCDWR)) << 16 |
132 		    T(RP);
133 	/* Timing 6 is already done above */
134 	timing[7] = (cur7 & 0xff00ffff) | (T(CL) - 1) << 16;
135 	timing[8] = (cur8 & 0xffffff00);
136 
137 	/* XXX: P.version == 1 only has DDR2 and GDDR3? */
138 	if (ram->base.type == NVKM_RAM_TYPE_DDR2) {
139 		timing[5] |= (T(CL) + 3) << 8;
140 		timing[8] |= (T(CL) - 4);
141 	} else
142 	if (ram->base.type == NVKM_RAM_TYPE_GDDR3) {
143 		timing[5] |= (T(CL) + 2) << 8;
144 		timing[8] |= (T(CL) - 2);
145 	}
146 
147 	nvkm_debug(subdev, " 220: %08x %08x %08x %08x\n",
148 		   timing[0], timing[1], timing[2], timing[3]);
149 	nvkm_debug(subdev, " 230: %08x %08x %08x %08x\n",
150 		   timing[4], timing[5], timing[6], timing[7]);
151 	nvkm_debug(subdev, " 240: %08x\n", timing[8]);
152 	return 0;
153 }
154 
155 static int
nv50_ram_timing_read(struct nv50_ram * ram,u32 * timing)156 nv50_ram_timing_read(struct nv50_ram *ram, u32 *timing)
157 {
158 	unsigned int i;
159 	struct nvbios_ramcfg *cfg = &ram->base.target.bios;
160 	struct nvkm_subdev *subdev = &ram->base.fb->subdev;
161 	struct nvkm_device *device = subdev->device;
162 
163 	for (i = 0; i <= 8; i++)
164 		timing[i] = nvkm_rd32(device, 0x100220 + (i * 4));
165 
166 	/* Derive the bare minimum for the MR calculation to succeed */
167 	cfg->timing_ver = 0x10;
168 	T(CL) = (timing[3] & 0xff) + 1;
169 
170 	switch (ram->base.type) {
171 	case NVKM_RAM_TYPE_DDR2:
172 		T(CWL) = T(CL) - 1;
173 		break;
174 	case NVKM_RAM_TYPE_GDDR3:
175 		T(CWL) = ((timing[2] & 0xff000000) >> 24) + 1;
176 		break;
177 	default:
178 		return -ENOSYS;
179 		break;
180 	}
181 
182 	T(WR) = ((timing[1] >> 24) & 0xff) - 1 - T(CWL);
183 
184 	return 0;
185 }
186 #undef T
187 
188 static void
nvkm_sddr2_dll_reset(struct nv50_ramseq * hwsq)189 nvkm_sddr2_dll_reset(struct nv50_ramseq *hwsq)
190 {
191 	ram_mask(hwsq, mr[0], 0x100, 0x100);
192 	ram_mask(hwsq, mr[0], 0x100, 0x000);
193 	ram_nsec(hwsq, 24000);
194 }
195 
196 static void
nv50_ram_gpio(struct nv50_ramseq * hwsq,u8 tag,u32 val)197 nv50_ram_gpio(struct nv50_ramseq *hwsq, u8 tag, u32 val)
198 {
199 	struct nvkm_gpio *gpio = hwsq->base.subdev->device->gpio;
200 	struct dcb_gpio_func func;
201 	u32 reg, sh, gpio_val;
202 	int ret;
203 
204 	if (nvkm_gpio_get(gpio, 0, tag, DCB_GPIO_UNUSED) != val) {
205 		ret = nvkm_gpio_find(gpio, 0, tag, DCB_GPIO_UNUSED, &func);
206 		if (ret)
207 			return;
208 
209 		reg = func.line >> 3;
210 		sh = (func.line & 0x7) << 2;
211 		gpio_val = ram_rd32(hwsq, gpio[reg]);
212 
213 		if (gpio_val & (8 << sh))
214 			val = !val;
215 		if (!(func.log[1] & 1))
216 			val = !val;
217 
218 		ram_mask(hwsq, gpio[reg], (0x3 << sh), ((val | 0x2) << sh));
219 		ram_nsec(hwsq, 20000);
220 	}
221 }
222 
223 static int
nv50_ram_calc(struct nvkm_ram * base,u32 freq)224 nv50_ram_calc(struct nvkm_ram *base, u32 freq)
225 {
226 	struct nv50_ram *ram = nv50_ram(base);
227 	struct nv50_ramseq *hwsq = &ram->hwsq;
228 	struct nvkm_subdev *subdev = &ram->base.fb->subdev;
229 	struct nvkm_bios *bios = subdev->device->bios;
230 	struct nvbios_perfE perfE;
231 	struct nvbios_pll mpll;
232 	struct nvkm_ram_data *next;
233 	u8  ver, hdr, cnt, len, strap, size;
234 	u32 data;
235 	u32 r100da0, r004008, unk710, unk714, unk718, unk71c;
236 	int N1, M1, N2, M2, P;
237 	int ret, i;
238 	u32 timing[9];
239 
240 	next = &ram->base.target;
241 	next->freq = freq;
242 	ram->base.next = next;
243 
244 	/* lookup closest matching performance table entry for frequency */
245 	i = 0;
246 	do {
247 		data = nvbios_perfEp(bios, i++, &ver, &hdr, &cnt,
248 				     &size, &perfE);
249 		if (!data || (ver < 0x25 || ver >= 0x40) ||
250 		    (size < 2)) {
251 			nvkm_error(subdev, "invalid/missing perftab entry\n");
252 			return -EINVAL;
253 		}
254 	} while (perfE.memory < freq);
255 
256 	nvbios_rammapEp_from_perf(bios, data, hdr, &next->bios);
257 
258 	/* locate specific data set for the attached memory */
259 	strap = nvbios_ramcfg_index(subdev);
260 	if (strap >= cnt) {
261 		nvkm_error(subdev, "invalid ramcfg strap\n");
262 		return -EINVAL;
263 	}
264 
265 	data = nvbios_rammapSp_from_perf(bios, data + hdr, size, strap,
266 			&next->bios);
267 	if (!data) {
268 		nvkm_error(subdev, "invalid/missing rammap entry ");
269 		return -EINVAL;
270 	}
271 
272 	/* lookup memory timings, if bios says they're present */
273 	if (next->bios.ramcfg_timing != 0xff) {
274 		data = nvbios_timingEp(bios, next->bios.ramcfg_timing,
275 					&ver, &hdr, &cnt, &len, &next->bios);
276 		if (!data || ver != 0x10 || hdr < 0x12) {
277 			nvkm_error(subdev, "invalid/missing timing entry "
278 				 "%02x %04x %02x %02x\n",
279 				 strap, data, ver, hdr);
280 			return -EINVAL;
281 		}
282 		nv50_ram_timing_calc(ram, timing);
283 	} else {
284 		nv50_ram_timing_read(ram, timing);
285 	}
286 
287 	ret = ram_init(hwsq, subdev);
288 	if (ret)
289 		return ret;
290 
291 	/* Determine ram-specific MR values */
292 	ram->base.mr[0] = ram_rd32(hwsq, mr[0]);
293 	ram->base.mr[1] = ram_rd32(hwsq, mr[1]);
294 	ram->base.mr[2] = ram_rd32(hwsq, mr[2]);
295 
296 	switch (ram->base.type) {
297 	case NVKM_RAM_TYPE_GDDR3:
298 		ret = nvkm_gddr3_calc(&ram->base);
299 		break;
300 	default:
301 		ret = -ENOSYS;
302 		break;
303 	}
304 
305 	if (ret) {
306 		nvkm_error(subdev, "Could not calculate MR\n");
307 		return ret;
308 	}
309 
310 	if (subdev->device->chipset <= 0x96 && !next->bios.ramcfg_00_03_02)
311 		ram_mask(hwsq, 0x100710, 0x00000200, 0x00000000);
312 
313 	/* Always disable this bit during reclock */
314 	ram_mask(hwsq, 0x100200, 0x00000800, 0x00000000);
315 
316 	ram_wait_vblank(hwsq);
317 	ram_wr32(hwsq, 0x611200, 0x00003300);
318 	ram_wr32(hwsq, 0x002504, 0x00000001); /* block fifo */
319 	ram_nsec(hwsq, 8000);
320 	ram_setf(hwsq, 0x10, 0x00); /* disable fb */
321 	ram_wait(hwsq, 0x00, 0x01); /* wait for fb disabled */
322 	ram_nsec(hwsq, 2000);
323 
324 	if (next->bios.timing_10_ODT)
325 		nv50_ram_gpio(hwsq, 0x2e, 1);
326 
327 	ram_wr32(hwsq, 0x1002d4, 0x00000001); /* precharge */
328 	ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */
329 	ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */
330 	ram_wr32(hwsq, 0x100210, 0x00000000); /* disable auto-refresh */
331 	ram_wr32(hwsq, 0x1002dc, 0x00000001); /* enable self-refresh */
332 
333 	ret = nvbios_pll_parse(bios, 0x004008, &mpll);
334 	mpll.vco2.max_freq = 0;
335 	if (ret >= 0) {
336 		ret = nv04_pll_calc(subdev, &mpll, freq,
337 				    &N1, &M1, &N2, &M2, &P);
338 		if (ret <= 0)
339 			ret = -EINVAL;
340 	}
341 
342 	if (ret < 0)
343 		return ret;
344 
345 	/* XXX: 750MHz seems rather arbitrary */
346 	if (freq <= 750000) {
347 		r100da0 = 0x00000010;
348 		r004008 = 0x90000000;
349 	} else {
350 		r100da0 = 0x00000000;
351 		r004008 = 0x80000000;
352 	}
353 
354 	r004008 |= (mpll.bias_p << 19) | (P << 22) | (P << 16);
355 
356 	ram_mask(hwsq, 0x00c040, 0xc000c000, 0x0000c000);
357 	/* XXX: Is rammap_00_16_40 the DLL bit we've seen in GT215? Why does
358 	 * it have a different rammap bit from DLLoff? */
359 	ram_mask(hwsq, 0x004008, 0x00004200, 0x00000200 |
360 			next->bios.rammap_00_16_40 << 14);
361 	ram_mask(hwsq, 0x00400c, 0x0000ffff, (N1 << 8) | M1);
362 	ram_mask(hwsq, 0x004008, 0x91ff0000, r004008);
363 
364 	/* XXX: GDDR3 only? */
365 	if (subdev->device->chipset >= 0x92)
366 		ram_wr32(hwsq, 0x100da0, r100da0);
367 
368 	nv50_ram_gpio(hwsq, 0x18, !next->bios.ramcfg_FBVDDQ);
369 	ram_nsec(hwsq, 64000); /*XXX*/
370 	ram_nsec(hwsq, 32000); /*XXX*/
371 
372 	ram_mask(hwsq, 0x004008, 0x00002200, 0x00002000);
373 
374 	ram_wr32(hwsq, 0x1002dc, 0x00000000); /* disable self-refresh */
375 	ram_wr32(hwsq, 0x1002d4, 0x00000001); /* disable self-refresh */
376 	ram_wr32(hwsq, 0x100210, 0x80000000); /* enable auto-refresh */
377 
378 	ram_nsec(hwsq, 12000);
379 
380 	switch (ram->base.type) {
381 	case NVKM_RAM_TYPE_DDR2:
382 		ram_nuke(hwsq, mr[0]); /* force update */
383 		ram_mask(hwsq, mr[0], 0x000, 0x000);
384 		break;
385 	case NVKM_RAM_TYPE_GDDR3:
386 		ram_nuke(hwsq, mr[1]); /* force update */
387 		ram_wr32(hwsq, mr[1], ram->base.mr[1]);
388 		ram_nuke(hwsq, mr[0]); /* force update */
389 		ram_wr32(hwsq, mr[0], ram->base.mr[0]);
390 		break;
391 	default:
392 		break;
393 	}
394 
395 	ram_mask(hwsq, timing[3], 0xffffffff, timing[3]);
396 	ram_mask(hwsq, timing[1], 0xffffffff, timing[1]);
397 	ram_mask(hwsq, timing[6], 0xffffffff, timing[6]);
398 	ram_mask(hwsq, timing[7], 0xffffffff, timing[7]);
399 	ram_mask(hwsq, timing[8], 0xffffffff, timing[8]);
400 	ram_mask(hwsq, timing[0], 0xffffffff, timing[0]);
401 	ram_mask(hwsq, timing[2], 0xffffffff, timing[2]);
402 	ram_mask(hwsq, timing[4], 0xffffffff, timing[4]);
403 	ram_mask(hwsq, timing[5], 0xffffffff, timing[5]);
404 
405 	if (!next->bios.ramcfg_00_03_02)
406 		ram_mask(hwsq, 0x10021c, 0x00010000, 0x00000000);
407 	ram_mask(hwsq, 0x100200, 0x00001000, !next->bios.ramcfg_00_04_02 << 12);
408 
409 	/* XXX: A lot of this could be "chipset"/"ram type" specific stuff */
410 	unk710  = ram_rd32(hwsq, 0x100710) & ~0x00000100;
411 	unk714  = ram_rd32(hwsq, 0x100714) & ~0xf0000020;
412 	unk718  = ram_rd32(hwsq, 0x100718) & ~0x00000100;
413 	unk71c  = ram_rd32(hwsq, 0x10071c) & ~0x00000100;
414 	if (subdev->device->chipset <= 0x96) {
415 		unk710 &= ~0x0000006e;
416 		unk714 &= ~0x00000100;
417 
418 		if (!next->bios.ramcfg_00_03_08)
419 			unk710 |= 0x00000060;
420 		if (!next->bios.ramcfg_FBVDDQ)
421 			unk714 |= 0x00000100;
422 		if ( next->bios.ramcfg_00_04_04)
423 			unk710 |= 0x0000000e;
424 	} else {
425 		unk710 &= ~0x00000001;
426 
427 		if (!next->bios.ramcfg_00_03_08)
428 			unk710 |= 0x00000001;
429 	}
430 
431 	if ( next->bios.ramcfg_00_03_01)
432 		unk71c |= 0x00000100;
433 	if ( next->bios.ramcfg_00_03_02)
434 		unk710 |= 0x00000100;
435 	if (!next->bios.ramcfg_00_03_08)
436 		unk714 |= 0x00000020;
437 	if ( next->bios.ramcfg_00_04_04)
438 		unk714 |= 0x70000000;
439 	if ( next->bios.ramcfg_00_04_20)
440 		unk718 |= 0x00000100;
441 
442 	ram_mask(hwsq, 0x100714, 0xffffffff, unk714);
443 	ram_mask(hwsq, 0x10071c, 0xffffffff, unk71c);
444 	ram_mask(hwsq, 0x100718, 0xffffffff, unk718);
445 	ram_mask(hwsq, 0x100710, 0xffffffff, unk710);
446 
447 	/* XXX: G94 does not even test these regs in trace. Harmless we do it,
448 	 * but why is it omitted? */
449 	if (next->bios.rammap_00_16_20) {
450 		ram_wr32(hwsq, 0x1005a0, next->bios.ramcfg_00_07 << 16 |
451 					 next->bios.ramcfg_00_06 << 8 |
452 					 next->bios.ramcfg_00_05);
453 		ram_wr32(hwsq, 0x1005a4, next->bios.ramcfg_00_09 << 8 |
454 					 next->bios.ramcfg_00_08);
455 		ram_mask(hwsq, 0x10053c, 0x00001000, 0x00000000);
456 	} else {
457 		ram_mask(hwsq, 0x10053c, 0x00001000, 0x00001000);
458 	}
459 	ram_mask(hwsq, mr[1], 0xffffffff, ram->base.mr[1]);
460 
461 	if (!next->bios.timing_10_ODT)
462 		nv50_ram_gpio(hwsq, 0x2e, 0);
463 
464 	/* Reset DLL */
465 	if (!next->bios.ramcfg_DLLoff)
466 		nvkm_sddr2_dll_reset(hwsq);
467 
468 	ram_setf(hwsq, 0x10, 0x01); /* enable fb */
469 	ram_wait(hwsq, 0x00, 0x00); /* wait for fb enabled */
470 	ram_wr32(hwsq, 0x611200, 0x00003330);
471 	ram_wr32(hwsq, 0x002504, 0x00000000); /* un-block fifo */
472 
473 	if (next->bios.rammap_00_17_02)
474 		ram_mask(hwsq, 0x100200, 0x00000800, 0x00000800);
475 	if (!next->bios.rammap_00_16_40)
476 		ram_mask(hwsq, 0x004008, 0x00004000, 0x00000000);
477 	if (next->bios.ramcfg_00_03_02)
478 		ram_mask(hwsq, 0x10021c, 0x00010000, 0x00010000);
479 	if (subdev->device->chipset <= 0x96 && next->bios.ramcfg_00_03_02)
480 		ram_mask(hwsq, 0x100710, 0x00000200, 0x00000200);
481 
482 	return 0;
483 }
484 
485 static int
nv50_ram_prog(struct nvkm_ram * base)486 nv50_ram_prog(struct nvkm_ram *base)
487 {
488 	struct nv50_ram *ram = nv50_ram(base);
489 	struct nvkm_device *device = ram->base.fb->subdev.device;
490 	ram_exec(&ram->hwsq, nvkm_boolopt(device->cfgopt, "NvMemExec", true));
491 	return 0;
492 }
493 
494 static void
nv50_ram_tidy(struct nvkm_ram * base)495 nv50_ram_tidy(struct nvkm_ram *base)
496 {
497 	struct nv50_ram *ram = nv50_ram(base);
498 	ram_exec(&ram->hwsq, false);
499 }
500 
501 static const struct nvkm_ram_func
502 nv50_ram_func = {
503 	.calc = nv50_ram_calc,
504 	.prog = nv50_ram_prog,
505 	.tidy = nv50_ram_tidy,
506 };
507 
508 static u32
nv50_fb_vram_rblock(struct nvkm_ram * ram)509 nv50_fb_vram_rblock(struct nvkm_ram *ram)
510 {
511 	struct nvkm_subdev *subdev = &ram->fb->subdev;
512 	struct nvkm_device *device = subdev->device;
513 	int colbits, rowbitsa, rowbitsb, banks;
514 	u64 rowsize, predicted;
515 	u32 r0, r4, rt, rblock_size;
516 
517 	r0 = nvkm_rd32(device, 0x100200);
518 	r4 = nvkm_rd32(device, 0x100204);
519 	rt = nvkm_rd32(device, 0x100250);
520 	nvkm_debug(subdev, "memcfg %08x %08x %08x %08x\n",
521 		   r0, r4, rt, nvkm_rd32(device, 0x001540));
522 
523 	colbits  =  (r4 & 0x0000f000) >> 12;
524 	rowbitsa = ((r4 & 0x000f0000) >> 16) + 8;
525 	rowbitsb = ((r4 & 0x00f00000) >> 20) + 8;
526 	banks    = 1 << (((r4 & 0x03000000) >> 24) + 2);
527 
528 	rowsize = ram->parts * banks * (1 << colbits) * 8;
529 	predicted = rowsize << rowbitsa;
530 	if (r0 & 0x00000004)
531 		predicted += rowsize << rowbitsb;
532 
533 	if (predicted != ram->size) {
534 		nvkm_warn(subdev, "memory controller reports %d MiB VRAM\n",
535 			  (u32)(ram->size >> 20));
536 	}
537 
538 	rblock_size = rowsize;
539 	if (rt & 1)
540 		rblock_size *= 3;
541 
542 	nvkm_debug(subdev, "rblock %d bytes\n", rblock_size);
543 	return rblock_size;
544 }
545 
546 int
nv50_ram_ctor(const struct nvkm_ram_func * func,struct nvkm_fb * fb,struct nvkm_ram * ram)547 nv50_ram_ctor(const struct nvkm_ram_func *func,
548 	      struct nvkm_fb *fb, struct nvkm_ram *ram)
549 {
550 	struct nvkm_device *device = fb->subdev.device;
551 	struct nvkm_bios *bios = device->bios;
552 	const u32 rsvd_head = ( 256 * 1024); /* vga memory */
553 	const u32 rsvd_tail = (1024 * 1024); /* vbios etc */
554 	u64 size = nvkm_rd32(device, 0x10020c);
555 	enum nvkm_ram_type type = NVKM_RAM_TYPE_UNKNOWN;
556 	int ret;
557 
558 	switch (nvkm_rd32(device, 0x100714) & 0x00000007) {
559 	case 0: type = NVKM_RAM_TYPE_DDR1; break;
560 	case 1:
561 		if (nvkm_fb_bios_memtype(bios) == NVKM_RAM_TYPE_DDR3)
562 			type = NVKM_RAM_TYPE_DDR3;
563 		else
564 			type = NVKM_RAM_TYPE_DDR2;
565 		break;
566 	case 2: type = NVKM_RAM_TYPE_GDDR3; break;
567 	case 3: type = NVKM_RAM_TYPE_GDDR4; break;
568 	case 4: type = NVKM_RAM_TYPE_GDDR5; break;
569 	default:
570 		break;
571 	}
572 
573 	size = (size & 0x000000ff) << 32 | (size & 0xffffff00);
574 
575 	ret = nvkm_ram_ctor(func, fb, type, size, ram);
576 	if (ret)
577 		return ret;
578 
579 	ram->part_mask = (nvkm_rd32(device, 0x001540) & 0x00ff0000) >> 16;
580 	ram->parts = hweight8(ram->part_mask);
581 	ram->ranks = (nvkm_rd32(device, 0x100200) & 0x4) ? 2 : 1;
582 	nvkm_mm_fini(&ram->vram);
583 
584 	return nvkm_mm_init(&ram->vram, NVKM_RAM_MM_NORMAL,
585 			    rsvd_head >> NVKM_RAM_MM_SHIFT,
586 			    (size - rsvd_head - rsvd_tail) >> NVKM_RAM_MM_SHIFT,
587 			    nv50_fb_vram_rblock(ram) >> NVKM_RAM_MM_SHIFT);
588 }
589 
590 int
nv50_ram_new(struct nvkm_fb * fb,struct nvkm_ram ** pram)591 nv50_ram_new(struct nvkm_fb *fb, struct nvkm_ram **pram)
592 {
593 	struct nv50_ram *ram;
594 	int ret, i;
595 
596 	if (!(ram = kzalloc(sizeof(*ram), GFP_KERNEL)))
597 		return -ENOMEM;
598 	*pram = &ram->base;
599 
600 	ret = nv50_ram_ctor(&nv50_ram_func, fb, &ram->base);
601 	if (ret)
602 		return ret;
603 
604 	ram->hwsq.r_0x002504 = hwsq_reg(0x002504);
605 	ram->hwsq.r_0x00c040 = hwsq_reg(0x00c040);
606 	ram->hwsq.r_0x004008 = hwsq_reg(0x004008);
607 	ram->hwsq.r_0x00400c = hwsq_reg(0x00400c);
608 	ram->hwsq.r_0x100200 = hwsq_reg(0x100200);
609 	ram->hwsq.r_0x100210 = hwsq_reg(0x100210);
610 	ram->hwsq.r_0x10021c = hwsq_reg(0x10021c);
611 	ram->hwsq.r_0x1002d0 = hwsq_reg(0x1002d0);
612 	ram->hwsq.r_0x1002d4 = hwsq_reg(0x1002d4);
613 	ram->hwsq.r_0x1002dc = hwsq_reg(0x1002dc);
614 	ram->hwsq.r_0x10053c = hwsq_reg(0x10053c);
615 	ram->hwsq.r_0x1005a0 = hwsq_reg(0x1005a0);
616 	ram->hwsq.r_0x1005a4 = hwsq_reg(0x1005a4);
617 	ram->hwsq.r_0x100710 = hwsq_reg(0x100710);
618 	ram->hwsq.r_0x100714 = hwsq_reg(0x100714);
619 	ram->hwsq.r_0x100718 = hwsq_reg(0x100718);
620 	ram->hwsq.r_0x10071c = hwsq_reg(0x10071c);
621 	ram->hwsq.r_0x100da0 = hwsq_stride(0x100da0, 4, ram->base.part_mask);
622 	ram->hwsq.r_0x100e20 = hwsq_reg(0x100e20);
623 	ram->hwsq.r_0x100e24 = hwsq_reg(0x100e24);
624 	ram->hwsq.r_0x611200 = hwsq_reg(0x611200);
625 
626 	for (i = 0; i < 9; i++)
627 		ram->hwsq.r_timing[i] = hwsq_reg(0x100220 + (i * 0x04));
628 
629 	if (ram->base.ranks > 1) {
630 		ram->hwsq.r_mr[0] = hwsq_reg2(0x1002c0, 0x1002c8);
631 		ram->hwsq.r_mr[1] = hwsq_reg2(0x1002c4, 0x1002cc);
632 		ram->hwsq.r_mr[2] = hwsq_reg2(0x1002e0, 0x1002e8);
633 		ram->hwsq.r_mr[3] = hwsq_reg2(0x1002e4, 0x1002ec);
634 	} else {
635 		ram->hwsq.r_mr[0] = hwsq_reg(0x1002c0);
636 		ram->hwsq.r_mr[1] = hwsq_reg(0x1002c4);
637 		ram->hwsq.r_mr[2] = hwsq_reg(0x1002e0);
638 		ram->hwsq.r_mr[3] = hwsq_reg(0x1002e4);
639 	}
640 
641 	ram->hwsq.r_gpio[0] = hwsq_reg(0x00e104);
642 	ram->hwsq.r_gpio[1] = hwsq_reg(0x00e108);
643 	ram->hwsq.r_gpio[2] = hwsq_reg(0x00e120);
644 	ram->hwsq.r_gpio[3] = hwsq_reg(0x00e124);
645 
646 	return 0;
647 }
648