1 /*
2 libparted - a library for manipulating disk partitions
3 Copyright (C) 2000, 2001, 2007 Free Software Foundation, Inc.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>.
17 */
18
19 /**
20 * \addtogroup PedConstraint
21 *
22 * \brief Constraint solver interface.
23 *
24 * Constraints are used to communicate restrictions on operations Constraints
25 * are restrictions on the location and alignment of the start and end of a
26 * partition, and the minimum and maximum size.
27 *
28 * Constraints are closed under intersection (for the proof see the source
29 * code). For background information see the Chinese Remainder Theorem.
30 *
31 * This interface consists of construction constraints, finding the intersection
32 * of constraints, and finding solutions to constraints.
33 *
34 * The constraint solver allows you to specify constraints on where a partition
35 * or file system (or any PedGeometry) may be placed/resized/etc. For example,
36 * you might want to make sure that a file system is at least 10 Gb, or that it
37 * starts at the beginning of new cylinder.
38 *
39 * The constraint solver in this file unifies solver in geom.c (which allows you
40 * to specify constraints on ranges) and natmath.c (which allows you to specify
41 * alignment constraints).
42 *
43 * @{
44 */
45
46 #include <config.h>
47 #include <parted/parted.h>
48 #include <parted/debug.h>
49
50 /**
51 * Initializes a pre-allocated piece of memory to contain a constraint
52 * with the supplied default values.
53 *
54 * \return \c 0 on failure.
55 */
56 int
ped_constraint_init(PedConstraint * constraint,const PedAlignment * start_align,const PedAlignment * end_align,const PedGeometry * start_range,const PedGeometry * end_range,PedSector min_size,PedSector max_size)57 ped_constraint_init (
58 PedConstraint* constraint,
59 const PedAlignment* start_align,
60 const PedAlignment* end_align,
61 const PedGeometry* start_range,
62 const PedGeometry* end_range,
63 PedSector min_size,
64 PedSector max_size)
65 {
66 PED_ASSERT (constraint != NULL, return 0);
67 PED_ASSERT (start_range != NULL, return 0);
68 PED_ASSERT (end_range != NULL, return 0);
69 PED_ASSERT (min_size > 0, return 0);
70 PED_ASSERT (max_size > 0, return 0);
71
72 constraint->start_align = ped_alignment_duplicate (start_align);
73 constraint->end_align = ped_alignment_duplicate (end_align);
74 constraint->start_range = ped_geometry_duplicate (start_range);
75 constraint->end_range = ped_geometry_duplicate (end_range);
76 constraint->min_size = min_size;
77 constraint->max_size = max_size;
78
79 return 1;
80 }
81
82 /**
83 * Convenience wrapper for ped_constraint_init().
84 *
85 * Allocates a new piece of memory and initializes the constraint.
86 *
87 * \return \c NULL on failure.
88 */
89 PedConstraint*
ped_constraint_new(const PedAlignment * start_align,const PedAlignment * end_align,const PedGeometry * start_range,const PedGeometry * end_range,PedSector min_size,PedSector max_size)90 ped_constraint_new (
91 const PedAlignment* start_align,
92 const PedAlignment* end_align,
93 const PedGeometry* start_range,
94 const PedGeometry* end_range,
95 PedSector min_size,
96 PedSector max_size)
97 {
98 PedConstraint* constraint;
99
100 constraint = (PedConstraint*) ped_malloc (sizeof (PedConstraint));
101 if (!constraint)
102 goto error;
103 if (!ped_constraint_init (constraint, start_align, end_align,
104 start_range, end_range, min_size, max_size))
105 goto error_free_constraint;
106 return constraint;
107
108 error_free_constraint:
109 ped_free (constraint);
110 error:
111 return NULL;
112 }
113
114 /**
115 * Return a constraint that requires a region to be entirely contained inside
116 * \p max, and to entirely contain \p min.
117 *
118 * \return \c NULL on failure.
119 */
120 PedConstraint*
ped_constraint_new_from_min_max(const PedGeometry * min,const PedGeometry * max)121 ped_constraint_new_from_min_max (
122 const PedGeometry* min,
123 const PedGeometry* max)
124 {
125 PedGeometry start_range;
126 PedGeometry end_range;
127
128 PED_ASSERT (min != NULL, return NULL);
129 PED_ASSERT (max != NULL, return NULL);
130 PED_ASSERT (ped_geometry_test_inside (max, min), return NULL);
131
132 ped_geometry_init (&start_range, min->dev, max->start,
133 min->start - max->start + 1);
134 ped_geometry_init (&end_range, min->dev, min->end,
135 max->end - min->end + 1);
136
137 return ped_constraint_new (
138 ped_alignment_any, ped_alignment_any,
139 &start_range, &end_range,
140 min->length, max->length);
141 }
142
143 /**
144 * Return a constraint that requires a region to entirely contain \p min.
145 *
146 * \return \c NULL on failure.
147 */
148 PedConstraint*
ped_constraint_new_from_min(const PedGeometry * min)149 ped_constraint_new_from_min (const PedGeometry* min)
150 {
151 PedGeometry full_dev;
152
153 PED_ASSERT (min != NULL, return NULL);
154
155 ped_geometry_init (&full_dev, min->dev, 0, min->dev->length);
156 return ped_constraint_new_from_min_max (min, &full_dev);
157 }
158
159 /**
160 * Return a constraint that requires a region to be entirely contained inside
161 * \p max.
162 *
163 * \return \c NULL on failure.
164 */
165 PedConstraint*
ped_constraint_new_from_max(const PedGeometry * max)166 ped_constraint_new_from_max (const PedGeometry* max)
167 {
168 PED_ASSERT (max != NULL, return NULL);
169
170 return ped_constraint_new (
171 ped_alignment_any, ped_alignment_any,
172 max, max, 1, max->length);
173 }
174
175 /**
176 * Duplicate a constraint.
177 *
178 * \return \c NULL on failure.
179 */
180 PedConstraint*
ped_constraint_duplicate(const PedConstraint * constraint)181 ped_constraint_duplicate (const PedConstraint* constraint)
182 {
183 PED_ASSERT (constraint != NULL, return NULL);
184
185 return ped_constraint_new (
186 constraint->start_align,
187 constraint->end_align,
188 constraint->start_range,
189 constraint->end_range,
190 constraint->min_size,
191 constraint->max_size);
192 }
193
194 /**
195 * Return a constraint that requires a region to satisfy both \p a and \p b.
196 *
197 * Moreover, any region satisfying \p a and \p b will also satisfy the returned
198 * constraint.
199 *
200 * \return \c NULL if no solution could be found (note that \c NULL is a valid
201 * PedConstraint).
202 */
203 PedConstraint*
ped_constraint_intersect(const PedConstraint * a,const PedConstraint * b)204 ped_constraint_intersect (const PedConstraint* a, const PedConstraint* b)
205 {
206 PedAlignment* start_align;
207 PedAlignment* end_align;
208 PedGeometry* start_range;
209 PedGeometry* end_range;
210 PedSector min_size;
211 PedSector max_size;
212 PedConstraint* constraint;
213
214 if (!a || !b)
215 return NULL;
216
217 start_align = ped_alignment_intersect (a->start_align, b->start_align);
218 if (!start_align)
219 goto empty;
220 end_align = ped_alignment_intersect (a->end_align, b->end_align);
221 if (!end_align)
222 goto empty_destroy_start_align;
223 start_range = ped_geometry_intersect (a->start_range, b->start_range);
224 if (!start_range)
225 goto empty_destroy_end_align;
226 end_range = ped_geometry_intersect (a->end_range, b->end_range);
227 if (!end_range)
228 goto empty_destroy_start_range;
229 min_size = PED_MAX (a->min_size, b->min_size);
230 max_size = PED_MIN (a->max_size, b->max_size);
231
232 constraint = ped_constraint_new (
233 start_align, end_align, start_range, end_range,
234 min_size, max_size);
235 if (!constraint)
236 goto empty_destroy_end_range;
237
238 ped_alignment_destroy (start_align);
239 ped_alignment_destroy (end_align);
240 ped_geometry_destroy (start_range);
241 ped_geometry_destroy (end_range);
242 return constraint;
243
244 empty_destroy_end_range:
245 ped_geometry_destroy (end_range);
246 empty_destroy_start_range:
247 ped_geometry_destroy (start_range);
248 empty_destroy_end_align:
249 ped_alignment_destroy (end_align);
250 empty_destroy_start_align:
251 ped_alignment_destroy (start_align);
252 empty:
253 return NULL;
254 }
255
256 /**
257 * Release the memory allocated for a PedConstraint constructed with
258 * ped_constraint_init().
259 */
260 void
ped_constraint_done(PedConstraint * constraint)261 ped_constraint_done (PedConstraint* constraint)
262 {
263 PED_ASSERT (constraint != NULL, return);
264
265 ped_alignment_destroy (constraint->start_align);
266 ped_alignment_destroy (constraint->end_align);
267 ped_geometry_destroy (constraint->start_range);
268 ped_geometry_destroy (constraint->end_range);
269 }
270
271 /**
272 * Release the memory allocated for a PedConstraint constructed with
273 * ped_constraint_new().
274 */
275 void
ped_constraint_destroy(PedConstraint * constraint)276 ped_constraint_destroy (PedConstraint* constraint)
277 {
278 if (constraint) {
279 ped_constraint_done (constraint);
280 ped_free (constraint);
281 }
282 }
283
284 /*
285 * Return the region within which the start must lie
286 * in order to satisfy a constriant. It takes into account
287 * constraint->start_range, constraint->min_size and constraint->max_size.
288 * All sectors in this range that also satisfy alignment requirements have
289 * an end, such that the (start, end) satisfy the constraint.
290 */
291 static PedGeometry*
_constraint_get_canonical_start_range(const PedConstraint * constraint)292 _constraint_get_canonical_start_range (const PedConstraint* constraint)
293 {
294 PedSector first_end_soln;
295 PedSector last_end_soln;
296 PedSector min_start;
297 PedSector max_start;
298 PedGeometry start_min_max_range;
299
300 if (constraint->min_size > constraint->max_size)
301 return NULL;
302
303 first_end_soln = ped_alignment_align_down (
304 constraint->end_align, constraint->end_range,
305 constraint->end_range->start);
306 last_end_soln = ped_alignment_align_up (
307 constraint->end_align, constraint->end_range,
308 constraint->end_range->end);
309 if (first_end_soln == -1 || last_end_soln == -1
310 || first_end_soln > last_end_soln
311 || last_end_soln < constraint->min_size)
312 return NULL;
313
314 min_start = first_end_soln - constraint->max_size + 1;
315 if (min_start < 0)
316 min_start = 0;
317 max_start = last_end_soln - constraint->min_size + 1;
318 if (max_start < 0)
319 return NULL;
320
321 ped_geometry_init (
322 &start_min_max_range, constraint->start_range->dev,
323 min_start, max_start - min_start + 1);
324
325 return ped_geometry_intersect (&start_min_max_range,
326 constraint->start_range);
327 }
328
329 /*
330 * Return the nearest start that will have at least one other end that
331 * together satisfy the constraint.
332 */
333 static PedSector
_constraint_get_nearest_start_soln(const PedConstraint * constraint,PedSector start)334 _constraint_get_nearest_start_soln (const PedConstraint* constraint,
335 PedSector start)
336 {
337 PedGeometry* start_range;
338 PedSector result;
339
340 start_range = _constraint_get_canonical_start_range (constraint);
341 if (!start_range)
342 return -1;
343 result = ped_alignment_align_nearest (
344 constraint->start_align, start_range, start);
345 ped_geometry_destroy (start_range);
346 return result;
347 }
348
349 /*
350 * Given a constraint and a start ("half of the solution"), find the
351 * range of all possible ends, such that all (start, end) are solutions
352 * to constraint (subject to additional alignment requirements).
353 */
354 static PedGeometry*
_constraint_get_end_range(const PedConstraint * constraint,PedSector start)355 _constraint_get_end_range (const PedConstraint* constraint, PedSector start)
356 {
357 PedDevice* dev = constraint->end_range->dev;
358 PedSector first_min_max_end;
359 PedSector last_min_max_end;
360 PedGeometry end_min_max_range;
361
362 if (start + constraint->min_size - 1 > dev->length - 1)
363 return NULL;
364
365 first_min_max_end = start + constraint->min_size - 1;
366 last_min_max_end = start + constraint->max_size - 1;
367 if (last_min_max_end > dev->length - 1)
368 last_min_max_end = dev->length - 1;
369
370 ped_geometry_init (&end_min_max_range, dev,
371 first_min_max_end,
372 last_min_max_end - first_min_max_end + 1);
373
374 return ped_geometry_intersect (&end_min_max_range,
375 constraint->end_range);
376 }
377
378 /*
379 * Given "constraint" and "start", find the end that is nearest to
380 * "end", such that ("start", the end) together form a solution to
381 * "constraint".
382 */
383 static PedSector
_constraint_get_nearest_end_soln(const PedConstraint * constraint,PedSector start,PedSector end)384 _constraint_get_nearest_end_soln (const PedConstraint* constraint,
385 PedSector start, PedSector end)
386 {
387 PedGeometry* end_range;
388 PedSector result;
389
390 end_range = _constraint_get_end_range (constraint, start);
391 if (!end_range)
392 return -1;
393
394 result = ped_alignment_align_nearest (constraint->end_align, end_range,
395 end);
396 ped_geometry_destroy (end_range);
397 return result;
398 }
399
400 /**
401 * Return the nearest region to \p geom that satisfy a \p constraint.
402 *
403 * Note that "nearest" is somewhat ambiguous. This function makes
404 * no guarantees about how this ambiguity is resovled.
405 *
406 * \return PedGeometry, or NULL when a \p constrain cannot be satisfied
407 */
408 PedGeometry*
ped_constraint_solve_nearest(const PedConstraint * constraint,const PedGeometry * geom)409 ped_constraint_solve_nearest (
410 const PedConstraint* constraint, const PedGeometry* geom)
411 {
412 PedSector start;
413 PedSector end;
414 PedGeometry* result;
415
416 if (constraint == NULL)
417 return NULL;
418
419 PED_ASSERT (geom != NULL, return NULL);
420 PED_ASSERT (constraint->start_range->dev == geom->dev, return NULL);
421
422 start = _constraint_get_nearest_start_soln (constraint, geom->start);
423 if (start == -1)
424 return NULL;
425 end = _constraint_get_nearest_end_soln (constraint, start, geom->end);
426 if (end == -1)
427 return NULL;
428
429 result = ped_geometry_new (geom->dev, start, end - start + 1);
430 if (!result)
431 return NULL;
432 PED_ASSERT (ped_constraint_is_solution (constraint, result),
433 return NULL);
434 return result;
435 }
436
437 /**
438 * Find the largest region that satisfies a constraint.
439 *
440 * There might be more than one solution. This function makes no
441 * guarantees about which solution it will choose in this case.
442 */
443 PedGeometry*
ped_constraint_solve_max(const PedConstraint * constraint)444 ped_constraint_solve_max (const PedConstraint* constraint)
445 {
446 PedDevice* dev;
447 PedGeometry full_dev;
448
449 if (!constraint)
450 return NULL;
451 dev = constraint->start_range->dev;
452 ped_geometry_init (&full_dev, dev, 0, dev->length - 1);
453 return ped_constraint_solve_nearest (constraint, &full_dev);
454 }
455
456 /**
457 * Check whether \p geom satisfies the given constraint.
458 *
459 * \return \c 1 if it does.
460 **/
461 int
ped_constraint_is_solution(const PedConstraint * constraint,const PedGeometry * geom)462 ped_constraint_is_solution (const PedConstraint* constraint,
463 const PedGeometry* geom)
464 {
465 PED_ASSERT (constraint != NULL, return 0);
466 PED_ASSERT (geom != NULL, return 0);
467
468 if (!ped_alignment_is_aligned (constraint->start_align, NULL,
469 geom->start))
470 return 0;
471 if (!ped_alignment_is_aligned (constraint->end_align, NULL, geom->end))
472 return 0;
473 if (!ped_geometry_test_sector_inside (constraint->start_range,
474 geom->start))
475 return 0;
476 if (!ped_geometry_test_sector_inside (constraint->end_range, geom->end))
477 return 0;
478 if (geom->length < constraint->min_size)
479 return 0;
480 if (geom->length > constraint->max_size)
481 return 0;
482 return 1;
483 }
484
485 /**
486 * Return a constraint that any region on the given device will satisfy.
487 */
488 PedConstraint*
ped_constraint_any(const PedDevice * dev)489 ped_constraint_any (const PedDevice* dev)
490 {
491 PedGeometry full_dev;
492
493 if (!ped_geometry_init (&full_dev, dev, 0, dev->length))
494 return NULL;
495
496 return ped_constraint_new (
497 ped_alignment_any,
498 ped_alignment_any,
499 &full_dev,
500 &full_dev,
501 1,
502 dev->length);
503 }
504
505 /**
506 * Return a constraint that only the given region will satisfy.
507 */
508 PedConstraint*
ped_constraint_exact(const PedGeometry * geom)509 ped_constraint_exact (const PedGeometry* geom)
510 {
511 PedAlignment start_align;
512 PedAlignment end_align;
513 PedGeometry start_sector;
514 PedGeometry end_sector;
515
516 ped_alignment_init (&start_align, geom->start, 0);
517 ped_alignment_init (&end_align, geom->end, 0);
518 ped_geometry_init (&start_sector, geom->dev, geom->start, 1);
519 ped_geometry_init (&end_sector, geom->dev, geom->end, 1);
520
521 return ped_constraint_new (&start_align, &end_align,
522 &start_sector, &end_sector, 1,
523 geom->dev->length);
524 }
525
526 /**
527 * @}
528 */
529
530