xref: /openbsd-src/gnu/gcc/gcc/reg-stack.c (revision 404b540a9034ac75a6199ad1a32d1bbc7a0d4210)
1 /* Register to Stack convert for GNU compiler.
2    Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3    2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 
5    This file is part of GCC.
6 
7    GCC is free software; you can redistribute it and/or modify it
8    under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 2, or (at your option)
10    any later version.
11 
12    GCC is distributed in the hope that it will be useful, but WITHOUT
13    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15    License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with GCC; see the file COPYING.  If not, write to the Free
19    Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20    02110-1301, USA.  */
21 
22 /* This pass converts stack-like registers from the "flat register
23    file" model that gcc uses, to a stack convention that the 387 uses.
24 
25    * The form of the input:
26 
27    On input, the function consists of insn that have had their
28    registers fully allocated to a set of "virtual" registers.  Note that
29    the word "virtual" is used differently here than elsewhere in gcc: for
30    each virtual stack reg, there is a hard reg, but the mapping between
31    them is not known until this pass is run.  On output, hard register
32    numbers have been substituted, and various pop and exchange insns have
33    been emitted.  The hard register numbers and the virtual register
34    numbers completely overlap - before this pass, all stack register
35    numbers are virtual, and afterward they are all hard.
36 
37    The virtual registers can be manipulated normally by gcc, and their
38    semantics are the same as for normal registers.  After the hard
39    register numbers are substituted, the semantics of an insn containing
40    stack-like regs are not the same as for an insn with normal regs: for
41    instance, it is not safe to delete an insn that appears to be a no-op
42    move.  In general, no insn containing hard regs should be changed
43    after this pass is done.
44 
45    * The form of the output:
46 
47    After this pass, hard register numbers represent the distance from
48    the current top of stack to the desired register.  A reference to
49    FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
50    represents the register just below that, and so forth.  Also, REG_DEAD
51    notes indicate whether or not a stack register should be popped.
52 
53    A "swap" insn looks like a parallel of two patterns, where each
54    pattern is a SET: one sets A to B, the other B to A.
55 
56    A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
57    and whose SET_DEST is REG or MEM.  Any other SET_DEST, such as PLUS,
58    will replace the existing stack top, not push a new value.
59 
60    A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
61    SET_SRC is REG or MEM.
62 
63    The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
64    appears ambiguous.  As a special case, the presence of a REG_DEAD note
65    for FIRST_STACK_REG differentiates between a load insn and a pop.
66 
67    If a REG_DEAD is present, the insn represents a "pop" that discards
68    the top of the register stack.  If there is no REG_DEAD note, then the
69    insn represents a "dup" or a push of the current top of stack onto the
70    stack.
71 
72    * Methodology:
73 
74    Existing REG_DEAD and REG_UNUSED notes for stack registers are
75    deleted and recreated from scratch.  REG_DEAD is never created for a
76    SET_DEST, only REG_UNUSED.
77 
78    * asm_operands:
79 
80    There are several rules on the usage of stack-like regs in
81    asm_operands insns.  These rules apply only to the operands that are
82    stack-like regs:
83 
84    1. Given a set of input regs that die in an asm_operands, it is
85       necessary to know which are implicitly popped by the asm, and
86       which must be explicitly popped by gcc.
87 
88 	An input reg that is implicitly popped by the asm must be
89 	explicitly clobbered, unless it is constrained to match an
90 	output operand.
91 
92    2. For any input reg that is implicitly popped by an asm, it is
93       necessary to know how to adjust the stack to compensate for the pop.
94       If any non-popped input is closer to the top of the reg-stack than
95       the implicitly popped reg, it would not be possible to know what the
96       stack looked like - it's not clear how the rest of the stack "slides
97       up".
98 
99 	All implicitly popped input regs must be closer to the top of
100 	the reg-stack than any input that is not implicitly popped.
101 
102    3. It is possible that if an input dies in an insn, reload might
103       use the input reg for an output reload.  Consider this example:
104 
105 		asm ("foo" : "=t" (a) : "f" (b));
106 
107       This asm says that input B is not popped by the asm, and that
108       the asm pushes a result onto the reg-stack, i.e., the stack is one
109       deeper after the asm than it was before.  But, it is possible that
110       reload will think that it can use the same reg for both the input and
111       the output, if input B dies in this insn.
112 
113 	If any input operand uses the "f" constraint, all output reg
114 	constraints must use the "&" earlyclobber.
115 
116       The asm above would be written as
117 
118 		asm ("foo" : "=&t" (a) : "f" (b));
119 
120    4. Some operands need to be in particular places on the stack.  All
121       output operands fall in this category - there is no other way to
122       know which regs the outputs appear in unless the user indicates
123       this in the constraints.
124 
125 	Output operands must specifically indicate which reg an output
126 	appears in after an asm.  "=f" is not allowed: the operand
127 	constraints must select a class with a single reg.
128 
129    5. Output operands may not be "inserted" between existing stack regs.
130       Since no 387 opcode uses a read/write operand, all output operands
131       are dead before the asm_operands, and are pushed by the asm_operands.
132       It makes no sense to push anywhere but the top of the reg-stack.
133 
134 	Output operands must start at the top of the reg-stack: output
135 	operands may not "skip" a reg.
136 
137    6. Some asm statements may need extra stack space for internal
138       calculations.  This can be guaranteed by clobbering stack registers
139       unrelated to the inputs and outputs.
140 
141    Here are a couple of reasonable asms to want to write.  This asm
142    takes one input, which is internally popped, and produces two outputs.
143 
144 	asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
145 
146    This asm takes two inputs, which are popped by the fyl2xp1 opcode,
147    and replaces them with one output.  The user must code the "st(1)"
148    clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
149 
150 	asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
151 
152 */
153 
154 #include "config.h"
155 #include "system.h"
156 #include "coretypes.h"
157 #include "tm.h"
158 #include "tree.h"
159 #include "rtl.h"
160 #include "tm_p.h"
161 #include "function.h"
162 #include "insn-config.h"
163 #include "regs.h"
164 #include "hard-reg-set.h"
165 #include "flags.h"
166 #include "toplev.h"
167 #include "recog.h"
168 #include "output.h"
169 #include "basic-block.h"
170 #include "varray.h"
171 #include "reload.h"
172 #include "ggc.h"
173 #include "timevar.h"
174 #include "tree-pass.h"
175 #include "target.h"
176 #include "vecprim.h"
177 
178 #ifdef STACK_REGS
179 
180 /* We use this array to cache info about insns, because otherwise we
181    spend too much time in stack_regs_mentioned_p.
182 
183    Indexed by insn UIDs.  A value of zero is uninitialized, one indicates
184    the insn uses stack registers, two indicates the insn does not use
185    stack registers.  */
186 static VEC(char,heap) *stack_regs_mentioned_data;
187 
188 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
189 
190 int regstack_completed = 0;
191 
192 /* This is the basic stack record.  TOP is an index into REG[] such
193    that REG[TOP] is the top of stack.  If TOP is -1 the stack is empty.
194 
195    If TOP is -2, REG[] is not yet initialized.  Stack initialization
196    consists of placing each live reg in array `reg' and setting `top'
197    appropriately.
198 
199    REG_SET indicates which registers are live.  */
200 
201 typedef struct stack_def
202 {
203   int top;			/* index to top stack element */
204   HARD_REG_SET reg_set;		/* set of live registers */
205   unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
206 } *stack;
207 
208 /* This is used to carry information about basic blocks.  It is
209    attached to the AUX field of the standard CFG block.  */
210 
211 typedef struct block_info_def
212 {
213   struct stack_def stack_in;	/* Input stack configuration.  */
214   struct stack_def stack_out;	/* Output stack configuration.  */
215   HARD_REG_SET out_reg_set;	/* Stack regs live on output.  */
216   int done;			/* True if block already converted.  */
217   int predecessors;		/* Number of predecessors that need
218 				   to be visited.  */
219 } *block_info;
220 
221 #define BLOCK_INFO(B)	((block_info) (B)->aux)
222 
223 /* Passed to change_stack to indicate where to emit insns.  */
224 enum emit_where
225 {
226   EMIT_AFTER,
227   EMIT_BEFORE
228 };
229 
230 /* The block we're currently working on.  */
231 static basic_block current_block;
232 
233 /* In the current_block, whether we're processing the first register
234    stack or call instruction, i.e. the regstack is currently the
235    same as BLOCK_INFO(current_block)->stack_in.  */
236 static bool starting_stack_p;
237 
238 /* This is the register file for all register after conversion.  */
239 static rtx
240   FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
241 
242 #define FP_MODE_REG(regno,mode)	\
243   (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
244 
245 /* Used to initialize uninitialized registers.  */
246 static rtx not_a_num;
247 
248 /* Forward declarations */
249 
250 static int stack_regs_mentioned_p (rtx pat);
251 static void pop_stack (stack, int);
252 static rtx *get_true_reg (rtx *);
253 
254 static int check_asm_stack_operands (rtx);
255 static int get_asm_operand_n_inputs (rtx);
256 static rtx stack_result (tree);
257 static void replace_reg (rtx *, int);
258 static void remove_regno_note (rtx, enum reg_note, unsigned int);
259 static int get_hard_regnum (stack, rtx);
260 static rtx emit_pop_insn (rtx, stack, rtx, enum emit_where);
261 static void swap_to_top(rtx, stack, rtx, rtx);
262 static bool move_for_stack_reg (rtx, stack, rtx);
263 static bool move_nan_for_stack_reg (rtx, stack, rtx);
264 static int swap_rtx_condition_1 (rtx);
265 static int swap_rtx_condition (rtx);
266 static void compare_for_stack_reg (rtx, stack, rtx);
267 static bool subst_stack_regs_pat (rtx, stack, rtx);
268 static void subst_asm_stack_regs (rtx, stack);
269 static bool subst_stack_regs (rtx, stack);
270 static void change_stack (rtx, stack, stack, enum emit_where);
271 static void print_stack (FILE *, stack);
272 static rtx next_flags_user (rtx);
273 
274 /* Return nonzero if any stack register is mentioned somewhere within PAT.  */
275 
276 static int
stack_regs_mentioned_p(rtx pat)277 stack_regs_mentioned_p (rtx pat)
278 {
279   const char *fmt;
280   int i;
281 
282   if (STACK_REG_P (pat))
283     return 1;
284 
285   fmt = GET_RTX_FORMAT (GET_CODE (pat));
286   for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
287     {
288       if (fmt[i] == 'E')
289 	{
290 	  int j;
291 
292 	  for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
293 	    if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
294 	      return 1;
295 	}
296       else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
297 	return 1;
298     }
299 
300   return 0;
301 }
302 
303 /* Return nonzero if INSN mentions stacked registers, else return zero.  */
304 
305 int
stack_regs_mentioned(rtx insn)306 stack_regs_mentioned (rtx insn)
307 {
308   unsigned int uid, max;
309   int test;
310 
311   if (! INSN_P (insn) || !stack_regs_mentioned_data)
312     return 0;
313 
314   uid = INSN_UID (insn);
315   max = VEC_length (char, stack_regs_mentioned_data);
316   if (uid >= max)
317     {
318       char *p;
319       unsigned int old_max = max;
320 
321       /* Allocate some extra size to avoid too many reallocs, but
322 	 do not grow too quickly.  */
323       max = uid + uid / 20 + 1;
324       VEC_safe_grow (char, heap, stack_regs_mentioned_data, max);
325       p = VEC_address (char, stack_regs_mentioned_data);
326       memset (&p[old_max], 0,
327 	      sizeof (char) * (max - old_max));
328     }
329 
330   test = VEC_index (char, stack_regs_mentioned_data, uid);
331   if (test == 0)
332     {
333       /* This insn has yet to be examined.  Do so now.  */
334       test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
335       VEC_replace (char, stack_regs_mentioned_data, uid, test);
336     }
337 
338   return test == 1;
339 }
340 
341 static rtx ix86_flags_rtx;
342 
343 static rtx
next_flags_user(rtx insn)344 next_flags_user (rtx insn)
345 {
346   /* Search forward looking for the first use of this value.
347      Stop at block boundaries.  */
348 
349   while (insn != BB_END (current_block))
350     {
351       insn = NEXT_INSN (insn);
352 
353       if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
354 	return insn;
355 
356       if (CALL_P (insn))
357 	return NULL_RTX;
358     }
359   return NULL_RTX;
360 }
361 
362 /* Reorganize the stack into ascending numbers, before this insn.  */
363 
364 static void
straighten_stack(rtx insn,stack regstack)365 straighten_stack (rtx insn, stack regstack)
366 {
367   struct stack_def temp_stack;
368   int top;
369 
370   /* If there is only a single register on the stack, then the stack is
371      already in increasing order and no reorganization is needed.
372 
373      Similarly if the stack is empty.  */
374   if (regstack->top <= 0)
375     return;
376 
377   COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
378 
379   for (top = temp_stack.top = regstack->top; top >= 0; top--)
380     temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
381 
382   change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
383 }
384 
385 /* Pop a register from the stack.  */
386 
387 static void
pop_stack(stack regstack,int regno)388 pop_stack (stack regstack, int regno)
389 {
390   int top = regstack->top;
391 
392   CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
393   regstack->top--;
394   /* If regno was not at the top of stack then adjust stack.  */
395   if (regstack->reg [top] != regno)
396     {
397       int i;
398       for (i = regstack->top; i >= 0; i--)
399 	if (regstack->reg [i] == regno)
400 	  {
401 	    int j;
402 	    for (j = i; j < top; j++)
403 	      regstack->reg [j] = regstack->reg [j + 1];
404 	    break;
405 	  }
406     }
407 }
408 
409 /* Return a pointer to the REG expression within PAT.  If PAT is not a
410    REG, possible enclosed by a conversion rtx, return the inner part of
411    PAT that stopped the search.  */
412 
413 static rtx *
get_true_reg(rtx * pat)414 get_true_reg (rtx *pat)
415 {
416   for (;;)
417     switch (GET_CODE (*pat))
418       {
419       case SUBREG:
420 	/* Eliminate FP subregister accesses in favor of the
421 	   actual FP register in use.  */
422 	{
423 	  rtx subreg;
424 	  if (FP_REG_P (subreg = SUBREG_REG (*pat)))
425 	    {
426 	      int regno_off = subreg_regno_offset (REGNO (subreg),
427 						   GET_MODE (subreg),
428 						   SUBREG_BYTE (*pat),
429 						   GET_MODE (*pat));
430 	      *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
431 				  GET_MODE (subreg));
432 	    default:
433 	      return pat;
434 	    }
435 	}
436       case FLOAT:
437       case FIX:
438       case FLOAT_EXTEND:
439 	pat = & XEXP (*pat, 0);
440 	break;
441 
442       case FLOAT_TRUNCATE:
443 	if (!flag_unsafe_math_optimizations)
444 	  return pat;
445 	pat = & XEXP (*pat, 0);
446 	break;
447       }
448 }
449 
450 /* Set if we find any malformed asms in a block.  */
451 static bool any_malformed_asm;
452 
453 /* There are many rules that an asm statement for stack-like regs must
454    follow.  Those rules are explained at the top of this file: the rule
455    numbers below refer to that explanation.  */
456 
457 static int
check_asm_stack_operands(rtx insn)458 check_asm_stack_operands (rtx insn)
459 {
460   int i;
461   int n_clobbers;
462   int malformed_asm = 0;
463   rtx body = PATTERN (insn);
464 
465   char reg_used_as_output[FIRST_PSEUDO_REGISTER];
466   char implicitly_dies[FIRST_PSEUDO_REGISTER];
467   int alt;
468 
469   rtx *clobber_reg = 0;
470   int n_inputs, n_outputs;
471 
472   /* Find out what the constraints require.  If no constraint
473      alternative matches, this asm is malformed.  */
474   extract_insn (insn);
475   constrain_operands (1);
476   alt = which_alternative;
477 
478   preprocess_constraints ();
479 
480   n_inputs = get_asm_operand_n_inputs (body);
481   n_outputs = recog_data.n_operands - n_inputs;
482 
483   if (alt < 0)
484     {
485       malformed_asm = 1;
486       /* Avoid further trouble with this insn.  */
487       PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
488       return 0;
489     }
490 
491   /* Strip SUBREGs here to make the following code simpler.  */
492   for (i = 0; i < recog_data.n_operands; i++)
493     if (GET_CODE (recog_data.operand[i]) == SUBREG
494 	&& REG_P (SUBREG_REG (recog_data.operand[i])))
495       recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
496 
497   /* Set up CLOBBER_REG.  */
498 
499   n_clobbers = 0;
500 
501   if (GET_CODE (body) == PARALLEL)
502     {
503       clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
504 
505       for (i = 0; i < XVECLEN (body, 0); i++)
506 	if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
507 	  {
508 	    rtx clobber = XVECEXP (body, 0, i);
509 	    rtx reg = XEXP (clobber, 0);
510 
511 	    if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
512 	      reg = SUBREG_REG (reg);
513 
514 	    if (STACK_REG_P (reg))
515 	      {
516 		clobber_reg[n_clobbers] = reg;
517 		n_clobbers++;
518 	      }
519 	  }
520     }
521 
522   /* Enforce rule #4: Output operands must specifically indicate which
523      reg an output appears in after an asm.  "=f" is not allowed: the
524      operand constraints must select a class with a single reg.
525 
526      Also enforce rule #5: Output operands must start at the top of
527      the reg-stack: output operands may not "skip" a reg.  */
528 
529   memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
530   for (i = 0; i < n_outputs; i++)
531     if (STACK_REG_P (recog_data.operand[i]))
532       {
533 	if (reg_class_size[(int) recog_op_alt[i][alt].cl] != 1)
534 	  {
535 	    error_for_asm (insn, "output constraint %d must specify a single register", i);
536 	    malformed_asm = 1;
537 	  }
538 	else
539 	  {
540 	    int j;
541 
542 	    for (j = 0; j < n_clobbers; j++)
543 	      if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
544 		{
545 		  error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
546 				 i, reg_names [REGNO (clobber_reg[j])]);
547 		  malformed_asm = 1;
548 		  break;
549 		}
550 	    if (j == n_clobbers)
551 	      reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
552 	  }
553       }
554 
555 
556   /* Search for first non-popped reg.  */
557   for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
558     if (! reg_used_as_output[i])
559       break;
560 
561   /* If there are any other popped regs, that's an error.  */
562   for (; i < LAST_STACK_REG + 1; i++)
563     if (reg_used_as_output[i])
564       break;
565 
566   if (i != LAST_STACK_REG + 1)
567     {
568       error_for_asm (insn, "output regs must be grouped at top of stack");
569       malformed_asm = 1;
570     }
571 
572   /* Enforce rule #2: All implicitly popped input regs must be closer
573      to the top of the reg-stack than any input that is not implicitly
574      popped.  */
575 
576   memset (implicitly_dies, 0, sizeof (implicitly_dies));
577   for (i = n_outputs; i < n_outputs + n_inputs; i++)
578     if (STACK_REG_P (recog_data.operand[i]))
579       {
580 	/* An input reg is implicitly popped if it is tied to an
581 	   output, or if there is a CLOBBER for it.  */
582 	int j;
583 
584 	for (j = 0; j < n_clobbers; j++)
585 	  if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
586 	    break;
587 
588 	if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
589 	  implicitly_dies[REGNO (recog_data.operand[i])] = 1;
590       }
591 
592   /* Search for first non-popped reg.  */
593   for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
594     if (! implicitly_dies[i])
595       break;
596 
597   /* If there are any other popped regs, that's an error.  */
598   for (; i < LAST_STACK_REG + 1; i++)
599     if (implicitly_dies[i])
600       break;
601 
602   if (i != LAST_STACK_REG + 1)
603     {
604       error_for_asm (insn,
605 		     "implicitly popped regs must be grouped at top of stack");
606       malformed_asm = 1;
607     }
608 
609   /* Enforce rule #3: If any input operand uses the "f" constraint, all
610      output constraints must use the "&" earlyclobber.
611 
612      ??? Detect this more deterministically by having constrain_asm_operands
613      record any earlyclobber.  */
614 
615   for (i = n_outputs; i < n_outputs + n_inputs; i++)
616     if (recog_op_alt[i][alt].matches == -1)
617       {
618 	int j;
619 
620 	for (j = 0; j < n_outputs; j++)
621 	  if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
622 	    {
623 	      error_for_asm (insn,
624 			     "output operand %d must use %<&%> constraint", j);
625 	      malformed_asm = 1;
626 	    }
627       }
628 
629   if (malformed_asm)
630     {
631       /* Avoid further trouble with this insn.  */
632       PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
633       any_malformed_asm = true;
634       return 0;
635     }
636 
637   return 1;
638 }
639 
640 /* Calculate the number of inputs and outputs in BODY, an
641    asm_operands.  N_OPERANDS is the total number of operands, and
642    N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
643    placed.  */
644 
645 static int
get_asm_operand_n_inputs(rtx body)646 get_asm_operand_n_inputs (rtx body)
647 {
648   switch (GET_CODE (body))
649     {
650     case SET:
651       gcc_assert (GET_CODE (SET_SRC (body)) == ASM_OPERANDS);
652       return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body));
653 
654     case ASM_OPERANDS:
655       return ASM_OPERANDS_INPUT_LENGTH (body);
656 
657     case PARALLEL:
658       return get_asm_operand_n_inputs (XVECEXP (body, 0, 0));
659 
660     default:
661       gcc_unreachable ();
662     }
663 }
664 
665 /* If current function returns its result in an fp stack register,
666    return the REG.  Otherwise, return 0.  */
667 
668 static rtx
stack_result(tree decl)669 stack_result (tree decl)
670 {
671   rtx result;
672 
673   /* If the value is supposed to be returned in memory, then clearly
674      it is not returned in a stack register.  */
675   if (aggregate_value_p (DECL_RESULT (decl), decl))
676     return 0;
677 
678   result = DECL_RTL_IF_SET (DECL_RESULT (decl));
679   if (result != 0)
680     result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
681 					   decl, true);
682 
683   return result != 0 && STACK_REG_P (result) ? result : 0;
684 }
685 
686 
687 /*
688  * This section deals with stack register substitution, and forms the second
689  * pass over the RTL.
690  */
691 
692 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
693    the desired hard REGNO.  */
694 
695 static void
replace_reg(rtx * reg,int regno)696 replace_reg (rtx *reg, int regno)
697 {
698   gcc_assert (regno >= FIRST_STACK_REG);
699   gcc_assert (regno <= LAST_STACK_REG);
700   gcc_assert (STACK_REG_P (*reg));
701 
702   gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (*reg))
703 	      || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
704 
705   *reg = FP_MODE_REG (regno, GET_MODE (*reg));
706 }
707 
708 /* Remove a note of type NOTE, which must be found, for register
709    number REGNO from INSN.  Remove only one such note.  */
710 
711 static void
remove_regno_note(rtx insn,enum reg_note note,unsigned int regno)712 remove_regno_note (rtx insn, enum reg_note note, unsigned int regno)
713 {
714   rtx *note_link, this;
715 
716   note_link = &REG_NOTES (insn);
717   for (this = *note_link; this; this = XEXP (this, 1))
718     if (REG_NOTE_KIND (this) == note
719 	&& REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno)
720       {
721 	*note_link = XEXP (this, 1);
722 	return;
723       }
724     else
725       note_link = &XEXP (this, 1);
726 
727   gcc_unreachable ();
728 }
729 
730 /* Find the hard register number of virtual register REG in REGSTACK.
731    The hard register number is relative to the top of the stack.  -1 is
732    returned if the register is not found.  */
733 
734 static int
get_hard_regnum(stack regstack,rtx reg)735 get_hard_regnum (stack regstack, rtx reg)
736 {
737   int i;
738 
739   gcc_assert (STACK_REG_P (reg));
740 
741   for (i = regstack->top; i >= 0; i--)
742     if (regstack->reg[i] == REGNO (reg))
743       break;
744 
745   return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
746 }
747 
748 /* Emit an insn to pop virtual register REG before or after INSN.
749    REGSTACK is the stack state after INSN and is updated to reflect this
750    pop.  WHEN is either emit_insn_before or emit_insn_after.  A pop insn
751    is represented as a SET whose destination is the register to be popped
752    and source is the top of stack.  A death note for the top of stack
753    cases the movdf pattern to pop.  */
754 
755 static rtx
emit_pop_insn(rtx insn,stack regstack,rtx reg,enum emit_where where)756 emit_pop_insn (rtx insn, stack regstack, rtx reg, enum emit_where where)
757 {
758   rtx pop_insn, pop_rtx;
759   int hard_regno;
760 
761   /* For complex types take care to pop both halves.  These may survive in
762      CLOBBER and USE expressions.  */
763   if (COMPLEX_MODE_P (GET_MODE (reg)))
764     {
765       rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
766       rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
767 
768       pop_insn = NULL_RTX;
769       if (get_hard_regnum (regstack, reg1) >= 0)
770 	pop_insn = emit_pop_insn (insn, regstack, reg1, where);
771       if (get_hard_regnum (regstack, reg2) >= 0)
772 	pop_insn = emit_pop_insn (insn, regstack, reg2, where);
773       gcc_assert (pop_insn);
774       return pop_insn;
775     }
776 
777   hard_regno = get_hard_regnum (regstack, reg);
778 
779   gcc_assert (hard_regno >= FIRST_STACK_REG);
780 
781   pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
782 			 FP_MODE_REG (FIRST_STACK_REG, DFmode));
783 
784   if (where == EMIT_AFTER)
785     pop_insn = emit_insn_after (pop_rtx, insn);
786   else
787     pop_insn = emit_insn_before (pop_rtx, insn);
788 
789   REG_NOTES (pop_insn)
790     = gen_rtx_EXPR_LIST (REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode),
791 			 REG_NOTES (pop_insn));
792 
793   regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
794     = regstack->reg[regstack->top];
795   regstack->top -= 1;
796   CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
797 
798   return pop_insn;
799 }
800 
801 /* Emit an insn before or after INSN to swap virtual register REG with
802    the top of stack.  REGSTACK is the stack state before the swap, and
803    is updated to reflect the swap.  A swap insn is represented as a
804    PARALLEL of two patterns: each pattern moves one reg to the other.
805 
806    If REG is already at the top of the stack, no insn is emitted.  */
807 
808 static void
emit_swap_insn(rtx insn,stack regstack,rtx reg)809 emit_swap_insn (rtx insn, stack regstack, rtx reg)
810 {
811   int hard_regno;
812   rtx swap_rtx;
813   int tmp, other_reg;		/* swap regno temps */
814   rtx i1;			/* the stack-reg insn prior to INSN */
815   rtx i1set = NULL_RTX;		/* the SET rtx within I1 */
816 
817   hard_regno = get_hard_regnum (regstack, reg);
818 
819   if (hard_regno == FIRST_STACK_REG)
820     return;
821   if (hard_regno == -1)
822     {
823       /* Something failed if the register wasn't on the stack.  If we had
824 	 malformed asms, we zapped the instruction itself, but that didn't
825 	 produce the same pattern of register sets as before.  To prevent
826 	 further failure, adjust REGSTACK to include REG at TOP.  */
827       gcc_assert (any_malformed_asm);
828       regstack->reg[++regstack->top] = REGNO (reg);
829       return;
830     }
831   gcc_assert (hard_regno >= FIRST_STACK_REG);
832 
833   other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
834 
835   tmp = regstack->reg[other_reg];
836   regstack->reg[other_reg] = regstack->reg[regstack->top];
837   regstack->reg[regstack->top] = tmp;
838 
839   /* Find the previous insn involving stack regs, but don't pass a
840      block boundary.  */
841   i1 = NULL;
842   if (current_block && insn != BB_HEAD (current_block))
843     {
844       rtx tmp = PREV_INSN (insn);
845       rtx limit = PREV_INSN (BB_HEAD (current_block));
846       while (tmp != limit)
847 	{
848 	  if (LABEL_P (tmp)
849 	      || CALL_P (tmp)
850 	      || NOTE_INSN_BASIC_BLOCK_P (tmp)
851 	      || (NONJUMP_INSN_P (tmp)
852 		  && stack_regs_mentioned (tmp)))
853 	    {
854 	      i1 = tmp;
855 	      break;
856 	    }
857 	  tmp = PREV_INSN (tmp);
858 	}
859     }
860 
861   if (i1 != NULL_RTX
862       && (i1set = single_set (i1)) != NULL_RTX)
863     {
864       rtx i1src = *get_true_reg (&SET_SRC (i1set));
865       rtx i1dest = *get_true_reg (&SET_DEST (i1set));
866 
867       /* If the previous register stack push was from the reg we are to
868 	 swap with, omit the swap.  */
869 
870       if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
871 	  && REG_P (i1src)
872 	  && REGNO (i1src) == (unsigned) hard_regno - 1
873 	  && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
874 	return;
875 
876       /* If the previous insn wrote to the reg we are to swap with,
877 	 omit the swap.  */
878 
879       if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
880 	  && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
881 	  && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
882 	return;
883     }
884 
885   /* Avoid emitting the swap if this is the first register stack insn
886      of the current_block.  Instead update the current_block's stack_in
887      and let compensate edges take care of this for us.  */
888   if (current_block && starting_stack_p)
889     {
890       BLOCK_INFO (current_block)->stack_in = *regstack;
891       starting_stack_p = false;
892       return;
893     }
894 
895   swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
896 			 FP_MODE_REG (FIRST_STACK_REG, XFmode));
897 
898   if (i1)
899     emit_insn_after (swap_rtx, i1);
900   else if (current_block)
901     emit_insn_before (swap_rtx, BB_HEAD (current_block));
902   else
903     emit_insn_before (swap_rtx, insn);
904 }
905 
906 /* Emit an insns before INSN to swap virtual register SRC1 with
907    the top of stack and virtual register SRC2 with second stack
908    slot. REGSTACK is the stack state before the swaps, and
909    is updated to reflect the swaps.  A swap insn is represented as a
910    PARALLEL of two patterns: each pattern moves one reg to the other.
911 
912    If SRC1 and/or SRC2 are already at the right place, no swap insn
913    is emitted.  */
914 
915 static void
swap_to_top(rtx insn,stack regstack,rtx src1,rtx src2)916 swap_to_top (rtx insn, stack regstack, rtx src1, rtx src2)
917 {
918   struct stack_def temp_stack;
919   int regno, j, k, temp;
920 
921   temp_stack = *regstack;
922 
923   /* Place operand 1 at the top of stack.  */
924   regno = get_hard_regnum (&temp_stack, src1);
925   gcc_assert (regno >= 0);
926   if (regno != FIRST_STACK_REG)
927     {
928       k = temp_stack.top - (regno - FIRST_STACK_REG);
929       j = temp_stack.top;
930 
931       temp = temp_stack.reg[k];
932       temp_stack.reg[k] = temp_stack.reg[j];
933       temp_stack.reg[j] = temp;
934     }
935 
936   /* Place operand 2 next on the stack.  */
937   regno = get_hard_regnum (&temp_stack, src2);
938   gcc_assert (regno >= 0);
939   if (regno != FIRST_STACK_REG + 1)
940     {
941       k = temp_stack.top - (regno - FIRST_STACK_REG);
942       j = temp_stack.top - 1;
943 
944       temp = temp_stack.reg[k];
945       temp_stack.reg[k] = temp_stack.reg[j];
946       temp_stack.reg[j] = temp;
947     }
948 
949   change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
950 }
951 
952 /* Handle a move to or from a stack register in PAT, which is in INSN.
953    REGSTACK is the current stack.  Return whether a control flow insn
954    was deleted in the process.  */
955 
956 static bool
move_for_stack_reg(rtx insn,stack regstack,rtx pat)957 move_for_stack_reg (rtx insn, stack regstack, rtx pat)
958 {
959   rtx *psrc =  get_true_reg (&SET_SRC (pat));
960   rtx *pdest = get_true_reg (&SET_DEST (pat));
961   rtx src, dest;
962   rtx note;
963   bool control_flow_insn_deleted = false;
964 
965   src = *psrc; dest = *pdest;
966 
967   if (STACK_REG_P (src) && STACK_REG_P (dest))
968     {
969       /* Write from one stack reg to another.  If SRC dies here, then
970 	 just change the register mapping and delete the insn.  */
971 
972       note = find_regno_note (insn, REG_DEAD, REGNO (src));
973       if (note)
974 	{
975 	  int i;
976 
977 	  /* If this is a no-op move, there must not be a REG_DEAD note.  */
978 	  gcc_assert (REGNO (src) != REGNO (dest));
979 
980 	  for (i = regstack->top; i >= 0; i--)
981 	    if (regstack->reg[i] == REGNO (src))
982 	      break;
983 
984 	  /* The destination must be dead, or life analysis is borked.  */
985 	  gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
986 
987 	  /* If the source is not live, this is yet another case of
988 	     uninitialized variables.  Load up a NaN instead.  */
989 	  if (i < 0)
990 	    return move_nan_for_stack_reg (insn, regstack, dest);
991 
992 	  /* It is possible that the dest is unused after this insn.
993 	     If so, just pop the src.  */
994 
995 	  if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
996 	    emit_pop_insn (insn, regstack, src, EMIT_AFTER);
997 	  else
998 	    {
999 	      regstack->reg[i] = REGNO (dest);
1000 	      SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1001 	      CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1002 	    }
1003 
1004 	  control_flow_insn_deleted |= control_flow_insn_p (insn);
1005 	  delete_insn (insn);
1006 	  return control_flow_insn_deleted;
1007 	}
1008 
1009       /* The source reg does not die.  */
1010 
1011       /* If this appears to be a no-op move, delete it, or else it
1012 	 will confuse the machine description output patterns. But if
1013 	 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1014 	 for REG_UNUSED will not work for deleted insns.  */
1015 
1016       if (REGNO (src) == REGNO (dest))
1017 	{
1018 	  if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1019 	    emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1020 
1021 	  control_flow_insn_deleted |= control_flow_insn_p (insn);
1022 	  delete_insn (insn);
1023 	  return control_flow_insn_deleted;
1024 	}
1025 
1026       /* The destination ought to be dead.  */
1027       gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1028 
1029       replace_reg (psrc, get_hard_regnum (regstack, src));
1030 
1031       regstack->reg[++regstack->top] = REGNO (dest);
1032       SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1033       replace_reg (pdest, FIRST_STACK_REG);
1034     }
1035   else if (STACK_REG_P (src))
1036     {
1037       /* Save from a stack reg to MEM, or possibly integer reg.  Since
1038 	 only top of stack may be saved, emit an exchange first if
1039 	 needs be.  */
1040 
1041       emit_swap_insn (insn, regstack, src);
1042 
1043       note = find_regno_note (insn, REG_DEAD, REGNO (src));
1044       if (note)
1045 	{
1046 	  replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1047 	  regstack->top--;
1048 	  CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1049 	}
1050       else if ((GET_MODE (src) == XFmode)
1051 	       && regstack->top < REG_STACK_SIZE - 1)
1052 	{
1053 	  /* A 387 cannot write an XFmode value to a MEM without
1054 	     clobbering the source reg.  The output code can handle
1055 	     this by reading back the value from the MEM.
1056 	     But it is more efficient to use a temp register if one is
1057 	     available.  Push the source value here if the register
1058 	     stack is not full, and then write the value to memory via
1059 	     a pop.  */
1060 	  rtx push_rtx;
1061 	  rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1062 
1063 	  push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1064 	  emit_insn_before (push_rtx, insn);
1065 	  REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, top_stack_reg,
1066 						REG_NOTES (insn));
1067 	}
1068 
1069       replace_reg (psrc, FIRST_STACK_REG);
1070     }
1071   else
1072     {
1073       gcc_assert (STACK_REG_P (dest));
1074 
1075       /* Load from MEM, or possibly integer REG or constant, into the
1076 	 stack regs.  The actual target is always the top of the
1077 	 stack. The stack mapping is changed to reflect that DEST is
1078 	 now at top of stack.  */
1079 
1080       /* The destination ought to be dead.  */
1081       gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1082 
1083       gcc_assert (regstack->top < REG_STACK_SIZE);
1084 
1085       regstack->reg[++regstack->top] = REGNO (dest);
1086       SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1087       replace_reg (pdest, FIRST_STACK_REG);
1088     }
1089 
1090   return control_flow_insn_deleted;
1091 }
1092 
1093 /* A helper function which replaces INSN with a pattern that loads up
1094    a NaN into DEST, then invokes move_for_stack_reg.  */
1095 
1096 static bool
move_nan_for_stack_reg(rtx insn,stack regstack,rtx dest)1097 move_nan_for_stack_reg (rtx insn, stack regstack, rtx dest)
1098 {
1099   rtx pat;
1100 
1101   dest = FP_MODE_REG (REGNO (dest), SFmode);
1102   pat = gen_rtx_SET (VOIDmode, dest, not_a_num);
1103   PATTERN (insn) = pat;
1104   INSN_CODE (insn) = -1;
1105 
1106   return move_for_stack_reg (insn, regstack, pat);
1107 }
1108 
1109 /* Swap the condition on a branch, if there is one.  Return true if we
1110    found a condition to swap.  False if the condition was not used as
1111    such.  */
1112 
1113 static int
swap_rtx_condition_1(rtx pat)1114 swap_rtx_condition_1 (rtx pat)
1115 {
1116   const char *fmt;
1117   int i, r = 0;
1118 
1119   if (COMPARISON_P (pat))
1120     {
1121       PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1122       r = 1;
1123     }
1124   else
1125     {
1126       fmt = GET_RTX_FORMAT (GET_CODE (pat));
1127       for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1128 	{
1129 	  if (fmt[i] == 'E')
1130 	    {
1131 	      int j;
1132 
1133 	      for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1134 		r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1135 	    }
1136 	  else if (fmt[i] == 'e')
1137 	    r |= swap_rtx_condition_1 (XEXP (pat, i));
1138 	}
1139     }
1140 
1141   return r;
1142 }
1143 
1144 static int
swap_rtx_condition(rtx insn)1145 swap_rtx_condition (rtx insn)
1146 {
1147   rtx pat = PATTERN (insn);
1148 
1149   /* We're looking for a single set to cc0 or an HImode temporary.  */
1150 
1151   if (GET_CODE (pat) == SET
1152       && REG_P (SET_DEST (pat))
1153       && REGNO (SET_DEST (pat)) == FLAGS_REG)
1154     {
1155       insn = next_flags_user (insn);
1156       if (insn == NULL_RTX)
1157 	return 0;
1158       pat = PATTERN (insn);
1159     }
1160 
1161   /* See if this is, or ends in, a fnstsw.  If so, we're not doing anything
1162      with the cc value right now.  We may be able to search for one
1163      though.  */
1164 
1165   if (GET_CODE (pat) == SET
1166       && GET_CODE (SET_SRC (pat)) == UNSPEC
1167       && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1168     {
1169       rtx dest = SET_DEST (pat);
1170 
1171       /* Search forward looking for the first use of this value.
1172 	 Stop at block boundaries.  */
1173       while (insn != BB_END (current_block))
1174 	{
1175 	  insn = NEXT_INSN (insn);
1176 	  if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1177 	    break;
1178 	  if (CALL_P (insn))
1179 	    return 0;
1180 	}
1181 
1182       /* We haven't found it.  */
1183       if (insn == BB_END (current_block))
1184 	return 0;
1185 
1186       /* So we've found the insn using this value.  If it is anything
1187 	 other than sahf or the value does not die (meaning we'd have
1188 	 to search further), then we must give up.  */
1189       pat = PATTERN (insn);
1190       if (GET_CODE (pat) != SET
1191 	  || GET_CODE (SET_SRC (pat)) != UNSPEC
1192 	  || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1193 	  || ! dead_or_set_p (insn, dest))
1194 	return 0;
1195 
1196       /* Now we are prepared to handle this as a normal cc0 setter.  */
1197       insn = next_flags_user (insn);
1198       if (insn == NULL_RTX)
1199 	return 0;
1200       pat = PATTERN (insn);
1201     }
1202 
1203   if (swap_rtx_condition_1 (pat))
1204     {
1205       int fail = 0;
1206       INSN_CODE (insn) = -1;
1207       if (recog_memoized (insn) == -1)
1208 	fail = 1;
1209       /* In case the flags don't die here, recurse to try fix
1210          following user too.  */
1211       else if (! dead_or_set_p (insn, ix86_flags_rtx))
1212 	{
1213 	  insn = next_flags_user (insn);
1214 	  if (!insn || !swap_rtx_condition (insn))
1215 	    fail = 1;
1216 	}
1217       if (fail)
1218 	{
1219 	  swap_rtx_condition_1 (pat);
1220 	  return 0;
1221 	}
1222       return 1;
1223     }
1224   return 0;
1225 }
1226 
1227 /* Handle a comparison.  Special care needs to be taken to avoid
1228    causing comparisons that a 387 cannot do correctly, such as EQ.
1229 
1230    Also, a pop insn may need to be emitted.  The 387 does have an
1231    `fcompp' insn that can pop two regs, but it is sometimes too expensive
1232    to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1233    set up.  */
1234 
1235 static void
compare_for_stack_reg(rtx insn,stack regstack,rtx pat_src)1236 compare_for_stack_reg (rtx insn, stack regstack, rtx pat_src)
1237 {
1238   rtx *src1, *src2;
1239   rtx src1_note, src2_note;
1240 
1241   src1 = get_true_reg (&XEXP (pat_src, 0));
1242   src2 = get_true_reg (&XEXP (pat_src, 1));
1243 
1244   /* ??? If fxch turns out to be cheaper than fstp, give priority to
1245      registers that die in this insn - move those to stack top first.  */
1246   if ((! STACK_REG_P (*src1)
1247        || (STACK_REG_P (*src2)
1248 	   && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1249       && swap_rtx_condition (insn))
1250     {
1251       rtx temp;
1252       temp = XEXP (pat_src, 0);
1253       XEXP (pat_src, 0) = XEXP (pat_src, 1);
1254       XEXP (pat_src, 1) = temp;
1255 
1256       src1 = get_true_reg (&XEXP (pat_src, 0));
1257       src2 = get_true_reg (&XEXP (pat_src, 1));
1258 
1259       INSN_CODE (insn) = -1;
1260     }
1261 
1262   /* We will fix any death note later.  */
1263 
1264   src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1265 
1266   if (STACK_REG_P (*src2))
1267     src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1268   else
1269     src2_note = NULL_RTX;
1270 
1271   emit_swap_insn (insn, regstack, *src1);
1272 
1273   replace_reg (src1, FIRST_STACK_REG);
1274 
1275   if (STACK_REG_P (*src2))
1276     replace_reg (src2, get_hard_regnum (regstack, *src2));
1277 
1278   if (src1_note)
1279     {
1280       pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1281       replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1282     }
1283 
1284   /* If the second operand dies, handle that.  But if the operands are
1285      the same stack register, don't bother, because only one death is
1286      needed, and it was just handled.  */
1287 
1288   if (src2_note
1289       && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1290 	    && REGNO (*src1) == REGNO (*src2)))
1291     {
1292       /* As a special case, two regs may die in this insn if src2 is
1293 	 next to top of stack and the top of stack also dies.  Since
1294 	 we have already popped src1, "next to top of stack" is really
1295 	 at top (FIRST_STACK_REG) now.  */
1296 
1297       if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1298 	  && src1_note)
1299 	{
1300 	  pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1301 	  replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1302 	}
1303       else
1304 	{
1305 	  /* The 386 can only represent death of the first operand in
1306 	     the case handled above.  In all other cases, emit a separate
1307 	     pop and remove the death note from here.  */
1308 
1309 	  /* link_cc0_insns (insn); */
1310 
1311 	  remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1312 
1313 	  emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1314 			 EMIT_AFTER);
1315 	}
1316     }
1317 }
1318 
1319 /* Substitute new registers in PAT, which is part of INSN.  REGSTACK
1320    is the current register layout.  Return whether a control flow insn
1321    was deleted in the process.  */
1322 
1323 static bool
subst_stack_regs_pat(rtx insn,stack regstack,rtx pat)1324 subst_stack_regs_pat (rtx insn, stack regstack, rtx pat)
1325 {
1326   rtx *dest, *src;
1327   bool control_flow_insn_deleted = false;
1328 
1329   switch (GET_CODE (pat))
1330     {
1331     case USE:
1332       /* Deaths in USE insns can happen in non optimizing compilation.
1333 	 Handle them by popping the dying register.  */
1334       src = get_true_reg (&XEXP (pat, 0));
1335       if (STACK_REG_P (*src)
1336 	  && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1337 	{
1338 	  emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1339 	  return control_flow_insn_deleted;
1340 	}
1341       /* ??? Uninitialized USE should not happen.  */
1342       else
1343 	gcc_assert (get_hard_regnum (regstack, *src) != -1);
1344       break;
1345 
1346     case CLOBBER:
1347       {
1348 	rtx note;
1349 
1350 	dest = get_true_reg (&XEXP (pat, 0));
1351 	if (STACK_REG_P (*dest))
1352 	  {
1353 	    note = find_reg_note (insn, REG_DEAD, *dest);
1354 
1355 	    if (pat != PATTERN (insn))
1356 	      {
1357 		/* The fix_truncdi_1 pattern wants to be able to allocate
1358 		   its own scratch register.  It does this by clobbering
1359 		   an fp reg so that it is assured of an empty reg-stack
1360 		   register.  If the register is live, kill it now.
1361 		   Remove the DEAD/UNUSED note so we don't try to kill it
1362 		   later too.  */
1363 
1364 		if (note)
1365 		  emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1366 		else
1367 		  {
1368 		    note = find_reg_note (insn, REG_UNUSED, *dest);
1369 		    gcc_assert (note);
1370 		  }
1371 		remove_note (insn, note);
1372 		replace_reg (dest, FIRST_STACK_REG + 1);
1373 	      }
1374 	    else
1375 	      {
1376 		/* A top-level clobber with no REG_DEAD, and no hard-regnum
1377 		   indicates an uninitialized value.  Because reload removed
1378 		   all other clobbers, this must be due to a function
1379 		   returning without a value.  Load up a NaN.  */
1380 
1381 		if (!note)
1382 		  {
1383 		    rtx t = *dest;
1384 		    if (COMPLEX_MODE_P (GET_MODE (t)))
1385 		      {
1386 			rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
1387 			if (get_hard_regnum (regstack, u) == -1)
1388 			  {
1389 			    rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
1390 			    rtx insn2 = emit_insn_before (pat2, insn);
1391 			    control_flow_insn_deleted
1392 			      |= move_nan_for_stack_reg (insn2, regstack, u);
1393 			  }
1394 		      }
1395 		    if (get_hard_regnum (regstack, t) == -1)
1396 		      control_flow_insn_deleted
1397 			|= move_nan_for_stack_reg (insn, regstack, t);
1398 		  }
1399 	      }
1400 	  }
1401 	break;
1402       }
1403 
1404     case SET:
1405       {
1406 	rtx *src1 = (rtx *) 0, *src2;
1407 	rtx src1_note, src2_note;
1408 	rtx pat_src;
1409 
1410 	dest = get_true_reg (&SET_DEST (pat));
1411 	src  = get_true_reg (&SET_SRC (pat));
1412 	pat_src = SET_SRC (pat);
1413 
1414 	/* See if this is a `movM' pattern, and handle elsewhere if so.  */
1415 	if (STACK_REG_P (*src)
1416 	    || (STACK_REG_P (*dest)
1417 		&& (REG_P (*src) || MEM_P (*src)
1418 		    || GET_CODE (*src) == CONST_DOUBLE)))
1419 	  {
1420 	    control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1421 	    break;
1422 	  }
1423 
1424 	switch (GET_CODE (pat_src))
1425 	  {
1426 	  case COMPARE:
1427 	    compare_for_stack_reg (insn, regstack, pat_src);
1428 	    break;
1429 
1430 	  case CALL:
1431 	    {
1432 	      int count;
1433 	      for (count = hard_regno_nregs[REGNO (*dest)][GET_MODE (*dest)];
1434 		   --count >= 0;)
1435 		{
1436 		  regstack->reg[++regstack->top] = REGNO (*dest) + count;
1437 		  SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1438 		}
1439 	    }
1440 	    replace_reg (dest, FIRST_STACK_REG);
1441 	    break;
1442 
1443 	  case REG:
1444 	    /* This is a `tstM2' case.  */
1445 	    gcc_assert (*dest == cc0_rtx);
1446 	    src1 = src;
1447 
1448 	    /* Fall through.  */
1449 
1450 	  case FLOAT_TRUNCATE:
1451 	  case SQRT:
1452 	  case ABS:
1453 	  case NEG:
1454 	    /* These insns only operate on the top of the stack. DEST might
1455 	       be cc0_rtx if we're processing a tstM pattern. Also, it's
1456 	       possible that the tstM case results in a REG_DEAD note on the
1457 	       source.  */
1458 
1459 	    if (src1 == 0)
1460 	      src1 = get_true_reg (&XEXP (pat_src, 0));
1461 
1462 	    emit_swap_insn (insn, regstack, *src1);
1463 
1464 	    src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1465 
1466 	    if (STACK_REG_P (*dest))
1467 	      replace_reg (dest, FIRST_STACK_REG);
1468 
1469 	    if (src1_note)
1470 	      {
1471 		replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1472 		regstack->top--;
1473 		CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1474 	      }
1475 
1476 	    replace_reg (src1, FIRST_STACK_REG);
1477 	    break;
1478 
1479 	  case MINUS:
1480 	  case DIV:
1481 	    /* On i386, reversed forms of subM3 and divM3 exist for
1482 	       MODE_FLOAT, so the same code that works for addM3 and mulM3
1483 	       can be used.  */
1484 	  case MULT:
1485 	  case PLUS:
1486 	    /* These insns can accept the top of stack as a destination
1487 	       from a stack reg or mem, or can use the top of stack as a
1488 	       source and some other stack register (possibly top of stack)
1489 	       as a destination.  */
1490 
1491 	    src1 = get_true_reg (&XEXP (pat_src, 0));
1492 	    src2 = get_true_reg (&XEXP (pat_src, 1));
1493 
1494 	    /* We will fix any death note later.  */
1495 
1496 	    if (STACK_REG_P (*src1))
1497 	      src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1498 	    else
1499 	      src1_note = NULL_RTX;
1500 	    if (STACK_REG_P (*src2))
1501 	      src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1502 	    else
1503 	      src2_note = NULL_RTX;
1504 
1505 	    /* If either operand is not a stack register, then the dest
1506 	       must be top of stack.  */
1507 
1508 	    if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1509 	      emit_swap_insn (insn, regstack, *dest);
1510 	    else
1511 	      {
1512 		/* Both operands are REG.  If neither operand is already
1513 		   at the top of stack, choose to make the one that is the dest
1514 		   the new top of stack.  */
1515 
1516 		int src1_hard_regnum, src2_hard_regnum;
1517 
1518 		src1_hard_regnum = get_hard_regnum (regstack, *src1);
1519 		src2_hard_regnum = get_hard_regnum (regstack, *src2);
1520 		gcc_assert (src1_hard_regnum != -1);
1521 		gcc_assert (src2_hard_regnum != -1);
1522 
1523 		if (src1_hard_regnum != FIRST_STACK_REG
1524 		    && src2_hard_regnum != FIRST_STACK_REG)
1525 		  emit_swap_insn (insn, regstack, *dest);
1526 	      }
1527 
1528 	    if (STACK_REG_P (*src1))
1529 	      replace_reg (src1, get_hard_regnum (regstack, *src1));
1530 	    if (STACK_REG_P (*src2))
1531 	      replace_reg (src2, get_hard_regnum (regstack, *src2));
1532 
1533 	    if (src1_note)
1534 	      {
1535 		rtx src1_reg = XEXP (src1_note, 0);
1536 
1537 		/* If the register that dies is at the top of stack, then
1538 		   the destination is somewhere else - merely substitute it.
1539 		   But if the reg that dies is not at top of stack, then
1540 		   move the top of stack to the dead reg, as though we had
1541 		   done the insn and then a store-with-pop.  */
1542 
1543 		if (REGNO (src1_reg) == regstack->reg[regstack->top])
1544 		  {
1545 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1546 		    replace_reg (dest, get_hard_regnum (regstack, *dest));
1547 		  }
1548 		else
1549 		  {
1550 		    int regno = get_hard_regnum (regstack, src1_reg);
1551 
1552 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1553 		    replace_reg (dest, regno);
1554 
1555 		    regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1556 		      = regstack->reg[regstack->top];
1557 		  }
1558 
1559 		CLEAR_HARD_REG_BIT (regstack->reg_set,
1560 				    REGNO (XEXP (src1_note, 0)));
1561 		replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1562 		regstack->top--;
1563 	      }
1564 	    else if (src2_note)
1565 	      {
1566 		rtx src2_reg = XEXP (src2_note, 0);
1567 		if (REGNO (src2_reg) == regstack->reg[regstack->top])
1568 		  {
1569 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1570 		    replace_reg (dest, get_hard_regnum (regstack, *dest));
1571 		  }
1572 		else
1573 		  {
1574 		    int regno = get_hard_regnum (regstack, src2_reg);
1575 
1576 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1577 		    replace_reg (dest, regno);
1578 
1579 		    regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1580 		      = regstack->reg[regstack->top];
1581 		  }
1582 
1583 		CLEAR_HARD_REG_BIT (regstack->reg_set,
1584 				    REGNO (XEXP (src2_note, 0)));
1585 		replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1586 		regstack->top--;
1587 	      }
1588 	    else
1589 	      {
1590 		SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1591 		replace_reg (dest, get_hard_regnum (regstack, *dest));
1592 	      }
1593 
1594 	    /* Keep operand 1 matching with destination.  */
1595 	    if (COMMUTATIVE_ARITH_P (pat_src)
1596 		&& REG_P (*src1) && REG_P (*src2)
1597 		&& REGNO (*src1) != REGNO (*dest))
1598 	     {
1599 		int tmp = REGNO (*src1);
1600 		replace_reg (src1, REGNO (*src2));
1601 		replace_reg (src2, tmp);
1602 	     }
1603 	    break;
1604 
1605 	  case UNSPEC:
1606 	    switch (XINT (pat_src, 1))
1607 	      {
1608 	      case UNSPEC_FIST:
1609 
1610 	      case UNSPEC_FIST_FLOOR:
1611 	      case UNSPEC_FIST_CEIL:
1612 
1613 		/* These insns only operate on the top of the stack.  */
1614 
1615 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1616 		emit_swap_insn (insn, regstack, *src1);
1617 
1618 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1619 
1620 		if (STACK_REG_P (*dest))
1621 		  replace_reg (dest, FIRST_STACK_REG);
1622 
1623 		if (src1_note)
1624 		  {
1625 		    replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1626 		    regstack->top--;
1627 		    CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1628 		  }
1629 
1630 		replace_reg (src1, FIRST_STACK_REG);
1631 		break;
1632 
1633 	      case UNSPEC_SIN:
1634 	      case UNSPEC_COS:
1635 	      case UNSPEC_FRNDINT:
1636 	      case UNSPEC_F2XM1:
1637 
1638 	      case UNSPEC_FRNDINT_FLOOR:
1639 	      case UNSPEC_FRNDINT_CEIL:
1640 	      case UNSPEC_FRNDINT_TRUNC:
1641 	      case UNSPEC_FRNDINT_MASK_PM:
1642 
1643 		/* These insns only operate on the top of the stack.  */
1644 
1645 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1646 
1647 		emit_swap_insn (insn, regstack, *src1);
1648 
1649 		/* Input should never die, it is
1650 		   replaced with output.  */
1651 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1652 		gcc_assert (!src1_note);
1653 
1654 		if (STACK_REG_P (*dest))
1655 		  replace_reg (dest, FIRST_STACK_REG);
1656 
1657 		replace_reg (src1, FIRST_STACK_REG);
1658 		break;
1659 
1660 	      case UNSPEC_FPATAN:
1661 	      case UNSPEC_FYL2X:
1662 	      case UNSPEC_FYL2XP1:
1663 		/* These insns operate on the top two stack slots.  */
1664 
1665 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1666 		src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1667 
1668 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1669 		src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1670 
1671 		swap_to_top (insn, regstack, *src1, *src2);
1672 
1673 		replace_reg (src1, FIRST_STACK_REG);
1674 		replace_reg (src2, FIRST_STACK_REG + 1);
1675 
1676 		if (src1_note)
1677 		  replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1678 		if (src2_note)
1679 		  replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1680 
1681 		/* Pop both input operands from the stack.  */
1682 		CLEAR_HARD_REG_BIT (regstack->reg_set,
1683 				    regstack->reg[regstack->top]);
1684 		CLEAR_HARD_REG_BIT (regstack->reg_set,
1685 				    regstack->reg[regstack->top - 1]);
1686 		regstack->top -= 2;
1687 
1688 		/* Push the result back onto the stack.  */
1689 		regstack->reg[++regstack->top] = REGNO (*dest);
1690 		SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1691 		replace_reg (dest, FIRST_STACK_REG);
1692 		break;
1693 
1694 	      case UNSPEC_FSCALE_FRACT:
1695 	      case UNSPEC_FPREM_F:
1696 	      case UNSPEC_FPREM1_F:
1697 		/* These insns operate on the top two stack slots.
1698 		   first part of double input, double output insn.  */
1699 
1700 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1701 		src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1702 
1703 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1704 		src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1705 
1706 		/* Inputs should never die, they are
1707 		   replaced with outputs.  */
1708 		gcc_assert (!src1_note);
1709 		gcc_assert (!src2_note);
1710 
1711 		swap_to_top (insn, regstack, *src1, *src2);
1712 
1713 		/* Push the result back onto stack. Empty stack slot
1714 		   will be filled in second part of insn.  */
1715 		if (STACK_REG_P (*dest)) {
1716 		  regstack->reg[regstack->top] = REGNO (*dest);
1717 		  SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1718 		  replace_reg (dest, FIRST_STACK_REG);
1719 		}
1720 
1721 		replace_reg (src1, FIRST_STACK_REG);
1722 		replace_reg (src2, FIRST_STACK_REG + 1);
1723 		break;
1724 
1725 	      case UNSPEC_FSCALE_EXP:
1726 	      case UNSPEC_FPREM_U:
1727 	      case UNSPEC_FPREM1_U:
1728 		/* These insns operate on the top two stack slots./
1729 		   second part of double input, double output insn.  */
1730 
1731 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1732 		src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1733 
1734 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1735 		src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1736 
1737 		/* Inputs should never die, they are
1738 		   replaced with outputs.  */
1739 		gcc_assert (!src1_note);
1740 		gcc_assert (!src2_note);
1741 
1742 		swap_to_top (insn, regstack, *src1, *src2);
1743 
1744 		/* Push the result back onto stack. Fill empty slot from
1745 		   first part of insn and fix top of stack pointer.  */
1746 		if (STACK_REG_P (*dest)) {
1747 		  regstack->reg[regstack->top - 1] = REGNO (*dest);
1748 		  SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1749 		  replace_reg (dest, FIRST_STACK_REG + 1);
1750 		}
1751 
1752 		replace_reg (src1, FIRST_STACK_REG);
1753 		replace_reg (src2, FIRST_STACK_REG + 1);
1754 		break;
1755 
1756 	      case UNSPEC_SINCOS_COS:
1757 	      case UNSPEC_TAN_ONE:
1758 	      case UNSPEC_XTRACT_FRACT:
1759 		/* These insns operate on the top two stack slots,
1760 		   first part of one input, double output insn.  */
1761 
1762 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1763 
1764 		emit_swap_insn (insn, regstack, *src1);
1765 
1766 		/* Input should never die, it is
1767 		   replaced with output.  */
1768 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1769 		gcc_assert (!src1_note);
1770 
1771 		/* Push the result back onto stack. Empty stack slot
1772 		   will be filled in second part of insn.  */
1773 		if (STACK_REG_P (*dest)) {
1774 		  regstack->reg[regstack->top + 1] = REGNO (*dest);
1775 		  SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1776 		  replace_reg (dest, FIRST_STACK_REG);
1777 		}
1778 
1779 		replace_reg (src1, FIRST_STACK_REG);
1780 		break;
1781 
1782 	      case UNSPEC_SINCOS_SIN:
1783 	      case UNSPEC_TAN_TAN:
1784 	      case UNSPEC_XTRACT_EXP:
1785 		/* These insns operate on the top two stack slots,
1786 		   second part of one input, double output insn.  */
1787 
1788 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1789 
1790 		emit_swap_insn (insn, regstack, *src1);
1791 
1792 		/* Input should never die, it is
1793 		   replaced with output.  */
1794 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1795 		gcc_assert (!src1_note);
1796 
1797 		/* Push the result back onto stack. Fill empty slot from
1798 		   first part of insn and fix top of stack pointer.  */
1799 		if (STACK_REG_P (*dest)) {
1800 		  regstack->reg[regstack->top] = REGNO (*dest);
1801 		  SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1802 		  replace_reg (dest, FIRST_STACK_REG + 1);
1803 
1804 		  regstack->top++;
1805 		}
1806 
1807 		replace_reg (src1, FIRST_STACK_REG);
1808 		break;
1809 
1810 	      case UNSPEC_SAHF:
1811 		/* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1812 		   The combination matches the PPRO fcomi instruction.  */
1813 
1814 		pat_src = XVECEXP (pat_src, 0, 0);
1815 		gcc_assert (GET_CODE (pat_src) == UNSPEC);
1816 		gcc_assert (XINT (pat_src, 1) == UNSPEC_FNSTSW);
1817 		/* Fall through.  */
1818 
1819 	      case UNSPEC_FNSTSW:
1820 		/* Combined fcomp+fnstsw generated for doing well with
1821 		   CSE.  When optimizing this would have been broken
1822 		   up before now.  */
1823 
1824 		pat_src = XVECEXP (pat_src, 0, 0);
1825 		gcc_assert (GET_CODE (pat_src) == COMPARE);
1826 
1827 		compare_for_stack_reg (insn, regstack, pat_src);
1828 		break;
1829 
1830 	      default:
1831 		gcc_unreachable ();
1832 	      }
1833 	    break;
1834 
1835 	  case IF_THEN_ELSE:
1836 	    /* This insn requires the top of stack to be the destination.  */
1837 
1838 	    src1 = get_true_reg (&XEXP (pat_src, 1));
1839 	    src2 = get_true_reg (&XEXP (pat_src, 2));
1840 
1841 	    src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1842 	    src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1843 
1844 	    /* If the comparison operator is an FP comparison operator,
1845 	       it is handled correctly by compare_for_stack_reg () who
1846 	       will move the destination to the top of stack. But if the
1847 	       comparison operator is not an FP comparison operator, we
1848 	       have to handle it here.  */
1849 	    if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1850 		&& REGNO (*dest) != regstack->reg[regstack->top])
1851 	      {
1852 		/* In case one of operands is the top of stack and the operands
1853 		   dies, it is safe to make it the destination operand by
1854 		   reversing the direction of cmove and avoid fxch.  */
1855 		if ((REGNO (*src1) == regstack->reg[regstack->top]
1856 		     && src1_note)
1857 		    || (REGNO (*src2) == regstack->reg[regstack->top]
1858 			&& src2_note))
1859 		  {
1860 		    int idx1 = (get_hard_regnum (regstack, *src1)
1861 				- FIRST_STACK_REG);
1862 		    int idx2 = (get_hard_regnum (regstack, *src2)
1863 				- FIRST_STACK_REG);
1864 
1865 		    /* Make reg-stack believe that the operands are already
1866 		       swapped on the stack */
1867 		    regstack->reg[regstack->top - idx1] = REGNO (*src2);
1868 		    regstack->reg[regstack->top - idx2] = REGNO (*src1);
1869 
1870 		    /* Reverse condition to compensate the operand swap.
1871 		       i386 do have comparison always reversible.  */
1872 		    PUT_CODE (XEXP (pat_src, 0),
1873 			      reversed_comparison_code (XEXP (pat_src, 0), insn));
1874 		  }
1875 		else
1876 	          emit_swap_insn (insn, regstack, *dest);
1877 	      }
1878 
1879 	    {
1880 	      rtx src_note [3];
1881 	      int i;
1882 
1883 	      src_note[0] = 0;
1884 	      src_note[1] = src1_note;
1885 	      src_note[2] = src2_note;
1886 
1887 	      if (STACK_REG_P (*src1))
1888 		replace_reg (src1, get_hard_regnum (regstack, *src1));
1889 	      if (STACK_REG_P (*src2))
1890 		replace_reg (src2, get_hard_regnum (regstack, *src2));
1891 
1892 	      for (i = 1; i <= 2; i++)
1893 		if (src_note [i])
1894 		  {
1895 		    int regno = REGNO (XEXP (src_note[i], 0));
1896 
1897 		    /* If the register that dies is not at the top of
1898 		       stack, then move the top of stack to the dead reg.
1899 		       Top of stack should never die, as it is the
1900 		       destination.  */
1901 		    gcc_assert (regno != regstack->reg[regstack->top]);
1902 		    remove_regno_note (insn, REG_DEAD, regno);
1903 		    emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1904 				    EMIT_AFTER);
1905 		  }
1906 	    }
1907 
1908 	    /* Make dest the top of stack.  Add dest to regstack if
1909 	       not present.  */
1910 	    if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1911 	      regstack->reg[++regstack->top] = REGNO (*dest);
1912 	    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1913 	    replace_reg (dest, FIRST_STACK_REG);
1914 	    break;
1915 
1916 	  default:
1917 	    gcc_unreachable ();
1918 	  }
1919 	break;
1920       }
1921 
1922     default:
1923       break;
1924     }
1925 
1926   return control_flow_insn_deleted;
1927 }
1928 
1929 /* Substitute hard regnums for any stack regs in INSN, which has
1930    N_INPUTS inputs and N_OUTPUTS outputs.  REGSTACK is the stack info
1931    before the insn, and is updated with changes made here.
1932 
1933    There are several requirements and assumptions about the use of
1934    stack-like regs in asm statements.  These rules are enforced by
1935    record_asm_stack_regs; see comments there for details.  Any
1936    asm_operands left in the RTL at this point may be assume to meet the
1937    requirements, since record_asm_stack_regs removes any problem asm.  */
1938 
1939 static void
subst_asm_stack_regs(rtx insn,stack regstack)1940 subst_asm_stack_regs (rtx insn, stack regstack)
1941 {
1942   rtx body = PATTERN (insn);
1943   int alt;
1944 
1945   rtx *note_reg;		/* Array of note contents */
1946   rtx **note_loc;		/* Address of REG field of each note */
1947   enum reg_note *note_kind;	/* The type of each note */
1948 
1949   rtx *clobber_reg = 0;
1950   rtx **clobber_loc = 0;
1951 
1952   struct stack_def temp_stack;
1953   int n_notes;
1954   int n_clobbers;
1955   rtx note;
1956   int i;
1957   int n_inputs, n_outputs;
1958 
1959   if (! check_asm_stack_operands (insn))
1960     return;
1961 
1962   /* Find out what the constraints required.  If no constraint
1963      alternative matches, that is a compiler bug: we should have caught
1964      such an insn in check_asm_stack_operands.  */
1965   extract_insn (insn);
1966   constrain_operands (1);
1967   alt = which_alternative;
1968 
1969   preprocess_constraints ();
1970 
1971   n_inputs = get_asm_operand_n_inputs (body);
1972   n_outputs = recog_data.n_operands - n_inputs;
1973 
1974   gcc_assert (alt >= 0);
1975 
1976   /* Strip SUBREGs here to make the following code simpler.  */
1977   for (i = 0; i < recog_data.n_operands; i++)
1978     if (GET_CODE (recog_data.operand[i]) == SUBREG
1979 	&& REG_P (SUBREG_REG (recog_data.operand[i])))
1980       {
1981 	recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
1982 	recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1983       }
1984 
1985   /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND.  */
1986 
1987   for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
1988     i++;
1989 
1990   note_reg = alloca (i * sizeof (rtx));
1991   note_loc = alloca (i * sizeof (rtx *));
1992   note_kind = alloca (i * sizeof (enum reg_note));
1993 
1994   n_notes = 0;
1995   for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1996     {
1997       rtx reg = XEXP (note, 0);
1998       rtx *loc = & XEXP (note, 0);
1999 
2000       if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2001 	{
2002 	  loc = & SUBREG_REG (reg);
2003 	  reg = SUBREG_REG (reg);
2004 	}
2005 
2006       if (STACK_REG_P (reg)
2007 	  && (REG_NOTE_KIND (note) == REG_DEAD
2008 	      || REG_NOTE_KIND (note) == REG_UNUSED))
2009 	{
2010 	  note_reg[n_notes] = reg;
2011 	  note_loc[n_notes] = loc;
2012 	  note_kind[n_notes] = REG_NOTE_KIND (note);
2013 	  n_notes++;
2014 	}
2015     }
2016 
2017   /* Set up CLOBBER_REG and CLOBBER_LOC.  */
2018 
2019   n_clobbers = 0;
2020 
2021   if (GET_CODE (body) == PARALLEL)
2022     {
2023       clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
2024       clobber_loc = alloca (XVECLEN (body, 0) * sizeof (rtx *));
2025 
2026       for (i = 0; i < XVECLEN (body, 0); i++)
2027 	if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2028 	  {
2029 	    rtx clobber = XVECEXP (body, 0, i);
2030 	    rtx reg = XEXP (clobber, 0);
2031 	    rtx *loc = & XEXP (clobber, 0);
2032 
2033 	    if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2034 	      {
2035 		loc = & SUBREG_REG (reg);
2036 		reg = SUBREG_REG (reg);
2037 	      }
2038 
2039 	    if (STACK_REG_P (reg))
2040 	      {
2041 		clobber_reg[n_clobbers] = reg;
2042 		clobber_loc[n_clobbers] = loc;
2043 		n_clobbers++;
2044 	      }
2045 	  }
2046     }
2047 
2048   temp_stack = *regstack;
2049 
2050   /* Put the input regs into the desired place in TEMP_STACK.  */
2051 
2052   for (i = n_outputs; i < n_outputs + n_inputs; i++)
2053     if (STACK_REG_P (recog_data.operand[i])
2054 	&& reg_class_subset_p (recog_op_alt[i][alt].cl,
2055 			       FLOAT_REGS)
2056 	&& recog_op_alt[i][alt].cl != FLOAT_REGS)
2057       {
2058 	/* If an operand needs to be in a particular reg in
2059 	   FLOAT_REGS, the constraint was either 't' or 'u'.  Since
2060 	   these constraints are for single register classes, and
2061 	   reload guaranteed that operand[i] is already in that class,
2062 	   we can just use REGNO (recog_data.operand[i]) to know which
2063 	   actual reg this operand needs to be in.  */
2064 
2065 	int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2066 
2067 	gcc_assert (regno >= 0);
2068 
2069 	if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2070 	  {
2071 	    /* recog_data.operand[i] is not in the right place.  Find
2072 	       it and swap it with whatever is already in I's place.
2073 	       K is where recog_data.operand[i] is now.  J is where it
2074 	       should be.  */
2075 	    int j, k, temp;
2076 
2077 	    k = temp_stack.top - (regno - FIRST_STACK_REG);
2078 	    j = (temp_stack.top
2079 		 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2080 
2081 	    temp = temp_stack.reg[k];
2082 	    temp_stack.reg[k] = temp_stack.reg[j];
2083 	    temp_stack.reg[j] = temp;
2084 	  }
2085       }
2086 
2087   /* Emit insns before INSN to make sure the reg-stack is in the right
2088      order.  */
2089 
2090   change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2091 
2092   /* Make the needed input register substitutions.  Do death notes and
2093      clobbers too, because these are for inputs, not outputs.  */
2094 
2095   for (i = n_outputs; i < n_outputs + n_inputs; i++)
2096     if (STACK_REG_P (recog_data.operand[i]))
2097       {
2098 	int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2099 
2100 	gcc_assert (regnum >= 0);
2101 
2102 	replace_reg (recog_data.operand_loc[i], regnum);
2103       }
2104 
2105   for (i = 0; i < n_notes; i++)
2106     if (note_kind[i] == REG_DEAD)
2107       {
2108 	int regnum = get_hard_regnum (regstack, note_reg[i]);
2109 
2110 	gcc_assert (regnum >= 0);
2111 
2112 	replace_reg (note_loc[i], regnum);
2113       }
2114 
2115   for (i = 0; i < n_clobbers; i++)
2116     {
2117       /* It's OK for a CLOBBER to reference a reg that is not live.
2118          Don't try to replace it in that case.  */
2119       int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2120 
2121       if (regnum >= 0)
2122 	{
2123 	  /* Sigh - clobbers always have QImode.  But replace_reg knows
2124 	     that these regs can't be MODE_INT and will assert.  Just put
2125 	     the right reg there without calling replace_reg.  */
2126 
2127 	  *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2128 	}
2129     }
2130 
2131   /* Now remove from REGSTACK any inputs that the asm implicitly popped.  */
2132 
2133   for (i = n_outputs; i < n_outputs + n_inputs; i++)
2134     if (STACK_REG_P (recog_data.operand[i]))
2135       {
2136 	/* An input reg is implicitly popped if it is tied to an
2137 	   output, or if there is a CLOBBER for it.  */
2138 	int j;
2139 
2140 	for (j = 0; j < n_clobbers; j++)
2141 	  if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2142 	    break;
2143 
2144 	if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
2145 	  {
2146 	    /* recog_data.operand[i] might not be at the top of stack.
2147 	       But that's OK, because all we need to do is pop the
2148 	       right number of regs off of the top of the reg-stack.
2149 	       record_asm_stack_regs guaranteed that all implicitly
2150 	       popped regs were grouped at the top of the reg-stack.  */
2151 
2152 	    CLEAR_HARD_REG_BIT (regstack->reg_set,
2153 				regstack->reg[regstack->top]);
2154 	    regstack->top--;
2155 	  }
2156       }
2157 
2158   /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2159      Note that there isn't any need to substitute register numbers.
2160      ???  Explain why this is true.  */
2161 
2162   for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2163     {
2164       /* See if there is an output for this hard reg.  */
2165       int j;
2166 
2167       for (j = 0; j < n_outputs; j++)
2168 	if (STACK_REG_P (recog_data.operand[j])
2169 	    && REGNO (recog_data.operand[j]) == (unsigned) i)
2170 	  {
2171 	    regstack->reg[++regstack->top] = i;
2172 	    SET_HARD_REG_BIT (regstack->reg_set, i);
2173 	    break;
2174 	  }
2175     }
2176 
2177   /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2178      input that the asm didn't implicitly pop.  If the asm didn't
2179      implicitly pop an input reg, that reg will still be live.
2180 
2181      Note that we can't use find_regno_note here: the register numbers
2182      in the death notes have already been substituted.  */
2183 
2184   for (i = 0; i < n_outputs; i++)
2185     if (STACK_REG_P (recog_data.operand[i]))
2186       {
2187 	int j;
2188 
2189 	for (j = 0; j < n_notes; j++)
2190 	  if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2191 	      && note_kind[j] == REG_UNUSED)
2192 	    {
2193 	      insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2194 				    EMIT_AFTER);
2195 	      break;
2196 	    }
2197       }
2198 
2199   for (i = n_outputs; i < n_outputs + n_inputs; i++)
2200     if (STACK_REG_P (recog_data.operand[i]))
2201       {
2202 	int j;
2203 
2204 	for (j = 0; j < n_notes; j++)
2205 	  if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2206 	      && note_kind[j] == REG_DEAD
2207 	      && TEST_HARD_REG_BIT (regstack->reg_set,
2208 				    REGNO (recog_data.operand[i])))
2209 	    {
2210 	      insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2211 				    EMIT_AFTER);
2212 	      break;
2213 	    }
2214       }
2215 }
2216 
2217 /* Substitute stack hard reg numbers for stack virtual registers in
2218    INSN.  Non-stack register numbers are not changed.  REGSTACK is the
2219    current stack content.  Insns may be emitted as needed to arrange the
2220    stack for the 387 based on the contents of the insn.  Return whether
2221    a control flow insn was deleted in the process.  */
2222 
2223 static bool
subst_stack_regs(rtx insn,stack regstack)2224 subst_stack_regs (rtx insn, stack regstack)
2225 {
2226   rtx *note_link, note;
2227   bool control_flow_insn_deleted = false;
2228   int i;
2229 
2230   if (CALL_P (insn))
2231     {
2232       int top = regstack->top;
2233 
2234       /* If there are any floating point parameters to be passed in
2235 	 registers for this call, make sure they are in the right
2236 	 order.  */
2237 
2238       if (top >= 0)
2239 	{
2240 	  straighten_stack (insn, regstack);
2241 
2242 	  /* Now mark the arguments as dead after the call.  */
2243 
2244 	  while (regstack->top >= 0)
2245 	    {
2246 	      CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2247 	      regstack->top--;
2248 	    }
2249 	}
2250     }
2251 
2252   /* Do the actual substitution if any stack regs are mentioned.
2253      Since we only record whether entire insn mentions stack regs, and
2254      subst_stack_regs_pat only works for patterns that contain stack regs,
2255      we must check each pattern in a parallel here.  A call_value_pop could
2256      fail otherwise.  */
2257 
2258   if (stack_regs_mentioned (insn))
2259     {
2260       int n_operands = asm_noperands (PATTERN (insn));
2261       if (n_operands >= 0)
2262 	{
2263 	  /* This insn is an `asm' with operands.  Decode the operands,
2264 	     decide how many are inputs, and do register substitution.
2265 	     Any REG_UNUSED notes will be handled by subst_asm_stack_regs.  */
2266 
2267 	  subst_asm_stack_regs (insn, regstack);
2268 	  return control_flow_insn_deleted;
2269 	}
2270 
2271       if (GET_CODE (PATTERN (insn)) == PARALLEL)
2272 	for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2273 	  {
2274 	    if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2275 	      {
2276 	        if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2277 	           XVECEXP (PATTERN (insn), 0, i)
2278 		     = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2279 		control_flow_insn_deleted
2280 		  |= subst_stack_regs_pat (insn, regstack,
2281 					   XVECEXP (PATTERN (insn), 0, i));
2282 	      }
2283 	  }
2284       else
2285 	control_flow_insn_deleted
2286 	  |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2287     }
2288 
2289   /* subst_stack_regs_pat may have deleted a no-op insn.  If so, any
2290      REG_UNUSED will already have been dealt with, so just return.  */
2291 
2292   if (NOTE_P (insn) || INSN_DELETED_P (insn))
2293     return control_flow_insn_deleted;
2294 
2295   /* If this a noreturn call, we can't insert pop insns after it.
2296      Instead, reset the stack state to empty.  */
2297   if (CALL_P (insn)
2298       && find_reg_note (insn, REG_NORETURN, NULL))
2299     {
2300       regstack->top = -1;
2301       CLEAR_HARD_REG_SET (regstack->reg_set);
2302       return control_flow_insn_deleted;
2303     }
2304 
2305   /* If there is a REG_UNUSED note on a stack register on this insn,
2306      the indicated reg must be popped.  The REG_UNUSED note is removed,
2307      since the form of the newly emitted pop insn references the reg,
2308      making it no longer `unset'.  */
2309 
2310   note_link = &REG_NOTES (insn);
2311   for (note = *note_link; note; note = XEXP (note, 1))
2312     if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2313       {
2314 	*note_link = XEXP (note, 1);
2315 	insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2316       }
2317     else
2318       note_link = &XEXP (note, 1);
2319 
2320   return control_flow_insn_deleted;
2321 }
2322 
2323 /* Change the organization of the stack so that it fits a new basic
2324    block.  Some registers might have to be popped, but there can never be
2325    a register live in the new block that is not now live.
2326 
2327    Insert any needed insns before or after INSN, as indicated by
2328    WHERE.  OLD is the original stack layout, and NEW is the desired
2329    form.  OLD is updated to reflect the code emitted, i.e., it will be
2330    the same as NEW upon return.
2331 
2332    This function will not preserve block_end[].  But that information
2333    is no longer needed once this has executed.  */
2334 
2335 static void
change_stack(rtx insn,stack old,stack new,enum emit_where where)2336 change_stack (rtx insn, stack old, stack new, enum emit_where where)
2337 {
2338   int reg;
2339   int update_end = 0;
2340 
2341   /* Stack adjustments for the first insn in a block update the
2342      current_block's stack_in instead of inserting insns directly.
2343      compensate_edges will add the necessary code later.  */
2344   if (current_block
2345       && starting_stack_p
2346       && where == EMIT_BEFORE)
2347     {
2348       BLOCK_INFO (current_block)->stack_in = *new;
2349       starting_stack_p = false;
2350       *old = *new;
2351       return;
2352     }
2353 
2354   /* We will be inserting new insns "backwards".  If we are to insert
2355      after INSN, find the next insn, and insert before it.  */
2356 
2357   if (where == EMIT_AFTER)
2358     {
2359       if (current_block && BB_END (current_block) == insn)
2360 	update_end = 1;
2361       insn = NEXT_INSN (insn);
2362     }
2363 
2364   /* Pop any registers that are not needed in the new block.  */
2365 
2366   /* If the destination block's stack already has a specified layout
2367      and contains two or more registers, use a more intelligent algorithm
2368      to pop registers that minimizes the number number of fxchs below.  */
2369   if (new->top > 0)
2370     {
2371       bool slots[REG_STACK_SIZE];
2372       int pops[REG_STACK_SIZE];
2373       int next, dest, topsrc;
2374 
2375       /* First pass to determine the free slots.  */
2376       for (reg = 0; reg <= new->top; reg++)
2377 	slots[reg] = TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]);
2378 
2379       /* Second pass to allocate preferred slots.  */
2380       topsrc = -1;
2381       for (reg = old->top; reg > new->top; reg--)
2382 	if (TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
2383 	  {
2384 	    dest = -1;
2385 	    for (next = 0; next <= new->top; next++)
2386 	      if (!slots[next] && new->reg[next] == old->reg[reg])
2387 		{
2388 		  /* If this is a preference for the new top of stack, record
2389 		     the fact by remembering it's old->reg in topsrc.  */
2390                   if (next == new->top)
2391 		    topsrc = reg;
2392 		  slots[next] = true;
2393 		  dest = next;
2394 		  break;
2395 		}
2396 	    pops[reg] = dest;
2397 	  }
2398 	else
2399 	  pops[reg] = reg;
2400 
2401       /* Intentionally, avoid placing the top of stack in it's correct
2402 	 location, if we still need to permute the stack below and we
2403 	 can usefully place it somewhere else.  This is the case if any
2404 	 slot is still unallocated, in which case we should place the
2405 	 top of stack there.  */
2406       if (topsrc != -1)
2407 	for (reg = 0; reg < new->top; reg++)
2408 	  if (!slots[reg])
2409 	    {
2410 	      pops[topsrc] = reg;
2411 	      slots[new->top] = false;
2412 	      slots[reg] = true;
2413 	      break;
2414 	    }
2415 
2416       /* Third pass allocates remaining slots and emits pop insns.  */
2417       next = new->top;
2418       for (reg = old->top; reg > new->top; reg--)
2419 	{
2420 	  dest = pops[reg];
2421 	  if (dest == -1)
2422 	    {
2423 	      /* Find next free slot.  */
2424 	      while (slots[next])
2425 		next--;
2426 	      dest = next--;
2427 	    }
2428 	  emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], DFmode),
2429 			 EMIT_BEFORE);
2430 	}
2431     }
2432   else
2433     {
2434       /* The following loop attempts to maximize the number of times we
2435 	 pop the top of the stack, as this permits the use of the faster
2436 	 ffreep instruction on platforms that support it.  */
2437       int live, next;
2438 
2439       live = 0;
2440       for (reg = 0; reg <= old->top; reg++)
2441         if (TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
2442           live++;
2443 
2444       next = live;
2445       while (old->top >= live)
2446         if (TEST_HARD_REG_BIT (new->reg_set, old->reg[old->top]))
2447 	  {
2448 	    while (TEST_HARD_REG_BIT (new->reg_set, old->reg[next]))
2449 	      next--;
2450 	    emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], DFmode),
2451 			   EMIT_BEFORE);
2452 	  }
2453 	else
2454 	  emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], DFmode),
2455 			 EMIT_BEFORE);
2456     }
2457 
2458   if (new->top == -2)
2459     {
2460       /* If the new block has never been processed, then it can inherit
2461 	 the old stack order.  */
2462 
2463       new->top = old->top;
2464       memcpy (new->reg, old->reg, sizeof (new->reg));
2465     }
2466   else
2467     {
2468       /* This block has been entered before, and we must match the
2469 	 previously selected stack order.  */
2470 
2471       /* By now, the only difference should be the order of the stack,
2472 	 not their depth or liveliness.  */
2473 
2474       GO_IF_HARD_REG_EQUAL (old->reg_set, new->reg_set, win);
2475       gcc_unreachable ();
2476     win:
2477       gcc_assert (old->top == new->top);
2478 
2479       /* If the stack is not empty (new->top != -1), loop here emitting
2480 	 swaps until the stack is correct.
2481 
2482 	 The worst case number of swaps emitted is N + 2, where N is the
2483 	 depth of the stack.  In some cases, the reg at the top of
2484 	 stack may be correct, but swapped anyway in order to fix
2485 	 other regs.  But since we never swap any other reg away from
2486 	 its correct slot, this algorithm will converge.  */
2487 
2488       if (new->top != -1)
2489 	do
2490 	  {
2491 	    /* Swap the reg at top of stack into the position it is
2492 	       supposed to be in, until the correct top of stack appears.  */
2493 
2494 	    while (old->reg[old->top] != new->reg[new->top])
2495 	      {
2496 		for (reg = new->top; reg >= 0; reg--)
2497 		  if (new->reg[reg] == old->reg[old->top])
2498 		    break;
2499 
2500 		gcc_assert (reg != -1);
2501 
2502 		emit_swap_insn (insn, old,
2503 				FP_MODE_REG (old->reg[reg], DFmode));
2504 	      }
2505 
2506 	    /* See if any regs remain incorrect.  If so, bring an
2507 	     incorrect reg to the top of stack, and let the while loop
2508 	     above fix it.  */
2509 
2510 	    for (reg = new->top; reg >= 0; reg--)
2511 	      if (new->reg[reg] != old->reg[reg])
2512 		{
2513 		  emit_swap_insn (insn, old,
2514 				  FP_MODE_REG (old->reg[reg], DFmode));
2515 		  break;
2516 		}
2517 	  } while (reg >= 0);
2518 
2519       /* At this point there must be no differences.  */
2520 
2521       for (reg = old->top; reg >= 0; reg--)
2522 	gcc_assert (old->reg[reg] == new->reg[reg]);
2523     }
2524 
2525   if (update_end)
2526     BB_END (current_block) = PREV_INSN (insn);
2527 }
2528 
2529 /* Print stack configuration.  */
2530 
2531 static void
print_stack(FILE * file,stack s)2532 print_stack (FILE *file, stack s)
2533 {
2534   if (! file)
2535     return;
2536 
2537   if (s->top == -2)
2538     fprintf (file, "uninitialized\n");
2539   else if (s->top == -1)
2540     fprintf (file, "empty\n");
2541   else
2542     {
2543       int i;
2544       fputs ("[ ", file);
2545       for (i = 0; i <= s->top; ++i)
2546 	fprintf (file, "%d ", s->reg[i]);
2547       fputs ("]\n", file);
2548     }
2549 }
2550 
2551 /* This function was doing life analysis.  We now let the regular live
2552    code do it's job, so we only need to check some extra invariants
2553    that reg-stack expects.  Primary among these being that all registers
2554    are initialized before use.
2555 
2556    The function returns true when code was emitted to CFG edges and
2557    commit_edge_insertions needs to be called.  */
2558 
2559 static int
convert_regs_entry(void)2560 convert_regs_entry (void)
2561 {
2562   int inserted = 0;
2563   edge e;
2564   edge_iterator ei;
2565 
2566   /* Load something into each stack register live at function entry.
2567      Such live registers can be caused by uninitialized variables or
2568      functions not returning values on all paths.  In order to keep
2569      the push/pop code happy, and to not scrog the register stack, we
2570      must put something in these registers.  Use a QNaN.
2571 
2572      Note that we are inserting converted code here.  This code is
2573      never seen by the convert_regs pass.  */
2574 
2575   FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2576     {
2577       basic_block block = e->dest;
2578       block_info bi = BLOCK_INFO (block);
2579       int reg, top = -1;
2580 
2581       for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2582 	if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2583 	  {
2584 	    rtx init;
2585 
2586 	    bi->stack_in.reg[++top] = reg;
2587 
2588 	    init = gen_rtx_SET (VOIDmode,
2589 				FP_MODE_REG (FIRST_STACK_REG, SFmode),
2590 				not_a_num);
2591 	    insert_insn_on_edge (init, e);
2592 	    inserted = 1;
2593 	  }
2594 
2595       bi->stack_in.top = top;
2596     }
2597 
2598   return inserted;
2599 }
2600 
2601 /* Construct the desired stack for function exit.  This will either
2602    be `empty', or the function return value at top-of-stack.  */
2603 
2604 static void
convert_regs_exit(void)2605 convert_regs_exit (void)
2606 {
2607   int value_reg_low, value_reg_high;
2608   stack output_stack;
2609   rtx retvalue;
2610 
2611   retvalue = stack_result (current_function_decl);
2612   value_reg_low = value_reg_high = -1;
2613   if (retvalue)
2614     {
2615       value_reg_low = REGNO (retvalue);
2616       value_reg_high = value_reg_low
2617 	+ hard_regno_nregs[value_reg_low][GET_MODE (retvalue)] - 1;
2618     }
2619 
2620   output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2621   if (value_reg_low == -1)
2622     output_stack->top = -1;
2623   else
2624     {
2625       int reg;
2626 
2627       output_stack->top = value_reg_high - value_reg_low;
2628       for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2629 	{
2630 	  output_stack->reg[value_reg_high - reg] = reg;
2631 	  SET_HARD_REG_BIT (output_stack->reg_set, reg);
2632 	}
2633     }
2634 }
2635 
2636 /* Copy the stack info from the end of edge E's source block to the
2637    start of E's destination block.  */
2638 
2639 static void
propagate_stack(edge e)2640 propagate_stack (edge e)
2641 {
2642   stack src_stack = &BLOCK_INFO (e->src)->stack_out;
2643   stack dest_stack = &BLOCK_INFO (e->dest)->stack_in;
2644   int reg;
2645 
2646   /* Preserve the order of the original stack, but check whether
2647      any pops are needed.  */
2648   dest_stack->top = -1;
2649   for (reg = 0; reg <= src_stack->top; ++reg)
2650     if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
2651       dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
2652 }
2653 
2654 
2655 /* Adjust the stack of edge E's source block on exit to match the stack
2656    of it's target block upon input.  The stack layouts of both blocks
2657    should have been defined by now.  */
2658 
2659 static bool
compensate_edge(edge e)2660 compensate_edge (edge e)
2661 {
2662   basic_block source = e->src, target = e->dest;
2663   stack target_stack = &BLOCK_INFO (target)->stack_in;
2664   stack source_stack = &BLOCK_INFO (source)->stack_out;
2665   struct stack_def regstack;
2666   int reg;
2667 
2668   if (dump_file)
2669     fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
2670 
2671   gcc_assert (target_stack->top != -2);
2672 
2673   /* Check whether stacks are identical.  */
2674   if (target_stack->top == source_stack->top)
2675     {
2676       for (reg = target_stack->top; reg >= 0; --reg)
2677 	if (target_stack->reg[reg] != source_stack->reg[reg])
2678 	  break;
2679 
2680       if (reg == -1)
2681 	{
2682 	  if (dump_file)
2683 	    fprintf (dump_file, "no changes needed\n");
2684 	  return false;
2685 	}
2686     }
2687 
2688   if (dump_file)
2689     {
2690       fprintf (dump_file, "correcting stack to ");
2691       print_stack (dump_file, target_stack);
2692     }
2693 
2694   /* Abnormal calls may appear to have values live in st(0), but the
2695      abnormal return path will not have actually loaded the values.  */
2696   if (e->flags & EDGE_ABNORMAL_CALL)
2697     {
2698       /* Assert that the lifetimes are as we expect -- one value
2699          live at st(0) on the end of the source block, and no
2700          values live at the beginning of the destination block.
2701 	 For complex return values, we may have st(1) live as well.  */
2702       gcc_assert (source_stack->top == 0 || source_stack->top == 1);
2703       gcc_assert (target_stack->top == -1);
2704       return false;
2705     }
2706 
2707   /* Handle non-call EH edges specially.  The normal return path have
2708      values in registers.  These will be popped en masse by the unwind
2709      library.  */
2710   if (e->flags & EDGE_EH)
2711     {
2712       gcc_assert (target_stack->top == -1);
2713       return false;
2714     }
2715 
2716   /* We don't support abnormal edges.  Global takes care to
2717      avoid any live register across them, so we should never
2718      have to insert instructions on such edges.  */
2719   gcc_assert (! (e->flags & EDGE_ABNORMAL));
2720 
2721   /* Make a copy of source_stack as change_stack is destructive.  */
2722   regstack = *source_stack;
2723 
2724   /* It is better to output directly to the end of the block
2725      instead of to the edge, because emit_swap can do minimal
2726      insn scheduling.  We can do this when there is only one
2727      edge out, and it is not abnormal.  */
2728   if (EDGE_COUNT (source->succs) == 1)
2729     {
2730       current_block = source;
2731       change_stack (BB_END (source), &regstack, target_stack,
2732 		    (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
2733     }
2734   else
2735     {
2736       rtx seq, after;
2737 
2738       current_block = NULL;
2739       start_sequence ();
2740 
2741       /* ??? change_stack needs some point to emit insns after.  */
2742       after = emit_note (NOTE_INSN_DELETED);
2743 
2744       change_stack (after, &regstack, target_stack, EMIT_BEFORE);
2745 
2746       seq = get_insns ();
2747       end_sequence ();
2748 
2749       insert_insn_on_edge (seq, e);
2750       return true;
2751     }
2752   return false;
2753 }
2754 
2755 /* Traverse all non-entry edges in the CFG, and emit the necessary
2756    edge compensation code to change the stack from stack_out of the
2757    source block to the stack_in of the destination block.  */
2758 
2759 static bool
compensate_edges(void)2760 compensate_edges (void)
2761 {
2762   bool inserted = false;
2763   basic_block bb;
2764 
2765   starting_stack_p = false;
2766 
2767   FOR_EACH_BB (bb)
2768     if (bb != ENTRY_BLOCK_PTR)
2769       {
2770         edge e;
2771         edge_iterator ei;
2772 
2773         FOR_EACH_EDGE (e, ei, bb->succs)
2774 	  inserted |= compensate_edge (e);
2775       }
2776   return inserted;
2777 }
2778 
2779 /* Select the better of two edges E1 and E2 to use to determine the
2780    stack layout for their shared destination basic block.  This is
2781    typically the more frequently executed.  The edge E1 may be NULL
2782    (in which case E2 is returned), but E2 is always non-NULL.  */
2783 
2784 static edge
better_edge(edge e1,edge e2)2785 better_edge (edge e1, edge e2)
2786 {
2787   if (!e1)
2788     return e2;
2789 
2790   if (EDGE_FREQUENCY (e1) > EDGE_FREQUENCY (e2))
2791     return e1;
2792   if (EDGE_FREQUENCY (e1) < EDGE_FREQUENCY (e2))
2793     return e2;
2794 
2795   if (e1->count > e2->count)
2796     return e1;
2797   if (e1->count < e2->count)
2798     return e2;
2799 
2800   /* Prefer critical edges to minimize inserting compensation code on
2801      critical edges.  */
2802 
2803   if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
2804     return EDGE_CRITICAL_P (e1) ? e1 : e2;
2805 
2806   /* Avoid non-deterministic behavior.  */
2807   return (e1->src->index < e2->src->index) ? e1 : e2;
2808 }
2809 
2810 /* Convert stack register references in one block.  */
2811 
2812 static void
convert_regs_1(basic_block block)2813 convert_regs_1 (basic_block block)
2814 {
2815   struct stack_def regstack;
2816   block_info bi = BLOCK_INFO (block);
2817   int reg;
2818   rtx insn, next;
2819   bool control_flow_insn_deleted = false;
2820 
2821   any_malformed_asm = false;
2822 
2823   /* Choose an initial stack layout, if one hasn't already been chosen.  */
2824   if (bi->stack_in.top == -2)
2825     {
2826       edge e, beste = NULL;
2827       edge_iterator ei;
2828 
2829       /* Select the best incoming edge (typically the most frequent) to
2830 	 use as a template for this basic block.  */
2831       FOR_EACH_EDGE (e, ei, block->preds)
2832 	if (BLOCK_INFO (e->src)->done)
2833 	  beste = better_edge (beste, e);
2834 
2835       if (beste)
2836 	propagate_stack (beste);
2837       else
2838 	{
2839 	  /* No predecessors.  Create an arbitrary input stack.  */
2840 	  bi->stack_in.top = -1;
2841 	  for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2842 	    if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2843 	      bi->stack_in.reg[++bi->stack_in.top] = reg;
2844 	}
2845     }
2846 
2847   if (dump_file)
2848     {
2849       fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
2850       print_stack (dump_file, &bi->stack_in);
2851     }
2852 
2853   /* Process all insns in this block.  Keep track of NEXT so that we
2854      don't process insns emitted while substituting in INSN.  */
2855   current_block = block;
2856   next = BB_HEAD (block);
2857   regstack = bi->stack_in;
2858   starting_stack_p = true;
2859 
2860   do
2861     {
2862       insn = next;
2863       next = NEXT_INSN (insn);
2864 
2865       /* Ensure we have not missed a block boundary.  */
2866       gcc_assert (next);
2867       if (insn == BB_END (block))
2868 	next = NULL;
2869 
2870       /* Don't bother processing unless there is a stack reg
2871 	 mentioned or if it's a CALL_INSN.  */
2872       if (stack_regs_mentioned (insn)
2873 	  || CALL_P (insn))
2874 	{
2875 	  if (dump_file)
2876 	    {
2877 	      fprintf (dump_file, "  insn %d input stack: ",
2878 		       INSN_UID (insn));
2879 	      print_stack (dump_file, &regstack);
2880 	    }
2881 	  control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2882 	  starting_stack_p = false;
2883 	}
2884     }
2885   while (next);
2886 
2887   if (dump_file)
2888     {
2889       fprintf (dump_file, "Expected live registers [");
2890       for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2891 	if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
2892 	  fprintf (dump_file, " %d", reg);
2893       fprintf (dump_file, " ]\nOutput stack: ");
2894       print_stack (dump_file, &regstack);
2895     }
2896 
2897   insn = BB_END (block);
2898   if (JUMP_P (insn))
2899     insn = PREV_INSN (insn);
2900 
2901   /* If the function is declared to return a value, but it returns one
2902      in only some cases, some registers might come live here.  Emit
2903      necessary moves for them.  */
2904 
2905   for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2906     {
2907       if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
2908 	  && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
2909 	{
2910 	  rtx set;
2911 
2912 	  if (dump_file)
2913 	    fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
2914 
2915 	  set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode), not_a_num);
2916 	  insn = emit_insn_after (set, insn);
2917 	  control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2918 	}
2919     }
2920 
2921   /* Amongst the insns possibly deleted during the substitution process above,
2922      might have been the only trapping insn in the block.  We purge the now
2923      possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
2924      called at the end of convert_regs.  The order in which we process the
2925      blocks ensures that we never delete an already processed edge.
2926 
2927      Note that, at this point, the CFG may have been damaged by the emission
2928      of instructions after an abnormal call, which moves the basic block end
2929      (and is the reason why we call fixup_abnormal_edges later).  So we must
2930      be sure that the trapping insn has been deleted before trying to purge
2931      dead edges, otherwise we risk purging valid edges.
2932 
2933      ??? We are normally supposed not to delete trapping insns, so we pretend
2934      that the insns deleted above don't actually trap.  It would have been
2935      better to detect this earlier and avoid creating the EH edge in the first
2936      place, still, but we don't have enough information at that time.  */
2937 
2938   if (control_flow_insn_deleted)
2939     purge_dead_edges (block);
2940 
2941   /* Something failed if the stack lives don't match.  If we had malformed
2942      asms, we zapped the instruction itself, but that didn't produce the
2943      same pattern of register kills as before.  */
2944   GO_IF_HARD_REG_EQUAL (regstack.reg_set, bi->out_reg_set, win);
2945   gcc_assert (any_malformed_asm);
2946  win:
2947   bi->stack_out = regstack;
2948   bi->done = true;
2949 }
2950 
2951 /* Convert registers in all blocks reachable from BLOCK.  */
2952 
2953 static void
convert_regs_2(basic_block block)2954 convert_regs_2 (basic_block block)
2955 {
2956   basic_block *stack, *sp;
2957 
2958   /* We process the blocks in a top-down manner, in a way such that one block
2959      is only processed after all its predecessors.  The number of predecessors
2960      of every block has already been computed.  */
2961 
2962   stack = XNEWVEC (basic_block, n_basic_blocks);
2963   sp = stack;
2964 
2965   *sp++ = block;
2966 
2967   do
2968     {
2969       edge e;
2970       edge_iterator ei;
2971 
2972       block = *--sp;
2973 
2974       /* Processing BLOCK is achieved by convert_regs_1, which may purge
2975 	 some dead EH outgoing edge after the deletion of the trapping
2976 	 insn inside the block.  Since the number of predecessors of
2977 	 BLOCK's successors was computed based on the initial edge set,
2978 	 we check the necessity to process some of these successors
2979 	 before such an edge deletion may happen.  However, there is
2980 	 a pitfall: if BLOCK is the only predecessor of a successor and
2981 	 the edge between them happens to be deleted, the successor
2982 	 becomes unreachable and should not be processed.  The problem
2983 	 is that there is no way to preventively detect this case so we
2984 	 stack the successor in all cases and hand over the task of
2985 	 fixing up the discrepancy to convert_regs_1.  */
2986 
2987       FOR_EACH_EDGE (e, ei, block->succs)
2988 	if (! (e->flags & EDGE_DFS_BACK))
2989 	  {
2990 	    BLOCK_INFO (e->dest)->predecessors--;
2991 	    if (!BLOCK_INFO (e->dest)->predecessors)
2992 	      *sp++ = e->dest;
2993 	  }
2994 
2995       convert_regs_1 (block);
2996     }
2997   while (sp != stack);
2998 
2999   free (stack);
3000 }
3001 
3002 /* Traverse all basic blocks in a function, converting the register
3003    references in each insn from the "flat" register file that gcc uses,
3004    to the stack-like registers the 387 uses.  */
3005 
3006 static void
convert_regs(void)3007 convert_regs (void)
3008 {
3009   int inserted;
3010   basic_block b;
3011   edge e;
3012   edge_iterator ei;
3013 
3014   /* Initialize uninitialized registers on function entry.  */
3015   inserted = convert_regs_entry ();
3016 
3017   /* Construct the desired stack for function exit.  */
3018   convert_regs_exit ();
3019   BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
3020 
3021   /* ??? Future: process inner loops first, and give them arbitrary
3022      initial stacks which emit_swap_insn can modify.  This ought to
3023      prevent double fxch that often appears at the head of a loop.  */
3024 
3025   /* Process all blocks reachable from all entry points.  */
3026   FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3027     convert_regs_2 (e->dest);
3028 
3029   /* ??? Process all unreachable blocks.  Though there's no excuse
3030      for keeping these even when not optimizing.  */
3031   FOR_EACH_BB (b)
3032     {
3033       block_info bi = BLOCK_INFO (b);
3034 
3035       if (! bi->done)
3036 	convert_regs_2 (b);
3037     }
3038 
3039   inserted |= compensate_edges ();
3040 
3041   clear_aux_for_blocks ();
3042 
3043   fixup_abnormal_edges ();
3044   if (inserted)
3045     commit_edge_insertions ();
3046 
3047   if (dump_file)
3048     fputc ('\n', dump_file);
3049 }
3050 
3051 /* Convert register usage from "flat" register file usage to a "stack
3052    register file.  FILE is the dump file, if used.
3053 
3054    Construct a CFG and run life analysis.  Then convert each insn one
3055    by one.  Run a last cleanup_cfg pass, if optimizing, to eliminate
3056    code duplication created when the converter inserts pop insns on
3057    the edges.  */
3058 
3059 static bool
reg_to_stack(void)3060 reg_to_stack (void)
3061 {
3062   basic_block bb;
3063   int i;
3064   int max_uid;
3065 
3066   /* Clean up previous run.  */
3067   if (stack_regs_mentioned_data != NULL)
3068     VEC_free (char, heap, stack_regs_mentioned_data);
3069 
3070   /* See if there is something to do.  Flow analysis is quite
3071      expensive so we might save some compilation time.  */
3072   for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3073     if (regs_ever_live[i])
3074       break;
3075   if (i > LAST_STACK_REG)
3076     return false;
3077 
3078   /* Ok, floating point instructions exist.  If not optimizing,
3079      build the CFG and run life analysis.
3080      Also need to rebuild life when superblock scheduling is done
3081      as it don't update liveness yet.  */
3082   if (!optimize
3083       || ((flag_sched2_use_superblocks || flag_sched2_use_traces)
3084 	  && flag_schedule_insns_after_reload))
3085     {
3086       count_or_remove_death_notes (NULL, 1);
3087       life_analysis (PROP_DEATH_NOTES);
3088     }
3089   mark_dfs_back_edges ();
3090 
3091   /* Set up block info for each basic block.  */
3092   alloc_aux_for_blocks (sizeof (struct block_info_def));
3093   FOR_EACH_BB (bb)
3094     {
3095       block_info bi = BLOCK_INFO (bb);
3096       edge_iterator ei;
3097       edge e;
3098       int reg;
3099 
3100       FOR_EACH_EDGE (e, ei, bb->preds)
3101 	if (!(e->flags & EDGE_DFS_BACK)
3102 	    && e->src != ENTRY_BLOCK_PTR)
3103 	  bi->predecessors++;
3104 
3105       /* Set current register status at last instruction `uninitialized'.  */
3106       bi->stack_in.top = -2;
3107 
3108       /* Copy live_at_end and live_at_start into temporaries.  */
3109       for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3110 	{
3111 	  if (REGNO_REG_SET_P (bb->il.rtl->global_live_at_end, reg))
3112 	    SET_HARD_REG_BIT (bi->out_reg_set, reg);
3113 	  if (REGNO_REG_SET_P (bb->il.rtl->global_live_at_start, reg))
3114 	    SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
3115 	}
3116     }
3117 
3118   /* Create the replacement registers up front.  */
3119   for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3120     {
3121       enum machine_mode mode;
3122       for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3123 	   mode != VOIDmode;
3124 	   mode = GET_MODE_WIDER_MODE (mode))
3125 	FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3126       for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
3127 	   mode != VOIDmode;
3128 	   mode = GET_MODE_WIDER_MODE (mode))
3129 	FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3130     }
3131 
3132   ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3133 
3134   /* A QNaN for initializing uninitialized variables.
3135 
3136      ??? We can't load from constant memory in PIC mode, because
3137      we're inserting these instructions before the prologue and
3138      the PIC register hasn't been set up.  In that case, fall back
3139      on zero, which we can get from `ldz'.  */
3140 
3141   if (flag_pic)
3142     not_a_num = CONST0_RTX (SFmode);
3143   else
3144     {
3145       not_a_num = gen_lowpart (SFmode, GEN_INT (0x7fc00000));
3146       not_a_num = force_const_mem (SFmode, not_a_num);
3147     }
3148 
3149   /* Allocate a cache for stack_regs_mentioned.  */
3150   max_uid = get_max_uid ();
3151   stack_regs_mentioned_data = VEC_alloc (char, heap, max_uid + 1);
3152   memset (VEC_address (char, stack_regs_mentioned_data),
3153 	  0, sizeof (char) * max_uid + 1);
3154 
3155   convert_regs ();
3156 
3157   free_aux_for_blocks ();
3158   return true;
3159 }
3160 #endif /* STACK_REGS */
3161 
3162 static bool
gate_handle_stack_regs(void)3163 gate_handle_stack_regs (void)
3164 {
3165 #ifdef STACK_REGS
3166   return 1;
3167 #else
3168   return 0;
3169 #endif
3170 }
3171 
3172 /* Convert register usage from flat register file usage to a stack
3173    register file.  */
3174 static unsigned int
rest_of_handle_stack_regs(void)3175 rest_of_handle_stack_regs (void)
3176 {
3177 #ifdef STACK_REGS
3178   if (reg_to_stack () && optimize)
3179     {
3180       regstack_completed = 1;
3181       if (cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_POST_REGSTACK
3182                        | (flag_crossjumping ? CLEANUP_CROSSJUMP : 0))
3183           && (flag_reorder_blocks || flag_reorder_blocks_and_partition))
3184         {
3185           reorder_basic_blocks (0);
3186           cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_POST_REGSTACK);
3187         }
3188     }
3189   else
3190     regstack_completed = 1;
3191 #endif
3192   return 0;
3193 }
3194 
3195 struct tree_opt_pass pass_stack_regs =
3196 {
3197   "stack",                              /* name */
3198   gate_handle_stack_regs,               /* gate */
3199   rest_of_handle_stack_regs,            /* execute */
3200   NULL,                                 /* sub */
3201   NULL,                                 /* next */
3202   0,                                    /* static_pass_number */
3203   TV_REG_STACK,                         /* tv_id */
3204   0,                                    /* properties_required */
3205   0,                                    /* properties_provided */
3206   0,                                    /* properties_destroyed */
3207   0,                                    /* todo_flags_start */
3208   TODO_dump_func |
3209   TODO_ggc_collect,                     /* todo_flags_finish */
3210   'k'                                   /* letter */
3211 };
3212