1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* This pass converts stack-like registers from the "flat register
23 file" model that gcc uses, to a stack convention that the 387 uses.
24
25 * The form of the input:
26
27 On input, the function consists of insn that have had their
28 registers fully allocated to a set of "virtual" registers. Note that
29 the word "virtual" is used differently here than elsewhere in gcc: for
30 each virtual stack reg, there is a hard reg, but the mapping between
31 them is not known until this pass is run. On output, hard register
32 numbers have been substituted, and various pop and exchange insns have
33 been emitted. The hard register numbers and the virtual register
34 numbers completely overlap - before this pass, all stack register
35 numbers are virtual, and afterward they are all hard.
36
37 The virtual registers can be manipulated normally by gcc, and their
38 semantics are the same as for normal registers. After the hard
39 register numbers are substituted, the semantics of an insn containing
40 stack-like regs are not the same as for an insn with normal regs: for
41 instance, it is not safe to delete an insn that appears to be a no-op
42 move. In general, no insn containing hard regs should be changed
43 after this pass is done.
44
45 * The form of the output:
46
47 After this pass, hard register numbers represent the distance from
48 the current top of stack to the desired register. A reference to
49 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
50 represents the register just below that, and so forth. Also, REG_DEAD
51 notes indicate whether or not a stack register should be popped.
52
53 A "swap" insn looks like a parallel of two patterns, where each
54 pattern is a SET: one sets A to B, the other B to A.
55
56 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
57 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
58 will replace the existing stack top, not push a new value.
59
60 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
61 SET_SRC is REG or MEM.
62
63 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
64 appears ambiguous. As a special case, the presence of a REG_DEAD note
65 for FIRST_STACK_REG differentiates between a load insn and a pop.
66
67 If a REG_DEAD is present, the insn represents a "pop" that discards
68 the top of the register stack. If there is no REG_DEAD note, then the
69 insn represents a "dup" or a push of the current top of stack onto the
70 stack.
71
72 * Methodology:
73
74 Existing REG_DEAD and REG_UNUSED notes for stack registers are
75 deleted and recreated from scratch. REG_DEAD is never created for a
76 SET_DEST, only REG_UNUSED.
77
78 * asm_operands:
79
80 There are several rules on the usage of stack-like regs in
81 asm_operands insns. These rules apply only to the operands that are
82 stack-like regs:
83
84 1. Given a set of input regs that die in an asm_operands, it is
85 necessary to know which are implicitly popped by the asm, and
86 which must be explicitly popped by gcc.
87
88 An input reg that is implicitly popped by the asm must be
89 explicitly clobbered, unless it is constrained to match an
90 output operand.
91
92 2. For any input reg that is implicitly popped by an asm, it is
93 necessary to know how to adjust the stack to compensate for the pop.
94 If any non-popped input is closer to the top of the reg-stack than
95 the implicitly popped reg, it would not be possible to know what the
96 stack looked like - it's not clear how the rest of the stack "slides
97 up".
98
99 All implicitly popped input regs must be closer to the top of
100 the reg-stack than any input that is not implicitly popped.
101
102 3. It is possible that if an input dies in an insn, reload might
103 use the input reg for an output reload. Consider this example:
104
105 asm ("foo" : "=t" (a) : "f" (b));
106
107 This asm says that input B is not popped by the asm, and that
108 the asm pushes a result onto the reg-stack, i.e., the stack is one
109 deeper after the asm than it was before. But, it is possible that
110 reload will think that it can use the same reg for both the input and
111 the output, if input B dies in this insn.
112
113 If any input operand uses the "f" constraint, all output reg
114 constraints must use the "&" earlyclobber.
115
116 The asm above would be written as
117
118 asm ("foo" : "=&t" (a) : "f" (b));
119
120 4. Some operands need to be in particular places on the stack. All
121 output operands fall in this category - there is no other way to
122 know which regs the outputs appear in unless the user indicates
123 this in the constraints.
124
125 Output operands must specifically indicate which reg an output
126 appears in after an asm. "=f" is not allowed: the operand
127 constraints must select a class with a single reg.
128
129 5. Output operands may not be "inserted" between existing stack regs.
130 Since no 387 opcode uses a read/write operand, all output operands
131 are dead before the asm_operands, and are pushed by the asm_operands.
132 It makes no sense to push anywhere but the top of the reg-stack.
133
134 Output operands must start at the top of the reg-stack: output
135 operands may not "skip" a reg.
136
137 6. Some asm statements may need extra stack space for internal
138 calculations. This can be guaranteed by clobbering stack registers
139 unrelated to the inputs and outputs.
140
141 Here are a couple of reasonable asms to want to write. This asm
142 takes one input, which is internally popped, and produces two outputs.
143
144 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
145
146 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
147 and replaces them with one output. The user must code the "st(1)"
148 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
149
150 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
151
152 */
153
154 #include "config.h"
155 #include "system.h"
156 #include "coretypes.h"
157 #include "tm.h"
158 #include "tree.h"
159 #include "rtl.h"
160 #include "tm_p.h"
161 #include "function.h"
162 #include "insn-config.h"
163 #include "regs.h"
164 #include "hard-reg-set.h"
165 #include "flags.h"
166 #include "toplev.h"
167 #include "recog.h"
168 #include "output.h"
169 #include "basic-block.h"
170 #include "varray.h"
171 #include "reload.h"
172 #include "ggc.h"
173 #include "timevar.h"
174 #include "tree-pass.h"
175 #include "target.h"
176 #include "vecprim.h"
177
178 #ifdef STACK_REGS
179
180 /* We use this array to cache info about insns, because otherwise we
181 spend too much time in stack_regs_mentioned_p.
182
183 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
184 the insn uses stack registers, two indicates the insn does not use
185 stack registers. */
186 static VEC(char,heap) *stack_regs_mentioned_data;
187
188 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
189
190 int regstack_completed = 0;
191
192 /* This is the basic stack record. TOP is an index into REG[] such
193 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
194
195 If TOP is -2, REG[] is not yet initialized. Stack initialization
196 consists of placing each live reg in array `reg' and setting `top'
197 appropriately.
198
199 REG_SET indicates which registers are live. */
200
201 typedef struct stack_def
202 {
203 int top; /* index to top stack element */
204 HARD_REG_SET reg_set; /* set of live registers */
205 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
206 } *stack;
207
208 /* This is used to carry information about basic blocks. It is
209 attached to the AUX field of the standard CFG block. */
210
211 typedef struct block_info_def
212 {
213 struct stack_def stack_in; /* Input stack configuration. */
214 struct stack_def stack_out; /* Output stack configuration. */
215 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
216 int done; /* True if block already converted. */
217 int predecessors; /* Number of predecessors that need
218 to be visited. */
219 } *block_info;
220
221 #define BLOCK_INFO(B) ((block_info) (B)->aux)
222
223 /* Passed to change_stack to indicate where to emit insns. */
224 enum emit_where
225 {
226 EMIT_AFTER,
227 EMIT_BEFORE
228 };
229
230 /* The block we're currently working on. */
231 static basic_block current_block;
232
233 /* In the current_block, whether we're processing the first register
234 stack or call instruction, i.e. the regstack is currently the
235 same as BLOCK_INFO(current_block)->stack_in. */
236 static bool starting_stack_p;
237
238 /* This is the register file for all register after conversion. */
239 static rtx
240 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
241
242 #define FP_MODE_REG(regno,mode) \
243 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
244
245 /* Used to initialize uninitialized registers. */
246 static rtx not_a_num;
247
248 /* Forward declarations */
249
250 static int stack_regs_mentioned_p (rtx pat);
251 static void pop_stack (stack, int);
252 static rtx *get_true_reg (rtx *);
253
254 static int check_asm_stack_operands (rtx);
255 static int get_asm_operand_n_inputs (rtx);
256 static rtx stack_result (tree);
257 static void replace_reg (rtx *, int);
258 static void remove_regno_note (rtx, enum reg_note, unsigned int);
259 static int get_hard_regnum (stack, rtx);
260 static rtx emit_pop_insn (rtx, stack, rtx, enum emit_where);
261 static void swap_to_top(rtx, stack, rtx, rtx);
262 static bool move_for_stack_reg (rtx, stack, rtx);
263 static bool move_nan_for_stack_reg (rtx, stack, rtx);
264 static int swap_rtx_condition_1 (rtx);
265 static int swap_rtx_condition (rtx);
266 static void compare_for_stack_reg (rtx, stack, rtx);
267 static bool subst_stack_regs_pat (rtx, stack, rtx);
268 static void subst_asm_stack_regs (rtx, stack);
269 static bool subst_stack_regs (rtx, stack);
270 static void change_stack (rtx, stack, stack, enum emit_where);
271 static void print_stack (FILE *, stack);
272 static rtx next_flags_user (rtx);
273
274 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
275
276 static int
stack_regs_mentioned_p(rtx pat)277 stack_regs_mentioned_p (rtx pat)
278 {
279 const char *fmt;
280 int i;
281
282 if (STACK_REG_P (pat))
283 return 1;
284
285 fmt = GET_RTX_FORMAT (GET_CODE (pat));
286 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
287 {
288 if (fmt[i] == 'E')
289 {
290 int j;
291
292 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
293 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
294 return 1;
295 }
296 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
297 return 1;
298 }
299
300 return 0;
301 }
302
303 /* Return nonzero if INSN mentions stacked registers, else return zero. */
304
305 int
stack_regs_mentioned(rtx insn)306 stack_regs_mentioned (rtx insn)
307 {
308 unsigned int uid, max;
309 int test;
310
311 if (! INSN_P (insn) || !stack_regs_mentioned_data)
312 return 0;
313
314 uid = INSN_UID (insn);
315 max = VEC_length (char, stack_regs_mentioned_data);
316 if (uid >= max)
317 {
318 char *p;
319 unsigned int old_max = max;
320
321 /* Allocate some extra size to avoid too many reallocs, but
322 do not grow too quickly. */
323 max = uid + uid / 20 + 1;
324 VEC_safe_grow (char, heap, stack_regs_mentioned_data, max);
325 p = VEC_address (char, stack_regs_mentioned_data);
326 memset (&p[old_max], 0,
327 sizeof (char) * (max - old_max));
328 }
329
330 test = VEC_index (char, stack_regs_mentioned_data, uid);
331 if (test == 0)
332 {
333 /* This insn has yet to be examined. Do so now. */
334 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
335 VEC_replace (char, stack_regs_mentioned_data, uid, test);
336 }
337
338 return test == 1;
339 }
340
341 static rtx ix86_flags_rtx;
342
343 static rtx
next_flags_user(rtx insn)344 next_flags_user (rtx insn)
345 {
346 /* Search forward looking for the first use of this value.
347 Stop at block boundaries. */
348
349 while (insn != BB_END (current_block))
350 {
351 insn = NEXT_INSN (insn);
352
353 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
354 return insn;
355
356 if (CALL_P (insn))
357 return NULL_RTX;
358 }
359 return NULL_RTX;
360 }
361
362 /* Reorganize the stack into ascending numbers, before this insn. */
363
364 static void
straighten_stack(rtx insn,stack regstack)365 straighten_stack (rtx insn, stack regstack)
366 {
367 struct stack_def temp_stack;
368 int top;
369
370 /* If there is only a single register on the stack, then the stack is
371 already in increasing order and no reorganization is needed.
372
373 Similarly if the stack is empty. */
374 if (regstack->top <= 0)
375 return;
376
377 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
378
379 for (top = temp_stack.top = regstack->top; top >= 0; top--)
380 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
381
382 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
383 }
384
385 /* Pop a register from the stack. */
386
387 static void
pop_stack(stack regstack,int regno)388 pop_stack (stack regstack, int regno)
389 {
390 int top = regstack->top;
391
392 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
393 regstack->top--;
394 /* If regno was not at the top of stack then adjust stack. */
395 if (regstack->reg [top] != regno)
396 {
397 int i;
398 for (i = regstack->top; i >= 0; i--)
399 if (regstack->reg [i] == regno)
400 {
401 int j;
402 for (j = i; j < top; j++)
403 regstack->reg [j] = regstack->reg [j + 1];
404 break;
405 }
406 }
407 }
408
409 /* Return a pointer to the REG expression within PAT. If PAT is not a
410 REG, possible enclosed by a conversion rtx, return the inner part of
411 PAT that stopped the search. */
412
413 static rtx *
get_true_reg(rtx * pat)414 get_true_reg (rtx *pat)
415 {
416 for (;;)
417 switch (GET_CODE (*pat))
418 {
419 case SUBREG:
420 /* Eliminate FP subregister accesses in favor of the
421 actual FP register in use. */
422 {
423 rtx subreg;
424 if (FP_REG_P (subreg = SUBREG_REG (*pat)))
425 {
426 int regno_off = subreg_regno_offset (REGNO (subreg),
427 GET_MODE (subreg),
428 SUBREG_BYTE (*pat),
429 GET_MODE (*pat));
430 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
431 GET_MODE (subreg));
432 default:
433 return pat;
434 }
435 }
436 case FLOAT:
437 case FIX:
438 case FLOAT_EXTEND:
439 pat = & XEXP (*pat, 0);
440 break;
441
442 case FLOAT_TRUNCATE:
443 if (!flag_unsafe_math_optimizations)
444 return pat;
445 pat = & XEXP (*pat, 0);
446 break;
447 }
448 }
449
450 /* Set if we find any malformed asms in a block. */
451 static bool any_malformed_asm;
452
453 /* There are many rules that an asm statement for stack-like regs must
454 follow. Those rules are explained at the top of this file: the rule
455 numbers below refer to that explanation. */
456
457 static int
check_asm_stack_operands(rtx insn)458 check_asm_stack_operands (rtx insn)
459 {
460 int i;
461 int n_clobbers;
462 int malformed_asm = 0;
463 rtx body = PATTERN (insn);
464
465 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
466 char implicitly_dies[FIRST_PSEUDO_REGISTER];
467 int alt;
468
469 rtx *clobber_reg = 0;
470 int n_inputs, n_outputs;
471
472 /* Find out what the constraints require. If no constraint
473 alternative matches, this asm is malformed. */
474 extract_insn (insn);
475 constrain_operands (1);
476 alt = which_alternative;
477
478 preprocess_constraints ();
479
480 n_inputs = get_asm_operand_n_inputs (body);
481 n_outputs = recog_data.n_operands - n_inputs;
482
483 if (alt < 0)
484 {
485 malformed_asm = 1;
486 /* Avoid further trouble with this insn. */
487 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
488 return 0;
489 }
490
491 /* Strip SUBREGs here to make the following code simpler. */
492 for (i = 0; i < recog_data.n_operands; i++)
493 if (GET_CODE (recog_data.operand[i]) == SUBREG
494 && REG_P (SUBREG_REG (recog_data.operand[i])))
495 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
496
497 /* Set up CLOBBER_REG. */
498
499 n_clobbers = 0;
500
501 if (GET_CODE (body) == PARALLEL)
502 {
503 clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
504
505 for (i = 0; i < XVECLEN (body, 0); i++)
506 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
507 {
508 rtx clobber = XVECEXP (body, 0, i);
509 rtx reg = XEXP (clobber, 0);
510
511 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
512 reg = SUBREG_REG (reg);
513
514 if (STACK_REG_P (reg))
515 {
516 clobber_reg[n_clobbers] = reg;
517 n_clobbers++;
518 }
519 }
520 }
521
522 /* Enforce rule #4: Output operands must specifically indicate which
523 reg an output appears in after an asm. "=f" is not allowed: the
524 operand constraints must select a class with a single reg.
525
526 Also enforce rule #5: Output operands must start at the top of
527 the reg-stack: output operands may not "skip" a reg. */
528
529 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
530 for (i = 0; i < n_outputs; i++)
531 if (STACK_REG_P (recog_data.operand[i]))
532 {
533 if (reg_class_size[(int) recog_op_alt[i][alt].cl] != 1)
534 {
535 error_for_asm (insn, "output constraint %d must specify a single register", i);
536 malformed_asm = 1;
537 }
538 else
539 {
540 int j;
541
542 for (j = 0; j < n_clobbers; j++)
543 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
544 {
545 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
546 i, reg_names [REGNO (clobber_reg[j])]);
547 malformed_asm = 1;
548 break;
549 }
550 if (j == n_clobbers)
551 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
552 }
553 }
554
555
556 /* Search for first non-popped reg. */
557 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
558 if (! reg_used_as_output[i])
559 break;
560
561 /* If there are any other popped regs, that's an error. */
562 for (; i < LAST_STACK_REG + 1; i++)
563 if (reg_used_as_output[i])
564 break;
565
566 if (i != LAST_STACK_REG + 1)
567 {
568 error_for_asm (insn, "output regs must be grouped at top of stack");
569 malformed_asm = 1;
570 }
571
572 /* Enforce rule #2: All implicitly popped input regs must be closer
573 to the top of the reg-stack than any input that is not implicitly
574 popped. */
575
576 memset (implicitly_dies, 0, sizeof (implicitly_dies));
577 for (i = n_outputs; i < n_outputs + n_inputs; i++)
578 if (STACK_REG_P (recog_data.operand[i]))
579 {
580 /* An input reg is implicitly popped if it is tied to an
581 output, or if there is a CLOBBER for it. */
582 int j;
583
584 for (j = 0; j < n_clobbers; j++)
585 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
586 break;
587
588 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
589 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
590 }
591
592 /* Search for first non-popped reg. */
593 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
594 if (! implicitly_dies[i])
595 break;
596
597 /* If there are any other popped regs, that's an error. */
598 for (; i < LAST_STACK_REG + 1; i++)
599 if (implicitly_dies[i])
600 break;
601
602 if (i != LAST_STACK_REG + 1)
603 {
604 error_for_asm (insn,
605 "implicitly popped regs must be grouped at top of stack");
606 malformed_asm = 1;
607 }
608
609 /* Enforce rule #3: If any input operand uses the "f" constraint, all
610 output constraints must use the "&" earlyclobber.
611
612 ??? Detect this more deterministically by having constrain_asm_operands
613 record any earlyclobber. */
614
615 for (i = n_outputs; i < n_outputs + n_inputs; i++)
616 if (recog_op_alt[i][alt].matches == -1)
617 {
618 int j;
619
620 for (j = 0; j < n_outputs; j++)
621 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
622 {
623 error_for_asm (insn,
624 "output operand %d must use %<&%> constraint", j);
625 malformed_asm = 1;
626 }
627 }
628
629 if (malformed_asm)
630 {
631 /* Avoid further trouble with this insn. */
632 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
633 any_malformed_asm = true;
634 return 0;
635 }
636
637 return 1;
638 }
639
640 /* Calculate the number of inputs and outputs in BODY, an
641 asm_operands. N_OPERANDS is the total number of operands, and
642 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
643 placed. */
644
645 static int
get_asm_operand_n_inputs(rtx body)646 get_asm_operand_n_inputs (rtx body)
647 {
648 switch (GET_CODE (body))
649 {
650 case SET:
651 gcc_assert (GET_CODE (SET_SRC (body)) == ASM_OPERANDS);
652 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body));
653
654 case ASM_OPERANDS:
655 return ASM_OPERANDS_INPUT_LENGTH (body);
656
657 case PARALLEL:
658 return get_asm_operand_n_inputs (XVECEXP (body, 0, 0));
659
660 default:
661 gcc_unreachable ();
662 }
663 }
664
665 /* If current function returns its result in an fp stack register,
666 return the REG. Otherwise, return 0. */
667
668 static rtx
stack_result(tree decl)669 stack_result (tree decl)
670 {
671 rtx result;
672
673 /* If the value is supposed to be returned in memory, then clearly
674 it is not returned in a stack register. */
675 if (aggregate_value_p (DECL_RESULT (decl), decl))
676 return 0;
677
678 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
679 if (result != 0)
680 result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
681 decl, true);
682
683 return result != 0 && STACK_REG_P (result) ? result : 0;
684 }
685
686
687 /*
688 * This section deals with stack register substitution, and forms the second
689 * pass over the RTL.
690 */
691
692 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
693 the desired hard REGNO. */
694
695 static void
replace_reg(rtx * reg,int regno)696 replace_reg (rtx *reg, int regno)
697 {
698 gcc_assert (regno >= FIRST_STACK_REG);
699 gcc_assert (regno <= LAST_STACK_REG);
700 gcc_assert (STACK_REG_P (*reg));
701
702 gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (*reg))
703 || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
704
705 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
706 }
707
708 /* Remove a note of type NOTE, which must be found, for register
709 number REGNO from INSN. Remove only one such note. */
710
711 static void
remove_regno_note(rtx insn,enum reg_note note,unsigned int regno)712 remove_regno_note (rtx insn, enum reg_note note, unsigned int regno)
713 {
714 rtx *note_link, this;
715
716 note_link = ®_NOTES (insn);
717 for (this = *note_link; this; this = XEXP (this, 1))
718 if (REG_NOTE_KIND (this) == note
719 && REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno)
720 {
721 *note_link = XEXP (this, 1);
722 return;
723 }
724 else
725 note_link = &XEXP (this, 1);
726
727 gcc_unreachable ();
728 }
729
730 /* Find the hard register number of virtual register REG in REGSTACK.
731 The hard register number is relative to the top of the stack. -1 is
732 returned if the register is not found. */
733
734 static int
get_hard_regnum(stack regstack,rtx reg)735 get_hard_regnum (stack regstack, rtx reg)
736 {
737 int i;
738
739 gcc_assert (STACK_REG_P (reg));
740
741 for (i = regstack->top; i >= 0; i--)
742 if (regstack->reg[i] == REGNO (reg))
743 break;
744
745 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
746 }
747
748 /* Emit an insn to pop virtual register REG before or after INSN.
749 REGSTACK is the stack state after INSN and is updated to reflect this
750 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
751 is represented as a SET whose destination is the register to be popped
752 and source is the top of stack. A death note for the top of stack
753 cases the movdf pattern to pop. */
754
755 static rtx
emit_pop_insn(rtx insn,stack regstack,rtx reg,enum emit_where where)756 emit_pop_insn (rtx insn, stack regstack, rtx reg, enum emit_where where)
757 {
758 rtx pop_insn, pop_rtx;
759 int hard_regno;
760
761 /* For complex types take care to pop both halves. These may survive in
762 CLOBBER and USE expressions. */
763 if (COMPLEX_MODE_P (GET_MODE (reg)))
764 {
765 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
766 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
767
768 pop_insn = NULL_RTX;
769 if (get_hard_regnum (regstack, reg1) >= 0)
770 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
771 if (get_hard_regnum (regstack, reg2) >= 0)
772 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
773 gcc_assert (pop_insn);
774 return pop_insn;
775 }
776
777 hard_regno = get_hard_regnum (regstack, reg);
778
779 gcc_assert (hard_regno >= FIRST_STACK_REG);
780
781 pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
782 FP_MODE_REG (FIRST_STACK_REG, DFmode));
783
784 if (where == EMIT_AFTER)
785 pop_insn = emit_insn_after (pop_rtx, insn);
786 else
787 pop_insn = emit_insn_before (pop_rtx, insn);
788
789 REG_NOTES (pop_insn)
790 = gen_rtx_EXPR_LIST (REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode),
791 REG_NOTES (pop_insn));
792
793 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
794 = regstack->reg[regstack->top];
795 regstack->top -= 1;
796 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
797
798 return pop_insn;
799 }
800
801 /* Emit an insn before or after INSN to swap virtual register REG with
802 the top of stack. REGSTACK is the stack state before the swap, and
803 is updated to reflect the swap. A swap insn is represented as a
804 PARALLEL of two patterns: each pattern moves one reg to the other.
805
806 If REG is already at the top of the stack, no insn is emitted. */
807
808 static void
emit_swap_insn(rtx insn,stack regstack,rtx reg)809 emit_swap_insn (rtx insn, stack regstack, rtx reg)
810 {
811 int hard_regno;
812 rtx swap_rtx;
813 int tmp, other_reg; /* swap regno temps */
814 rtx i1; /* the stack-reg insn prior to INSN */
815 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
816
817 hard_regno = get_hard_regnum (regstack, reg);
818
819 if (hard_regno == FIRST_STACK_REG)
820 return;
821 if (hard_regno == -1)
822 {
823 /* Something failed if the register wasn't on the stack. If we had
824 malformed asms, we zapped the instruction itself, but that didn't
825 produce the same pattern of register sets as before. To prevent
826 further failure, adjust REGSTACK to include REG at TOP. */
827 gcc_assert (any_malformed_asm);
828 regstack->reg[++regstack->top] = REGNO (reg);
829 return;
830 }
831 gcc_assert (hard_regno >= FIRST_STACK_REG);
832
833 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
834
835 tmp = regstack->reg[other_reg];
836 regstack->reg[other_reg] = regstack->reg[regstack->top];
837 regstack->reg[regstack->top] = tmp;
838
839 /* Find the previous insn involving stack regs, but don't pass a
840 block boundary. */
841 i1 = NULL;
842 if (current_block && insn != BB_HEAD (current_block))
843 {
844 rtx tmp = PREV_INSN (insn);
845 rtx limit = PREV_INSN (BB_HEAD (current_block));
846 while (tmp != limit)
847 {
848 if (LABEL_P (tmp)
849 || CALL_P (tmp)
850 || NOTE_INSN_BASIC_BLOCK_P (tmp)
851 || (NONJUMP_INSN_P (tmp)
852 && stack_regs_mentioned (tmp)))
853 {
854 i1 = tmp;
855 break;
856 }
857 tmp = PREV_INSN (tmp);
858 }
859 }
860
861 if (i1 != NULL_RTX
862 && (i1set = single_set (i1)) != NULL_RTX)
863 {
864 rtx i1src = *get_true_reg (&SET_SRC (i1set));
865 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
866
867 /* If the previous register stack push was from the reg we are to
868 swap with, omit the swap. */
869
870 if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
871 && REG_P (i1src)
872 && REGNO (i1src) == (unsigned) hard_regno - 1
873 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
874 return;
875
876 /* If the previous insn wrote to the reg we are to swap with,
877 omit the swap. */
878
879 if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
880 && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
881 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
882 return;
883 }
884
885 /* Avoid emitting the swap if this is the first register stack insn
886 of the current_block. Instead update the current_block's stack_in
887 and let compensate edges take care of this for us. */
888 if (current_block && starting_stack_p)
889 {
890 BLOCK_INFO (current_block)->stack_in = *regstack;
891 starting_stack_p = false;
892 return;
893 }
894
895 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
896 FP_MODE_REG (FIRST_STACK_REG, XFmode));
897
898 if (i1)
899 emit_insn_after (swap_rtx, i1);
900 else if (current_block)
901 emit_insn_before (swap_rtx, BB_HEAD (current_block));
902 else
903 emit_insn_before (swap_rtx, insn);
904 }
905
906 /* Emit an insns before INSN to swap virtual register SRC1 with
907 the top of stack and virtual register SRC2 with second stack
908 slot. REGSTACK is the stack state before the swaps, and
909 is updated to reflect the swaps. A swap insn is represented as a
910 PARALLEL of two patterns: each pattern moves one reg to the other.
911
912 If SRC1 and/or SRC2 are already at the right place, no swap insn
913 is emitted. */
914
915 static void
swap_to_top(rtx insn,stack regstack,rtx src1,rtx src2)916 swap_to_top (rtx insn, stack regstack, rtx src1, rtx src2)
917 {
918 struct stack_def temp_stack;
919 int regno, j, k, temp;
920
921 temp_stack = *regstack;
922
923 /* Place operand 1 at the top of stack. */
924 regno = get_hard_regnum (&temp_stack, src1);
925 gcc_assert (regno >= 0);
926 if (regno != FIRST_STACK_REG)
927 {
928 k = temp_stack.top - (regno - FIRST_STACK_REG);
929 j = temp_stack.top;
930
931 temp = temp_stack.reg[k];
932 temp_stack.reg[k] = temp_stack.reg[j];
933 temp_stack.reg[j] = temp;
934 }
935
936 /* Place operand 2 next on the stack. */
937 regno = get_hard_regnum (&temp_stack, src2);
938 gcc_assert (regno >= 0);
939 if (regno != FIRST_STACK_REG + 1)
940 {
941 k = temp_stack.top - (regno - FIRST_STACK_REG);
942 j = temp_stack.top - 1;
943
944 temp = temp_stack.reg[k];
945 temp_stack.reg[k] = temp_stack.reg[j];
946 temp_stack.reg[j] = temp;
947 }
948
949 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
950 }
951
952 /* Handle a move to or from a stack register in PAT, which is in INSN.
953 REGSTACK is the current stack. Return whether a control flow insn
954 was deleted in the process. */
955
956 static bool
move_for_stack_reg(rtx insn,stack regstack,rtx pat)957 move_for_stack_reg (rtx insn, stack regstack, rtx pat)
958 {
959 rtx *psrc = get_true_reg (&SET_SRC (pat));
960 rtx *pdest = get_true_reg (&SET_DEST (pat));
961 rtx src, dest;
962 rtx note;
963 bool control_flow_insn_deleted = false;
964
965 src = *psrc; dest = *pdest;
966
967 if (STACK_REG_P (src) && STACK_REG_P (dest))
968 {
969 /* Write from one stack reg to another. If SRC dies here, then
970 just change the register mapping and delete the insn. */
971
972 note = find_regno_note (insn, REG_DEAD, REGNO (src));
973 if (note)
974 {
975 int i;
976
977 /* If this is a no-op move, there must not be a REG_DEAD note. */
978 gcc_assert (REGNO (src) != REGNO (dest));
979
980 for (i = regstack->top; i >= 0; i--)
981 if (regstack->reg[i] == REGNO (src))
982 break;
983
984 /* The destination must be dead, or life analysis is borked. */
985 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
986
987 /* If the source is not live, this is yet another case of
988 uninitialized variables. Load up a NaN instead. */
989 if (i < 0)
990 return move_nan_for_stack_reg (insn, regstack, dest);
991
992 /* It is possible that the dest is unused after this insn.
993 If so, just pop the src. */
994
995 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
996 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
997 else
998 {
999 regstack->reg[i] = REGNO (dest);
1000 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1001 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1002 }
1003
1004 control_flow_insn_deleted |= control_flow_insn_p (insn);
1005 delete_insn (insn);
1006 return control_flow_insn_deleted;
1007 }
1008
1009 /* The source reg does not die. */
1010
1011 /* If this appears to be a no-op move, delete it, or else it
1012 will confuse the machine description output patterns. But if
1013 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1014 for REG_UNUSED will not work for deleted insns. */
1015
1016 if (REGNO (src) == REGNO (dest))
1017 {
1018 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1019 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1020
1021 control_flow_insn_deleted |= control_flow_insn_p (insn);
1022 delete_insn (insn);
1023 return control_flow_insn_deleted;
1024 }
1025
1026 /* The destination ought to be dead. */
1027 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1028
1029 replace_reg (psrc, get_hard_regnum (regstack, src));
1030
1031 regstack->reg[++regstack->top] = REGNO (dest);
1032 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1033 replace_reg (pdest, FIRST_STACK_REG);
1034 }
1035 else if (STACK_REG_P (src))
1036 {
1037 /* Save from a stack reg to MEM, or possibly integer reg. Since
1038 only top of stack may be saved, emit an exchange first if
1039 needs be. */
1040
1041 emit_swap_insn (insn, regstack, src);
1042
1043 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1044 if (note)
1045 {
1046 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1047 regstack->top--;
1048 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1049 }
1050 else if ((GET_MODE (src) == XFmode)
1051 && regstack->top < REG_STACK_SIZE - 1)
1052 {
1053 /* A 387 cannot write an XFmode value to a MEM without
1054 clobbering the source reg. The output code can handle
1055 this by reading back the value from the MEM.
1056 But it is more efficient to use a temp register if one is
1057 available. Push the source value here if the register
1058 stack is not full, and then write the value to memory via
1059 a pop. */
1060 rtx push_rtx;
1061 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1062
1063 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1064 emit_insn_before (push_rtx, insn);
1065 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, top_stack_reg,
1066 REG_NOTES (insn));
1067 }
1068
1069 replace_reg (psrc, FIRST_STACK_REG);
1070 }
1071 else
1072 {
1073 gcc_assert (STACK_REG_P (dest));
1074
1075 /* Load from MEM, or possibly integer REG or constant, into the
1076 stack regs. The actual target is always the top of the
1077 stack. The stack mapping is changed to reflect that DEST is
1078 now at top of stack. */
1079
1080 /* The destination ought to be dead. */
1081 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1082
1083 gcc_assert (regstack->top < REG_STACK_SIZE);
1084
1085 regstack->reg[++regstack->top] = REGNO (dest);
1086 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1087 replace_reg (pdest, FIRST_STACK_REG);
1088 }
1089
1090 return control_flow_insn_deleted;
1091 }
1092
1093 /* A helper function which replaces INSN with a pattern that loads up
1094 a NaN into DEST, then invokes move_for_stack_reg. */
1095
1096 static bool
move_nan_for_stack_reg(rtx insn,stack regstack,rtx dest)1097 move_nan_for_stack_reg (rtx insn, stack regstack, rtx dest)
1098 {
1099 rtx pat;
1100
1101 dest = FP_MODE_REG (REGNO (dest), SFmode);
1102 pat = gen_rtx_SET (VOIDmode, dest, not_a_num);
1103 PATTERN (insn) = pat;
1104 INSN_CODE (insn) = -1;
1105
1106 return move_for_stack_reg (insn, regstack, pat);
1107 }
1108
1109 /* Swap the condition on a branch, if there is one. Return true if we
1110 found a condition to swap. False if the condition was not used as
1111 such. */
1112
1113 static int
swap_rtx_condition_1(rtx pat)1114 swap_rtx_condition_1 (rtx pat)
1115 {
1116 const char *fmt;
1117 int i, r = 0;
1118
1119 if (COMPARISON_P (pat))
1120 {
1121 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1122 r = 1;
1123 }
1124 else
1125 {
1126 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1127 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1128 {
1129 if (fmt[i] == 'E')
1130 {
1131 int j;
1132
1133 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1134 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1135 }
1136 else if (fmt[i] == 'e')
1137 r |= swap_rtx_condition_1 (XEXP (pat, i));
1138 }
1139 }
1140
1141 return r;
1142 }
1143
1144 static int
swap_rtx_condition(rtx insn)1145 swap_rtx_condition (rtx insn)
1146 {
1147 rtx pat = PATTERN (insn);
1148
1149 /* We're looking for a single set to cc0 or an HImode temporary. */
1150
1151 if (GET_CODE (pat) == SET
1152 && REG_P (SET_DEST (pat))
1153 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1154 {
1155 insn = next_flags_user (insn);
1156 if (insn == NULL_RTX)
1157 return 0;
1158 pat = PATTERN (insn);
1159 }
1160
1161 /* See if this is, or ends in, a fnstsw. If so, we're not doing anything
1162 with the cc value right now. We may be able to search for one
1163 though. */
1164
1165 if (GET_CODE (pat) == SET
1166 && GET_CODE (SET_SRC (pat)) == UNSPEC
1167 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1168 {
1169 rtx dest = SET_DEST (pat);
1170
1171 /* Search forward looking for the first use of this value.
1172 Stop at block boundaries. */
1173 while (insn != BB_END (current_block))
1174 {
1175 insn = NEXT_INSN (insn);
1176 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1177 break;
1178 if (CALL_P (insn))
1179 return 0;
1180 }
1181
1182 /* We haven't found it. */
1183 if (insn == BB_END (current_block))
1184 return 0;
1185
1186 /* So we've found the insn using this value. If it is anything
1187 other than sahf or the value does not die (meaning we'd have
1188 to search further), then we must give up. */
1189 pat = PATTERN (insn);
1190 if (GET_CODE (pat) != SET
1191 || GET_CODE (SET_SRC (pat)) != UNSPEC
1192 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1193 || ! dead_or_set_p (insn, dest))
1194 return 0;
1195
1196 /* Now we are prepared to handle this as a normal cc0 setter. */
1197 insn = next_flags_user (insn);
1198 if (insn == NULL_RTX)
1199 return 0;
1200 pat = PATTERN (insn);
1201 }
1202
1203 if (swap_rtx_condition_1 (pat))
1204 {
1205 int fail = 0;
1206 INSN_CODE (insn) = -1;
1207 if (recog_memoized (insn) == -1)
1208 fail = 1;
1209 /* In case the flags don't die here, recurse to try fix
1210 following user too. */
1211 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1212 {
1213 insn = next_flags_user (insn);
1214 if (!insn || !swap_rtx_condition (insn))
1215 fail = 1;
1216 }
1217 if (fail)
1218 {
1219 swap_rtx_condition_1 (pat);
1220 return 0;
1221 }
1222 return 1;
1223 }
1224 return 0;
1225 }
1226
1227 /* Handle a comparison. Special care needs to be taken to avoid
1228 causing comparisons that a 387 cannot do correctly, such as EQ.
1229
1230 Also, a pop insn may need to be emitted. The 387 does have an
1231 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1232 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1233 set up. */
1234
1235 static void
compare_for_stack_reg(rtx insn,stack regstack,rtx pat_src)1236 compare_for_stack_reg (rtx insn, stack regstack, rtx pat_src)
1237 {
1238 rtx *src1, *src2;
1239 rtx src1_note, src2_note;
1240
1241 src1 = get_true_reg (&XEXP (pat_src, 0));
1242 src2 = get_true_reg (&XEXP (pat_src, 1));
1243
1244 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1245 registers that die in this insn - move those to stack top first. */
1246 if ((! STACK_REG_P (*src1)
1247 || (STACK_REG_P (*src2)
1248 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1249 && swap_rtx_condition (insn))
1250 {
1251 rtx temp;
1252 temp = XEXP (pat_src, 0);
1253 XEXP (pat_src, 0) = XEXP (pat_src, 1);
1254 XEXP (pat_src, 1) = temp;
1255
1256 src1 = get_true_reg (&XEXP (pat_src, 0));
1257 src2 = get_true_reg (&XEXP (pat_src, 1));
1258
1259 INSN_CODE (insn) = -1;
1260 }
1261
1262 /* We will fix any death note later. */
1263
1264 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1265
1266 if (STACK_REG_P (*src2))
1267 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1268 else
1269 src2_note = NULL_RTX;
1270
1271 emit_swap_insn (insn, regstack, *src1);
1272
1273 replace_reg (src1, FIRST_STACK_REG);
1274
1275 if (STACK_REG_P (*src2))
1276 replace_reg (src2, get_hard_regnum (regstack, *src2));
1277
1278 if (src1_note)
1279 {
1280 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1281 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1282 }
1283
1284 /* If the second operand dies, handle that. But if the operands are
1285 the same stack register, don't bother, because only one death is
1286 needed, and it was just handled. */
1287
1288 if (src2_note
1289 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1290 && REGNO (*src1) == REGNO (*src2)))
1291 {
1292 /* As a special case, two regs may die in this insn if src2 is
1293 next to top of stack and the top of stack also dies. Since
1294 we have already popped src1, "next to top of stack" is really
1295 at top (FIRST_STACK_REG) now. */
1296
1297 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1298 && src1_note)
1299 {
1300 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1301 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1302 }
1303 else
1304 {
1305 /* The 386 can only represent death of the first operand in
1306 the case handled above. In all other cases, emit a separate
1307 pop and remove the death note from here. */
1308
1309 /* link_cc0_insns (insn); */
1310
1311 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1312
1313 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1314 EMIT_AFTER);
1315 }
1316 }
1317 }
1318
1319 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1320 is the current register layout. Return whether a control flow insn
1321 was deleted in the process. */
1322
1323 static bool
subst_stack_regs_pat(rtx insn,stack regstack,rtx pat)1324 subst_stack_regs_pat (rtx insn, stack regstack, rtx pat)
1325 {
1326 rtx *dest, *src;
1327 bool control_flow_insn_deleted = false;
1328
1329 switch (GET_CODE (pat))
1330 {
1331 case USE:
1332 /* Deaths in USE insns can happen in non optimizing compilation.
1333 Handle them by popping the dying register. */
1334 src = get_true_reg (&XEXP (pat, 0));
1335 if (STACK_REG_P (*src)
1336 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1337 {
1338 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1339 return control_flow_insn_deleted;
1340 }
1341 /* ??? Uninitialized USE should not happen. */
1342 else
1343 gcc_assert (get_hard_regnum (regstack, *src) != -1);
1344 break;
1345
1346 case CLOBBER:
1347 {
1348 rtx note;
1349
1350 dest = get_true_reg (&XEXP (pat, 0));
1351 if (STACK_REG_P (*dest))
1352 {
1353 note = find_reg_note (insn, REG_DEAD, *dest);
1354
1355 if (pat != PATTERN (insn))
1356 {
1357 /* The fix_truncdi_1 pattern wants to be able to allocate
1358 its own scratch register. It does this by clobbering
1359 an fp reg so that it is assured of an empty reg-stack
1360 register. If the register is live, kill it now.
1361 Remove the DEAD/UNUSED note so we don't try to kill it
1362 later too. */
1363
1364 if (note)
1365 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1366 else
1367 {
1368 note = find_reg_note (insn, REG_UNUSED, *dest);
1369 gcc_assert (note);
1370 }
1371 remove_note (insn, note);
1372 replace_reg (dest, FIRST_STACK_REG + 1);
1373 }
1374 else
1375 {
1376 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1377 indicates an uninitialized value. Because reload removed
1378 all other clobbers, this must be due to a function
1379 returning without a value. Load up a NaN. */
1380
1381 if (!note)
1382 {
1383 rtx t = *dest;
1384 if (COMPLEX_MODE_P (GET_MODE (t)))
1385 {
1386 rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
1387 if (get_hard_regnum (regstack, u) == -1)
1388 {
1389 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
1390 rtx insn2 = emit_insn_before (pat2, insn);
1391 control_flow_insn_deleted
1392 |= move_nan_for_stack_reg (insn2, regstack, u);
1393 }
1394 }
1395 if (get_hard_regnum (regstack, t) == -1)
1396 control_flow_insn_deleted
1397 |= move_nan_for_stack_reg (insn, regstack, t);
1398 }
1399 }
1400 }
1401 break;
1402 }
1403
1404 case SET:
1405 {
1406 rtx *src1 = (rtx *) 0, *src2;
1407 rtx src1_note, src2_note;
1408 rtx pat_src;
1409
1410 dest = get_true_reg (&SET_DEST (pat));
1411 src = get_true_reg (&SET_SRC (pat));
1412 pat_src = SET_SRC (pat);
1413
1414 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1415 if (STACK_REG_P (*src)
1416 || (STACK_REG_P (*dest)
1417 && (REG_P (*src) || MEM_P (*src)
1418 || GET_CODE (*src) == CONST_DOUBLE)))
1419 {
1420 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1421 break;
1422 }
1423
1424 switch (GET_CODE (pat_src))
1425 {
1426 case COMPARE:
1427 compare_for_stack_reg (insn, regstack, pat_src);
1428 break;
1429
1430 case CALL:
1431 {
1432 int count;
1433 for (count = hard_regno_nregs[REGNO (*dest)][GET_MODE (*dest)];
1434 --count >= 0;)
1435 {
1436 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1437 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1438 }
1439 }
1440 replace_reg (dest, FIRST_STACK_REG);
1441 break;
1442
1443 case REG:
1444 /* This is a `tstM2' case. */
1445 gcc_assert (*dest == cc0_rtx);
1446 src1 = src;
1447
1448 /* Fall through. */
1449
1450 case FLOAT_TRUNCATE:
1451 case SQRT:
1452 case ABS:
1453 case NEG:
1454 /* These insns only operate on the top of the stack. DEST might
1455 be cc0_rtx if we're processing a tstM pattern. Also, it's
1456 possible that the tstM case results in a REG_DEAD note on the
1457 source. */
1458
1459 if (src1 == 0)
1460 src1 = get_true_reg (&XEXP (pat_src, 0));
1461
1462 emit_swap_insn (insn, regstack, *src1);
1463
1464 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1465
1466 if (STACK_REG_P (*dest))
1467 replace_reg (dest, FIRST_STACK_REG);
1468
1469 if (src1_note)
1470 {
1471 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1472 regstack->top--;
1473 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1474 }
1475
1476 replace_reg (src1, FIRST_STACK_REG);
1477 break;
1478
1479 case MINUS:
1480 case DIV:
1481 /* On i386, reversed forms of subM3 and divM3 exist for
1482 MODE_FLOAT, so the same code that works for addM3 and mulM3
1483 can be used. */
1484 case MULT:
1485 case PLUS:
1486 /* These insns can accept the top of stack as a destination
1487 from a stack reg or mem, or can use the top of stack as a
1488 source and some other stack register (possibly top of stack)
1489 as a destination. */
1490
1491 src1 = get_true_reg (&XEXP (pat_src, 0));
1492 src2 = get_true_reg (&XEXP (pat_src, 1));
1493
1494 /* We will fix any death note later. */
1495
1496 if (STACK_REG_P (*src1))
1497 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1498 else
1499 src1_note = NULL_RTX;
1500 if (STACK_REG_P (*src2))
1501 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1502 else
1503 src2_note = NULL_RTX;
1504
1505 /* If either operand is not a stack register, then the dest
1506 must be top of stack. */
1507
1508 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1509 emit_swap_insn (insn, regstack, *dest);
1510 else
1511 {
1512 /* Both operands are REG. If neither operand is already
1513 at the top of stack, choose to make the one that is the dest
1514 the new top of stack. */
1515
1516 int src1_hard_regnum, src2_hard_regnum;
1517
1518 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1519 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1520 gcc_assert (src1_hard_regnum != -1);
1521 gcc_assert (src2_hard_regnum != -1);
1522
1523 if (src1_hard_regnum != FIRST_STACK_REG
1524 && src2_hard_regnum != FIRST_STACK_REG)
1525 emit_swap_insn (insn, regstack, *dest);
1526 }
1527
1528 if (STACK_REG_P (*src1))
1529 replace_reg (src1, get_hard_regnum (regstack, *src1));
1530 if (STACK_REG_P (*src2))
1531 replace_reg (src2, get_hard_regnum (regstack, *src2));
1532
1533 if (src1_note)
1534 {
1535 rtx src1_reg = XEXP (src1_note, 0);
1536
1537 /* If the register that dies is at the top of stack, then
1538 the destination is somewhere else - merely substitute it.
1539 But if the reg that dies is not at top of stack, then
1540 move the top of stack to the dead reg, as though we had
1541 done the insn and then a store-with-pop. */
1542
1543 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1544 {
1545 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1546 replace_reg (dest, get_hard_regnum (regstack, *dest));
1547 }
1548 else
1549 {
1550 int regno = get_hard_regnum (regstack, src1_reg);
1551
1552 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1553 replace_reg (dest, regno);
1554
1555 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1556 = regstack->reg[regstack->top];
1557 }
1558
1559 CLEAR_HARD_REG_BIT (regstack->reg_set,
1560 REGNO (XEXP (src1_note, 0)));
1561 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1562 regstack->top--;
1563 }
1564 else if (src2_note)
1565 {
1566 rtx src2_reg = XEXP (src2_note, 0);
1567 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1568 {
1569 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1570 replace_reg (dest, get_hard_regnum (regstack, *dest));
1571 }
1572 else
1573 {
1574 int regno = get_hard_regnum (regstack, src2_reg);
1575
1576 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1577 replace_reg (dest, regno);
1578
1579 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1580 = regstack->reg[regstack->top];
1581 }
1582
1583 CLEAR_HARD_REG_BIT (regstack->reg_set,
1584 REGNO (XEXP (src2_note, 0)));
1585 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1586 regstack->top--;
1587 }
1588 else
1589 {
1590 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1591 replace_reg (dest, get_hard_regnum (regstack, *dest));
1592 }
1593
1594 /* Keep operand 1 matching with destination. */
1595 if (COMMUTATIVE_ARITH_P (pat_src)
1596 && REG_P (*src1) && REG_P (*src2)
1597 && REGNO (*src1) != REGNO (*dest))
1598 {
1599 int tmp = REGNO (*src1);
1600 replace_reg (src1, REGNO (*src2));
1601 replace_reg (src2, tmp);
1602 }
1603 break;
1604
1605 case UNSPEC:
1606 switch (XINT (pat_src, 1))
1607 {
1608 case UNSPEC_FIST:
1609
1610 case UNSPEC_FIST_FLOOR:
1611 case UNSPEC_FIST_CEIL:
1612
1613 /* These insns only operate on the top of the stack. */
1614
1615 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1616 emit_swap_insn (insn, regstack, *src1);
1617
1618 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1619
1620 if (STACK_REG_P (*dest))
1621 replace_reg (dest, FIRST_STACK_REG);
1622
1623 if (src1_note)
1624 {
1625 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1626 regstack->top--;
1627 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1628 }
1629
1630 replace_reg (src1, FIRST_STACK_REG);
1631 break;
1632
1633 case UNSPEC_SIN:
1634 case UNSPEC_COS:
1635 case UNSPEC_FRNDINT:
1636 case UNSPEC_F2XM1:
1637
1638 case UNSPEC_FRNDINT_FLOOR:
1639 case UNSPEC_FRNDINT_CEIL:
1640 case UNSPEC_FRNDINT_TRUNC:
1641 case UNSPEC_FRNDINT_MASK_PM:
1642
1643 /* These insns only operate on the top of the stack. */
1644
1645 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1646
1647 emit_swap_insn (insn, regstack, *src1);
1648
1649 /* Input should never die, it is
1650 replaced with output. */
1651 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1652 gcc_assert (!src1_note);
1653
1654 if (STACK_REG_P (*dest))
1655 replace_reg (dest, FIRST_STACK_REG);
1656
1657 replace_reg (src1, FIRST_STACK_REG);
1658 break;
1659
1660 case UNSPEC_FPATAN:
1661 case UNSPEC_FYL2X:
1662 case UNSPEC_FYL2XP1:
1663 /* These insns operate on the top two stack slots. */
1664
1665 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1666 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1667
1668 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1669 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1670
1671 swap_to_top (insn, regstack, *src1, *src2);
1672
1673 replace_reg (src1, FIRST_STACK_REG);
1674 replace_reg (src2, FIRST_STACK_REG + 1);
1675
1676 if (src1_note)
1677 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1678 if (src2_note)
1679 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1680
1681 /* Pop both input operands from the stack. */
1682 CLEAR_HARD_REG_BIT (regstack->reg_set,
1683 regstack->reg[regstack->top]);
1684 CLEAR_HARD_REG_BIT (regstack->reg_set,
1685 regstack->reg[regstack->top - 1]);
1686 regstack->top -= 2;
1687
1688 /* Push the result back onto the stack. */
1689 regstack->reg[++regstack->top] = REGNO (*dest);
1690 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1691 replace_reg (dest, FIRST_STACK_REG);
1692 break;
1693
1694 case UNSPEC_FSCALE_FRACT:
1695 case UNSPEC_FPREM_F:
1696 case UNSPEC_FPREM1_F:
1697 /* These insns operate on the top two stack slots.
1698 first part of double input, double output insn. */
1699
1700 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1701 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1702
1703 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1704 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1705
1706 /* Inputs should never die, they are
1707 replaced with outputs. */
1708 gcc_assert (!src1_note);
1709 gcc_assert (!src2_note);
1710
1711 swap_to_top (insn, regstack, *src1, *src2);
1712
1713 /* Push the result back onto stack. Empty stack slot
1714 will be filled in second part of insn. */
1715 if (STACK_REG_P (*dest)) {
1716 regstack->reg[regstack->top] = REGNO (*dest);
1717 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1718 replace_reg (dest, FIRST_STACK_REG);
1719 }
1720
1721 replace_reg (src1, FIRST_STACK_REG);
1722 replace_reg (src2, FIRST_STACK_REG + 1);
1723 break;
1724
1725 case UNSPEC_FSCALE_EXP:
1726 case UNSPEC_FPREM_U:
1727 case UNSPEC_FPREM1_U:
1728 /* These insns operate on the top two stack slots./
1729 second part of double input, double output insn. */
1730
1731 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1732 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1733
1734 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1735 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1736
1737 /* Inputs should never die, they are
1738 replaced with outputs. */
1739 gcc_assert (!src1_note);
1740 gcc_assert (!src2_note);
1741
1742 swap_to_top (insn, regstack, *src1, *src2);
1743
1744 /* Push the result back onto stack. Fill empty slot from
1745 first part of insn and fix top of stack pointer. */
1746 if (STACK_REG_P (*dest)) {
1747 regstack->reg[regstack->top - 1] = REGNO (*dest);
1748 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1749 replace_reg (dest, FIRST_STACK_REG + 1);
1750 }
1751
1752 replace_reg (src1, FIRST_STACK_REG);
1753 replace_reg (src2, FIRST_STACK_REG + 1);
1754 break;
1755
1756 case UNSPEC_SINCOS_COS:
1757 case UNSPEC_TAN_ONE:
1758 case UNSPEC_XTRACT_FRACT:
1759 /* These insns operate on the top two stack slots,
1760 first part of one input, double output insn. */
1761
1762 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1763
1764 emit_swap_insn (insn, regstack, *src1);
1765
1766 /* Input should never die, it is
1767 replaced with output. */
1768 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1769 gcc_assert (!src1_note);
1770
1771 /* Push the result back onto stack. Empty stack slot
1772 will be filled in second part of insn. */
1773 if (STACK_REG_P (*dest)) {
1774 regstack->reg[regstack->top + 1] = REGNO (*dest);
1775 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1776 replace_reg (dest, FIRST_STACK_REG);
1777 }
1778
1779 replace_reg (src1, FIRST_STACK_REG);
1780 break;
1781
1782 case UNSPEC_SINCOS_SIN:
1783 case UNSPEC_TAN_TAN:
1784 case UNSPEC_XTRACT_EXP:
1785 /* These insns operate on the top two stack slots,
1786 second part of one input, double output insn. */
1787
1788 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1789
1790 emit_swap_insn (insn, regstack, *src1);
1791
1792 /* Input should never die, it is
1793 replaced with output. */
1794 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1795 gcc_assert (!src1_note);
1796
1797 /* Push the result back onto stack. Fill empty slot from
1798 first part of insn and fix top of stack pointer. */
1799 if (STACK_REG_P (*dest)) {
1800 regstack->reg[regstack->top] = REGNO (*dest);
1801 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1802 replace_reg (dest, FIRST_STACK_REG + 1);
1803
1804 regstack->top++;
1805 }
1806
1807 replace_reg (src1, FIRST_STACK_REG);
1808 break;
1809
1810 case UNSPEC_SAHF:
1811 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1812 The combination matches the PPRO fcomi instruction. */
1813
1814 pat_src = XVECEXP (pat_src, 0, 0);
1815 gcc_assert (GET_CODE (pat_src) == UNSPEC);
1816 gcc_assert (XINT (pat_src, 1) == UNSPEC_FNSTSW);
1817 /* Fall through. */
1818
1819 case UNSPEC_FNSTSW:
1820 /* Combined fcomp+fnstsw generated for doing well with
1821 CSE. When optimizing this would have been broken
1822 up before now. */
1823
1824 pat_src = XVECEXP (pat_src, 0, 0);
1825 gcc_assert (GET_CODE (pat_src) == COMPARE);
1826
1827 compare_for_stack_reg (insn, regstack, pat_src);
1828 break;
1829
1830 default:
1831 gcc_unreachable ();
1832 }
1833 break;
1834
1835 case IF_THEN_ELSE:
1836 /* This insn requires the top of stack to be the destination. */
1837
1838 src1 = get_true_reg (&XEXP (pat_src, 1));
1839 src2 = get_true_reg (&XEXP (pat_src, 2));
1840
1841 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1842 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1843
1844 /* If the comparison operator is an FP comparison operator,
1845 it is handled correctly by compare_for_stack_reg () who
1846 will move the destination to the top of stack. But if the
1847 comparison operator is not an FP comparison operator, we
1848 have to handle it here. */
1849 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1850 && REGNO (*dest) != regstack->reg[regstack->top])
1851 {
1852 /* In case one of operands is the top of stack and the operands
1853 dies, it is safe to make it the destination operand by
1854 reversing the direction of cmove and avoid fxch. */
1855 if ((REGNO (*src1) == regstack->reg[regstack->top]
1856 && src1_note)
1857 || (REGNO (*src2) == regstack->reg[regstack->top]
1858 && src2_note))
1859 {
1860 int idx1 = (get_hard_regnum (regstack, *src1)
1861 - FIRST_STACK_REG);
1862 int idx2 = (get_hard_regnum (regstack, *src2)
1863 - FIRST_STACK_REG);
1864
1865 /* Make reg-stack believe that the operands are already
1866 swapped on the stack */
1867 regstack->reg[regstack->top - idx1] = REGNO (*src2);
1868 regstack->reg[regstack->top - idx2] = REGNO (*src1);
1869
1870 /* Reverse condition to compensate the operand swap.
1871 i386 do have comparison always reversible. */
1872 PUT_CODE (XEXP (pat_src, 0),
1873 reversed_comparison_code (XEXP (pat_src, 0), insn));
1874 }
1875 else
1876 emit_swap_insn (insn, regstack, *dest);
1877 }
1878
1879 {
1880 rtx src_note [3];
1881 int i;
1882
1883 src_note[0] = 0;
1884 src_note[1] = src1_note;
1885 src_note[2] = src2_note;
1886
1887 if (STACK_REG_P (*src1))
1888 replace_reg (src1, get_hard_regnum (regstack, *src1));
1889 if (STACK_REG_P (*src2))
1890 replace_reg (src2, get_hard_regnum (regstack, *src2));
1891
1892 for (i = 1; i <= 2; i++)
1893 if (src_note [i])
1894 {
1895 int regno = REGNO (XEXP (src_note[i], 0));
1896
1897 /* If the register that dies is not at the top of
1898 stack, then move the top of stack to the dead reg.
1899 Top of stack should never die, as it is the
1900 destination. */
1901 gcc_assert (regno != regstack->reg[regstack->top]);
1902 remove_regno_note (insn, REG_DEAD, regno);
1903 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1904 EMIT_AFTER);
1905 }
1906 }
1907
1908 /* Make dest the top of stack. Add dest to regstack if
1909 not present. */
1910 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1911 regstack->reg[++regstack->top] = REGNO (*dest);
1912 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1913 replace_reg (dest, FIRST_STACK_REG);
1914 break;
1915
1916 default:
1917 gcc_unreachable ();
1918 }
1919 break;
1920 }
1921
1922 default:
1923 break;
1924 }
1925
1926 return control_flow_insn_deleted;
1927 }
1928
1929 /* Substitute hard regnums for any stack regs in INSN, which has
1930 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
1931 before the insn, and is updated with changes made here.
1932
1933 There are several requirements and assumptions about the use of
1934 stack-like regs in asm statements. These rules are enforced by
1935 record_asm_stack_regs; see comments there for details. Any
1936 asm_operands left in the RTL at this point may be assume to meet the
1937 requirements, since record_asm_stack_regs removes any problem asm. */
1938
1939 static void
subst_asm_stack_regs(rtx insn,stack regstack)1940 subst_asm_stack_regs (rtx insn, stack regstack)
1941 {
1942 rtx body = PATTERN (insn);
1943 int alt;
1944
1945 rtx *note_reg; /* Array of note contents */
1946 rtx **note_loc; /* Address of REG field of each note */
1947 enum reg_note *note_kind; /* The type of each note */
1948
1949 rtx *clobber_reg = 0;
1950 rtx **clobber_loc = 0;
1951
1952 struct stack_def temp_stack;
1953 int n_notes;
1954 int n_clobbers;
1955 rtx note;
1956 int i;
1957 int n_inputs, n_outputs;
1958
1959 if (! check_asm_stack_operands (insn))
1960 return;
1961
1962 /* Find out what the constraints required. If no constraint
1963 alternative matches, that is a compiler bug: we should have caught
1964 such an insn in check_asm_stack_operands. */
1965 extract_insn (insn);
1966 constrain_operands (1);
1967 alt = which_alternative;
1968
1969 preprocess_constraints ();
1970
1971 n_inputs = get_asm_operand_n_inputs (body);
1972 n_outputs = recog_data.n_operands - n_inputs;
1973
1974 gcc_assert (alt >= 0);
1975
1976 /* Strip SUBREGs here to make the following code simpler. */
1977 for (i = 0; i < recog_data.n_operands; i++)
1978 if (GET_CODE (recog_data.operand[i]) == SUBREG
1979 && REG_P (SUBREG_REG (recog_data.operand[i])))
1980 {
1981 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
1982 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1983 }
1984
1985 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
1986
1987 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
1988 i++;
1989
1990 note_reg = alloca (i * sizeof (rtx));
1991 note_loc = alloca (i * sizeof (rtx *));
1992 note_kind = alloca (i * sizeof (enum reg_note));
1993
1994 n_notes = 0;
1995 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1996 {
1997 rtx reg = XEXP (note, 0);
1998 rtx *loc = & XEXP (note, 0);
1999
2000 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2001 {
2002 loc = & SUBREG_REG (reg);
2003 reg = SUBREG_REG (reg);
2004 }
2005
2006 if (STACK_REG_P (reg)
2007 && (REG_NOTE_KIND (note) == REG_DEAD
2008 || REG_NOTE_KIND (note) == REG_UNUSED))
2009 {
2010 note_reg[n_notes] = reg;
2011 note_loc[n_notes] = loc;
2012 note_kind[n_notes] = REG_NOTE_KIND (note);
2013 n_notes++;
2014 }
2015 }
2016
2017 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2018
2019 n_clobbers = 0;
2020
2021 if (GET_CODE (body) == PARALLEL)
2022 {
2023 clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
2024 clobber_loc = alloca (XVECLEN (body, 0) * sizeof (rtx *));
2025
2026 for (i = 0; i < XVECLEN (body, 0); i++)
2027 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2028 {
2029 rtx clobber = XVECEXP (body, 0, i);
2030 rtx reg = XEXP (clobber, 0);
2031 rtx *loc = & XEXP (clobber, 0);
2032
2033 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2034 {
2035 loc = & SUBREG_REG (reg);
2036 reg = SUBREG_REG (reg);
2037 }
2038
2039 if (STACK_REG_P (reg))
2040 {
2041 clobber_reg[n_clobbers] = reg;
2042 clobber_loc[n_clobbers] = loc;
2043 n_clobbers++;
2044 }
2045 }
2046 }
2047
2048 temp_stack = *regstack;
2049
2050 /* Put the input regs into the desired place in TEMP_STACK. */
2051
2052 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2053 if (STACK_REG_P (recog_data.operand[i])
2054 && reg_class_subset_p (recog_op_alt[i][alt].cl,
2055 FLOAT_REGS)
2056 && recog_op_alt[i][alt].cl != FLOAT_REGS)
2057 {
2058 /* If an operand needs to be in a particular reg in
2059 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2060 these constraints are for single register classes, and
2061 reload guaranteed that operand[i] is already in that class,
2062 we can just use REGNO (recog_data.operand[i]) to know which
2063 actual reg this operand needs to be in. */
2064
2065 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2066
2067 gcc_assert (regno >= 0);
2068
2069 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2070 {
2071 /* recog_data.operand[i] is not in the right place. Find
2072 it and swap it with whatever is already in I's place.
2073 K is where recog_data.operand[i] is now. J is where it
2074 should be. */
2075 int j, k, temp;
2076
2077 k = temp_stack.top - (regno - FIRST_STACK_REG);
2078 j = (temp_stack.top
2079 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2080
2081 temp = temp_stack.reg[k];
2082 temp_stack.reg[k] = temp_stack.reg[j];
2083 temp_stack.reg[j] = temp;
2084 }
2085 }
2086
2087 /* Emit insns before INSN to make sure the reg-stack is in the right
2088 order. */
2089
2090 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2091
2092 /* Make the needed input register substitutions. Do death notes and
2093 clobbers too, because these are for inputs, not outputs. */
2094
2095 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2096 if (STACK_REG_P (recog_data.operand[i]))
2097 {
2098 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2099
2100 gcc_assert (regnum >= 0);
2101
2102 replace_reg (recog_data.operand_loc[i], regnum);
2103 }
2104
2105 for (i = 0; i < n_notes; i++)
2106 if (note_kind[i] == REG_DEAD)
2107 {
2108 int regnum = get_hard_regnum (regstack, note_reg[i]);
2109
2110 gcc_assert (regnum >= 0);
2111
2112 replace_reg (note_loc[i], regnum);
2113 }
2114
2115 for (i = 0; i < n_clobbers; i++)
2116 {
2117 /* It's OK for a CLOBBER to reference a reg that is not live.
2118 Don't try to replace it in that case. */
2119 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2120
2121 if (regnum >= 0)
2122 {
2123 /* Sigh - clobbers always have QImode. But replace_reg knows
2124 that these regs can't be MODE_INT and will assert. Just put
2125 the right reg there without calling replace_reg. */
2126
2127 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2128 }
2129 }
2130
2131 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2132
2133 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2134 if (STACK_REG_P (recog_data.operand[i]))
2135 {
2136 /* An input reg is implicitly popped if it is tied to an
2137 output, or if there is a CLOBBER for it. */
2138 int j;
2139
2140 for (j = 0; j < n_clobbers; j++)
2141 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2142 break;
2143
2144 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
2145 {
2146 /* recog_data.operand[i] might not be at the top of stack.
2147 But that's OK, because all we need to do is pop the
2148 right number of regs off of the top of the reg-stack.
2149 record_asm_stack_regs guaranteed that all implicitly
2150 popped regs were grouped at the top of the reg-stack. */
2151
2152 CLEAR_HARD_REG_BIT (regstack->reg_set,
2153 regstack->reg[regstack->top]);
2154 regstack->top--;
2155 }
2156 }
2157
2158 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2159 Note that there isn't any need to substitute register numbers.
2160 ??? Explain why this is true. */
2161
2162 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2163 {
2164 /* See if there is an output for this hard reg. */
2165 int j;
2166
2167 for (j = 0; j < n_outputs; j++)
2168 if (STACK_REG_P (recog_data.operand[j])
2169 && REGNO (recog_data.operand[j]) == (unsigned) i)
2170 {
2171 regstack->reg[++regstack->top] = i;
2172 SET_HARD_REG_BIT (regstack->reg_set, i);
2173 break;
2174 }
2175 }
2176
2177 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2178 input that the asm didn't implicitly pop. If the asm didn't
2179 implicitly pop an input reg, that reg will still be live.
2180
2181 Note that we can't use find_regno_note here: the register numbers
2182 in the death notes have already been substituted. */
2183
2184 for (i = 0; i < n_outputs; i++)
2185 if (STACK_REG_P (recog_data.operand[i]))
2186 {
2187 int j;
2188
2189 for (j = 0; j < n_notes; j++)
2190 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2191 && note_kind[j] == REG_UNUSED)
2192 {
2193 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2194 EMIT_AFTER);
2195 break;
2196 }
2197 }
2198
2199 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2200 if (STACK_REG_P (recog_data.operand[i]))
2201 {
2202 int j;
2203
2204 for (j = 0; j < n_notes; j++)
2205 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2206 && note_kind[j] == REG_DEAD
2207 && TEST_HARD_REG_BIT (regstack->reg_set,
2208 REGNO (recog_data.operand[i])))
2209 {
2210 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2211 EMIT_AFTER);
2212 break;
2213 }
2214 }
2215 }
2216
2217 /* Substitute stack hard reg numbers for stack virtual registers in
2218 INSN. Non-stack register numbers are not changed. REGSTACK is the
2219 current stack content. Insns may be emitted as needed to arrange the
2220 stack for the 387 based on the contents of the insn. Return whether
2221 a control flow insn was deleted in the process. */
2222
2223 static bool
subst_stack_regs(rtx insn,stack regstack)2224 subst_stack_regs (rtx insn, stack regstack)
2225 {
2226 rtx *note_link, note;
2227 bool control_flow_insn_deleted = false;
2228 int i;
2229
2230 if (CALL_P (insn))
2231 {
2232 int top = regstack->top;
2233
2234 /* If there are any floating point parameters to be passed in
2235 registers for this call, make sure they are in the right
2236 order. */
2237
2238 if (top >= 0)
2239 {
2240 straighten_stack (insn, regstack);
2241
2242 /* Now mark the arguments as dead after the call. */
2243
2244 while (regstack->top >= 0)
2245 {
2246 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2247 regstack->top--;
2248 }
2249 }
2250 }
2251
2252 /* Do the actual substitution if any stack regs are mentioned.
2253 Since we only record whether entire insn mentions stack regs, and
2254 subst_stack_regs_pat only works for patterns that contain stack regs,
2255 we must check each pattern in a parallel here. A call_value_pop could
2256 fail otherwise. */
2257
2258 if (stack_regs_mentioned (insn))
2259 {
2260 int n_operands = asm_noperands (PATTERN (insn));
2261 if (n_operands >= 0)
2262 {
2263 /* This insn is an `asm' with operands. Decode the operands,
2264 decide how many are inputs, and do register substitution.
2265 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2266
2267 subst_asm_stack_regs (insn, regstack);
2268 return control_flow_insn_deleted;
2269 }
2270
2271 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2272 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2273 {
2274 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2275 {
2276 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2277 XVECEXP (PATTERN (insn), 0, i)
2278 = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2279 control_flow_insn_deleted
2280 |= subst_stack_regs_pat (insn, regstack,
2281 XVECEXP (PATTERN (insn), 0, i));
2282 }
2283 }
2284 else
2285 control_flow_insn_deleted
2286 |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2287 }
2288
2289 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2290 REG_UNUSED will already have been dealt with, so just return. */
2291
2292 if (NOTE_P (insn) || INSN_DELETED_P (insn))
2293 return control_flow_insn_deleted;
2294
2295 /* If this a noreturn call, we can't insert pop insns after it.
2296 Instead, reset the stack state to empty. */
2297 if (CALL_P (insn)
2298 && find_reg_note (insn, REG_NORETURN, NULL))
2299 {
2300 regstack->top = -1;
2301 CLEAR_HARD_REG_SET (regstack->reg_set);
2302 return control_flow_insn_deleted;
2303 }
2304
2305 /* If there is a REG_UNUSED note on a stack register on this insn,
2306 the indicated reg must be popped. The REG_UNUSED note is removed,
2307 since the form of the newly emitted pop insn references the reg,
2308 making it no longer `unset'. */
2309
2310 note_link = ®_NOTES (insn);
2311 for (note = *note_link; note; note = XEXP (note, 1))
2312 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2313 {
2314 *note_link = XEXP (note, 1);
2315 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2316 }
2317 else
2318 note_link = &XEXP (note, 1);
2319
2320 return control_flow_insn_deleted;
2321 }
2322
2323 /* Change the organization of the stack so that it fits a new basic
2324 block. Some registers might have to be popped, but there can never be
2325 a register live in the new block that is not now live.
2326
2327 Insert any needed insns before or after INSN, as indicated by
2328 WHERE. OLD is the original stack layout, and NEW is the desired
2329 form. OLD is updated to reflect the code emitted, i.e., it will be
2330 the same as NEW upon return.
2331
2332 This function will not preserve block_end[]. But that information
2333 is no longer needed once this has executed. */
2334
2335 static void
change_stack(rtx insn,stack old,stack new,enum emit_where where)2336 change_stack (rtx insn, stack old, stack new, enum emit_where where)
2337 {
2338 int reg;
2339 int update_end = 0;
2340
2341 /* Stack adjustments for the first insn in a block update the
2342 current_block's stack_in instead of inserting insns directly.
2343 compensate_edges will add the necessary code later. */
2344 if (current_block
2345 && starting_stack_p
2346 && where == EMIT_BEFORE)
2347 {
2348 BLOCK_INFO (current_block)->stack_in = *new;
2349 starting_stack_p = false;
2350 *old = *new;
2351 return;
2352 }
2353
2354 /* We will be inserting new insns "backwards". If we are to insert
2355 after INSN, find the next insn, and insert before it. */
2356
2357 if (where == EMIT_AFTER)
2358 {
2359 if (current_block && BB_END (current_block) == insn)
2360 update_end = 1;
2361 insn = NEXT_INSN (insn);
2362 }
2363
2364 /* Pop any registers that are not needed in the new block. */
2365
2366 /* If the destination block's stack already has a specified layout
2367 and contains two or more registers, use a more intelligent algorithm
2368 to pop registers that minimizes the number number of fxchs below. */
2369 if (new->top > 0)
2370 {
2371 bool slots[REG_STACK_SIZE];
2372 int pops[REG_STACK_SIZE];
2373 int next, dest, topsrc;
2374
2375 /* First pass to determine the free slots. */
2376 for (reg = 0; reg <= new->top; reg++)
2377 slots[reg] = TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]);
2378
2379 /* Second pass to allocate preferred slots. */
2380 topsrc = -1;
2381 for (reg = old->top; reg > new->top; reg--)
2382 if (TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
2383 {
2384 dest = -1;
2385 for (next = 0; next <= new->top; next++)
2386 if (!slots[next] && new->reg[next] == old->reg[reg])
2387 {
2388 /* If this is a preference for the new top of stack, record
2389 the fact by remembering it's old->reg in topsrc. */
2390 if (next == new->top)
2391 topsrc = reg;
2392 slots[next] = true;
2393 dest = next;
2394 break;
2395 }
2396 pops[reg] = dest;
2397 }
2398 else
2399 pops[reg] = reg;
2400
2401 /* Intentionally, avoid placing the top of stack in it's correct
2402 location, if we still need to permute the stack below and we
2403 can usefully place it somewhere else. This is the case if any
2404 slot is still unallocated, in which case we should place the
2405 top of stack there. */
2406 if (topsrc != -1)
2407 for (reg = 0; reg < new->top; reg++)
2408 if (!slots[reg])
2409 {
2410 pops[topsrc] = reg;
2411 slots[new->top] = false;
2412 slots[reg] = true;
2413 break;
2414 }
2415
2416 /* Third pass allocates remaining slots and emits pop insns. */
2417 next = new->top;
2418 for (reg = old->top; reg > new->top; reg--)
2419 {
2420 dest = pops[reg];
2421 if (dest == -1)
2422 {
2423 /* Find next free slot. */
2424 while (slots[next])
2425 next--;
2426 dest = next--;
2427 }
2428 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], DFmode),
2429 EMIT_BEFORE);
2430 }
2431 }
2432 else
2433 {
2434 /* The following loop attempts to maximize the number of times we
2435 pop the top of the stack, as this permits the use of the faster
2436 ffreep instruction on platforms that support it. */
2437 int live, next;
2438
2439 live = 0;
2440 for (reg = 0; reg <= old->top; reg++)
2441 if (TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
2442 live++;
2443
2444 next = live;
2445 while (old->top >= live)
2446 if (TEST_HARD_REG_BIT (new->reg_set, old->reg[old->top]))
2447 {
2448 while (TEST_HARD_REG_BIT (new->reg_set, old->reg[next]))
2449 next--;
2450 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], DFmode),
2451 EMIT_BEFORE);
2452 }
2453 else
2454 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], DFmode),
2455 EMIT_BEFORE);
2456 }
2457
2458 if (new->top == -2)
2459 {
2460 /* If the new block has never been processed, then it can inherit
2461 the old stack order. */
2462
2463 new->top = old->top;
2464 memcpy (new->reg, old->reg, sizeof (new->reg));
2465 }
2466 else
2467 {
2468 /* This block has been entered before, and we must match the
2469 previously selected stack order. */
2470
2471 /* By now, the only difference should be the order of the stack,
2472 not their depth or liveliness. */
2473
2474 GO_IF_HARD_REG_EQUAL (old->reg_set, new->reg_set, win);
2475 gcc_unreachable ();
2476 win:
2477 gcc_assert (old->top == new->top);
2478
2479 /* If the stack is not empty (new->top != -1), loop here emitting
2480 swaps until the stack is correct.
2481
2482 The worst case number of swaps emitted is N + 2, where N is the
2483 depth of the stack. In some cases, the reg at the top of
2484 stack may be correct, but swapped anyway in order to fix
2485 other regs. But since we never swap any other reg away from
2486 its correct slot, this algorithm will converge. */
2487
2488 if (new->top != -1)
2489 do
2490 {
2491 /* Swap the reg at top of stack into the position it is
2492 supposed to be in, until the correct top of stack appears. */
2493
2494 while (old->reg[old->top] != new->reg[new->top])
2495 {
2496 for (reg = new->top; reg >= 0; reg--)
2497 if (new->reg[reg] == old->reg[old->top])
2498 break;
2499
2500 gcc_assert (reg != -1);
2501
2502 emit_swap_insn (insn, old,
2503 FP_MODE_REG (old->reg[reg], DFmode));
2504 }
2505
2506 /* See if any regs remain incorrect. If so, bring an
2507 incorrect reg to the top of stack, and let the while loop
2508 above fix it. */
2509
2510 for (reg = new->top; reg >= 0; reg--)
2511 if (new->reg[reg] != old->reg[reg])
2512 {
2513 emit_swap_insn (insn, old,
2514 FP_MODE_REG (old->reg[reg], DFmode));
2515 break;
2516 }
2517 } while (reg >= 0);
2518
2519 /* At this point there must be no differences. */
2520
2521 for (reg = old->top; reg >= 0; reg--)
2522 gcc_assert (old->reg[reg] == new->reg[reg]);
2523 }
2524
2525 if (update_end)
2526 BB_END (current_block) = PREV_INSN (insn);
2527 }
2528
2529 /* Print stack configuration. */
2530
2531 static void
print_stack(FILE * file,stack s)2532 print_stack (FILE *file, stack s)
2533 {
2534 if (! file)
2535 return;
2536
2537 if (s->top == -2)
2538 fprintf (file, "uninitialized\n");
2539 else if (s->top == -1)
2540 fprintf (file, "empty\n");
2541 else
2542 {
2543 int i;
2544 fputs ("[ ", file);
2545 for (i = 0; i <= s->top; ++i)
2546 fprintf (file, "%d ", s->reg[i]);
2547 fputs ("]\n", file);
2548 }
2549 }
2550
2551 /* This function was doing life analysis. We now let the regular live
2552 code do it's job, so we only need to check some extra invariants
2553 that reg-stack expects. Primary among these being that all registers
2554 are initialized before use.
2555
2556 The function returns true when code was emitted to CFG edges and
2557 commit_edge_insertions needs to be called. */
2558
2559 static int
convert_regs_entry(void)2560 convert_regs_entry (void)
2561 {
2562 int inserted = 0;
2563 edge e;
2564 edge_iterator ei;
2565
2566 /* Load something into each stack register live at function entry.
2567 Such live registers can be caused by uninitialized variables or
2568 functions not returning values on all paths. In order to keep
2569 the push/pop code happy, and to not scrog the register stack, we
2570 must put something in these registers. Use a QNaN.
2571
2572 Note that we are inserting converted code here. This code is
2573 never seen by the convert_regs pass. */
2574
2575 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2576 {
2577 basic_block block = e->dest;
2578 block_info bi = BLOCK_INFO (block);
2579 int reg, top = -1;
2580
2581 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2582 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2583 {
2584 rtx init;
2585
2586 bi->stack_in.reg[++top] = reg;
2587
2588 init = gen_rtx_SET (VOIDmode,
2589 FP_MODE_REG (FIRST_STACK_REG, SFmode),
2590 not_a_num);
2591 insert_insn_on_edge (init, e);
2592 inserted = 1;
2593 }
2594
2595 bi->stack_in.top = top;
2596 }
2597
2598 return inserted;
2599 }
2600
2601 /* Construct the desired stack for function exit. This will either
2602 be `empty', or the function return value at top-of-stack. */
2603
2604 static void
convert_regs_exit(void)2605 convert_regs_exit (void)
2606 {
2607 int value_reg_low, value_reg_high;
2608 stack output_stack;
2609 rtx retvalue;
2610
2611 retvalue = stack_result (current_function_decl);
2612 value_reg_low = value_reg_high = -1;
2613 if (retvalue)
2614 {
2615 value_reg_low = REGNO (retvalue);
2616 value_reg_high = value_reg_low
2617 + hard_regno_nregs[value_reg_low][GET_MODE (retvalue)] - 1;
2618 }
2619
2620 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2621 if (value_reg_low == -1)
2622 output_stack->top = -1;
2623 else
2624 {
2625 int reg;
2626
2627 output_stack->top = value_reg_high - value_reg_low;
2628 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2629 {
2630 output_stack->reg[value_reg_high - reg] = reg;
2631 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2632 }
2633 }
2634 }
2635
2636 /* Copy the stack info from the end of edge E's source block to the
2637 start of E's destination block. */
2638
2639 static void
propagate_stack(edge e)2640 propagate_stack (edge e)
2641 {
2642 stack src_stack = &BLOCK_INFO (e->src)->stack_out;
2643 stack dest_stack = &BLOCK_INFO (e->dest)->stack_in;
2644 int reg;
2645
2646 /* Preserve the order of the original stack, but check whether
2647 any pops are needed. */
2648 dest_stack->top = -1;
2649 for (reg = 0; reg <= src_stack->top; ++reg)
2650 if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
2651 dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
2652 }
2653
2654
2655 /* Adjust the stack of edge E's source block on exit to match the stack
2656 of it's target block upon input. The stack layouts of both blocks
2657 should have been defined by now. */
2658
2659 static bool
compensate_edge(edge e)2660 compensate_edge (edge e)
2661 {
2662 basic_block source = e->src, target = e->dest;
2663 stack target_stack = &BLOCK_INFO (target)->stack_in;
2664 stack source_stack = &BLOCK_INFO (source)->stack_out;
2665 struct stack_def regstack;
2666 int reg;
2667
2668 if (dump_file)
2669 fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
2670
2671 gcc_assert (target_stack->top != -2);
2672
2673 /* Check whether stacks are identical. */
2674 if (target_stack->top == source_stack->top)
2675 {
2676 for (reg = target_stack->top; reg >= 0; --reg)
2677 if (target_stack->reg[reg] != source_stack->reg[reg])
2678 break;
2679
2680 if (reg == -1)
2681 {
2682 if (dump_file)
2683 fprintf (dump_file, "no changes needed\n");
2684 return false;
2685 }
2686 }
2687
2688 if (dump_file)
2689 {
2690 fprintf (dump_file, "correcting stack to ");
2691 print_stack (dump_file, target_stack);
2692 }
2693
2694 /* Abnormal calls may appear to have values live in st(0), but the
2695 abnormal return path will not have actually loaded the values. */
2696 if (e->flags & EDGE_ABNORMAL_CALL)
2697 {
2698 /* Assert that the lifetimes are as we expect -- one value
2699 live at st(0) on the end of the source block, and no
2700 values live at the beginning of the destination block.
2701 For complex return values, we may have st(1) live as well. */
2702 gcc_assert (source_stack->top == 0 || source_stack->top == 1);
2703 gcc_assert (target_stack->top == -1);
2704 return false;
2705 }
2706
2707 /* Handle non-call EH edges specially. The normal return path have
2708 values in registers. These will be popped en masse by the unwind
2709 library. */
2710 if (e->flags & EDGE_EH)
2711 {
2712 gcc_assert (target_stack->top == -1);
2713 return false;
2714 }
2715
2716 /* We don't support abnormal edges. Global takes care to
2717 avoid any live register across them, so we should never
2718 have to insert instructions on such edges. */
2719 gcc_assert (! (e->flags & EDGE_ABNORMAL));
2720
2721 /* Make a copy of source_stack as change_stack is destructive. */
2722 regstack = *source_stack;
2723
2724 /* It is better to output directly to the end of the block
2725 instead of to the edge, because emit_swap can do minimal
2726 insn scheduling. We can do this when there is only one
2727 edge out, and it is not abnormal. */
2728 if (EDGE_COUNT (source->succs) == 1)
2729 {
2730 current_block = source;
2731 change_stack (BB_END (source), ®stack, target_stack,
2732 (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
2733 }
2734 else
2735 {
2736 rtx seq, after;
2737
2738 current_block = NULL;
2739 start_sequence ();
2740
2741 /* ??? change_stack needs some point to emit insns after. */
2742 after = emit_note (NOTE_INSN_DELETED);
2743
2744 change_stack (after, ®stack, target_stack, EMIT_BEFORE);
2745
2746 seq = get_insns ();
2747 end_sequence ();
2748
2749 insert_insn_on_edge (seq, e);
2750 return true;
2751 }
2752 return false;
2753 }
2754
2755 /* Traverse all non-entry edges in the CFG, and emit the necessary
2756 edge compensation code to change the stack from stack_out of the
2757 source block to the stack_in of the destination block. */
2758
2759 static bool
compensate_edges(void)2760 compensate_edges (void)
2761 {
2762 bool inserted = false;
2763 basic_block bb;
2764
2765 starting_stack_p = false;
2766
2767 FOR_EACH_BB (bb)
2768 if (bb != ENTRY_BLOCK_PTR)
2769 {
2770 edge e;
2771 edge_iterator ei;
2772
2773 FOR_EACH_EDGE (e, ei, bb->succs)
2774 inserted |= compensate_edge (e);
2775 }
2776 return inserted;
2777 }
2778
2779 /* Select the better of two edges E1 and E2 to use to determine the
2780 stack layout for their shared destination basic block. This is
2781 typically the more frequently executed. The edge E1 may be NULL
2782 (in which case E2 is returned), but E2 is always non-NULL. */
2783
2784 static edge
better_edge(edge e1,edge e2)2785 better_edge (edge e1, edge e2)
2786 {
2787 if (!e1)
2788 return e2;
2789
2790 if (EDGE_FREQUENCY (e1) > EDGE_FREQUENCY (e2))
2791 return e1;
2792 if (EDGE_FREQUENCY (e1) < EDGE_FREQUENCY (e2))
2793 return e2;
2794
2795 if (e1->count > e2->count)
2796 return e1;
2797 if (e1->count < e2->count)
2798 return e2;
2799
2800 /* Prefer critical edges to minimize inserting compensation code on
2801 critical edges. */
2802
2803 if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
2804 return EDGE_CRITICAL_P (e1) ? e1 : e2;
2805
2806 /* Avoid non-deterministic behavior. */
2807 return (e1->src->index < e2->src->index) ? e1 : e2;
2808 }
2809
2810 /* Convert stack register references in one block. */
2811
2812 static void
convert_regs_1(basic_block block)2813 convert_regs_1 (basic_block block)
2814 {
2815 struct stack_def regstack;
2816 block_info bi = BLOCK_INFO (block);
2817 int reg;
2818 rtx insn, next;
2819 bool control_flow_insn_deleted = false;
2820
2821 any_malformed_asm = false;
2822
2823 /* Choose an initial stack layout, if one hasn't already been chosen. */
2824 if (bi->stack_in.top == -2)
2825 {
2826 edge e, beste = NULL;
2827 edge_iterator ei;
2828
2829 /* Select the best incoming edge (typically the most frequent) to
2830 use as a template for this basic block. */
2831 FOR_EACH_EDGE (e, ei, block->preds)
2832 if (BLOCK_INFO (e->src)->done)
2833 beste = better_edge (beste, e);
2834
2835 if (beste)
2836 propagate_stack (beste);
2837 else
2838 {
2839 /* No predecessors. Create an arbitrary input stack. */
2840 bi->stack_in.top = -1;
2841 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2842 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2843 bi->stack_in.reg[++bi->stack_in.top] = reg;
2844 }
2845 }
2846
2847 if (dump_file)
2848 {
2849 fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
2850 print_stack (dump_file, &bi->stack_in);
2851 }
2852
2853 /* Process all insns in this block. Keep track of NEXT so that we
2854 don't process insns emitted while substituting in INSN. */
2855 current_block = block;
2856 next = BB_HEAD (block);
2857 regstack = bi->stack_in;
2858 starting_stack_p = true;
2859
2860 do
2861 {
2862 insn = next;
2863 next = NEXT_INSN (insn);
2864
2865 /* Ensure we have not missed a block boundary. */
2866 gcc_assert (next);
2867 if (insn == BB_END (block))
2868 next = NULL;
2869
2870 /* Don't bother processing unless there is a stack reg
2871 mentioned or if it's a CALL_INSN. */
2872 if (stack_regs_mentioned (insn)
2873 || CALL_P (insn))
2874 {
2875 if (dump_file)
2876 {
2877 fprintf (dump_file, " insn %d input stack: ",
2878 INSN_UID (insn));
2879 print_stack (dump_file, ®stack);
2880 }
2881 control_flow_insn_deleted |= subst_stack_regs (insn, ®stack);
2882 starting_stack_p = false;
2883 }
2884 }
2885 while (next);
2886
2887 if (dump_file)
2888 {
2889 fprintf (dump_file, "Expected live registers [");
2890 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2891 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
2892 fprintf (dump_file, " %d", reg);
2893 fprintf (dump_file, " ]\nOutput stack: ");
2894 print_stack (dump_file, ®stack);
2895 }
2896
2897 insn = BB_END (block);
2898 if (JUMP_P (insn))
2899 insn = PREV_INSN (insn);
2900
2901 /* If the function is declared to return a value, but it returns one
2902 in only some cases, some registers might come live here. Emit
2903 necessary moves for them. */
2904
2905 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2906 {
2907 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
2908 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
2909 {
2910 rtx set;
2911
2912 if (dump_file)
2913 fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
2914
2915 set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode), not_a_num);
2916 insn = emit_insn_after (set, insn);
2917 control_flow_insn_deleted |= subst_stack_regs (insn, ®stack);
2918 }
2919 }
2920
2921 /* Amongst the insns possibly deleted during the substitution process above,
2922 might have been the only trapping insn in the block. We purge the now
2923 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
2924 called at the end of convert_regs. The order in which we process the
2925 blocks ensures that we never delete an already processed edge.
2926
2927 Note that, at this point, the CFG may have been damaged by the emission
2928 of instructions after an abnormal call, which moves the basic block end
2929 (and is the reason why we call fixup_abnormal_edges later). So we must
2930 be sure that the trapping insn has been deleted before trying to purge
2931 dead edges, otherwise we risk purging valid edges.
2932
2933 ??? We are normally supposed not to delete trapping insns, so we pretend
2934 that the insns deleted above don't actually trap. It would have been
2935 better to detect this earlier and avoid creating the EH edge in the first
2936 place, still, but we don't have enough information at that time. */
2937
2938 if (control_flow_insn_deleted)
2939 purge_dead_edges (block);
2940
2941 /* Something failed if the stack lives don't match. If we had malformed
2942 asms, we zapped the instruction itself, but that didn't produce the
2943 same pattern of register kills as before. */
2944 GO_IF_HARD_REG_EQUAL (regstack.reg_set, bi->out_reg_set, win);
2945 gcc_assert (any_malformed_asm);
2946 win:
2947 bi->stack_out = regstack;
2948 bi->done = true;
2949 }
2950
2951 /* Convert registers in all blocks reachable from BLOCK. */
2952
2953 static void
convert_regs_2(basic_block block)2954 convert_regs_2 (basic_block block)
2955 {
2956 basic_block *stack, *sp;
2957
2958 /* We process the blocks in a top-down manner, in a way such that one block
2959 is only processed after all its predecessors. The number of predecessors
2960 of every block has already been computed. */
2961
2962 stack = XNEWVEC (basic_block, n_basic_blocks);
2963 sp = stack;
2964
2965 *sp++ = block;
2966
2967 do
2968 {
2969 edge e;
2970 edge_iterator ei;
2971
2972 block = *--sp;
2973
2974 /* Processing BLOCK is achieved by convert_regs_1, which may purge
2975 some dead EH outgoing edge after the deletion of the trapping
2976 insn inside the block. Since the number of predecessors of
2977 BLOCK's successors was computed based on the initial edge set,
2978 we check the necessity to process some of these successors
2979 before such an edge deletion may happen. However, there is
2980 a pitfall: if BLOCK is the only predecessor of a successor and
2981 the edge between them happens to be deleted, the successor
2982 becomes unreachable and should not be processed. The problem
2983 is that there is no way to preventively detect this case so we
2984 stack the successor in all cases and hand over the task of
2985 fixing up the discrepancy to convert_regs_1. */
2986
2987 FOR_EACH_EDGE (e, ei, block->succs)
2988 if (! (e->flags & EDGE_DFS_BACK))
2989 {
2990 BLOCK_INFO (e->dest)->predecessors--;
2991 if (!BLOCK_INFO (e->dest)->predecessors)
2992 *sp++ = e->dest;
2993 }
2994
2995 convert_regs_1 (block);
2996 }
2997 while (sp != stack);
2998
2999 free (stack);
3000 }
3001
3002 /* Traverse all basic blocks in a function, converting the register
3003 references in each insn from the "flat" register file that gcc uses,
3004 to the stack-like registers the 387 uses. */
3005
3006 static void
convert_regs(void)3007 convert_regs (void)
3008 {
3009 int inserted;
3010 basic_block b;
3011 edge e;
3012 edge_iterator ei;
3013
3014 /* Initialize uninitialized registers on function entry. */
3015 inserted = convert_regs_entry ();
3016
3017 /* Construct the desired stack for function exit. */
3018 convert_regs_exit ();
3019 BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
3020
3021 /* ??? Future: process inner loops first, and give them arbitrary
3022 initial stacks which emit_swap_insn can modify. This ought to
3023 prevent double fxch that often appears at the head of a loop. */
3024
3025 /* Process all blocks reachable from all entry points. */
3026 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3027 convert_regs_2 (e->dest);
3028
3029 /* ??? Process all unreachable blocks. Though there's no excuse
3030 for keeping these even when not optimizing. */
3031 FOR_EACH_BB (b)
3032 {
3033 block_info bi = BLOCK_INFO (b);
3034
3035 if (! bi->done)
3036 convert_regs_2 (b);
3037 }
3038
3039 inserted |= compensate_edges ();
3040
3041 clear_aux_for_blocks ();
3042
3043 fixup_abnormal_edges ();
3044 if (inserted)
3045 commit_edge_insertions ();
3046
3047 if (dump_file)
3048 fputc ('\n', dump_file);
3049 }
3050
3051 /* Convert register usage from "flat" register file usage to a "stack
3052 register file. FILE is the dump file, if used.
3053
3054 Construct a CFG and run life analysis. Then convert each insn one
3055 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
3056 code duplication created when the converter inserts pop insns on
3057 the edges. */
3058
3059 static bool
reg_to_stack(void)3060 reg_to_stack (void)
3061 {
3062 basic_block bb;
3063 int i;
3064 int max_uid;
3065
3066 /* Clean up previous run. */
3067 if (stack_regs_mentioned_data != NULL)
3068 VEC_free (char, heap, stack_regs_mentioned_data);
3069
3070 /* See if there is something to do. Flow analysis is quite
3071 expensive so we might save some compilation time. */
3072 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3073 if (regs_ever_live[i])
3074 break;
3075 if (i > LAST_STACK_REG)
3076 return false;
3077
3078 /* Ok, floating point instructions exist. If not optimizing,
3079 build the CFG and run life analysis.
3080 Also need to rebuild life when superblock scheduling is done
3081 as it don't update liveness yet. */
3082 if (!optimize
3083 || ((flag_sched2_use_superblocks || flag_sched2_use_traces)
3084 && flag_schedule_insns_after_reload))
3085 {
3086 count_or_remove_death_notes (NULL, 1);
3087 life_analysis (PROP_DEATH_NOTES);
3088 }
3089 mark_dfs_back_edges ();
3090
3091 /* Set up block info for each basic block. */
3092 alloc_aux_for_blocks (sizeof (struct block_info_def));
3093 FOR_EACH_BB (bb)
3094 {
3095 block_info bi = BLOCK_INFO (bb);
3096 edge_iterator ei;
3097 edge e;
3098 int reg;
3099
3100 FOR_EACH_EDGE (e, ei, bb->preds)
3101 if (!(e->flags & EDGE_DFS_BACK)
3102 && e->src != ENTRY_BLOCK_PTR)
3103 bi->predecessors++;
3104
3105 /* Set current register status at last instruction `uninitialized'. */
3106 bi->stack_in.top = -2;
3107
3108 /* Copy live_at_end and live_at_start into temporaries. */
3109 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3110 {
3111 if (REGNO_REG_SET_P (bb->il.rtl->global_live_at_end, reg))
3112 SET_HARD_REG_BIT (bi->out_reg_set, reg);
3113 if (REGNO_REG_SET_P (bb->il.rtl->global_live_at_start, reg))
3114 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
3115 }
3116 }
3117
3118 /* Create the replacement registers up front. */
3119 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3120 {
3121 enum machine_mode mode;
3122 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3123 mode != VOIDmode;
3124 mode = GET_MODE_WIDER_MODE (mode))
3125 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3126 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
3127 mode != VOIDmode;
3128 mode = GET_MODE_WIDER_MODE (mode))
3129 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3130 }
3131
3132 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3133
3134 /* A QNaN for initializing uninitialized variables.
3135
3136 ??? We can't load from constant memory in PIC mode, because
3137 we're inserting these instructions before the prologue and
3138 the PIC register hasn't been set up. In that case, fall back
3139 on zero, which we can get from `ldz'. */
3140
3141 if (flag_pic)
3142 not_a_num = CONST0_RTX (SFmode);
3143 else
3144 {
3145 not_a_num = gen_lowpart (SFmode, GEN_INT (0x7fc00000));
3146 not_a_num = force_const_mem (SFmode, not_a_num);
3147 }
3148
3149 /* Allocate a cache for stack_regs_mentioned. */
3150 max_uid = get_max_uid ();
3151 stack_regs_mentioned_data = VEC_alloc (char, heap, max_uid + 1);
3152 memset (VEC_address (char, stack_regs_mentioned_data),
3153 0, sizeof (char) * max_uid + 1);
3154
3155 convert_regs ();
3156
3157 free_aux_for_blocks ();
3158 return true;
3159 }
3160 #endif /* STACK_REGS */
3161
3162 static bool
gate_handle_stack_regs(void)3163 gate_handle_stack_regs (void)
3164 {
3165 #ifdef STACK_REGS
3166 return 1;
3167 #else
3168 return 0;
3169 #endif
3170 }
3171
3172 /* Convert register usage from flat register file usage to a stack
3173 register file. */
3174 static unsigned int
rest_of_handle_stack_regs(void)3175 rest_of_handle_stack_regs (void)
3176 {
3177 #ifdef STACK_REGS
3178 if (reg_to_stack () && optimize)
3179 {
3180 regstack_completed = 1;
3181 if (cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_POST_REGSTACK
3182 | (flag_crossjumping ? CLEANUP_CROSSJUMP : 0))
3183 && (flag_reorder_blocks || flag_reorder_blocks_and_partition))
3184 {
3185 reorder_basic_blocks (0);
3186 cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_POST_REGSTACK);
3187 }
3188 }
3189 else
3190 regstack_completed = 1;
3191 #endif
3192 return 0;
3193 }
3194
3195 struct tree_opt_pass pass_stack_regs =
3196 {
3197 "stack", /* name */
3198 gate_handle_stack_regs, /* gate */
3199 rest_of_handle_stack_regs, /* execute */
3200 NULL, /* sub */
3201 NULL, /* next */
3202 0, /* static_pass_number */
3203 TV_REG_STACK, /* tv_id */
3204 0, /* properties_required */
3205 0, /* properties_provided */
3206 0, /* properties_destroyed */
3207 0, /* todo_flags_start */
3208 TODO_dump_func |
3209 TODO_ggc_collect, /* todo_flags_finish */
3210 'k' /* letter */
3211 };
3212