xref: /openbsd-src/gnu/gcc/gcc/local-alloc.c (revision 404b540a9034ac75a6199ad1a32d1bbc7a0d4210)
1 /* Allocate registers within a basic block, for GNU compiler.
2    Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3    1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation,
4    Inc.
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12 
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING.  If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA.  */
22 
23 /* Allocation of hard register numbers to pseudo registers is done in
24    two passes.  In this pass we consider only regs that are born and
25    die once within one basic block.  We do this one basic block at a
26    time.  Then the next pass allocates the registers that remain.
27    Two passes are used because this pass uses methods that work only
28    on linear code, but that do a better job than the general methods
29    used in global_alloc, and more quickly too.
30 
31    The assignments made are recorded in the vector reg_renumber
32    whose space is allocated here.  The rtl code itself is not altered.
33 
34    We assign each instruction in the basic block a number
35    which is its order from the beginning of the block.
36    Then we can represent the lifetime of a pseudo register with
37    a pair of numbers, and check for conflicts easily.
38    We can record the availability of hard registers with a
39    HARD_REG_SET for each instruction.  The HARD_REG_SET
40    contains 0 or 1 for each hard reg.
41 
42    To avoid register shuffling, we tie registers together when one
43    dies by being copied into another, or dies in an instruction that
44    does arithmetic to produce another.  The tied registers are
45    allocated as one.  Registers with different reg class preferences
46    can never be tied unless the class preferred by one is a subclass
47    of the one preferred by the other.
48 
49    Tying is represented with "quantity numbers".
50    A non-tied register is given a new quantity number.
51    Tied registers have the same quantity number.
52 
53    We have provision to exempt registers, even when they are contained
54    within the block, that can be tied to others that are not contained in it.
55    This is so that global_alloc could process them both and tie them then.
56    But this is currently disabled since tying in global_alloc is not
57    yet implemented.  */
58 
59 /* Pseudos allocated here can be reallocated by global.c if the hard register
60    is used as a spill register.  Currently we don't allocate such pseudos
61    here if their preferred class is likely to be used by spills.  */
62 
63 #include "config.h"
64 #include "system.h"
65 #include "coretypes.h"
66 #include "tm.h"
67 #include "hard-reg-set.h"
68 #include "rtl.h"
69 #include "tm_p.h"
70 #include "flags.h"
71 #include "regs.h"
72 #include "function.h"
73 #include "insn-config.h"
74 #include "insn-attr.h"
75 #include "recog.h"
76 #include "output.h"
77 #include "toplev.h"
78 #include "except.h"
79 #include "integrate.h"
80 #include "reload.h"
81 #include "ggc.h"
82 #include "timevar.h"
83 #include "tree-pass.h"
84 
85 /* Next quantity number available for allocation.  */
86 
87 static int next_qty;
88 
89 /* Information we maintain about each quantity.  */
90 struct qty
91 {
92   /* The number of refs to quantity Q.  */
93 
94   int n_refs;
95 
96   /* The frequency of uses of quantity Q.  */
97 
98   int freq;
99 
100   /* Insn number (counting from head of basic block)
101      where quantity Q was born.  -1 if birth has not been recorded.  */
102 
103   int birth;
104 
105   /* Insn number (counting from head of basic block)
106      where given quantity died.  Due to the way tying is done,
107      and the fact that we consider in this pass only regs that die but once,
108      a quantity can die only once.  Each quantity's life span
109      is a set of consecutive insns.  -1 if death has not been recorded.  */
110 
111   int death;
112 
113   /* Number of words needed to hold the data in given quantity.
114      This depends on its machine mode.  It is used for these purposes:
115      1. It is used in computing the relative importance of qtys,
116 	which determines the order in which we look for regs for them.
117      2. It is used in rules that prevent tying several registers of
118 	different sizes in a way that is geometrically impossible
119 	(see combine_regs).  */
120 
121   int size;
122 
123   /* Number of times a reg tied to given qty lives across a CALL_INSN.  */
124 
125   int n_calls_crossed;
126 
127   /* Number of times a reg tied to given qty lives across a CALL_INSN
128      that might throw.  */
129 
130   int n_throwing_calls_crossed;
131 
132   /* The register number of one pseudo register whose reg_qty value is Q.
133      This register should be the head of the chain
134      maintained in reg_next_in_qty.  */
135 
136   int first_reg;
137 
138   /* Reg class contained in (smaller than) the preferred classes of all
139      the pseudo regs that are tied in given quantity.
140      This is the preferred class for allocating that quantity.  */
141 
142   enum reg_class min_class;
143 
144   /* Register class within which we allocate given qty if we can't get
145      its preferred class.  */
146 
147   enum reg_class alternate_class;
148 
149   /* This holds the mode of the registers that are tied to given qty,
150      or VOIDmode if registers with differing modes are tied together.  */
151 
152   enum machine_mode mode;
153 
154   /* the hard reg number chosen for given quantity,
155      or -1 if none was found.  */
156 
157   short phys_reg;
158 };
159 
160 static struct qty *qty;
161 
162 /* These fields are kept separately to speedup their clearing.  */
163 
164 /* We maintain two hard register sets that indicate suggested hard registers
165    for each quantity.  The first, phys_copy_sugg, contains hard registers
166    that are tied to the quantity by a simple copy.  The second contains all
167    hard registers that are tied to the quantity via an arithmetic operation.
168 
169    The former register set is given priority for allocation.  This tends to
170    eliminate copy insns.  */
171 
172 /* Element Q is a set of hard registers that are suggested for quantity Q by
173    copy insns.  */
174 
175 static HARD_REG_SET *qty_phys_copy_sugg;
176 
177 /* Element Q is a set of hard registers that are suggested for quantity Q by
178    arithmetic insns.  */
179 
180 static HARD_REG_SET *qty_phys_sugg;
181 
182 /* Element Q is the number of suggested registers in qty_phys_copy_sugg.  */
183 
184 static short *qty_phys_num_copy_sugg;
185 
186 /* Element Q is the number of suggested registers in qty_phys_sugg.  */
187 
188 static short *qty_phys_num_sugg;
189 
190 /* If (REG N) has been assigned a quantity number, is a register number
191    of another register assigned the same quantity number, or -1 for the
192    end of the chain.  qty->first_reg point to the head of this chain.  */
193 
194 static int *reg_next_in_qty;
195 
196 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
197    if it is >= 0,
198    of -1 if this register cannot be allocated by local-alloc,
199    or -2 if not known yet.
200 
201    Note that if we see a use or death of pseudo register N with
202    reg_qty[N] == -2, register N must be local to the current block.  If
203    it were used in more than one block, we would have reg_qty[N] == -1.
204    This relies on the fact that if reg_basic_block[N] is >= 0, register N
205    will not appear in any other block.  We save a considerable number of
206    tests by exploiting this.
207 
208    If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
209    be referenced.  */
210 
211 static int *reg_qty;
212 
213 /* The offset (in words) of register N within its quantity.
214    This can be nonzero if register N is SImode, and has been tied
215    to a subreg of a DImode register.  */
216 
217 static char *reg_offset;
218 
219 /* Vector of substitutions of register numbers,
220    used to map pseudo regs into hardware regs.
221    This is set up as a result of register allocation.
222    Element N is the hard reg assigned to pseudo reg N,
223    or is -1 if no hard reg was assigned.
224    If N is a hard reg number, element N is N.  */
225 
226 short *reg_renumber;
227 
228 /* Set of hard registers live at the current point in the scan
229    of the instructions in a basic block.  */
230 
231 static HARD_REG_SET regs_live;
232 
233 /* Each set of hard registers indicates registers live at a particular
234    point in the basic block.  For N even, regs_live_at[N] says which
235    hard registers are needed *after* insn N/2 (i.e., they may not
236    conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
237 
238    If an object is to conflict with the inputs of insn J but not the
239    outputs of insn J + 1, we say it is born at index J*2 - 1.  Similarly,
240    if it is to conflict with the outputs of insn J but not the inputs of
241    insn J + 1, it is said to die at index J*2 + 1.  */
242 
243 static HARD_REG_SET *regs_live_at;
244 
245 /* Communicate local vars `insn_number' and `insn'
246    from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'.  */
247 static int this_insn_number;
248 static rtx this_insn;
249 
250 struct equivalence
251 {
252   /* Set when an attempt should be made to replace a register
253      with the associated src_p entry.  */
254 
255   char replace;
256 
257   /* Set when a REG_EQUIV note is found or created.  Use to
258      keep track of what memory accesses might be created later,
259      e.g. by reload.  */
260 
261   rtx replacement;
262 
263   rtx *src_p;
264 
265   /* Loop depth is used to recognize equivalences which appear
266      to be present within the same loop (or in an inner loop).  */
267 
268   int loop_depth;
269 
270   /* The list of each instruction which initializes this register.  */
271 
272   rtx init_insns;
273 
274   /* Nonzero if this had a preexisting REG_EQUIV note.  */
275 
276   int is_arg_equivalence;
277 };
278 
279 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
280    structure for that register.  */
281 
282 static struct equivalence *reg_equiv;
283 
284 /* Nonzero if we recorded an equivalence for a LABEL_REF.  */
285 static int recorded_label_ref;
286 
287 static void alloc_qty (int, enum machine_mode, int, int);
288 static void validate_equiv_mem_from_store (rtx, rtx, void *);
289 static int validate_equiv_mem (rtx, rtx, rtx);
290 static int equiv_init_varies_p (rtx);
291 static int equiv_init_movable_p (rtx, int);
292 static int contains_replace_regs (rtx);
293 static int memref_referenced_p (rtx, rtx);
294 static int memref_used_between_p (rtx, rtx, rtx);
295 static void update_equiv_regs (void);
296 static void no_equiv (rtx, rtx, void *);
297 static void block_alloc (int);
298 static int qty_sugg_compare (int, int);
299 static int qty_sugg_compare_1 (const void *, const void *);
300 static int qty_compare (int, int);
301 static int qty_compare_1 (const void *, const void *);
302 static int combine_regs (rtx, rtx, int, int, rtx, int);
303 static int reg_meets_class_p (int, enum reg_class);
304 static void update_qty_class (int, int);
305 static void reg_is_set (rtx, rtx, void *);
306 static void reg_is_born (rtx, int);
307 static void wipe_dead_reg (rtx, int);
308 static int find_free_reg (enum reg_class, enum machine_mode, int, int, int,
309 			  int, int);
310 static void mark_life (int, enum machine_mode, int);
311 static void post_mark_life (int, enum machine_mode, int, int, int);
312 static int no_conflict_p (rtx, rtx, rtx);
313 static int requires_inout (const char *);
314 
315 /* Allocate a new quantity (new within current basic block)
316    for register number REGNO which is born at index BIRTH
317    within the block.  MODE and SIZE are info on reg REGNO.  */
318 
319 static void
alloc_qty(int regno,enum machine_mode mode,int size,int birth)320 alloc_qty (int regno, enum machine_mode mode, int size, int birth)
321 {
322   int qtyno = next_qty++;
323 
324   reg_qty[regno] = qtyno;
325   reg_offset[regno] = 0;
326   reg_next_in_qty[regno] = -1;
327 
328   qty[qtyno].first_reg = regno;
329   qty[qtyno].size = size;
330   qty[qtyno].mode = mode;
331   qty[qtyno].birth = birth;
332   qty[qtyno].n_calls_crossed = REG_N_CALLS_CROSSED (regno);
333   qty[qtyno].n_throwing_calls_crossed = REG_N_THROWING_CALLS_CROSSED (regno);
334   qty[qtyno].min_class = reg_preferred_class (regno);
335   qty[qtyno].alternate_class = reg_alternate_class (regno);
336   qty[qtyno].n_refs = REG_N_REFS (regno);
337   qty[qtyno].freq = REG_FREQ (regno);
338 }
339 
340 /* Main entry point of this file.  */
341 
342 static int
local_alloc(void)343 local_alloc (void)
344 {
345   int i;
346   int max_qty;
347   basic_block b;
348 
349   /* We need to keep track of whether or not we recorded a LABEL_REF so
350      that we know if the jump optimizer needs to be rerun.  */
351   recorded_label_ref = 0;
352 
353   /* Leaf functions and non-leaf functions have different needs.
354      If defined, let the machine say what kind of ordering we
355      should use.  */
356 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
357   ORDER_REGS_FOR_LOCAL_ALLOC;
358 #endif
359 
360   /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
361      registers.  */
362   update_equiv_regs ();
363 
364   /* This sets the maximum number of quantities we can have.  Quantity
365      numbers start at zero and we can have one for each pseudo.  */
366   max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
367 
368   /* Allocate vectors of temporary data.
369      See the declarations of these variables, above,
370      for what they mean.  */
371 
372   qty = XNEWVEC (struct qty, max_qty);
373   qty_phys_copy_sugg = XNEWVEC (HARD_REG_SET, max_qty);
374   qty_phys_num_copy_sugg = XNEWVEC (short, max_qty);
375   qty_phys_sugg = XNEWVEC (HARD_REG_SET, max_qty);
376   qty_phys_num_sugg = XNEWVEC (short, max_qty);
377 
378   reg_qty = XNEWVEC (int, max_regno);
379   reg_offset = XNEWVEC (char, max_regno);
380   reg_next_in_qty = XNEWVEC (int, max_regno);
381 
382   /* Determine which pseudo-registers can be allocated by local-alloc.
383      In general, these are the registers used only in a single block and
384      which only die once.
385 
386      We need not be concerned with which block actually uses the register
387      since we will never see it outside that block.  */
388 
389   for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
390     {
391       if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1)
392 	reg_qty[i] = -2;
393       else
394 	reg_qty[i] = -1;
395     }
396 
397   /* Force loop below to initialize entire quantity array.  */
398   next_qty = max_qty;
399 
400   /* Allocate each block's local registers, block by block.  */
401 
402   FOR_EACH_BB (b)
403     {
404       /* NEXT_QTY indicates which elements of the `qty_...'
405 	 vectors might need to be initialized because they were used
406 	 for the previous block; it is set to the entire array before
407 	 block 0.  Initialize those, with explicit loop if there are few,
408 	 else with bzero and bcopy.  Do not initialize vectors that are
409 	 explicit set by `alloc_qty'.  */
410 
411       if (next_qty < 6)
412 	{
413 	  for (i = 0; i < next_qty; i++)
414 	    {
415 	      CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
416 	      qty_phys_num_copy_sugg[i] = 0;
417 	      CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
418 	      qty_phys_num_sugg[i] = 0;
419 	    }
420 	}
421       else
422 	{
423 #define CLEAR(vector)  \
424 	  memset ((vector), 0, (sizeof (*(vector))) * next_qty);
425 
426 	  CLEAR (qty_phys_copy_sugg);
427 	  CLEAR (qty_phys_num_copy_sugg);
428 	  CLEAR (qty_phys_sugg);
429 	  CLEAR (qty_phys_num_sugg);
430 	}
431 
432       next_qty = 0;
433 
434       block_alloc (b->index);
435     }
436 
437   free (qty);
438   free (qty_phys_copy_sugg);
439   free (qty_phys_num_copy_sugg);
440   free (qty_phys_sugg);
441   free (qty_phys_num_sugg);
442 
443   free (reg_qty);
444   free (reg_offset);
445   free (reg_next_in_qty);
446 
447   return recorded_label_ref;
448 }
449 
450 /* Used for communication between the following two functions: contains
451    a MEM that we wish to ensure remains unchanged.  */
452 static rtx equiv_mem;
453 
454 /* Set nonzero if EQUIV_MEM is modified.  */
455 static int equiv_mem_modified;
456 
457 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
458    Called via note_stores.  */
459 
460 static void
validate_equiv_mem_from_store(rtx dest,rtx set ATTRIBUTE_UNUSED,void * data ATTRIBUTE_UNUSED)461 validate_equiv_mem_from_store (rtx dest, rtx set ATTRIBUTE_UNUSED,
462 			       void *data ATTRIBUTE_UNUSED)
463 {
464   if ((REG_P (dest)
465        && reg_overlap_mentioned_p (dest, equiv_mem))
466       || (MEM_P (dest)
467 	  && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
468     equiv_mem_modified = 1;
469 }
470 
471 /* Verify that no store between START and the death of REG invalidates
472    MEMREF.  MEMREF is invalidated by modifying a register used in MEMREF,
473    by storing into an overlapping memory location, or with a non-const
474    CALL_INSN.
475 
476    Return 1 if MEMREF remains valid.  */
477 
478 static int
validate_equiv_mem(rtx start,rtx reg,rtx memref)479 validate_equiv_mem (rtx start, rtx reg, rtx memref)
480 {
481   rtx insn;
482   rtx note;
483 
484   equiv_mem = memref;
485   equiv_mem_modified = 0;
486 
487   /* If the memory reference has side effects or is volatile, it isn't a
488      valid equivalence.  */
489   if (side_effects_p (memref))
490     return 0;
491 
492   for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
493     {
494       if (! INSN_P (insn))
495 	continue;
496 
497       if (find_reg_note (insn, REG_DEAD, reg))
498 	return 1;
499 
500       if (CALL_P (insn) && ! MEM_READONLY_P (memref)
501 	  && ! CONST_OR_PURE_CALL_P (insn))
502 	return 0;
503 
504       note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
505 
506       /* If a register mentioned in MEMREF is modified via an
507 	 auto-increment, we lose the equivalence.  Do the same if one
508 	 dies; although we could extend the life, it doesn't seem worth
509 	 the trouble.  */
510 
511       for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
512 	if ((REG_NOTE_KIND (note) == REG_INC
513 	     || REG_NOTE_KIND (note) == REG_DEAD)
514 	    && REG_P (XEXP (note, 0))
515 	    && reg_overlap_mentioned_p (XEXP (note, 0), memref))
516 	  return 0;
517     }
518 
519   return 0;
520 }
521 
522 /* Returns zero if X is known to be invariant.  */
523 
524 static int
equiv_init_varies_p(rtx x)525 equiv_init_varies_p (rtx x)
526 {
527   RTX_CODE code = GET_CODE (x);
528   int i;
529   const char *fmt;
530 
531   switch (code)
532     {
533     case MEM:
534       return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
535 
536     case CONST:
537     case CONST_INT:
538     case CONST_DOUBLE:
539     case CONST_VECTOR:
540     case SYMBOL_REF:
541     case LABEL_REF:
542       return 0;
543 
544     case REG:
545       return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
546 
547     case ASM_OPERANDS:
548       if (MEM_VOLATILE_P (x))
549 	return 1;
550 
551       /* Fall through.  */
552 
553     default:
554       break;
555     }
556 
557   fmt = GET_RTX_FORMAT (code);
558   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
559     if (fmt[i] == 'e')
560       {
561 	if (equiv_init_varies_p (XEXP (x, i)))
562 	  return 1;
563       }
564     else if (fmt[i] == 'E')
565       {
566 	int j;
567 	for (j = 0; j < XVECLEN (x, i); j++)
568 	  if (equiv_init_varies_p (XVECEXP (x, i, j)))
569 	    return 1;
570       }
571 
572   return 0;
573 }
574 
575 /* Returns nonzero if X (used to initialize register REGNO) is movable.
576    X is only movable if the registers it uses have equivalent initializations
577    which appear to be within the same loop (or in an inner loop) and movable
578    or if they are not candidates for local_alloc and don't vary.  */
579 
580 static int
equiv_init_movable_p(rtx x,int regno)581 equiv_init_movable_p (rtx x, int regno)
582 {
583   int i, j;
584   const char *fmt;
585   enum rtx_code code = GET_CODE (x);
586 
587   switch (code)
588     {
589     case SET:
590       return equiv_init_movable_p (SET_SRC (x), regno);
591 
592     case CC0:
593     case CLOBBER:
594       return 0;
595 
596     case PRE_INC:
597     case PRE_DEC:
598     case POST_INC:
599     case POST_DEC:
600     case PRE_MODIFY:
601     case POST_MODIFY:
602       return 0;
603 
604     case REG:
605       return (reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
606 	      && reg_equiv[REGNO (x)].replace)
607 	     || (REG_BASIC_BLOCK (REGNO (x)) < 0 && ! rtx_varies_p (x, 0));
608 
609     case UNSPEC_VOLATILE:
610       return 0;
611 
612     case ASM_OPERANDS:
613       if (MEM_VOLATILE_P (x))
614 	return 0;
615 
616       /* Fall through.  */
617 
618     default:
619       break;
620     }
621 
622   fmt = GET_RTX_FORMAT (code);
623   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
624     switch (fmt[i])
625       {
626       case 'e':
627 	if (! equiv_init_movable_p (XEXP (x, i), regno))
628 	  return 0;
629 	break;
630       case 'E':
631 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
632 	  if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
633 	    return 0;
634 	break;
635       }
636 
637   return 1;
638 }
639 
640 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true.  */
641 
642 static int
contains_replace_regs(rtx x)643 contains_replace_regs (rtx x)
644 {
645   int i, j;
646   const char *fmt;
647   enum rtx_code code = GET_CODE (x);
648 
649   switch (code)
650     {
651     case CONST_INT:
652     case CONST:
653     case LABEL_REF:
654     case SYMBOL_REF:
655     case CONST_DOUBLE:
656     case CONST_VECTOR:
657     case PC:
658     case CC0:
659     case HIGH:
660       return 0;
661 
662     case REG:
663       return reg_equiv[REGNO (x)].replace;
664 
665     default:
666       break;
667     }
668 
669   fmt = GET_RTX_FORMAT (code);
670   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
671     switch (fmt[i])
672       {
673       case 'e':
674 	if (contains_replace_regs (XEXP (x, i)))
675 	  return 1;
676 	break;
677       case 'E':
678 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
679 	  if (contains_replace_regs (XVECEXP (x, i, j)))
680 	    return 1;
681 	break;
682       }
683 
684   return 0;
685 }
686 
687 /* TRUE if X references a memory location that would be affected by a store
688    to MEMREF.  */
689 
690 static int
memref_referenced_p(rtx memref,rtx x)691 memref_referenced_p (rtx memref, rtx x)
692 {
693   int i, j;
694   const char *fmt;
695   enum rtx_code code = GET_CODE (x);
696 
697   switch (code)
698     {
699     case CONST_INT:
700     case CONST:
701     case LABEL_REF:
702     case SYMBOL_REF:
703     case CONST_DOUBLE:
704     case CONST_VECTOR:
705     case PC:
706     case CC0:
707     case HIGH:
708     case LO_SUM:
709       return 0;
710 
711     case REG:
712       return (reg_equiv[REGNO (x)].replacement
713 	      && memref_referenced_p (memref,
714 				      reg_equiv[REGNO (x)].replacement));
715 
716     case MEM:
717       if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
718 	return 1;
719       break;
720 
721     case SET:
722       /* If we are setting a MEM, it doesn't count (its address does), but any
723 	 other SET_DEST that has a MEM in it is referencing the MEM.  */
724       if (MEM_P (SET_DEST (x)))
725 	{
726 	  if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
727 	    return 1;
728 	}
729       else if (memref_referenced_p (memref, SET_DEST (x)))
730 	return 1;
731 
732       return memref_referenced_p (memref, SET_SRC (x));
733 
734     default:
735       break;
736     }
737 
738   fmt = GET_RTX_FORMAT (code);
739   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
740     switch (fmt[i])
741       {
742       case 'e':
743 	if (memref_referenced_p (memref, XEXP (x, i)))
744 	  return 1;
745 	break;
746       case 'E':
747 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
748 	  if (memref_referenced_p (memref, XVECEXP (x, i, j)))
749 	    return 1;
750 	break;
751       }
752 
753   return 0;
754 }
755 
756 /* TRUE if some insn in the range (START, END] references a memory location
757    that would be affected by a store to MEMREF.  */
758 
759 static int
memref_used_between_p(rtx memref,rtx start,rtx end)760 memref_used_between_p (rtx memref, rtx start, rtx end)
761 {
762   rtx insn;
763 
764   for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
765        insn = NEXT_INSN (insn))
766     {
767       if (!INSN_P (insn))
768 	continue;
769 
770       if (memref_referenced_p (memref, PATTERN (insn)))
771 	return 1;
772 
773       /* Nonconst functions may access memory.  */
774       if (CALL_P (insn)
775 	  && (! CONST_OR_PURE_CALL_P (insn)
776 	      || pure_call_p (insn)))
777 	return 1;
778     }
779 
780   return 0;
781 }
782 
783 /* Find registers that are equivalent to a single value throughout the
784    compilation (either because they can be referenced in memory or are set once
785    from a single constant).  Lower their priority for a register.
786 
787    If such a register is only referenced once, try substituting its value
788    into the using insn.  If it succeeds, we can eliminate the register
789    completely.
790 
791    Initialize the REG_EQUIV_INIT array of initializing insns.  */
792 
793 static void
update_equiv_regs(void)794 update_equiv_regs (void)
795 {
796   rtx insn;
797   basic_block bb;
798   int loop_depth;
799   regset_head cleared_regs;
800   int clear_regnos = 0;
801 
802   reg_equiv = XCNEWVEC (struct equivalence, max_regno);
803   INIT_REG_SET (&cleared_regs);
804   reg_equiv_init = ggc_alloc_cleared (max_regno * sizeof (rtx));
805   reg_equiv_init_size = max_regno;
806 
807   init_alias_analysis ();
808 
809   /* Scan the insns and find which registers have equivalences.  Do this
810      in a separate scan of the insns because (due to -fcse-follow-jumps)
811      a register can be set below its use.  */
812   FOR_EACH_BB (bb)
813     {
814       loop_depth = bb->loop_depth;
815 
816       for (insn = BB_HEAD (bb);
817 	   insn != NEXT_INSN (BB_END (bb));
818 	   insn = NEXT_INSN (insn))
819 	{
820 	  rtx note;
821 	  rtx set;
822 	  rtx dest, src;
823 	  int regno;
824 
825 	  if (! INSN_P (insn))
826 	    continue;
827 
828 	  for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
829 	    if (REG_NOTE_KIND (note) == REG_INC)
830 	      no_equiv (XEXP (note, 0), note, NULL);
831 
832 	  set = single_set (insn);
833 
834 	  /* If this insn contains more (or less) than a single SET,
835 	     only mark all destinations as having no known equivalence.  */
836 	  if (set == 0)
837 	    {
838 	      note_stores (PATTERN (insn), no_equiv, NULL);
839 	      continue;
840 	    }
841 	  else if (GET_CODE (PATTERN (insn)) == PARALLEL)
842 	    {
843 	      int i;
844 
845 	      for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
846 		{
847 		  rtx part = XVECEXP (PATTERN (insn), 0, i);
848 		  if (part != set)
849 		    note_stores (part, no_equiv, NULL);
850 		}
851 	    }
852 
853 	  dest = SET_DEST (set);
854 	  src = SET_SRC (set);
855 
856 	  /* See if this is setting up the equivalence between an argument
857 	     register and its stack slot.  */
858 	  note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
859 	  if (note)
860 	    {
861 	      gcc_assert (REG_P (dest));
862 	      regno = REGNO (dest);
863 
864 	      /* Note that we don't want to clear reg_equiv_init even if there
865 		 are multiple sets of this register.  */
866 	      reg_equiv[regno].is_arg_equivalence = 1;
867 
868 	      /* Record for reload that this is an equivalencing insn.  */
869 	      if (rtx_equal_p (src, XEXP (note, 0)))
870 		reg_equiv_init[regno]
871 		  = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
872 
873 	      /* Continue normally in case this is a candidate for
874 		 replacements.  */
875 	    }
876 
877 	  if (!optimize)
878 	    continue;
879 
880 	  /* We only handle the case of a pseudo register being set
881 	     once, or always to the same value.  */
882 	  /* ??? The mn10200 port breaks if we add equivalences for
883 	     values that need an ADDRESS_REGS register and set them equivalent
884 	     to a MEM of a pseudo.  The actual problem is in the over-conservative
885 	     handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
886 	     calculate_needs, but we traditionally work around this problem
887 	     here by rejecting equivalences when the destination is in a register
888 	     that's likely spilled.  This is fragile, of course, since the
889 	     preferred class of a pseudo depends on all instructions that set
890 	     or use it.  */
891 
892 	  if (!REG_P (dest)
893 	      || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
894 	      || reg_equiv[regno].init_insns == const0_rtx
895 	      || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
896 		  && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
897 	    {
898 	      /* This might be setting a SUBREG of a pseudo, a pseudo that is
899 		 also set somewhere else to a constant.  */
900 	      note_stores (set, no_equiv, NULL);
901 	      continue;
902 	    }
903 
904 	  note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
905 
906 	  /* cse sometimes generates function invariants, but doesn't put a
907 	     REG_EQUAL note on the insn.  Since this note would be redundant,
908 	     there's no point creating it earlier than here.  */
909 	  if (! note && ! rtx_varies_p (src, 0))
910 	    note = set_unique_reg_note (insn, REG_EQUAL, src);
911 
912 	  /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
913 	     since it represents a function call */
914 	  if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
915 	    note = NULL_RTX;
916 
917 	  if (REG_N_SETS (regno) != 1
918 	      && (! note
919 		  || rtx_varies_p (XEXP (note, 0), 0)
920 		  || (reg_equiv[regno].replacement
921 		      && ! rtx_equal_p (XEXP (note, 0),
922 					reg_equiv[regno].replacement))))
923 	    {
924 	      no_equiv (dest, set, NULL);
925 	      continue;
926 	    }
927 	  /* Record this insn as initializing this register.  */
928 	  reg_equiv[regno].init_insns
929 	    = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
930 
931 	  /* If this register is known to be equal to a constant, record that
932 	     it is always equivalent to the constant.  */
933 	  if (note && ! rtx_varies_p (XEXP (note, 0), 0))
934 	    PUT_MODE (note, (enum machine_mode) REG_EQUIV);
935 
936 	  /* If this insn introduces a "constant" register, decrease the priority
937 	     of that register.  Record this insn if the register is only used once
938 	     more and the equivalence value is the same as our source.
939 
940 	     The latter condition is checked for two reasons:  First, it is an
941 	     indication that it may be more efficient to actually emit the insn
942 	     as written (if no registers are available, reload will substitute
943 	     the equivalence).  Secondly, it avoids problems with any registers
944 	     dying in this insn whose death notes would be missed.
945 
946 	     If we don't have a REG_EQUIV note, see if this insn is loading
947 	     a register used only in one basic block from a MEM.  If so, and the
948 	     MEM remains unchanged for the life of the register, add a REG_EQUIV
949 	     note.  */
950 
951 	  note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
952 
953 	  if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
954 	      && MEM_P (SET_SRC (set))
955 	      && validate_equiv_mem (insn, dest, SET_SRC (set)))
956 	    REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
957 							 REG_NOTES (insn));
958 
959 	  if (note)
960 	    {
961 	      int regno = REGNO (dest);
962 	      rtx x = XEXP (note, 0);
963 
964 	      /* If we haven't done so, record for reload that this is an
965 		 equivalencing insn.  */
966 	      if (!reg_equiv[regno].is_arg_equivalence)
967 		reg_equiv_init[regno]
968 		  = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
969 
970 	      /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
971 		 We might end up substituting the LABEL_REF for uses of the
972 		 pseudo here or later.  That kind of transformation may turn an
973 		 indirect jump into a direct jump, in which case we must rerun the
974 		 jump optimizer to ensure that the JUMP_LABEL fields are valid.  */
975 	      if (GET_CODE (x) == LABEL_REF
976 		  || (GET_CODE (x) == CONST
977 		      && GET_CODE (XEXP (x, 0)) == PLUS
978 		      && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
979 		recorded_label_ref = 1;
980 
981 	      reg_equiv[regno].replacement = x;
982 	      reg_equiv[regno].src_p = &SET_SRC (set);
983 	      reg_equiv[regno].loop_depth = loop_depth;
984 
985 	      /* Don't mess with things live during setjmp.  */
986 	      if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
987 		{
988 		  /* Note that the statement below does not affect the priority
989 		     in local-alloc!  */
990 		  REG_LIVE_LENGTH (regno) *= 2;
991 
992 		  /* If the register is referenced exactly twice, meaning it is
993 		     set once and used once, indicate that the reference may be
994 		     replaced by the equivalence we computed above.  Do this
995 		     even if the register is only used in one block so that
996 		     dependencies can be handled where the last register is
997 		     used in a different block (i.e. HIGH / LO_SUM sequences)
998 		     and to reduce the number of registers alive across
999 		     calls.  */
1000 
1001 		  if (REG_N_REFS (regno) == 2
1002 		      && (rtx_equal_p (x, src)
1003 			  || ! equiv_init_varies_p (src))
1004 		      && NONJUMP_INSN_P (insn)
1005 		      && equiv_init_movable_p (PATTERN (insn), regno))
1006 		    reg_equiv[regno].replace = 1;
1007 		}
1008 	    }
1009 	}
1010     }
1011 
1012   if (!optimize)
1013     goto out;
1014 
1015   /* A second pass, to gather additional equivalences with memory.  This needs
1016      to be done after we know which registers we are going to replace.  */
1017 
1018   for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1019     {
1020       rtx set, src, dest;
1021       unsigned regno;
1022 
1023       if (! INSN_P (insn))
1024 	continue;
1025 
1026       set = single_set (insn);
1027       if (! set)
1028 	continue;
1029 
1030       dest = SET_DEST (set);
1031       src = SET_SRC (set);
1032 
1033       /* If this sets a MEM to the contents of a REG that is only used
1034 	 in a single basic block, see if the register is always equivalent
1035 	 to that memory location and if moving the store from INSN to the
1036 	 insn that set REG is safe.  If so, put a REG_EQUIV note on the
1037 	 initializing insn.
1038 
1039 	 Don't add a REG_EQUIV note if the insn already has one.  The existing
1040 	 REG_EQUIV is likely more useful than the one we are adding.
1041 
1042 	 If one of the regs in the address has reg_equiv[REGNO].replace set,
1043 	 then we can't add this REG_EQUIV note.  The reg_equiv[REGNO].replace
1044 	 optimization may move the set of this register immediately before
1045 	 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
1046 	 the mention in the REG_EQUIV note would be to an uninitialized
1047 	 pseudo.  */
1048 
1049       if (MEM_P (dest) && REG_P (src)
1050 	  && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
1051 	  && REG_BASIC_BLOCK (regno) >= 0
1052 	  && REG_N_SETS (regno) == 1
1053 	  && reg_equiv[regno].init_insns != 0
1054 	  && reg_equiv[regno].init_insns != const0_rtx
1055 	  && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
1056 			      REG_EQUIV, NULL_RTX)
1057 	  && ! contains_replace_regs (XEXP (dest, 0)))
1058 	{
1059 	  rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
1060 	  if (validate_equiv_mem (init_insn, src, dest)
1061 	      && ! memref_used_between_p (dest, init_insn, insn))
1062 	    {
1063 	      REG_NOTES (init_insn)
1064 		= gen_rtx_EXPR_LIST (REG_EQUIV, dest,
1065 				     REG_NOTES (init_insn));
1066 	      /* This insn makes the equivalence, not the one initializing
1067 		 the register.  */
1068 	      reg_equiv_init[regno]
1069 		= gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
1070 	    }
1071 	}
1072     }
1073 
1074   /* Now scan all regs killed in an insn to see if any of them are
1075      registers only used that once.  If so, see if we can replace the
1076      reference with the equivalent form.  If we can, delete the
1077      initializing reference and this register will go away.  If we
1078      can't replace the reference, and the initializing reference is
1079      within the same loop (or in an inner loop), then move the register
1080      initialization just before the use, so that they are in the same
1081      basic block.  */
1082   FOR_EACH_BB_REVERSE (bb)
1083     {
1084       loop_depth = bb->loop_depth;
1085       for (insn = BB_END (bb);
1086 	   insn != PREV_INSN (BB_HEAD (bb));
1087 	   insn = PREV_INSN (insn))
1088 	{
1089 	  rtx link;
1090 
1091 	  if (! INSN_P (insn))
1092 	    continue;
1093 
1094 	  /* Don't substitute into a non-local goto, this confuses CFG.  */
1095 	  if (JUMP_P (insn)
1096 	      && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
1097 	    continue;
1098 
1099 	  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1100 	    {
1101 	      if (REG_NOTE_KIND (link) == REG_DEAD
1102 		  /* Make sure this insn still refers to the register.  */
1103 		  && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
1104 		{
1105 		  int regno = REGNO (XEXP (link, 0));
1106 		  rtx equiv_insn;
1107 
1108 		  if (! reg_equiv[regno].replace
1109 		      || reg_equiv[regno].loop_depth < loop_depth)
1110 		    continue;
1111 
1112 		  /* reg_equiv[REGNO].replace gets set only when
1113 		     REG_N_REFS[REGNO] is 2, i.e. the register is set
1114 		     once and used once.  (If it were only set, but not used,
1115 		     flow would have deleted the setting insns.)  Hence
1116 		     there can only be one insn in reg_equiv[REGNO].init_insns.  */
1117 		  gcc_assert (reg_equiv[regno].init_insns
1118 			      && !XEXP (reg_equiv[regno].init_insns, 1));
1119 		  equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
1120 
1121 		  /* We may not move instructions that can throw, since
1122 		     that changes basic block boundaries and we are not
1123 		     prepared to adjust the CFG to match.  */
1124 		  if (can_throw_internal (equiv_insn))
1125 		    continue;
1126 
1127 		  if (asm_noperands (PATTERN (equiv_insn)) < 0
1128 		      && validate_replace_rtx (regno_reg_rtx[regno],
1129 					       *(reg_equiv[regno].src_p), insn))
1130 		    {
1131 		      rtx equiv_link;
1132 		      rtx last_link;
1133 		      rtx note;
1134 
1135 		      /* Find the last note.  */
1136 		      for (last_link = link; XEXP (last_link, 1);
1137 			   last_link = XEXP (last_link, 1))
1138 			;
1139 
1140 		      /* Append the REG_DEAD notes from equiv_insn.  */
1141 		      equiv_link = REG_NOTES (equiv_insn);
1142 		      while (equiv_link)
1143 			{
1144 			  note = equiv_link;
1145 			  equiv_link = XEXP (equiv_link, 1);
1146 			  if (REG_NOTE_KIND (note) == REG_DEAD)
1147 			    {
1148 			      remove_note (equiv_insn, note);
1149 			      XEXP (last_link, 1) = note;
1150 			      XEXP (note, 1) = NULL_RTX;
1151 			      last_link = note;
1152 			    }
1153 			}
1154 
1155 		      remove_death (regno, insn);
1156 		      REG_N_REFS (regno) = 0;
1157 		      REG_FREQ (regno) = 0;
1158 		      delete_insn (equiv_insn);
1159 
1160 		      reg_equiv[regno].init_insns
1161 			= XEXP (reg_equiv[regno].init_insns, 1);
1162 
1163 		      /* Remember to clear REGNO from all basic block's live
1164 			 info.  */
1165 		      SET_REGNO_REG_SET (&cleared_regs, regno);
1166 		      clear_regnos++;
1167 		      reg_equiv_init[regno] = NULL_RTX;
1168 		    }
1169 		  /* Move the initialization of the register to just before
1170 		     INSN.  Update the flow information.  */
1171 		  else if (PREV_INSN (insn) != equiv_insn)
1172 		    {
1173 		      rtx new_insn;
1174 
1175 		      new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
1176 		      REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
1177 		      REG_NOTES (equiv_insn) = 0;
1178 
1179 		      /* Make sure this insn is recognized before
1180 			 reload begins, otherwise
1181 			 eliminate_regs_in_insn will die.  */
1182 		      INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
1183 
1184 		      delete_insn (equiv_insn);
1185 
1186 		      XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
1187 
1188 		      REG_BASIC_BLOCK (regno) = bb->index;
1189 		      REG_N_CALLS_CROSSED (regno) = 0;
1190 		      REG_N_THROWING_CALLS_CROSSED (regno) = 0;
1191 		      REG_LIVE_LENGTH (regno) = 2;
1192 
1193 		      if (insn == BB_HEAD (bb))
1194 			BB_HEAD (bb) = PREV_INSN (insn);
1195 
1196 		      /* Remember to clear REGNO from all basic block's live
1197 			 info.  */
1198 		      SET_REGNO_REG_SET (&cleared_regs, regno);
1199 		      clear_regnos++;
1200 		      reg_equiv_init[regno]
1201 			= gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
1202 		    }
1203 		}
1204 	    }
1205 	}
1206     }
1207 
1208   /* Clear all dead REGNOs from all basic block's live info.  */
1209   if (clear_regnos)
1210     {
1211       unsigned j;
1212 
1213       if (clear_regnos > 8)
1214 	{
1215 	  FOR_EACH_BB (bb)
1216 	    {
1217 	      AND_COMPL_REG_SET (bb->il.rtl->global_live_at_start,
1218 			         &cleared_regs);
1219 	      AND_COMPL_REG_SET (bb->il.rtl->global_live_at_end,
1220 			         &cleared_regs);
1221 	    }
1222 	}
1223       else
1224 	{
1225 	  reg_set_iterator rsi;
1226 	  EXECUTE_IF_SET_IN_REG_SET (&cleared_regs, 0, j, rsi)
1227 	    {
1228 	      FOR_EACH_BB (bb)
1229 		{
1230 		  CLEAR_REGNO_REG_SET (bb->il.rtl->global_live_at_start, j);
1231 		  CLEAR_REGNO_REG_SET (bb->il.rtl->global_live_at_end, j);
1232 		}
1233 	    }
1234 	}
1235     }
1236 
1237   out:
1238   /* Clean up.  */
1239   end_alias_analysis ();
1240   CLEAR_REG_SET (&cleared_regs);
1241   free (reg_equiv);
1242 }
1243 
1244 /* Mark REG as having no known equivalence.
1245    Some instructions might have been processed before and furnished
1246    with REG_EQUIV notes for this register; these notes will have to be
1247    removed.
1248    STORE is the piece of RTL that does the non-constant / conflicting
1249    assignment - a SET, CLOBBER or REG_INC note.  It is currently not used,
1250    but needs to be there because this function is called from note_stores.  */
1251 static void
no_equiv(rtx reg,rtx store ATTRIBUTE_UNUSED,void * data ATTRIBUTE_UNUSED)1252 no_equiv (rtx reg, rtx store ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
1253 {
1254   int regno;
1255   rtx list;
1256 
1257   if (!REG_P (reg))
1258     return;
1259   regno = REGNO (reg);
1260   list = reg_equiv[regno].init_insns;
1261   if (list == const0_rtx)
1262     return;
1263   reg_equiv[regno].init_insns = const0_rtx;
1264   reg_equiv[regno].replacement = NULL_RTX;
1265   /* This doesn't matter for equivalences made for argument registers, we
1266      should keep their initialization insns.  */
1267   if (reg_equiv[regno].is_arg_equivalence)
1268     return;
1269   reg_equiv_init[regno] = NULL_RTX;
1270   for (; list; list =  XEXP (list, 1))
1271     {
1272       rtx insn = XEXP (list, 0);
1273       remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1274     }
1275 }
1276 
1277 /* Allocate hard regs to the pseudo regs used only within block number B.
1278    Only the pseudos that die but once can be handled.  */
1279 
1280 static void
block_alloc(int b)1281 block_alloc (int b)
1282 {
1283   int i, q;
1284   rtx insn;
1285   rtx note, hard_reg;
1286   int insn_number = 0;
1287   int insn_count = 0;
1288   int max_uid = get_max_uid ();
1289   int *qty_order;
1290   int no_conflict_combined_regno = -1;
1291 
1292   /* Count the instructions in the basic block.  */
1293 
1294   insn = BB_END (BASIC_BLOCK (b));
1295   while (1)
1296     {
1297       if (!NOTE_P (insn))
1298 	{
1299 	  ++insn_count;
1300 	  gcc_assert (insn_count <= max_uid);
1301 	}
1302       if (insn == BB_HEAD (BASIC_BLOCK (b)))
1303 	break;
1304       insn = PREV_INSN (insn);
1305     }
1306 
1307   /* +2 to leave room for a post_mark_life at the last insn and for
1308      the birth of a CLOBBER in the first insn.  */
1309   regs_live_at = XCNEWVEC (HARD_REG_SET, 2 * insn_count + 2);
1310 
1311   /* Initialize table of hardware registers currently live.  */
1312 
1313   REG_SET_TO_HARD_REG_SET (regs_live,
1314 		  	   BASIC_BLOCK (b)->il.rtl->global_live_at_start);
1315 
1316   /* This loop scans the instructions of the basic block
1317      and assigns quantities to registers.
1318      It computes which registers to tie.  */
1319 
1320   insn = BB_HEAD (BASIC_BLOCK (b));
1321   while (1)
1322     {
1323       if (!NOTE_P (insn))
1324 	insn_number++;
1325 
1326       if (INSN_P (insn))
1327 	{
1328 	  rtx link, set;
1329 	  int win = 0;
1330 	  rtx r0, r1 = NULL_RTX;
1331 	  int combined_regno = -1;
1332 	  int i;
1333 
1334 	  this_insn_number = insn_number;
1335 	  this_insn = insn;
1336 
1337 	  extract_insn (insn);
1338 	  which_alternative = -1;
1339 
1340 	  /* Is this insn suitable for tying two registers?
1341 	     If so, try doing that.
1342 	     Suitable insns are those with at least two operands and where
1343 	     operand 0 is an output that is a register that is not
1344 	     earlyclobber.
1345 
1346 	     We can tie operand 0 with some operand that dies in this insn.
1347 	     First look for operands that are required to be in the same
1348 	     register as operand 0.  If we find such, only try tying that
1349 	     operand or one that can be put into that operand if the
1350 	     operation is commutative.  If we don't find an operand
1351 	     that is required to be in the same register as operand 0,
1352 	     we can tie with any operand.
1353 
1354 	     Subregs in place of regs are also ok.
1355 
1356 	     If tying is done, WIN is set nonzero.  */
1357 
1358 	  if (optimize
1359 	      && recog_data.n_operands > 1
1360 	      && recog_data.constraints[0][0] == '='
1361 	      && recog_data.constraints[0][1] != '&')
1362 	    {
1363 	      /* If non-negative, is an operand that must match operand 0.  */
1364 	      int must_match_0 = -1;
1365 	      /* Counts number of alternatives that require a match with
1366 		 operand 0.  */
1367 	      int n_matching_alts = 0;
1368 
1369 	      for (i = 1; i < recog_data.n_operands; i++)
1370 		{
1371 		  const char *p = recog_data.constraints[i];
1372 		  int this_match = requires_inout (p);
1373 
1374 		  n_matching_alts += this_match;
1375 		  if (this_match == recog_data.n_alternatives)
1376 		    must_match_0 = i;
1377 		}
1378 
1379 	      r0 = recog_data.operand[0];
1380 	      for (i = 1; i < recog_data.n_operands; i++)
1381 		{
1382 		  /* Skip this operand if we found an operand that
1383 		     must match operand 0 and this operand isn't it
1384 		     and can't be made to be it by commutativity.  */
1385 
1386 		  if (must_match_0 >= 0 && i != must_match_0
1387 		      && ! (i == must_match_0 + 1
1388 			    && recog_data.constraints[i-1][0] == '%')
1389 		      && ! (i == must_match_0 - 1
1390 			    && recog_data.constraints[i][0] == '%'))
1391 		    continue;
1392 
1393 		  /* Likewise if each alternative has some operand that
1394 		     must match operand zero.  In that case, skip any
1395 		     operand that doesn't list operand 0 since we know that
1396 		     the operand always conflicts with operand 0.  We
1397 		     ignore commutativity in this case to keep things simple.  */
1398 		  if (n_matching_alts == recog_data.n_alternatives
1399 		      && 0 == requires_inout (recog_data.constraints[i]))
1400 		    continue;
1401 
1402 		  r1 = recog_data.operand[i];
1403 
1404 		  /* If the operand is an address, find a register in it.
1405 		     There may be more than one register, but we only try one
1406 		     of them.  */
1407 		  if (recog_data.constraints[i][0] == 'p'
1408 		      || EXTRA_ADDRESS_CONSTRAINT (recog_data.constraints[i][0],
1409 						   recog_data.constraints[i]))
1410 		    while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1411 		      r1 = XEXP (r1, 0);
1412 
1413 		  /* Avoid making a call-saved register unnecessarily
1414                      clobbered.  */
1415 		  hard_reg = get_hard_reg_initial_reg (cfun, r1);
1416 		  if (hard_reg != NULL_RTX)
1417 		    {
1418 		      if (REG_P (hard_reg)
1419 			  && REGNO (hard_reg) < FIRST_PSEUDO_REGISTER
1420 			  && !call_used_regs[REGNO (hard_reg)])
1421 			continue;
1422 		    }
1423 
1424 		  if (REG_P (r0) || GET_CODE (r0) == SUBREG)
1425 		    {
1426 		      /* We have two priorities for hard register preferences.
1427 			 If we have a move insn or an insn whose first input
1428 			 can only be in the same register as the output, give
1429 			 priority to an equivalence found from that insn.  */
1430 		      int may_save_copy
1431 			= (r1 == recog_data.operand[i] && must_match_0 >= 0);
1432 
1433 		      if (REG_P (r1) || GET_CODE (r1) == SUBREG)
1434 			win = combine_regs (r1, r0, may_save_copy,
1435 					    insn_number, insn, 0);
1436 		    }
1437 		  if (win)
1438 		    break;
1439 		}
1440 	    }
1441 
1442 	  /* Recognize an insn sequence with an ultimate result
1443 	     which can safely overlap one of the inputs.
1444 	     The sequence begins with a CLOBBER of its result,
1445 	     and ends with an insn that copies the result to itself
1446 	     and has a REG_EQUAL note for an equivalent formula.
1447 	     That note indicates what the inputs are.
1448 	     The result and the input can overlap if each insn in
1449 	     the sequence either doesn't mention the input
1450 	     or has a REG_NO_CONFLICT note to inhibit the conflict.
1451 
1452 	     We do the combining test at the CLOBBER so that the
1453 	     destination register won't have had a quantity number
1454 	     assigned, since that would prevent combining.  */
1455 
1456 	  if (optimize
1457 	      && GET_CODE (PATTERN (insn)) == CLOBBER
1458 	      && (r0 = XEXP (PATTERN (insn), 0),
1459 		  REG_P (r0))
1460 	      && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1461 	      && XEXP (link, 0) != 0
1462 	      && NONJUMP_INSN_P (XEXP (link, 0))
1463 	      && (set = single_set (XEXP (link, 0))) != 0
1464 	      && SET_DEST (set) == r0 && SET_SRC (set) == r0
1465 	      && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1466 					NULL_RTX)) != 0)
1467 	    {
1468 	      if (r1 = XEXP (note, 0), REG_P (r1)
1469 		  /* Check that we have such a sequence.  */
1470 		  && no_conflict_p (insn, r0, r1))
1471 		win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1472 	      else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1473 		       && (r1 = XEXP (XEXP (note, 0), 0),
1474 			   REG_P (r1) || GET_CODE (r1) == SUBREG)
1475 		       && no_conflict_p (insn, r0, r1))
1476 		win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1477 
1478 	      /* Here we care if the operation to be computed is
1479 		 commutative.  */
1480 	      else if (COMMUTATIVE_P (XEXP (note, 0))
1481 		       && (r1 = XEXP (XEXP (note, 0), 1),
1482 			   (REG_P (r1) || GET_CODE (r1) == SUBREG))
1483 		       && no_conflict_p (insn, r0, r1))
1484 		win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1485 
1486 	      /* If we did combine something, show the register number
1487 		 in question so that we know to ignore its death.  */
1488 	      if (win)
1489 		no_conflict_combined_regno = REGNO (r1);
1490 	    }
1491 
1492 	  /* If registers were just tied, set COMBINED_REGNO
1493 	     to the number of the register used in this insn
1494 	     that was tied to the register set in this insn.
1495 	     This register's qty should not be "killed".  */
1496 
1497 	  if (win)
1498 	    {
1499 	      while (GET_CODE (r1) == SUBREG)
1500 		r1 = SUBREG_REG (r1);
1501 	      combined_regno = REGNO (r1);
1502 	    }
1503 
1504 	  /* Mark the death of everything that dies in this instruction,
1505 	     except for anything that was just combined.  */
1506 
1507 	  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1508 	    if (REG_NOTE_KIND (link) == REG_DEAD
1509 		&& REG_P (XEXP (link, 0))
1510 		&& combined_regno != (int) REGNO (XEXP (link, 0))
1511 		&& (no_conflict_combined_regno != (int) REGNO (XEXP (link, 0))
1512 		    || ! find_reg_note (insn, REG_NO_CONFLICT,
1513 					XEXP (link, 0))))
1514 	      wipe_dead_reg (XEXP (link, 0), 0);
1515 
1516 	  /* Allocate qty numbers for all registers local to this block
1517 	     that are born (set) in this instruction.
1518 	     A pseudo that already has a qty is not changed.  */
1519 
1520 	  note_stores (PATTERN (insn), reg_is_set, NULL);
1521 
1522 	  /* If anything is set in this insn and then unused, mark it as dying
1523 	     after this insn, so it will conflict with our outputs.  This
1524 	     can't match with something that combined, and it doesn't matter
1525 	     if it did.  Do this after the calls to reg_is_set since these
1526 	     die after, not during, the current insn.  */
1527 
1528 	  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1529 	    if (REG_NOTE_KIND (link) == REG_UNUSED
1530 		&& REG_P (XEXP (link, 0)))
1531 	      wipe_dead_reg (XEXP (link, 0), 1);
1532 
1533 	  /* If this is an insn that has a REG_RETVAL note pointing at a
1534 	     CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1535 	     block, so clear any register number that combined within it.  */
1536 	  if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1537 	      && NONJUMP_INSN_P (XEXP (note, 0))
1538 	      && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1539 	    no_conflict_combined_regno = -1;
1540 	}
1541 
1542       /* Set the registers live after INSN_NUMBER.  Note that we never
1543 	 record the registers live before the block's first insn, since no
1544 	 pseudos we care about are live before that insn.  */
1545 
1546       IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1547       IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1548 
1549       if (insn == BB_END (BASIC_BLOCK (b)))
1550 	break;
1551 
1552       insn = NEXT_INSN (insn);
1553     }
1554 
1555   /* Now every register that is local to this basic block
1556      should have been given a quantity, or else -1 meaning ignore it.
1557      Every quantity should have a known birth and death.
1558 
1559      Order the qtys so we assign them registers in order of the
1560      number of suggested registers they need so we allocate those with
1561      the most restrictive needs first.  */
1562 
1563   qty_order = XNEWVEC (int, next_qty);
1564   for (i = 0; i < next_qty; i++)
1565     qty_order[i] = i;
1566 
1567 #define EXCHANGE(I1, I2)  \
1568   { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1569 
1570   switch (next_qty)
1571     {
1572     case 3:
1573       /* Make qty_order[2] be the one to allocate last.  */
1574       if (qty_sugg_compare (0, 1) > 0)
1575 	EXCHANGE (0, 1);
1576       if (qty_sugg_compare (1, 2) > 0)
1577 	EXCHANGE (2, 1);
1578 
1579       /* ... Fall through ...  */
1580     case 2:
1581       /* Put the best one to allocate in qty_order[0].  */
1582       if (qty_sugg_compare (0, 1) > 0)
1583 	EXCHANGE (0, 1);
1584 
1585       /* ... Fall through ...  */
1586 
1587     case 1:
1588     case 0:
1589       /* Nothing to do here.  */
1590       break;
1591 
1592     default:
1593       qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1594     }
1595 
1596   /* Try to put each quantity in a suggested physical register, if it has one.
1597      This may cause registers to be allocated that otherwise wouldn't be, but
1598      this seems acceptable in local allocation (unlike global allocation).  */
1599   for (i = 0; i < next_qty; i++)
1600     {
1601       q = qty_order[i];
1602       if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1603 	qty[q].phys_reg = find_free_reg (qty[q].min_class, qty[q].mode, q,
1604 					 0, 1, qty[q].birth, qty[q].death);
1605       else
1606 	qty[q].phys_reg = -1;
1607     }
1608 
1609   /* Order the qtys so we assign them registers in order of
1610      decreasing length of life.  Normally call qsort, but if we
1611      have only a very small number of quantities, sort them ourselves.  */
1612 
1613   for (i = 0; i < next_qty; i++)
1614     qty_order[i] = i;
1615 
1616 #define EXCHANGE(I1, I2)  \
1617   { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1618 
1619   switch (next_qty)
1620     {
1621     case 3:
1622       /* Make qty_order[2] be the one to allocate last.  */
1623       if (qty_compare (0, 1) > 0)
1624 	EXCHANGE (0, 1);
1625       if (qty_compare (1, 2) > 0)
1626 	EXCHANGE (2, 1);
1627 
1628       /* ... Fall through ...  */
1629     case 2:
1630       /* Put the best one to allocate in qty_order[0].  */
1631       if (qty_compare (0, 1) > 0)
1632 	EXCHANGE (0, 1);
1633 
1634       /* ... Fall through ...  */
1635 
1636     case 1:
1637     case 0:
1638       /* Nothing to do here.  */
1639       break;
1640 
1641     default:
1642       qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1643     }
1644 
1645   /* Now for each qty that is not a hardware register,
1646      look for a hardware register to put it in.
1647      First try the register class that is cheapest for this qty,
1648      if there is more than one class.  */
1649 
1650   for (i = 0; i < next_qty; i++)
1651     {
1652       q = qty_order[i];
1653       if (qty[q].phys_reg < 0)
1654 	{
1655 #ifdef INSN_SCHEDULING
1656 	  /* These values represent the adjusted lifetime of a qty so
1657 	     that it conflicts with qtys which appear near the start/end
1658 	     of this qty's lifetime.
1659 
1660 	     The purpose behind extending the lifetime of this qty is to
1661 	     discourage the register allocator from creating false
1662 	     dependencies.
1663 
1664 	     The adjustment value is chosen to indicate that this qty
1665 	     conflicts with all the qtys in the instructions immediately
1666 	     before and after the lifetime of this qty.
1667 
1668 	     Experiments have shown that higher values tend to hurt
1669 	     overall code performance.
1670 
1671 	     If allocation using the extended lifetime fails we will try
1672 	     again with the qty's unadjusted lifetime.  */
1673 	  int fake_birth = MAX (0, qty[q].birth - 2 + qty[q].birth % 2);
1674 	  int fake_death = MIN (insn_number * 2 + 1,
1675 				qty[q].death + 2 - qty[q].death % 2);
1676 #endif
1677 
1678 	  if (N_REG_CLASSES > 1)
1679 	    {
1680 #ifdef INSN_SCHEDULING
1681 	      /* We try to avoid using hard registers allocated to qtys which
1682 		 are born immediately after this qty or die immediately before
1683 		 this qty.
1684 
1685 		 This optimization is only appropriate when we will run
1686 		 a scheduling pass after reload and we are not optimizing
1687 		 for code size.  */
1688 	      if (flag_schedule_insns_after_reload
1689 		  && !optimize_size
1690 		  && !SMALL_REGISTER_CLASSES)
1691 		{
1692 		  qty[q].phys_reg = find_free_reg (qty[q].min_class,
1693 						   qty[q].mode, q, 0, 0,
1694 						   fake_birth, fake_death);
1695 		  if (qty[q].phys_reg >= 0)
1696 		    continue;
1697 		}
1698 #endif
1699 	      qty[q].phys_reg = find_free_reg (qty[q].min_class,
1700 					       qty[q].mode, q, 0, 0,
1701 					       qty[q].birth, qty[q].death);
1702 	      if (qty[q].phys_reg >= 0)
1703 		continue;
1704 	    }
1705 
1706 #ifdef INSN_SCHEDULING
1707 	  /* Similarly, avoid false dependencies.  */
1708 	  if (flag_schedule_insns_after_reload
1709 	      && !optimize_size
1710 	      && !SMALL_REGISTER_CLASSES
1711 	      && qty[q].alternate_class != NO_REGS)
1712 	    qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1713 					     qty[q].mode, q, 0, 0,
1714 					     fake_birth, fake_death);
1715 #endif
1716 	  if (qty[q].alternate_class != NO_REGS)
1717 	    qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1718 					     qty[q].mode, q, 0, 0,
1719 					     qty[q].birth, qty[q].death);
1720 	}
1721     }
1722 
1723   /* Now propagate the register assignments
1724      to the pseudo regs belonging to the qtys.  */
1725 
1726   for (q = 0; q < next_qty; q++)
1727     if (qty[q].phys_reg >= 0)
1728       {
1729 	for (i = qty[q].first_reg; i >= 0; i = reg_next_in_qty[i])
1730 	  reg_renumber[i] = qty[q].phys_reg + reg_offset[i];
1731       }
1732 
1733   /* Clean up.  */
1734   free (regs_live_at);
1735   free (qty_order);
1736 }
1737 
1738 /* Compare two quantities' priority for getting real registers.
1739    We give shorter-lived quantities higher priority.
1740    Quantities with more references are also preferred, as are quantities that
1741    require multiple registers.  This is the identical prioritization as
1742    done by global-alloc.
1743 
1744    We used to give preference to registers with *longer* lives, but using
1745    the same algorithm in both local- and global-alloc can speed up execution
1746    of some programs by as much as a factor of three!  */
1747 
1748 /* Note that the quotient will never be bigger than
1749    the value of floor_log2 times the maximum number of
1750    times a register can occur in one insn (surely less than 100)
1751    weighted by frequency (max REG_FREQ_MAX).
1752    Multiplying this by 10000/REG_FREQ_MAX can't overflow.
1753    QTY_CMP_PRI is also used by qty_sugg_compare.  */
1754 
1755 #define QTY_CMP_PRI(q)		\
1756   ((int) (((double) (floor_log2 (qty[q].n_refs) * qty[q].freq * qty[q].size) \
1757 	  / (qty[q].death - qty[q].birth)) * (10000 / REG_FREQ_MAX)))
1758 
1759 static int
qty_compare(int q1,int q2)1760 qty_compare (int q1, int q2)
1761 {
1762   return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1763 }
1764 
1765 static int
qty_compare_1(const void * q1p,const void * q2p)1766 qty_compare_1 (const void *q1p, const void *q2p)
1767 {
1768   int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1769   int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1770 
1771   if (tem != 0)
1772     return tem;
1773 
1774   /* If qtys are equally good, sort by qty number,
1775      so that the results of qsort leave nothing to chance.  */
1776   return q1 - q2;
1777 }
1778 
1779 /* Compare two quantities' priority for getting real registers.  This version
1780    is called for quantities that have suggested hard registers.  First priority
1781    goes to quantities that have copy preferences, then to those that have
1782    normal preferences.  Within those groups, quantities with the lower
1783    number of preferences have the highest priority.  Of those, we use the same
1784    algorithm as above.  */
1785 
1786 #define QTY_CMP_SUGG(q)		\
1787   (qty_phys_num_copy_sugg[q]		\
1788     ? qty_phys_num_copy_sugg[q]	\
1789     : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1790 
1791 static int
qty_sugg_compare(int q1,int q2)1792 qty_sugg_compare (int q1, int q2)
1793 {
1794   int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1795 
1796   if (tem != 0)
1797     return tem;
1798 
1799   return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1800 }
1801 
1802 static int
qty_sugg_compare_1(const void * q1p,const void * q2p)1803 qty_sugg_compare_1 (const void *q1p, const void *q2p)
1804 {
1805   int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1806   int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1807 
1808   if (tem != 0)
1809     return tem;
1810 
1811   tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1812   if (tem != 0)
1813     return tem;
1814 
1815   /* If qtys are equally good, sort by qty number,
1816      so that the results of qsort leave nothing to chance.  */
1817   return q1 - q2;
1818 }
1819 
1820 #undef QTY_CMP_SUGG
1821 #undef QTY_CMP_PRI
1822 
1823 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1824    Returns 1 if have done so, or 0 if cannot.
1825 
1826    Combining registers means marking them as having the same quantity
1827    and adjusting the offsets within the quantity if either of
1828    them is a SUBREG.
1829 
1830    We don't actually combine a hard reg with a pseudo; instead
1831    we just record the hard reg as the suggestion for the pseudo's quantity.
1832    If we really combined them, we could lose if the pseudo lives
1833    across an insn that clobbers the hard reg (eg, movmem).
1834 
1835    ALREADY_DEAD is nonzero if USEDREG is known to be dead even though
1836    there is no REG_DEAD note on INSN.  This occurs during the processing
1837    of REG_NO_CONFLICT blocks.
1838 
1839    MAY_SAVE_COPY is nonzero if this insn is simply copying USEDREG to
1840    SETREG or if the input and output must share a register.
1841    In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1842 
1843    There are elaborate checks for the validity of combining.  */
1844 
1845 static int
combine_regs(rtx usedreg,rtx setreg,int may_save_copy,int insn_number,rtx insn,int already_dead)1846 combine_regs (rtx usedreg, rtx setreg, int may_save_copy, int insn_number,
1847 	      rtx insn, int already_dead)
1848 {
1849   int ureg, sreg;
1850   int offset = 0;
1851   int usize, ssize;
1852   int sqty;
1853 
1854   /* Determine the numbers and sizes of registers being used.  If a subreg
1855      is present that does not change the entire register, don't consider
1856      this a copy insn.  */
1857 
1858   while (GET_CODE (usedreg) == SUBREG)
1859     {
1860       rtx subreg = SUBREG_REG (usedreg);
1861 
1862       if (REG_P (subreg))
1863 	{
1864 	  if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
1865 	    may_save_copy = 0;
1866 
1867 	  if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
1868 	    offset += subreg_regno_offset (REGNO (subreg),
1869 					   GET_MODE (subreg),
1870 					   SUBREG_BYTE (usedreg),
1871 					   GET_MODE (usedreg));
1872 	  else
1873 	    offset += (SUBREG_BYTE (usedreg)
1874 		      / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1875 	}
1876 
1877       usedreg = subreg;
1878     }
1879 
1880   if (!REG_P (usedreg))
1881     return 0;
1882 
1883   ureg = REGNO (usedreg);
1884   if (ureg < FIRST_PSEUDO_REGISTER)
1885     usize = hard_regno_nregs[ureg][GET_MODE (usedreg)];
1886   else
1887     usize = ((GET_MODE_SIZE (GET_MODE (usedreg))
1888 	      + (REGMODE_NATURAL_SIZE (GET_MODE (usedreg)) - 1))
1889 	     / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1890 
1891   while (GET_CODE (setreg) == SUBREG)
1892     {
1893       rtx subreg = SUBREG_REG (setreg);
1894 
1895       if (REG_P (subreg))
1896 	{
1897 	  if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
1898 	    may_save_copy = 0;
1899 
1900 	  if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
1901 	    offset -= subreg_regno_offset (REGNO (subreg),
1902 					   GET_MODE (subreg),
1903 					   SUBREG_BYTE (setreg),
1904 					   GET_MODE (setreg));
1905 	  else
1906 	    offset -= (SUBREG_BYTE (setreg)
1907 		      / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1908 	}
1909 
1910       setreg = subreg;
1911     }
1912 
1913   if (!REG_P (setreg))
1914     return 0;
1915 
1916   sreg = REGNO (setreg);
1917   if (sreg < FIRST_PSEUDO_REGISTER)
1918     ssize = hard_regno_nregs[sreg][GET_MODE (setreg)];
1919   else
1920     ssize = ((GET_MODE_SIZE (GET_MODE (setreg))
1921 	      + (REGMODE_NATURAL_SIZE (GET_MODE (setreg)) - 1))
1922 	     / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1923 
1924   /* If UREG is a pseudo-register that hasn't already been assigned a
1925      quantity number, it means that it is not local to this block or dies
1926      more than once.  In either event, we can't do anything with it.  */
1927   if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1928       /* Do not combine registers unless one fits within the other.  */
1929       || (offset > 0 && usize + offset > ssize)
1930       || (offset < 0 && usize + offset < ssize)
1931       /* Do not combine with a smaller already-assigned object
1932 	 if that smaller object is already combined with something bigger.  */
1933       || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1934 	  && usize < qty[reg_qty[ureg]].size)
1935       /* Can't combine if SREG is not a register we can allocate.  */
1936       || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1937       /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1938 	 These have already been taken care of.  This probably wouldn't
1939 	 combine anyway, but don't take any chances.  */
1940       || (ureg >= FIRST_PSEUDO_REGISTER
1941 	  && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1942       /* Don't tie something to itself.  In most cases it would make no
1943 	 difference, but it would screw up if the reg being tied to itself
1944 	 also dies in this insn.  */
1945       || ureg == sreg
1946       /* Don't try to connect two different hardware registers.  */
1947       || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1948       /* Don't connect two different machine modes if they have different
1949 	 implications as to which registers may be used.  */
1950       || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1951     return 0;
1952 
1953   /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1954      qty_phys_sugg for the pseudo instead of tying them.
1955 
1956      Return "failure" so that the lifespan of UREG is terminated here;
1957      that way the two lifespans will be disjoint and nothing will prevent
1958      the pseudo reg from being given this hard reg.  */
1959 
1960   if (ureg < FIRST_PSEUDO_REGISTER)
1961     {
1962       /* Allocate a quantity number so we have a place to put our
1963 	 suggestions.  */
1964       if (reg_qty[sreg] == -2)
1965 	reg_is_born (setreg, 2 * insn_number);
1966 
1967       if (reg_qty[sreg] >= 0)
1968 	{
1969 	  if (may_save_copy
1970 	      && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1971 	    {
1972 	      SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1973 	      qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1974 	    }
1975 	  else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1976 	    {
1977 	      SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1978 	      qty_phys_num_sugg[reg_qty[sreg]]++;
1979 	    }
1980 	}
1981       return 0;
1982     }
1983 
1984   /* Similarly for SREG a hard register and UREG a pseudo register.  */
1985 
1986   if (sreg < FIRST_PSEUDO_REGISTER)
1987     {
1988       if (may_save_copy
1989 	  && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1990 	{
1991 	  SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1992 	  qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1993 	}
1994       else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1995 	{
1996 	  SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1997 	  qty_phys_num_sugg[reg_qty[ureg]]++;
1998 	}
1999       return 0;
2000     }
2001 
2002   /* At this point we know that SREG and UREG are both pseudos.
2003      Do nothing if SREG already has a quantity or is a register that we
2004      don't allocate.  */
2005   if (reg_qty[sreg] >= -1
2006       /* If we are not going to let any regs live across calls,
2007 	 don't tie a call-crossing reg to a non-call-crossing reg.  */
2008       || (current_function_has_nonlocal_label
2009 	  && ((REG_N_CALLS_CROSSED (ureg) > 0)
2010 	      != (REG_N_CALLS_CROSSED (sreg) > 0))))
2011     return 0;
2012 
2013   /* We don't already know about SREG, so tie it to UREG
2014      if this is the last use of UREG, provided the classes they want
2015      are compatible.  */
2016 
2017   if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
2018       && reg_meets_class_p (sreg, qty[reg_qty[ureg]].min_class))
2019     {
2020       /* Add SREG to UREG's quantity.  */
2021       sqty = reg_qty[ureg];
2022       reg_qty[sreg] = sqty;
2023       reg_offset[sreg] = reg_offset[ureg] + offset;
2024       reg_next_in_qty[sreg] = qty[sqty].first_reg;
2025       qty[sqty].first_reg = sreg;
2026 
2027       /* If SREG's reg class is smaller, set qty[SQTY].min_class.  */
2028       update_qty_class (sqty, sreg);
2029 
2030       /* Update info about quantity SQTY.  */
2031       qty[sqty].n_calls_crossed += REG_N_CALLS_CROSSED (sreg);
2032       qty[sqty].n_throwing_calls_crossed
2033 	+= REG_N_THROWING_CALLS_CROSSED (sreg);
2034       qty[sqty].n_refs += REG_N_REFS (sreg);
2035       qty[sqty].freq += REG_FREQ (sreg);
2036       if (usize < ssize)
2037 	{
2038 	  int i;
2039 
2040 	  for (i = qty[sqty].first_reg; i >= 0; i = reg_next_in_qty[i])
2041 	    reg_offset[i] -= offset;
2042 
2043 	  qty[sqty].size = ssize;
2044 	  qty[sqty].mode = GET_MODE (setreg);
2045 	}
2046     }
2047   else
2048     return 0;
2049 
2050   return 1;
2051 }
2052 
2053 /* Return 1 if the preferred class of REG allows it to be tied
2054    to a quantity or register whose class is CLASS.
2055    True if REG's reg class either contains or is contained in CLASS.  */
2056 
2057 static int
reg_meets_class_p(int reg,enum reg_class class)2058 reg_meets_class_p (int reg, enum reg_class class)
2059 {
2060   enum reg_class rclass = reg_preferred_class (reg);
2061   return (reg_class_subset_p (rclass, class)
2062 	  || reg_class_subset_p (class, rclass));
2063 }
2064 
2065 /* Update the class of QTYNO assuming that REG is being tied to it.  */
2066 
2067 static void
update_qty_class(int qtyno,int reg)2068 update_qty_class (int qtyno, int reg)
2069 {
2070   enum reg_class rclass = reg_preferred_class (reg);
2071   if (reg_class_subset_p (rclass, qty[qtyno].min_class))
2072     qty[qtyno].min_class = rclass;
2073 
2074   rclass = reg_alternate_class (reg);
2075   if (reg_class_subset_p (rclass, qty[qtyno].alternate_class))
2076     qty[qtyno].alternate_class = rclass;
2077 }
2078 
2079 /* Handle something which alters the value of an rtx REG.
2080 
2081    REG is whatever is set or clobbered.  SETTER is the rtx that
2082    is modifying the register.
2083 
2084    If it is not really a register, we do nothing.
2085    The file-global variables `this_insn' and `this_insn_number'
2086    carry info from `block_alloc'.  */
2087 
2088 static void
reg_is_set(rtx reg,rtx setter,void * data ATTRIBUTE_UNUSED)2089 reg_is_set (rtx reg, rtx setter, void *data ATTRIBUTE_UNUSED)
2090 {
2091   /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
2092      a hard register.  These may actually not exist any more.  */
2093 
2094   if (GET_CODE (reg) != SUBREG
2095       && !REG_P (reg))
2096     return;
2097 
2098   /* Mark this register as being born.  If it is used in a CLOBBER, mark
2099      it as being born halfway between the previous insn and this insn so that
2100      it conflicts with our inputs but not the outputs of the previous insn.  */
2101 
2102   reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
2103 }
2104 
2105 /* Handle beginning of the life of register REG.
2106    BIRTH is the index at which this is happening.  */
2107 
2108 static void
reg_is_born(rtx reg,int birth)2109 reg_is_born (rtx reg, int birth)
2110 {
2111   int regno;
2112 
2113   if (GET_CODE (reg) == SUBREG)
2114     {
2115       regno = REGNO (SUBREG_REG (reg));
2116       if (regno < FIRST_PSEUDO_REGISTER)
2117 	regno = subreg_regno (reg);
2118     }
2119   else
2120     regno = REGNO (reg);
2121 
2122   if (regno < FIRST_PSEUDO_REGISTER)
2123     {
2124       mark_life (regno, GET_MODE (reg), 1);
2125 
2126       /* If the register was to have been born earlier that the present
2127 	 insn, mark it as live where it is actually born.  */
2128       if (birth < 2 * this_insn_number)
2129 	post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
2130     }
2131   else
2132     {
2133       if (reg_qty[regno] == -2)
2134 	alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
2135 
2136       /* If this register has a quantity number, show that it isn't dead.  */
2137       if (reg_qty[regno] >= 0)
2138 	qty[reg_qty[regno]].death = -1;
2139     }
2140 }
2141 
2142 /* Record the death of REG in the current insn.  If OUTPUT_P is nonzero,
2143    REG is an output that is dying (i.e., it is never used), otherwise it
2144    is an input (the normal case).
2145    If OUTPUT_P is 1, then we extend the life past the end of this insn.  */
2146 
2147 static void
wipe_dead_reg(rtx reg,int output_p)2148 wipe_dead_reg (rtx reg, int output_p)
2149 {
2150   int regno = REGNO (reg);
2151 
2152   /* If this insn has multiple results,
2153      and the dead reg is used in one of the results,
2154      extend its life to after this insn,
2155      so it won't get allocated together with any other result of this insn.
2156 
2157      It is unsafe to use !single_set here since it will ignore an unused
2158      output.  Just because an output is unused does not mean the compiler
2159      can assume the side effect will not occur.   Consider if REG appears
2160      in the address of an output and we reload the output.  If we allocate
2161      REG to the same hard register as an unused output we could set the hard
2162      register before the output reload insn.  */
2163   if (GET_CODE (PATTERN (this_insn)) == PARALLEL
2164       && multiple_sets (this_insn))
2165     {
2166       int i;
2167       for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
2168 	{
2169 	  rtx set = XVECEXP (PATTERN (this_insn), 0, i);
2170 	  if (GET_CODE (set) == SET
2171 	      && !REG_P (SET_DEST (set))
2172 	      && !rtx_equal_p (reg, SET_DEST (set))
2173 	      && reg_overlap_mentioned_p (reg, SET_DEST (set)))
2174 	    output_p = 1;
2175 	}
2176     }
2177 
2178   /* If this register is used in an auto-increment address, then extend its
2179      life to after this insn, so that it won't get allocated together with
2180      the result of this insn.  */
2181   if (! output_p && find_regno_note (this_insn, REG_INC, regno))
2182     output_p = 1;
2183 
2184   if (regno < FIRST_PSEUDO_REGISTER)
2185     {
2186       mark_life (regno, GET_MODE (reg), 0);
2187 
2188       /* If a hard register is dying as an output, mark it as in use at
2189 	 the beginning of this insn (the above statement would cause this
2190 	 not to happen).  */
2191       if (output_p)
2192 	post_mark_life (regno, GET_MODE (reg), 1,
2193 			2 * this_insn_number, 2 * this_insn_number + 1);
2194     }
2195 
2196   else if (reg_qty[regno] >= 0)
2197     qty[reg_qty[regno]].death = 2 * this_insn_number + output_p;
2198 }
2199 
2200 /* Find a block of SIZE words of hard regs in reg_class CLASS
2201    that can hold something of machine-mode MODE
2202      (but actually we test only the first of the block for holding MODE)
2203    and still free between insn BORN_INDEX and insn DEAD_INDEX,
2204    and return the number of the first of them.
2205    Return -1 if such a block cannot be found.
2206    If QTYNO crosses calls, insist on a register preserved by calls,
2207    unless ACCEPT_CALL_CLOBBERED is nonzero.
2208 
2209    If JUST_TRY_SUGGESTED is nonzero, only try to see if the suggested
2210    register is available.  If not, return -1.  */
2211 
2212 static int
find_free_reg(enum reg_class class,enum machine_mode mode,int qtyno,int accept_call_clobbered,int just_try_suggested,int born_index,int dead_index)2213 find_free_reg (enum reg_class class, enum machine_mode mode, int qtyno,
2214 	       int accept_call_clobbered, int just_try_suggested,
2215 	       int born_index, int dead_index)
2216 {
2217   int i, ins;
2218   HARD_REG_SET first_used, used;
2219 #ifdef ELIMINABLE_REGS
2220   static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2221 #endif
2222 
2223   /* Validate our parameters.  */
2224   gcc_assert (born_index >= 0 && born_index <= dead_index);
2225 
2226   /* Don't let a pseudo live in a reg across a function call
2227      if we might get a nonlocal goto.  */
2228   if (current_function_has_nonlocal_label
2229       && qty[qtyno].n_calls_crossed > 0)
2230     return -1;
2231 
2232   if (accept_call_clobbered)
2233     COPY_HARD_REG_SET (used, call_fixed_reg_set);
2234   else if (qty[qtyno].n_calls_crossed == 0)
2235     COPY_HARD_REG_SET (used, fixed_reg_set);
2236   else
2237     COPY_HARD_REG_SET (used, call_used_reg_set);
2238 
2239   if (accept_call_clobbered)
2240     IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
2241 
2242   for (ins = born_index; ins < dead_index; ins++)
2243     IOR_HARD_REG_SET (used, regs_live_at[ins]);
2244 
2245   IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
2246 
2247   /* Don't use the frame pointer reg in local-alloc even if
2248      we may omit the frame pointer, because if we do that and then we
2249      need a frame pointer, reload won't know how to move the pseudo
2250      to another hard reg.  It can move only regs made by global-alloc.
2251 
2252      This is true of any register that can be eliminated.  */
2253 #ifdef ELIMINABLE_REGS
2254   for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2255     SET_HARD_REG_BIT (used, eliminables[i].from);
2256 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2257   /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
2258      that it might be eliminated into.  */
2259   SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
2260 #endif
2261 #else
2262   SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
2263 #endif
2264 
2265 #ifdef CANNOT_CHANGE_MODE_CLASS
2266   cannot_change_mode_set_regs (&used, mode, qty[qtyno].first_reg);
2267 #endif
2268 
2269   /* Normally, the registers that can be used for the first register in
2270      a multi-register quantity are the same as those that can be used for
2271      subsequent registers.  However, if just trying suggested registers,
2272      restrict our consideration to them.  If there are copy-suggested
2273      register, try them.  Otherwise, try the arithmetic-suggested
2274      registers.  */
2275   COPY_HARD_REG_SET (first_used, used);
2276 
2277   if (just_try_suggested)
2278     {
2279       if (qty_phys_num_copy_sugg[qtyno] != 0)
2280 	IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qtyno]);
2281       else
2282 	IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qtyno]);
2283     }
2284 
2285   /* If all registers are excluded, we can't do anything.  */
2286   GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2287 
2288   /* If at least one would be suitable, test each hard reg.  */
2289 
2290   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2291     {
2292 #ifdef REG_ALLOC_ORDER
2293       int regno = reg_alloc_order[i];
2294 #else
2295       int regno = i;
2296 #endif
2297       if (! TEST_HARD_REG_BIT (first_used, regno)
2298 	  && HARD_REGNO_MODE_OK (regno, mode)
2299 	  && (qty[qtyno].n_calls_crossed == 0
2300 	      || accept_call_clobbered
2301 	      || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2302 	{
2303 	  int j;
2304 	  int size1 = hard_regno_nregs[regno][mode];
2305 	  for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2306 	  if (j == size1)
2307 	    {
2308 	      /* Mark that this register is in use between its birth and death
2309 		 insns.  */
2310 	      post_mark_life (regno, mode, 1, born_index, dead_index);
2311 	      return regno;
2312 	    }
2313 #ifndef REG_ALLOC_ORDER
2314 	  /* Skip starting points we know will lose.  */
2315 	  i += j;
2316 #endif
2317 	}
2318     }
2319 
2320  fail:
2321   /* If we are just trying suggested register, we have just tried copy-
2322      suggested registers, and there are arithmetic-suggested registers,
2323      try them.  */
2324 
2325   /* If it would be profitable to allocate a call-clobbered register
2326      and save and restore it around calls, do that.  */
2327   if (just_try_suggested && qty_phys_num_copy_sugg[qtyno] != 0
2328       && qty_phys_num_sugg[qtyno] != 0)
2329     {
2330       /* Don't try the copy-suggested regs again.  */
2331       qty_phys_num_copy_sugg[qtyno] = 0;
2332       return find_free_reg (class, mode, qtyno, accept_call_clobbered, 1,
2333 			    born_index, dead_index);
2334     }
2335 
2336   /* We need not check to see if the current function has nonlocal
2337      labels because we don't put any pseudos that are live over calls in
2338      registers in that case.  Avoid putting pseudos crossing calls that
2339      might throw into call used registers.  */
2340 
2341   if (! accept_call_clobbered
2342       && flag_caller_saves
2343       && ! just_try_suggested
2344       && qty[qtyno].n_calls_crossed != 0
2345       && qty[qtyno].n_throwing_calls_crossed == 0
2346       && CALLER_SAVE_PROFITABLE (qty[qtyno].n_refs,
2347 				 qty[qtyno].n_calls_crossed))
2348     {
2349       i = find_free_reg (class, mode, qtyno, 1, 0, born_index, dead_index);
2350       if (i >= 0)
2351 	caller_save_needed = 1;
2352       return i;
2353     }
2354   return -1;
2355 }
2356 
2357 /* Mark that REGNO with machine-mode MODE is live starting from the current
2358    insn (if LIFE is nonzero) or dead starting at the current insn (if LIFE
2359    is zero).  */
2360 
2361 static void
mark_life(int regno,enum machine_mode mode,int life)2362 mark_life (int regno, enum machine_mode mode, int life)
2363 {
2364   int j = hard_regno_nregs[regno][mode];
2365   if (life)
2366     while (--j >= 0)
2367       SET_HARD_REG_BIT (regs_live, regno + j);
2368   else
2369     while (--j >= 0)
2370       CLEAR_HARD_REG_BIT (regs_live, regno + j);
2371 }
2372 
2373 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2374    is nonzero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2375    to insn number DEATH (exclusive).  */
2376 
2377 static void
post_mark_life(int regno,enum machine_mode mode,int life,int birth,int death)2378 post_mark_life (int regno, enum machine_mode mode, int life, int birth,
2379 		int death)
2380 {
2381   int j = hard_regno_nregs[regno][mode];
2382   HARD_REG_SET this_reg;
2383 
2384   CLEAR_HARD_REG_SET (this_reg);
2385   while (--j >= 0)
2386     SET_HARD_REG_BIT (this_reg, regno + j);
2387 
2388   if (life)
2389     while (birth < death)
2390       {
2391 	IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2392 	birth++;
2393       }
2394   else
2395     while (birth < death)
2396       {
2397 	AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2398 	birth++;
2399       }
2400 }
2401 
2402 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2403    is the register being clobbered, and R1 is a register being used in
2404    the equivalent expression.
2405 
2406    If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2407    in which it is used, return 1.
2408 
2409    Otherwise, return 0.  */
2410 
2411 static int
no_conflict_p(rtx insn,rtx r0 ATTRIBUTE_UNUSED,rtx r1)2412 no_conflict_p (rtx insn, rtx r0 ATTRIBUTE_UNUSED, rtx r1)
2413 {
2414   int ok = 0;
2415   rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2416   rtx p, last;
2417 
2418   /* If R1 is a hard register, return 0 since we handle this case
2419      when we scan the insns that actually use it.  */
2420 
2421   if (note == 0
2422       || (REG_P (r1) && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2423       || (GET_CODE (r1) == SUBREG && REG_P (SUBREG_REG (r1))
2424 	  && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2425     return 0;
2426 
2427   last = XEXP (note, 0);
2428 
2429   for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2430     if (INSN_P (p))
2431       {
2432 	if (find_reg_note (p, REG_DEAD, r1))
2433 	  ok = 1;
2434 
2435 	/* There must be a REG_NO_CONFLICT note on every insn, otherwise
2436 	   some earlier optimization pass has inserted instructions into
2437 	   the sequence, and it is not safe to perform this optimization.
2438 	   Note that emit_no_conflict_block always ensures that this is
2439 	   true when these sequences are created.  */
2440 	if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2441 	  return 0;
2442       }
2443 
2444   return ok;
2445 }
2446 
2447 /* Return the number of alternatives for which the constraint string P
2448    indicates that the operand must be equal to operand 0 and that no register
2449    is acceptable.  */
2450 
2451 static int
requires_inout(const char * p)2452 requires_inout (const char *p)
2453 {
2454   char c;
2455   int found_zero = 0;
2456   int reg_allowed = 0;
2457   int num_matching_alts = 0;
2458   int len;
2459 
2460   for ( ; (c = *p); p += len)
2461     {
2462       len = CONSTRAINT_LEN (c, p);
2463       switch (c)
2464 	{
2465 	case '=':  case '+':  case '?':
2466 	case '#':  case '&':  case '!':
2467 	case '*':  case '%':
2468 	case 'm':  case '<':  case '>':  case 'V':  case 'o':
2469 	case 'E':  case 'F':  case 'G':  case 'H':
2470 	case 's':  case 'i':  case 'n':
2471 	case 'I':  case 'J':  case 'K':  case 'L':
2472 	case 'M':  case 'N':  case 'O':  case 'P':
2473 	case 'X':
2474 	  /* These don't say anything we care about.  */
2475 	  break;
2476 
2477 	case ',':
2478 	  if (found_zero && ! reg_allowed)
2479 	    num_matching_alts++;
2480 
2481 	  found_zero = reg_allowed = 0;
2482 	  break;
2483 
2484 	case '0':
2485 	  found_zero = 1;
2486 	  break;
2487 
2488 	case '1':  case '2':  case '3':  case '4': case '5':
2489 	case '6':  case '7':  case '8':  case '9':
2490 	  /* Skip the balance of the matching constraint.  */
2491 	  do
2492 	    p++;
2493 	  while (ISDIGIT (*p));
2494 	  len = 0;
2495 	  break;
2496 
2497 	default:
2498 	  if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS
2499 	      && !EXTRA_ADDRESS_CONSTRAINT (c, p))
2500 	    break;
2501 	  /* Fall through.  */
2502 	case 'p':
2503 	case 'g': case 'r':
2504 	  reg_allowed = 1;
2505 	  break;
2506 	}
2507     }
2508 
2509   if (found_zero && ! reg_allowed)
2510     num_matching_alts++;
2511 
2512   return num_matching_alts;
2513 }
2514 
2515 void
dump_local_alloc(FILE * file)2516 dump_local_alloc (FILE *file)
2517 {
2518   int i;
2519   for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2520     if (reg_renumber[i] != -1)
2521       fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
2522 }
2523 
2524 /* Run old register allocator.  Return TRUE if we must exit
2525    rest_of_compilation upon return.  */
2526 static unsigned int
rest_of_handle_local_alloc(void)2527 rest_of_handle_local_alloc (void)
2528 {
2529   int rebuild_notes;
2530 
2531   /* Determine if the current function is a leaf before running reload
2532      since this can impact optimizations done by the prologue and
2533      epilogue thus changing register elimination offsets.  */
2534   current_function_is_leaf = leaf_function_p ();
2535 
2536   /* Allocate the reg_renumber array.  */
2537   allocate_reg_info (max_regno, FALSE, TRUE);
2538 
2539   /* And the reg_equiv_memory_loc array.  */
2540   VEC_safe_grow (rtx, gc, reg_equiv_memory_loc_vec, max_regno);
2541   memset (VEC_address (rtx, reg_equiv_memory_loc_vec), 0,
2542 	  sizeof (rtx) * max_regno);
2543   reg_equiv_memory_loc = VEC_address (rtx, reg_equiv_memory_loc_vec);
2544 
2545   allocate_initial_values (reg_equiv_memory_loc);
2546 
2547   regclass (get_insns (), max_reg_num ());
2548   rebuild_notes = local_alloc ();
2549 
2550   /* Local allocation may have turned an indirect jump into a direct
2551      jump.  If so, we must rebuild the JUMP_LABEL fields of jumping
2552      instructions.  */
2553   if (rebuild_notes)
2554     {
2555       timevar_push (TV_JUMP);
2556 
2557       rebuild_jump_labels (get_insns ());
2558       purge_all_dead_edges ();
2559       delete_unreachable_blocks ();
2560 
2561       timevar_pop (TV_JUMP);
2562     }
2563 
2564   if (dump_file && (dump_flags & TDF_DETAILS))
2565     {
2566       timevar_push (TV_DUMP);
2567       dump_flow_info (dump_file, dump_flags);
2568       dump_local_alloc (dump_file);
2569       timevar_pop (TV_DUMP);
2570     }
2571   return 0;
2572 }
2573 
2574 struct tree_opt_pass pass_local_alloc =
2575 {
2576   "lreg",                               /* name */
2577   NULL,                                 /* gate */
2578   rest_of_handle_local_alloc,           /* execute */
2579   NULL,                                 /* sub */
2580   NULL,                                 /* next */
2581   0,                                    /* static_pass_number */
2582   TV_LOCAL_ALLOC,                       /* tv_id */
2583   0,                                    /* properties_required */
2584   0,                                    /* properties_provided */
2585   0,                                    /* properties_destroyed */
2586   0,                                    /* todo_flags_start */
2587   TODO_dump_func |
2588   TODO_ggc_collect,                     /* todo_flags_finish */
2589   'l'                                   /* letter */
2590 };
2591 
2592