1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 #include "config.h"
23 /* stdio.h must precede rtl.h for FFS. */
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "regs.h"
31 #include "basic-block.h"
32 #include "flags.h"
33 #include "real.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "function.h"
37 #include "expr.h"
38 #include "toplev.h"
39 #include "output.h"
40 #include "ggc.h"
41 #include "timevar.h"
42 #include "except.h"
43 #include "target.h"
44 #include "params.h"
45 #include "rtlhooks-def.h"
46 #include "tree-pass.h"
47
48 /* The basic idea of common subexpression elimination is to go
49 through the code, keeping a record of expressions that would
50 have the same value at the current scan point, and replacing
51 expressions encountered with the cheapest equivalent expression.
52
53 It is too complicated to keep track of the different possibilities
54 when control paths merge in this code; so, at each label, we forget all
55 that is known and start fresh. This can be described as processing each
56 extended basic block separately. We have a separate pass to perform
57 global CSE.
58
59 Note CSE can turn a conditional or computed jump into a nop or
60 an unconditional jump. When this occurs we arrange to run the jump
61 optimizer after CSE to delete the unreachable code.
62
63 We use two data structures to record the equivalent expressions:
64 a hash table for most expressions, and a vector of "quantity
65 numbers" to record equivalent (pseudo) registers.
66
67 The use of the special data structure for registers is desirable
68 because it is faster. It is possible because registers references
69 contain a fairly small number, the register number, taken from
70 a contiguously allocated series, and two register references are
71 identical if they have the same number. General expressions
72 do not have any such thing, so the only way to retrieve the
73 information recorded on an expression other than a register
74 is to keep it in a hash table.
75
76 Registers and "quantity numbers":
77
78 At the start of each basic block, all of the (hardware and pseudo)
79 registers used in the function are given distinct quantity
80 numbers to indicate their contents. During scan, when the code
81 copies one register into another, we copy the quantity number.
82 When a register is loaded in any other way, we allocate a new
83 quantity number to describe the value generated by this operation.
84 `REG_QTY (N)' records what quantity register N is currently thought
85 of as containing.
86
87 All real quantity numbers are greater than or equal to zero.
88 If register N has not been assigned a quantity, `REG_QTY (N)' will
89 equal -N - 1, which is always negative.
90
91 Quantity numbers below zero do not exist and none of the `qty_table'
92 entries should be referenced with a negative index.
93
94 We also maintain a bidirectional chain of registers for each
95 quantity number. The `qty_table` members `first_reg' and `last_reg',
96 and `reg_eqv_table' members `next' and `prev' hold these chains.
97
98 The first register in a chain is the one whose lifespan is least local.
99 Among equals, it is the one that was seen first.
100 We replace any equivalent register with that one.
101
102 If two registers have the same quantity number, it must be true that
103 REG expressions with qty_table `mode' must be in the hash table for both
104 registers and must be in the same class.
105
106 The converse is not true. Since hard registers may be referenced in
107 any mode, two REG expressions might be equivalent in the hash table
108 but not have the same quantity number if the quantity number of one
109 of the registers is not the same mode as those expressions.
110
111 Constants and quantity numbers
112
113 When a quantity has a known constant value, that value is stored
114 in the appropriate qty_table `const_rtx'. This is in addition to
115 putting the constant in the hash table as is usual for non-regs.
116
117 Whether a reg or a constant is preferred is determined by the configuration
118 macro CONST_COSTS and will often depend on the constant value. In any
119 event, expressions containing constants can be simplified, by fold_rtx.
120
121 When a quantity has a known nearly constant value (such as an address
122 of a stack slot), that value is stored in the appropriate qty_table
123 `const_rtx'.
124
125 Integer constants don't have a machine mode. However, cse
126 determines the intended machine mode from the destination
127 of the instruction that moves the constant. The machine mode
128 is recorded in the hash table along with the actual RTL
129 constant expression so that different modes are kept separate.
130
131 Other expressions:
132
133 To record known equivalences among expressions in general
134 we use a hash table called `table'. It has a fixed number of buckets
135 that contain chains of `struct table_elt' elements for expressions.
136 These chains connect the elements whose expressions have the same
137 hash codes.
138
139 Other chains through the same elements connect the elements which
140 currently have equivalent values.
141
142 Register references in an expression are canonicalized before hashing
143 the expression. This is done using `reg_qty' and qty_table `first_reg'.
144 The hash code of a register reference is computed using the quantity
145 number, not the register number.
146
147 When the value of an expression changes, it is necessary to remove from the
148 hash table not just that expression but all expressions whose values
149 could be different as a result.
150
151 1. If the value changing is in memory, except in special cases
152 ANYTHING referring to memory could be changed. That is because
153 nobody knows where a pointer does not point.
154 The function `invalidate_memory' removes what is necessary.
155
156 The special cases are when the address is constant or is
157 a constant plus a fixed register such as the frame pointer
158 or a static chain pointer. When such addresses are stored in,
159 we can tell exactly which other such addresses must be invalidated
160 due to overlap. `invalidate' does this.
161 All expressions that refer to non-constant
162 memory addresses are also invalidated. `invalidate_memory' does this.
163
164 2. If the value changing is a register, all expressions
165 containing references to that register, and only those,
166 must be removed.
167
168 Because searching the entire hash table for expressions that contain
169 a register is very slow, we try to figure out when it isn't necessary.
170 Precisely, this is necessary only when expressions have been
171 entered in the hash table using this register, and then the value has
172 changed, and then another expression wants to be added to refer to
173 the register's new value. This sequence of circumstances is rare
174 within any one basic block.
175
176 `REG_TICK' and `REG_IN_TABLE', accessors for members of
177 cse_reg_info, are used to detect this case. REG_TICK (i) is
178 incremented whenever a value is stored in register i.
179 REG_IN_TABLE (i) holds -1 if no references to register i have been
180 entered in the table; otherwise, it contains the value REG_TICK (i)
181 had when the references were entered. If we want to enter a
182 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
183 remove old references. Until we want to enter a new entry, the
184 mere fact that the two vectors don't match makes the entries be
185 ignored if anyone tries to match them.
186
187 Registers themselves are entered in the hash table as well as in
188 the equivalent-register chains. However, `REG_TICK' and
189 `REG_IN_TABLE' do not apply to expressions which are simple
190 register references. These expressions are removed from the table
191 immediately when they become invalid, and this can be done even if
192 we do not immediately search for all the expressions that refer to
193 the register.
194
195 A CLOBBER rtx in an instruction invalidates its operand for further
196 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
197 invalidates everything that resides in memory.
198
199 Related expressions:
200
201 Constant expressions that differ only by an additive integer
202 are called related. When a constant expression is put in
203 the table, the related expression with no constant term
204 is also entered. These are made to point at each other
205 so that it is possible to find out if there exists any
206 register equivalent to an expression related to a given expression. */
207
208 /* Length of qty_table vector. We know in advance we will not need
209 a quantity number this big. */
210
211 static int max_qty;
212
213 /* Next quantity number to be allocated.
214 This is 1 + the largest number needed so far. */
215
216 static int next_qty;
217
218 /* Per-qty information tracking.
219
220 `first_reg' and `last_reg' track the head and tail of the
221 chain of registers which currently contain this quantity.
222
223 `mode' contains the machine mode of this quantity.
224
225 `const_rtx' holds the rtx of the constant value of this
226 quantity, if known. A summations of the frame/arg pointer
227 and a constant can also be entered here. When this holds
228 a known value, `const_insn' is the insn which stored the
229 constant value.
230
231 `comparison_{code,const,qty}' are used to track when a
232 comparison between a quantity and some constant or register has
233 been passed. In such a case, we know the results of the comparison
234 in case we see it again. These members record a comparison that
235 is known to be true. `comparison_code' holds the rtx code of such
236 a comparison, else it is set to UNKNOWN and the other two
237 comparison members are undefined. `comparison_const' holds
238 the constant being compared against, or zero if the comparison
239 is not against a constant. `comparison_qty' holds the quantity
240 being compared against when the result is known. If the comparison
241 is not with a register, `comparison_qty' is -1. */
242
243 struct qty_table_elem
244 {
245 rtx const_rtx;
246 rtx const_insn;
247 rtx comparison_const;
248 int comparison_qty;
249 unsigned int first_reg, last_reg;
250 /* The sizes of these fields should match the sizes of the
251 code and mode fields of struct rtx_def (see rtl.h). */
252 ENUM_BITFIELD(rtx_code) comparison_code : 16;
253 ENUM_BITFIELD(machine_mode) mode : 8;
254 };
255
256 /* The table of all qtys, indexed by qty number. */
257 static struct qty_table_elem *qty_table;
258
259 /* Structure used to pass arguments via for_each_rtx to function
260 cse_change_cc_mode. */
261 struct change_cc_mode_args
262 {
263 rtx insn;
264 rtx newreg;
265 };
266
267 #ifdef HAVE_cc0
268 /* For machines that have a CC0, we do not record its value in the hash
269 table since its use is guaranteed to be the insn immediately following
270 its definition and any other insn is presumed to invalidate it.
271
272 Instead, we store below the value last assigned to CC0. If it should
273 happen to be a constant, it is stored in preference to the actual
274 assigned value. In case it is a constant, we store the mode in which
275 the constant should be interpreted. */
276
277 static rtx prev_insn_cc0;
278 static enum machine_mode prev_insn_cc0_mode;
279
280 /* Previous actual insn. 0 if at first insn of basic block. */
281
282 static rtx prev_insn;
283 #endif
284
285 /* Insn being scanned. */
286
287 static rtx this_insn;
288
289 /* Index by register number, gives the number of the next (or
290 previous) register in the chain of registers sharing the same
291 value.
292
293 Or -1 if this register is at the end of the chain.
294
295 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
296
297 /* Per-register equivalence chain. */
298 struct reg_eqv_elem
299 {
300 int next, prev;
301 };
302
303 /* The table of all register equivalence chains. */
304 static struct reg_eqv_elem *reg_eqv_table;
305
306 struct cse_reg_info
307 {
308 /* The timestamp at which this register is initialized. */
309 unsigned int timestamp;
310
311 /* The quantity number of the register's current contents. */
312 int reg_qty;
313
314 /* The number of times the register has been altered in the current
315 basic block. */
316 int reg_tick;
317
318 /* The REG_TICK value at which rtx's containing this register are
319 valid in the hash table. If this does not equal the current
320 reg_tick value, such expressions existing in the hash table are
321 invalid. */
322 int reg_in_table;
323
324 /* The SUBREG that was set when REG_TICK was last incremented. Set
325 to -1 if the last store was to the whole register, not a subreg. */
326 unsigned int subreg_ticked;
327 };
328
329 /* A table of cse_reg_info indexed by register numbers. */
330 static struct cse_reg_info *cse_reg_info_table;
331
332 /* The size of the above table. */
333 static unsigned int cse_reg_info_table_size;
334
335 /* The index of the first entry that has not been initialized. */
336 static unsigned int cse_reg_info_table_first_uninitialized;
337
338 /* The timestamp at the beginning of the current run of
339 cse_basic_block. We increment this variable at the beginning of
340 the current run of cse_basic_block. The timestamp field of a
341 cse_reg_info entry matches the value of this variable if and only
342 if the entry has been initialized during the current run of
343 cse_basic_block. */
344 static unsigned int cse_reg_info_timestamp;
345
346 /* A HARD_REG_SET containing all the hard registers for which there is
347 currently a REG expression in the hash table. Note the difference
348 from the above variables, which indicate if the REG is mentioned in some
349 expression in the table. */
350
351 static HARD_REG_SET hard_regs_in_table;
352
353 /* CUID of insn that starts the basic block currently being cse-processed. */
354
355 static int cse_basic_block_start;
356
357 /* CUID of insn that ends the basic block currently being cse-processed. */
358
359 static int cse_basic_block_end;
360
361 /* Vector mapping INSN_UIDs to cuids.
362 The cuids are like uids but increase monotonically always.
363 We use them to see whether a reg is used outside a given basic block. */
364
365 static int *uid_cuid;
366
367 /* Highest UID in UID_CUID. */
368 static int max_uid;
369
370 /* Get the cuid of an insn. */
371
372 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
373
374 /* Nonzero if this pass has made changes, and therefore it's
375 worthwhile to run the garbage collector. */
376
377 static int cse_altered;
378
379 /* Nonzero if cse has altered conditional jump insns
380 in such a way that jump optimization should be redone. */
381
382 static int cse_jumps_altered;
383
384 /* Nonzero if we put a LABEL_REF into the hash table for an INSN without a
385 REG_LABEL, we have to rerun jump after CSE to put in the note. */
386 static int recorded_label_ref;
387
388 /* canon_hash stores 1 in do_not_record
389 if it notices a reference to CC0, PC, or some other volatile
390 subexpression. */
391
392 static int do_not_record;
393
394 /* canon_hash stores 1 in hash_arg_in_memory
395 if it notices a reference to memory within the expression being hashed. */
396
397 static int hash_arg_in_memory;
398
399 /* The hash table contains buckets which are chains of `struct table_elt's,
400 each recording one expression's information.
401 That expression is in the `exp' field.
402
403 The canon_exp field contains a canonical (from the point of view of
404 alias analysis) version of the `exp' field.
405
406 Those elements with the same hash code are chained in both directions
407 through the `next_same_hash' and `prev_same_hash' fields.
408
409 Each set of expressions with equivalent values
410 are on a two-way chain through the `next_same_value'
411 and `prev_same_value' fields, and all point with
412 the `first_same_value' field at the first element in
413 that chain. The chain is in order of increasing cost.
414 Each element's cost value is in its `cost' field.
415
416 The `in_memory' field is nonzero for elements that
417 involve any reference to memory. These elements are removed
418 whenever a write is done to an unidentified location in memory.
419 To be safe, we assume that a memory address is unidentified unless
420 the address is either a symbol constant or a constant plus
421 the frame pointer or argument pointer.
422
423 The `related_value' field is used to connect related expressions
424 (that differ by adding an integer).
425 The related expressions are chained in a circular fashion.
426 `related_value' is zero for expressions for which this
427 chain is not useful.
428
429 The `cost' field stores the cost of this element's expression.
430 The `regcost' field stores the value returned by approx_reg_cost for
431 this element's expression.
432
433 The `is_const' flag is set if the element is a constant (including
434 a fixed address).
435
436 The `flag' field is used as a temporary during some search routines.
437
438 The `mode' field is usually the same as GET_MODE (`exp'), but
439 if `exp' is a CONST_INT and has no machine mode then the `mode'
440 field is the mode it was being used as. Each constant is
441 recorded separately for each mode it is used with. */
442
443 struct table_elt
444 {
445 rtx exp;
446 rtx canon_exp;
447 struct table_elt *next_same_hash;
448 struct table_elt *prev_same_hash;
449 struct table_elt *next_same_value;
450 struct table_elt *prev_same_value;
451 struct table_elt *first_same_value;
452 struct table_elt *related_value;
453 int cost;
454 int regcost;
455 /* The size of this field should match the size
456 of the mode field of struct rtx_def (see rtl.h). */
457 ENUM_BITFIELD(machine_mode) mode : 8;
458 char in_memory;
459 char is_const;
460 char flag;
461 };
462
463 /* We don't want a lot of buckets, because we rarely have very many
464 things stored in the hash table, and a lot of buckets slows
465 down a lot of loops that happen frequently. */
466 #define HASH_SHIFT 5
467 #define HASH_SIZE (1 << HASH_SHIFT)
468 #define HASH_MASK (HASH_SIZE - 1)
469
470 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
471 register (hard registers may require `do_not_record' to be set). */
472
473 #define HASH(X, M) \
474 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
475 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
476 : canon_hash (X, M)) & HASH_MASK)
477
478 /* Like HASH, but without side-effects. */
479 #define SAFE_HASH(X, M) \
480 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
481 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
482 : safe_hash (X, M)) & HASH_MASK)
483
484 /* Determine whether register number N is considered a fixed register for the
485 purpose of approximating register costs.
486 It is desirable to replace other regs with fixed regs, to reduce need for
487 non-fixed hard regs.
488 A reg wins if it is either the frame pointer or designated as fixed. */
489 #define FIXED_REGNO_P(N) \
490 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
491 || fixed_regs[N] || global_regs[N])
492
493 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
494 hard registers and pointers into the frame are the cheapest with a cost
495 of 0. Next come pseudos with a cost of one and other hard registers with
496 a cost of 2. Aside from these special cases, call `rtx_cost'. */
497
498 #define CHEAP_REGNO(N) \
499 (REGNO_PTR_FRAME_P(N) \
500 || (HARD_REGISTER_NUM_P (N) \
501 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
502
503 #define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET))
504 #define COST_IN(X,OUTER) (REG_P (X) ? 0 : notreg_cost (X, OUTER))
505
506 /* Get the number of times this register has been updated in this
507 basic block. */
508
509 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
510
511 /* Get the point at which REG was recorded in the table. */
512
513 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
514
515 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
516 SUBREG). */
517
518 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
519
520 /* Get the quantity number for REG. */
521
522 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
523
524 /* Determine if the quantity number for register X represents a valid index
525 into the qty_table. */
526
527 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
528
529 static struct table_elt *table[HASH_SIZE];
530
531 /* Number of elements in the hash table. */
532
533 static unsigned int table_size;
534
535 /* Chain of `struct table_elt's made so far for this function
536 but currently removed from the table. */
537
538 static struct table_elt *free_element_chain;
539
540 /* Set to the cost of a constant pool reference if one was found for a
541 symbolic constant. If this was found, it means we should try to
542 convert constants into constant pool entries if they don't fit in
543 the insn. */
544
545 static int constant_pool_entries_cost;
546 static int constant_pool_entries_regcost;
547
548 /* This data describes a block that will be processed by cse_basic_block. */
549
550 struct cse_basic_block_data
551 {
552 /* Lowest CUID value of insns in block. */
553 int low_cuid;
554 /* Highest CUID value of insns in block. */
555 int high_cuid;
556 /* Total number of SETs in block. */
557 int nsets;
558 /* Last insn in the block. */
559 rtx last;
560 /* Size of current branch path, if any. */
561 int path_size;
562 /* Current branch path, indicating which branches will be taken. */
563 struct branch_path
564 {
565 /* The branch insn. */
566 rtx branch;
567 /* Whether it should be taken or not. AROUND is the same as taken
568 except that it is used when the destination label is not preceded
569 by a BARRIER. */
570 enum taken {PATH_TAKEN, PATH_NOT_TAKEN, PATH_AROUND} status;
571 } *path;
572 };
573
574 static bool fixed_base_plus_p (rtx x);
575 static int notreg_cost (rtx, enum rtx_code);
576 static int approx_reg_cost_1 (rtx *, void *);
577 static int approx_reg_cost (rtx);
578 static int preferable (int, int, int, int);
579 static void new_basic_block (void);
580 static void make_new_qty (unsigned int, enum machine_mode);
581 static void make_regs_eqv (unsigned int, unsigned int);
582 static void delete_reg_equiv (unsigned int);
583 static int mention_regs (rtx);
584 static int insert_regs (rtx, struct table_elt *, int);
585 static void remove_from_table (struct table_elt *, unsigned);
586 static struct table_elt *lookup (rtx, unsigned, enum machine_mode);
587 static struct table_elt *lookup_for_remove (rtx, unsigned, enum machine_mode);
588 static rtx lookup_as_function (rtx, enum rtx_code);
589 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
590 enum machine_mode);
591 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
592 static void invalidate (rtx, enum machine_mode);
593 static int cse_rtx_varies_p (rtx, int);
594 static void remove_invalid_refs (unsigned int);
595 static void remove_invalid_subreg_refs (unsigned int, unsigned int,
596 enum machine_mode);
597 static void rehash_using_reg (rtx);
598 static void invalidate_memory (void);
599 static void invalidate_for_call (void);
600 static rtx use_related_value (rtx, struct table_elt *);
601
602 static inline unsigned canon_hash (rtx, enum machine_mode);
603 static inline unsigned safe_hash (rtx, enum machine_mode);
604 static unsigned hash_rtx_string (const char *);
605
606 static rtx canon_reg (rtx, rtx);
607 static void find_best_addr (rtx, rtx *, enum machine_mode);
608 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
609 enum machine_mode *,
610 enum machine_mode *);
611 static rtx fold_rtx (rtx, rtx);
612 static rtx equiv_constant (rtx);
613 static void record_jump_equiv (rtx, int);
614 static void record_jump_cond (enum rtx_code, enum machine_mode, rtx, rtx,
615 int);
616 static void cse_insn (rtx, rtx);
617 static void cse_end_of_basic_block (rtx, struct cse_basic_block_data *,
618 int, int);
619 static int addr_affects_sp_p (rtx);
620 static void invalidate_from_clobbers (rtx);
621 static rtx cse_process_notes (rtx, rtx);
622 static void invalidate_skipped_set (rtx, rtx, void *);
623 static void invalidate_skipped_block (rtx);
624 static rtx cse_basic_block (rtx, rtx, struct branch_path *);
625 static void count_reg_usage (rtx, int *, rtx, int);
626 static int check_for_label_ref (rtx *, void *);
627 extern void dump_class (struct table_elt*);
628 static void get_cse_reg_info_1 (unsigned int regno);
629 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
630 static int check_dependence (rtx *, void *);
631
632 static void flush_hash_table (void);
633 static bool insn_live_p (rtx, int *);
634 static bool set_live_p (rtx, rtx, int *);
635 static bool dead_libcall_p (rtx, int *);
636 static int cse_change_cc_mode (rtx *, void *);
637 static void cse_change_cc_mode_insn (rtx, rtx);
638 static void cse_change_cc_mode_insns (rtx, rtx, rtx);
639 static enum machine_mode cse_cc_succs (basic_block, rtx, rtx, bool);
640
641
642 #undef RTL_HOOKS_GEN_LOWPART
643 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
644
645 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
646
647 /* Nonzero if X has the form (PLUS frame-pointer integer). We check for
648 virtual regs here because the simplify_*_operation routines are called
649 by integrate.c, which is called before virtual register instantiation. */
650
651 static bool
fixed_base_plus_p(rtx x)652 fixed_base_plus_p (rtx x)
653 {
654 switch (GET_CODE (x))
655 {
656 case REG:
657 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
658 return true;
659 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
660 return true;
661 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
662 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
663 return true;
664 return false;
665
666 case PLUS:
667 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
668 return false;
669 return fixed_base_plus_p (XEXP (x, 0));
670
671 default:
672 return false;
673 }
674 }
675
676 /* Dump the expressions in the equivalence class indicated by CLASSP.
677 This function is used only for debugging. */
678 void
dump_class(struct table_elt * classp)679 dump_class (struct table_elt *classp)
680 {
681 struct table_elt *elt;
682
683 fprintf (stderr, "Equivalence chain for ");
684 print_rtl (stderr, classp->exp);
685 fprintf (stderr, ": \n");
686
687 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
688 {
689 print_rtl (stderr, elt->exp);
690 fprintf (stderr, "\n");
691 }
692 }
693
694 /* Subroutine of approx_reg_cost; called through for_each_rtx. */
695
696 static int
approx_reg_cost_1(rtx * xp,void * data)697 approx_reg_cost_1 (rtx *xp, void *data)
698 {
699 rtx x = *xp;
700 int *cost_p = data;
701
702 if (x && REG_P (x))
703 {
704 unsigned int regno = REGNO (x);
705
706 if (! CHEAP_REGNO (regno))
707 {
708 if (regno < FIRST_PSEUDO_REGISTER)
709 {
710 if (SMALL_REGISTER_CLASSES)
711 return 1;
712 *cost_p += 2;
713 }
714 else
715 *cost_p += 1;
716 }
717 }
718
719 return 0;
720 }
721
722 /* Return an estimate of the cost of the registers used in an rtx.
723 This is mostly the number of different REG expressions in the rtx;
724 however for some exceptions like fixed registers we use a cost of
725 0. If any other hard register reference occurs, return MAX_COST. */
726
727 static int
approx_reg_cost(rtx x)728 approx_reg_cost (rtx x)
729 {
730 int cost = 0;
731
732 if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost))
733 return MAX_COST;
734
735 return cost;
736 }
737
738 /* Returns a canonical version of X for the address, from the point of view,
739 that all multiplications are represented as MULT instead of the multiply
740 by a power of 2 being represented as ASHIFT. */
741
742 static rtx
canon_for_address(rtx x)743 canon_for_address (rtx x)
744 {
745 enum rtx_code code;
746 enum machine_mode mode;
747 rtx new = 0;
748 int i;
749 const char *fmt;
750
751 if (!x)
752 return x;
753
754 code = GET_CODE (x);
755 mode = GET_MODE (x);
756
757 switch (code)
758 {
759 case ASHIFT:
760 if (GET_CODE (XEXP (x, 1)) == CONST_INT
761 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode)
762 && INTVAL (XEXP (x, 1)) >= 0)
763 {
764 new = canon_for_address (XEXP (x, 0));
765 new = gen_rtx_MULT (mode, new,
766 gen_int_mode ((HOST_WIDE_INT) 1
767 << INTVAL (XEXP (x, 1)),
768 mode));
769 }
770 break;
771 default:
772 break;
773
774 }
775 if (new)
776 return new;
777
778 /* Now recursively process each operand of this operation. */
779 fmt = GET_RTX_FORMAT (code);
780 for (i = 0; i < GET_RTX_LENGTH (code); i++)
781 if (fmt[i] == 'e')
782 {
783 new = canon_for_address (XEXP (x, i));
784 XEXP (x, i) = new;
785 }
786 return x;
787 }
788
789 /* Return a negative value if an rtx A, whose costs are given by COST_A
790 and REGCOST_A, is more desirable than an rtx B.
791 Return a positive value if A is less desirable, or 0 if the two are
792 equally good. */
793 static int
preferable(int cost_a,int regcost_a,int cost_b,int regcost_b)794 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
795 {
796 /* First, get rid of cases involving expressions that are entirely
797 unwanted. */
798 if (cost_a != cost_b)
799 {
800 if (cost_a == MAX_COST)
801 return 1;
802 if (cost_b == MAX_COST)
803 return -1;
804 }
805
806 /* Avoid extending lifetimes of hardregs. */
807 if (regcost_a != regcost_b)
808 {
809 if (regcost_a == MAX_COST)
810 return 1;
811 if (regcost_b == MAX_COST)
812 return -1;
813 }
814
815 /* Normal operation costs take precedence. */
816 if (cost_a != cost_b)
817 return cost_a - cost_b;
818 /* Only if these are identical consider effects on register pressure. */
819 if (regcost_a != regcost_b)
820 return regcost_a - regcost_b;
821 return 0;
822 }
823
824 /* Internal function, to compute cost when X is not a register; called
825 from COST macro to keep it simple. */
826
827 static int
notreg_cost(rtx x,enum rtx_code outer)828 notreg_cost (rtx x, enum rtx_code outer)
829 {
830 return ((GET_CODE (x) == SUBREG
831 && REG_P (SUBREG_REG (x))
832 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
833 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
834 && (GET_MODE_SIZE (GET_MODE (x))
835 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
836 && subreg_lowpart_p (x)
837 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)),
838 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))))
839 ? 0
840 : rtx_cost (x, outer) * 2);
841 }
842
843
844 /* Initialize CSE_REG_INFO_TABLE. */
845
846 static void
init_cse_reg_info(unsigned int nregs)847 init_cse_reg_info (unsigned int nregs)
848 {
849 /* Do we need to grow the table? */
850 if (nregs > cse_reg_info_table_size)
851 {
852 unsigned int new_size;
853
854 if (cse_reg_info_table_size < 2048)
855 {
856 /* Compute a new size that is a power of 2 and no smaller
857 than the large of NREGS and 64. */
858 new_size = (cse_reg_info_table_size
859 ? cse_reg_info_table_size : 64);
860
861 while (new_size < nregs)
862 new_size *= 2;
863 }
864 else
865 {
866 /* If we need a big table, allocate just enough to hold
867 NREGS registers. */
868 new_size = nregs;
869 }
870
871 /* Reallocate the table with NEW_SIZE entries. */
872 if (cse_reg_info_table)
873 free (cse_reg_info_table);
874 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
875 cse_reg_info_table_size = new_size;
876 cse_reg_info_table_first_uninitialized = 0;
877 }
878
879 /* Do we have all of the first NREGS entries initialized? */
880 if (cse_reg_info_table_first_uninitialized < nregs)
881 {
882 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
883 unsigned int i;
884
885 /* Put the old timestamp on newly allocated entries so that they
886 will all be considered out of date. We do not touch those
887 entries beyond the first NREGS entries to be nice to the
888 virtual memory. */
889 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
890 cse_reg_info_table[i].timestamp = old_timestamp;
891
892 cse_reg_info_table_first_uninitialized = nregs;
893 }
894 }
895
896 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */
897
898 static void
get_cse_reg_info_1(unsigned int regno)899 get_cse_reg_info_1 (unsigned int regno)
900 {
901 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
902 entry will be considered to have been initialized. */
903 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
904
905 /* Initialize the rest of the entry. */
906 cse_reg_info_table[regno].reg_tick = 1;
907 cse_reg_info_table[regno].reg_in_table = -1;
908 cse_reg_info_table[regno].subreg_ticked = -1;
909 cse_reg_info_table[regno].reg_qty = -regno - 1;
910 }
911
912 /* Find a cse_reg_info entry for REGNO. */
913
914 static inline struct cse_reg_info *
get_cse_reg_info(unsigned int regno)915 get_cse_reg_info (unsigned int regno)
916 {
917 struct cse_reg_info *p = &cse_reg_info_table[regno];
918
919 /* If this entry has not been initialized, go ahead and initialize
920 it. */
921 if (p->timestamp != cse_reg_info_timestamp)
922 get_cse_reg_info_1 (regno);
923
924 return p;
925 }
926
927 /* Clear the hash table and initialize each register with its own quantity,
928 for a new basic block. */
929
930 static void
new_basic_block(void)931 new_basic_block (void)
932 {
933 int i;
934
935 next_qty = 0;
936
937 /* Invalidate cse_reg_info_table. */
938 cse_reg_info_timestamp++;
939
940 /* Clear out hash table state for this pass. */
941 CLEAR_HARD_REG_SET (hard_regs_in_table);
942
943 /* The per-quantity values used to be initialized here, but it is
944 much faster to initialize each as it is made in `make_new_qty'. */
945
946 for (i = 0; i < HASH_SIZE; i++)
947 {
948 struct table_elt *first;
949
950 first = table[i];
951 if (first != NULL)
952 {
953 struct table_elt *last = first;
954
955 table[i] = NULL;
956
957 while (last->next_same_hash != NULL)
958 last = last->next_same_hash;
959
960 /* Now relink this hash entire chain into
961 the free element list. */
962
963 last->next_same_hash = free_element_chain;
964 free_element_chain = first;
965 }
966 }
967
968 table_size = 0;
969
970 #ifdef HAVE_cc0
971 prev_insn = 0;
972 prev_insn_cc0 = 0;
973 #endif
974 }
975
976 /* Say that register REG contains a quantity in mode MODE not in any
977 register before and initialize that quantity. */
978
979 static void
make_new_qty(unsigned int reg,enum machine_mode mode)980 make_new_qty (unsigned int reg, enum machine_mode mode)
981 {
982 int q;
983 struct qty_table_elem *ent;
984 struct reg_eqv_elem *eqv;
985
986 gcc_assert (next_qty < max_qty);
987
988 q = REG_QTY (reg) = next_qty++;
989 ent = &qty_table[q];
990 ent->first_reg = reg;
991 ent->last_reg = reg;
992 ent->mode = mode;
993 ent->const_rtx = ent->const_insn = NULL_RTX;
994 ent->comparison_code = UNKNOWN;
995
996 eqv = ®_eqv_table[reg];
997 eqv->next = eqv->prev = -1;
998 }
999
1000 /* Make reg NEW equivalent to reg OLD.
1001 OLD is not changing; NEW is. */
1002
1003 static void
make_regs_eqv(unsigned int new,unsigned int old)1004 make_regs_eqv (unsigned int new, unsigned int old)
1005 {
1006 unsigned int lastr, firstr;
1007 int q = REG_QTY (old);
1008 struct qty_table_elem *ent;
1009
1010 ent = &qty_table[q];
1011
1012 /* Nothing should become eqv until it has a "non-invalid" qty number. */
1013 gcc_assert (REGNO_QTY_VALID_P (old));
1014
1015 REG_QTY (new) = q;
1016 firstr = ent->first_reg;
1017 lastr = ent->last_reg;
1018
1019 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
1020 hard regs. Among pseudos, if NEW will live longer than any other reg
1021 of the same qty, and that is beyond the current basic block,
1022 make it the new canonical replacement for this qty. */
1023 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
1024 /* Certain fixed registers might be of the class NO_REGS. This means
1025 that not only can they not be allocated by the compiler, but
1026 they cannot be used in substitutions or canonicalizations
1027 either. */
1028 && (new >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new) != NO_REGS)
1029 && ((new < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new))
1030 || (new >= FIRST_PSEUDO_REGISTER
1031 && (firstr < FIRST_PSEUDO_REGISTER
1032 || ((uid_cuid[REGNO_LAST_UID (new)] > cse_basic_block_end
1033 || (uid_cuid[REGNO_FIRST_UID (new)]
1034 < cse_basic_block_start))
1035 && (uid_cuid[REGNO_LAST_UID (new)]
1036 > uid_cuid[REGNO_LAST_UID (firstr)]))))))
1037 {
1038 reg_eqv_table[firstr].prev = new;
1039 reg_eqv_table[new].next = firstr;
1040 reg_eqv_table[new].prev = -1;
1041 ent->first_reg = new;
1042 }
1043 else
1044 {
1045 /* If NEW is a hard reg (known to be non-fixed), insert at end.
1046 Otherwise, insert before any non-fixed hard regs that are at the
1047 end. Registers of class NO_REGS cannot be used as an
1048 equivalent for anything. */
1049 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
1050 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
1051 && new >= FIRST_PSEUDO_REGISTER)
1052 lastr = reg_eqv_table[lastr].prev;
1053 reg_eqv_table[new].next = reg_eqv_table[lastr].next;
1054 if (reg_eqv_table[lastr].next >= 0)
1055 reg_eqv_table[reg_eqv_table[lastr].next].prev = new;
1056 else
1057 qty_table[q].last_reg = new;
1058 reg_eqv_table[lastr].next = new;
1059 reg_eqv_table[new].prev = lastr;
1060 }
1061 }
1062
1063 /* Remove REG from its equivalence class. */
1064
1065 static void
delete_reg_equiv(unsigned int reg)1066 delete_reg_equiv (unsigned int reg)
1067 {
1068 struct qty_table_elem *ent;
1069 int q = REG_QTY (reg);
1070 int p, n;
1071
1072 /* If invalid, do nothing. */
1073 if (! REGNO_QTY_VALID_P (reg))
1074 return;
1075
1076 ent = &qty_table[q];
1077
1078 p = reg_eqv_table[reg].prev;
1079 n = reg_eqv_table[reg].next;
1080
1081 if (n != -1)
1082 reg_eqv_table[n].prev = p;
1083 else
1084 ent->last_reg = p;
1085 if (p != -1)
1086 reg_eqv_table[p].next = n;
1087 else
1088 ent->first_reg = n;
1089
1090 REG_QTY (reg) = -reg - 1;
1091 }
1092
1093 /* Remove any invalid expressions from the hash table
1094 that refer to any of the registers contained in expression X.
1095
1096 Make sure that newly inserted references to those registers
1097 as subexpressions will be considered valid.
1098
1099 mention_regs is not called when a register itself
1100 is being stored in the table.
1101
1102 Return 1 if we have done something that may have changed the hash code
1103 of X. */
1104
1105 static int
mention_regs(rtx x)1106 mention_regs (rtx x)
1107 {
1108 enum rtx_code code;
1109 int i, j;
1110 const char *fmt;
1111 int changed = 0;
1112
1113 if (x == 0)
1114 return 0;
1115
1116 code = GET_CODE (x);
1117 if (code == REG)
1118 {
1119 unsigned int regno = REGNO (x);
1120 unsigned int endregno
1121 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
1122 : hard_regno_nregs[regno][GET_MODE (x)]);
1123 unsigned int i;
1124
1125 for (i = regno; i < endregno; i++)
1126 {
1127 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1128 remove_invalid_refs (i);
1129
1130 REG_IN_TABLE (i) = REG_TICK (i);
1131 SUBREG_TICKED (i) = -1;
1132 }
1133
1134 return 0;
1135 }
1136
1137 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1138 pseudo if they don't use overlapping words. We handle only pseudos
1139 here for simplicity. */
1140 if (code == SUBREG && REG_P (SUBREG_REG (x))
1141 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1142 {
1143 unsigned int i = REGNO (SUBREG_REG (x));
1144
1145 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1146 {
1147 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1148 the last store to this register really stored into this
1149 subreg, then remove the memory of this subreg.
1150 Otherwise, remove any memory of the entire register and
1151 all its subregs from the table. */
1152 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1153 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1154 remove_invalid_refs (i);
1155 else
1156 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1157 }
1158
1159 REG_IN_TABLE (i) = REG_TICK (i);
1160 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1161 return 0;
1162 }
1163
1164 /* If X is a comparison or a COMPARE and either operand is a register
1165 that does not have a quantity, give it one. This is so that a later
1166 call to record_jump_equiv won't cause X to be assigned a different
1167 hash code and not found in the table after that call.
1168
1169 It is not necessary to do this here, since rehash_using_reg can
1170 fix up the table later, but doing this here eliminates the need to
1171 call that expensive function in the most common case where the only
1172 use of the register is in the comparison. */
1173
1174 if (code == COMPARE || COMPARISON_P (x))
1175 {
1176 if (REG_P (XEXP (x, 0))
1177 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1178 if (insert_regs (XEXP (x, 0), NULL, 0))
1179 {
1180 rehash_using_reg (XEXP (x, 0));
1181 changed = 1;
1182 }
1183
1184 if (REG_P (XEXP (x, 1))
1185 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1186 if (insert_regs (XEXP (x, 1), NULL, 0))
1187 {
1188 rehash_using_reg (XEXP (x, 1));
1189 changed = 1;
1190 }
1191 }
1192
1193 fmt = GET_RTX_FORMAT (code);
1194 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1195 if (fmt[i] == 'e')
1196 changed |= mention_regs (XEXP (x, i));
1197 else if (fmt[i] == 'E')
1198 for (j = 0; j < XVECLEN (x, i); j++)
1199 changed |= mention_regs (XVECEXP (x, i, j));
1200
1201 return changed;
1202 }
1203
1204 /* Update the register quantities for inserting X into the hash table
1205 with a value equivalent to CLASSP.
1206 (If the class does not contain a REG, it is irrelevant.)
1207 If MODIFIED is nonzero, X is a destination; it is being modified.
1208 Note that delete_reg_equiv should be called on a register
1209 before insert_regs is done on that register with MODIFIED != 0.
1210
1211 Nonzero value means that elements of reg_qty have changed
1212 so X's hash code may be different. */
1213
1214 static int
insert_regs(rtx x,struct table_elt * classp,int modified)1215 insert_regs (rtx x, struct table_elt *classp, int modified)
1216 {
1217 if (REG_P (x))
1218 {
1219 unsigned int regno = REGNO (x);
1220 int qty_valid;
1221
1222 /* If REGNO is in the equivalence table already but is of the
1223 wrong mode for that equivalence, don't do anything here. */
1224
1225 qty_valid = REGNO_QTY_VALID_P (regno);
1226 if (qty_valid)
1227 {
1228 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1229
1230 if (ent->mode != GET_MODE (x))
1231 return 0;
1232 }
1233
1234 if (modified || ! qty_valid)
1235 {
1236 if (classp)
1237 for (classp = classp->first_same_value;
1238 classp != 0;
1239 classp = classp->next_same_value)
1240 if (REG_P (classp->exp)
1241 && GET_MODE (classp->exp) == GET_MODE (x))
1242 {
1243 unsigned c_regno = REGNO (classp->exp);
1244
1245 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1246
1247 /* Suppose that 5 is hard reg and 100 and 101 are
1248 pseudos. Consider
1249
1250 (set (reg:si 100) (reg:si 5))
1251 (set (reg:si 5) (reg:si 100))
1252 (set (reg:di 101) (reg:di 5))
1253
1254 We would now set REG_QTY (101) = REG_QTY (5), but the
1255 entry for 5 is in SImode. When we use this later in
1256 copy propagation, we get the register in wrong mode. */
1257 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1258 continue;
1259
1260 make_regs_eqv (regno, c_regno);
1261 return 1;
1262 }
1263
1264 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1265 than REG_IN_TABLE to find out if there was only a single preceding
1266 invalidation - for the SUBREG - or another one, which would be
1267 for the full register. However, if we find here that REG_TICK
1268 indicates that the register is invalid, it means that it has
1269 been invalidated in a separate operation. The SUBREG might be used
1270 now (then this is a recursive call), or we might use the full REG
1271 now and a SUBREG of it later. So bump up REG_TICK so that
1272 mention_regs will do the right thing. */
1273 if (! modified
1274 && REG_IN_TABLE (regno) >= 0
1275 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1276 REG_TICK (regno)++;
1277 make_new_qty (regno, GET_MODE (x));
1278 return 1;
1279 }
1280
1281 return 0;
1282 }
1283
1284 /* If X is a SUBREG, we will likely be inserting the inner register in the
1285 table. If that register doesn't have an assigned quantity number at
1286 this point but does later, the insertion that we will be doing now will
1287 not be accessible because its hash code will have changed. So assign
1288 a quantity number now. */
1289
1290 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1291 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1292 {
1293 insert_regs (SUBREG_REG (x), NULL, 0);
1294 mention_regs (x);
1295 return 1;
1296 }
1297 else
1298 return mention_regs (x);
1299 }
1300
1301 /* Look in or update the hash table. */
1302
1303 /* Remove table element ELT from use in the table.
1304 HASH is its hash code, made using the HASH macro.
1305 It's an argument because often that is known in advance
1306 and we save much time not recomputing it. */
1307
1308 static void
remove_from_table(struct table_elt * elt,unsigned int hash)1309 remove_from_table (struct table_elt *elt, unsigned int hash)
1310 {
1311 if (elt == 0)
1312 return;
1313
1314 /* Mark this element as removed. See cse_insn. */
1315 elt->first_same_value = 0;
1316
1317 /* Remove the table element from its equivalence class. */
1318
1319 {
1320 struct table_elt *prev = elt->prev_same_value;
1321 struct table_elt *next = elt->next_same_value;
1322
1323 if (next)
1324 next->prev_same_value = prev;
1325
1326 if (prev)
1327 prev->next_same_value = next;
1328 else
1329 {
1330 struct table_elt *newfirst = next;
1331 while (next)
1332 {
1333 next->first_same_value = newfirst;
1334 next = next->next_same_value;
1335 }
1336 }
1337 }
1338
1339 /* Remove the table element from its hash bucket. */
1340
1341 {
1342 struct table_elt *prev = elt->prev_same_hash;
1343 struct table_elt *next = elt->next_same_hash;
1344
1345 if (next)
1346 next->prev_same_hash = prev;
1347
1348 if (prev)
1349 prev->next_same_hash = next;
1350 else if (table[hash] == elt)
1351 table[hash] = next;
1352 else
1353 {
1354 /* This entry is not in the proper hash bucket. This can happen
1355 when two classes were merged by `merge_equiv_classes'. Search
1356 for the hash bucket that it heads. This happens only very
1357 rarely, so the cost is acceptable. */
1358 for (hash = 0; hash < HASH_SIZE; hash++)
1359 if (table[hash] == elt)
1360 table[hash] = next;
1361 }
1362 }
1363
1364 /* Remove the table element from its related-value circular chain. */
1365
1366 if (elt->related_value != 0 && elt->related_value != elt)
1367 {
1368 struct table_elt *p = elt->related_value;
1369
1370 while (p->related_value != elt)
1371 p = p->related_value;
1372 p->related_value = elt->related_value;
1373 if (p->related_value == p)
1374 p->related_value = 0;
1375 }
1376
1377 /* Now add it to the free element chain. */
1378 elt->next_same_hash = free_element_chain;
1379 free_element_chain = elt;
1380
1381 table_size--;
1382 }
1383
1384 /* Look up X in the hash table and return its table element,
1385 or 0 if X is not in the table.
1386
1387 MODE is the machine-mode of X, or if X is an integer constant
1388 with VOIDmode then MODE is the mode with which X will be used.
1389
1390 Here we are satisfied to find an expression whose tree structure
1391 looks like X. */
1392
1393 static struct table_elt *
lookup(rtx x,unsigned int hash,enum machine_mode mode)1394 lookup (rtx x, unsigned int hash, enum machine_mode mode)
1395 {
1396 struct table_elt *p;
1397
1398 for (p = table[hash]; p; p = p->next_same_hash)
1399 if (mode == p->mode && ((x == p->exp && REG_P (x))
1400 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1401 return p;
1402
1403 return 0;
1404 }
1405
1406 /* Like `lookup' but don't care whether the table element uses invalid regs.
1407 Also ignore discrepancies in the machine mode of a register. */
1408
1409 static struct table_elt *
lookup_for_remove(rtx x,unsigned int hash,enum machine_mode mode)1410 lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode)
1411 {
1412 struct table_elt *p;
1413
1414 if (REG_P (x))
1415 {
1416 unsigned int regno = REGNO (x);
1417
1418 /* Don't check the machine mode when comparing registers;
1419 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1420 for (p = table[hash]; p; p = p->next_same_hash)
1421 if (REG_P (p->exp)
1422 && REGNO (p->exp) == regno)
1423 return p;
1424 }
1425 else
1426 {
1427 for (p = table[hash]; p; p = p->next_same_hash)
1428 if (mode == p->mode
1429 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1430 return p;
1431 }
1432
1433 return 0;
1434 }
1435
1436 /* Look for an expression equivalent to X and with code CODE.
1437 If one is found, return that expression. */
1438
1439 static rtx
lookup_as_function(rtx x,enum rtx_code code)1440 lookup_as_function (rtx x, enum rtx_code code)
1441 {
1442 struct table_elt *p
1443 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1444
1445 /* If we are looking for a CONST_INT, the mode doesn't really matter, as
1446 long as we are narrowing. So if we looked in vain for a mode narrower
1447 than word_mode before, look for word_mode now. */
1448 if (p == 0 && code == CONST_INT
1449 && GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (word_mode))
1450 {
1451 x = copy_rtx (x);
1452 PUT_MODE (x, word_mode);
1453 p = lookup (x, SAFE_HASH (x, VOIDmode), word_mode);
1454 }
1455
1456 if (p == 0)
1457 return 0;
1458
1459 for (p = p->first_same_value; p; p = p->next_same_value)
1460 if (GET_CODE (p->exp) == code
1461 /* Make sure this is a valid entry in the table. */
1462 && exp_equiv_p (p->exp, p->exp, 1, false))
1463 return p->exp;
1464
1465 return 0;
1466 }
1467
1468 /* Insert X in the hash table, assuming HASH is its hash code
1469 and CLASSP is an element of the class it should go in
1470 (or 0 if a new class should be made).
1471 It is inserted at the proper position to keep the class in
1472 the order cheapest first.
1473
1474 MODE is the machine-mode of X, or if X is an integer constant
1475 with VOIDmode then MODE is the mode with which X will be used.
1476
1477 For elements of equal cheapness, the most recent one
1478 goes in front, except that the first element in the list
1479 remains first unless a cheaper element is added. The order of
1480 pseudo-registers does not matter, as canon_reg will be called to
1481 find the cheapest when a register is retrieved from the table.
1482
1483 The in_memory field in the hash table element is set to 0.
1484 The caller must set it nonzero if appropriate.
1485
1486 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1487 and if insert_regs returns a nonzero value
1488 you must then recompute its hash code before calling here.
1489
1490 If necessary, update table showing constant values of quantities. */
1491
1492 #define CHEAPER(X, Y) \
1493 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
1494
1495 static struct table_elt *
insert(rtx x,struct table_elt * classp,unsigned int hash,enum machine_mode mode)1496 insert (rtx x, struct table_elt *classp, unsigned int hash, enum machine_mode mode)
1497 {
1498 struct table_elt *elt;
1499
1500 /* If X is a register and we haven't made a quantity for it,
1501 something is wrong. */
1502 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1503
1504 /* If X is a hard register, show it is being put in the table. */
1505 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1506 {
1507 unsigned int regno = REGNO (x);
1508 unsigned int endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
1509 unsigned int i;
1510
1511 for (i = regno; i < endregno; i++)
1512 SET_HARD_REG_BIT (hard_regs_in_table, i);
1513 }
1514
1515 /* Put an element for X into the right hash bucket. */
1516
1517 elt = free_element_chain;
1518 if (elt)
1519 free_element_chain = elt->next_same_hash;
1520 else
1521 elt = XNEW (struct table_elt);
1522
1523 elt->exp = x;
1524 elt->canon_exp = NULL_RTX;
1525 elt->cost = COST (x);
1526 elt->regcost = approx_reg_cost (x);
1527 elt->next_same_value = 0;
1528 elt->prev_same_value = 0;
1529 elt->next_same_hash = table[hash];
1530 elt->prev_same_hash = 0;
1531 elt->related_value = 0;
1532 elt->in_memory = 0;
1533 elt->mode = mode;
1534 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1535
1536 if (table[hash])
1537 table[hash]->prev_same_hash = elt;
1538 table[hash] = elt;
1539
1540 /* Put it into the proper value-class. */
1541 if (classp)
1542 {
1543 classp = classp->first_same_value;
1544 if (CHEAPER (elt, classp))
1545 /* Insert at the head of the class. */
1546 {
1547 struct table_elt *p;
1548 elt->next_same_value = classp;
1549 classp->prev_same_value = elt;
1550 elt->first_same_value = elt;
1551
1552 for (p = classp; p; p = p->next_same_value)
1553 p->first_same_value = elt;
1554 }
1555 else
1556 {
1557 /* Insert not at head of the class. */
1558 /* Put it after the last element cheaper than X. */
1559 struct table_elt *p, *next;
1560
1561 for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
1562 p = next);
1563
1564 /* Put it after P and before NEXT. */
1565 elt->next_same_value = next;
1566 if (next)
1567 next->prev_same_value = elt;
1568
1569 elt->prev_same_value = p;
1570 p->next_same_value = elt;
1571 elt->first_same_value = classp;
1572 }
1573 }
1574 else
1575 elt->first_same_value = elt;
1576
1577 /* If this is a constant being set equivalent to a register or a register
1578 being set equivalent to a constant, note the constant equivalence.
1579
1580 If this is a constant, it cannot be equivalent to a different constant,
1581 and a constant is the only thing that can be cheaper than a register. So
1582 we know the register is the head of the class (before the constant was
1583 inserted).
1584
1585 If this is a register that is not already known equivalent to a
1586 constant, we must check the entire class.
1587
1588 If this is a register that is already known equivalent to an insn,
1589 update the qtys `const_insn' to show that `this_insn' is the latest
1590 insn making that quantity equivalent to the constant. */
1591
1592 if (elt->is_const && classp && REG_P (classp->exp)
1593 && !REG_P (x))
1594 {
1595 int exp_q = REG_QTY (REGNO (classp->exp));
1596 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1597
1598 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1599 exp_ent->const_insn = this_insn;
1600 }
1601
1602 else if (REG_P (x)
1603 && classp
1604 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1605 && ! elt->is_const)
1606 {
1607 struct table_elt *p;
1608
1609 for (p = classp; p != 0; p = p->next_same_value)
1610 {
1611 if (p->is_const && !REG_P (p->exp))
1612 {
1613 int x_q = REG_QTY (REGNO (x));
1614 struct qty_table_elem *x_ent = &qty_table[x_q];
1615
1616 x_ent->const_rtx
1617 = gen_lowpart (GET_MODE (x), p->exp);
1618 x_ent->const_insn = this_insn;
1619 break;
1620 }
1621 }
1622 }
1623
1624 else if (REG_P (x)
1625 && qty_table[REG_QTY (REGNO (x))].const_rtx
1626 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1627 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1628
1629 /* If this is a constant with symbolic value,
1630 and it has a term with an explicit integer value,
1631 link it up with related expressions. */
1632 if (GET_CODE (x) == CONST)
1633 {
1634 rtx subexp = get_related_value (x);
1635 unsigned subhash;
1636 struct table_elt *subelt, *subelt_prev;
1637
1638 if (subexp != 0)
1639 {
1640 /* Get the integer-free subexpression in the hash table. */
1641 subhash = SAFE_HASH (subexp, mode);
1642 subelt = lookup (subexp, subhash, mode);
1643 if (subelt == 0)
1644 subelt = insert (subexp, NULL, subhash, mode);
1645 /* Initialize SUBELT's circular chain if it has none. */
1646 if (subelt->related_value == 0)
1647 subelt->related_value = subelt;
1648 /* Find the element in the circular chain that precedes SUBELT. */
1649 subelt_prev = subelt;
1650 while (subelt_prev->related_value != subelt)
1651 subelt_prev = subelt_prev->related_value;
1652 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1653 This way the element that follows SUBELT is the oldest one. */
1654 elt->related_value = subelt_prev->related_value;
1655 subelt_prev->related_value = elt;
1656 }
1657 }
1658
1659 table_size++;
1660
1661 return elt;
1662 }
1663
1664 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1665 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1666 the two classes equivalent.
1667
1668 CLASS1 will be the surviving class; CLASS2 should not be used after this
1669 call.
1670
1671 Any invalid entries in CLASS2 will not be copied. */
1672
1673 static void
merge_equiv_classes(struct table_elt * class1,struct table_elt * class2)1674 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1675 {
1676 struct table_elt *elt, *next, *new;
1677
1678 /* Ensure we start with the head of the classes. */
1679 class1 = class1->first_same_value;
1680 class2 = class2->first_same_value;
1681
1682 /* If they were already equal, forget it. */
1683 if (class1 == class2)
1684 return;
1685
1686 for (elt = class2; elt; elt = next)
1687 {
1688 unsigned int hash;
1689 rtx exp = elt->exp;
1690 enum machine_mode mode = elt->mode;
1691
1692 next = elt->next_same_value;
1693
1694 /* Remove old entry, make a new one in CLASS1's class.
1695 Don't do this for invalid entries as we cannot find their
1696 hash code (it also isn't necessary). */
1697 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1698 {
1699 bool need_rehash = false;
1700
1701 hash_arg_in_memory = 0;
1702 hash = HASH (exp, mode);
1703
1704 if (REG_P (exp))
1705 {
1706 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1707 delete_reg_equiv (REGNO (exp));
1708 }
1709
1710 remove_from_table (elt, hash);
1711
1712 if (insert_regs (exp, class1, 0) || need_rehash)
1713 {
1714 rehash_using_reg (exp);
1715 hash = HASH (exp, mode);
1716 }
1717 new = insert (exp, class1, hash, mode);
1718 new->in_memory = hash_arg_in_memory;
1719 }
1720 }
1721 }
1722
1723 /* Flush the entire hash table. */
1724
1725 static void
flush_hash_table(void)1726 flush_hash_table (void)
1727 {
1728 int i;
1729 struct table_elt *p;
1730
1731 for (i = 0; i < HASH_SIZE; i++)
1732 for (p = table[i]; p; p = table[i])
1733 {
1734 /* Note that invalidate can remove elements
1735 after P in the current hash chain. */
1736 if (REG_P (p->exp))
1737 invalidate (p->exp, VOIDmode);
1738 else
1739 remove_from_table (p, i);
1740 }
1741 }
1742
1743 /* Function called for each rtx to check whether true dependence exist. */
1744 struct check_dependence_data
1745 {
1746 enum machine_mode mode;
1747 rtx exp;
1748 rtx addr;
1749 };
1750
1751 static int
check_dependence(rtx * x,void * data)1752 check_dependence (rtx *x, void *data)
1753 {
1754 struct check_dependence_data *d = (struct check_dependence_data *) data;
1755 if (*x && MEM_P (*x))
1756 return canon_true_dependence (d->exp, d->mode, d->addr, *x,
1757 cse_rtx_varies_p);
1758 else
1759 return 0;
1760 }
1761
1762 /* Remove from the hash table, or mark as invalid, all expressions whose
1763 values could be altered by storing in X. X is a register, a subreg, or
1764 a memory reference with nonvarying address (because, when a memory
1765 reference with a varying address is stored in, all memory references are
1766 removed by invalidate_memory so specific invalidation is superfluous).
1767 FULL_MODE, if not VOIDmode, indicates that this much should be
1768 invalidated instead of just the amount indicated by the mode of X. This
1769 is only used for bitfield stores into memory.
1770
1771 A nonvarying address may be just a register or just a symbol reference,
1772 or it may be either of those plus a numeric offset. */
1773
1774 static void
invalidate(rtx x,enum machine_mode full_mode)1775 invalidate (rtx x, enum machine_mode full_mode)
1776 {
1777 int i;
1778 struct table_elt *p;
1779 rtx addr;
1780
1781 switch (GET_CODE (x))
1782 {
1783 case REG:
1784 {
1785 /* If X is a register, dependencies on its contents are recorded
1786 through the qty number mechanism. Just change the qty number of
1787 the register, mark it as invalid for expressions that refer to it,
1788 and remove it itself. */
1789 unsigned int regno = REGNO (x);
1790 unsigned int hash = HASH (x, GET_MODE (x));
1791
1792 /* Remove REGNO from any quantity list it might be on and indicate
1793 that its value might have changed. If it is a pseudo, remove its
1794 entry from the hash table.
1795
1796 For a hard register, we do the first two actions above for any
1797 additional hard registers corresponding to X. Then, if any of these
1798 registers are in the table, we must remove any REG entries that
1799 overlap these registers. */
1800
1801 delete_reg_equiv (regno);
1802 REG_TICK (regno)++;
1803 SUBREG_TICKED (regno) = -1;
1804
1805 if (regno >= FIRST_PSEUDO_REGISTER)
1806 {
1807 /* Because a register can be referenced in more than one mode,
1808 we might have to remove more than one table entry. */
1809 struct table_elt *elt;
1810
1811 while ((elt = lookup_for_remove (x, hash, GET_MODE (x))))
1812 remove_from_table (elt, hash);
1813 }
1814 else
1815 {
1816 HOST_WIDE_INT in_table
1817 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1818 unsigned int endregno
1819 = regno + hard_regno_nregs[regno][GET_MODE (x)];
1820 unsigned int tregno, tendregno, rn;
1821 struct table_elt *p, *next;
1822
1823 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1824
1825 for (rn = regno + 1; rn < endregno; rn++)
1826 {
1827 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1828 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1829 delete_reg_equiv (rn);
1830 REG_TICK (rn)++;
1831 SUBREG_TICKED (rn) = -1;
1832 }
1833
1834 if (in_table)
1835 for (hash = 0; hash < HASH_SIZE; hash++)
1836 for (p = table[hash]; p; p = next)
1837 {
1838 next = p->next_same_hash;
1839
1840 if (!REG_P (p->exp)
1841 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1842 continue;
1843
1844 tregno = REGNO (p->exp);
1845 tendregno
1846 = tregno + hard_regno_nregs[tregno][GET_MODE (p->exp)];
1847 if (tendregno > regno && tregno < endregno)
1848 remove_from_table (p, hash);
1849 }
1850 }
1851 }
1852 return;
1853
1854 case SUBREG:
1855 invalidate (SUBREG_REG (x), VOIDmode);
1856 return;
1857
1858 case PARALLEL:
1859 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1860 invalidate (XVECEXP (x, 0, i), VOIDmode);
1861 return;
1862
1863 case EXPR_LIST:
1864 /* This is part of a disjoint return value; extract the location in
1865 question ignoring the offset. */
1866 invalidate (XEXP (x, 0), VOIDmode);
1867 return;
1868
1869 case MEM:
1870 addr = canon_rtx (get_addr (XEXP (x, 0)));
1871 /* Calculate the canonical version of X here so that
1872 true_dependence doesn't generate new RTL for X on each call. */
1873 x = canon_rtx (x);
1874
1875 /* Remove all hash table elements that refer to overlapping pieces of
1876 memory. */
1877 if (full_mode == VOIDmode)
1878 full_mode = GET_MODE (x);
1879
1880 for (i = 0; i < HASH_SIZE; i++)
1881 {
1882 struct table_elt *next;
1883
1884 for (p = table[i]; p; p = next)
1885 {
1886 next = p->next_same_hash;
1887 if (p->in_memory)
1888 {
1889 struct check_dependence_data d;
1890
1891 /* Just canonicalize the expression once;
1892 otherwise each time we call invalidate
1893 true_dependence will canonicalize the
1894 expression again. */
1895 if (!p->canon_exp)
1896 p->canon_exp = canon_rtx (p->exp);
1897 d.exp = x;
1898 d.addr = addr;
1899 d.mode = full_mode;
1900 if (for_each_rtx (&p->canon_exp, check_dependence, &d))
1901 remove_from_table (p, i);
1902 }
1903 }
1904 }
1905 return;
1906
1907 default:
1908 gcc_unreachable ();
1909 }
1910 }
1911
1912 /* Remove all expressions that refer to register REGNO,
1913 since they are already invalid, and we are about to
1914 mark that register valid again and don't want the old
1915 expressions to reappear as valid. */
1916
1917 static void
remove_invalid_refs(unsigned int regno)1918 remove_invalid_refs (unsigned int regno)
1919 {
1920 unsigned int i;
1921 struct table_elt *p, *next;
1922
1923 for (i = 0; i < HASH_SIZE; i++)
1924 for (p = table[i]; p; p = next)
1925 {
1926 next = p->next_same_hash;
1927 if (!REG_P (p->exp)
1928 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1929 remove_from_table (p, i);
1930 }
1931 }
1932
1933 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
1934 and mode MODE. */
1935 static void
remove_invalid_subreg_refs(unsigned int regno,unsigned int offset,enum machine_mode mode)1936 remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
1937 enum machine_mode mode)
1938 {
1939 unsigned int i;
1940 struct table_elt *p, *next;
1941 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
1942
1943 for (i = 0; i < HASH_SIZE; i++)
1944 for (p = table[i]; p; p = next)
1945 {
1946 rtx exp = p->exp;
1947 next = p->next_same_hash;
1948
1949 if (!REG_P (exp)
1950 && (GET_CODE (exp) != SUBREG
1951 || !REG_P (SUBREG_REG (exp))
1952 || REGNO (SUBREG_REG (exp)) != regno
1953 || (((SUBREG_BYTE (exp)
1954 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
1955 && SUBREG_BYTE (exp) <= end))
1956 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1957 remove_from_table (p, i);
1958 }
1959 }
1960
1961 /* Recompute the hash codes of any valid entries in the hash table that
1962 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
1963
1964 This is called when we make a jump equivalence. */
1965
1966 static void
rehash_using_reg(rtx x)1967 rehash_using_reg (rtx x)
1968 {
1969 unsigned int i;
1970 struct table_elt *p, *next;
1971 unsigned hash;
1972
1973 if (GET_CODE (x) == SUBREG)
1974 x = SUBREG_REG (x);
1975
1976 /* If X is not a register or if the register is known not to be in any
1977 valid entries in the table, we have no work to do. */
1978
1979 if (!REG_P (x)
1980 || REG_IN_TABLE (REGNO (x)) < 0
1981 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
1982 return;
1983
1984 /* Scan all hash chains looking for valid entries that mention X.
1985 If we find one and it is in the wrong hash chain, move it. */
1986
1987 for (i = 0; i < HASH_SIZE; i++)
1988 for (p = table[i]; p; p = next)
1989 {
1990 next = p->next_same_hash;
1991 if (reg_mentioned_p (x, p->exp)
1992 && exp_equiv_p (p->exp, p->exp, 1, false)
1993 && i != (hash = SAFE_HASH (p->exp, p->mode)))
1994 {
1995 if (p->next_same_hash)
1996 p->next_same_hash->prev_same_hash = p->prev_same_hash;
1997
1998 if (p->prev_same_hash)
1999 p->prev_same_hash->next_same_hash = p->next_same_hash;
2000 else
2001 table[i] = p->next_same_hash;
2002
2003 p->next_same_hash = table[hash];
2004 p->prev_same_hash = 0;
2005 if (table[hash])
2006 table[hash]->prev_same_hash = p;
2007 table[hash] = p;
2008 }
2009 }
2010 }
2011
2012 /* Remove from the hash table any expression that is a call-clobbered
2013 register. Also update their TICK values. */
2014
2015 static void
invalidate_for_call(void)2016 invalidate_for_call (void)
2017 {
2018 unsigned int regno, endregno;
2019 unsigned int i;
2020 unsigned hash;
2021 struct table_elt *p, *next;
2022 int in_table = 0;
2023
2024 /* Go through all the hard registers. For each that is clobbered in
2025 a CALL_INSN, remove the register from quantity chains and update
2026 reg_tick if defined. Also see if any of these registers is currently
2027 in the table. */
2028
2029 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2030 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2031 {
2032 delete_reg_equiv (regno);
2033 if (REG_TICK (regno) >= 0)
2034 {
2035 REG_TICK (regno)++;
2036 SUBREG_TICKED (regno) = -1;
2037 }
2038
2039 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2040 }
2041
2042 /* In the case where we have no call-clobbered hard registers in the
2043 table, we are done. Otherwise, scan the table and remove any
2044 entry that overlaps a call-clobbered register. */
2045
2046 if (in_table)
2047 for (hash = 0; hash < HASH_SIZE; hash++)
2048 for (p = table[hash]; p; p = next)
2049 {
2050 next = p->next_same_hash;
2051
2052 if (!REG_P (p->exp)
2053 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2054 continue;
2055
2056 regno = REGNO (p->exp);
2057 endregno = regno + hard_regno_nregs[regno][GET_MODE (p->exp)];
2058
2059 for (i = regno; i < endregno; i++)
2060 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2061 {
2062 remove_from_table (p, hash);
2063 break;
2064 }
2065 }
2066 }
2067
2068 /* Given an expression X of type CONST,
2069 and ELT which is its table entry (or 0 if it
2070 is not in the hash table),
2071 return an alternate expression for X as a register plus integer.
2072 If none can be found, return 0. */
2073
2074 static rtx
use_related_value(rtx x,struct table_elt * elt)2075 use_related_value (rtx x, struct table_elt *elt)
2076 {
2077 struct table_elt *relt = 0;
2078 struct table_elt *p, *q;
2079 HOST_WIDE_INT offset;
2080
2081 /* First, is there anything related known?
2082 If we have a table element, we can tell from that.
2083 Otherwise, must look it up. */
2084
2085 if (elt != 0 && elt->related_value != 0)
2086 relt = elt;
2087 else if (elt == 0 && GET_CODE (x) == CONST)
2088 {
2089 rtx subexp = get_related_value (x);
2090 if (subexp != 0)
2091 relt = lookup (subexp,
2092 SAFE_HASH (subexp, GET_MODE (subexp)),
2093 GET_MODE (subexp));
2094 }
2095
2096 if (relt == 0)
2097 return 0;
2098
2099 /* Search all related table entries for one that has an
2100 equivalent register. */
2101
2102 p = relt;
2103 while (1)
2104 {
2105 /* This loop is strange in that it is executed in two different cases.
2106 The first is when X is already in the table. Then it is searching
2107 the RELATED_VALUE list of X's class (RELT). The second case is when
2108 X is not in the table. Then RELT points to a class for the related
2109 value.
2110
2111 Ensure that, whatever case we are in, that we ignore classes that have
2112 the same value as X. */
2113
2114 if (rtx_equal_p (x, p->exp))
2115 q = 0;
2116 else
2117 for (q = p->first_same_value; q; q = q->next_same_value)
2118 if (REG_P (q->exp))
2119 break;
2120
2121 if (q)
2122 break;
2123
2124 p = p->related_value;
2125
2126 /* We went all the way around, so there is nothing to be found.
2127 Alternatively, perhaps RELT was in the table for some other reason
2128 and it has no related values recorded. */
2129 if (p == relt || p == 0)
2130 break;
2131 }
2132
2133 if (q == 0)
2134 return 0;
2135
2136 offset = (get_integer_term (x) - get_integer_term (p->exp));
2137 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2138 return plus_constant (q->exp, offset);
2139 }
2140
2141 /* Hash a string. Just add its bytes up. */
2142 static inline unsigned
hash_rtx_string(const char * ps)2143 hash_rtx_string (const char *ps)
2144 {
2145 unsigned hash = 0;
2146 const unsigned char *p = (const unsigned char *) ps;
2147
2148 if (p)
2149 while (*p)
2150 hash += *p++;
2151
2152 return hash;
2153 }
2154
2155 /* Hash an rtx. We are careful to make sure the value is never negative.
2156 Equivalent registers hash identically.
2157 MODE is used in hashing for CONST_INTs only;
2158 otherwise the mode of X is used.
2159
2160 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2161
2162 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2163 a MEM rtx which does not have the RTX_UNCHANGING_P bit set.
2164
2165 Note that cse_insn knows that the hash code of a MEM expression
2166 is just (int) MEM plus the hash code of the address. */
2167
2168 unsigned
hash_rtx(rtx x,enum machine_mode mode,int * do_not_record_p,int * hash_arg_in_memory_p,bool have_reg_qty)2169 hash_rtx (rtx x, enum machine_mode mode, int *do_not_record_p,
2170 int *hash_arg_in_memory_p, bool have_reg_qty)
2171 {
2172 int i, j;
2173 unsigned hash = 0;
2174 enum rtx_code code;
2175 const char *fmt;
2176
2177 /* Used to turn recursion into iteration. We can't rely on GCC's
2178 tail-recursion elimination since we need to keep accumulating values
2179 in HASH. */
2180 repeat:
2181 if (x == 0)
2182 return hash;
2183
2184 code = GET_CODE (x);
2185 switch (code)
2186 {
2187 case REG:
2188 {
2189 unsigned int regno = REGNO (x);
2190
2191 if (!reload_completed)
2192 {
2193 /* On some machines, we can't record any non-fixed hard register,
2194 because extending its life will cause reload problems. We
2195 consider ap, fp, sp, gp to be fixed for this purpose.
2196
2197 We also consider CCmode registers to be fixed for this purpose;
2198 failure to do so leads to failure to simplify 0<100 type of
2199 conditionals.
2200
2201 On all machines, we can't record any global registers.
2202 Nor should we record any register that is in a small
2203 class, as defined by CLASS_LIKELY_SPILLED_P. */
2204 bool record;
2205
2206 if (regno >= FIRST_PSEUDO_REGISTER)
2207 record = true;
2208 else if (x == frame_pointer_rtx
2209 || x == hard_frame_pointer_rtx
2210 || x == arg_pointer_rtx
2211 || x == stack_pointer_rtx
2212 || x == pic_offset_table_rtx)
2213 record = true;
2214 else if (global_regs[regno])
2215 record = false;
2216 else if (fixed_regs[regno])
2217 record = true;
2218 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2219 record = true;
2220 else if (SMALL_REGISTER_CLASSES)
2221 record = false;
2222 else if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno)))
2223 record = false;
2224 else
2225 record = true;
2226
2227 if (!record)
2228 {
2229 *do_not_record_p = 1;
2230 return 0;
2231 }
2232 }
2233
2234 hash += ((unsigned int) REG << 7);
2235 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2236 return hash;
2237 }
2238
2239 /* We handle SUBREG of a REG specially because the underlying
2240 reg changes its hash value with every value change; we don't
2241 want to have to forget unrelated subregs when one subreg changes. */
2242 case SUBREG:
2243 {
2244 if (REG_P (SUBREG_REG (x)))
2245 {
2246 hash += (((unsigned int) SUBREG << 7)
2247 + REGNO (SUBREG_REG (x))
2248 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2249 return hash;
2250 }
2251 break;
2252 }
2253
2254 case CONST_INT:
2255 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2256 + (unsigned int) INTVAL (x));
2257 return hash;
2258
2259 case CONST_DOUBLE:
2260 /* This is like the general case, except that it only counts
2261 the integers representing the constant. */
2262 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2263 if (GET_MODE (x) != VOIDmode)
2264 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2265 else
2266 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2267 + (unsigned int) CONST_DOUBLE_HIGH (x));
2268 return hash;
2269
2270 case CONST_VECTOR:
2271 {
2272 int units;
2273 rtx elt;
2274
2275 units = CONST_VECTOR_NUNITS (x);
2276
2277 for (i = 0; i < units; ++i)
2278 {
2279 elt = CONST_VECTOR_ELT (x, i);
2280 hash += hash_rtx (elt, GET_MODE (elt), do_not_record_p,
2281 hash_arg_in_memory_p, have_reg_qty);
2282 }
2283
2284 return hash;
2285 }
2286
2287 /* Assume there is only one rtx object for any given label. */
2288 case LABEL_REF:
2289 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2290 differences and differences between each stage's debugging dumps. */
2291 hash += (((unsigned int) LABEL_REF << 7)
2292 + CODE_LABEL_NUMBER (XEXP (x, 0)));
2293 return hash;
2294
2295 case SYMBOL_REF:
2296 {
2297 /* Don't hash on the symbol's address to avoid bootstrap differences.
2298 Different hash values may cause expressions to be recorded in
2299 different orders and thus different registers to be used in the
2300 final assembler. This also avoids differences in the dump files
2301 between various stages. */
2302 unsigned int h = 0;
2303 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2304
2305 while (*p)
2306 h += (h << 7) + *p++; /* ??? revisit */
2307
2308 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2309 return hash;
2310 }
2311
2312 case MEM:
2313 /* We don't record if marked volatile or if BLKmode since we don't
2314 know the size of the move. */
2315 if (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode)
2316 {
2317 *do_not_record_p = 1;
2318 return 0;
2319 }
2320 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2321 *hash_arg_in_memory_p = 1;
2322
2323 /* Now that we have already found this special case,
2324 might as well speed it up as much as possible. */
2325 hash += (unsigned) MEM;
2326 x = XEXP (x, 0);
2327 goto repeat;
2328
2329 case USE:
2330 /* A USE that mentions non-volatile memory needs special
2331 handling since the MEM may be BLKmode which normally
2332 prevents an entry from being made. Pure calls are
2333 marked by a USE which mentions BLKmode memory.
2334 See calls.c:emit_call_1. */
2335 if (MEM_P (XEXP (x, 0))
2336 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2337 {
2338 hash += (unsigned) USE;
2339 x = XEXP (x, 0);
2340
2341 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2342 *hash_arg_in_memory_p = 1;
2343
2344 /* Now that we have already found this special case,
2345 might as well speed it up as much as possible. */
2346 hash += (unsigned) MEM;
2347 x = XEXP (x, 0);
2348 goto repeat;
2349 }
2350 break;
2351
2352 case PRE_DEC:
2353 case PRE_INC:
2354 case POST_DEC:
2355 case POST_INC:
2356 case PRE_MODIFY:
2357 case POST_MODIFY:
2358 case PC:
2359 case CC0:
2360 case CALL:
2361 case UNSPEC_VOLATILE:
2362 *do_not_record_p = 1;
2363 return 0;
2364
2365 case ASM_OPERANDS:
2366 if (MEM_VOLATILE_P (x))
2367 {
2368 *do_not_record_p = 1;
2369 return 0;
2370 }
2371 else
2372 {
2373 /* We don't want to take the filename and line into account. */
2374 hash += (unsigned) code + (unsigned) GET_MODE (x)
2375 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2376 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2377 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2378
2379 if (ASM_OPERANDS_INPUT_LENGTH (x))
2380 {
2381 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2382 {
2383 hash += (hash_rtx (ASM_OPERANDS_INPUT (x, i),
2384 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2385 do_not_record_p, hash_arg_in_memory_p,
2386 have_reg_qty)
2387 + hash_rtx_string
2388 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2389 }
2390
2391 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2392 x = ASM_OPERANDS_INPUT (x, 0);
2393 mode = GET_MODE (x);
2394 goto repeat;
2395 }
2396
2397 return hash;
2398 }
2399 break;
2400
2401 default:
2402 break;
2403 }
2404
2405 i = GET_RTX_LENGTH (code) - 1;
2406 hash += (unsigned) code + (unsigned) GET_MODE (x);
2407 fmt = GET_RTX_FORMAT (code);
2408 for (; i >= 0; i--)
2409 {
2410 switch (fmt[i])
2411 {
2412 case 'e':
2413 /* If we are about to do the last recursive call
2414 needed at this level, change it into iteration.
2415 This function is called enough to be worth it. */
2416 if (i == 0)
2417 {
2418 x = XEXP (x, i);
2419 goto repeat;
2420 }
2421
2422 hash += hash_rtx (XEXP (x, i), 0, do_not_record_p,
2423 hash_arg_in_memory_p, have_reg_qty);
2424 break;
2425
2426 case 'E':
2427 for (j = 0; j < XVECLEN (x, i); j++)
2428 hash += hash_rtx (XVECEXP (x, i, j), 0, do_not_record_p,
2429 hash_arg_in_memory_p, have_reg_qty);
2430 break;
2431
2432 case 's':
2433 hash += hash_rtx_string (XSTR (x, i));
2434 break;
2435
2436 case 'i':
2437 hash += (unsigned int) XINT (x, i);
2438 break;
2439
2440 case '0': case 't':
2441 /* Unused. */
2442 break;
2443
2444 default:
2445 gcc_unreachable ();
2446 }
2447 }
2448
2449 return hash;
2450 }
2451
2452 /* Hash an rtx X for cse via hash_rtx.
2453 Stores 1 in do_not_record if any subexpression is volatile.
2454 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2455 does not have the RTX_UNCHANGING_P bit set. */
2456
2457 static inline unsigned
canon_hash(rtx x,enum machine_mode mode)2458 canon_hash (rtx x, enum machine_mode mode)
2459 {
2460 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2461 }
2462
2463 /* Like canon_hash but with no side effects, i.e. do_not_record
2464 and hash_arg_in_memory are not changed. */
2465
2466 static inline unsigned
safe_hash(rtx x,enum machine_mode mode)2467 safe_hash (rtx x, enum machine_mode mode)
2468 {
2469 int dummy_do_not_record;
2470 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2471 }
2472
2473 /* Return 1 iff X and Y would canonicalize into the same thing,
2474 without actually constructing the canonicalization of either one.
2475 If VALIDATE is nonzero,
2476 we assume X is an expression being processed from the rtl
2477 and Y was found in the hash table. We check register refs
2478 in Y for being marked as valid.
2479
2480 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2481
2482 int
exp_equiv_p(rtx x,rtx y,int validate,bool for_gcse)2483 exp_equiv_p (rtx x, rtx y, int validate, bool for_gcse)
2484 {
2485 int i, j;
2486 enum rtx_code code;
2487 const char *fmt;
2488
2489 /* Note: it is incorrect to assume an expression is equivalent to itself
2490 if VALIDATE is nonzero. */
2491 if (x == y && !validate)
2492 return 1;
2493
2494 if (x == 0 || y == 0)
2495 return x == y;
2496
2497 code = GET_CODE (x);
2498 if (code != GET_CODE (y))
2499 return 0;
2500
2501 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2502 if (GET_MODE (x) != GET_MODE (y))
2503 return 0;
2504
2505 switch (code)
2506 {
2507 case PC:
2508 case CC0:
2509 case CONST_INT:
2510 case CONST_DOUBLE:
2511 return x == y;
2512
2513 case LABEL_REF:
2514 return XEXP (x, 0) == XEXP (y, 0);
2515
2516 case SYMBOL_REF:
2517 return XSTR (x, 0) == XSTR (y, 0);
2518
2519 case REG:
2520 if (for_gcse)
2521 return REGNO (x) == REGNO (y);
2522 else
2523 {
2524 unsigned int regno = REGNO (y);
2525 unsigned int i;
2526 unsigned int endregno
2527 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
2528 : hard_regno_nregs[regno][GET_MODE (y)]);
2529
2530 /* If the quantities are not the same, the expressions are not
2531 equivalent. If there are and we are not to validate, they
2532 are equivalent. Otherwise, ensure all regs are up-to-date. */
2533
2534 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2535 return 0;
2536
2537 if (! validate)
2538 return 1;
2539
2540 for (i = regno; i < endregno; i++)
2541 if (REG_IN_TABLE (i) != REG_TICK (i))
2542 return 0;
2543
2544 return 1;
2545 }
2546
2547 case MEM:
2548 if (for_gcse)
2549 {
2550 /* A volatile mem should not be considered equivalent to any
2551 other. */
2552 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2553 return 0;
2554
2555 /* Can't merge two expressions in different alias sets, since we
2556 can decide that the expression is transparent in a block when
2557 it isn't, due to it being set with the different alias set.
2558
2559 Also, can't merge two expressions with different MEM_ATTRS.
2560 They could e.g. be two different entities allocated into the
2561 same space on the stack (see e.g. PR25130). In that case, the
2562 MEM addresses can be the same, even though the two MEMs are
2563 absolutely not equivalent.
2564
2565 But because really all MEM attributes should be the same for
2566 equivalent MEMs, we just use the invariant that MEMs that have
2567 the same attributes share the same mem_attrs data structure. */
2568 if (MEM_ATTRS (x) != MEM_ATTRS (y))
2569 return 0;
2570 }
2571 break;
2572
2573 /* For commutative operations, check both orders. */
2574 case PLUS:
2575 case MULT:
2576 case AND:
2577 case IOR:
2578 case XOR:
2579 case NE:
2580 case EQ:
2581 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2582 validate, for_gcse)
2583 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2584 validate, for_gcse))
2585 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2586 validate, for_gcse)
2587 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2588 validate, for_gcse)));
2589
2590 case ASM_OPERANDS:
2591 /* We don't use the generic code below because we want to
2592 disregard filename and line numbers. */
2593
2594 /* A volatile asm isn't equivalent to any other. */
2595 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2596 return 0;
2597
2598 if (GET_MODE (x) != GET_MODE (y)
2599 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2600 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2601 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2602 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2603 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2604 return 0;
2605
2606 if (ASM_OPERANDS_INPUT_LENGTH (x))
2607 {
2608 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2609 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2610 ASM_OPERANDS_INPUT (y, i),
2611 validate, for_gcse)
2612 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2613 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2614 return 0;
2615 }
2616
2617 return 1;
2618
2619 default:
2620 break;
2621 }
2622
2623 /* Compare the elements. If any pair of corresponding elements
2624 fail to match, return 0 for the whole thing. */
2625
2626 fmt = GET_RTX_FORMAT (code);
2627 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2628 {
2629 switch (fmt[i])
2630 {
2631 case 'e':
2632 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2633 validate, for_gcse))
2634 return 0;
2635 break;
2636
2637 case 'E':
2638 if (XVECLEN (x, i) != XVECLEN (y, i))
2639 return 0;
2640 for (j = 0; j < XVECLEN (x, i); j++)
2641 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2642 validate, for_gcse))
2643 return 0;
2644 break;
2645
2646 case 's':
2647 if (strcmp (XSTR (x, i), XSTR (y, i)))
2648 return 0;
2649 break;
2650
2651 case 'i':
2652 if (XINT (x, i) != XINT (y, i))
2653 return 0;
2654 break;
2655
2656 case 'w':
2657 if (XWINT (x, i) != XWINT (y, i))
2658 return 0;
2659 break;
2660
2661 case '0':
2662 case 't':
2663 break;
2664
2665 default:
2666 gcc_unreachable ();
2667 }
2668 }
2669
2670 return 1;
2671 }
2672
2673 /* Return 1 if X has a value that can vary even between two
2674 executions of the program. 0 means X can be compared reliably
2675 against certain constants or near-constants. */
2676
2677 static int
cse_rtx_varies_p(rtx x,int from_alias)2678 cse_rtx_varies_p (rtx x, int from_alias)
2679 {
2680 /* We need not check for X and the equivalence class being of the same
2681 mode because if X is equivalent to a constant in some mode, it
2682 doesn't vary in any mode. */
2683
2684 if (REG_P (x)
2685 && REGNO_QTY_VALID_P (REGNO (x)))
2686 {
2687 int x_q = REG_QTY (REGNO (x));
2688 struct qty_table_elem *x_ent = &qty_table[x_q];
2689
2690 if (GET_MODE (x) == x_ent->mode
2691 && x_ent->const_rtx != NULL_RTX)
2692 return 0;
2693 }
2694
2695 if (GET_CODE (x) == PLUS
2696 && GET_CODE (XEXP (x, 1)) == CONST_INT
2697 && REG_P (XEXP (x, 0))
2698 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
2699 {
2700 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2701 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2702
2703 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2704 && x0_ent->const_rtx != NULL_RTX)
2705 return 0;
2706 }
2707
2708 /* This can happen as the result of virtual register instantiation, if
2709 the initial constant is too large to be a valid address. This gives
2710 us a three instruction sequence, load large offset into a register,
2711 load fp minus a constant into a register, then a MEM which is the
2712 sum of the two `constant' registers. */
2713 if (GET_CODE (x) == PLUS
2714 && REG_P (XEXP (x, 0))
2715 && REG_P (XEXP (x, 1))
2716 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
2717 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
2718 {
2719 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2720 int x1_q = REG_QTY (REGNO (XEXP (x, 1)));
2721 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2722 struct qty_table_elem *x1_ent = &qty_table[x1_q];
2723
2724 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2725 && x0_ent->const_rtx != NULL_RTX
2726 && (GET_MODE (XEXP (x, 1)) == x1_ent->mode)
2727 && x1_ent->const_rtx != NULL_RTX)
2728 return 0;
2729 }
2730
2731 return rtx_varies_p (x, from_alias);
2732 }
2733
2734 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2735 the result if necessary. INSN is as for canon_reg. */
2736
2737 static void
validate_canon_reg(rtx * xloc,rtx insn)2738 validate_canon_reg (rtx *xloc, rtx insn)
2739 {
2740 rtx new = canon_reg (*xloc, insn);
2741
2742 /* If replacing pseudo with hard reg or vice versa, ensure the
2743 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2744 if (insn != 0 && new != 0)
2745 validate_change (insn, xloc, new, 1);
2746 else
2747 *xloc = new;
2748 }
2749
2750 /* Canonicalize an expression:
2751 replace each register reference inside it
2752 with the "oldest" equivalent register.
2753
2754 If INSN is nonzero validate_change is used to ensure that INSN remains valid
2755 after we make our substitution. The calls are made with IN_GROUP nonzero
2756 so apply_change_group must be called upon the outermost return from this
2757 function (unless INSN is zero). The result of apply_change_group can
2758 generally be discarded since the changes we are making are optional. */
2759
2760 static rtx
canon_reg(rtx x,rtx insn)2761 canon_reg (rtx x, rtx insn)
2762 {
2763 int i;
2764 enum rtx_code code;
2765 const char *fmt;
2766
2767 if (x == 0)
2768 return x;
2769
2770 code = GET_CODE (x);
2771 switch (code)
2772 {
2773 case PC:
2774 case CC0:
2775 case CONST:
2776 case CONST_INT:
2777 case CONST_DOUBLE:
2778 case CONST_VECTOR:
2779 case SYMBOL_REF:
2780 case LABEL_REF:
2781 case ADDR_VEC:
2782 case ADDR_DIFF_VEC:
2783 return x;
2784
2785 case REG:
2786 {
2787 int first;
2788 int q;
2789 struct qty_table_elem *ent;
2790
2791 /* Never replace a hard reg, because hard regs can appear
2792 in more than one machine mode, and we must preserve the mode
2793 of each occurrence. Also, some hard regs appear in
2794 MEMs that are shared and mustn't be altered. Don't try to
2795 replace any reg that maps to a reg of class NO_REGS. */
2796 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2797 || ! REGNO_QTY_VALID_P (REGNO (x)))
2798 return x;
2799
2800 q = REG_QTY (REGNO (x));
2801 ent = &qty_table[q];
2802 first = ent->first_reg;
2803 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2804 : REGNO_REG_CLASS (first) == NO_REGS ? x
2805 : gen_rtx_REG (ent->mode, first));
2806 }
2807
2808 default:
2809 break;
2810 }
2811
2812 fmt = GET_RTX_FORMAT (code);
2813 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2814 {
2815 int j;
2816
2817 if (fmt[i] == 'e')
2818 validate_canon_reg (&XEXP (x, i), insn);
2819 else if (fmt[i] == 'E')
2820 for (j = 0; j < XVECLEN (x, i); j++)
2821 validate_canon_reg (&XVECEXP (x, i, j), insn);
2822 }
2823
2824 return x;
2825 }
2826
2827 /* LOC is a location within INSN that is an operand address (the contents of
2828 a MEM). Find the best equivalent address to use that is valid for this
2829 insn.
2830
2831 On most CISC machines, complicated address modes are costly, and rtx_cost
2832 is a good approximation for that cost. However, most RISC machines have
2833 only a few (usually only one) memory reference formats. If an address is
2834 valid at all, it is often just as cheap as any other address. Hence, for
2835 RISC machines, we use `address_cost' to compare the costs of various
2836 addresses. For two addresses of equal cost, choose the one with the
2837 highest `rtx_cost' value as that has the potential of eliminating the
2838 most insns. For equal costs, we choose the first in the equivalence
2839 class. Note that we ignore the fact that pseudo registers are cheaper than
2840 hard registers here because we would also prefer the pseudo registers. */
2841
2842 static void
find_best_addr(rtx insn,rtx * loc,enum machine_mode mode)2843 find_best_addr (rtx insn, rtx *loc, enum machine_mode mode)
2844 {
2845 struct table_elt *elt;
2846 rtx addr = *loc;
2847 struct table_elt *p;
2848 int found_better = 1;
2849 int save_do_not_record = do_not_record;
2850 int save_hash_arg_in_memory = hash_arg_in_memory;
2851 int addr_volatile;
2852 int regno;
2853 unsigned hash;
2854
2855 /* Do not try to replace constant addresses or addresses of local and
2856 argument slots. These MEM expressions are made only once and inserted
2857 in many instructions, as well as being used to control symbol table
2858 output. It is not safe to clobber them.
2859
2860 There are some uncommon cases where the address is already in a register
2861 for some reason, but we cannot take advantage of that because we have
2862 no easy way to unshare the MEM. In addition, looking up all stack
2863 addresses is costly. */
2864 if ((GET_CODE (addr) == PLUS
2865 && REG_P (XEXP (addr, 0))
2866 && GET_CODE (XEXP (addr, 1)) == CONST_INT
2867 && (regno = REGNO (XEXP (addr, 0)),
2868 regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM
2869 || regno == ARG_POINTER_REGNUM))
2870 || (REG_P (addr)
2871 && (regno = REGNO (addr), regno == FRAME_POINTER_REGNUM
2872 || regno == HARD_FRAME_POINTER_REGNUM
2873 || regno == ARG_POINTER_REGNUM))
2874 || CONSTANT_ADDRESS_P (addr))
2875 return;
2876
2877 /* If this address is not simply a register, try to fold it. This will
2878 sometimes simplify the expression. Many simplifications
2879 will not be valid, but some, usually applying the associative rule, will
2880 be valid and produce better code. */
2881 if (!REG_P (addr))
2882 {
2883 rtx folded = canon_for_address (fold_rtx (addr, NULL_RTX));
2884
2885 if (folded != addr)
2886 {
2887 int addr_folded_cost = address_cost (folded, mode);
2888 int addr_cost = address_cost (addr, mode);
2889
2890 if ((addr_folded_cost < addr_cost
2891 || (addr_folded_cost == addr_cost
2892 /* ??? The rtx_cost comparison is left over from an older
2893 version of this code. It is probably no longer helpful.*/
2894 && (rtx_cost (folded, MEM) > rtx_cost (addr, MEM)
2895 || approx_reg_cost (folded) < approx_reg_cost (addr))))
2896 && validate_change (insn, loc, folded, 0))
2897 addr = folded;
2898 }
2899 }
2900
2901 /* If this address is not in the hash table, we can't look for equivalences
2902 of the whole address. Also, ignore if volatile. */
2903
2904 do_not_record = 0;
2905 hash = HASH (addr, Pmode);
2906 addr_volatile = do_not_record;
2907 do_not_record = save_do_not_record;
2908 hash_arg_in_memory = save_hash_arg_in_memory;
2909
2910 if (addr_volatile)
2911 return;
2912
2913 elt = lookup (addr, hash, Pmode);
2914
2915 if (elt)
2916 {
2917 /* We need to find the best (under the criteria documented above) entry
2918 in the class that is valid. We use the `flag' field to indicate
2919 choices that were invalid and iterate until we can't find a better
2920 one that hasn't already been tried. */
2921
2922 for (p = elt->first_same_value; p; p = p->next_same_value)
2923 p->flag = 0;
2924
2925 while (found_better)
2926 {
2927 int best_addr_cost = address_cost (*loc, mode);
2928 int best_rtx_cost = (elt->cost + 1) >> 1;
2929 int exp_cost;
2930 struct table_elt *best_elt = elt;
2931
2932 found_better = 0;
2933 for (p = elt->first_same_value; p; p = p->next_same_value)
2934 if (! p->flag)
2935 {
2936 if ((REG_P (p->exp)
2937 || exp_equiv_p (p->exp, p->exp, 1, false))
2938 && ((exp_cost = address_cost (p->exp, mode)) < best_addr_cost
2939 || (exp_cost == best_addr_cost
2940 && ((p->cost + 1) >> 1) > best_rtx_cost)))
2941 {
2942 found_better = 1;
2943 best_addr_cost = exp_cost;
2944 best_rtx_cost = (p->cost + 1) >> 1;
2945 best_elt = p;
2946 }
2947 }
2948
2949 if (found_better)
2950 {
2951 if (validate_change (insn, loc,
2952 canon_reg (copy_rtx (best_elt->exp),
2953 NULL_RTX), 0))
2954 return;
2955 else
2956 best_elt->flag = 1;
2957 }
2958 }
2959 }
2960
2961 /* If the address is a binary operation with the first operand a register
2962 and the second a constant, do the same as above, but looking for
2963 equivalences of the register. Then try to simplify before checking for
2964 the best address to use. This catches a few cases: First is when we
2965 have REG+const and the register is another REG+const. We can often merge
2966 the constants and eliminate one insn and one register. It may also be
2967 that a machine has a cheap REG+REG+const. Finally, this improves the
2968 code on the Alpha for unaligned byte stores. */
2969
2970 if (flag_expensive_optimizations
2971 && ARITHMETIC_P (*loc)
2972 && REG_P (XEXP (*loc, 0)))
2973 {
2974 rtx op1 = XEXP (*loc, 1);
2975
2976 do_not_record = 0;
2977 hash = HASH (XEXP (*loc, 0), Pmode);
2978 do_not_record = save_do_not_record;
2979 hash_arg_in_memory = save_hash_arg_in_memory;
2980
2981 elt = lookup (XEXP (*loc, 0), hash, Pmode);
2982 if (elt == 0)
2983 return;
2984
2985 /* We need to find the best (under the criteria documented above) entry
2986 in the class that is valid. We use the `flag' field to indicate
2987 choices that were invalid and iterate until we can't find a better
2988 one that hasn't already been tried. */
2989
2990 for (p = elt->first_same_value; p; p = p->next_same_value)
2991 p->flag = 0;
2992
2993 while (found_better)
2994 {
2995 int best_addr_cost = address_cost (*loc, mode);
2996 int best_rtx_cost = (COST (*loc) + 1) >> 1;
2997 struct table_elt *best_elt = elt;
2998 rtx best_rtx = *loc;
2999 int count;
3000
3001 /* This is at worst case an O(n^2) algorithm, so limit our search
3002 to the first 32 elements on the list. This avoids trouble
3003 compiling code with very long basic blocks that can easily
3004 call simplify_gen_binary so many times that we run out of
3005 memory. */
3006
3007 found_better = 0;
3008 for (p = elt->first_same_value, count = 0;
3009 p && count < 32;
3010 p = p->next_same_value, count++)
3011 if (! p->flag
3012 && (REG_P (p->exp)
3013 || (GET_CODE (p->exp) != EXPR_LIST
3014 && exp_equiv_p (p->exp, p->exp, 1, false))))
3015
3016 {
3017 rtx new = simplify_gen_binary (GET_CODE (*loc), Pmode,
3018 p->exp, op1);
3019 int new_cost;
3020
3021 /* Get the canonical version of the address so we can accept
3022 more. */
3023 new = canon_for_address (new);
3024
3025 new_cost = address_cost (new, mode);
3026
3027 if (new_cost < best_addr_cost
3028 || (new_cost == best_addr_cost
3029 && (COST (new) + 1) >> 1 > best_rtx_cost))
3030 {
3031 found_better = 1;
3032 best_addr_cost = new_cost;
3033 best_rtx_cost = (COST (new) + 1) >> 1;
3034 best_elt = p;
3035 best_rtx = new;
3036 }
3037 }
3038
3039 if (found_better)
3040 {
3041 if (validate_change (insn, loc,
3042 canon_reg (copy_rtx (best_rtx),
3043 NULL_RTX), 0))
3044 return;
3045 else
3046 best_elt->flag = 1;
3047 }
3048 }
3049 }
3050 }
3051
3052 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
3053 operation (EQ, NE, GT, etc.), follow it back through the hash table and
3054 what values are being compared.
3055
3056 *PARG1 and *PARG2 are updated to contain the rtx representing the values
3057 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
3058 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
3059 compared to produce cc0.
3060
3061 The return value is the comparison operator and is either the code of
3062 A or the code corresponding to the inverse of the comparison. */
3063
3064 static enum rtx_code
find_comparison_args(enum rtx_code code,rtx * parg1,rtx * parg2,enum machine_mode * pmode1,enum machine_mode * pmode2)3065 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
3066 enum machine_mode *pmode1, enum machine_mode *pmode2)
3067 {
3068 rtx arg1, arg2;
3069
3070 arg1 = *parg1, arg2 = *parg2;
3071
3072 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
3073
3074 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
3075 {
3076 /* Set nonzero when we find something of interest. */
3077 rtx x = 0;
3078 int reverse_code = 0;
3079 struct table_elt *p = 0;
3080
3081 /* If arg1 is a COMPARE, extract the comparison arguments from it.
3082 On machines with CC0, this is the only case that can occur, since
3083 fold_rtx will return the COMPARE or item being compared with zero
3084 when given CC0. */
3085
3086 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
3087 x = arg1;
3088
3089 /* If ARG1 is a comparison operator and CODE is testing for
3090 STORE_FLAG_VALUE, get the inner arguments. */
3091
3092 else if (COMPARISON_P (arg1))
3093 {
3094 #ifdef FLOAT_STORE_FLAG_VALUE
3095 REAL_VALUE_TYPE fsfv;
3096 #endif
3097
3098 if (code == NE
3099 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
3100 && code == LT && STORE_FLAG_VALUE == -1)
3101 #ifdef FLOAT_STORE_FLAG_VALUE
3102 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
3103 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3104 REAL_VALUE_NEGATIVE (fsfv)))
3105 #endif
3106 )
3107 x = arg1;
3108 else if (code == EQ
3109 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
3110 && code == GE && STORE_FLAG_VALUE == -1)
3111 #ifdef FLOAT_STORE_FLAG_VALUE
3112 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
3113 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3114 REAL_VALUE_NEGATIVE (fsfv)))
3115 #endif
3116 )
3117 x = arg1, reverse_code = 1;
3118 }
3119
3120 /* ??? We could also check for
3121
3122 (ne (and (eq (...) (const_int 1))) (const_int 0))
3123
3124 and related forms, but let's wait until we see them occurring. */
3125
3126 if (x == 0)
3127 /* Look up ARG1 in the hash table and see if it has an equivalence
3128 that lets us see what is being compared. */
3129 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
3130 if (p)
3131 {
3132 p = p->first_same_value;
3133
3134 /* If what we compare is already known to be constant, that is as
3135 good as it gets.
3136 We need to break the loop in this case, because otherwise we
3137 can have an infinite loop when looking at a reg that is known
3138 to be a constant which is the same as a comparison of a reg
3139 against zero which appears later in the insn stream, which in
3140 turn is constant and the same as the comparison of the first reg
3141 against zero... */
3142 if (p->is_const)
3143 break;
3144 }
3145
3146 for (; p; p = p->next_same_value)
3147 {
3148 enum machine_mode inner_mode = GET_MODE (p->exp);
3149 #ifdef FLOAT_STORE_FLAG_VALUE
3150 REAL_VALUE_TYPE fsfv;
3151 #endif
3152
3153 /* If the entry isn't valid, skip it. */
3154 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3155 continue;
3156
3157 if (GET_CODE (p->exp) == COMPARE
3158 /* Another possibility is that this machine has a compare insn
3159 that includes the comparison code. In that case, ARG1 would
3160 be equivalent to a comparison operation that would set ARG1 to
3161 either STORE_FLAG_VALUE or zero. If this is an NE operation,
3162 ORIG_CODE is the actual comparison being done; if it is an EQ,
3163 we must reverse ORIG_CODE. On machine with a negative value
3164 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3165 || ((code == NE
3166 || (code == LT
3167 && GET_MODE_CLASS (inner_mode) == MODE_INT
3168 && (GET_MODE_BITSIZE (inner_mode)
3169 <= HOST_BITS_PER_WIDE_INT)
3170 && (STORE_FLAG_VALUE
3171 & ((HOST_WIDE_INT) 1
3172 << (GET_MODE_BITSIZE (inner_mode) - 1))))
3173 #ifdef FLOAT_STORE_FLAG_VALUE
3174 || (code == LT
3175 && SCALAR_FLOAT_MODE_P (inner_mode)
3176 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3177 REAL_VALUE_NEGATIVE (fsfv)))
3178 #endif
3179 )
3180 && COMPARISON_P (p->exp)))
3181 {
3182 x = p->exp;
3183 break;
3184 }
3185 else if ((code == EQ
3186 || (code == GE
3187 && GET_MODE_CLASS (inner_mode) == MODE_INT
3188 && (GET_MODE_BITSIZE (inner_mode)
3189 <= HOST_BITS_PER_WIDE_INT)
3190 && (STORE_FLAG_VALUE
3191 & ((HOST_WIDE_INT) 1
3192 << (GET_MODE_BITSIZE (inner_mode) - 1))))
3193 #ifdef FLOAT_STORE_FLAG_VALUE
3194 || (code == GE
3195 && SCALAR_FLOAT_MODE_P (inner_mode)
3196 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3197 REAL_VALUE_NEGATIVE (fsfv)))
3198 #endif
3199 )
3200 && COMPARISON_P (p->exp))
3201 {
3202 reverse_code = 1;
3203 x = p->exp;
3204 break;
3205 }
3206
3207 /* If this non-trapping address, e.g. fp + constant, the
3208 equivalent is a better operand since it may let us predict
3209 the value of the comparison. */
3210 else if (!rtx_addr_can_trap_p (p->exp))
3211 {
3212 arg1 = p->exp;
3213 continue;
3214 }
3215 }
3216
3217 /* If we didn't find a useful equivalence for ARG1, we are done.
3218 Otherwise, set up for the next iteration. */
3219 if (x == 0)
3220 break;
3221
3222 /* If we need to reverse the comparison, make sure that that is
3223 possible -- we can't necessarily infer the value of GE from LT
3224 with floating-point operands. */
3225 if (reverse_code)
3226 {
3227 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
3228 if (reversed == UNKNOWN)
3229 break;
3230 else
3231 code = reversed;
3232 }
3233 else if (COMPARISON_P (x))
3234 code = GET_CODE (x);
3235 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3236 }
3237
3238 /* Return our results. Return the modes from before fold_rtx
3239 because fold_rtx might produce const_int, and then it's too late. */
3240 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3241 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3242
3243 return code;
3244 }
3245
3246 /* Fold SUBREG. */
3247
3248 static rtx
fold_rtx_subreg(rtx x,rtx insn)3249 fold_rtx_subreg (rtx x, rtx insn)
3250 {
3251 enum machine_mode mode = GET_MODE (x);
3252 rtx folded_arg0;
3253 rtx const_arg0;
3254 rtx new;
3255
3256 /* See if we previously assigned a constant value to this SUBREG. */
3257 if ((new = lookup_as_function (x, CONST_INT)) != 0
3258 || (new = lookup_as_function (x, CONST_DOUBLE)) != 0)
3259 return new;
3260
3261 /* If this is a paradoxical SUBREG, we have no idea what value the
3262 extra bits would have. However, if the operand is equivalent to
3263 a SUBREG whose operand is the same as our mode, and all the modes
3264 are within a word, we can just use the inner operand because
3265 these SUBREGs just say how to treat the register.
3266
3267 Similarly if we find an integer constant. */
3268
3269 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3270 {
3271 enum machine_mode imode = GET_MODE (SUBREG_REG (x));
3272 struct table_elt *elt;
3273
3274 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
3275 && GET_MODE_SIZE (imode) <= UNITS_PER_WORD
3276 && (elt = lookup (SUBREG_REG (x), HASH (SUBREG_REG (x), imode),
3277 imode)) != 0)
3278 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3279 {
3280 if (CONSTANT_P (elt->exp)
3281 && GET_MODE (elt->exp) == VOIDmode)
3282 return elt->exp;
3283
3284 if (GET_CODE (elt->exp) == SUBREG
3285 && GET_MODE (SUBREG_REG (elt->exp)) == mode
3286 && exp_equiv_p (elt->exp, elt->exp, 1, false))
3287 return copy_rtx (SUBREG_REG (elt->exp));
3288 }
3289
3290 return x;
3291 }
3292
3293 /* Fold SUBREG_REG. If it changed, see if we can simplify the
3294 SUBREG. We might be able to if the SUBREG is extracting a single
3295 word in an integral mode or extracting the low part. */
3296
3297 folded_arg0 = fold_rtx (SUBREG_REG (x), insn);
3298 const_arg0 = equiv_constant (folded_arg0);
3299 if (const_arg0)
3300 folded_arg0 = const_arg0;
3301
3302 if (folded_arg0 != SUBREG_REG (x))
3303 {
3304 new = simplify_subreg (mode, folded_arg0,
3305 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
3306 if (new)
3307 return new;
3308 }
3309
3310 if (REG_P (folded_arg0)
3311 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (folded_arg0)))
3312 {
3313 struct table_elt *elt;
3314
3315 elt = lookup (folded_arg0,
3316 HASH (folded_arg0, GET_MODE (folded_arg0)),
3317 GET_MODE (folded_arg0));
3318
3319 if (elt)
3320 elt = elt->first_same_value;
3321
3322 if (subreg_lowpart_p (x))
3323 /* If this is a narrowing SUBREG and our operand is a REG, see
3324 if we can find an equivalence for REG that is an arithmetic
3325 operation in a wider mode where both operands are
3326 paradoxical SUBREGs from objects of our result mode. In
3327 that case, we couldn-t report an equivalent value for that
3328 operation, since we don't know what the extra bits will be.
3329 But we can find an equivalence for this SUBREG by folding
3330 that operation in the narrow mode. This allows us to fold
3331 arithmetic in narrow modes when the machine only supports
3332 word-sized arithmetic.
3333
3334 Also look for a case where we have a SUBREG whose operand
3335 is the same as our result. If both modes are smaller than
3336 a word, we are simply interpreting a register in different
3337 modes and we can use the inner value. */
3338
3339 for (; elt; elt = elt->next_same_value)
3340 {
3341 enum rtx_code eltcode = GET_CODE (elt->exp);
3342
3343 /* Just check for unary and binary operations. */
3344 if (UNARY_P (elt->exp)
3345 && eltcode != SIGN_EXTEND
3346 && eltcode != ZERO_EXTEND
3347 && GET_CODE (XEXP (elt->exp, 0)) == SUBREG
3348 && GET_MODE (SUBREG_REG (XEXP (elt->exp, 0))) == mode
3349 && (GET_MODE_CLASS (mode)
3350 == GET_MODE_CLASS (GET_MODE (XEXP (elt->exp, 0)))))
3351 {
3352 rtx op0 = SUBREG_REG (XEXP (elt->exp, 0));
3353
3354 if (!REG_P (op0) && ! CONSTANT_P (op0))
3355 op0 = fold_rtx (op0, NULL_RTX);
3356
3357 op0 = equiv_constant (op0);
3358 if (op0)
3359 new = simplify_unary_operation (GET_CODE (elt->exp), mode,
3360 op0, mode);
3361 }
3362 else if (ARITHMETIC_P (elt->exp)
3363 && eltcode != DIV && eltcode != MOD
3364 && eltcode != UDIV && eltcode != UMOD
3365 && eltcode != ASHIFTRT && eltcode != LSHIFTRT
3366 && eltcode != ROTATE && eltcode != ROTATERT
3367 && ((GET_CODE (XEXP (elt->exp, 0)) == SUBREG
3368 && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 0)))
3369 == mode))
3370 || CONSTANT_P (XEXP (elt->exp, 0)))
3371 && ((GET_CODE (XEXP (elt->exp, 1)) == SUBREG
3372 && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 1)))
3373 == mode))
3374 || CONSTANT_P (XEXP (elt->exp, 1))))
3375 {
3376 rtx op0 = gen_lowpart_common (mode, XEXP (elt->exp, 0));
3377 rtx op1 = gen_lowpart_common (mode, XEXP (elt->exp, 1));
3378
3379 if (op0 && !REG_P (op0) && ! CONSTANT_P (op0))
3380 op0 = fold_rtx (op0, NULL_RTX);
3381
3382 if (op0)
3383 op0 = equiv_constant (op0);
3384
3385 if (op1 && !REG_P (op1) && ! CONSTANT_P (op1))
3386 op1 = fold_rtx (op1, NULL_RTX);
3387
3388 if (op1)
3389 op1 = equiv_constant (op1);
3390
3391 /* If we are looking for the low SImode part of
3392 (ashift:DI c (const_int 32)), it doesn't work to
3393 compute that in SImode, because a 32-bit shift in
3394 SImode is unpredictable. We know the value is
3395 0. */
3396 if (op0 && op1
3397 && GET_CODE (elt->exp) == ASHIFT
3398 && GET_CODE (op1) == CONST_INT
3399 && INTVAL (op1) >= GET_MODE_BITSIZE (mode))
3400 {
3401 if (INTVAL (op1)
3402 < GET_MODE_BITSIZE (GET_MODE (elt->exp)))
3403 /* If the count fits in the inner mode's width,
3404 but exceeds the outer mode's width, the value
3405 will get truncated to 0 by the subreg. */
3406 new = CONST0_RTX (mode);
3407 else
3408 /* If the count exceeds even the inner mode's width,
3409 don't fold this expression. */
3410 new = 0;
3411 }
3412 else if (op0 && op1)
3413 new = simplify_binary_operation (GET_CODE (elt->exp),
3414 mode, op0, op1);
3415 }
3416
3417 else if (GET_CODE (elt->exp) == SUBREG
3418 && GET_MODE (SUBREG_REG (elt->exp)) == mode
3419 && (GET_MODE_SIZE (GET_MODE (folded_arg0))
3420 <= UNITS_PER_WORD)
3421 && exp_equiv_p (elt->exp, elt->exp, 1, false))
3422 new = copy_rtx (SUBREG_REG (elt->exp));
3423
3424 if (new)
3425 return new;
3426 }
3427 else
3428 /* A SUBREG resulting from a zero extension may fold to zero
3429 if it extracts higher bits than the ZERO_EXTEND's source
3430 bits. FIXME: if combine tried to, er, combine these
3431 instructions, this transformation may be moved to
3432 simplify_subreg. */
3433 for (; elt; elt = elt->next_same_value)
3434 {
3435 if (GET_CODE (elt->exp) == ZERO_EXTEND
3436 && subreg_lsb (x)
3437 >= GET_MODE_BITSIZE (GET_MODE (XEXP (elt->exp, 0))))
3438 return CONST0_RTX (mode);
3439 }
3440 }
3441
3442 return x;
3443 }
3444
3445 /* Fold MEM. Not to be called directly, see fold_rtx_mem instead. */
3446
3447 static rtx
fold_rtx_mem_1(rtx x,rtx insn)3448 fold_rtx_mem_1 (rtx x, rtx insn)
3449 {
3450 enum machine_mode mode = GET_MODE (x);
3451 rtx new;
3452
3453 /* If we are not actually processing an insn, don't try to find the
3454 best address. Not only don't we care, but we could modify the
3455 MEM in an invalid way since we have no insn to validate
3456 against. */
3457 if (insn != 0)
3458 find_best_addr (insn, &XEXP (x, 0), mode);
3459
3460 {
3461 /* Even if we don't fold in the insn itself, we can safely do so
3462 here, in hopes of getting a constant. */
3463 rtx addr = fold_rtx (XEXP (x, 0), NULL_RTX);
3464 rtx base = 0;
3465 HOST_WIDE_INT offset = 0;
3466
3467 if (REG_P (addr)
3468 && REGNO_QTY_VALID_P (REGNO (addr)))
3469 {
3470 int addr_q = REG_QTY (REGNO (addr));
3471 struct qty_table_elem *addr_ent = &qty_table[addr_q];
3472
3473 if (GET_MODE (addr) == addr_ent->mode
3474 && addr_ent->const_rtx != NULL_RTX)
3475 addr = addr_ent->const_rtx;
3476 }
3477
3478 /* Call target hook to avoid the effects of -fpic etc.... */
3479 addr = targetm.delegitimize_address (addr);
3480
3481 /* If address is constant, split it into a base and integer
3482 offset. */
3483 if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == LABEL_REF)
3484 base = addr;
3485 else if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == PLUS
3486 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT)
3487 {
3488 base = XEXP (XEXP (addr, 0), 0);
3489 offset = INTVAL (XEXP (XEXP (addr, 0), 1));
3490 }
3491 else if (GET_CODE (addr) == LO_SUM
3492 && GET_CODE (XEXP (addr, 1)) == SYMBOL_REF)
3493 base = XEXP (addr, 1);
3494
3495 /* If this is a constant pool reference, we can fold it into its
3496 constant to allow better value tracking. */
3497 if (base && GET_CODE (base) == SYMBOL_REF
3498 && CONSTANT_POOL_ADDRESS_P (base))
3499 {
3500 rtx constant = get_pool_constant (base);
3501 enum machine_mode const_mode = get_pool_mode (base);
3502 rtx new;
3503
3504 if (CONSTANT_P (constant) && GET_CODE (constant) != CONST_INT)
3505 {
3506 constant_pool_entries_cost = COST (constant);
3507 constant_pool_entries_regcost = approx_reg_cost (constant);
3508 }
3509
3510 /* If we are loading the full constant, we have an
3511 equivalence. */
3512 if (offset == 0 && mode == const_mode)
3513 return constant;
3514
3515 /* If this actually isn't a constant (weird!), we can't do
3516 anything. Otherwise, handle the two most common cases:
3517 extracting a word from a multi-word constant, and
3518 extracting the low-order bits. Other cases don't seem
3519 common enough to worry about. */
3520 if (! CONSTANT_P (constant))
3521 return x;
3522
3523 if (GET_MODE_CLASS (mode) == MODE_INT
3524 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
3525 && offset % UNITS_PER_WORD == 0
3526 && (new = operand_subword (constant,
3527 offset / UNITS_PER_WORD,
3528 0, const_mode)) != 0)
3529 return new;
3530
3531 if (((BYTES_BIG_ENDIAN
3532 && offset == GET_MODE_SIZE (GET_MODE (constant)) - 1)
3533 || (! BYTES_BIG_ENDIAN && offset == 0))
3534 && (new = gen_lowpart (mode, constant)) != 0)
3535 return new;
3536 }
3537
3538 /* If this is a reference to a label at a known position in a jump
3539 table, we also know its value. */
3540 if (base && GET_CODE (base) == LABEL_REF)
3541 {
3542 rtx label = XEXP (base, 0);
3543 rtx table_insn = NEXT_INSN (label);
3544
3545 if (table_insn && JUMP_P (table_insn)
3546 && GET_CODE (PATTERN (table_insn)) == ADDR_VEC)
3547 {
3548 rtx table = PATTERN (table_insn);
3549
3550 if (offset >= 0
3551 && (offset / GET_MODE_SIZE (GET_MODE (table))
3552 < XVECLEN (table, 0)))
3553 {
3554 rtx label = XVECEXP
3555 (table, 0, offset / GET_MODE_SIZE (GET_MODE (table)));
3556 rtx set;
3557
3558 /* If we have an insn that loads the label from the
3559 jumptable into a reg, we don't want to set the reg
3560 to the label, because this may cause a reference to
3561 the label to remain after the label is removed in
3562 some very obscure cases (PR middle-end/18628). */
3563 if (!insn)
3564 return label;
3565
3566 set = single_set (insn);
3567
3568 if (! set || SET_SRC (set) != x)
3569 return x;
3570
3571 /* If it's a jump, it's safe to reference the label. */
3572 if (SET_DEST (set) == pc_rtx)
3573 return label;
3574
3575 return x;
3576 }
3577 }
3578 if (table_insn && JUMP_P (table_insn)
3579 && GET_CODE (PATTERN (table_insn)) == ADDR_DIFF_VEC)
3580 {
3581 rtx table = PATTERN (table_insn);
3582
3583 if (offset >= 0
3584 && (offset / GET_MODE_SIZE (GET_MODE (table))
3585 < XVECLEN (table, 1)))
3586 {
3587 offset /= GET_MODE_SIZE (GET_MODE (table));
3588 new = gen_rtx_MINUS (Pmode, XVECEXP (table, 1, offset),
3589 XEXP (table, 0));
3590
3591 if (GET_MODE (table) != Pmode)
3592 new = gen_rtx_TRUNCATE (GET_MODE (table), new);
3593
3594 /* Indicate this is a constant. This isn't a valid
3595 form of CONST, but it will only be used to fold the
3596 next insns and then discarded, so it should be
3597 safe.
3598
3599 Note this expression must be explicitly discarded,
3600 by cse_insn, else it may end up in a REG_EQUAL note
3601 and "escape" to cause problems elsewhere. */
3602 return gen_rtx_CONST (GET_MODE (new), new);
3603 }
3604 }
3605 }
3606
3607 return x;
3608 }
3609 }
3610
3611 /* Fold MEM. */
3612
3613 static rtx
fold_rtx_mem(rtx x,rtx insn)3614 fold_rtx_mem (rtx x, rtx insn)
3615 {
3616 /* To avoid infinite oscillations between fold_rtx and fold_rtx_mem,
3617 refuse to allow recursion of the latter past n levels. This can
3618 happen because fold_rtx_mem will try to fold the address of the
3619 memory reference it is passed, i.e. conceptually throwing away
3620 the MEM and reinjecting the bare address into fold_rtx. As a
3621 result, patterns like
3622
3623 set (reg1)
3624 (plus (reg)
3625 (mem (plus (reg2) (const_int))))
3626
3627 set (reg2)
3628 (plus (reg)
3629 (mem (plus (reg1) (const_int))))
3630
3631 will defeat any "first-order" short-circuit put in either
3632 function to prevent these infinite oscillations.
3633
3634 The heuristics for determining n is as follows: since each time
3635 it is invoked fold_rtx_mem throws away a MEM, and since MEMs
3636 are generically not nested, we assume that each invocation of
3637 fold_rtx_mem corresponds to a new "top-level" operand, i.e.
3638 the source or the destination of a SET. So fold_rtx_mem is
3639 bound to stop or cycle before n recursions, n being the number
3640 of expressions recorded in the hash table. We also leave some
3641 play to account for the initial steps. */
3642
3643 static unsigned int depth;
3644 rtx ret;
3645
3646 if (depth > 3 + table_size)
3647 return x;
3648
3649 depth++;
3650 ret = fold_rtx_mem_1 (x, insn);
3651 depth--;
3652
3653 return ret;
3654 }
3655
3656 /* If X is a nontrivial arithmetic operation on an argument
3657 for which a constant value can be determined, return
3658 the result of operating on that value, as a constant.
3659 Otherwise, return X, possibly with one or more operands
3660 modified by recursive calls to this function.
3661
3662 If X is a register whose contents are known, we do NOT
3663 return those contents here. equiv_constant is called to
3664 perform that task.
3665
3666 INSN is the insn that we may be modifying. If it is 0, make a copy
3667 of X before modifying it. */
3668
3669 static rtx
fold_rtx(rtx x,rtx insn)3670 fold_rtx (rtx x, rtx insn)
3671 {
3672 enum rtx_code code;
3673 enum machine_mode mode;
3674 const char *fmt;
3675 int i;
3676 rtx new = 0;
3677 int copied = 0;
3678 int must_swap = 0;
3679
3680 /* Folded equivalents of first two operands of X. */
3681 rtx folded_arg0;
3682 rtx folded_arg1;
3683
3684 /* Constant equivalents of first three operands of X;
3685 0 when no such equivalent is known. */
3686 rtx const_arg0;
3687 rtx const_arg1;
3688 rtx const_arg2;
3689
3690 /* The mode of the first operand of X. We need this for sign and zero
3691 extends. */
3692 enum machine_mode mode_arg0;
3693
3694 if (x == 0)
3695 return x;
3696
3697 mode = GET_MODE (x);
3698 code = GET_CODE (x);
3699 switch (code)
3700 {
3701 case CONST:
3702 case CONST_INT:
3703 case CONST_DOUBLE:
3704 case CONST_VECTOR:
3705 case SYMBOL_REF:
3706 case LABEL_REF:
3707 case REG:
3708 case PC:
3709 /* No use simplifying an EXPR_LIST
3710 since they are used only for lists of args
3711 in a function call's REG_EQUAL note. */
3712 case EXPR_LIST:
3713 return x;
3714
3715 #ifdef HAVE_cc0
3716 case CC0:
3717 return prev_insn_cc0;
3718 #endif
3719
3720 case SUBREG:
3721 return fold_rtx_subreg (x, insn);
3722
3723 case NOT:
3724 case NEG:
3725 /* If we have (NOT Y), see if Y is known to be (NOT Z).
3726 If so, (NOT Y) simplifies to Z. Similarly for NEG. */
3727 new = lookup_as_function (XEXP (x, 0), code);
3728 if (new)
3729 return fold_rtx (copy_rtx (XEXP (new, 0)), insn);
3730 break;
3731
3732 case MEM:
3733 return fold_rtx_mem (x, insn);
3734
3735 #ifdef NO_FUNCTION_CSE
3736 case CALL:
3737 if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3738 return x;
3739 break;
3740 #endif
3741
3742 case ASM_OPERANDS:
3743 if (insn)
3744 {
3745 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3746 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3747 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3748 }
3749 break;
3750
3751 default:
3752 break;
3753 }
3754
3755 const_arg0 = 0;
3756 const_arg1 = 0;
3757 const_arg2 = 0;
3758 mode_arg0 = VOIDmode;
3759
3760 /* Try folding our operands.
3761 Then see which ones have constant values known. */
3762
3763 fmt = GET_RTX_FORMAT (code);
3764 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3765 if (fmt[i] == 'e')
3766 {
3767 rtx arg = XEXP (x, i);
3768 rtx folded_arg = arg, const_arg = 0;
3769 enum machine_mode mode_arg = GET_MODE (arg);
3770 rtx cheap_arg, expensive_arg;
3771 rtx replacements[2];
3772 int j;
3773 int old_cost = COST_IN (XEXP (x, i), code);
3774
3775 /* Most arguments are cheap, so handle them specially. */
3776 switch (GET_CODE (arg))
3777 {
3778 case REG:
3779 /* This is the same as calling equiv_constant; it is duplicated
3780 here for speed. */
3781 if (REGNO_QTY_VALID_P (REGNO (arg)))
3782 {
3783 int arg_q = REG_QTY (REGNO (arg));
3784 struct qty_table_elem *arg_ent = &qty_table[arg_q];
3785
3786 if (arg_ent->const_rtx != NULL_RTX
3787 && !REG_P (arg_ent->const_rtx)
3788 && GET_CODE (arg_ent->const_rtx) != PLUS)
3789 const_arg
3790 = gen_lowpart (GET_MODE (arg),
3791 arg_ent->const_rtx);
3792 }
3793 break;
3794
3795 case CONST:
3796 case CONST_INT:
3797 case SYMBOL_REF:
3798 case LABEL_REF:
3799 case CONST_DOUBLE:
3800 case CONST_VECTOR:
3801 const_arg = arg;
3802 break;
3803
3804 #ifdef HAVE_cc0
3805 case CC0:
3806 folded_arg = prev_insn_cc0;
3807 mode_arg = prev_insn_cc0_mode;
3808 const_arg = equiv_constant (folded_arg);
3809 break;
3810 #endif
3811
3812 default:
3813 folded_arg = fold_rtx (arg, insn);
3814 const_arg = equiv_constant (folded_arg);
3815 }
3816
3817 /* For the first three operands, see if the operand
3818 is constant or equivalent to a constant. */
3819 switch (i)
3820 {
3821 case 0:
3822 folded_arg0 = folded_arg;
3823 const_arg0 = const_arg;
3824 mode_arg0 = mode_arg;
3825 break;
3826 case 1:
3827 folded_arg1 = folded_arg;
3828 const_arg1 = const_arg;
3829 break;
3830 case 2:
3831 const_arg2 = const_arg;
3832 break;
3833 }
3834
3835 /* Pick the least expensive of the folded argument and an
3836 equivalent constant argument. */
3837 if (const_arg == 0 || const_arg == folded_arg
3838 || COST_IN (const_arg, code) > COST_IN (folded_arg, code))
3839 cheap_arg = folded_arg, expensive_arg = const_arg;
3840 else
3841 cheap_arg = const_arg, expensive_arg = folded_arg;
3842
3843 /* Try to replace the operand with the cheapest of the two
3844 possibilities. If it doesn't work and this is either of the first
3845 two operands of a commutative operation, try swapping them.
3846 If THAT fails, try the more expensive, provided it is cheaper
3847 than what is already there. */
3848
3849 if (cheap_arg == XEXP (x, i))
3850 continue;
3851
3852 if (insn == 0 && ! copied)
3853 {
3854 x = copy_rtx (x);
3855 copied = 1;
3856 }
3857
3858 /* Order the replacements from cheapest to most expensive. */
3859 replacements[0] = cheap_arg;
3860 replacements[1] = expensive_arg;
3861
3862 for (j = 0; j < 2 && replacements[j]; j++)
3863 {
3864 int new_cost = COST_IN (replacements[j], code);
3865
3866 /* Stop if what existed before was cheaper. Prefer constants
3867 in the case of a tie. */
3868 if (new_cost > old_cost
3869 || (new_cost == old_cost && CONSTANT_P (XEXP (x, i))))
3870 break;
3871
3872 /* It's not safe to substitute the operand of a conversion
3873 operator with a constant, as the conversion's identity
3874 depends upon the mode of its operand. This optimization
3875 is handled by the call to simplify_unary_operation. */
3876 if (GET_RTX_CLASS (code) == RTX_UNARY
3877 && GET_MODE (replacements[j]) != mode_arg0
3878 && (code == ZERO_EXTEND
3879 || code == SIGN_EXTEND
3880 || code == TRUNCATE
3881 || code == FLOAT_TRUNCATE
3882 || code == FLOAT_EXTEND
3883 || code == FLOAT
3884 || code == FIX
3885 || code == UNSIGNED_FLOAT
3886 || code == UNSIGNED_FIX))
3887 continue;
3888
3889 if (validate_change (insn, &XEXP (x, i), replacements[j], 0))
3890 break;
3891
3892 if (GET_RTX_CLASS (code) == RTX_COMM_COMPARE
3893 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
3894 {
3895 validate_change (insn, &XEXP (x, i), XEXP (x, 1 - i), 1);
3896 validate_change (insn, &XEXP (x, 1 - i), replacements[j], 1);
3897
3898 if (apply_change_group ())
3899 {
3900 /* Swap them back to be invalid so that this loop can
3901 continue and flag them to be swapped back later. */
3902 rtx tem;
3903
3904 tem = XEXP (x, 0); XEXP (x, 0) = XEXP (x, 1);
3905 XEXP (x, 1) = tem;
3906 must_swap = 1;
3907 break;
3908 }
3909 }
3910 }
3911 }
3912
3913 else
3914 {
3915 if (fmt[i] == 'E')
3916 /* Don't try to fold inside of a vector of expressions.
3917 Doing nothing is harmless. */
3918 {;}
3919 }
3920
3921 /* If a commutative operation, place a constant integer as the second
3922 operand unless the first operand is also a constant integer. Otherwise,
3923 place any constant second unless the first operand is also a constant. */
3924
3925 if (COMMUTATIVE_P (x))
3926 {
3927 if (must_swap
3928 || swap_commutative_operands_p (const_arg0 ? const_arg0
3929 : XEXP (x, 0),
3930 const_arg1 ? const_arg1
3931 : XEXP (x, 1)))
3932 {
3933 rtx tem = XEXP (x, 0);
3934
3935 if (insn == 0 && ! copied)
3936 {
3937 x = copy_rtx (x);
3938 copied = 1;
3939 }
3940
3941 validate_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
3942 validate_change (insn, &XEXP (x, 1), tem, 1);
3943 if (apply_change_group ())
3944 {
3945 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3946 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3947 }
3948 }
3949 }
3950
3951 /* If X is an arithmetic operation, see if we can simplify it. */
3952
3953 switch (GET_RTX_CLASS (code))
3954 {
3955 case RTX_UNARY:
3956 {
3957 int is_const = 0;
3958
3959 /* We can't simplify extension ops unless we know the
3960 original mode. */
3961 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3962 && mode_arg0 == VOIDmode)
3963 break;
3964
3965 /* If we had a CONST, strip it off and put it back later if we
3966 fold. */
3967 if (const_arg0 != 0 && GET_CODE (const_arg0) == CONST)
3968 is_const = 1, const_arg0 = XEXP (const_arg0, 0);
3969
3970 new = simplify_unary_operation (code, mode,
3971 const_arg0 ? const_arg0 : folded_arg0,
3972 mode_arg0);
3973 /* NEG of PLUS could be converted into MINUS, but that causes
3974 expressions of the form
3975 (CONST (MINUS (CONST_INT) (SYMBOL_REF)))
3976 which many ports mistakenly treat as LEGITIMATE_CONSTANT_P.
3977 FIXME: those ports should be fixed. */
3978 if (new != 0 && is_const
3979 && GET_CODE (new) == PLUS
3980 && (GET_CODE (XEXP (new, 0)) == SYMBOL_REF
3981 || GET_CODE (XEXP (new, 0)) == LABEL_REF)
3982 && GET_CODE (XEXP (new, 1)) == CONST_INT)
3983 new = gen_rtx_CONST (mode, new);
3984 }
3985 break;
3986
3987 case RTX_COMPARE:
3988 case RTX_COMM_COMPARE:
3989 /* See what items are actually being compared and set FOLDED_ARG[01]
3990 to those values and CODE to the actual comparison code. If any are
3991 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3992 do anything if both operands are already known to be constant. */
3993
3994 /* ??? Vector mode comparisons are not supported yet. */
3995 if (VECTOR_MODE_P (mode))
3996 break;
3997
3998 if (const_arg0 == 0 || const_arg1 == 0)
3999 {
4000 struct table_elt *p0, *p1;
4001 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
4002 enum machine_mode mode_arg1;
4003
4004 #ifdef FLOAT_STORE_FLAG_VALUE
4005 if (SCALAR_FLOAT_MODE_P (mode))
4006 {
4007 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
4008 (FLOAT_STORE_FLAG_VALUE (mode), mode));
4009 false_rtx = CONST0_RTX (mode);
4010 }
4011 #endif
4012
4013 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
4014 &mode_arg0, &mode_arg1);
4015
4016 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
4017 what kinds of things are being compared, so we can't do
4018 anything with this comparison. */
4019
4020 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
4021 break;
4022
4023 const_arg0 = equiv_constant (folded_arg0);
4024 const_arg1 = equiv_constant (folded_arg1);
4025
4026 /* If we do not now have two constants being compared, see
4027 if we can nevertheless deduce some things about the
4028 comparison. */
4029 if (const_arg0 == 0 || const_arg1 == 0)
4030 {
4031 if (const_arg1 != NULL)
4032 {
4033 rtx cheapest_simplification;
4034 int cheapest_cost;
4035 rtx simp_result;
4036 struct table_elt *p;
4037
4038 /* See if we can find an equivalent of folded_arg0
4039 that gets us a cheaper expression, possibly a
4040 constant through simplifications. */
4041 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
4042 mode_arg0);
4043
4044 if (p != NULL)
4045 {
4046 cheapest_simplification = x;
4047 cheapest_cost = COST (x);
4048
4049 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
4050 {
4051 int cost;
4052
4053 /* If the entry isn't valid, skip it. */
4054 if (! exp_equiv_p (p->exp, p->exp, 1, false))
4055 continue;
4056
4057 /* Try to simplify using this equivalence. */
4058 simp_result
4059 = simplify_relational_operation (code, mode,
4060 mode_arg0,
4061 p->exp,
4062 const_arg1);
4063
4064 if (simp_result == NULL)
4065 continue;
4066
4067 cost = COST (simp_result);
4068 if (cost < cheapest_cost)
4069 {
4070 cheapest_cost = cost;
4071 cheapest_simplification = simp_result;
4072 }
4073 }
4074
4075 /* If we have a cheaper expression now, use that
4076 and try folding it further, from the top. */
4077 if (cheapest_simplification != x)
4078 return fold_rtx (cheapest_simplification, insn);
4079 }
4080 }
4081
4082 /* Some addresses are known to be nonzero. We don't know
4083 their sign, but equality comparisons are known. */
4084 if (const_arg1 == const0_rtx
4085 && nonzero_address_p (folded_arg0))
4086 {
4087 if (code == EQ)
4088 return false_rtx;
4089 else if (code == NE)
4090 return true_rtx;
4091 }
4092
4093 /* See if the two operands are the same. */
4094
4095 if (folded_arg0 == folded_arg1
4096 || (REG_P (folded_arg0)
4097 && REG_P (folded_arg1)
4098 && (REG_QTY (REGNO (folded_arg0))
4099 == REG_QTY (REGNO (folded_arg1))))
4100 || ((p0 = lookup (folded_arg0,
4101 SAFE_HASH (folded_arg0, mode_arg0),
4102 mode_arg0))
4103 && (p1 = lookup (folded_arg1,
4104 SAFE_HASH (folded_arg1, mode_arg0),
4105 mode_arg0))
4106 && p0->first_same_value == p1->first_same_value))
4107 {
4108 /* Sadly two equal NaNs are not equivalent. */
4109 if (!HONOR_NANS (mode_arg0))
4110 return ((code == EQ || code == LE || code == GE
4111 || code == LEU || code == GEU || code == UNEQ
4112 || code == UNLE || code == UNGE
4113 || code == ORDERED)
4114 ? true_rtx : false_rtx);
4115 /* Take care for the FP compares we can resolve. */
4116 if (code == UNEQ || code == UNLE || code == UNGE)
4117 return true_rtx;
4118 if (code == LTGT || code == LT || code == GT)
4119 return false_rtx;
4120 }
4121
4122 /* If FOLDED_ARG0 is a register, see if the comparison we are
4123 doing now is either the same as we did before or the reverse
4124 (we only check the reverse if not floating-point). */
4125 else if (REG_P (folded_arg0))
4126 {
4127 int qty = REG_QTY (REGNO (folded_arg0));
4128
4129 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
4130 {
4131 struct qty_table_elem *ent = &qty_table[qty];
4132
4133 if ((comparison_dominates_p (ent->comparison_code, code)
4134 || (! FLOAT_MODE_P (mode_arg0)
4135 && comparison_dominates_p (ent->comparison_code,
4136 reverse_condition (code))))
4137 && (rtx_equal_p (ent->comparison_const, folded_arg1)
4138 || (const_arg1
4139 && rtx_equal_p (ent->comparison_const,
4140 const_arg1))
4141 || (REG_P (folded_arg1)
4142 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
4143 return (comparison_dominates_p (ent->comparison_code, code)
4144 ? true_rtx : false_rtx);
4145 }
4146 }
4147 }
4148 }
4149
4150 /* If we are comparing against zero, see if the first operand is
4151 equivalent to an IOR with a constant. If so, we may be able to
4152 determine the result of this comparison. */
4153
4154 if (const_arg1 == const0_rtx)
4155 {
4156 rtx y = lookup_as_function (folded_arg0, IOR);
4157 rtx inner_const;
4158
4159 if (y != 0
4160 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
4161 && GET_CODE (inner_const) == CONST_INT
4162 && INTVAL (inner_const) != 0)
4163 {
4164 int sign_bitnum = GET_MODE_BITSIZE (mode_arg0) - 1;
4165 int has_sign = (HOST_BITS_PER_WIDE_INT >= sign_bitnum
4166 && (INTVAL (inner_const)
4167 & ((HOST_WIDE_INT) 1 << sign_bitnum)));
4168 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
4169
4170 #ifdef FLOAT_STORE_FLAG_VALUE
4171 if (SCALAR_FLOAT_MODE_P (mode))
4172 {
4173 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
4174 (FLOAT_STORE_FLAG_VALUE (mode), mode));
4175 false_rtx = CONST0_RTX (mode);
4176 }
4177 #endif
4178
4179 switch (code)
4180 {
4181 case EQ:
4182 return false_rtx;
4183 case NE:
4184 return true_rtx;
4185 case LT: case LE:
4186 if (has_sign)
4187 return true_rtx;
4188 break;
4189 case GT: case GE:
4190 if (has_sign)
4191 return false_rtx;
4192 break;
4193 default:
4194 break;
4195 }
4196 }
4197 }
4198
4199 {
4200 rtx op0 = const_arg0 ? const_arg0 : folded_arg0;
4201 rtx op1 = const_arg1 ? const_arg1 : folded_arg1;
4202 new = simplify_relational_operation (code, mode, mode_arg0, op0, op1);
4203 }
4204 break;
4205
4206 case RTX_BIN_ARITH:
4207 case RTX_COMM_ARITH:
4208 switch (code)
4209 {
4210 case PLUS:
4211 /* If the second operand is a LABEL_REF, see if the first is a MINUS
4212 with that LABEL_REF as its second operand. If so, the result is
4213 the first operand of that MINUS. This handles switches with an
4214 ADDR_DIFF_VEC table. */
4215 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
4216 {
4217 rtx y
4218 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
4219 : lookup_as_function (folded_arg0, MINUS);
4220
4221 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
4222 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
4223 return XEXP (y, 0);
4224
4225 /* Now try for a CONST of a MINUS like the above. */
4226 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
4227 : lookup_as_function (folded_arg0, CONST))) != 0
4228 && GET_CODE (XEXP (y, 0)) == MINUS
4229 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
4230 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
4231 return XEXP (XEXP (y, 0), 0);
4232 }
4233
4234 /* Likewise if the operands are in the other order. */
4235 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
4236 {
4237 rtx y
4238 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
4239 : lookup_as_function (folded_arg1, MINUS);
4240
4241 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
4242 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
4243 return XEXP (y, 0);
4244
4245 /* Now try for a CONST of a MINUS like the above. */
4246 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
4247 : lookup_as_function (folded_arg1, CONST))) != 0
4248 && GET_CODE (XEXP (y, 0)) == MINUS
4249 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
4250 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
4251 return XEXP (XEXP (y, 0), 0);
4252 }
4253
4254 /* If second operand is a register equivalent to a negative
4255 CONST_INT, see if we can find a register equivalent to the
4256 positive constant. Make a MINUS if so. Don't do this for
4257 a non-negative constant since we might then alternate between
4258 choosing positive and negative constants. Having the positive
4259 constant previously-used is the more common case. Be sure
4260 the resulting constant is non-negative; if const_arg1 were
4261 the smallest negative number this would overflow: depending
4262 on the mode, this would either just be the same value (and
4263 hence not save anything) or be incorrect. */
4264 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT
4265 && INTVAL (const_arg1) < 0
4266 /* This used to test
4267
4268 -INTVAL (const_arg1) >= 0
4269
4270 But The Sun V5.0 compilers mis-compiled that test. So
4271 instead we test for the problematic value in a more direct
4272 manner and hope the Sun compilers get it correct. */
4273 && INTVAL (const_arg1) !=
4274 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
4275 && REG_P (folded_arg1))
4276 {
4277 rtx new_const = GEN_INT (-INTVAL (const_arg1));
4278 struct table_elt *p
4279 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
4280
4281 if (p)
4282 for (p = p->first_same_value; p; p = p->next_same_value)
4283 if (REG_P (p->exp))
4284 return simplify_gen_binary (MINUS, mode, folded_arg0,
4285 canon_reg (p->exp, NULL_RTX));
4286 }
4287 goto from_plus;
4288
4289 case MINUS:
4290 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
4291 If so, produce (PLUS Z C2-C). */
4292 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT)
4293 {
4294 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
4295 if (y && GET_CODE (XEXP (y, 1)) == CONST_INT)
4296 return fold_rtx (plus_constant (copy_rtx (y),
4297 -INTVAL (const_arg1)),
4298 NULL_RTX);
4299 }
4300
4301 /* Fall through. */
4302
4303 from_plus:
4304 case SMIN: case SMAX: case UMIN: case UMAX:
4305 case IOR: case AND: case XOR:
4306 case MULT:
4307 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
4308 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
4309 is known to be of similar form, we may be able to replace the
4310 operation with a combined operation. This may eliminate the
4311 intermediate operation if every use is simplified in this way.
4312 Note that the similar optimization done by combine.c only works
4313 if the intermediate operation's result has only one reference. */
4314
4315 if (REG_P (folded_arg0)
4316 && const_arg1 && GET_CODE (const_arg1) == CONST_INT)
4317 {
4318 int is_shift
4319 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
4320 rtx y, inner_const, new_const;
4321 enum rtx_code associate_code;
4322
4323 if (is_shift
4324 && (INTVAL (const_arg1) >= GET_MODE_BITSIZE (mode)
4325 || INTVAL (const_arg1) < 0))
4326 {
4327 if (SHIFT_COUNT_TRUNCATED)
4328 const_arg1 = GEN_INT (INTVAL (const_arg1)
4329 & (GET_MODE_BITSIZE (mode) - 1));
4330 else
4331 break;
4332 }
4333
4334 y = lookup_as_function (folded_arg0, code);
4335 if (y == 0)
4336 break;
4337
4338 /* If we have compiled a statement like
4339 "if (x == (x & mask1))", and now are looking at
4340 "x & mask2", we will have a case where the first operand
4341 of Y is the same as our first operand. Unless we detect
4342 this case, an infinite loop will result. */
4343 if (XEXP (y, 0) == folded_arg0)
4344 break;
4345
4346 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
4347 if (!inner_const || GET_CODE (inner_const) != CONST_INT)
4348 break;
4349
4350 /* Don't associate these operations if they are a PLUS with the
4351 same constant and it is a power of two. These might be doable
4352 with a pre- or post-increment. Similarly for two subtracts of
4353 identical powers of two with post decrement. */
4354
4355 if (code == PLUS && const_arg1 == inner_const
4356 && ((HAVE_PRE_INCREMENT
4357 && exact_log2 (INTVAL (const_arg1)) >= 0)
4358 || (HAVE_POST_INCREMENT
4359 && exact_log2 (INTVAL (const_arg1)) >= 0)
4360 || (HAVE_PRE_DECREMENT
4361 && exact_log2 (- INTVAL (const_arg1)) >= 0)
4362 || (HAVE_POST_DECREMENT
4363 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
4364 break;
4365
4366 if (is_shift
4367 && (INTVAL (inner_const) >= GET_MODE_BITSIZE (mode)
4368 || INTVAL (inner_const) < 0))
4369 {
4370 if (SHIFT_COUNT_TRUNCATED)
4371 inner_const = GEN_INT (INTVAL (inner_const)
4372 & (GET_MODE_BITSIZE (mode) - 1));
4373 else
4374 break;
4375 }
4376
4377 /* Compute the code used to compose the constants. For example,
4378 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
4379
4380 associate_code = (is_shift || code == MINUS ? PLUS : code);
4381
4382 new_const = simplify_binary_operation (associate_code, mode,
4383 const_arg1, inner_const);
4384
4385 if (new_const == 0)
4386 break;
4387
4388 /* If we are associating shift operations, don't let this
4389 produce a shift of the size of the object or larger.
4390 This could occur when we follow a sign-extend by a right
4391 shift on a machine that does a sign-extend as a pair
4392 of shifts. */
4393
4394 if (is_shift
4395 && GET_CODE (new_const) == CONST_INT
4396 && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
4397 {
4398 /* As an exception, we can turn an ASHIFTRT of this
4399 form into a shift of the number of bits - 1. */
4400 if (code == ASHIFTRT)
4401 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
4402 else if (!side_effects_p (XEXP (y, 0)))
4403 return CONST0_RTX (mode);
4404 else
4405 break;
4406 }
4407
4408 y = copy_rtx (XEXP (y, 0));
4409
4410 /* If Y contains our first operand (the most common way this
4411 can happen is if Y is a MEM), we would do into an infinite
4412 loop if we tried to fold it. So don't in that case. */
4413
4414 if (! reg_mentioned_p (folded_arg0, y))
4415 y = fold_rtx (y, insn);
4416
4417 return simplify_gen_binary (code, mode, y, new_const);
4418 }
4419 break;
4420
4421 case DIV: case UDIV:
4422 /* ??? The associative optimization performed immediately above is
4423 also possible for DIV and UDIV using associate_code of MULT.
4424 However, we would need extra code to verify that the
4425 multiplication does not overflow, that is, there is no overflow
4426 in the calculation of new_const. */
4427 break;
4428
4429 default:
4430 break;
4431 }
4432
4433 new = simplify_binary_operation (code, mode,
4434 const_arg0 ? const_arg0 : folded_arg0,
4435 const_arg1 ? const_arg1 : folded_arg1);
4436 break;
4437
4438 case RTX_OBJ:
4439 /* (lo_sum (high X) X) is simply X. */
4440 if (code == LO_SUM && const_arg0 != 0
4441 && GET_CODE (const_arg0) == HIGH
4442 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
4443 return const_arg1;
4444 break;
4445
4446 case RTX_TERNARY:
4447 case RTX_BITFIELD_OPS:
4448 new = simplify_ternary_operation (code, mode, mode_arg0,
4449 const_arg0 ? const_arg0 : folded_arg0,
4450 const_arg1 ? const_arg1 : folded_arg1,
4451 const_arg2 ? const_arg2 : XEXP (x, 2));
4452 break;
4453
4454 default:
4455 break;
4456 }
4457
4458 return new ? new : x;
4459 }
4460
4461 /* Return a constant value currently equivalent to X.
4462 Return 0 if we don't know one. */
4463
4464 static rtx
equiv_constant(rtx x)4465 equiv_constant (rtx x)
4466 {
4467 if (REG_P (x)
4468 && REGNO_QTY_VALID_P (REGNO (x)))
4469 {
4470 int x_q = REG_QTY (REGNO (x));
4471 struct qty_table_elem *x_ent = &qty_table[x_q];
4472
4473 if (x_ent->const_rtx)
4474 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
4475 }
4476
4477 if (x == 0 || CONSTANT_P (x))
4478 return x;
4479
4480 /* If X is a MEM, try to fold it outside the context of any insn to see if
4481 it might be equivalent to a constant. That handles the case where it
4482 is a constant-pool reference. Then try to look it up in the hash table
4483 in case it is something whose value we have seen before. */
4484
4485 if (MEM_P (x))
4486 {
4487 struct table_elt *elt;
4488
4489 x = fold_rtx (x, NULL_RTX);
4490 if (CONSTANT_P (x))
4491 return x;
4492
4493 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
4494 if (elt == 0)
4495 return 0;
4496
4497 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
4498 if (elt->is_const && CONSTANT_P (elt->exp))
4499 return elt->exp;
4500 }
4501
4502 return 0;
4503 }
4504
4505 /* Given INSN, a jump insn, PATH_TAKEN indicates if we are following the "taken"
4506 branch. It will be zero if not.
4507
4508 In certain cases, this can cause us to add an equivalence. For example,
4509 if we are following the taken case of
4510 if (i == 2)
4511 we can add the fact that `i' and '2' are now equivalent.
4512
4513 In any case, we can record that this comparison was passed. If the same
4514 comparison is seen later, we will know its value. */
4515
4516 static void
record_jump_equiv(rtx insn,int taken)4517 record_jump_equiv (rtx insn, int taken)
4518 {
4519 int cond_known_true;
4520 rtx op0, op1;
4521 rtx set;
4522 enum machine_mode mode, mode0, mode1;
4523 int reversed_nonequality = 0;
4524 enum rtx_code code;
4525
4526 /* Ensure this is the right kind of insn. */
4527 if (! any_condjump_p (insn))
4528 return;
4529 set = pc_set (insn);
4530
4531 /* See if this jump condition is known true or false. */
4532 if (taken)
4533 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
4534 else
4535 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
4536
4537 /* Get the type of comparison being done and the operands being compared.
4538 If we had to reverse a non-equality condition, record that fact so we
4539 know that it isn't valid for floating-point. */
4540 code = GET_CODE (XEXP (SET_SRC (set), 0));
4541 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
4542 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
4543
4544 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
4545
4546 /* If the mode is a MODE_CC mode, we don't know what kinds of things
4547 are being compared, so we can't do anything with this
4548 comparison. */
4549
4550 if (GET_MODE_CLASS (mode0) == MODE_CC)
4551 return;
4552
4553 if (! cond_known_true)
4554 {
4555 code = reversed_comparison_code_parts (code, op0, op1, insn);
4556
4557 /* Don't remember if we can't find the inverse. */
4558 if (code == UNKNOWN)
4559 return;
4560 }
4561
4562 /* The mode is the mode of the non-constant. */
4563 mode = mode0;
4564 if (mode1 != VOIDmode)
4565 mode = mode1;
4566
4567 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
4568 }
4569
4570 /* Yet another form of subreg creation. In this case, we want something in
4571 MODE, and we should assume OP has MODE iff it is naturally modeless. */
4572
4573 static rtx
record_jump_cond_subreg(enum machine_mode mode,rtx op)4574 record_jump_cond_subreg (enum machine_mode mode, rtx op)
4575 {
4576 enum machine_mode op_mode = GET_MODE (op);
4577 if (op_mode == mode || op_mode == VOIDmode)
4578 return op;
4579 return lowpart_subreg (mode, op, op_mode);
4580 }
4581
4582 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
4583 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
4584 Make any useful entries we can with that information. Called from
4585 above function and called recursively. */
4586
4587 static void
record_jump_cond(enum rtx_code code,enum machine_mode mode,rtx op0,rtx op1,int reversed_nonequality)4588 record_jump_cond (enum rtx_code code, enum machine_mode mode, rtx op0,
4589 rtx op1, int reversed_nonequality)
4590 {
4591 unsigned op0_hash, op1_hash;
4592 int op0_in_memory, op1_in_memory;
4593 struct table_elt *op0_elt, *op1_elt;
4594
4595 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
4596 we know that they are also equal in the smaller mode (this is also
4597 true for all smaller modes whether or not there is a SUBREG, but
4598 is not worth testing for with no SUBREG). */
4599
4600 /* Note that GET_MODE (op0) may not equal MODE. */
4601 if (code == EQ && GET_CODE (op0) == SUBREG
4602 && (GET_MODE_SIZE (GET_MODE (op0))
4603 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
4604 {
4605 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
4606 rtx tem = record_jump_cond_subreg (inner_mode, op1);
4607 if (tem)
4608 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
4609 reversed_nonequality);
4610 }
4611
4612 if (code == EQ && GET_CODE (op1) == SUBREG
4613 && (GET_MODE_SIZE (GET_MODE (op1))
4614 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
4615 {
4616 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
4617 rtx tem = record_jump_cond_subreg (inner_mode, op0);
4618 if (tem)
4619 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
4620 reversed_nonequality);
4621 }
4622
4623 /* Similarly, if this is an NE comparison, and either is a SUBREG
4624 making a smaller mode, we know the whole thing is also NE. */
4625
4626 /* Note that GET_MODE (op0) may not equal MODE;
4627 if we test MODE instead, we can get an infinite recursion
4628 alternating between two modes each wider than MODE. */
4629
4630 if (code == NE && GET_CODE (op0) == SUBREG
4631 && subreg_lowpart_p (op0)
4632 && (GET_MODE_SIZE (GET_MODE (op0))
4633 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
4634 {
4635 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
4636 rtx tem = record_jump_cond_subreg (inner_mode, op1);
4637 if (tem)
4638 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
4639 reversed_nonequality);
4640 }
4641
4642 if (code == NE && GET_CODE (op1) == SUBREG
4643 && subreg_lowpart_p (op1)
4644 && (GET_MODE_SIZE (GET_MODE (op1))
4645 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
4646 {
4647 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
4648 rtx tem = record_jump_cond_subreg (inner_mode, op0);
4649 if (tem)
4650 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
4651 reversed_nonequality);
4652 }
4653
4654 /* Hash both operands. */
4655
4656 do_not_record = 0;
4657 hash_arg_in_memory = 0;
4658 op0_hash = HASH (op0, mode);
4659 op0_in_memory = hash_arg_in_memory;
4660
4661 if (do_not_record)
4662 return;
4663
4664 do_not_record = 0;
4665 hash_arg_in_memory = 0;
4666 op1_hash = HASH (op1, mode);
4667 op1_in_memory = hash_arg_in_memory;
4668
4669 if (do_not_record)
4670 return;
4671
4672 /* Look up both operands. */
4673 op0_elt = lookup (op0, op0_hash, mode);
4674 op1_elt = lookup (op1, op1_hash, mode);
4675
4676 /* If both operands are already equivalent or if they are not in the
4677 table but are identical, do nothing. */
4678 if ((op0_elt != 0 && op1_elt != 0
4679 && op0_elt->first_same_value == op1_elt->first_same_value)
4680 || op0 == op1 || rtx_equal_p (op0, op1))
4681 return;
4682
4683 /* If we aren't setting two things equal all we can do is save this
4684 comparison. Similarly if this is floating-point. In the latter
4685 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4686 If we record the equality, we might inadvertently delete code
4687 whose intent was to change -0 to +0. */
4688
4689 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
4690 {
4691 struct qty_table_elem *ent;
4692 int qty;
4693
4694 /* If we reversed a floating-point comparison, if OP0 is not a
4695 register, or if OP1 is neither a register or constant, we can't
4696 do anything. */
4697
4698 if (!REG_P (op1))
4699 op1 = equiv_constant (op1);
4700
4701 if ((reversed_nonequality && FLOAT_MODE_P (mode))
4702 || !REG_P (op0) || op1 == 0)
4703 return;
4704
4705 /* Put OP0 in the hash table if it isn't already. This gives it a
4706 new quantity number. */
4707 if (op0_elt == 0)
4708 {
4709 if (insert_regs (op0, NULL, 0))
4710 {
4711 rehash_using_reg (op0);
4712 op0_hash = HASH (op0, mode);
4713
4714 /* If OP0 is contained in OP1, this changes its hash code
4715 as well. Faster to rehash than to check, except
4716 for the simple case of a constant. */
4717 if (! CONSTANT_P (op1))
4718 op1_hash = HASH (op1,mode);
4719 }
4720
4721 op0_elt = insert (op0, NULL, op0_hash, mode);
4722 op0_elt->in_memory = op0_in_memory;
4723 }
4724
4725 qty = REG_QTY (REGNO (op0));
4726 ent = &qty_table[qty];
4727
4728 ent->comparison_code = code;
4729 if (REG_P (op1))
4730 {
4731 /* Look it up again--in case op0 and op1 are the same. */
4732 op1_elt = lookup (op1, op1_hash, mode);
4733
4734 /* Put OP1 in the hash table so it gets a new quantity number. */
4735 if (op1_elt == 0)
4736 {
4737 if (insert_regs (op1, NULL, 0))
4738 {
4739 rehash_using_reg (op1);
4740 op1_hash = HASH (op1, mode);
4741 }
4742
4743 op1_elt = insert (op1, NULL, op1_hash, mode);
4744 op1_elt->in_memory = op1_in_memory;
4745 }
4746
4747 ent->comparison_const = NULL_RTX;
4748 ent->comparison_qty = REG_QTY (REGNO (op1));
4749 }
4750 else
4751 {
4752 ent->comparison_const = op1;
4753 ent->comparison_qty = -1;
4754 }
4755
4756 return;
4757 }
4758
4759 /* If either side is still missing an equivalence, make it now,
4760 then merge the equivalences. */
4761
4762 if (op0_elt == 0)
4763 {
4764 if (insert_regs (op0, NULL, 0))
4765 {
4766 rehash_using_reg (op0);
4767 op0_hash = HASH (op0, mode);
4768 }
4769
4770 op0_elt = insert (op0, NULL, op0_hash, mode);
4771 op0_elt->in_memory = op0_in_memory;
4772 }
4773
4774 if (op1_elt == 0)
4775 {
4776 if (insert_regs (op1, NULL, 0))
4777 {
4778 rehash_using_reg (op1);
4779 op1_hash = HASH (op1, mode);
4780 }
4781
4782 op1_elt = insert (op1, NULL, op1_hash, mode);
4783 op1_elt->in_memory = op1_in_memory;
4784 }
4785
4786 merge_equiv_classes (op0_elt, op1_elt);
4787 }
4788
4789 /* CSE processing for one instruction.
4790 First simplify sources and addresses of all assignments
4791 in the instruction, using previously-computed equivalents values.
4792 Then install the new sources and destinations in the table
4793 of available values.
4794
4795 If LIBCALL_INSN is nonzero, don't record any equivalence made in
4796 the insn. It means that INSN is inside libcall block. In this
4797 case LIBCALL_INSN is the corresponding insn with REG_LIBCALL. */
4798
4799 /* Data on one SET contained in the instruction. */
4800
4801 struct set
4802 {
4803 /* The SET rtx itself. */
4804 rtx rtl;
4805 /* The SET_SRC of the rtx (the original value, if it is changing). */
4806 rtx src;
4807 /* The hash-table element for the SET_SRC of the SET. */
4808 struct table_elt *src_elt;
4809 /* Hash value for the SET_SRC. */
4810 unsigned src_hash;
4811 /* Hash value for the SET_DEST. */
4812 unsigned dest_hash;
4813 /* The SET_DEST, with SUBREG, etc., stripped. */
4814 rtx inner_dest;
4815 /* Nonzero if the SET_SRC is in memory. */
4816 char src_in_memory;
4817 /* Nonzero if the SET_SRC contains something
4818 whose value cannot be predicted and understood. */
4819 char src_volatile;
4820 /* Original machine mode, in case it becomes a CONST_INT.
4821 The size of this field should match the size of the mode
4822 field of struct rtx_def (see rtl.h). */
4823 ENUM_BITFIELD(machine_mode) mode : 8;
4824 /* A constant equivalent for SET_SRC, if any. */
4825 rtx src_const;
4826 /* Original SET_SRC value used for libcall notes. */
4827 rtx orig_src;
4828 /* Hash value of constant equivalent for SET_SRC. */
4829 unsigned src_const_hash;
4830 /* Table entry for constant equivalent for SET_SRC, if any. */
4831 struct table_elt *src_const_elt;
4832 /* Table entry for the destination address. */
4833 struct table_elt *dest_addr_elt;
4834 };
4835
4836 static void
cse_insn(rtx insn,rtx libcall_insn)4837 cse_insn (rtx insn, rtx libcall_insn)
4838 {
4839 rtx x = PATTERN (insn);
4840 int i;
4841 rtx tem;
4842 int n_sets = 0;
4843
4844 #ifdef HAVE_cc0
4845 /* Records what this insn does to set CC0. */
4846 rtx this_insn_cc0 = 0;
4847 enum machine_mode this_insn_cc0_mode = VOIDmode;
4848 #endif
4849
4850 rtx src_eqv = 0;
4851 struct table_elt *src_eqv_elt = 0;
4852 int src_eqv_volatile = 0;
4853 int src_eqv_in_memory = 0;
4854 unsigned src_eqv_hash = 0;
4855
4856 struct set *sets = (struct set *) 0;
4857
4858 this_insn = insn;
4859
4860 /* Find all the SETs and CLOBBERs in this instruction.
4861 Record all the SETs in the array `set' and count them.
4862 Also determine whether there is a CLOBBER that invalidates
4863 all memory references, or all references at varying addresses. */
4864
4865 if (CALL_P (insn))
4866 {
4867 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4868 {
4869 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
4870 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
4871 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4872 }
4873 }
4874
4875 if (GET_CODE (x) == SET)
4876 {
4877 sets = alloca (sizeof (struct set));
4878 sets[0].rtl = x;
4879
4880 /* Ignore SETs that are unconditional jumps.
4881 They never need cse processing, so this does not hurt.
4882 The reason is not efficiency but rather
4883 so that we can test at the end for instructions
4884 that have been simplified to unconditional jumps
4885 and not be misled by unchanged instructions
4886 that were unconditional jumps to begin with. */
4887 if (SET_DEST (x) == pc_rtx
4888 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4889 ;
4890
4891 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4892 The hard function value register is used only once, to copy to
4893 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
4894 Ensure we invalidate the destination register. On the 80386 no
4895 other code would invalidate it since it is a fixed_reg.
4896 We need not check the return of apply_change_group; see canon_reg. */
4897
4898 else if (GET_CODE (SET_SRC (x)) == CALL)
4899 {
4900 canon_reg (SET_SRC (x), insn);
4901 apply_change_group ();
4902 fold_rtx (SET_SRC (x), insn);
4903 invalidate (SET_DEST (x), VOIDmode);
4904 }
4905 else
4906 n_sets = 1;
4907 }
4908 else if (GET_CODE (x) == PARALLEL)
4909 {
4910 int lim = XVECLEN (x, 0);
4911
4912 sets = alloca (lim * sizeof (struct set));
4913
4914 /* Find all regs explicitly clobbered in this insn,
4915 and ensure they are not replaced with any other regs
4916 elsewhere in this insn.
4917 When a reg that is clobbered is also used for input,
4918 we should presume that that is for a reason,
4919 and we should not substitute some other register
4920 which is not supposed to be clobbered.
4921 Therefore, this loop cannot be merged into the one below
4922 because a CALL may precede a CLOBBER and refer to the
4923 value clobbered. We must not let a canonicalization do
4924 anything in that case. */
4925 for (i = 0; i < lim; i++)
4926 {
4927 rtx y = XVECEXP (x, 0, i);
4928 if (GET_CODE (y) == CLOBBER)
4929 {
4930 rtx clobbered = XEXP (y, 0);
4931
4932 if (REG_P (clobbered)
4933 || GET_CODE (clobbered) == SUBREG)
4934 invalidate (clobbered, VOIDmode);
4935 else if (GET_CODE (clobbered) == STRICT_LOW_PART
4936 || GET_CODE (clobbered) == ZERO_EXTRACT)
4937 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
4938 }
4939 }
4940
4941 for (i = 0; i < lim; i++)
4942 {
4943 rtx y = XVECEXP (x, 0, i);
4944 if (GET_CODE (y) == SET)
4945 {
4946 /* As above, we ignore unconditional jumps and call-insns and
4947 ignore the result of apply_change_group. */
4948 if (GET_CODE (SET_SRC (y)) == CALL)
4949 {
4950 canon_reg (SET_SRC (y), insn);
4951 apply_change_group ();
4952 fold_rtx (SET_SRC (y), insn);
4953 invalidate (SET_DEST (y), VOIDmode);
4954 }
4955 else if (SET_DEST (y) == pc_rtx
4956 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4957 ;
4958 else
4959 sets[n_sets++].rtl = y;
4960 }
4961 else if (GET_CODE (y) == CLOBBER)
4962 {
4963 /* If we clobber memory, canon the address.
4964 This does nothing when a register is clobbered
4965 because we have already invalidated the reg. */
4966 if (MEM_P (XEXP (y, 0)))
4967 canon_reg (XEXP (y, 0), NULL_RTX);
4968 }
4969 else if (GET_CODE (y) == USE
4970 && ! (REG_P (XEXP (y, 0))
4971 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4972 canon_reg (y, NULL_RTX);
4973 else if (GET_CODE (y) == CALL)
4974 {
4975 /* The result of apply_change_group can be ignored; see
4976 canon_reg. */
4977 canon_reg (y, insn);
4978 apply_change_group ();
4979 fold_rtx (y, insn);
4980 }
4981 }
4982 }
4983 else if (GET_CODE (x) == CLOBBER)
4984 {
4985 if (MEM_P (XEXP (x, 0)))
4986 canon_reg (XEXP (x, 0), NULL_RTX);
4987 }
4988
4989 /* Canonicalize a USE of a pseudo register or memory location. */
4990 else if (GET_CODE (x) == USE
4991 && ! (REG_P (XEXP (x, 0))
4992 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4993 canon_reg (XEXP (x, 0), NULL_RTX);
4994 else if (GET_CODE (x) == CALL)
4995 {
4996 /* The result of apply_change_group can be ignored; see canon_reg. */
4997 canon_reg (x, insn);
4998 apply_change_group ();
4999 fold_rtx (x, insn);
5000 }
5001
5002 /* Store the equivalent value in SRC_EQV, if different, or if the DEST
5003 is a STRICT_LOW_PART. The latter condition is necessary because SRC_EQV
5004 is handled specially for this case, and if it isn't set, then there will
5005 be no equivalence for the destination. */
5006 if (n_sets == 1 && REG_NOTES (insn) != 0
5007 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
5008 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
5009 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
5010 {
5011 src_eqv = fold_rtx (canon_reg (XEXP (tem, 0), NULL_RTX), insn);
5012 XEXP (tem, 0) = src_eqv;
5013 }
5014
5015 /* Canonicalize sources and addresses of destinations.
5016 We do this in a separate pass to avoid problems when a MATCH_DUP is
5017 present in the insn pattern. In that case, we want to ensure that
5018 we don't break the duplicate nature of the pattern. So we will replace
5019 both operands at the same time. Otherwise, we would fail to find an
5020 equivalent substitution in the loop calling validate_change below.
5021
5022 We used to suppress canonicalization of DEST if it appears in SRC,
5023 but we don't do this any more. */
5024
5025 for (i = 0; i < n_sets; i++)
5026 {
5027 rtx dest = SET_DEST (sets[i].rtl);
5028 rtx src = SET_SRC (sets[i].rtl);
5029 rtx new = canon_reg (src, insn);
5030
5031 sets[i].orig_src = src;
5032 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
5033
5034 if (GET_CODE (dest) == ZERO_EXTRACT)
5035 {
5036 validate_change (insn, &XEXP (dest, 1),
5037 canon_reg (XEXP (dest, 1), insn), 1);
5038 validate_change (insn, &XEXP (dest, 2),
5039 canon_reg (XEXP (dest, 2), insn), 1);
5040 }
5041
5042 while (GET_CODE (dest) == SUBREG
5043 || GET_CODE (dest) == ZERO_EXTRACT
5044 || GET_CODE (dest) == STRICT_LOW_PART)
5045 dest = XEXP (dest, 0);
5046
5047 if (MEM_P (dest))
5048 canon_reg (dest, insn);
5049 }
5050
5051 /* Now that we have done all the replacements, we can apply the change
5052 group and see if they all work. Note that this will cause some
5053 canonicalizations that would have worked individually not to be applied
5054 because some other canonicalization didn't work, but this should not
5055 occur often.
5056
5057 The result of apply_change_group can be ignored; see canon_reg. */
5058
5059 apply_change_group ();
5060
5061 /* Set sets[i].src_elt to the class each source belongs to.
5062 Detect assignments from or to volatile things
5063 and set set[i] to zero so they will be ignored
5064 in the rest of this function.
5065
5066 Nothing in this loop changes the hash table or the register chains. */
5067
5068 for (i = 0; i < n_sets; i++)
5069 {
5070 rtx src, dest;
5071 rtx src_folded;
5072 struct table_elt *elt = 0, *p;
5073 enum machine_mode mode;
5074 rtx src_eqv_here;
5075 rtx src_const = 0;
5076 rtx src_related = 0;
5077 struct table_elt *src_const_elt = 0;
5078 int src_cost = MAX_COST;
5079 int src_eqv_cost = MAX_COST;
5080 int src_folded_cost = MAX_COST;
5081 int src_related_cost = MAX_COST;
5082 int src_elt_cost = MAX_COST;
5083 int src_regcost = MAX_COST;
5084 int src_eqv_regcost = MAX_COST;
5085 int src_folded_regcost = MAX_COST;
5086 int src_related_regcost = MAX_COST;
5087 int src_elt_regcost = MAX_COST;
5088 /* Set nonzero if we need to call force_const_mem on with the
5089 contents of src_folded before using it. */
5090 int src_folded_force_flag = 0;
5091
5092 dest = SET_DEST (sets[i].rtl);
5093 src = SET_SRC (sets[i].rtl);
5094
5095 /* If SRC is a constant that has no machine mode,
5096 hash it with the destination's machine mode.
5097 This way we can keep different modes separate. */
5098
5099 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5100 sets[i].mode = mode;
5101
5102 if (src_eqv)
5103 {
5104 enum machine_mode eqvmode = mode;
5105 if (GET_CODE (dest) == STRICT_LOW_PART)
5106 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5107 do_not_record = 0;
5108 hash_arg_in_memory = 0;
5109 src_eqv_hash = HASH (src_eqv, eqvmode);
5110
5111 /* Find the equivalence class for the equivalent expression. */
5112
5113 if (!do_not_record)
5114 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
5115
5116 src_eqv_volatile = do_not_record;
5117 src_eqv_in_memory = hash_arg_in_memory;
5118 }
5119
5120 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
5121 value of the INNER register, not the destination. So it is not
5122 a valid substitution for the source. But save it for later. */
5123 if (GET_CODE (dest) == STRICT_LOW_PART)
5124 src_eqv_here = 0;
5125 else
5126 src_eqv_here = src_eqv;
5127
5128 /* Simplify and foldable subexpressions in SRC. Then get the fully-
5129 simplified result, which may not necessarily be valid. */
5130 src_folded = fold_rtx (src, insn);
5131
5132 #if 0
5133 /* ??? This caused bad code to be generated for the m68k port with -O2.
5134 Suppose src is (CONST_INT -1), and that after truncation src_folded
5135 is (CONST_INT 3). Suppose src_folded is then used for src_const.
5136 At the end we will add src and src_const to the same equivalence
5137 class. We now have 3 and -1 on the same equivalence class. This
5138 causes later instructions to be mis-optimized. */
5139 /* If storing a constant in a bitfield, pre-truncate the constant
5140 so we will be able to record it later. */
5141 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5142 {
5143 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5144
5145 if (GET_CODE (src) == CONST_INT
5146 && GET_CODE (width) == CONST_INT
5147 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5148 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5149 src_folded
5150 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
5151 << INTVAL (width)) - 1));
5152 }
5153 #endif
5154
5155 /* Compute SRC's hash code, and also notice if it
5156 should not be recorded at all. In that case,
5157 prevent any further processing of this assignment. */
5158 do_not_record = 0;
5159 hash_arg_in_memory = 0;
5160
5161 sets[i].src = src;
5162 sets[i].src_hash = HASH (src, mode);
5163 sets[i].src_volatile = do_not_record;
5164 sets[i].src_in_memory = hash_arg_in_memory;
5165
5166 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
5167 a pseudo, do not record SRC. Using SRC as a replacement for
5168 anything else will be incorrect in that situation. Note that
5169 this usually occurs only for stack slots, in which case all the
5170 RTL would be referring to SRC, so we don't lose any optimization
5171 opportunities by not having SRC in the hash table. */
5172
5173 if (MEM_P (src)
5174 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
5175 && REG_P (dest)
5176 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
5177 sets[i].src_volatile = 1;
5178
5179 #if 0
5180 /* It is no longer clear why we used to do this, but it doesn't
5181 appear to still be needed. So let's try without it since this
5182 code hurts cse'ing widened ops. */
5183 /* If source is a paradoxical subreg (such as QI treated as an SI),
5184 treat it as volatile. It may do the work of an SI in one context
5185 where the extra bits are not being used, but cannot replace an SI
5186 in general. */
5187 if (GET_CODE (src) == SUBREG
5188 && (GET_MODE_SIZE (GET_MODE (src))
5189 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
5190 sets[i].src_volatile = 1;
5191 #endif
5192
5193 /* Locate all possible equivalent forms for SRC. Try to replace
5194 SRC in the insn with each cheaper equivalent.
5195
5196 We have the following types of equivalents: SRC itself, a folded
5197 version, a value given in a REG_EQUAL note, or a value related
5198 to a constant.
5199
5200 Each of these equivalents may be part of an additional class
5201 of equivalents (if more than one is in the table, they must be in
5202 the same class; we check for this).
5203
5204 If the source is volatile, we don't do any table lookups.
5205
5206 We note any constant equivalent for possible later use in a
5207 REG_NOTE. */
5208
5209 if (!sets[i].src_volatile)
5210 elt = lookup (src, sets[i].src_hash, mode);
5211
5212 sets[i].src_elt = elt;
5213
5214 if (elt && src_eqv_here && src_eqv_elt)
5215 {
5216 if (elt->first_same_value != src_eqv_elt->first_same_value)
5217 {
5218 /* The REG_EQUAL is indicating that two formerly distinct
5219 classes are now equivalent. So merge them. */
5220 merge_equiv_classes (elt, src_eqv_elt);
5221 src_eqv_hash = HASH (src_eqv, elt->mode);
5222 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
5223 }
5224
5225 src_eqv_here = 0;
5226 }
5227
5228 else if (src_eqv_elt)
5229 elt = src_eqv_elt;
5230
5231 /* Try to find a constant somewhere and record it in `src_const'.
5232 Record its table element, if any, in `src_const_elt'. Look in
5233 any known equivalences first. (If the constant is not in the
5234 table, also set `sets[i].src_const_hash'). */
5235 if (elt)
5236 for (p = elt->first_same_value; p; p = p->next_same_value)
5237 if (p->is_const)
5238 {
5239 src_const = p->exp;
5240 src_const_elt = elt;
5241 break;
5242 }
5243
5244 if (src_const == 0
5245 && (CONSTANT_P (src_folded)
5246 /* Consider (minus (label_ref L1) (label_ref L2)) as
5247 "constant" here so we will record it. This allows us
5248 to fold switch statements when an ADDR_DIFF_VEC is used. */
5249 || (GET_CODE (src_folded) == MINUS
5250 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
5251 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
5252 src_const = src_folded, src_const_elt = elt;
5253 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
5254 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
5255
5256 /* If we don't know if the constant is in the table, get its
5257 hash code and look it up. */
5258 if (src_const && src_const_elt == 0)
5259 {
5260 sets[i].src_const_hash = HASH (src_const, mode);
5261 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
5262 }
5263
5264 sets[i].src_const = src_const;
5265 sets[i].src_const_elt = src_const_elt;
5266
5267 /* If the constant and our source are both in the table, mark them as
5268 equivalent. Otherwise, if a constant is in the table but the source
5269 isn't, set ELT to it. */
5270 if (src_const_elt && elt
5271 && src_const_elt->first_same_value != elt->first_same_value)
5272 merge_equiv_classes (elt, src_const_elt);
5273 else if (src_const_elt && elt == 0)
5274 elt = src_const_elt;
5275
5276 /* See if there is a register linearly related to a constant
5277 equivalent of SRC. */
5278 if (src_const
5279 && (GET_CODE (src_const) == CONST
5280 || (src_const_elt && src_const_elt->related_value != 0)))
5281 {
5282 src_related = use_related_value (src_const, src_const_elt);
5283 if (src_related)
5284 {
5285 struct table_elt *src_related_elt
5286 = lookup (src_related, HASH (src_related, mode), mode);
5287 if (src_related_elt && elt)
5288 {
5289 if (elt->first_same_value
5290 != src_related_elt->first_same_value)
5291 /* This can occur when we previously saw a CONST
5292 involving a SYMBOL_REF and then see the SYMBOL_REF
5293 twice. Merge the involved classes. */
5294 merge_equiv_classes (elt, src_related_elt);
5295
5296 src_related = 0;
5297 src_related_elt = 0;
5298 }
5299 else if (src_related_elt && elt == 0)
5300 elt = src_related_elt;
5301 }
5302 }
5303
5304 /* See if we have a CONST_INT that is already in a register in a
5305 wider mode. */
5306
5307 if (src_const && src_related == 0 && GET_CODE (src_const) == CONST_INT
5308 && GET_MODE_CLASS (mode) == MODE_INT
5309 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
5310 {
5311 enum machine_mode wider_mode;
5312
5313 for (wider_mode = GET_MODE_WIDER_MODE (mode);
5314 GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
5315 && src_related == 0;
5316 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
5317 {
5318 struct table_elt *const_elt
5319 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
5320
5321 if (const_elt == 0)
5322 continue;
5323
5324 for (const_elt = const_elt->first_same_value;
5325 const_elt; const_elt = const_elt->next_same_value)
5326 if (REG_P (const_elt->exp))
5327 {
5328 src_related = gen_lowpart (mode,
5329 const_elt->exp);
5330 break;
5331 }
5332 }
5333 }
5334
5335 /* Another possibility is that we have an AND with a constant in
5336 a mode narrower than a word. If so, it might have been generated
5337 as part of an "if" which would narrow the AND. If we already
5338 have done the AND in a wider mode, we can use a SUBREG of that
5339 value. */
5340
5341 if (flag_expensive_optimizations && ! src_related
5342 && GET_CODE (src) == AND && GET_CODE (XEXP (src, 1)) == CONST_INT
5343 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5344 {
5345 enum machine_mode tmode;
5346 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
5347
5348 for (tmode = GET_MODE_WIDER_MODE (mode);
5349 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
5350 tmode = GET_MODE_WIDER_MODE (tmode))
5351 {
5352 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
5353 struct table_elt *larger_elt;
5354
5355 if (inner)
5356 {
5357 PUT_MODE (new_and, tmode);
5358 XEXP (new_and, 0) = inner;
5359 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
5360 if (larger_elt == 0)
5361 continue;
5362
5363 for (larger_elt = larger_elt->first_same_value;
5364 larger_elt; larger_elt = larger_elt->next_same_value)
5365 if (REG_P (larger_elt->exp))
5366 {
5367 src_related
5368 = gen_lowpart (mode, larger_elt->exp);
5369 break;
5370 }
5371
5372 if (src_related)
5373 break;
5374 }
5375 }
5376 }
5377
5378 #ifdef LOAD_EXTEND_OP
5379 /* See if a MEM has already been loaded with a widening operation;
5380 if it has, we can use a subreg of that. Many CISC machines
5381 also have such operations, but this is only likely to be
5382 beneficial on these machines. */
5383
5384 if (flag_expensive_optimizations && src_related == 0
5385 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5386 && GET_MODE_CLASS (mode) == MODE_INT
5387 && MEM_P (src) && ! do_not_record
5388 && LOAD_EXTEND_OP (mode) != UNKNOWN)
5389 {
5390 struct rtx_def memory_extend_buf;
5391 rtx memory_extend_rtx = &memory_extend_buf;
5392 enum machine_mode tmode;
5393
5394 /* Set what we are trying to extend and the operation it might
5395 have been extended with. */
5396 memset (memory_extend_rtx, 0, sizeof(*memory_extend_rtx));
5397 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
5398 XEXP (memory_extend_rtx, 0) = src;
5399
5400 for (tmode = GET_MODE_WIDER_MODE (mode);
5401 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
5402 tmode = GET_MODE_WIDER_MODE (tmode))
5403 {
5404 struct table_elt *larger_elt;
5405
5406 PUT_MODE (memory_extend_rtx, tmode);
5407 larger_elt = lookup (memory_extend_rtx,
5408 HASH (memory_extend_rtx, tmode), tmode);
5409 if (larger_elt == 0)
5410 continue;
5411
5412 for (larger_elt = larger_elt->first_same_value;
5413 larger_elt; larger_elt = larger_elt->next_same_value)
5414 if (REG_P (larger_elt->exp))
5415 {
5416 src_related = gen_lowpart (mode,
5417 larger_elt->exp);
5418 break;
5419 }
5420
5421 if (src_related)
5422 break;
5423 }
5424 }
5425 #endif /* LOAD_EXTEND_OP */
5426
5427 if (src == src_folded)
5428 src_folded = 0;
5429
5430 /* At this point, ELT, if nonzero, points to a class of expressions
5431 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
5432 and SRC_RELATED, if nonzero, each contain additional equivalent
5433 expressions. Prune these latter expressions by deleting expressions
5434 already in the equivalence class.
5435
5436 Check for an equivalent identical to the destination. If found,
5437 this is the preferred equivalent since it will likely lead to
5438 elimination of the insn. Indicate this by placing it in
5439 `src_related'. */
5440
5441 if (elt)
5442 elt = elt->first_same_value;
5443 for (p = elt; p; p = p->next_same_value)
5444 {
5445 enum rtx_code code = GET_CODE (p->exp);
5446
5447 /* If the expression is not valid, ignore it. Then we do not
5448 have to check for validity below. In most cases, we can use
5449 `rtx_equal_p', since canonicalization has already been done. */
5450 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
5451 continue;
5452
5453 /* Also skip paradoxical subregs, unless that's what we're
5454 looking for. */
5455 if (code == SUBREG
5456 && (GET_MODE_SIZE (GET_MODE (p->exp))
5457 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))
5458 && ! (src != 0
5459 && GET_CODE (src) == SUBREG
5460 && GET_MODE (src) == GET_MODE (p->exp)
5461 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5462 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
5463 continue;
5464
5465 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
5466 src = 0;
5467 else if (src_folded && GET_CODE (src_folded) == code
5468 && rtx_equal_p (src_folded, p->exp))
5469 src_folded = 0;
5470 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
5471 && rtx_equal_p (src_eqv_here, p->exp))
5472 src_eqv_here = 0;
5473 else if (src_related && GET_CODE (src_related) == code
5474 && rtx_equal_p (src_related, p->exp))
5475 src_related = 0;
5476
5477 /* This is the same as the destination of the insns, we want
5478 to prefer it. Copy it to src_related. The code below will
5479 then give it a negative cost. */
5480 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
5481 src_related = dest;
5482 }
5483
5484 /* Find the cheapest valid equivalent, trying all the available
5485 possibilities. Prefer items not in the hash table to ones
5486 that are when they are equal cost. Note that we can never
5487 worsen an insn as the current contents will also succeed.
5488 If we find an equivalent identical to the destination, use it as best,
5489 since this insn will probably be eliminated in that case. */
5490 if (src)
5491 {
5492 if (rtx_equal_p (src, dest))
5493 src_cost = src_regcost = -1;
5494 else
5495 {
5496 src_cost = COST (src);
5497 src_regcost = approx_reg_cost (src);
5498 }
5499 }
5500
5501 if (src_eqv_here)
5502 {
5503 if (rtx_equal_p (src_eqv_here, dest))
5504 src_eqv_cost = src_eqv_regcost = -1;
5505 else
5506 {
5507 src_eqv_cost = COST (src_eqv_here);
5508 src_eqv_regcost = approx_reg_cost (src_eqv_here);
5509 }
5510 }
5511
5512 if (src_folded)
5513 {
5514 if (rtx_equal_p (src_folded, dest))
5515 src_folded_cost = src_folded_regcost = -1;
5516 else
5517 {
5518 src_folded_cost = COST (src_folded);
5519 src_folded_regcost = approx_reg_cost (src_folded);
5520 }
5521 }
5522
5523 if (src_related)
5524 {
5525 if (rtx_equal_p (src_related, dest))
5526 src_related_cost = src_related_regcost = -1;
5527 else
5528 {
5529 src_related_cost = COST (src_related);
5530 src_related_regcost = approx_reg_cost (src_related);
5531 }
5532 }
5533
5534 /* If this was an indirect jump insn, a known label will really be
5535 cheaper even though it looks more expensive. */
5536 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
5537 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
5538
5539 /* Terminate loop when replacement made. This must terminate since
5540 the current contents will be tested and will always be valid. */
5541 while (1)
5542 {
5543 rtx trial;
5544
5545 /* Skip invalid entries. */
5546 while (elt && !REG_P (elt->exp)
5547 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5548 elt = elt->next_same_value;
5549
5550 /* A paradoxical subreg would be bad here: it'll be the right
5551 size, but later may be adjusted so that the upper bits aren't
5552 what we want. So reject it. */
5553 if (elt != 0
5554 && GET_CODE (elt->exp) == SUBREG
5555 && (GET_MODE_SIZE (GET_MODE (elt->exp))
5556 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))
5557 /* It is okay, though, if the rtx we're trying to match
5558 will ignore any of the bits we can't predict. */
5559 && ! (src != 0
5560 && GET_CODE (src) == SUBREG
5561 && GET_MODE (src) == GET_MODE (elt->exp)
5562 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5563 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
5564 {
5565 elt = elt->next_same_value;
5566 continue;
5567 }
5568
5569 if (elt)
5570 {
5571 src_elt_cost = elt->cost;
5572 src_elt_regcost = elt->regcost;
5573 }
5574
5575 /* Find cheapest and skip it for the next time. For items
5576 of equal cost, use this order:
5577 src_folded, src, src_eqv, src_related and hash table entry. */
5578 if (src_folded
5579 && preferable (src_folded_cost, src_folded_regcost,
5580 src_cost, src_regcost) <= 0
5581 && preferable (src_folded_cost, src_folded_regcost,
5582 src_eqv_cost, src_eqv_regcost) <= 0
5583 && preferable (src_folded_cost, src_folded_regcost,
5584 src_related_cost, src_related_regcost) <= 0
5585 && preferable (src_folded_cost, src_folded_regcost,
5586 src_elt_cost, src_elt_regcost) <= 0)
5587 {
5588 trial = src_folded, src_folded_cost = MAX_COST;
5589 if (src_folded_force_flag)
5590 {
5591 rtx forced = force_const_mem (mode, trial);
5592 if (forced)
5593 trial = forced;
5594 }
5595 }
5596 else if (src
5597 && preferable (src_cost, src_regcost,
5598 src_eqv_cost, src_eqv_regcost) <= 0
5599 && preferable (src_cost, src_regcost,
5600 src_related_cost, src_related_regcost) <= 0
5601 && preferable (src_cost, src_regcost,
5602 src_elt_cost, src_elt_regcost) <= 0)
5603 trial = src, src_cost = MAX_COST;
5604 else if (src_eqv_here
5605 && preferable (src_eqv_cost, src_eqv_regcost,
5606 src_related_cost, src_related_regcost) <= 0
5607 && preferable (src_eqv_cost, src_eqv_regcost,
5608 src_elt_cost, src_elt_regcost) <= 0)
5609 trial = copy_rtx (src_eqv_here), src_eqv_cost = MAX_COST;
5610 else if (src_related
5611 && preferable (src_related_cost, src_related_regcost,
5612 src_elt_cost, src_elt_regcost) <= 0)
5613 trial = copy_rtx (src_related), src_related_cost = MAX_COST;
5614 else
5615 {
5616 trial = copy_rtx (elt->exp);
5617 elt = elt->next_same_value;
5618 src_elt_cost = MAX_COST;
5619 }
5620
5621 /* We don't normally have an insn matching (set (pc) (pc)), so
5622 check for this separately here. We will delete such an
5623 insn below.
5624
5625 For other cases such as a table jump or conditional jump
5626 where we know the ultimate target, go ahead and replace the
5627 operand. While that may not make a valid insn, we will
5628 reemit the jump below (and also insert any necessary
5629 barriers). */
5630 if (n_sets == 1 && dest == pc_rtx
5631 && (trial == pc_rtx
5632 || (GET_CODE (trial) == LABEL_REF
5633 && ! condjump_p (insn))))
5634 {
5635 /* Don't substitute non-local labels, this confuses CFG. */
5636 if (GET_CODE (trial) == LABEL_REF
5637 && LABEL_REF_NONLOCAL_P (trial))
5638 continue;
5639
5640 SET_SRC (sets[i].rtl) = trial;
5641 cse_jumps_altered = 1;
5642 break;
5643 }
5644
5645 /* Reject certain invalid forms of CONST that we create. */
5646 else if (CONSTANT_P (trial)
5647 && GET_CODE (trial) == CONST
5648 /* Reject cases that will cause decode_rtx_const to
5649 die. On the alpha when simplifying a switch, we
5650 get (const (truncate (minus (label_ref)
5651 (label_ref)))). */
5652 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
5653 /* Likewise on IA-64, except without the
5654 truncate. */
5655 || (GET_CODE (XEXP (trial, 0)) == MINUS
5656 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5657 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
5658 /* Do nothing for this case. */
5659 ;
5660
5661 /* Look for a substitution that makes a valid insn. */
5662 else if (validate_change (insn, &SET_SRC (sets[i].rtl), trial, 0))
5663 {
5664 rtx new = canon_reg (SET_SRC (sets[i].rtl), insn);
5665
5666 /* If we just made a substitution inside a libcall, then we
5667 need to make the same substitution in any notes attached
5668 to the RETVAL insn. */
5669 if (libcall_insn
5670 && (REG_P (sets[i].orig_src)
5671 || GET_CODE (sets[i].orig_src) == SUBREG
5672 || MEM_P (sets[i].orig_src)))
5673 {
5674 rtx note = find_reg_equal_equiv_note (libcall_insn);
5675 if (note != 0)
5676 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0),
5677 sets[i].orig_src,
5678 copy_rtx (new));
5679 }
5680
5681 /* The result of apply_change_group can be ignored; see
5682 canon_reg. */
5683
5684 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
5685 apply_change_group ();
5686 break;
5687 }
5688
5689 /* If we previously found constant pool entries for
5690 constants and this is a constant, try making a
5691 pool entry. Put it in src_folded unless we already have done
5692 this since that is where it likely came from. */
5693
5694 else if (constant_pool_entries_cost
5695 && CONSTANT_P (trial)
5696 && (src_folded == 0
5697 || (!MEM_P (src_folded)
5698 && ! src_folded_force_flag))
5699 && GET_MODE_CLASS (mode) != MODE_CC
5700 && mode != VOIDmode)
5701 {
5702 src_folded_force_flag = 1;
5703 src_folded = trial;
5704 src_folded_cost = constant_pool_entries_cost;
5705 src_folded_regcost = constant_pool_entries_regcost;
5706 }
5707 }
5708
5709 src = SET_SRC (sets[i].rtl);
5710
5711 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5712 However, there is an important exception: If both are registers
5713 that are not the head of their equivalence class, replace SET_SRC
5714 with the head of the class. If we do not do this, we will have
5715 both registers live over a portion of the basic block. This way,
5716 their lifetimes will likely abut instead of overlapping. */
5717 if (REG_P (dest)
5718 && REGNO_QTY_VALID_P (REGNO (dest)))
5719 {
5720 int dest_q = REG_QTY (REGNO (dest));
5721 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5722
5723 if (dest_ent->mode == GET_MODE (dest)
5724 && dest_ent->first_reg != REGNO (dest)
5725 && REG_P (src) && REGNO (src) == REGNO (dest)
5726 /* Don't do this if the original insn had a hard reg as
5727 SET_SRC or SET_DEST. */
5728 && (!REG_P (sets[i].src)
5729 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
5730 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
5731 /* We can't call canon_reg here because it won't do anything if
5732 SRC is a hard register. */
5733 {
5734 int src_q = REG_QTY (REGNO (src));
5735 struct qty_table_elem *src_ent = &qty_table[src_q];
5736 int first = src_ent->first_reg;
5737 rtx new_src
5738 = (first >= FIRST_PSEUDO_REGISTER
5739 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5740
5741 /* We must use validate-change even for this, because this
5742 might be a special no-op instruction, suitable only to
5743 tag notes onto. */
5744 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5745 {
5746 src = new_src;
5747 /* If we had a constant that is cheaper than what we are now
5748 setting SRC to, use that constant. We ignored it when we
5749 thought we could make this into a no-op. */
5750 if (src_const && COST (src_const) < COST (src)
5751 && validate_change (insn, &SET_SRC (sets[i].rtl),
5752 src_const, 0))
5753 src = src_const;
5754 }
5755 }
5756 }
5757
5758 /* If we made a change, recompute SRC values. */
5759 if (src != sets[i].src)
5760 {
5761 cse_altered = 1;
5762 do_not_record = 0;
5763 hash_arg_in_memory = 0;
5764 sets[i].src = src;
5765 sets[i].src_hash = HASH (src, mode);
5766 sets[i].src_volatile = do_not_record;
5767 sets[i].src_in_memory = hash_arg_in_memory;
5768 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5769 }
5770
5771 /* If this is a single SET, we are setting a register, and we have an
5772 equivalent constant, we want to add a REG_NOTE. We don't want
5773 to write a REG_EQUAL note for a constant pseudo since verifying that
5774 that pseudo hasn't been eliminated is a pain. Such a note also
5775 won't help anything.
5776
5777 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5778 which can be created for a reference to a compile time computable
5779 entry in a jump table. */
5780
5781 if (n_sets == 1 && src_const && REG_P (dest)
5782 && !REG_P (src_const)
5783 && ! (GET_CODE (src_const) == CONST
5784 && GET_CODE (XEXP (src_const, 0)) == MINUS
5785 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5786 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
5787 {
5788 /* We only want a REG_EQUAL note if src_const != src. */
5789 if (! rtx_equal_p (src, src_const))
5790 {
5791 /* Make sure that the rtx is not shared. */
5792 src_const = copy_rtx (src_const);
5793
5794 /* Record the actual constant value in a REG_EQUAL note,
5795 making a new one if one does not already exist. */
5796 set_unique_reg_note (insn, REG_EQUAL, src_const);
5797 }
5798 }
5799
5800 /* Now deal with the destination. */
5801 do_not_record = 0;
5802
5803 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
5804 while (GET_CODE (dest) == SUBREG
5805 || GET_CODE (dest) == ZERO_EXTRACT
5806 || GET_CODE (dest) == STRICT_LOW_PART)
5807 dest = XEXP (dest, 0);
5808
5809 sets[i].inner_dest = dest;
5810
5811 if (MEM_P (dest))
5812 {
5813 #ifdef PUSH_ROUNDING
5814 /* Stack pushes invalidate the stack pointer. */
5815 rtx addr = XEXP (dest, 0);
5816 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5817 && XEXP (addr, 0) == stack_pointer_rtx)
5818 invalidate (stack_pointer_rtx, VOIDmode);
5819 #endif
5820 dest = fold_rtx (dest, insn);
5821 }
5822
5823 /* Compute the hash code of the destination now,
5824 before the effects of this instruction are recorded,
5825 since the register values used in the address computation
5826 are those before this instruction. */
5827 sets[i].dest_hash = HASH (dest, mode);
5828
5829 /* Don't enter a bit-field in the hash table
5830 because the value in it after the store
5831 may not equal what was stored, due to truncation. */
5832
5833 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5834 {
5835 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5836
5837 if (src_const != 0 && GET_CODE (src_const) == CONST_INT
5838 && GET_CODE (width) == CONST_INT
5839 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5840 && ! (INTVAL (src_const)
5841 & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5842 /* Exception: if the value is constant,
5843 and it won't be truncated, record it. */
5844 ;
5845 else
5846 {
5847 /* This is chosen so that the destination will be invalidated
5848 but no new value will be recorded.
5849 We must invalidate because sometimes constant
5850 values can be recorded for bitfields. */
5851 sets[i].src_elt = 0;
5852 sets[i].src_volatile = 1;
5853 src_eqv = 0;
5854 src_eqv_elt = 0;
5855 }
5856 }
5857
5858 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5859 the insn. */
5860 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5861 {
5862 /* One less use of the label this insn used to jump to. */
5863 delete_insn (insn);
5864 cse_jumps_altered = 1;
5865 /* No more processing for this set. */
5866 sets[i].rtl = 0;
5867 }
5868
5869 /* If this SET is now setting PC to a label, we know it used to
5870 be a conditional or computed branch. */
5871 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5872 && !LABEL_REF_NONLOCAL_P (src))
5873 {
5874 /* Now emit a BARRIER after the unconditional jump. */
5875 if (NEXT_INSN (insn) == 0
5876 || !BARRIER_P (NEXT_INSN (insn)))
5877 emit_barrier_after (insn);
5878
5879 /* We reemit the jump in as many cases as possible just in
5880 case the form of an unconditional jump is significantly
5881 different than a computed jump or conditional jump.
5882
5883 If this insn has multiple sets, then reemitting the
5884 jump is nontrivial. So instead we just force rerecognition
5885 and hope for the best. */
5886 if (n_sets == 1)
5887 {
5888 rtx new, note;
5889
5890 new = emit_jump_insn_after (gen_jump (XEXP (src, 0)), insn);
5891 JUMP_LABEL (new) = XEXP (src, 0);
5892 LABEL_NUSES (XEXP (src, 0))++;
5893
5894 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5895 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5896 if (note)
5897 {
5898 XEXP (note, 1) = NULL_RTX;
5899 REG_NOTES (new) = note;
5900 }
5901
5902 delete_insn (insn);
5903 insn = new;
5904
5905 /* Now emit a BARRIER after the unconditional jump. */
5906 if (NEXT_INSN (insn) == 0
5907 || !BARRIER_P (NEXT_INSN (insn)))
5908 emit_barrier_after (insn);
5909 }
5910 else
5911 INSN_CODE (insn) = -1;
5912
5913 /* Do not bother deleting any unreachable code,
5914 let jump/flow do that. */
5915
5916 cse_jumps_altered = 1;
5917 sets[i].rtl = 0;
5918 }
5919
5920 /* If destination is volatile, invalidate it and then do no further
5921 processing for this assignment. */
5922
5923 else if (do_not_record)
5924 {
5925 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5926 invalidate (dest, VOIDmode);
5927 else if (MEM_P (dest))
5928 invalidate (dest, VOIDmode);
5929 else if (GET_CODE (dest) == STRICT_LOW_PART
5930 || GET_CODE (dest) == ZERO_EXTRACT)
5931 invalidate (XEXP (dest, 0), GET_MODE (dest));
5932 sets[i].rtl = 0;
5933 }
5934
5935 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5936 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5937
5938 #ifdef HAVE_cc0
5939 /* If setting CC0, record what it was set to, or a constant, if it
5940 is equivalent to a constant. If it is being set to a floating-point
5941 value, make a COMPARE with the appropriate constant of 0. If we
5942 don't do this, later code can interpret this as a test against
5943 const0_rtx, which can cause problems if we try to put it into an
5944 insn as a floating-point operand. */
5945 if (dest == cc0_rtx)
5946 {
5947 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5948 this_insn_cc0_mode = mode;
5949 if (FLOAT_MODE_P (mode))
5950 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5951 CONST0_RTX (mode));
5952 }
5953 #endif
5954 }
5955
5956 /* Now enter all non-volatile source expressions in the hash table
5957 if they are not already present.
5958 Record their equivalence classes in src_elt.
5959 This way we can insert the corresponding destinations into
5960 the same classes even if the actual sources are no longer in them
5961 (having been invalidated). */
5962
5963 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5964 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5965 {
5966 struct table_elt *elt;
5967 struct table_elt *classp = sets[0].src_elt;
5968 rtx dest = SET_DEST (sets[0].rtl);
5969 enum machine_mode eqvmode = GET_MODE (dest);
5970
5971 if (GET_CODE (dest) == STRICT_LOW_PART)
5972 {
5973 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5974 classp = 0;
5975 }
5976 if (insert_regs (src_eqv, classp, 0))
5977 {
5978 rehash_using_reg (src_eqv);
5979 src_eqv_hash = HASH (src_eqv, eqvmode);
5980 }
5981 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5982 elt->in_memory = src_eqv_in_memory;
5983 src_eqv_elt = elt;
5984
5985 /* Check to see if src_eqv_elt is the same as a set source which
5986 does not yet have an elt, and if so set the elt of the set source
5987 to src_eqv_elt. */
5988 for (i = 0; i < n_sets; i++)
5989 if (sets[i].rtl && sets[i].src_elt == 0
5990 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5991 sets[i].src_elt = src_eqv_elt;
5992 }
5993
5994 for (i = 0; i < n_sets; i++)
5995 if (sets[i].rtl && ! sets[i].src_volatile
5996 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5997 {
5998 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5999 {
6000 /* REG_EQUAL in setting a STRICT_LOW_PART
6001 gives an equivalent for the entire destination register,
6002 not just for the subreg being stored in now.
6003 This is a more interesting equivalence, so we arrange later
6004 to treat the entire reg as the destination. */
6005 sets[i].src_elt = src_eqv_elt;
6006 sets[i].src_hash = src_eqv_hash;
6007 }
6008 else
6009 {
6010 /* Insert source and constant equivalent into hash table, if not
6011 already present. */
6012 struct table_elt *classp = src_eqv_elt;
6013 rtx src = sets[i].src;
6014 rtx dest = SET_DEST (sets[i].rtl);
6015 enum machine_mode mode
6016 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
6017
6018 /* It's possible that we have a source value known to be
6019 constant but don't have a REG_EQUAL note on the insn.
6020 Lack of a note will mean src_eqv_elt will be NULL. This
6021 can happen where we've generated a SUBREG to access a
6022 CONST_INT that is already in a register in a wider mode.
6023 Ensure that the source expression is put in the proper
6024 constant class. */
6025 if (!classp)
6026 classp = sets[i].src_const_elt;
6027
6028 if (sets[i].src_elt == 0)
6029 {
6030 /* Don't put a hard register source into the table if this is
6031 the last insn of a libcall. In this case, we only need
6032 to put src_eqv_elt in src_elt. */
6033 if (! find_reg_note (insn, REG_RETVAL, NULL_RTX))
6034 {
6035 struct table_elt *elt;
6036
6037 /* Note that these insert_regs calls cannot remove
6038 any of the src_elt's, because they would have failed to
6039 match if not still valid. */
6040 if (insert_regs (src, classp, 0))
6041 {
6042 rehash_using_reg (src);
6043 sets[i].src_hash = HASH (src, mode);
6044 }
6045 elt = insert (src, classp, sets[i].src_hash, mode);
6046 elt->in_memory = sets[i].src_in_memory;
6047 sets[i].src_elt = classp = elt;
6048 }
6049 else
6050 sets[i].src_elt = classp;
6051 }
6052 if (sets[i].src_const && sets[i].src_const_elt == 0
6053 && src != sets[i].src_const
6054 && ! rtx_equal_p (sets[i].src_const, src))
6055 sets[i].src_elt = insert (sets[i].src_const, classp,
6056 sets[i].src_const_hash, mode);
6057 }
6058 }
6059 else if (sets[i].src_elt == 0)
6060 /* If we did not insert the source into the hash table (e.g., it was
6061 volatile), note the equivalence class for the REG_EQUAL value, if any,
6062 so that the destination goes into that class. */
6063 sets[i].src_elt = src_eqv_elt;
6064
6065 /* Record destination addresses in the hash table. This allows us to
6066 check if they are invalidated by other sets. */
6067 for (i = 0; i < n_sets; i++)
6068 {
6069 if (sets[i].rtl)
6070 {
6071 rtx x = sets[i].inner_dest;
6072 struct table_elt *elt;
6073 enum machine_mode mode;
6074 unsigned hash;
6075
6076 if (MEM_P (x))
6077 {
6078 x = XEXP (x, 0);
6079 mode = GET_MODE (x);
6080 hash = HASH (x, mode);
6081 elt = lookup (x, hash, mode);
6082 if (!elt)
6083 {
6084 if (insert_regs (x, NULL, 0))
6085 {
6086 rtx dest = SET_DEST (sets[i].rtl);
6087
6088 rehash_using_reg (x);
6089 hash = HASH (x, mode);
6090 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
6091 }
6092 elt = insert (x, NULL, hash, mode);
6093 }
6094
6095 sets[i].dest_addr_elt = elt;
6096 }
6097 else
6098 sets[i].dest_addr_elt = NULL;
6099 }
6100 }
6101
6102 invalidate_from_clobbers (x);
6103
6104 /* Some registers are invalidated by subroutine calls. Memory is
6105 invalidated by non-constant calls. */
6106
6107 if (CALL_P (insn))
6108 {
6109 if (! CONST_OR_PURE_CALL_P (insn))
6110 invalidate_memory ();
6111 invalidate_for_call ();
6112 }
6113
6114 /* Now invalidate everything set by this instruction.
6115 If a SUBREG or other funny destination is being set,
6116 sets[i].rtl is still nonzero, so here we invalidate the reg
6117 a part of which is being set. */
6118
6119 for (i = 0; i < n_sets; i++)
6120 if (sets[i].rtl)
6121 {
6122 /* We can't use the inner dest, because the mode associated with
6123 a ZERO_EXTRACT is significant. */
6124 rtx dest = SET_DEST (sets[i].rtl);
6125
6126 /* Needed for registers to remove the register from its
6127 previous quantity's chain.
6128 Needed for memory if this is a nonvarying address, unless
6129 we have just done an invalidate_memory that covers even those. */
6130 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
6131 invalidate (dest, VOIDmode);
6132 else if (MEM_P (dest))
6133 invalidate (dest, VOIDmode);
6134 else if (GET_CODE (dest) == STRICT_LOW_PART
6135 || GET_CODE (dest) == ZERO_EXTRACT)
6136 invalidate (XEXP (dest, 0), GET_MODE (dest));
6137 }
6138
6139 /* A volatile ASM invalidates everything. */
6140 if (NONJUMP_INSN_P (insn)
6141 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
6142 && MEM_VOLATILE_P (PATTERN (insn)))
6143 flush_hash_table ();
6144
6145 /* Make sure registers mentioned in destinations
6146 are safe for use in an expression to be inserted.
6147 This removes from the hash table
6148 any invalid entry that refers to one of these registers.
6149
6150 We don't care about the return value from mention_regs because
6151 we are going to hash the SET_DEST values unconditionally. */
6152
6153 for (i = 0; i < n_sets; i++)
6154 {
6155 if (sets[i].rtl)
6156 {
6157 rtx x = SET_DEST (sets[i].rtl);
6158
6159 if (!REG_P (x))
6160 mention_regs (x);
6161 else
6162 {
6163 /* We used to rely on all references to a register becoming
6164 inaccessible when a register changes to a new quantity,
6165 since that changes the hash code. However, that is not
6166 safe, since after HASH_SIZE new quantities we get a
6167 hash 'collision' of a register with its own invalid
6168 entries. And since SUBREGs have been changed not to
6169 change their hash code with the hash code of the register,
6170 it wouldn't work any longer at all. So we have to check
6171 for any invalid references lying around now.
6172 This code is similar to the REG case in mention_regs,
6173 but it knows that reg_tick has been incremented, and
6174 it leaves reg_in_table as -1 . */
6175 unsigned int regno = REGNO (x);
6176 unsigned int endregno
6177 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
6178 : hard_regno_nregs[regno][GET_MODE (x)]);
6179 unsigned int i;
6180
6181 for (i = regno; i < endregno; i++)
6182 {
6183 if (REG_IN_TABLE (i) >= 0)
6184 {
6185 remove_invalid_refs (i);
6186 REG_IN_TABLE (i) = -1;
6187 }
6188 }
6189 }
6190 }
6191 }
6192
6193 /* We may have just removed some of the src_elt's from the hash table.
6194 So replace each one with the current head of the same class.
6195 Also check if destination addresses have been removed. */
6196
6197 for (i = 0; i < n_sets; i++)
6198 if (sets[i].rtl)
6199 {
6200 if (sets[i].dest_addr_elt
6201 && sets[i].dest_addr_elt->first_same_value == 0)
6202 {
6203 /* The elt was removed, which means this destination is not
6204 valid after this instruction. */
6205 sets[i].rtl = NULL_RTX;
6206 }
6207 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
6208 /* If elt was removed, find current head of same class,
6209 or 0 if nothing remains of that class. */
6210 {
6211 struct table_elt *elt = sets[i].src_elt;
6212
6213 while (elt && elt->prev_same_value)
6214 elt = elt->prev_same_value;
6215
6216 while (elt && elt->first_same_value == 0)
6217 elt = elt->next_same_value;
6218 sets[i].src_elt = elt ? elt->first_same_value : 0;
6219 }
6220 }
6221
6222 /* Now insert the destinations into their equivalence classes. */
6223
6224 for (i = 0; i < n_sets; i++)
6225 if (sets[i].rtl)
6226 {
6227 rtx dest = SET_DEST (sets[i].rtl);
6228 struct table_elt *elt;
6229
6230 /* Don't record value if we are not supposed to risk allocating
6231 floating-point values in registers that might be wider than
6232 memory. */
6233 if ((flag_float_store
6234 && MEM_P (dest)
6235 && FLOAT_MODE_P (GET_MODE (dest)))
6236 /* Don't record BLKmode values, because we don't know the
6237 size of it, and can't be sure that other BLKmode values
6238 have the same or smaller size. */
6239 || GET_MODE (dest) == BLKmode
6240 /* Don't record values of destinations set inside a libcall block
6241 since we might delete the libcall. Things should have been set
6242 up so we won't want to reuse such a value, but we play it safe
6243 here. */
6244 || libcall_insn
6245 /* If we didn't put a REG_EQUAL value or a source into the hash
6246 table, there is no point is recording DEST. */
6247 || sets[i].src_elt == 0
6248 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
6249 or SIGN_EXTEND, don't record DEST since it can cause
6250 some tracking to be wrong.
6251
6252 ??? Think about this more later. */
6253 || (GET_CODE (dest) == SUBREG
6254 && (GET_MODE_SIZE (GET_MODE (dest))
6255 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
6256 && (GET_CODE (sets[i].src) == SIGN_EXTEND
6257 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
6258 continue;
6259
6260 /* STRICT_LOW_PART isn't part of the value BEING set,
6261 and neither is the SUBREG inside it.
6262 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
6263 if (GET_CODE (dest) == STRICT_LOW_PART)
6264 dest = SUBREG_REG (XEXP (dest, 0));
6265
6266 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
6267 /* Registers must also be inserted into chains for quantities. */
6268 if (insert_regs (dest, sets[i].src_elt, 1))
6269 {
6270 /* If `insert_regs' changes something, the hash code must be
6271 recalculated. */
6272 rehash_using_reg (dest);
6273 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
6274 }
6275
6276 elt = insert (dest, sets[i].src_elt,
6277 sets[i].dest_hash, GET_MODE (dest));
6278
6279 elt->in_memory = (MEM_P (sets[i].inner_dest)
6280 && !MEM_READONLY_P (sets[i].inner_dest));
6281
6282 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
6283 narrower than M2, and both M1 and M2 are the same number of words,
6284 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
6285 make that equivalence as well.
6286
6287 However, BAR may have equivalences for which gen_lowpart
6288 will produce a simpler value than gen_lowpart applied to
6289 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
6290 BAR's equivalences. If we don't get a simplified form, make
6291 the SUBREG. It will not be used in an equivalence, but will
6292 cause two similar assignments to be detected.
6293
6294 Note the loop below will find SUBREG_REG (DEST) since we have
6295 already entered SRC and DEST of the SET in the table. */
6296
6297 if (GET_CODE (dest) == SUBREG
6298 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
6299 / UNITS_PER_WORD)
6300 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
6301 && (GET_MODE_SIZE (GET_MODE (dest))
6302 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
6303 && sets[i].src_elt != 0)
6304 {
6305 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
6306 struct table_elt *elt, *classp = 0;
6307
6308 for (elt = sets[i].src_elt->first_same_value; elt;
6309 elt = elt->next_same_value)
6310 {
6311 rtx new_src = 0;
6312 unsigned src_hash;
6313 struct table_elt *src_elt;
6314 int byte = 0;
6315
6316 /* Ignore invalid entries. */
6317 if (!REG_P (elt->exp)
6318 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
6319 continue;
6320
6321 /* We may have already been playing subreg games. If the
6322 mode is already correct for the destination, use it. */
6323 if (GET_MODE (elt->exp) == new_mode)
6324 new_src = elt->exp;
6325 else
6326 {
6327 /* Calculate big endian correction for the SUBREG_BYTE.
6328 We have already checked that M1 (GET_MODE (dest))
6329 is not narrower than M2 (new_mode). */
6330 if (BYTES_BIG_ENDIAN)
6331 byte = (GET_MODE_SIZE (GET_MODE (dest))
6332 - GET_MODE_SIZE (new_mode));
6333
6334 new_src = simplify_gen_subreg (new_mode, elt->exp,
6335 GET_MODE (dest), byte);
6336 }
6337
6338 /* The call to simplify_gen_subreg fails if the value
6339 is VOIDmode, yet we can't do any simplification, e.g.
6340 for EXPR_LISTs denoting function call results.
6341 It is invalid to construct a SUBREG with a VOIDmode
6342 SUBREG_REG, hence a zero new_src means we can't do
6343 this substitution. */
6344 if (! new_src)
6345 continue;
6346
6347 src_hash = HASH (new_src, new_mode);
6348 src_elt = lookup (new_src, src_hash, new_mode);
6349
6350 /* Put the new source in the hash table is if isn't
6351 already. */
6352 if (src_elt == 0)
6353 {
6354 if (insert_regs (new_src, classp, 0))
6355 {
6356 rehash_using_reg (new_src);
6357 src_hash = HASH (new_src, new_mode);
6358 }
6359 src_elt = insert (new_src, classp, src_hash, new_mode);
6360 src_elt->in_memory = elt->in_memory;
6361 }
6362 else if (classp && classp != src_elt->first_same_value)
6363 /* Show that two things that we've seen before are
6364 actually the same. */
6365 merge_equiv_classes (src_elt, classp);
6366
6367 classp = src_elt->first_same_value;
6368 /* Ignore invalid entries. */
6369 while (classp
6370 && !REG_P (classp->exp)
6371 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
6372 classp = classp->next_same_value;
6373 }
6374 }
6375 }
6376
6377 /* Special handling for (set REG0 REG1) where REG0 is the
6378 "cheapest", cheaper than REG1. After cse, REG1 will probably not
6379 be used in the sequel, so (if easily done) change this insn to
6380 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
6381 that computed their value. Then REG1 will become a dead store
6382 and won't cloud the situation for later optimizations.
6383
6384 Do not make this change if REG1 is a hard register, because it will
6385 then be used in the sequel and we may be changing a two-operand insn
6386 into a three-operand insn.
6387
6388 Also do not do this if we are operating on a copy of INSN.
6389
6390 Also don't do this if INSN ends a libcall; this would cause an unrelated
6391 register to be set in the middle of a libcall, and we then get bad code
6392 if the libcall is deleted. */
6393
6394 if (n_sets == 1 && sets[0].rtl && REG_P (SET_DEST (sets[0].rtl))
6395 && NEXT_INSN (PREV_INSN (insn)) == insn
6396 && REG_P (SET_SRC (sets[0].rtl))
6397 && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
6398 && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl))))
6399 {
6400 int src_q = REG_QTY (REGNO (SET_SRC (sets[0].rtl)));
6401 struct qty_table_elem *src_ent = &qty_table[src_q];
6402
6403 if ((src_ent->first_reg == REGNO (SET_DEST (sets[0].rtl)))
6404 && ! find_reg_note (insn, REG_RETVAL, NULL_RTX))
6405 {
6406 rtx prev = insn;
6407 /* Scan for the previous nonnote insn, but stop at a basic
6408 block boundary. */
6409 do
6410 {
6411 prev = PREV_INSN (prev);
6412 }
6413 while (prev && NOTE_P (prev)
6414 && NOTE_LINE_NUMBER (prev) != NOTE_INSN_BASIC_BLOCK);
6415
6416 /* Do not swap the registers around if the previous instruction
6417 attaches a REG_EQUIV note to REG1.
6418
6419 ??? It's not entirely clear whether we can transfer a REG_EQUIV
6420 from the pseudo that originally shadowed an incoming argument
6421 to another register. Some uses of REG_EQUIV might rely on it
6422 being attached to REG1 rather than REG2.
6423
6424 This section previously turned the REG_EQUIV into a REG_EQUAL
6425 note. We cannot do that because REG_EQUIV may provide an
6426 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
6427
6428 if (prev != 0 && NONJUMP_INSN_P (prev)
6429 && GET_CODE (PATTERN (prev)) == SET
6430 && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl)
6431 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
6432 {
6433 rtx dest = SET_DEST (sets[0].rtl);
6434 rtx src = SET_SRC (sets[0].rtl);
6435 rtx note;
6436
6437 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
6438 validate_change (insn, &SET_DEST (sets[0].rtl), src, 1);
6439 validate_change (insn, &SET_SRC (sets[0].rtl), dest, 1);
6440 apply_change_group ();
6441
6442 /* If INSN has a REG_EQUAL note, and this note mentions
6443 REG0, then we must delete it, because the value in
6444 REG0 has changed. If the note's value is REG1, we must
6445 also delete it because that is now this insn's dest. */
6446 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
6447 if (note != 0
6448 && (reg_mentioned_p (dest, XEXP (note, 0))
6449 || rtx_equal_p (src, XEXP (note, 0))))
6450 remove_note (insn, note);
6451 }
6452 }
6453 }
6454
6455 /* If this is a conditional jump insn, record any known equivalences due to
6456 the condition being tested. */
6457
6458 if (JUMP_P (insn)
6459 && n_sets == 1 && GET_CODE (x) == SET
6460 && GET_CODE (SET_SRC (x)) == IF_THEN_ELSE)
6461 record_jump_equiv (insn, 0);
6462
6463 #ifdef HAVE_cc0
6464 /* If the previous insn set CC0 and this insn no longer references CC0,
6465 delete the previous insn. Here we use the fact that nothing expects CC0
6466 to be valid over an insn, which is true until the final pass. */
6467 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6468 && (tem = single_set (prev_insn)) != 0
6469 && SET_DEST (tem) == cc0_rtx
6470 && ! reg_mentioned_p (cc0_rtx, x))
6471 delete_insn (prev_insn);
6472
6473 prev_insn_cc0 = this_insn_cc0;
6474 prev_insn_cc0_mode = this_insn_cc0_mode;
6475 prev_insn = insn;
6476 #endif
6477 }
6478
6479 /* Remove from the hash table all expressions that reference memory. */
6480
6481 static void
invalidate_memory(void)6482 invalidate_memory (void)
6483 {
6484 int i;
6485 struct table_elt *p, *next;
6486
6487 for (i = 0; i < HASH_SIZE; i++)
6488 for (p = table[i]; p; p = next)
6489 {
6490 next = p->next_same_hash;
6491 if (p->in_memory)
6492 remove_from_table (p, i);
6493 }
6494 }
6495
6496 /* If ADDR is an address that implicitly affects the stack pointer, return
6497 1 and update the register tables to show the effect. Else, return 0. */
6498
6499 static int
addr_affects_sp_p(rtx addr)6500 addr_affects_sp_p (rtx addr)
6501 {
6502 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
6503 && REG_P (XEXP (addr, 0))
6504 && REGNO (XEXP (addr, 0)) == STACK_POINTER_REGNUM)
6505 {
6506 if (REG_TICK (STACK_POINTER_REGNUM) >= 0)
6507 {
6508 REG_TICK (STACK_POINTER_REGNUM)++;
6509 /* Is it possible to use a subreg of SP? */
6510 SUBREG_TICKED (STACK_POINTER_REGNUM) = -1;
6511 }
6512
6513 /* This should be *very* rare. */
6514 if (TEST_HARD_REG_BIT (hard_regs_in_table, STACK_POINTER_REGNUM))
6515 invalidate (stack_pointer_rtx, VOIDmode);
6516
6517 return 1;
6518 }
6519
6520 return 0;
6521 }
6522
6523 /* Perform invalidation on the basis of everything about an insn
6524 except for invalidating the actual places that are SET in it.
6525 This includes the places CLOBBERed, and anything that might
6526 alias with something that is SET or CLOBBERed.
6527
6528 X is the pattern of the insn. */
6529
6530 static void
invalidate_from_clobbers(rtx x)6531 invalidate_from_clobbers (rtx x)
6532 {
6533 if (GET_CODE (x) == CLOBBER)
6534 {
6535 rtx ref = XEXP (x, 0);
6536 if (ref)
6537 {
6538 if (REG_P (ref) || GET_CODE (ref) == SUBREG
6539 || MEM_P (ref))
6540 invalidate (ref, VOIDmode);
6541 else if (GET_CODE (ref) == STRICT_LOW_PART
6542 || GET_CODE (ref) == ZERO_EXTRACT)
6543 invalidate (XEXP (ref, 0), GET_MODE (ref));
6544 }
6545 }
6546 else if (GET_CODE (x) == PARALLEL)
6547 {
6548 int i;
6549 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6550 {
6551 rtx y = XVECEXP (x, 0, i);
6552 if (GET_CODE (y) == CLOBBER)
6553 {
6554 rtx ref = XEXP (y, 0);
6555 if (REG_P (ref) || GET_CODE (ref) == SUBREG
6556 || MEM_P (ref))
6557 invalidate (ref, VOIDmode);
6558 else if (GET_CODE (ref) == STRICT_LOW_PART
6559 || GET_CODE (ref) == ZERO_EXTRACT)
6560 invalidate (XEXP (ref, 0), GET_MODE (ref));
6561 }
6562 }
6563 }
6564 }
6565
6566 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
6567 and replace any registers in them with either an equivalent constant
6568 or the canonical form of the register. If we are inside an address,
6569 only do this if the address remains valid.
6570
6571 OBJECT is 0 except when within a MEM in which case it is the MEM.
6572
6573 Return the replacement for X. */
6574
6575 static rtx
cse_process_notes(rtx x,rtx object)6576 cse_process_notes (rtx x, rtx object)
6577 {
6578 enum rtx_code code = GET_CODE (x);
6579 const char *fmt = GET_RTX_FORMAT (code);
6580 int i;
6581
6582 switch (code)
6583 {
6584 case CONST_INT:
6585 case CONST:
6586 case SYMBOL_REF:
6587 case LABEL_REF:
6588 case CONST_DOUBLE:
6589 case CONST_VECTOR:
6590 case PC:
6591 case CC0:
6592 case LO_SUM:
6593 return x;
6594
6595 case MEM:
6596 validate_change (x, &XEXP (x, 0),
6597 cse_process_notes (XEXP (x, 0), x), 0);
6598 return x;
6599
6600 case EXPR_LIST:
6601 case INSN_LIST:
6602 if (REG_NOTE_KIND (x) == REG_EQUAL)
6603 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX);
6604 if (XEXP (x, 1))
6605 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX);
6606 return x;
6607
6608 case SIGN_EXTEND:
6609 case ZERO_EXTEND:
6610 case SUBREG:
6611 {
6612 rtx new = cse_process_notes (XEXP (x, 0), object);
6613 /* We don't substitute VOIDmode constants into these rtx,
6614 since they would impede folding. */
6615 if (GET_MODE (new) != VOIDmode)
6616 validate_change (object, &XEXP (x, 0), new, 0);
6617 return x;
6618 }
6619
6620 case REG:
6621 i = REG_QTY (REGNO (x));
6622
6623 /* Return a constant or a constant register. */
6624 if (REGNO_QTY_VALID_P (REGNO (x)))
6625 {
6626 struct qty_table_elem *ent = &qty_table[i];
6627
6628 if (ent->const_rtx != NULL_RTX
6629 && (CONSTANT_P (ent->const_rtx)
6630 || REG_P (ent->const_rtx)))
6631 {
6632 rtx new = gen_lowpart (GET_MODE (x), ent->const_rtx);
6633 if (new)
6634 return new;
6635 }
6636 }
6637
6638 /* Otherwise, canonicalize this register. */
6639 return canon_reg (x, NULL_RTX);
6640
6641 default:
6642 break;
6643 }
6644
6645 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6646 if (fmt[i] == 'e')
6647 validate_change (object, &XEXP (x, i),
6648 cse_process_notes (XEXP (x, i), object), 0);
6649
6650 return x;
6651 }
6652
6653 /* Process one SET of an insn that was skipped. We ignore CLOBBERs
6654 since they are done elsewhere. This function is called via note_stores. */
6655
6656 static void
invalidate_skipped_set(rtx dest,rtx set,void * data ATTRIBUTE_UNUSED)6657 invalidate_skipped_set (rtx dest, rtx set, void *data ATTRIBUTE_UNUSED)
6658 {
6659 enum rtx_code code = GET_CODE (dest);
6660
6661 if (code == MEM
6662 && ! addr_affects_sp_p (dest) /* If this is not a stack push ... */
6663 /* There are times when an address can appear varying and be a PLUS
6664 during this scan when it would be a fixed address were we to know
6665 the proper equivalences. So invalidate all memory if there is
6666 a BLKmode or nonscalar memory reference or a reference to a
6667 variable address. */
6668 && (MEM_IN_STRUCT_P (dest) || GET_MODE (dest) == BLKmode
6669 || cse_rtx_varies_p (XEXP (dest, 0), 0)))
6670 {
6671 invalidate_memory ();
6672 return;
6673 }
6674
6675 if (GET_CODE (set) == CLOBBER
6676 || CC0_P (dest)
6677 || dest == pc_rtx)
6678 return;
6679
6680 if (code == STRICT_LOW_PART || code == ZERO_EXTRACT)
6681 invalidate (XEXP (dest, 0), GET_MODE (dest));
6682 else if (code == REG || code == SUBREG || code == MEM)
6683 invalidate (dest, VOIDmode);
6684 }
6685
6686 /* Invalidate all insns from START up to the end of the function or the
6687 next label. This called when we wish to CSE around a block that is
6688 conditionally executed. */
6689
6690 static void
invalidate_skipped_block(rtx start)6691 invalidate_skipped_block (rtx start)
6692 {
6693 rtx insn;
6694
6695 for (insn = start; insn && !LABEL_P (insn);
6696 insn = NEXT_INSN (insn))
6697 {
6698 if (! INSN_P (insn))
6699 continue;
6700
6701 if (CALL_P (insn))
6702 {
6703 if (! CONST_OR_PURE_CALL_P (insn))
6704 invalidate_memory ();
6705 invalidate_for_call ();
6706 }
6707
6708 invalidate_from_clobbers (PATTERN (insn));
6709 note_stores (PATTERN (insn), invalidate_skipped_set, NULL);
6710 }
6711 }
6712
6713 /* Find the end of INSN's basic block and return its range,
6714 the total number of SETs in all the insns of the block, the last insn of the
6715 block, and the branch path.
6716
6717 The branch path indicates which branches should be followed. If a nonzero
6718 path size is specified, the block should be rescanned and a different set
6719 of branches will be taken. The branch path is only used if
6720 FLAG_CSE_FOLLOW_JUMPS or FLAG_CSE_SKIP_BLOCKS is nonzero.
6721
6722 DATA is a pointer to a struct cse_basic_block_data, defined below, that is
6723 used to describe the block. It is filled in with the information about
6724 the current block. The incoming structure's branch path, if any, is used
6725 to construct the output branch path. */
6726
6727 static void
cse_end_of_basic_block(rtx insn,struct cse_basic_block_data * data,int follow_jumps,int skip_blocks)6728 cse_end_of_basic_block (rtx insn, struct cse_basic_block_data *data,
6729 int follow_jumps, int skip_blocks)
6730 {
6731 rtx p = insn, q;
6732 int nsets = 0;
6733 int low_cuid = INSN_CUID (insn), high_cuid = INSN_CUID (insn);
6734 rtx next = INSN_P (insn) ? insn : next_real_insn (insn);
6735 int path_size = data->path_size;
6736 int path_entry = 0;
6737 int i;
6738
6739 /* Update the previous branch path, if any. If the last branch was
6740 previously PATH_TAKEN, mark it PATH_NOT_TAKEN.
6741 If it was previously PATH_NOT_TAKEN,
6742 shorten the path by one and look at the previous branch. We know that
6743 at least one branch must have been taken if PATH_SIZE is nonzero. */
6744 while (path_size > 0)
6745 {
6746 if (data->path[path_size - 1].status != PATH_NOT_TAKEN)
6747 {
6748 data->path[path_size - 1].status = PATH_NOT_TAKEN;
6749 break;
6750 }
6751 else
6752 path_size--;
6753 }
6754
6755 /* If the first instruction is marked with QImode, that means we've
6756 already processed this block. Our caller will look at DATA->LAST
6757 to figure out where to go next. We want to return the next block
6758 in the instruction stream, not some branched-to block somewhere
6759 else. We accomplish this by pretending our called forbid us to
6760 follow jumps, or skip blocks. */
6761 if (GET_MODE (insn) == QImode)
6762 follow_jumps = skip_blocks = 0;
6763
6764 /* Scan to end of this basic block. */
6765 while (p && !LABEL_P (p))
6766 {
6767 /* Don't cse over a call to setjmp; on some machines (eg VAX)
6768 the regs restored by the longjmp come from
6769 a later time than the setjmp. */
6770 if (PREV_INSN (p) && CALL_P (PREV_INSN (p))
6771 && find_reg_note (PREV_INSN (p), REG_SETJMP, NULL))
6772 break;
6773
6774 /* A PARALLEL can have lots of SETs in it,
6775 especially if it is really an ASM_OPERANDS. */
6776 if (INSN_P (p) && GET_CODE (PATTERN (p)) == PARALLEL)
6777 nsets += XVECLEN (PATTERN (p), 0);
6778 else if (!NOTE_P (p))
6779 nsets += 1;
6780
6781 /* Ignore insns made by CSE; they cannot affect the boundaries of
6782 the basic block. */
6783
6784 if (INSN_UID (p) <= max_uid && INSN_CUID (p) > high_cuid)
6785 high_cuid = INSN_CUID (p);
6786 if (INSN_UID (p) <= max_uid && INSN_CUID (p) < low_cuid)
6787 low_cuid = INSN_CUID (p);
6788
6789 /* See if this insn is in our branch path. If it is and we are to
6790 take it, do so. */
6791 if (path_entry < path_size && data->path[path_entry].branch == p)
6792 {
6793 if (data->path[path_entry].status != PATH_NOT_TAKEN)
6794 p = JUMP_LABEL (p);
6795
6796 /* Point to next entry in path, if any. */
6797 path_entry++;
6798 }
6799
6800 /* If this is a conditional jump, we can follow it if -fcse-follow-jumps
6801 was specified, we haven't reached our maximum path length, there are
6802 insns following the target of the jump, this is the only use of the
6803 jump label, and the target label is preceded by a BARRIER.
6804
6805 Alternatively, we can follow the jump if it branches around a
6806 block of code and there are no other branches into the block.
6807 In this case invalidate_skipped_block will be called to invalidate any
6808 registers set in the block when following the jump. */
6809
6810 else if ((follow_jumps || skip_blocks) && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH) - 1
6811 && JUMP_P (p)
6812 && GET_CODE (PATTERN (p)) == SET
6813 && GET_CODE (SET_SRC (PATTERN (p))) == IF_THEN_ELSE
6814 && JUMP_LABEL (p) != 0
6815 && LABEL_NUSES (JUMP_LABEL (p)) == 1
6816 && NEXT_INSN (JUMP_LABEL (p)) != 0)
6817 {
6818 for (q = PREV_INSN (JUMP_LABEL (p)); q; q = PREV_INSN (q))
6819 if ((!NOTE_P (q)
6820 || (PREV_INSN (q) && CALL_P (PREV_INSN (q))
6821 && find_reg_note (PREV_INSN (q), REG_SETJMP, NULL)))
6822 && (!LABEL_P (q) || LABEL_NUSES (q) != 0))
6823 break;
6824
6825 /* If we ran into a BARRIER, this code is an extension of the
6826 basic block when the branch is taken. */
6827 if (follow_jumps && q != 0 && BARRIER_P (q))
6828 {
6829 /* Don't allow ourself to keep walking around an
6830 always-executed loop. */
6831 if (next_real_insn (q) == next)
6832 {
6833 p = NEXT_INSN (p);
6834 continue;
6835 }
6836
6837 /* Similarly, don't put a branch in our path more than once. */
6838 for (i = 0; i < path_entry; i++)
6839 if (data->path[i].branch == p)
6840 break;
6841
6842 if (i != path_entry)
6843 break;
6844
6845 data->path[path_entry].branch = p;
6846 data->path[path_entry++].status = PATH_TAKEN;
6847
6848 /* This branch now ends our path. It was possible that we
6849 didn't see this branch the last time around (when the
6850 insn in front of the target was a JUMP_INSN that was
6851 turned into a no-op). */
6852 path_size = path_entry;
6853
6854 p = JUMP_LABEL (p);
6855 /* Mark block so we won't scan it again later. */
6856 PUT_MODE (NEXT_INSN (p), QImode);
6857 }
6858 /* Detect a branch around a block of code. */
6859 else if (skip_blocks && q != 0 && !LABEL_P (q))
6860 {
6861 rtx tmp;
6862
6863 if (next_real_insn (q) == next)
6864 {
6865 p = NEXT_INSN (p);
6866 continue;
6867 }
6868
6869 for (i = 0; i < path_entry; i++)
6870 if (data->path[i].branch == p)
6871 break;
6872
6873 if (i != path_entry)
6874 break;
6875
6876 /* This is no_labels_between_p (p, q) with an added check for
6877 reaching the end of a function (in case Q precedes P). */
6878 for (tmp = NEXT_INSN (p); tmp && tmp != q; tmp = NEXT_INSN (tmp))
6879 if (LABEL_P (tmp))
6880 break;
6881
6882 if (tmp == q)
6883 {
6884 data->path[path_entry].branch = p;
6885 data->path[path_entry++].status = PATH_AROUND;
6886
6887 path_size = path_entry;
6888
6889 p = JUMP_LABEL (p);
6890 /* Mark block so we won't scan it again later. */
6891 PUT_MODE (NEXT_INSN (p), QImode);
6892 }
6893 }
6894 }
6895 p = NEXT_INSN (p);
6896 }
6897
6898 data->low_cuid = low_cuid;
6899 data->high_cuid = high_cuid;
6900 data->nsets = nsets;
6901 data->last = p;
6902
6903 /* If all jumps in the path are not taken, set our path length to zero
6904 so a rescan won't be done. */
6905 for (i = path_size - 1; i >= 0; i--)
6906 if (data->path[i].status != PATH_NOT_TAKEN)
6907 break;
6908
6909 if (i == -1)
6910 data->path_size = 0;
6911 else
6912 data->path_size = path_size;
6913
6914 /* End the current branch path. */
6915 data->path[path_size].branch = 0;
6916 }
6917
6918 /* Perform cse on the instructions of a function.
6919 F is the first instruction.
6920 NREGS is one plus the highest pseudo-reg number used in the instruction.
6921
6922 Returns 1 if jump_optimize should be redone due to simplifications
6923 in conditional jump instructions. */
6924
6925 int
cse_main(rtx f,int nregs)6926 cse_main (rtx f, int nregs)
6927 {
6928 struct cse_basic_block_data val;
6929 rtx insn = f;
6930 int i;
6931
6932 init_cse_reg_info (nregs);
6933
6934 val.path = XNEWVEC (struct branch_path, PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6935
6936 cse_jumps_altered = 0;
6937 recorded_label_ref = 0;
6938 constant_pool_entries_cost = 0;
6939 constant_pool_entries_regcost = 0;
6940 val.path_size = 0;
6941 rtl_hooks = cse_rtl_hooks;
6942
6943 init_recog ();
6944 init_alias_analysis ();
6945
6946 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6947
6948 /* Find the largest uid. */
6949
6950 max_uid = get_max_uid ();
6951 uid_cuid = XCNEWVEC (int, max_uid + 1);
6952
6953 /* Compute the mapping from uids to cuids.
6954 CUIDs are numbers assigned to insns, like uids,
6955 except that cuids increase monotonically through the code.
6956 Don't assign cuids to line-number NOTEs, so that the distance in cuids
6957 between two insns is not affected by -g. */
6958
6959 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
6960 {
6961 if (!NOTE_P (insn)
6962 || NOTE_LINE_NUMBER (insn) < 0)
6963 INSN_CUID (insn) = ++i;
6964 else
6965 /* Give a line number note the same cuid as preceding insn. */
6966 INSN_CUID (insn) = i;
6967 }
6968
6969 /* Loop over basic blocks.
6970 Compute the maximum number of qty's needed for each basic block
6971 (which is 2 for each SET). */
6972 insn = f;
6973 while (insn)
6974 {
6975 cse_altered = 0;
6976 cse_end_of_basic_block (insn, &val, flag_cse_follow_jumps,
6977 flag_cse_skip_blocks);
6978
6979 /* If this basic block was already processed or has no sets, skip it. */
6980 if (val.nsets == 0 || GET_MODE (insn) == QImode)
6981 {
6982 PUT_MODE (insn, VOIDmode);
6983 insn = (val.last ? NEXT_INSN (val.last) : 0);
6984 val.path_size = 0;
6985 continue;
6986 }
6987
6988 cse_basic_block_start = val.low_cuid;
6989 cse_basic_block_end = val.high_cuid;
6990 max_qty = val.nsets * 2;
6991
6992 if (dump_file)
6993 fprintf (dump_file, ";; Processing block from %d to %d, %d sets.\n",
6994 INSN_UID (insn), val.last ? INSN_UID (val.last) : 0,
6995 val.nsets);
6996
6997 /* Make MAX_QTY bigger to give us room to optimize
6998 past the end of this basic block, if that should prove useful. */
6999 if (max_qty < 500)
7000 max_qty = 500;
7001
7002 /* If this basic block is being extended by following certain jumps,
7003 (see `cse_end_of_basic_block'), we reprocess the code from the start.
7004 Otherwise, we start after this basic block. */
7005 if (val.path_size > 0)
7006 cse_basic_block (insn, val.last, val.path);
7007 else
7008 {
7009 int old_cse_jumps_altered = cse_jumps_altered;
7010 rtx temp;
7011
7012 /* When cse changes a conditional jump to an unconditional
7013 jump, we want to reprocess the block, since it will give
7014 us a new branch path to investigate. */
7015 cse_jumps_altered = 0;
7016 temp = cse_basic_block (insn, val.last, val.path);
7017 if (cse_jumps_altered == 0
7018 || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
7019 insn = temp;
7020
7021 cse_jumps_altered |= old_cse_jumps_altered;
7022 }
7023
7024 if (cse_altered)
7025 ggc_collect ();
7026
7027 #ifdef USE_C_ALLOCA
7028 alloca (0);
7029 #endif
7030 }
7031
7032 /* Clean up. */
7033 end_alias_analysis ();
7034 free (uid_cuid);
7035 free (reg_eqv_table);
7036 free (val.path);
7037 rtl_hooks = general_rtl_hooks;
7038
7039 return cse_jumps_altered || recorded_label_ref;
7040 }
7041
7042 /* Process a single basic block. FROM and TO and the limits of the basic
7043 block. NEXT_BRANCH points to the branch path when following jumps or
7044 a null path when not following jumps. */
7045
7046 static rtx
cse_basic_block(rtx from,rtx to,struct branch_path * next_branch)7047 cse_basic_block (rtx from, rtx to, struct branch_path *next_branch)
7048 {
7049 rtx insn;
7050 int to_usage = 0;
7051 rtx libcall_insn = NULL_RTX;
7052 int num_insns = 0;
7053 int no_conflict = 0;
7054
7055 /* Allocate the space needed by qty_table. */
7056 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
7057
7058 new_basic_block ();
7059
7060 /* TO might be a label. If so, protect it from being deleted. */
7061 if (to != 0 && LABEL_P (to))
7062 ++LABEL_NUSES (to);
7063
7064 for (insn = from; insn != to; insn = NEXT_INSN (insn))
7065 {
7066 enum rtx_code code = GET_CODE (insn);
7067
7068 /* If we have processed 1,000 insns, flush the hash table to
7069 avoid extreme quadratic behavior. We must not include NOTEs
7070 in the count since there may be more of them when generating
7071 debugging information. If we clear the table at different
7072 times, code generated with -g -O might be different than code
7073 generated with -O but not -g.
7074
7075 ??? This is a real kludge and needs to be done some other way.
7076 Perhaps for 2.9. */
7077 if (code != NOTE && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
7078 {
7079 flush_hash_table ();
7080 num_insns = 0;
7081 }
7082
7083 /* See if this is a branch that is part of the path. If so, and it is
7084 to be taken, do so. */
7085 if (next_branch->branch == insn)
7086 {
7087 enum taken status = next_branch++->status;
7088 if (status != PATH_NOT_TAKEN)
7089 {
7090 if (status == PATH_TAKEN)
7091 record_jump_equiv (insn, 1);
7092 else
7093 invalidate_skipped_block (NEXT_INSN (insn));
7094
7095 /* Set the last insn as the jump insn; it doesn't affect cc0.
7096 Then follow this branch. */
7097 #ifdef HAVE_cc0
7098 prev_insn_cc0 = 0;
7099 prev_insn = insn;
7100 #endif
7101 insn = JUMP_LABEL (insn);
7102 continue;
7103 }
7104 }
7105
7106 if (GET_MODE (insn) == QImode)
7107 PUT_MODE (insn, VOIDmode);
7108
7109 if (GET_RTX_CLASS (code) == RTX_INSN)
7110 {
7111 rtx p;
7112
7113 /* Process notes first so we have all notes in canonical forms when
7114 looking for duplicate operations. */
7115
7116 if (REG_NOTES (insn))
7117 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn), NULL_RTX);
7118
7119 /* Track when we are inside in LIBCALL block. Inside such a block,
7120 we do not want to record destinations. The last insn of a
7121 LIBCALL block is not considered to be part of the block, since
7122 its destination is the result of the block and hence should be
7123 recorded. */
7124
7125 if (REG_NOTES (insn) != 0)
7126 {
7127 if ((p = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
7128 libcall_insn = XEXP (p, 0);
7129 else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
7130 {
7131 /* Keep libcall_insn for the last SET insn of a no-conflict
7132 block to prevent changing the destination. */
7133 if (! no_conflict)
7134 libcall_insn = 0;
7135 else
7136 no_conflict = -1;
7137 }
7138 else if (find_reg_note (insn, REG_NO_CONFLICT, NULL_RTX))
7139 no_conflict = 1;
7140 }
7141
7142 cse_insn (insn, libcall_insn);
7143
7144 if (no_conflict == -1)
7145 {
7146 libcall_insn = 0;
7147 no_conflict = 0;
7148 }
7149
7150 /* If we haven't already found an insn where we added a LABEL_REF,
7151 check this one. */
7152 if (NONJUMP_INSN_P (insn) && ! recorded_label_ref
7153 && for_each_rtx (&PATTERN (insn), check_for_label_ref,
7154 (void *) insn))
7155 recorded_label_ref = 1;
7156 }
7157
7158 /* If INSN is now an unconditional jump, skip to the end of our
7159 basic block by pretending that we just did the last insn in the
7160 basic block. If we are jumping to the end of our block, show
7161 that we can have one usage of TO. */
7162
7163 if (any_uncondjump_p (insn))
7164 {
7165 if (to == 0)
7166 {
7167 free (qty_table);
7168 return 0;
7169 }
7170
7171 if (JUMP_LABEL (insn) == to)
7172 to_usage = 1;
7173
7174 /* Maybe TO was deleted because the jump is unconditional.
7175 If so, there is nothing left in this basic block. */
7176 /* ??? Perhaps it would be smarter to set TO
7177 to whatever follows this insn,
7178 and pretend the basic block had always ended here. */
7179 if (INSN_DELETED_P (to))
7180 break;
7181
7182 insn = PREV_INSN (to);
7183 }
7184
7185 /* See if it is ok to keep on going past the label
7186 which used to end our basic block. Remember that we incremented
7187 the count of that label, so we decrement it here. If we made
7188 a jump unconditional, TO_USAGE will be one; in that case, we don't
7189 want to count the use in that jump. */
7190
7191 if (to != 0 && NEXT_INSN (insn) == to
7192 && LABEL_P (to) && --LABEL_NUSES (to) == to_usage)
7193 {
7194 struct cse_basic_block_data val;
7195 rtx prev;
7196
7197 insn = NEXT_INSN (to);
7198
7199 /* If TO was the last insn in the function, we are done. */
7200 if (insn == 0)
7201 {
7202 free (qty_table);
7203 return 0;
7204 }
7205
7206 /* If TO was preceded by a BARRIER we are done with this block
7207 because it has no continuation. */
7208 prev = prev_nonnote_insn (to);
7209 if (prev && BARRIER_P (prev))
7210 {
7211 free (qty_table);
7212 return insn;
7213 }
7214
7215 /* Find the end of the following block. Note that we won't be
7216 following branches in this case. */
7217 to_usage = 0;
7218 val.path_size = 0;
7219 val.path = XNEWVEC (struct branch_path, PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
7220 cse_end_of_basic_block (insn, &val, 0, 0);
7221 free (val.path);
7222
7223 /* If the tables we allocated have enough space left
7224 to handle all the SETs in the next basic block,
7225 continue through it. Otherwise, return,
7226 and that block will be scanned individually. */
7227 if (val.nsets * 2 + next_qty > max_qty)
7228 break;
7229
7230 cse_basic_block_start = val.low_cuid;
7231 cse_basic_block_end = val.high_cuid;
7232 to = val.last;
7233
7234 /* Prevent TO from being deleted if it is a label. */
7235 if (to != 0 && LABEL_P (to))
7236 ++LABEL_NUSES (to);
7237
7238 /* Back up so we process the first insn in the extension. */
7239 insn = PREV_INSN (insn);
7240 }
7241 }
7242
7243 gcc_assert (next_qty <= max_qty);
7244
7245 free (qty_table);
7246
7247 return to ? NEXT_INSN (to) : 0;
7248 }
7249
7250 /* Called via for_each_rtx to see if an insn is using a LABEL_REF for which
7251 there isn't a REG_LABEL note. Return one if so. DATA is the insn. */
7252
7253 static int
check_for_label_ref(rtx * rtl,void * data)7254 check_for_label_ref (rtx *rtl, void *data)
7255 {
7256 rtx insn = (rtx) data;
7257
7258 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL note for it,
7259 we must rerun jump since it needs to place the note. If this is a
7260 LABEL_REF for a CODE_LABEL that isn't in the insn chain, don't do this
7261 since no REG_LABEL will be added. */
7262 return (GET_CODE (*rtl) == LABEL_REF
7263 && ! LABEL_REF_NONLOCAL_P (*rtl)
7264 && LABEL_P (XEXP (*rtl, 0))
7265 && INSN_UID (XEXP (*rtl, 0)) != 0
7266 && ! find_reg_note (insn, REG_LABEL, XEXP (*rtl, 0)));
7267 }
7268
7269 /* Count the number of times registers are used (not set) in X.
7270 COUNTS is an array in which we accumulate the count, INCR is how much
7271 we count each register usage.
7272
7273 Don't count a usage of DEST, which is the SET_DEST of a SET which
7274 contains X in its SET_SRC. This is because such a SET does not
7275 modify the liveness of DEST.
7276 DEST is set to pc_rtx for a trapping insn, which means that we must count
7277 uses of a SET_DEST regardless because the insn can't be deleted here. */
7278
7279 static void
count_reg_usage(rtx x,int * counts,rtx dest,int incr)7280 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
7281 {
7282 enum rtx_code code;
7283 rtx note;
7284 const char *fmt;
7285 int i, j;
7286
7287 if (x == 0)
7288 return;
7289
7290 switch (code = GET_CODE (x))
7291 {
7292 case REG:
7293 if (x != dest)
7294 counts[REGNO (x)] += incr;
7295 return;
7296
7297 case PC:
7298 case CC0:
7299 case CONST:
7300 case CONST_INT:
7301 case CONST_DOUBLE:
7302 case CONST_VECTOR:
7303 case SYMBOL_REF:
7304 case LABEL_REF:
7305 return;
7306
7307 case CLOBBER:
7308 /* If we are clobbering a MEM, mark any registers inside the address
7309 as being used. */
7310 if (MEM_P (XEXP (x, 0)))
7311 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
7312 return;
7313
7314 case SET:
7315 /* Unless we are setting a REG, count everything in SET_DEST. */
7316 if (!REG_P (SET_DEST (x)))
7317 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
7318 count_reg_usage (SET_SRC (x), counts,
7319 dest ? dest : SET_DEST (x),
7320 incr);
7321 return;
7322
7323 case CALL_INSN:
7324 case INSN:
7325 case JUMP_INSN:
7326 /* We expect dest to be NULL_RTX here. If the insn may trap, mark
7327 this fact by setting DEST to pc_rtx. */
7328 if (flag_non_call_exceptions && may_trap_p (PATTERN (x)))
7329 dest = pc_rtx;
7330 if (code == CALL_INSN)
7331 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
7332 count_reg_usage (PATTERN (x), counts, dest, incr);
7333
7334 /* Things used in a REG_EQUAL note aren't dead since loop may try to
7335 use them. */
7336
7337 note = find_reg_equal_equiv_note (x);
7338 if (note)
7339 {
7340 rtx eqv = XEXP (note, 0);
7341
7342 if (GET_CODE (eqv) == EXPR_LIST)
7343 /* This REG_EQUAL note describes the result of a function call.
7344 Process all the arguments. */
7345 do
7346 {
7347 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
7348 eqv = XEXP (eqv, 1);
7349 }
7350 while (eqv && GET_CODE (eqv) == EXPR_LIST);
7351 else
7352 count_reg_usage (eqv, counts, dest, incr);
7353 }
7354 return;
7355
7356 case EXPR_LIST:
7357 if (REG_NOTE_KIND (x) == REG_EQUAL
7358 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
7359 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
7360 involving registers in the address. */
7361 || GET_CODE (XEXP (x, 0)) == CLOBBER)
7362 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
7363
7364 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
7365 return;
7366
7367 case ASM_OPERANDS:
7368 /* If the asm is volatile, then this insn cannot be deleted,
7369 and so the inputs *must* be live. */
7370 if (MEM_VOLATILE_P (x))
7371 dest = NULL_RTX;
7372 /* Iterate over just the inputs, not the constraints as well. */
7373 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
7374 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
7375 return;
7376
7377 case INSN_LIST:
7378 gcc_unreachable ();
7379
7380 default:
7381 break;
7382 }
7383
7384 fmt = GET_RTX_FORMAT (code);
7385 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7386 {
7387 if (fmt[i] == 'e')
7388 count_reg_usage (XEXP (x, i), counts, dest, incr);
7389 else if (fmt[i] == 'E')
7390 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7391 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
7392 }
7393 }
7394
7395 /* Return true if set is live. */
7396 static bool
set_live_p(rtx set,rtx insn ATTRIBUTE_UNUSED,int * counts)7397 set_live_p (rtx set, rtx insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
7398 int *counts)
7399 {
7400 #ifdef HAVE_cc0
7401 rtx tem;
7402 #endif
7403
7404 if (set_noop_p (set))
7405 ;
7406
7407 #ifdef HAVE_cc0
7408 else if (GET_CODE (SET_DEST (set)) == CC0
7409 && !side_effects_p (SET_SRC (set))
7410 && ((tem = next_nonnote_insn (insn)) == 0
7411 || !INSN_P (tem)
7412 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
7413 return false;
7414 #endif
7415 else if (!REG_P (SET_DEST (set))
7416 || REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
7417 || counts[REGNO (SET_DEST (set))] != 0
7418 || side_effects_p (SET_SRC (set)))
7419 return true;
7420 return false;
7421 }
7422
7423 /* Return true if insn is live. */
7424
7425 static bool
insn_live_p(rtx insn,int * counts)7426 insn_live_p (rtx insn, int *counts)
7427 {
7428 int i;
7429 if (flag_non_call_exceptions && may_trap_p (PATTERN (insn)))
7430 return true;
7431 else if (GET_CODE (PATTERN (insn)) == SET)
7432 return set_live_p (PATTERN (insn), insn, counts);
7433 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
7434 {
7435 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7436 {
7437 rtx elt = XVECEXP (PATTERN (insn), 0, i);
7438
7439 if (GET_CODE (elt) == SET)
7440 {
7441 if (set_live_p (elt, insn, counts))
7442 return true;
7443 }
7444 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
7445 return true;
7446 }
7447 return false;
7448 }
7449 else
7450 return true;
7451 }
7452
7453 /* Return true if libcall is dead as a whole. */
7454
7455 static bool
dead_libcall_p(rtx insn,int * counts)7456 dead_libcall_p (rtx insn, int *counts)
7457 {
7458 rtx note, set, new;
7459
7460 /* See if there's a REG_EQUAL note on this insn and try to
7461 replace the source with the REG_EQUAL expression.
7462
7463 We assume that insns with REG_RETVALs can only be reg->reg
7464 copies at this point. */
7465 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
7466 if (!note)
7467 return false;
7468
7469 set = single_set (insn);
7470 if (!set)
7471 return false;
7472
7473 new = simplify_rtx (XEXP (note, 0));
7474 if (!new)
7475 new = XEXP (note, 0);
7476
7477 /* While changing insn, we must update the counts accordingly. */
7478 count_reg_usage (insn, counts, NULL_RTX, -1);
7479
7480 if (validate_change (insn, &SET_SRC (set), new, 0))
7481 {
7482 count_reg_usage (insn, counts, NULL_RTX, 1);
7483 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
7484 remove_note (insn, note);
7485 return true;
7486 }
7487
7488 if (CONSTANT_P (new))
7489 {
7490 new = force_const_mem (GET_MODE (SET_DEST (set)), new);
7491 if (new && validate_change (insn, &SET_SRC (set), new, 0))
7492 {
7493 count_reg_usage (insn, counts, NULL_RTX, 1);
7494 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
7495 remove_note (insn, note);
7496 return true;
7497 }
7498 }
7499
7500 count_reg_usage (insn, counts, NULL_RTX, 1);
7501 return false;
7502 }
7503
7504 /* Scan all the insns and delete any that are dead; i.e., they store a register
7505 that is never used or they copy a register to itself.
7506
7507 This is used to remove insns made obviously dead by cse, loop or other
7508 optimizations. It improves the heuristics in loop since it won't try to
7509 move dead invariants out of loops or make givs for dead quantities. The
7510 remaining passes of the compilation are also sped up. */
7511
7512 int
delete_trivially_dead_insns(rtx insns,int nreg)7513 delete_trivially_dead_insns (rtx insns, int nreg)
7514 {
7515 int *counts;
7516 rtx insn, prev;
7517 int in_libcall = 0, dead_libcall = 0;
7518 int ndead = 0;
7519
7520 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
7521 /* First count the number of times each register is used. */
7522 counts = XCNEWVEC (int, nreg);
7523 for (insn = insns; insn; insn = NEXT_INSN (insn))
7524 if (INSN_P (insn))
7525 count_reg_usage (insn, counts, NULL_RTX, 1);
7526
7527 /* Go from the last insn to the first and delete insns that only set unused
7528 registers or copy a register to itself. As we delete an insn, remove
7529 usage counts for registers it uses.
7530
7531 The first jump optimization pass may leave a real insn as the last
7532 insn in the function. We must not skip that insn or we may end
7533 up deleting code that is not really dead. */
7534 for (insn = get_last_insn (); insn; insn = prev)
7535 {
7536 int live_insn = 0;
7537
7538 prev = PREV_INSN (insn);
7539 if (!INSN_P (insn))
7540 continue;
7541
7542 /* Don't delete any insns that are part of a libcall block unless
7543 we can delete the whole libcall block.
7544
7545 Flow or loop might get confused if we did that. Remember
7546 that we are scanning backwards. */
7547 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
7548 {
7549 in_libcall = 1;
7550 live_insn = 1;
7551 dead_libcall = dead_libcall_p (insn, counts);
7552 }
7553 else if (in_libcall)
7554 live_insn = ! dead_libcall;
7555 else
7556 live_insn = insn_live_p (insn, counts);
7557
7558 /* If this is a dead insn, delete it and show registers in it aren't
7559 being used. */
7560
7561 if (! live_insn)
7562 {
7563 count_reg_usage (insn, counts, NULL_RTX, -1);
7564 delete_insn_and_edges (insn);
7565 ndead++;
7566 }
7567
7568 if (in_libcall && find_reg_note (insn, REG_LIBCALL, NULL_RTX))
7569 {
7570 in_libcall = 0;
7571 dead_libcall = 0;
7572 }
7573 }
7574
7575 if (dump_file && ndead)
7576 fprintf (dump_file, "Deleted %i trivially dead insns\n",
7577 ndead);
7578 /* Clean up. */
7579 free (counts);
7580 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
7581 return ndead;
7582 }
7583
7584 /* This function is called via for_each_rtx. The argument, NEWREG, is
7585 a condition code register with the desired mode. If we are looking
7586 at the same register in a different mode, replace it with
7587 NEWREG. */
7588
7589 static int
cse_change_cc_mode(rtx * loc,void * data)7590 cse_change_cc_mode (rtx *loc, void *data)
7591 {
7592 struct change_cc_mode_args* args = (struct change_cc_mode_args*)data;
7593
7594 if (*loc
7595 && REG_P (*loc)
7596 && REGNO (*loc) == REGNO (args->newreg)
7597 && GET_MODE (*loc) != GET_MODE (args->newreg))
7598 {
7599 validate_change (args->insn, loc, args->newreg, 1);
7600
7601 return -1;
7602 }
7603 return 0;
7604 }
7605
7606 /* Change the mode of any reference to the register REGNO (NEWREG) to
7607 GET_MODE (NEWREG) in INSN. */
7608
7609 static void
cse_change_cc_mode_insn(rtx insn,rtx newreg)7610 cse_change_cc_mode_insn (rtx insn, rtx newreg)
7611 {
7612 struct change_cc_mode_args args;
7613 int success;
7614
7615 if (!INSN_P (insn))
7616 return;
7617
7618 args.insn = insn;
7619 args.newreg = newreg;
7620
7621 for_each_rtx (&PATTERN (insn), cse_change_cc_mode, &args);
7622 for_each_rtx (®_NOTES (insn), cse_change_cc_mode, &args);
7623
7624 /* If the following assertion was triggered, there is most probably
7625 something wrong with the cc_modes_compatible back end function.
7626 CC modes only can be considered compatible if the insn - with the mode
7627 replaced by any of the compatible modes - can still be recognized. */
7628 success = apply_change_group ();
7629 gcc_assert (success);
7630 }
7631
7632 /* Change the mode of any reference to the register REGNO (NEWREG) to
7633 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
7634 any instruction which modifies NEWREG. */
7635
7636 static void
cse_change_cc_mode_insns(rtx start,rtx end,rtx newreg)7637 cse_change_cc_mode_insns (rtx start, rtx end, rtx newreg)
7638 {
7639 rtx insn;
7640
7641 for (insn = start; insn != end; insn = NEXT_INSN (insn))
7642 {
7643 if (! INSN_P (insn))
7644 continue;
7645
7646 if (reg_set_p (newreg, insn))
7647 return;
7648
7649 cse_change_cc_mode_insn (insn, newreg);
7650 }
7651 }
7652
7653 /* BB is a basic block which finishes with CC_REG as a condition code
7654 register which is set to CC_SRC. Look through the successors of BB
7655 to find blocks which have a single predecessor (i.e., this one),
7656 and look through those blocks for an assignment to CC_REG which is
7657 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
7658 permitted to change the mode of CC_SRC to a compatible mode. This
7659 returns VOIDmode if no equivalent assignments were found.
7660 Otherwise it returns the mode which CC_SRC should wind up with.
7661
7662 The main complexity in this function is handling the mode issues.
7663 We may have more than one duplicate which we can eliminate, and we
7664 try to find a mode which will work for multiple duplicates. */
7665
7666 static enum machine_mode
cse_cc_succs(basic_block bb,rtx cc_reg,rtx cc_src,bool can_change_mode)7667 cse_cc_succs (basic_block bb, rtx cc_reg, rtx cc_src, bool can_change_mode)
7668 {
7669 bool found_equiv;
7670 enum machine_mode mode;
7671 unsigned int insn_count;
7672 edge e;
7673 rtx insns[2];
7674 enum machine_mode modes[2];
7675 rtx last_insns[2];
7676 unsigned int i;
7677 rtx newreg;
7678 edge_iterator ei;
7679
7680 /* We expect to have two successors. Look at both before picking
7681 the final mode for the comparison. If we have more successors
7682 (i.e., some sort of table jump, although that seems unlikely),
7683 then we require all beyond the first two to use the same
7684 mode. */
7685
7686 found_equiv = false;
7687 mode = GET_MODE (cc_src);
7688 insn_count = 0;
7689 FOR_EACH_EDGE (e, ei, bb->succs)
7690 {
7691 rtx insn;
7692 rtx end;
7693
7694 if (e->flags & EDGE_COMPLEX)
7695 continue;
7696
7697 if (EDGE_COUNT (e->dest->preds) != 1
7698 || e->dest == EXIT_BLOCK_PTR)
7699 continue;
7700
7701 end = NEXT_INSN (BB_END (e->dest));
7702 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
7703 {
7704 rtx set;
7705
7706 if (! INSN_P (insn))
7707 continue;
7708
7709 /* If CC_SRC is modified, we have to stop looking for
7710 something which uses it. */
7711 if (modified_in_p (cc_src, insn))
7712 break;
7713
7714 /* Check whether INSN sets CC_REG to CC_SRC. */
7715 set = single_set (insn);
7716 if (set
7717 && REG_P (SET_DEST (set))
7718 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7719 {
7720 bool found;
7721 enum machine_mode set_mode;
7722 enum machine_mode comp_mode;
7723
7724 found = false;
7725 set_mode = GET_MODE (SET_SRC (set));
7726 comp_mode = set_mode;
7727 if (rtx_equal_p (cc_src, SET_SRC (set)))
7728 found = true;
7729 else if (GET_CODE (cc_src) == COMPARE
7730 && GET_CODE (SET_SRC (set)) == COMPARE
7731 && mode != set_mode
7732 && rtx_equal_p (XEXP (cc_src, 0),
7733 XEXP (SET_SRC (set), 0))
7734 && rtx_equal_p (XEXP (cc_src, 1),
7735 XEXP (SET_SRC (set), 1)))
7736
7737 {
7738 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
7739 if (comp_mode != VOIDmode
7740 && (can_change_mode || comp_mode == mode))
7741 found = true;
7742 }
7743
7744 if (found)
7745 {
7746 found_equiv = true;
7747 if (insn_count < ARRAY_SIZE (insns))
7748 {
7749 insns[insn_count] = insn;
7750 modes[insn_count] = set_mode;
7751 last_insns[insn_count] = end;
7752 ++insn_count;
7753
7754 if (mode != comp_mode)
7755 {
7756 gcc_assert (can_change_mode);
7757 mode = comp_mode;
7758
7759 /* The modified insn will be re-recognized later. */
7760 PUT_MODE (cc_src, mode);
7761 }
7762 }
7763 else
7764 {
7765 if (set_mode != mode)
7766 {
7767 /* We found a matching expression in the
7768 wrong mode, but we don't have room to
7769 store it in the array. Punt. This case
7770 should be rare. */
7771 break;
7772 }
7773 /* INSN sets CC_REG to a value equal to CC_SRC
7774 with the right mode. We can simply delete
7775 it. */
7776 delete_insn (insn);
7777 }
7778
7779 /* We found an instruction to delete. Keep looking,
7780 in the hopes of finding a three-way jump. */
7781 continue;
7782 }
7783
7784 /* We found an instruction which sets the condition
7785 code, so don't look any farther. */
7786 break;
7787 }
7788
7789 /* If INSN sets CC_REG in some other way, don't look any
7790 farther. */
7791 if (reg_set_p (cc_reg, insn))
7792 break;
7793 }
7794
7795 /* If we fell off the bottom of the block, we can keep looking
7796 through successors. We pass CAN_CHANGE_MODE as false because
7797 we aren't prepared to handle compatibility between the
7798 further blocks and this block. */
7799 if (insn == end)
7800 {
7801 enum machine_mode submode;
7802
7803 submode = cse_cc_succs (e->dest, cc_reg, cc_src, false);
7804 if (submode != VOIDmode)
7805 {
7806 gcc_assert (submode == mode);
7807 found_equiv = true;
7808 can_change_mode = false;
7809 }
7810 }
7811 }
7812
7813 if (! found_equiv)
7814 return VOIDmode;
7815
7816 /* Now INSN_COUNT is the number of instructions we found which set
7817 CC_REG to a value equivalent to CC_SRC. The instructions are in
7818 INSNS. The modes used by those instructions are in MODES. */
7819
7820 newreg = NULL_RTX;
7821 for (i = 0; i < insn_count; ++i)
7822 {
7823 if (modes[i] != mode)
7824 {
7825 /* We need to change the mode of CC_REG in INSNS[i] and
7826 subsequent instructions. */
7827 if (! newreg)
7828 {
7829 if (GET_MODE (cc_reg) == mode)
7830 newreg = cc_reg;
7831 else
7832 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7833 }
7834 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7835 newreg);
7836 }
7837
7838 delete_insn (insns[i]);
7839 }
7840
7841 return mode;
7842 }
7843
7844 /* If we have a fixed condition code register (or two), walk through
7845 the instructions and try to eliminate duplicate assignments. */
7846
7847 static void
cse_condition_code_reg(void)7848 cse_condition_code_reg (void)
7849 {
7850 unsigned int cc_regno_1;
7851 unsigned int cc_regno_2;
7852 rtx cc_reg_1;
7853 rtx cc_reg_2;
7854 basic_block bb;
7855
7856 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
7857 return;
7858
7859 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7860 if (cc_regno_2 != INVALID_REGNUM)
7861 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7862 else
7863 cc_reg_2 = NULL_RTX;
7864
7865 FOR_EACH_BB (bb)
7866 {
7867 rtx last_insn;
7868 rtx cc_reg;
7869 rtx insn;
7870 rtx cc_src_insn;
7871 rtx cc_src;
7872 enum machine_mode mode;
7873 enum machine_mode orig_mode;
7874
7875 /* Look for blocks which end with a conditional jump based on a
7876 condition code register. Then look for the instruction which
7877 sets the condition code register. Then look through the
7878 successor blocks for instructions which set the condition
7879 code register to the same value. There are other possible
7880 uses of the condition code register, but these are by far the
7881 most common and the ones which we are most likely to be able
7882 to optimize. */
7883
7884 last_insn = BB_END (bb);
7885 if (!JUMP_P (last_insn))
7886 continue;
7887
7888 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7889 cc_reg = cc_reg_1;
7890 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7891 cc_reg = cc_reg_2;
7892 else
7893 continue;
7894
7895 cc_src_insn = NULL_RTX;
7896 cc_src = NULL_RTX;
7897 for (insn = PREV_INSN (last_insn);
7898 insn && insn != PREV_INSN (BB_HEAD (bb));
7899 insn = PREV_INSN (insn))
7900 {
7901 rtx set;
7902
7903 if (! INSN_P (insn))
7904 continue;
7905 set = single_set (insn);
7906 if (set
7907 && REG_P (SET_DEST (set))
7908 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7909 {
7910 cc_src_insn = insn;
7911 cc_src = SET_SRC (set);
7912 break;
7913 }
7914 else if (reg_set_p (cc_reg, insn))
7915 break;
7916 }
7917
7918 if (! cc_src_insn)
7919 continue;
7920
7921 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7922 continue;
7923
7924 /* Now CC_REG is a condition code register used for a
7925 conditional jump at the end of the block, and CC_SRC, in
7926 CC_SRC_INSN, is the value to which that condition code
7927 register is set, and CC_SRC is still meaningful at the end of
7928 the basic block. */
7929
7930 orig_mode = GET_MODE (cc_src);
7931 mode = cse_cc_succs (bb, cc_reg, cc_src, true);
7932 if (mode != VOIDmode)
7933 {
7934 gcc_assert (mode == GET_MODE (cc_src));
7935 if (mode != orig_mode)
7936 {
7937 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7938
7939 cse_change_cc_mode_insn (cc_src_insn, newreg);
7940
7941 /* Do the same in the following insns that use the
7942 current value of CC_REG within BB. */
7943 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7944 NEXT_INSN (last_insn),
7945 newreg);
7946 }
7947 }
7948 }
7949 }
7950
7951
7952 /* Perform common subexpression elimination. Nonzero value from
7953 `cse_main' means that jumps were simplified and some code may now
7954 be unreachable, so do jump optimization again. */
7955 static bool
gate_handle_cse(void)7956 gate_handle_cse (void)
7957 {
7958 return optimize > 0;
7959 }
7960
7961 static unsigned int
rest_of_handle_cse(void)7962 rest_of_handle_cse (void)
7963 {
7964 int tem;
7965
7966 if (dump_file)
7967 dump_flow_info (dump_file, dump_flags);
7968
7969 reg_scan (get_insns (), max_reg_num ());
7970
7971 tem = cse_main (get_insns (), max_reg_num ());
7972 if (tem)
7973 rebuild_jump_labels (get_insns ());
7974 if (purge_all_dead_edges ())
7975 delete_unreachable_blocks ();
7976
7977 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7978
7979 /* If we are not running more CSE passes, then we are no longer
7980 expecting CSE to be run. But always rerun it in a cheap mode. */
7981 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
7982
7983 if (tem)
7984 delete_dead_jumptables ();
7985
7986 if (tem || optimize > 1)
7987 cleanup_cfg (CLEANUP_EXPENSIVE);
7988 return 0;
7989 }
7990
7991 struct tree_opt_pass pass_cse =
7992 {
7993 "cse1", /* name */
7994 gate_handle_cse, /* gate */
7995 rest_of_handle_cse, /* execute */
7996 NULL, /* sub */
7997 NULL, /* next */
7998 0, /* static_pass_number */
7999 TV_CSE, /* tv_id */
8000 0, /* properties_required */
8001 0, /* properties_provided */
8002 0, /* properties_destroyed */
8003 0, /* todo_flags_start */
8004 TODO_dump_func |
8005 TODO_ggc_collect, /* todo_flags_finish */
8006 's' /* letter */
8007 };
8008
8009
8010 static bool
gate_handle_cse2(void)8011 gate_handle_cse2 (void)
8012 {
8013 return optimize > 0 && flag_rerun_cse_after_loop;
8014 }
8015
8016 /* Run second CSE pass after loop optimizations. */
8017 static unsigned int
rest_of_handle_cse2(void)8018 rest_of_handle_cse2 (void)
8019 {
8020 int tem;
8021
8022 if (dump_file)
8023 dump_flow_info (dump_file, dump_flags);
8024
8025 tem = cse_main (get_insns (), max_reg_num ());
8026
8027 /* Run a pass to eliminate duplicated assignments to condition code
8028 registers. We have to run this after bypass_jumps, because it
8029 makes it harder for that pass to determine whether a jump can be
8030 bypassed safely. */
8031 cse_condition_code_reg ();
8032
8033 purge_all_dead_edges ();
8034 delete_trivially_dead_insns (get_insns (), max_reg_num ());
8035
8036 if (tem)
8037 {
8038 timevar_push (TV_JUMP);
8039 rebuild_jump_labels (get_insns ());
8040 delete_dead_jumptables ();
8041 cleanup_cfg (CLEANUP_EXPENSIVE);
8042 timevar_pop (TV_JUMP);
8043 }
8044 reg_scan (get_insns (), max_reg_num ());
8045 cse_not_expected = 1;
8046 return 0;
8047 }
8048
8049
8050 struct tree_opt_pass pass_cse2 =
8051 {
8052 "cse2", /* name */
8053 gate_handle_cse2, /* gate */
8054 rest_of_handle_cse2, /* execute */
8055 NULL, /* sub */
8056 NULL, /* next */
8057 0, /* static_pass_number */
8058 TV_CSE2, /* tv_id */
8059 0, /* properties_required */
8060 0, /* properties_provided */
8061 0, /* properties_destroyed */
8062 0, /* todo_flags_start */
8063 TODO_dump_func |
8064 TODO_ggc_collect, /* todo_flags_finish */
8065 't' /* letter */
8066 };
8067
8068