xref: /openbsd-src/gnu/usr.bin/gcc/gcc/sibcall.c (revision c87b03e512fc05ed6e0222f6fb0ae86264b1d05b)
1 /* Generic sibling call optimization support
2    Copyright (C) 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING.  If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA.  */
20 
21 #include "config.h"
22 #include "system.h"
23 
24 #include "rtl.h"
25 #include "regs.h"
26 #include "function.h"
27 #include "hard-reg-set.h"
28 #include "flags.h"
29 #include "insn-config.h"
30 #include "recog.h"
31 #include "basic-block.h"
32 #include "output.h"
33 #include "except.h"
34 #include "tree.h"
35 
36 /* In case alternate_exit_block contains copy from pseudo, to return value,
37    record the pseudo here.  In such case the pseudo must be set to function
38    return in the sibcall sequence.  */
39 static rtx return_value_pseudo;
40 
41 static int identify_call_return_value	PARAMS ((rtx, rtx *, rtx *));
42 static rtx skip_copy_to_return_value	PARAMS ((rtx));
43 static rtx skip_use_of_return_value	PARAMS ((rtx, enum rtx_code));
44 static rtx skip_stack_adjustment	PARAMS ((rtx));
45 static rtx skip_pic_restore		PARAMS ((rtx));
46 static rtx skip_jump_insn		PARAMS ((rtx));
47 static int call_ends_block_p		PARAMS ((rtx, rtx));
48 static int uses_addressof		PARAMS ((rtx));
49 static int sequence_uses_addressof	PARAMS ((rtx));
50 static void purge_reg_equiv_notes	PARAMS ((void));
51 static void purge_mem_unchanging_flag	PARAMS ((rtx));
52 static rtx skip_unreturned_value 	PARAMS ((rtx));
53 
54 /* Examine a CALL_PLACEHOLDER pattern and determine where the call's
55    return value is located.  P_HARD_RETURN receives the hard register
56    that the function used; P_SOFT_RETURN receives the pseudo register
57    that the sequence used.  Return nonzero if the values were located.  */
58 
59 static int
identify_call_return_value(cp,p_hard_return,p_soft_return)60 identify_call_return_value (cp, p_hard_return, p_soft_return)
61      rtx cp;
62      rtx *p_hard_return, *p_soft_return;
63 {
64   rtx insn, set, hard, soft;
65 
66   insn = XEXP (cp, 0);
67   /* Search backward through the "normal" call sequence to the CALL insn.  */
68   while (NEXT_INSN (insn))
69     insn = NEXT_INSN (insn);
70   while (GET_CODE (insn) != CALL_INSN)
71     insn = PREV_INSN (insn);
72 
73   /* Assume the pattern is (set (dest) (call ...)), or that the first
74      member of a parallel is.  This is the hard return register used
75      by the function.  */
76   if (GET_CODE (PATTERN (insn)) == SET
77       && GET_CODE (SET_SRC (PATTERN (insn))) == CALL)
78     hard = SET_DEST (PATTERN (insn));
79   else if (GET_CODE (PATTERN (insn)) == PARALLEL
80 	   && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET
81 	   && GET_CODE (SET_SRC (XVECEXP (PATTERN (insn), 0, 0))) == CALL)
82     hard = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
83   else
84     return 0;
85 
86   /* If we didn't get a single hard register (e.g. a parallel), give up.  */
87   if (GET_CODE (hard) != REG)
88     return 0;
89 
90   /* Stack adjustment done after call may appear here.  */
91   insn = skip_stack_adjustment (insn);
92   if (! insn)
93     return 0;
94 
95   /* Restore of GP register may appear here.  */
96   insn = skip_pic_restore (insn);
97   if (! insn)
98     return 0;
99 
100   /* If there's nothing after, there's no soft return value.  */
101   insn = NEXT_INSN (insn);
102   if (! insn)
103     return 0;
104 
105   /* We're looking for a source of the hard return register.  */
106   set = single_set (insn);
107   if (! set || SET_SRC (set) != hard)
108     return 0;
109 
110   soft = SET_DEST (set);
111   insn = NEXT_INSN (insn);
112 
113   /* Allow this first destination to be copied to a second register,
114      as might happen if the first register wasn't the particular pseudo
115      we'd been expecting.  */
116   if (insn
117       && (set = single_set (insn)) != NULL_RTX
118       && SET_SRC (set) == soft)
119     {
120       soft = SET_DEST (set);
121       insn = NEXT_INSN (insn);
122     }
123 
124   /* Don't fool with anything but pseudo registers.  */
125   if (GET_CODE (soft) != REG || REGNO (soft) < FIRST_PSEUDO_REGISTER)
126     return 0;
127 
128   /* This value must not be modified before the end of the sequence.  */
129   if (reg_set_between_p (soft, insn, NULL_RTX))
130     return 0;
131 
132   *p_hard_return = hard;
133   *p_soft_return = soft;
134 
135   return 1;
136 }
137 
138 /* If the first real insn after ORIG_INSN copies to this function's
139    return value from RETVAL, then return the insn which performs the
140    copy.  Otherwise return ORIG_INSN.  */
141 
142 static rtx
skip_copy_to_return_value(orig_insn)143 skip_copy_to_return_value (orig_insn)
144      rtx orig_insn;
145 {
146   rtx insn, set = NULL_RTX;
147   rtx hardret, softret;
148 
149   /* If there is no return value, we have nothing to do.  */
150   if (! identify_call_return_value (PATTERN (orig_insn), &hardret, &softret))
151     return orig_insn;
152 
153   insn = next_nonnote_insn (orig_insn);
154   if (! insn)
155     return orig_insn;
156 
157   set = single_set (insn);
158   if (! set)
159     return orig_insn;
160 
161   if (return_value_pseudo)
162     {
163       if (SET_DEST (set) == return_value_pseudo
164 	  && SET_SRC (set) == softret)
165 	return insn;
166       return orig_insn;
167     }
168 
169   /* The destination must be the same as the called function's return
170      value to ensure that any return value is put in the same place by the
171      current function and the function we're calling.
172 
173      Further, the source must be the same as the pseudo into which the
174      called function's return value was copied.  Otherwise we're returning
175      some other value.  */
176 
177 #ifndef OUTGOING_REGNO
178 #define OUTGOING_REGNO(N) (N)
179 #endif
180 
181   if (SET_DEST (set) == current_function_return_rtx
182       && REG_P (SET_DEST (set))
183       && OUTGOING_REGNO (REGNO (SET_DEST (set))) == REGNO (hardret)
184       && SET_SRC (set) == softret)
185     return insn;
186 
187   /* Recognize the situation when the called function's return value
188      is copied in two steps: first into an intermediate pseudo, then
189      the into the calling functions return value register.  */
190 
191   if (REG_P (SET_DEST (set))
192       && SET_SRC (set) == softret)
193     {
194       rtx x = SET_DEST (set);
195 
196       insn = next_nonnote_insn (insn);
197       if (! insn)
198 	return orig_insn;
199 
200       set = single_set (insn);
201       if (! set)
202 	return orig_insn;
203 
204       if (SET_DEST (set) == current_function_return_rtx
205 	  && REG_P (SET_DEST (set))
206 	  && OUTGOING_REGNO (REGNO (SET_DEST (set))) == REGNO (hardret)
207 	  && SET_SRC (set) == x)
208 	return insn;
209     }
210 
211   /* It did not look like a copy of the return value, so return the
212      same insn we were passed.  */
213   return orig_insn;
214 }
215 
216 /* If the first real insn after ORIG_INSN is a CODE of this function's return
217    value, return insn.  Otherwise return ORIG_INSN.  */
218 
219 static rtx
skip_use_of_return_value(orig_insn,code)220 skip_use_of_return_value (orig_insn, code)
221      rtx orig_insn;
222      enum rtx_code code;
223 {
224   rtx insn;
225 
226   insn = next_nonnote_insn (orig_insn);
227 
228   if (insn
229       && GET_CODE (insn) == INSN
230       && GET_CODE (PATTERN (insn)) == code
231       && (XEXP (PATTERN (insn), 0) == current_function_return_rtx
232 	  || XEXP (PATTERN (insn), 0) == const0_rtx))
233     return insn;
234 
235   return orig_insn;
236 }
237 
238 /* In case function does not return value,  we get clobber of pseudo followed
239    by set to hard return value.  */
240 static rtx
skip_unreturned_value(orig_insn)241 skip_unreturned_value (orig_insn)
242      rtx orig_insn;
243 {
244   rtx insn = next_nonnote_insn (orig_insn);
245 
246   /* Skip possible clobber of pseudo return register.  */
247   if (insn
248       && GET_CODE (insn) == INSN
249       && GET_CODE (PATTERN (insn)) == CLOBBER
250       && REG_P (XEXP (PATTERN (insn), 0))
251       && (REGNO (XEXP (PATTERN (insn), 0)) >= FIRST_PSEUDO_REGISTER))
252     {
253       rtx set_insn = next_nonnote_insn (insn);
254       rtx set;
255       if (!set_insn)
256 	return insn;
257       set = single_set (set_insn);
258       if (!set
259 	  || SET_SRC (set) != XEXP (PATTERN (insn), 0)
260 	  || SET_DEST (set) != current_function_return_rtx)
261 	return insn;
262       return set_insn;
263     }
264   return orig_insn;
265 }
266 
267 /* If the first real insn after ORIG_INSN adjusts the stack pointer
268    by a constant, return the insn with the stack pointer adjustment.
269    Otherwise return ORIG_INSN.  */
270 
271 static rtx
skip_stack_adjustment(orig_insn)272 skip_stack_adjustment (orig_insn)
273      rtx orig_insn;
274 {
275   rtx insn, set = NULL_RTX;
276 
277   insn = next_nonnote_insn (orig_insn);
278 
279   if (insn)
280     set = single_set (insn);
281 
282   if (insn
283       && set
284       && GET_CODE (SET_SRC (set)) == PLUS
285       && XEXP (SET_SRC (set), 0) == stack_pointer_rtx
286       && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT
287       && SET_DEST (set) == stack_pointer_rtx)
288     return insn;
289 
290   return orig_insn;
291 }
292 
293 /* If the first real insn after ORIG_INSN sets the pic register,
294    return it.  Otherwise return ORIG_INSN.  */
295 
296 static rtx
skip_pic_restore(orig_insn)297 skip_pic_restore (orig_insn)
298      rtx orig_insn;
299 {
300   rtx insn, set = NULL_RTX;
301 
302   insn = next_nonnote_insn (orig_insn);
303 
304   if (insn)
305     set = single_set (insn);
306 
307   if (insn && set && SET_DEST (set) == pic_offset_table_rtx)
308     return insn;
309 
310   return orig_insn;
311 }
312 
313 /* If the first real insn after ORIG_INSN is a jump, return the JUMP_INSN.
314    Otherwise return ORIG_INSN.  */
315 
316 static rtx
skip_jump_insn(orig_insn)317 skip_jump_insn (orig_insn)
318      rtx orig_insn;
319 {
320   rtx insn;
321 
322   insn = next_nonnote_insn (orig_insn);
323 
324   if (insn
325       && GET_CODE (insn) == JUMP_INSN
326       && any_uncondjump_p (insn))
327     return insn;
328 
329   return orig_insn;
330 }
331 
332 /* Using the above functions, see if INSN, skipping any of the above,
333    goes all the way to END, the end of a basic block.  Return 1 if so.  */
334 
335 static int
call_ends_block_p(insn,end)336 call_ends_block_p (insn, end)
337      rtx insn;
338      rtx end;
339 {
340   rtx new_insn;
341   /* END might be a note, so get the last nonnote insn of the block.  */
342   end = next_nonnote_insn (PREV_INSN (end));
343 
344   /* If the call was the end of the block, then we're OK.  */
345   if (insn == end)
346     return 1;
347 
348   /* Skip over copying from the call's return value pseudo into
349      this function's hard return register and if that's the end
350      of the block, we're OK.  */
351   new_insn = skip_copy_to_return_value (insn);
352 
353   /* In case we return value in pseudo, we must set the pseudo to
354      return value of called function, otherwise we are returning
355      something else.  */
356   if (return_value_pseudo && insn == new_insn)
357     return 0;
358   insn = new_insn;
359 
360   if (insn == end)
361     return 1;
362 
363   /* Skip any stack adjustment.  */
364   insn = skip_stack_adjustment (insn);
365   if (insn == end)
366     return 1;
367 
368   /* Skip over a CLOBBER of the return value as a hard reg.  */
369   insn = skip_use_of_return_value (insn, CLOBBER);
370   if (insn == end)
371     return 1;
372 
373   /* Skip over a CLOBBER of the return value as a hard reg.  */
374   insn = skip_unreturned_value (insn);
375   if (insn == end)
376     return 1;
377 
378   /* Skip over a USE of the return value (as a hard reg).  */
379   insn = skip_use_of_return_value (insn, USE);
380   if (insn == end)
381     return 1;
382 
383   /* Skip over a JUMP_INSN at the end of the block.  If that doesn't end the
384      block, the original CALL_INSN didn't.  */
385   insn = skip_jump_insn (insn);
386   return insn == end;
387 }
388 
389 /* Scan the rtx X for ADDRESSOF expressions or
390    current_function_internal_arg_pointer registers.
391    Return nonzero if an ADDRESSOF or current_function_internal_arg_pointer
392    is found outside of some MEM expression, else return zero.  */
393 
394 static int
uses_addressof(x)395 uses_addressof (x)
396      rtx x;
397 {
398   RTX_CODE code;
399   int i, j;
400   const char *fmt;
401 
402   if (x == NULL_RTX)
403     return 0;
404 
405   code = GET_CODE (x);
406 
407   if (code == ADDRESSOF || x == current_function_internal_arg_pointer)
408     return 1;
409 
410   if (code == MEM)
411     return 0;
412 
413   /* Scan all subexpressions.  */
414   fmt = GET_RTX_FORMAT (code);
415   for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
416     {
417       if (*fmt == 'e')
418 	{
419 	  if (uses_addressof (XEXP (x, i)))
420 	    return 1;
421 	}
422       else if (*fmt == 'E')
423 	{
424 	  for (j = 0; j < XVECLEN (x, i); j++)
425 	    if (uses_addressof (XVECEXP (x, i, j)))
426 	      return 1;
427 	}
428     }
429   return 0;
430 }
431 
432 /* Scan the sequence of insns in SEQ to see if any have an ADDRESSOF
433    rtl expression or current_function_internal_arg_pointer occurrences
434    not enclosed within a MEM.  If an ADDRESSOF expression or
435    current_function_internal_arg_pointer is found, return nonzero, otherwise
436    return zero.
437 
438    This function handles CALL_PLACEHOLDERs which contain multiple sequences
439    of insns.  */
440 
441 static int
sequence_uses_addressof(seq)442 sequence_uses_addressof (seq)
443      rtx seq;
444 {
445   rtx insn;
446 
447   for (insn = seq; insn; insn = NEXT_INSN (insn))
448     if (INSN_P (insn))
449       {
450 	/* If this is a CALL_PLACEHOLDER, then recursively call ourselves
451 	   with each nonempty sequence attached to the CALL_PLACEHOLDER.  */
452 	if (GET_CODE (insn) == CALL_INSN
453 	    && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
454 	  {
455 	    if (XEXP (PATTERN (insn), 0) != NULL_RTX
456 		&& sequence_uses_addressof (XEXP (PATTERN (insn), 0)))
457 	      return 1;
458 	    if (XEXP (PATTERN (insn), 1) != NULL_RTX
459 		&& sequence_uses_addressof (XEXP (PATTERN (insn), 1)))
460 	      return 1;
461 	    if (XEXP (PATTERN (insn), 2) != NULL_RTX
462 		&& sequence_uses_addressof (XEXP (PATTERN (insn), 2)))
463 	      return 1;
464 	  }
465 	else if (uses_addressof (PATTERN (insn))
466 		 || (REG_NOTES (insn) && uses_addressof (REG_NOTES (insn))))
467 	  return 1;
468       }
469   return 0;
470 }
471 
472 /* Remove all REG_EQUIV notes found in the insn chain.  */
473 
474 static void
purge_reg_equiv_notes()475 purge_reg_equiv_notes ()
476 {
477   rtx insn;
478 
479   for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
480     {
481       while (1)
482 	{
483 	  rtx note = find_reg_note (insn, REG_EQUIV, 0);
484 	  if (note)
485 	    {
486 	      /* Remove the note and keep looking at the notes for
487 		 this insn.  */
488 	      remove_note (insn, note);
489 	      continue;
490 	    }
491 	  break;
492 	}
493     }
494 }
495 
496 /* Clear RTX_UNCHANGING_P flag of incoming argument MEMs.  */
497 
498 static void
purge_mem_unchanging_flag(x)499 purge_mem_unchanging_flag (x)
500      rtx x;
501 {
502   RTX_CODE code;
503   int i, j;
504   const char *fmt;
505 
506   if (x == NULL_RTX)
507     return;
508 
509   code = GET_CODE (x);
510 
511   if (code == MEM)
512     {
513       if (RTX_UNCHANGING_P (x)
514 	  && (XEXP (x, 0) == current_function_internal_arg_pointer
515 	      || (GET_CODE (XEXP (x, 0)) == PLUS
516 		  && XEXP (XEXP (x, 0), 0) ==
517 		     current_function_internal_arg_pointer
518 		  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
519 	RTX_UNCHANGING_P (x) = 0;
520       return;
521     }
522 
523   /* Scan all subexpressions.  */
524   fmt = GET_RTX_FORMAT (code);
525   for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
526     {
527       if (*fmt == 'e')
528 	purge_mem_unchanging_flag (XEXP (x, i));
529       else if (*fmt == 'E')
530 	for (j = 0; j < XVECLEN (x, i); j++)
531 	  purge_mem_unchanging_flag (XVECEXP (x, i, j));
532     }
533 }
534 
535 /* Replace the CALL_PLACEHOLDER with one of its children.  INSN should be
536    the CALL_PLACEHOLDER insn; USE tells which child to use.  */
537 
538 void
replace_call_placeholder(insn,use)539 replace_call_placeholder (insn, use)
540      rtx insn;
541      sibcall_use_t use;
542 {
543   if (use == sibcall_use_tail_recursion)
544     emit_insn_before (XEXP (PATTERN (insn), 2), insn);
545   else if (use == sibcall_use_sibcall)
546     emit_insn_before (XEXP (PATTERN (insn), 1), insn);
547   else if (use == sibcall_use_normal)
548     emit_insn_before (XEXP (PATTERN (insn), 0), insn);
549   else
550     abort ();
551 
552   /* Turn off LABEL_PRESERVE_P for the tail recursion label if it
553      exists.  We only had to set it long enough to keep the jump
554      pass above from deleting it as unused.  */
555   if (XEXP (PATTERN (insn), 3))
556     LABEL_PRESERVE_P (XEXP (PATTERN (insn), 3)) = 0;
557 
558   /* "Delete" the placeholder insn.  */
559   remove_insn (insn);
560 }
561 
562 /* Given a (possibly empty) set of potential sibling or tail recursion call
563    sites, determine if optimization is possible.
564 
565    Potential sibling or tail recursion calls are marked with CALL_PLACEHOLDER
566    insns.  The CALL_PLACEHOLDER insn holds chains of insns to implement a
567    normal call, sibling call or tail recursive call.
568 
569    Replace the CALL_PLACEHOLDER with an appropriate insn chain.  */
570 
571 void
optimize_sibling_and_tail_recursive_calls()572 optimize_sibling_and_tail_recursive_calls ()
573 {
574   rtx insn, insns;
575   basic_block alternate_exit = EXIT_BLOCK_PTR;
576   bool no_sibcalls_this_function = false;
577   bool successful_replacement = false;
578   bool replaced_call_placeholder = false;
579   edge e;
580 
581   insns = get_insns ();
582 
583   cleanup_cfg (CLEANUP_PRE_SIBCALL | CLEANUP_PRE_LOOP);
584 
585   /* If there are no basic blocks, then there is nothing to do.  */
586   if (n_basic_blocks == 0)
587     return;
588 
589   /* If we are using sjlj exceptions, we may need to add a call to
590      _Unwind_SjLj_Unregister at exit of the function.  Which means
591      that we cannot do any sibcall transformations.  */
592   if (USING_SJLJ_EXCEPTIONS && current_function_has_exception_handlers ())
593     no_sibcalls_this_function = true;
594 
595   return_value_pseudo = NULL_RTX;
596 
597   /* Find the exit block.
598 
599      It is possible that we have blocks which can reach the exit block
600      directly.  However, most of the time a block will jump (or fall into)
601      N_BASIC_BLOCKS - 1, which in turn falls into the exit block.  */
602   for (e = EXIT_BLOCK_PTR->pred;
603        e && alternate_exit == EXIT_BLOCK_PTR;
604        e = e->pred_next)
605     {
606       rtx insn;
607 
608       if (e->dest != EXIT_BLOCK_PTR || e->succ_next != NULL)
609 	continue;
610 
611       /* Walk forwards through the last normal block and see if it
612 	 does nothing except fall into the exit block.  */
613       for (insn = EXIT_BLOCK_PTR->prev_bb->head;
614 	   insn;
615 	   insn = NEXT_INSN (insn))
616 	{
617 	  rtx set;
618 	  /* This should only happen once, at the start of this block.  */
619 	  if (GET_CODE (insn) == CODE_LABEL)
620 	    continue;
621 
622 	  if (GET_CODE (insn) == NOTE)
623 	    continue;
624 
625 	  if (GET_CODE (insn) == INSN
626 	      && GET_CODE (PATTERN (insn)) == USE)
627 	    continue;
628 
629 	  /* Exit block also may contain copy from pseudo containing
630 	     return value to hard register.  */
631 	  if (GET_CODE (insn) == INSN
632 	      && (set = single_set (insn))
633 	      && SET_DEST (set) == current_function_return_rtx
634 	      && REG_P (SET_SRC (set))
635 	      && !return_value_pseudo)
636 	    {
637 	      return_value_pseudo = SET_SRC (set);
638 	      continue;
639 	    }
640 
641 	  break;
642 	}
643 
644       /* If INSN is zero, then the search walked all the way through the
645 	 block without hitting anything interesting.  This block is a
646 	 valid alternate exit block.  */
647       if (insn == NULL)
648 	alternate_exit = e->src;
649       else
650 	return_value_pseudo = NULL;
651     }
652 
653   /* If the function uses ADDRESSOF, we can't (easily) determine
654      at this point if the value will end up on the stack.  */
655   no_sibcalls_this_function |= sequence_uses_addressof (insns);
656 
657   /* Walk the insn chain and find any CALL_PLACEHOLDER insns.  We need to
658      select one of the insn sequences attached to each CALL_PLACEHOLDER.
659 
660      The different sequences represent different ways to implement the call,
661      ie, tail recursion, sibling call or normal call.
662 
663      Since we do not create nested CALL_PLACEHOLDERs, the scan
664      continues with the insn that was after a replaced CALL_PLACEHOLDER;
665      we don't rescan the replacement insns.  */
666   for (insn = insns; insn; insn = NEXT_INSN (insn))
667     {
668       if (GET_CODE (insn) == CALL_INSN
669 	  && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
670 	{
671 	  int sibcall = (XEXP (PATTERN (insn), 1) != NULL_RTX);
672 	  int tailrecursion = (XEXP (PATTERN (insn), 2) != NULL_RTX);
673 	  basic_block call_block = BLOCK_FOR_INSN (insn);
674 
675 	  /* alloca (until we have stack slot life analysis) inhibits
676 	     sibling call optimizations, but not tail recursion.
677 	     Similarly if we use varargs or stdarg since they implicitly
678 	     may take the address of an argument.  */
679 	  if (current_function_calls_alloca || current_function_stdarg)
680 	    sibcall = 0;
681 
682 	  /* See if there are any reasons we can't perform either sibling or
683 	     tail call optimizations.  We must be careful with stack slots
684 	     which are live at potential optimization sites.  */
685 	  if (no_sibcalls_this_function
686 	      /* ??? Overly conservative.  */
687 	      || frame_offset
688 	      /* Any function that calls setjmp might have longjmp called from
689 		 any called function.  ??? We really should represent this
690 		 properly in the CFG so that this needn't be special cased.  */
691 	      || current_function_calls_setjmp
692 	      /* Can't if more than one successor or single successor is not
693 		 exit block.  These two tests prevent tail call optimization
694 		 in the presense of active exception handlers.  */
695 	      || call_block->succ == NULL
696 	      || call_block->succ->succ_next != NULL
697 	      || (call_block->succ->dest != EXIT_BLOCK_PTR
698 		  && call_block->succ->dest != alternate_exit)
699 	      /* If this call doesn't end the block, there are operations at
700 		 the end of the block which we must execute after returning.  */
701 	      || ! call_ends_block_p (insn, call_block->end))
702 	    sibcall = 0, tailrecursion = 0;
703 
704 	  /* Select a set of insns to implement the call and emit them.
705 	     Tail recursion is the most efficient, so select it over
706 	     a tail/sibling call.  */
707 
708 	  if (sibcall || tailrecursion)
709 	    successful_replacement = true;
710 	  replaced_call_placeholder = true;
711 
712 	  replace_call_placeholder (insn,
713 				    tailrecursion != 0
714 				      ? sibcall_use_tail_recursion
715 				      : sibcall != 0
716 					 ? sibcall_use_sibcall
717 					 : sibcall_use_normal);
718 	}
719     }
720 
721   if (successful_replacement)
722     {
723       rtx insn;
724       tree arg;
725 
726       /* A sibling call sequence invalidates any REG_EQUIV notes made for
727 	 this function's incoming arguments.
728 
729 	 At the start of RTL generation we know the only REG_EQUIV notes
730 	 in the rtl chain are those for incoming arguments, so we can safely
731 	 flush any REG_EQUIV note.
732 
733 	 This is (slight) overkill.  We could keep track of the highest
734 	 argument we clobber and be more selective in removing notes, but it
735 	 does not seem to be worth the effort.  */
736       purge_reg_equiv_notes ();
737 
738       /* A sibling call sequence also may invalidate RTX_UNCHANGING_P
739 	 flag of some incoming arguments MEM RTLs, because it can write into
740 	 those slots.  We clear all those bits now.
741 
742 	 This is (slight) overkill, we could keep track of which arguments
743 	 we actually write into.  */
744       for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
745 	{
746 	  if (INSN_P (insn))
747 	    purge_mem_unchanging_flag (PATTERN (insn));
748 	}
749 
750       /* Similarly, invalidate RTX_UNCHANGING_P for any incoming
751 	 arguments passed in registers.  */
752       for (arg = DECL_ARGUMENTS (current_function_decl);
753 	   arg;
754 	   arg = TREE_CHAIN (arg))
755 	{
756 	  if (REG_P (DECL_RTL (arg)))
757 	    RTX_UNCHANGING_P (DECL_RTL (arg)) = false;
758 	}
759     }
760 
761   /* There may have been NOTE_INSN_BLOCK_{BEGIN,END} notes in the
762      CALL_PLACEHOLDER alternatives that we didn't emit.  Rebuild the
763      lexical block tree to correspond to the notes that still exist.  */
764   if (replaced_call_placeholder)
765     reorder_blocks ();
766 
767   /* This information will be invalid after inline expansion.  Kill it now.  */
768   free_basic_block_vars (0);
769   free_EXPR_LIST_list (&tail_recursion_label_list);
770 }
771