xref: /llvm-project/lld/ELF/ICF.cpp (revision 712264b83c736fac7a7f0d4296f84c1afbd93b1a)
1 //===- ICF.cpp ------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // ICF is short for Identical Code Folding. This is a size optimization to
10 // identify and merge two or more read-only sections (typically functions)
11 // that happened to have the same contents. It usually reduces output size
12 // by a few percent.
13 //
14 // In ICF, two sections are considered identical if they have the same
15 // section flags, section data, and relocations. Relocations are tricky,
16 // because two relocations are considered the same if they have the same
17 // relocation types, values, and if they point to the same sections *in
18 // terms of ICF*.
19 //
20 // Here is an example. If foo and bar defined below are compiled to the
21 // same machine instructions, ICF can and should merge the two, although
22 // their relocations point to each other.
23 //
24 //   void foo() { bar(); }
25 //   void bar() { foo(); }
26 //
27 // If you merge the two, their relocations point to the same section and
28 // thus you know they are mergeable, but how do you know they are
29 // mergeable in the first place? This is not an easy problem to solve.
30 //
31 // What we are doing in LLD is to partition sections into equivalence
32 // classes. Sections in the same equivalence class when the algorithm
33 // terminates are considered identical. Here are details:
34 //
35 // 1. First, we partition sections using their hash values as keys. Hash
36 //    values contain section types, section contents and numbers of
37 //    relocations. During this step, relocation targets are not taken into
38 //    account. We just put sections that apparently differ into different
39 //    equivalence classes.
40 //
41 // 2. Next, for each equivalence class, we visit sections to compare
42 //    relocation targets. Relocation targets are considered equivalent if
43 //    their targets are in the same equivalence class. Sections with
44 //    different relocation targets are put into different equivalence
45 //    classes.
46 //
47 // 3. If we split an equivalence class in step 2, two relocations
48 //    previously target the same equivalence class may now target
49 //    different equivalence classes. Therefore, we repeat step 2 until a
50 //    convergence is obtained.
51 //
52 // 4. For each equivalence class C, pick an arbitrary section in C, and
53 //    merge all the other sections in C with it.
54 //
55 // For small programs, this algorithm needs 3-5 iterations. For large
56 // programs such as Chromium, it takes more than 20 iterations.
57 //
58 // This algorithm was mentioned as an "optimistic algorithm" in [1],
59 // though gold implements a different algorithm than this.
60 //
61 // We parallelize each step so that multiple threads can work on different
62 // equivalence classes concurrently. That gave us a large performance
63 // boost when applying ICF on large programs. For example, MSVC link.exe
64 // or GNU gold takes 10-20 seconds to apply ICF on Chromium, whose output
65 // size is about 1.5 GB, but LLD can finish it in less than 2 seconds on a
66 // 2.8 GHz 40 core machine. Even without threading, LLD's ICF is still
67 // faster than MSVC or gold though.
68 //
69 // [1] Safe ICF: Pointer Safe and Unwinding aware Identical Code Folding
70 // in the Gold Linker
71 // http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36912.pdf
72 //
73 //===----------------------------------------------------------------------===//
74 
75 #include "ICF.h"
76 #include "Config.h"
77 #include "InputFiles.h"
78 #include "LinkerScript.h"
79 #include "OutputSections.h"
80 #include "SymbolTable.h"
81 #include "Symbols.h"
82 #include "SyntheticSections.h"
83 #include "llvm/BinaryFormat/ELF.h"
84 #include "llvm/Object/ELF.h"
85 #include "llvm/Support/Parallel.h"
86 #include "llvm/Support/TimeProfiler.h"
87 #include "llvm/Support/xxhash.h"
88 #include <algorithm>
89 #include <atomic>
90 
91 using namespace llvm;
92 using namespace llvm::ELF;
93 using namespace llvm::object;
94 using namespace lld;
95 using namespace lld::elf;
96 
97 namespace {
98 template <class ELFT> class ICF {
99 public:
100   ICF(Ctx &ctx) : ctx(ctx) {}
101   void run();
102 
103 private:
104   void segregate(size_t begin, size_t end, uint32_t eqClassBase, bool constant);
105 
106   template <class RelTy>
107   bool constantEq(const InputSection *a, Relocs<RelTy> relsA,
108                   const InputSection *b, Relocs<RelTy> relsB);
109 
110   template <class RelTy>
111   bool variableEq(const InputSection *a, Relocs<RelTy> relsA,
112                   const InputSection *b, Relocs<RelTy> relsB);
113 
114   bool equalsConstant(const InputSection *a, const InputSection *b);
115   bool equalsVariable(const InputSection *a, const InputSection *b);
116 
117   size_t findBoundary(size_t begin, size_t end);
118 
119   void forEachClassRange(size_t begin, size_t end,
120                          llvm::function_ref<void(size_t, size_t)> fn);
121 
122   void forEachClass(llvm::function_ref<void(size_t, size_t)> fn);
123 
124   Ctx &ctx;
125   SmallVector<InputSection *, 0> sections;
126 
127   // We repeat the main loop while `Repeat` is true.
128   std::atomic<bool> repeat;
129 
130   // The main loop counter.
131   int cnt = 0;
132 
133   // We have two locations for equivalence classes. On the first iteration
134   // of the main loop, Class[0] has a valid value, and Class[1] contains
135   // garbage. We read equivalence classes from slot 0 and write to slot 1.
136   // So, Class[0] represents the current class, and Class[1] represents
137   // the next class. On each iteration, we switch their roles and use them
138   // alternately.
139   //
140   // Why are we doing this? Recall that other threads may be working on
141   // other equivalence classes in parallel. They may read sections that we
142   // are updating. We cannot update equivalence classes in place because
143   // it breaks the invariance that all possibly-identical sections must be
144   // in the same equivalence class at any moment. In other words, the for
145   // loop to update equivalence classes is not atomic, and that is
146   // observable from other threads. By writing new classes to other
147   // places, we can keep the invariance.
148   //
149   // Below, `Current` has the index of the current class, and `Next` has
150   // the index of the next class. If threading is enabled, they are either
151   // (0, 1) or (1, 0).
152   //
153   // Note on single-thread: if that's the case, they are always (0, 0)
154   // because we can safely read the next class without worrying about race
155   // conditions. Using the same location makes this algorithm converge
156   // faster because it uses results of the same iteration earlier.
157   int current = 0;
158   int next = 0;
159 };
160 }
161 
162 // Returns true if section S is subject of ICF.
163 static bool isEligible(InputSection *s) {
164   if (!s->isLive() || s->keepUnique || !(s->flags & SHF_ALLOC))
165     return false;
166 
167   // Don't merge writable sections. .data.rel.ro sections are marked as writable
168   // but are semantically read-only.
169   if ((s->flags & SHF_WRITE) && s->name != ".data.rel.ro" &&
170       !s->name.starts_with(".data.rel.ro."))
171     return false;
172 
173   // SHF_LINK_ORDER sections are ICF'd as a unit with their dependent sections,
174   // so we don't consider them for ICF individually.
175   if (s->flags & SHF_LINK_ORDER)
176     return false;
177 
178   // Don't merge synthetic sections as their Data member is not valid and empty.
179   // The Data member needs to be valid for ICF as it is used by ICF to determine
180   // the equality of section contents.
181   if (isa<SyntheticSection>(s))
182     return false;
183 
184   // .init and .fini contains instructions that must be executed to initialize
185   // and finalize the process. They cannot and should not be merged.
186   if (s->name == ".init" || s->name == ".fini")
187     return false;
188 
189   // A user program may enumerate sections named with a C identifier using
190   // __start_* and __stop_* symbols. We cannot ICF any such sections because
191   // that could change program semantics.
192   if (isValidCIdentifier(s->name))
193     return false;
194 
195   return true;
196 }
197 
198 // Split an equivalence class into smaller classes.
199 template <class ELFT>
200 void ICF<ELFT>::segregate(size_t begin, size_t end, uint32_t eqClassBase,
201                           bool constant) {
202   // This loop rearranges sections in [Begin, End) so that all sections
203   // that are equal in terms of equals{Constant,Variable} are contiguous
204   // in [Begin, End).
205   //
206   // The algorithm is quadratic in the worst case, but that is not an
207   // issue in practice because the number of the distinct sections in
208   // each range is usually very small.
209 
210   while (begin < end) {
211     // Divide [Begin, End) into two. Let Mid be the start index of the
212     // second group.
213     auto bound =
214         std::stable_partition(sections.begin() + begin + 1,
215                               sections.begin() + end, [&](InputSection *s) {
216                                 if (constant)
217                                   return equalsConstant(sections[begin], s);
218                                 return equalsVariable(sections[begin], s);
219                               });
220     size_t mid = bound - sections.begin();
221 
222     // Now we split [Begin, End) into [Begin, Mid) and [Mid, End) by
223     // updating the sections in [Begin, Mid). We use Mid as the basis for
224     // the equivalence class ID because every group ends with a unique index.
225     // Add this to eqClassBase to avoid equality with unique IDs.
226     for (size_t i = begin; i < mid; ++i)
227       sections[i]->eqClass[next] = eqClassBase + mid;
228 
229     // If we created a group, we need to iterate the main loop again.
230     if (mid != end)
231       repeat = true;
232 
233     begin = mid;
234   }
235 }
236 
237 // Compare two lists of relocations.
238 template <class ELFT>
239 template <class RelTy>
240 bool ICF<ELFT>::constantEq(const InputSection *secA, Relocs<RelTy> ra,
241                            const InputSection *secB, Relocs<RelTy> rb) {
242   if (ra.size() != rb.size())
243     return false;
244   auto rai = ra.begin(), rae = ra.end(), rbi = rb.begin();
245   for (; rai != rae; ++rai, ++rbi) {
246     if (rai->r_offset != rbi->r_offset ||
247         rai->getType(ctx.arg.isMips64EL) != rbi->getType(ctx.arg.isMips64EL))
248       return false;
249 
250     uint64_t addA = getAddend<ELFT>(*rai);
251     uint64_t addB = getAddend<ELFT>(*rbi);
252 
253     Symbol &sa = secA->file->getRelocTargetSym(*rai);
254     Symbol &sb = secB->file->getRelocTargetSym(*rbi);
255     if (&sa == &sb) {
256       if (addA == addB)
257         continue;
258       return false;
259     }
260 
261     auto *da = dyn_cast<Defined>(&sa);
262     auto *db = dyn_cast<Defined>(&sb);
263 
264     // Placeholder symbols generated by linker scripts look the same now but
265     // may have different values later.
266     if (!da || !db || da->scriptDefined || db->scriptDefined)
267       return false;
268 
269     // When comparing a pair of relocations, if they refer to different symbols,
270     // and either symbol is preemptible, the containing sections should be
271     // considered different. This is because even if the sections are identical
272     // in this DSO, they may not be after preemption.
273     if (da->isPreemptible || db->isPreemptible)
274       return false;
275 
276     // Relocations referring to absolute symbols are constant-equal if their
277     // values are equal.
278     if (!da->section && !db->section && da->value + addA == db->value + addB)
279       continue;
280     if (!da->section || !db->section)
281       return false;
282 
283     if (da->section->kind() != db->section->kind())
284       return false;
285 
286     // Relocations referring to InputSections are constant-equal if their
287     // section offsets are equal.
288     if (isa<InputSection>(da->section)) {
289       if (da->value + addA == db->value + addB)
290         continue;
291       return false;
292     }
293 
294     // Relocations referring to MergeInputSections are constant-equal if their
295     // offsets in the output section are equal.
296     auto *x = dyn_cast<MergeInputSection>(da->section);
297     if (!x)
298       return false;
299     auto *y = cast<MergeInputSection>(db->section);
300     if (x->getParent() != y->getParent())
301       return false;
302 
303     uint64_t offsetA =
304         sa.isSection() ? x->getOffset(addA) : x->getOffset(da->value) + addA;
305     uint64_t offsetB =
306         sb.isSection() ? y->getOffset(addB) : y->getOffset(db->value) + addB;
307     if (offsetA != offsetB)
308       return false;
309   }
310 
311   return true;
312 }
313 
314 // Compare "non-moving" part of two InputSections, namely everything
315 // except relocation targets.
316 template <class ELFT>
317 bool ICF<ELFT>::equalsConstant(const InputSection *a, const InputSection *b) {
318   if (a->flags != b->flags || a->getSize() != b->getSize() ||
319       a->content() != b->content())
320     return false;
321 
322   // If two sections have different output sections, we cannot merge them.
323   assert(a->getParent() && b->getParent());
324   if (a->getParent() != b->getParent())
325     return false;
326 
327   const RelsOrRelas<ELFT> ra = a->template relsOrRelas<ELFT>();
328   const RelsOrRelas<ELFT> rb = b->template relsOrRelas<ELFT>();
329   if (ra.areRelocsCrel() || rb.areRelocsCrel())
330     return constantEq(a, ra.crels, b, rb.crels);
331   return ra.areRelocsRel() || rb.areRelocsRel()
332              ? constantEq(a, ra.rels, b, rb.rels)
333              : constantEq(a, ra.relas, b, rb.relas);
334 }
335 
336 // Compare two lists of relocations. Returns true if all pairs of
337 // relocations point to the same section in terms of ICF.
338 template <class ELFT>
339 template <class RelTy>
340 bool ICF<ELFT>::variableEq(const InputSection *secA, Relocs<RelTy> ra,
341                            const InputSection *secB, Relocs<RelTy> rb) {
342   assert(ra.size() == rb.size());
343 
344   auto rai = ra.begin(), rae = ra.end(), rbi = rb.begin();
345   for (; rai != rae; ++rai, ++rbi) {
346     // The two sections must be identical.
347     Symbol &sa = secA->file->getRelocTargetSym(*rai);
348     Symbol &sb = secB->file->getRelocTargetSym(*rbi);
349     if (&sa == &sb)
350       continue;
351 
352     auto *da = cast<Defined>(&sa);
353     auto *db = cast<Defined>(&sb);
354 
355     // We already dealt with absolute and non-InputSection symbols in
356     // constantEq, and for InputSections we have already checked everything
357     // except the equivalence class.
358     if (!da->section)
359       continue;
360     auto *x = dyn_cast<InputSection>(da->section);
361     if (!x)
362       continue;
363     auto *y = cast<InputSection>(db->section);
364 
365     // Sections that are in the special equivalence class 0, can never be the
366     // same in terms of the equivalence class.
367     if (x->eqClass[current] == 0)
368       return false;
369     if (x->eqClass[current] != y->eqClass[current])
370       return false;
371   };
372 
373   return true;
374 }
375 
376 // Compare "moving" part of two InputSections, namely relocation targets.
377 template <class ELFT>
378 bool ICF<ELFT>::equalsVariable(const InputSection *a, const InputSection *b) {
379   const RelsOrRelas<ELFT> ra = a->template relsOrRelas<ELFT>();
380   const RelsOrRelas<ELFT> rb = b->template relsOrRelas<ELFT>();
381   if (ra.areRelocsCrel() || rb.areRelocsCrel())
382     return variableEq(a, ra.crels, b, rb.crels);
383   return ra.areRelocsRel() || rb.areRelocsRel()
384              ? variableEq(a, ra.rels, b, rb.rels)
385              : variableEq(a, ra.relas, b, rb.relas);
386 }
387 
388 template <class ELFT> size_t ICF<ELFT>::findBoundary(size_t begin, size_t end) {
389   uint32_t eqClass = sections[begin]->eqClass[current];
390   for (size_t i = begin + 1; i < end; ++i)
391     if (eqClass != sections[i]->eqClass[current])
392       return i;
393   return end;
394 }
395 
396 // Sections in the same equivalence class are contiguous in Sections
397 // vector. Therefore, Sections vector can be considered as contiguous
398 // groups of sections, grouped by the class.
399 //
400 // This function calls Fn on every group within [Begin, End).
401 template <class ELFT>
402 void ICF<ELFT>::forEachClassRange(size_t begin, size_t end,
403                                   llvm::function_ref<void(size_t, size_t)> fn) {
404   while (begin < end) {
405     size_t mid = findBoundary(begin, end);
406     fn(begin, mid);
407     begin = mid;
408   }
409 }
410 
411 // Call Fn on each equivalence class.
412 template <class ELFT>
413 void ICF<ELFT>::forEachClass(llvm::function_ref<void(size_t, size_t)> fn) {
414   // If threading is disabled or the number of sections are
415   // too small to use threading, call Fn sequentially.
416   if (parallel::strategy.ThreadsRequested == 1 || sections.size() < 1024) {
417     forEachClassRange(0, sections.size(), fn);
418     ++cnt;
419     return;
420   }
421 
422   current = cnt % 2;
423   next = (cnt + 1) % 2;
424 
425   // Shard into non-overlapping intervals, and call Fn in parallel.
426   // The sharding must be completed before any calls to Fn are made
427   // so that Fn can modify the Chunks in its shard without causing data
428   // races.
429   const size_t numShards = 256;
430   size_t step = sections.size() / numShards;
431   size_t boundaries[numShards + 1];
432   boundaries[0] = 0;
433   boundaries[numShards] = sections.size();
434 
435   parallelFor(1, numShards, [&](size_t i) {
436     boundaries[i] = findBoundary((i - 1) * step, sections.size());
437   });
438 
439   parallelFor(1, numShards + 1, [&](size_t i) {
440     if (boundaries[i - 1] < boundaries[i])
441       forEachClassRange(boundaries[i - 1], boundaries[i], fn);
442   });
443   ++cnt;
444 }
445 
446 // Combine the hashes of the sections referenced by the given section into its
447 // hash.
448 template <class RelTy>
449 static void combineRelocHashes(unsigned cnt, InputSection *isec,
450                                Relocs<RelTy> rels) {
451   uint32_t hash = isec->eqClass[cnt % 2];
452   for (RelTy rel : rels) {
453     Symbol &s = isec->file->getRelocTargetSym(rel);
454     if (auto *d = dyn_cast<Defined>(&s))
455       if (auto *relSec = dyn_cast_or_null<InputSection>(d->section))
456         hash += relSec->eqClass[cnt % 2];
457   }
458   // Set MSB to 1 to avoid collisions with unique IDs.
459   isec->eqClass[(cnt + 1) % 2] = hash | (1U << 31);
460 }
461 
462 // The main function of ICF.
463 template <class ELFT> void ICF<ELFT>::run() {
464   // Two text sections may have identical content and relocations but different
465   // LSDA, e.g. the two functions may have catch blocks of different types. If a
466   // text section is referenced by a .eh_frame FDE with LSDA, it is not
467   // eligible. This is implemented by iterating over CIE/FDE and setting
468   // eqClass[0] to the referenced text section from a live FDE.
469   //
470   // If two .gcc_except_table have identical semantics (usually identical
471   // content with PC-relative encoding), we will lose folding opportunity.
472   uint32_t uniqueId = 0;
473   for (Partition &part : ctx.partitions)
474     part.ehFrame->iterateFDEWithLSDA<ELFT>(
475         [&](InputSection &s) { s.eqClass[0] = s.eqClass[1] = ++uniqueId; });
476 
477   // Collect sections to merge.
478   for (InputSectionBase *sec : ctx.inputSections) {
479     auto *s = dyn_cast<InputSection>(sec);
480     if (s && s->eqClass[0] == 0) {
481       if (isEligible(s))
482         sections.push_back(s);
483       else
484         // Ineligible sections are assigned unique IDs, i.e. each section
485         // belongs to an equivalence class of its own.
486         s->eqClass[0] = s->eqClass[1] = ++uniqueId;
487     }
488   }
489 
490   // Initially, we use hash values to partition sections.
491   parallelForEach(sections, [&](InputSection *s) {
492     // Set MSB to 1 to avoid collisions with unique IDs.
493     s->eqClass[0] = xxh3_64bits(s->content()) | (1U << 31);
494   });
495 
496   // Perform 2 rounds of relocation hash propagation. 2 is an empirical value to
497   // reduce the average sizes of equivalence classes, i.e. segregate() which has
498   // a large time complexity will have less work to do.
499   for (unsigned cnt = 0; cnt != 2; ++cnt) {
500     parallelForEach(sections, [&](InputSection *s) {
501       const RelsOrRelas<ELFT> rels = s->template relsOrRelas<ELFT>();
502       if (rels.areRelocsCrel())
503         combineRelocHashes(cnt, s, rels.crels);
504       else if (rels.areRelocsRel())
505         combineRelocHashes(cnt, s, rels.rels);
506       else
507         combineRelocHashes(cnt, s, rels.relas);
508     });
509   }
510 
511   // From now on, sections in Sections vector are ordered so that sections
512   // in the same equivalence class are consecutive in the vector.
513   llvm::stable_sort(sections, [](const InputSection *a, const InputSection *b) {
514     return a->eqClass[0] < b->eqClass[0];
515   });
516 
517   // Compare static contents and assign unique equivalence class IDs for each
518   // static content. Use a base offset for these IDs to ensure no overlap with
519   // the unique IDs already assigned.
520   uint32_t eqClassBase = ++uniqueId;
521   forEachClass([&](size_t begin, size_t end) {
522     segregate(begin, end, eqClassBase, true);
523   });
524 
525   // Split groups by comparing relocations until convergence is obtained.
526   do {
527     repeat = false;
528     forEachClass([&](size_t begin, size_t end) {
529       segregate(begin, end, eqClassBase, false);
530     });
531   } while (repeat);
532 
533   Log(ctx) << "ICF needed " << cnt << " iterations";
534 
535   auto print = [&ctx = ctx]() -> ELFSyncStream {
536     return {ctx, ctx.arg.printIcfSections ? DiagLevel::Msg : DiagLevel::None};
537   };
538   // Merge sections by the equivalence class.
539   forEachClassRange(0, sections.size(), [&](size_t begin, size_t end) {
540     if (end - begin == 1)
541       return;
542     print() << "selected section " << sections[begin];
543     for (size_t i = begin + 1; i < end; ++i) {
544       print() << "  removing identical section " << sections[i];
545       sections[begin]->replace(sections[i]);
546 
547       // At this point we know sections merged are fully identical and hence
548       // we want to remove duplicate implicit dependencies such as link order
549       // and relocation sections.
550       for (InputSection *isec : sections[i]->dependentSections)
551         isec->markDead();
552     }
553   });
554 
555   // Change Defined symbol's section field to the canonical one.
556   auto fold = [](Symbol *sym) {
557     if (auto *d = dyn_cast<Defined>(sym))
558       if (auto *sec = dyn_cast_or_null<InputSection>(d->section))
559         if (sec->repl != d->section) {
560           d->section = sec->repl;
561           d->folded = true;
562         }
563   };
564   for (Symbol *sym : ctx.symtab->getSymbols())
565     fold(sym);
566   parallelForEach(ctx.objectFiles, [&](ELFFileBase *file) {
567     for (Symbol *sym : file->getLocalSymbols())
568       fold(sym);
569   });
570 
571   // InputSectionDescription::sections is populated by processSectionCommands().
572   // ICF may fold some input sections assigned to output sections. Remove them.
573   for (SectionCommand *cmd : ctx.script->sectionCommands)
574     if (auto *osd = dyn_cast<OutputDesc>(cmd))
575       for (SectionCommand *subCmd : osd->osec.commands)
576         if (auto *isd = dyn_cast<InputSectionDescription>(subCmd))
577           llvm::erase_if(isd->sections,
578                          [](InputSection *isec) { return !isec->isLive(); });
579 }
580 
581 // ICF entry point function.
582 template <class ELFT> void elf::doIcf(Ctx &ctx) {
583   llvm::TimeTraceScope timeScope("ICF");
584   ICF<ELFT>(ctx).run();
585 }
586 
587 template void elf::doIcf<ELF32LE>(Ctx &);
588 template void elf::doIcf<ELF32BE>(Ctx &);
589 template void elf::doIcf<ELF64LE>(Ctx &);
590 template void elf::doIcf<ELF64BE>(Ctx &);
591