xref: /dpdk/lib/mempool/rte_mempool.c (revision f93b1d82b414fe7c81aa6fc9a69778b3298831bb)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation.
3  * Copyright(c) 2016 6WIND S.A.
4  * Copyright(c) 2022 SmartShare Systems
5  */
6 
7 #include <stdbool.h>
8 #include <stdlib.h>
9 #include <stdio.h>
10 #include <string.h>
11 #include <stdint.h>
12 #include <unistd.h>
13 #include <inttypes.h>
14 #include <errno.h>
15 #include <sys/queue.h>
16 
17 #include <rte_common.h>
18 #include <rte_log.h>
19 #include <rte_debug.h>
20 #include <rte_memory.h>
21 #include <rte_memzone.h>
22 #include <rte_malloc.h>
23 #include <rte_eal.h>
24 #include <rte_eal_memconfig.h>
25 #include <rte_errno.h>
26 #include <rte_string_fns.h>
27 #include <rte_tailq.h>
28 #include <rte_eal_paging.h>
29 #include <rte_telemetry.h>
30 
31 #include "mempool_trace.h"
32 #include "rte_mempool.h"
33 
34 RTE_LOG_REGISTER_DEFAULT(rte_mempool_logtype, INFO);
35 
36 TAILQ_HEAD(rte_mempool_list, rte_tailq_entry);
37 
38 static struct rte_tailq_elem rte_mempool_tailq = {
39 	.name = "RTE_MEMPOOL",
40 };
41 EAL_REGISTER_TAILQ(rte_mempool_tailq)
42 
43 TAILQ_HEAD(mempool_callback_tailq, mempool_callback_data);
44 
45 static struct mempool_callback_tailq callback_tailq =
46 		TAILQ_HEAD_INITIALIZER(callback_tailq);
47 
48 /* Invoke all registered mempool event callbacks. */
49 static void
50 mempool_event_callback_invoke(enum rte_mempool_event event,
51 			      struct rte_mempool *mp);
52 
53 /* Note: avoid using floating point since that compiler
54  * may not think that is constant.
55  */
56 #define CALC_CACHE_FLUSHTHRESH(c) (((c) * 3) / 2)
57 
58 #if defined(RTE_ARCH_X86)
59 /*
60  * return the greatest common divisor between a and b (fast algorithm)
61  */
get_gcd(unsigned a,unsigned b)62 static unsigned get_gcd(unsigned a, unsigned b)
63 {
64 	unsigned c;
65 
66 	if (0 == a)
67 		return b;
68 	if (0 == b)
69 		return a;
70 
71 	if (a < b) {
72 		c = a;
73 		a = b;
74 		b = c;
75 	}
76 
77 	while (b != 0) {
78 		c = a % b;
79 		a = b;
80 		b = c;
81 	}
82 
83 	return a;
84 }
85 
86 /*
87  * Depending on memory configuration on x86 arch, objects addresses are spread
88  * between channels and ranks in RAM: the pool allocator will add
89  * padding between objects. This function return the new size of the
90  * object.
91  */
92 static unsigned int
arch_mem_object_align(unsigned int obj_size)93 arch_mem_object_align(unsigned int obj_size)
94 {
95 	unsigned nrank, nchan;
96 	unsigned new_obj_size;
97 
98 	/* get number of channels */
99 	nchan = rte_memory_get_nchannel();
100 	if (nchan == 0)
101 		nchan = 4;
102 
103 	nrank = rte_memory_get_nrank();
104 	if (nrank == 0)
105 		nrank = 1;
106 
107 	/* process new object size */
108 	new_obj_size = (obj_size + RTE_MEMPOOL_ALIGN_MASK) / RTE_MEMPOOL_ALIGN;
109 	while (get_gcd(new_obj_size, nrank * nchan) != 1)
110 		new_obj_size++;
111 	return new_obj_size * RTE_MEMPOOL_ALIGN;
112 }
113 #else
114 static unsigned int
arch_mem_object_align(unsigned int obj_size)115 arch_mem_object_align(unsigned int obj_size)
116 {
117 	return obj_size;
118 }
119 #endif
120 
121 struct pagesz_walk_arg {
122 	int socket_id;
123 	size_t min;
124 };
125 
126 static int
find_min_pagesz(const struct rte_memseg_list * msl,void * arg)127 find_min_pagesz(const struct rte_memseg_list *msl, void *arg)
128 {
129 	struct pagesz_walk_arg *wa = arg;
130 	bool valid;
131 
132 	/*
133 	 * we need to only look at page sizes available for a particular socket
134 	 * ID.  so, we either need an exact match on socket ID (can match both
135 	 * native and external memory), or, if SOCKET_ID_ANY was specified as a
136 	 * socket ID argument, we must only look at native memory and ignore any
137 	 * page sizes associated with external memory.
138 	 */
139 	valid = msl->socket_id == wa->socket_id;
140 	valid |= wa->socket_id == SOCKET_ID_ANY && msl->external == 0;
141 
142 	if (valid && msl->page_sz < wa->min)
143 		wa->min = msl->page_sz;
144 
145 	return 0;
146 }
147 
148 static size_t
get_min_page_size(int socket_id)149 get_min_page_size(int socket_id)
150 {
151 	struct pagesz_walk_arg wa;
152 
153 	wa.min = SIZE_MAX;
154 	wa.socket_id = socket_id;
155 
156 	rte_memseg_list_walk(find_min_pagesz, &wa);
157 
158 	return wa.min == SIZE_MAX ? (size_t) rte_mem_page_size() : wa.min;
159 }
160 
161 
162 static void
mempool_add_elem(struct rte_mempool * mp,__rte_unused void * opaque,void * obj,rte_iova_t iova)163 mempool_add_elem(struct rte_mempool *mp, __rte_unused void *opaque,
164 		 void *obj, rte_iova_t iova)
165 {
166 	struct rte_mempool_objhdr *hdr;
167 
168 	/* set mempool ptr in header */
169 	hdr = RTE_PTR_SUB(obj, sizeof(*hdr));
170 	hdr->mp = mp;
171 	hdr->iova = iova;
172 	STAILQ_INSERT_TAIL(&mp->elt_list, hdr, next);
173 	mp->populated_size++;
174 
175 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
176 	hdr->cookie = RTE_MEMPOOL_HEADER_COOKIE2;
177 	rte_mempool_get_trailer(obj)->cookie = RTE_MEMPOOL_TRAILER_COOKIE;
178 #endif
179 }
180 
181 /* call obj_cb() for each mempool element */
182 uint32_t
rte_mempool_obj_iter(struct rte_mempool * mp,rte_mempool_obj_cb_t * obj_cb,void * obj_cb_arg)183 rte_mempool_obj_iter(struct rte_mempool *mp,
184 	rte_mempool_obj_cb_t *obj_cb, void *obj_cb_arg)
185 {
186 	struct rte_mempool_objhdr *hdr;
187 	void *obj;
188 	unsigned n = 0;
189 
190 	STAILQ_FOREACH(hdr, &mp->elt_list, next) {
191 		obj = (char *)hdr + sizeof(*hdr);
192 		obj_cb(mp, obj_cb_arg, obj, n);
193 		n++;
194 	}
195 
196 	return n;
197 }
198 
199 /* call mem_cb() for each mempool memory chunk */
200 uint32_t
rte_mempool_mem_iter(struct rte_mempool * mp,rte_mempool_mem_cb_t * mem_cb,void * mem_cb_arg)201 rte_mempool_mem_iter(struct rte_mempool *mp,
202 	rte_mempool_mem_cb_t *mem_cb, void *mem_cb_arg)
203 {
204 	struct rte_mempool_memhdr *hdr;
205 	unsigned n = 0;
206 
207 	STAILQ_FOREACH(hdr, &mp->mem_list, next) {
208 		mem_cb(mp, mem_cb_arg, hdr, n);
209 		n++;
210 	}
211 
212 	return n;
213 }
214 
215 /* get the header, trailer and total size of a mempool element. */
216 uint32_t
rte_mempool_calc_obj_size(uint32_t elt_size,uint32_t flags,struct rte_mempool_objsz * sz)217 rte_mempool_calc_obj_size(uint32_t elt_size, uint32_t flags,
218 	struct rte_mempool_objsz *sz)
219 {
220 	struct rte_mempool_objsz lsz;
221 
222 	sz = (sz != NULL) ? sz : &lsz;
223 
224 	sz->header_size = sizeof(struct rte_mempool_objhdr);
225 	if ((flags & RTE_MEMPOOL_F_NO_CACHE_ALIGN) == 0)
226 		sz->header_size = RTE_ALIGN_CEIL(sz->header_size,
227 			RTE_MEMPOOL_ALIGN);
228 
229 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
230 	sz->trailer_size = sizeof(struct rte_mempool_objtlr);
231 #else
232 	sz->trailer_size = 0;
233 #endif
234 
235 	/* element size is 8 bytes-aligned at least */
236 	sz->elt_size = RTE_ALIGN_CEIL(elt_size, sizeof(uint64_t));
237 
238 	/* expand trailer to next cache line */
239 	if ((flags & RTE_MEMPOOL_F_NO_CACHE_ALIGN) == 0) {
240 		sz->total_size = sz->header_size + sz->elt_size +
241 			sz->trailer_size;
242 		sz->trailer_size += ((RTE_MEMPOOL_ALIGN -
243 				  (sz->total_size & RTE_MEMPOOL_ALIGN_MASK)) &
244 				 RTE_MEMPOOL_ALIGN_MASK);
245 	}
246 
247 	/*
248 	 * increase trailer to add padding between objects in order to
249 	 * spread them across memory channels/ranks
250 	 */
251 	if ((flags & RTE_MEMPOOL_F_NO_SPREAD) == 0) {
252 		unsigned new_size;
253 		new_size = arch_mem_object_align
254 			    (sz->header_size + sz->elt_size + sz->trailer_size);
255 		sz->trailer_size = new_size - sz->header_size - sz->elt_size;
256 	}
257 
258 	/* this is the size of an object, including header and trailer */
259 	sz->total_size = sz->header_size + sz->elt_size + sz->trailer_size;
260 
261 	return sz->total_size;
262 }
263 
264 /* free a memchunk allocated with rte_memzone_reserve() */
265 static void
rte_mempool_memchunk_mz_free(__rte_unused struct rte_mempool_memhdr * memhdr,void * opaque)266 rte_mempool_memchunk_mz_free(__rte_unused struct rte_mempool_memhdr *memhdr,
267 	void *opaque)
268 {
269 	const struct rte_memzone *mz = opaque;
270 	rte_memzone_free(mz);
271 }
272 
273 /* Free memory chunks used by a mempool. Objects must be in pool */
274 static void
rte_mempool_free_memchunks(struct rte_mempool * mp)275 rte_mempool_free_memchunks(struct rte_mempool *mp)
276 {
277 	struct rte_mempool_memhdr *memhdr;
278 	void *elt;
279 
280 	while (!STAILQ_EMPTY(&mp->elt_list)) {
281 		rte_mempool_ops_dequeue_bulk(mp, &elt, 1);
282 		(void)elt;
283 		STAILQ_REMOVE_HEAD(&mp->elt_list, next);
284 		mp->populated_size--;
285 	}
286 
287 	while (!STAILQ_EMPTY(&mp->mem_list)) {
288 		memhdr = STAILQ_FIRST(&mp->mem_list);
289 		STAILQ_REMOVE_HEAD(&mp->mem_list, next);
290 		if (memhdr->free_cb != NULL)
291 			memhdr->free_cb(memhdr, memhdr->opaque);
292 		rte_free(memhdr);
293 		mp->nb_mem_chunks--;
294 	}
295 }
296 
297 static int
mempool_ops_alloc_once(struct rte_mempool * mp)298 mempool_ops_alloc_once(struct rte_mempool *mp)
299 {
300 	int ret;
301 
302 	/* create the internal ring if not already done */
303 	if ((mp->flags & RTE_MEMPOOL_F_POOL_CREATED) == 0) {
304 		ret = rte_mempool_ops_alloc(mp);
305 		if (ret != 0)
306 			return ret;
307 		mp->flags |= RTE_MEMPOOL_F_POOL_CREATED;
308 	}
309 	return 0;
310 }
311 
312 /* Add objects in the pool, using a physically contiguous memory
313  * zone. Return the number of objects added, or a negative value
314  * on error.
315  */
316 int
rte_mempool_populate_iova(struct rte_mempool * mp,char * vaddr,rte_iova_t iova,size_t len,rte_mempool_memchunk_free_cb_t * free_cb,void * opaque)317 rte_mempool_populate_iova(struct rte_mempool *mp, char *vaddr,
318 	rte_iova_t iova, size_t len, rte_mempool_memchunk_free_cb_t *free_cb,
319 	void *opaque)
320 {
321 	unsigned i = 0;
322 	size_t off;
323 	struct rte_mempool_memhdr *memhdr;
324 	int ret;
325 
326 	ret = mempool_ops_alloc_once(mp);
327 	if (ret != 0)
328 		return ret;
329 
330 	/* mempool is already populated */
331 	if (mp->populated_size >= mp->size)
332 		return -ENOSPC;
333 
334 	memhdr = rte_zmalloc("MEMPOOL_MEMHDR", sizeof(*memhdr), 0);
335 	if (memhdr == NULL)
336 		return -ENOMEM;
337 
338 	memhdr->mp = mp;
339 	memhdr->addr = vaddr;
340 	memhdr->iova = iova;
341 	memhdr->len = len;
342 	memhdr->free_cb = free_cb;
343 	memhdr->opaque = opaque;
344 
345 	if (mp->flags & RTE_MEMPOOL_F_NO_CACHE_ALIGN)
346 		off = RTE_PTR_ALIGN_CEIL(vaddr, 8) - vaddr;
347 	else
348 		off = RTE_PTR_ALIGN_CEIL(vaddr, RTE_MEMPOOL_ALIGN) - vaddr;
349 
350 	if (off > len) {
351 		ret = 0;
352 		goto fail;
353 	}
354 
355 	i = rte_mempool_ops_populate(mp, mp->size - mp->populated_size,
356 		(char *)vaddr + off,
357 		(iova == RTE_BAD_IOVA) ? RTE_BAD_IOVA : (iova + off),
358 		len - off, mempool_add_elem, NULL);
359 
360 	/* not enough room to store one object */
361 	if (i == 0) {
362 		ret = 0;
363 		goto fail;
364 	}
365 
366 	STAILQ_INSERT_TAIL(&mp->mem_list, memhdr, next);
367 	mp->nb_mem_chunks++;
368 
369 	/* Check if at least some objects in the pool are now usable for IO. */
370 	if (!(mp->flags & RTE_MEMPOOL_F_NO_IOVA_CONTIG) && iova != RTE_BAD_IOVA)
371 		mp->flags &= ~RTE_MEMPOOL_F_NON_IO;
372 
373 	/* Report the mempool as ready only when fully populated. */
374 	if (mp->populated_size >= mp->size)
375 		mempool_event_callback_invoke(RTE_MEMPOOL_EVENT_READY, mp);
376 
377 	rte_mempool_trace_populate_iova(mp, vaddr, iova, len, free_cb, opaque);
378 	return i;
379 
380 fail:
381 	rte_free(memhdr);
382 	return ret;
383 }
384 
385 static rte_iova_t
get_iova(void * addr)386 get_iova(void *addr)
387 {
388 	struct rte_memseg *ms;
389 
390 	/* try registered memory first */
391 	ms = rte_mem_virt2memseg(addr, NULL);
392 	if (ms == NULL || ms->iova == RTE_BAD_IOVA)
393 		/* fall back to actual physical address */
394 		return rte_mem_virt2iova(addr);
395 	return ms->iova + RTE_PTR_DIFF(addr, ms->addr);
396 }
397 
398 /* Populate the mempool with a virtual area. Return the number of
399  * objects added, or a negative value on error.
400  */
401 int
rte_mempool_populate_virt(struct rte_mempool * mp,char * addr,size_t len,size_t pg_sz,rte_mempool_memchunk_free_cb_t * free_cb,void * opaque)402 rte_mempool_populate_virt(struct rte_mempool *mp, char *addr,
403 	size_t len, size_t pg_sz, rte_mempool_memchunk_free_cb_t *free_cb,
404 	void *opaque)
405 {
406 	rte_iova_t iova;
407 	size_t off, phys_len;
408 	int ret, cnt = 0;
409 
410 	if (mp->flags & RTE_MEMPOOL_F_NO_IOVA_CONTIG)
411 		return rte_mempool_populate_iova(mp, addr, RTE_BAD_IOVA,
412 			len, free_cb, opaque);
413 
414 	for (off = 0; off < len &&
415 		     mp->populated_size < mp->size; off += phys_len) {
416 
417 		iova = get_iova(addr + off);
418 
419 		/* populate with the largest group of contiguous pages */
420 		for (phys_len = RTE_MIN(
421 			(size_t)(RTE_PTR_ALIGN_CEIL(addr + off + 1, pg_sz) -
422 				(addr + off)),
423 			len - off);
424 		     off + phys_len < len;
425 		     phys_len = RTE_MIN(phys_len + pg_sz, len - off)) {
426 			rte_iova_t iova_tmp;
427 
428 			iova_tmp = get_iova(addr + off + phys_len);
429 
430 			if (iova_tmp == RTE_BAD_IOVA ||
431 					iova_tmp != iova + phys_len)
432 				break;
433 		}
434 
435 		ret = rte_mempool_populate_iova(mp, addr + off, iova,
436 			phys_len, free_cb, opaque);
437 		if (ret == 0)
438 			continue;
439 		if (ret < 0)
440 			goto fail;
441 		/* no need to call the free callback for next chunks */
442 		free_cb = NULL;
443 		cnt += ret;
444 	}
445 
446 	rte_mempool_trace_populate_virt(mp, addr, len, pg_sz, free_cb, opaque);
447 	return cnt;
448 
449  fail:
450 	rte_mempool_free_memchunks(mp);
451 	return ret;
452 }
453 
454 /* Get the minimal page size used in a mempool before populating it. */
455 int
rte_mempool_get_page_size(struct rte_mempool * mp,size_t * pg_sz)456 rte_mempool_get_page_size(struct rte_mempool *mp, size_t *pg_sz)
457 {
458 	bool need_iova_contig_obj;
459 	bool alloc_in_ext_mem;
460 	int ret;
461 
462 	/* check if we can retrieve a valid socket ID */
463 	ret = rte_malloc_heap_socket_is_external(mp->socket_id);
464 	if (ret < 0)
465 		return -EINVAL;
466 	alloc_in_ext_mem = (ret == 1);
467 	need_iova_contig_obj = !(mp->flags & RTE_MEMPOOL_F_NO_IOVA_CONTIG);
468 
469 	if (!need_iova_contig_obj)
470 		*pg_sz = 0;
471 	else if (rte_eal_has_hugepages() || alloc_in_ext_mem)
472 		*pg_sz = get_min_page_size(mp->socket_id);
473 	else
474 		*pg_sz = rte_mem_page_size();
475 
476 	rte_mempool_trace_get_page_size(mp, *pg_sz);
477 	return 0;
478 }
479 
480 /* Default function to populate the mempool: allocate memory in memzones,
481  * and populate them. Return the number of objects added, or a negative
482  * value on error.
483  */
484 int
rte_mempool_populate_default(struct rte_mempool * mp)485 rte_mempool_populate_default(struct rte_mempool *mp)
486 {
487 	unsigned int mz_flags = RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY;
488 	char mz_name[RTE_MEMZONE_NAMESIZE];
489 	const struct rte_memzone *mz;
490 	ssize_t mem_size;
491 	size_t align, pg_sz, pg_shift = 0;
492 	rte_iova_t iova;
493 	unsigned mz_id, n;
494 	int ret;
495 	bool need_iova_contig_obj;
496 	size_t max_alloc_size = SIZE_MAX;
497 
498 	ret = mempool_ops_alloc_once(mp);
499 	if (ret != 0)
500 		return ret;
501 
502 	/* mempool must not be populated */
503 	if (mp->nb_mem_chunks != 0)
504 		return -EEXIST;
505 
506 	/*
507 	 * the following section calculates page shift and page size values.
508 	 *
509 	 * these values impact the result of calc_mem_size operation, which
510 	 * returns the amount of memory that should be allocated to store the
511 	 * desired number of objects. when not zero, it allocates more memory
512 	 * for the padding between objects, to ensure that an object does not
513 	 * cross a page boundary. in other words, page size/shift are to be set
514 	 * to zero if mempool elements won't care about page boundaries.
515 	 * there are several considerations for page size and page shift here.
516 	 *
517 	 * if we don't need our mempools to have physically contiguous objects,
518 	 * then just set page shift and page size to 0, because the user has
519 	 * indicated that there's no need to care about anything.
520 	 *
521 	 * if we do need contiguous objects (if a mempool driver has its
522 	 * own calc_size() method returning min_chunk_size = mem_size),
523 	 * there is also an option to reserve the entire mempool memory
524 	 * as one contiguous block of memory.
525 	 *
526 	 * if we require contiguous objects, but not necessarily the entire
527 	 * mempool reserved space to be contiguous, pg_sz will be != 0,
528 	 * and the default ops->populate() will take care of not placing
529 	 * objects across pages.
530 	 *
531 	 * if our IO addresses are physical, we may get memory from bigger
532 	 * pages, or we might get memory from smaller pages, and how much of it
533 	 * we require depends on whether we want bigger or smaller pages.
534 	 * However, requesting each and every memory size is too much work, so
535 	 * what we'll do instead is walk through the page sizes available, pick
536 	 * the smallest one and set up page shift to match that one. We will be
537 	 * wasting some space this way, but it's much nicer than looping around
538 	 * trying to reserve each and every page size.
539 	 *
540 	 * If we fail to get enough contiguous memory, then we'll go and
541 	 * reserve space in smaller chunks.
542 	 */
543 
544 	need_iova_contig_obj = !(mp->flags & RTE_MEMPOOL_F_NO_IOVA_CONTIG);
545 	ret = rte_mempool_get_page_size(mp, &pg_sz);
546 	if (ret < 0)
547 		return ret;
548 
549 	if (pg_sz != 0)
550 		pg_shift = rte_bsf32(pg_sz);
551 
552 	for (mz_id = 0, n = mp->size; n > 0; mz_id++, n -= ret) {
553 		size_t min_chunk_size;
554 
555 		mem_size = rte_mempool_ops_calc_mem_size(
556 			mp, n, pg_shift, &min_chunk_size, &align);
557 
558 		if (mem_size < 0) {
559 			ret = mem_size;
560 			goto fail;
561 		}
562 
563 		ret = snprintf(mz_name, sizeof(mz_name),
564 			RTE_MEMPOOL_MZ_FORMAT "_%d", mp->name, mz_id);
565 		if (ret < 0 || ret >= (int)sizeof(mz_name)) {
566 			ret = -ENAMETOOLONG;
567 			goto fail;
568 		}
569 
570 		/* if we're trying to reserve contiguous memory, add appropriate
571 		 * memzone flag.
572 		 */
573 		if (min_chunk_size == (size_t)mem_size)
574 			mz_flags |= RTE_MEMZONE_IOVA_CONTIG;
575 
576 		/* Allocate a memzone, retrying with a smaller area on ENOMEM */
577 		do {
578 			mz = rte_memzone_reserve_aligned(mz_name,
579 				RTE_MIN((size_t)mem_size, max_alloc_size),
580 				mp->socket_id, mz_flags, align);
581 
582 			if (mz != NULL || rte_errno != ENOMEM)
583 				break;
584 
585 			max_alloc_size = RTE_MIN(max_alloc_size,
586 						(size_t)mem_size) / 2;
587 		} while (mz == NULL && max_alloc_size >= min_chunk_size);
588 
589 		if (mz == NULL) {
590 			ret = -rte_errno;
591 			goto fail;
592 		}
593 
594 		if (need_iova_contig_obj)
595 			iova = mz->iova;
596 		else
597 			iova = RTE_BAD_IOVA;
598 
599 		if (pg_sz == 0 || (mz_flags & RTE_MEMZONE_IOVA_CONTIG))
600 			ret = rte_mempool_populate_iova(mp, mz->addr,
601 				iova, mz->len,
602 				rte_mempool_memchunk_mz_free,
603 				(void *)(uintptr_t)mz);
604 		else
605 			ret = rte_mempool_populate_virt(mp, mz->addr,
606 				mz->len, pg_sz,
607 				rte_mempool_memchunk_mz_free,
608 				(void *)(uintptr_t)mz);
609 		if (ret == 0) /* should not happen */
610 			ret = -ENOBUFS;
611 		if (ret < 0) {
612 			rte_memzone_free(mz);
613 			goto fail;
614 		}
615 	}
616 
617 	rte_mempool_trace_populate_default(mp);
618 	return mp->size;
619 
620  fail:
621 	rte_mempool_free_memchunks(mp);
622 	return ret;
623 }
624 
625 /* return the memory size required for mempool objects in anonymous mem */
626 static ssize_t
get_anon_size(const struct rte_mempool * mp)627 get_anon_size(const struct rte_mempool *mp)
628 {
629 	ssize_t size;
630 	size_t pg_sz, pg_shift;
631 	size_t min_chunk_size;
632 	size_t align;
633 
634 	pg_sz = rte_mem_page_size();
635 	pg_shift = rte_bsf32(pg_sz);
636 	size = rte_mempool_ops_calc_mem_size(mp, mp->size, pg_shift,
637 					     &min_chunk_size, &align);
638 
639 	return size;
640 }
641 
642 /* unmap a memory zone mapped by rte_mempool_populate_anon() */
643 static void
rte_mempool_memchunk_anon_free(struct rte_mempool_memhdr * memhdr,void * opaque)644 rte_mempool_memchunk_anon_free(struct rte_mempool_memhdr *memhdr,
645 	void *opaque)
646 {
647 	ssize_t size;
648 
649 	/*
650 	 * Calculate size since memhdr->len has contiguous chunk length
651 	 * which may be smaller if anon map is split into many contiguous
652 	 * chunks. Result must be the same as we calculated on populate.
653 	 */
654 	size = get_anon_size(memhdr->mp);
655 	if (size < 0)
656 		return;
657 
658 	rte_mem_unmap(opaque, size);
659 }
660 
661 /* populate the mempool with an anonymous mapping */
662 int
rte_mempool_populate_anon(struct rte_mempool * mp)663 rte_mempool_populate_anon(struct rte_mempool *mp)
664 {
665 	ssize_t size;
666 	int ret;
667 	char *addr;
668 
669 	/* mempool is already populated, error */
670 	if ((!STAILQ_EMPTY(&mp->mem_list)) || mp->nb_mem_chunks != 0) {
671 		rte_errno = EINVAL;
672 		return 0;
673 	}
674 
675 	ret = mempool_ops_alloc_once(mp);
676 	if (ret < 0) {
677 		rte_errno = -ret;
678 		return 0;
679 	}
680 
681 	size = get_anon_size(mp);
682 	if (size < 0) {
683 		rte_errno = -size;
684 		return 0;
685 	}
686 
687 	/* get chunk of virtually continuous memory */
688 	addr = rte_mem_map(NULL, size, RTE_PROT_READ | RTE_PROT_WRITE,
689 		RTE_MAP_SHARED | RTE_MAP_ANONYMOUS, -1, 0);
690 	if (addr == NULL)
691 		return 0;
692 	/* can't use MMAP_LOCKED, it does not exist on BSD */
693 	if (rte_mem_lock(addr, size) < 0) {
694 		rte_mem_unmap(addr, size);
695 		return 0;
696 	}
697 
698 	ret = rte_mempool_populate_virt(mp, addr, size, rte_mem_page_size(),
699 		rte_mempool_memchunk_anon_free, addr);
700 	if (ret == 0) /* should not happen */
701 		ret = -ENOBUFS;
702 	if (ret < 0) {
703 		rte_errno = -ret;
704 		goto fail;
705 	}
706 
707 	rte_mempool_trace_populate_anon(mp);
708 	return mp->populated_size;
709 
710  fail:
711 	rte_mempool_free_memchunks(mp);
712 	return 0;
713 }
714 
715 /* free a mempool */
716 void
rte_mempool_free(struct rte_mempool * mp)717 rte_mempool_free(struct rte_mempool *mp)
718 {
719 	struct rte_mempool_list *mempool_list = NULL;
720 	struct rte_tailq_entry *te;
721 
722 	if (mp == NULL)
723 		return;
724 
725 	mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
726 	rte_mcfg_tailq_write_lock();
727 	/* find out tailq entry */
728 	TAILQ_FOREACH(te, mempool_list, next) {
729 		if (te->data == (void *)mp)
730 			break;
731 	}
732 
733 	if (te != NULL) {
734 		TAILQ_REMOVE(mempool_list, te, next);
735 		rte_free(te);
736 	}
737 	rte_mcfg_tailq_write_unlock();
738 
739 	mempool_event_callback_invoke(RTE_MEMPOOL_EVENT_DESTROY, mp);
740 	rte_mempool_trace_free(mp);
741 	rte_mempool_free_memchunks(mp);
742 	rte_mempool_ops_free(mp);
743 	rte_memzone_free(mp->mz);
744 }
745 
746 static void
mempool_cache_init(struct rte_mempool_cache * cache,uint32_t size)747 mempool_cache_init(struct rte_mempool_cache *cache, uint32_t size)
748 {
749 	/* Check that cache have enough space for flush threshold */
750 	RTE_BUILD_BUG_ON(CALC_CACHE_FLUSHTHRESH(RTE_MEMPOOL_CACHE_MAX_SIZE) >
751 			 RTE_SIZEOF_FIELD(struct rte_mempool_cache, objs) /
752 			 RTE_SIZEOF_FIELD(struct rte_mempool_cache, objs[0]));
753 
754 	cache->size = size;
755 	cache->flushthresh = CALC_CACHE_FLUSHTHRESH(size);
756 	cache->len = 0;
757 }
758 
759 /*
760  * Create and initialize a cache for objects that are retrieved from and
761  * returned to an underlying mempool. This structure is identical to the
762  * local_cache[lcore_id] pointed to by the mempool structure.
763  */
764 struct rte_mempool_cache *
rte_mempool_cache_create(uint32_t size,int socket_id)765 rte_mempool_cache_create(uint32_t size, int socket_id)
766 {
767 	struct rte_mempool_cache *cache;
768 
769 	if (size == 0 || size > RTE_MEMPOOL_CACHE_MAX_SIZE) {
770 		rte_errno = EINVAL;
771 		return NULL;
772 	}
773 
774 	cache = rte_zmalloc_socket("MEMPOOL_CACHE", sizeof(*cache),
775 				  RTE_CACHE_LINE_SIZE, socket_id);
776 	if (cache == NULL) {
777 		RTE_MEMPOOL_LOG(ERR, "Cannot allocate mempool cache.");
778 		rte_errno = ENOMEM;
779 		return NULL;
780 	}
781 
782 	mempool_cache_init(cache, size);
783 
784 	rte_mempool_trace_cache_create(size, socket_id, cache);
785 	return cache;
786 }
787 
788 /*
789  * Free a cache. It's the responsibility of the user to make sure that any
790  * remaining objects in the cache are flushed to the corresponding
791  * mempool.
792  */
793 void
rte_mempool_cache_free(struct rte_mempool_cache * cache)794 rte_mempool_cache_free(struct rte_mempool_cache *cache)
795 {
796 	rte_mempool_trace_cache_free(cache);
797 	rte_free(cache);
798 }
799 
800 /* create an empty mempool */
801 struct rte_mempool *
rte_mempool_create_empty(const char * name,unsigned n,unsigned elt_size,unsigned cache_size,unsigned private_data_size,int socket_id,unsigned flags)802 rte_mempool_create_empty(const char *name, unsigned n, unsigned elt_size,
803 	unsigned cache_size, unsigned private_data_size,
804 	int socket_id, unsigned flags)
805 {
806 	char mz_name[RTE_MEMZONE_NAMESIZE];
807 	struct rte_mempool_list *mempool_list;
808 	struct rte_mempool *mp = NULL;
809 	struct rte_tailq_entry *te = NULL;
810 	const struct rte_memzone *mz = NULL;
811 	size_t mempool_size;
812 	unsigned int mz_flags = RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY;
813 	struct rte_mempool_objsz objsz;
814 	unsigned lcore_id;
815 	int ret;
816 
817 	/* compilation-time checks */
818 	RTE_BUILD_BUG_ON((sizeof(struct rte_mempool) &
819 			  RTE_CACHE_LINE_MASK) != 0);
820 	RTE_BUILD_BUG_ON((sizeof(struct rte_mempool_cache) &
821 			  RTE_CACHE_LINE_MASK) != 0);
822 #ifdef RTE_LIBRTE_MEMPOOL_STATS
823 	RTE_BUILD_BUG_ON((sizeof(struct rte_mempool_debug_stats) &
824 			  RTE_CACHE_LINE_MASK) != 0);
825 	RTE_BUILD_BUG_ON((offsetof(struct rte_mempool, stats) &
826 			  RTE_CACHE_LINE_MASK) != 0);
827 #endif
828 
829 	mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
830 
831 	/* asked for zero items */
832 	if (n == 0) {
833 		rte_errno = EINVAL;
834 		return NULL;
835 	}
836 
837 	/* asked cache too big */
838 	if (cache_size > RTE_MEMPOOL_CACHE_MAX_SIZE ||
839 	    CALC_CACHE_FLUSHTHRESH(cache_size) > n) {
840 		rte_errno = EINVAL;
841 		return NULL;
842 	}
843 
844 	/* enforce only user flags are passed by the application */
845 	if ((flags & ~RTE_MEMPOOL_VALID_USER_FLAGS) != 0) {
846 		rte_errno = EINVAL;
847 		return NULL;
848 	}
849 
850 	/*
851 	 * No objects in the pool can be used for IO until it's populated
852 	 * with at least some objects with valid IOVA.
853 	 */
854 	flags |= RTE_MEMPOOL_F_NON_IO;
855 
856 	/* "no cache align" imply "no spread" */
857 	if (flags & RTE_MEMPOOL_F_NO_CACHE_ALIGN)
858 		flags |= RTE_MEMPOOL_F_NO_SPREAD;
859 
860 	/* calculate mempool object sizes. */
861 	if (!rte_mempool_calc_obj_size(elt_size, flags, &objsz)) {
862 		rte_errno = EINVAL;
863 		return NULL;
864 	}
865 
866 	rte_mcfg_mempool_write_lock();
867 
868 	/*
869 	 * reserve a memory zone for this mempool: private data is
870 	 * cache-aligned
871 	 */
872 	private_data_size = (private_data_size +
873 			     RTE_MEMPOOL_ALIGN_MASK) & (~RTE_MEMPOOL_ALIGN_MASK);
874 
875 
876 	/* try to allocate tailq entry */
877 	te = rte_zmalloc("MEMPOOL_TAILQ_ENTRY", sizeof(*te), 0);
878 	if (te == NULL) {
879 		RTE_MEMPOOL_LOG(ERR, "Cannot allocate tailq entry!");
880 		goto exit_unlock;
881 	}
882 
883 	mempool_size = RTE_MEMPOOL_HEADER_SIZE(mp, cache_size);
884 	mempool_size += private_data_size;
885 	mempool_size = RTE_ALIGN_CEIL(mempool_size, RTE_MEMPOOL_ALIGN);
886 
887 	ret = snprintf(mz_name, sizeof(mz_name), RTE_MEMPOOL_MZ_FORMAT, name);
888 	if (ret < 0 || ret >= (int)sizeof(mz_name)) {
889 		rte_errno = ENAMETOOLONG;
890 		goto exit_unlock;
891 	}
892 
893 	mz = rte_memzone_reserve(mz_name, mempool_size, socket_id, mz_flags);
894 	if (mz == NULL)
895 		goto exit_unlock;
896 
897 	/* init the mempool structure */
898 	mp = mz->addr;
899 	memset(mp, 0, RTE_MEMPOOL_HEADER_SIZE(mp, cache_size));
900 	ret = strlcpy(mp->name, name, sizeof(mp->name));
901 	if (ret < 0 || ret >= (int)sizeof(mp->name)) {
902 		rte_errno = ENAMETOOLONG;
903 		goto exit_unlock;
904 	}
905 	mp->mz = mz;
906 	mp->size = n;
907 	mp->flags = flags;
908 	mp->socket_id = socket_id;
909 	mp->elt_size = objsz.elt_size;
910 	mp->header_size = objsz.header_size;
911 	mp->trailer_size = objsz.trailer_size;
912 	/* Size of default caches, zero means disabled. */
913 	mp->cache_size = cache_size;
914 	mp->private_data_size = private_data_size;
915 	STAILQ_INIT(&mp->elt_list);
916 	STAILQ_INIT(&mp->mem_list);
917 
918 	/*
919 	 * Since we have 4 combinations of the SP/SC/MP/MC examine the flags to
920 	 * set the correct index into the table of ops structs.
921 	 */
922 	if ((flags & RTE_MEMPOOL_F_SP_PUT) && (flags & RTE_MEMPOOL_F_SC_GET))
923 		ret = rte_mempool_set_ops_byname(mp, "ring_sp_sc", NULL);
924 	else if (flags & RTE_MEMPOOL_F_SP_PUT)
925 		ret = rte_mempool_set_ops_byname(mp, "ring_sp_mc", NULL);
926 	else if (flags & RTE_MEMPOOL_F_SC_GET)
927 		ret = rte_mempool_set_ops_byname(mp, "ring_mp_sc", NULL);
928 	else
929 		ret = rte_mempool_set_ops_byname(mp, "ring_mp_mc", NULL);
930 
931 	if (ret)
932 		goto exit_unlock;
933 
934 	/*
935 	 * local_cache pointer is set even if cache_size is zero.
936 	 * The local_cache points to just past the elt_pa[] array.
937 	 */
938 	mp->local_cache = (struct rte_mempool_cache *)
939 		RTE_PTR_ADD(mp, RTE_MEMPOOL_HEADER_SIZE(mp, 0));
940 
941 	/* Init all default caches. */
942 	if (cache_size != 0) {
943 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++)
944 			mempool_cache_init(&mp->local_cache[lcore_id],
945 					   cache_size);
946 	}
947 
948 	te->data = mp;
949 
950 	rte_mcfg_tailq_write_lock();
951 	TAILQ_INSERT_TAIL(mempool_list, te, next);
952 	rte_mcfg_tailq_write_unlock();
953 	rte_mcfg_mempool_write_unlock();
954 
955 	rte_mempool_trace_create_empty(name, n, elt_size, cache_size,
956 		private_data_size, flags, mp);
957 	return mp;
958 
959 exit_unlock:
960 	rte_mcfg_mempool_write_unlock();
961 	rte_free(te);
962 	rte_mempool_free(mp);
963 	return NULL;
964 }
965 
966 /* create the mempool */
967 struct rte_mempool *
rte_mempool_create(const char * name,unsigned n,unsigned elt_size,unsigned cache_size,unsigned private_data_size,rte_mempool_ctor_t * mp_init,void * mp_init_arg,rte_mempool_obj_cb_t * obj_init,void * obj_init_arg,int socket_id,unsigned flags)968 rte_mempool_create(const char *name, unsigned n, unsigned elt_size,
969 	unsigned cache_size, unsigned private_data_size,
970 	rte_mempool_ctor_t *mp_init, void *mp_init_arg,
971 	rte_mempool_obj_cb_t *obj_init, void *obj_init_arg,
972 	int socket_id, unsigned flags)
973 {
974 	struct rte_mempool *mp;
975 
976 	mp = rte_mempool_create_empty(name, n, elt_size, cache_size,
977 		private_data_size, socket_id, flags);
978 	if (mp == NULL)
979 		return NULL;
980 
981 	/* call the mempool priv initializer */
982 	if (mp_init)
983 		mp_init(mp, mp_init_arg);
984 
985 	if (rte_mempool_populate_default(mp) < 0)
986 		goto fail;
987 
988 	/* call the object initializers */
989 	if (obj_init)
990 		rte_mempool_obj_iter(mp, obj_init, obj_init_arg);
991 
992 	rte_mempool_trace_create(name, n, elt_size, cache_size,
993 		private_data_size, mp_init, mp_init_arg, obj_init,
994 		obj_init_arg, flags, mp);
995 	return mp;
996 
997  fail:
998 	rte_mempool_free(mp);
999 	return NULL;
1000 }
1001 
1002 /* Return the number of entries in the mempool */
1003 unsigned int
rte_mempool_avail_count(const struct rte_mempool * mp)1004 rte_mempool_avail_count(const struct rte_mempool *mp)
1005 {
1006 	unsigned count;
1007 	unsigned lcore_id;
1008 
1009 	count = rte_mempool_ops_get_count(mp);
1010 
1011 	if (mp->cache_size == 0)
1012 		return count;
1013 
1014 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++)
1015 		count += mp->local_cache[lcore_id].len;
1016 
1017 	/*
1018 	 * due to race condition (access to len is not locked), the
1019 	 * total can be greater than size... so fix the result
1020 	 */
1021 	if (count > mp->size)
1022 		return mp->size;
1023 	return count;
1024 }
1025 
1026 /* return the number of entries allocated from the mempool */
1027 unsigned int
rte_mempool_in_use_count(const struct rte_mempool * mp)1028 rte_mempool_in_use_count(const struct rte_mempool *mp)
1029 {
1030 	return mp->size - rte_mempool_avail_count(mp);
1031 }
1032 
1033 /* dump the cache status */
1034 static unsigned
rte_mempool_dump_cache(FILE * f,const struct rte_mempool * mp)1035 rte_mempool_dump_cache(FILE *f, const struct rte_mempool *mp)
1036 {
1037 	unsigned lcore_id;
1038 	unsigned count = 0;
1039 	unsigned cache_count;
1040 
1041 	fprintf(f, "  internal cache infos:\n");
1042 	fprintf(f, "    cache_size=%"PRIu32"\n", mp->cache_size);
1043 
1044 	if (mp->cache_size == 0)
1045 		return count;
1046 
1047 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1048 		cache_count = mp->local_cache[lcore_id].len;
1049 		fprintf(f, "    cache_count[%u]=%"PRIu32"\n",
1050 			lcore_id, cache_count);
1051 		count += cache_count;
1052 	}
1053 	fprintf(f, "    total_cache_count=%u\n", count);
1054 	return count;
1055 }
1056 
1057 /* check and update cookies or panic (internal) */
rte_mempool_check_cookies(const struct rte_mempool * mp,void * const * obj_table_const,unsigned n,int free)1058 void rte_mempool_check_cookies(const struct rte_mempool *mp,
1059 	void * const *obj_table_const, unsigned n, int free)
1060 {
1061 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
1062 	struct rte_mempool_objhdr *hdr;
1063 	struct rte_mempool_objtlr *tlr;
1064 	uint64_t cookie;
1065 	void *tmp;
1066 	void *obj;
1067 	void **obj_table;
1068 
1069 	/* Force to drop the "const" attribute. This is done only when
1070 	 * DEBUG is enabled */
1071 	tmp = (void *)(uintptr_t)obj_table_const;
1072 	obj_table = tmp;
1073 
1074 	while (n--) {
1075 		obj = obj_table[n];
1076 
1077 		if (rte_mempool_from_obj(obj) != mp)
1078 			rte_panic("MEMPOOL: object is owned by another "
1079 				  "mempool\n");
1080 
1081 		hdr = rte_mempool_get_header(obj);
1082 		cookie = hdr->cookie;
1083 
1084 		if (free == 0) {
1085 			if (cookie != RTE_MEMPOOL_HEADER_COOKIE1) {
1086 				RTE_MEMPOOL_LOG(CRIT,
1087 					"obj=%p, mempool=%p, cookie=%" PRIx64,
1088 					obj, (const void *) mp, cookie);
1089 				rte_panic("MEMPOOL: bad header cookie (put)\n");
1090 			}
1091 			hdr->cookie = RTE_MEMPOOL_HEADER_COOKIE2;
1092 		} else if (free == 1) {
1093 			if (cookie != RTE_MEMPOOL_HEADER_COOKIE2) {
1094 				RTE_MEMPOOL_LOG(CRIT,
1095 					"obj=%p, mempool=%p, cookie=%" PRIx64,
1096 					obj, (const void *) mp, cookie);
1097 				rte_panic("MEMPOOL: bad header cookie (get)\n");
1098 			}
1099 			hdr->cookie = RTE_MEMPOOL_HEADER_COOKIE1;
1100 		} else if (free == 2) {
1101 			if (cookie != RTE_MEMPOOL_HEADER_COOKIE1 &&
1102 			    cookie != RTE_MEMPOOL_HEADER_COOKIE2) {
1103 				RTE_MEMPOOL_LOG(CRIT,
1104 					"obj=%p, mempool=%p, cookie=%" PRIx64,
1105 					obj, (const void *) mp, cookie);
1106 				rte_panic("MEMPOOL: bad header cookie (audit)\n");
1107 			}
1108 		}
1109 		tlr = rte_mempool_get_trailer(obj);
1110 		cookie = tlr->cookie;
1111 		if (cookie != RTE_MEMPOOL_TRAILER_COOKIE) {
1112 			RTE_MEMPOOL_LOG(CRIT,
1113 				"obj=%p, mempool=%p, cookie=%" PRIx64,
1114 				obj, (const void *) mp, cookie);
1115 			rte_panic("MEMPOOL: bad trailer cookie\n");
1116 		}
1117 	}
1118 #else
1119 	RTE_SET_USED(mp);
1120 	RTE_SET_USED(obj_table_const);
1121 	RTE_SET_USED(n);
1122 	RTE_SET_USED(free);
1123 #endif
1124 }
1125 
1126 void
rte_mempool_contig_blocks_check_cookies(const struct rte_mempool * mp,void * const * first_obj_table_const,unsigned int n,int free)1127 rte_mempool_contig_blocks_check_cookies(const struct rte_mempool *mp,
1128 	void * const *first_obj_table_const, unsigned int n, int free)
1129 {
1130 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
1131 	struct rte_mempool_info info;
1132 	const size_t total_elt_sz =
1133 		mp->header_size + mp->elt_size + mp->trailer_size;
1134 	unsigned int i, j;
1135 
1136 	rte_mempool_ops_get_info(mp, &info);
1137 
1138 	for (i = 0; i < n; ++i) {
1139 		void *first_obj = first_obj_table_const[i];
1140 
1141 		for (j = 0; j < info.contig_block_size; ++j) {
1142 			void *obj;
1143 
1144 			obj = (void *)((uintptr_t)first_obj + j * total_elt_sz);
1145 			rte_mempool_check_cookies(mp, &obj, 1, free);
1146 		}
1147 	}
1148 #else
1149 	RTE_SET_USED(mp);
1150 	RTE_SET_USED(first_obj_table_const);
1151 	RTE_SET_USED(n);
1152 	RTE_SET_USED(free);
1153 #endif
1154 }
1155 
1156 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
1157 static void
mempool_obj_audit(struct rte_mempool * mp,__rte_unused void * opaque,void * obj,__rte_unused unsigned idx)1158 mempool_obj_audit(struct rte_mempool *mp, __rte_unused void *opaque,
1159 	void *obj, __rte_unused unsigned idx)
1160 {
1161 	RTE_MEMPOOL_CHECK_COOKIES(mp, &obj, 1, 2);
1162 }
1163 
1164 static void
mempool_audit_cookies(struct rte_mempool * mp)1165 mempool_audit_cookies(struct rte_mempool *mp)
1166 {
1167 	unsigned num;
1168 
1169 	num = rte_mempool_obj_iter(mp, mempool_obj_audit, NULL);
1170 	if (num != mp->size) {
1171 		rte_panic("rte_mempool_obj_iter(mempool=%p, size=%u) "
1172 			"iterated only over %u elements\n",
1173 			mp, mp->size, num);
1174 	}
1175 }
1176 #else
1177 #define mempool_audit_cookies(mp) do {} while(0)
1178 #endif
1179 
1180 /* check cookies before and after objects */
1181 static void
mempool_audit_cache(const struct rte_mempool * mp)1182 mempool_audit_cache(const struct rte_mempool *mp)
1183 {
1184 	/* check cache size consistency */
1185 	unsigned lcore_id;
1186 
1187 	if (mp->cache_size == 0)
1188 		return;
1189 
1190 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1191 		const struct rte_mempool_cache *cache;
1192 		cache = &mp->local_cache[lcore_id];
1193 		if (cache->len > RTE_DIM(cache->objs)) {
1194 			RTE_MEMPOOL_LOG(CRIT, "badness on cache[%u]",
1195 				lcore_id);
1196 			rte_panic("MEMPOOL: invalid cache len\n");
1197 		}
1198 	}
1199 }
1200 
1201 /* check the consistency of mempool (size, cookies, ...) */
1202 void
rte_mempool_audit(struct rte_mempool * mp)1203 rte_mempool_audit(struct rte_mempool *mp)
1204 {
1205 	mempool_audit_cache(mp);
1206 	mempool_audit_cookies(mp);
1207 
1208 	/* For case where mempool DEBUG is not set, and cache size is 0 */
1209 	RTE_SET_USED(mp);
1210 }
1211 
1212 /* dump the status of the mempool on the console */
1213 void
rte_mempool_dump(FILE * f,struct rte_mempool * mp)1214 rte_mempool_dump(FILE *f, struct rte_mempool *mp)
1215 {
1216 #ifdef RTE_LIBRTE_MEMPOOL_STATS
1217 	struct rte_mempool_info info;
1218 	struct rte_mempool_debug_stats sum;
1219 	unsigned lcore_id;
1220 #endif
1221 	struct rte_mempool_memhdr *memhdr;
1222 	struct rte_mempool_ops *ops;
1223 	unsigned common_count;
1224 	unsigned cache_count;
1225 	size_t mem_len = 0;
1226 
1227 	RTE_ASSERT(f != NULL);
1228 	RTE_ASSERT(mp != NULL);
1229 
1230 	fprintf(f, "mempool <%s>@%p\n", mp->name, mp);
1231 	fprintf(f, "  flags=%x\n", mp->flags);
1232 	fprintf(f, "  socket_id=%d\n", mp->socket_id);
1233 	fprintf(f, "  pool=%p\n", mp->pool_data);
1234 	fprintf(f, "  iova=0x%" PRIx64 "\n", mp->mz->iova);
1235 	fprintf(f, "  nb_mem_chunks=%u\n", mp->nb_mem_chunks);
1236 	fprintf(f, "  size=%"PRIu32"\n", mp->size);
1237 	fprintf(f, "  populated_size=%"PRIu32"\n", mp->populated_size);
1238 	fprintf(f, "  header_size=%"PRIu32"\n", mp->header_size);
1239 	fprintf(f, "  elt_size=%"PRIu32"\n", mp->elt_size);
1240 	fprintf(f, "  trailer_size=%"PRIu32"\n", mp->trailer_size);
1241 	fprintf(f, "  total_obj_size=%"PRIu32"\n",
1242 	       mp->header_size + mp->elt_size + mp->trailer_size);
1243 
1244 	fprintf(f, "  private_data_size=%"PRIu32"\n", mp->private_data_size);
1245 
1246 	fprintf(f, "  ops_index=%d\n", mp->ops_index);
1247 	ops = rte_mempool_get_ops(mp->ops_index);
1248 	fprintf(f, "  ops_name: <%s>\n", (ops != NULL) ? ops->name : "NA");
1249 
1250 	STAILQ_FOREACH(memhdr, &mp->mem_list, next) {
1251 		fprintf(f, "  memory chunk at %p, addr=%p, iova=0x%" PRIx64 ", len=%zu\n",
1252 				memhdr, memhdr->addr, memhdr->iova, memhdr->len);
1253 		mem_len += memhdr->len;
1254 	}
1255 	if (mem_len != 0) {
1256 		fprintf(f, "  avg bytes/object=%#Lf\n",
1257 			(long double)mem_len / mp->size);
1258 	}
1259 
1260 	cache_count = rte_mempool_dump_cache(f, mp);
1261 	common_count = rte_mempool_ops_get_count(mp);
1262 	if ((cache_count + common_count) > mp->size)
1263 		common_count = mp->size - cache_count;
1264 	fprintf(f, "  common_pool_count=%u\n", common_count);
1265 
1266 	/* sum and dump statistics */
1267 #ifdef RTE_LIBRTE_MEMPOOL_STATS
1268 	rte_mempool_ops_get_info(mp, &info);
1269 	memset(&sum, 0, sizeof(sum));
1270 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE + 1; lcore_id++) {
1271 		sum.put_bulk += mp->stats[lcore_id].put_bulk;
1272 		sum.put_objs += mp->stats[lcore_id].put_objs;
1273 		sum.put_common_pool_bulk += mp->stats[lcore_id].put_common_pool_bulk;
1274 		sum.put_common_pool_objs += mp->stats[lcore_id].put_common_pool_objs;
1275 		sum.get_common_pool_bulk += mp->stats[lcore_id].get_common_pool_bulk;
1276 		sum.get_common_pool_objs += mp->stats[lcore_id].get_common_pool_objs;
1277 		sum.get_success_bulk += mp->stats[lcore_id].get_success_bulk;
1278 		sum.get_success_objs += mp->stats[lcore_id].get_success_objs;
1279 		sum.get_fail_bulk += mp->stats[lcore_id].get_fail_bulk;
1280 		sum.get_fail_objs += mp->stats[lcore_id].get_fail_objs;
1281 		sum.get_success_blks += mp->stats[lcore_id].get_success_blks;
1282 		sum.get_fail_blks += mp->stats[lcore_id].get_fail_blks;
1283 	}
1284 	if (mp->cache_size != 0) {
1285 		/* Add the statistics stored in the mempool caches. */
1286 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1287 			sum.put_bulk += mp->local_cache[lcore_id].stats.put_bulk;
1288 			sum.put_objs += mp->local_cache[lcore_id].stats.put_objs;
1289 			sum.get_success_bulk += mp->local_cache[lcore_id].stats.get_success_bulk;
1290 			sum.get_success_objs += mp->local_cache[lcore_id].stats.get_success_objs;
1291 		}
1292 	}
1293 	fprintf(f, "  stats:\n");
1294 	fprintf(f, "    put_bulk=%"PRIu64"\n", sum.put_bulk);
1295 	fprintf(f, "    put_objs=%"PRIu64"\n", sum.put_objs);
1296 	fprintf(f, "    put_common_pool_bulk=%"PRIu64"\n", sum.put_common_pool_bulk);
1297 	fprintf(f, "    put_common_pool_objs=%"PRIu64"\n", sum.put_common_pool_objs);
1298 	fprintf(f, "    get_common_pool_bulk=%"PRIu64"\n", sum.get_common_pool_bulk);
1299 	fprintf(f, "    get_common_pool_objs=%"PRIu64"\n", sum.get_common_pool_objs);
1300 	fprintf(f, "    get_success_bulk=%"PRIu64"\n", sum.get_success_bulk);
1301 	fprintf(f, "    get_success_objs=%"PRIu64"\n", sum.get_success_objs);
1302 	fprintf(f, "    get_fail_bulk=%"PRIu64"\n", sum.get_fail_bulk);
1303 	fprintf(f, "    get_fail_objs=%"PRIu64"\n", sum.get_fail_objs);
1304 	if (info.contig_block_size > 0) {
1305 		fprintf(f, "    get_success_blks=%"PRIu64"\n",
1306 			sum.get_success_blks);
1307 		fprintf(f, "    get_fail_blks=%"PRIu64"\n", sum.get_fail_blks);
1308 	}
1309 #else
1310 	fprintf(f, "  no statistics available\n");
1311 #endif
1312 
1313 	rte_mempool_audit(mp);
1314 }
1315 
1316 /* dump the status of all mempools on the console */
1317 void
rte_mempool_list_dump(FILE * f)1318 rte_mempool_list_dump(FILE *f)
1319 {
1320 	struct rte_mempool *mp = NULL;
1321 	struct rte_tailq_entry *te;
1322 	struct rte_mempool_list *mempool_list;
1323 
1324 	mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
1325 
1326 	rte_mcfg_mempool_read_lock();
1327 
1328 	TAILQ_FOREACH(te, mempool_list, next) {
1329 		mp = (struct rte_mempool *) te->data;
1330 		rte_mempool_dump(f, mp);
1331 	}
1332 
1333 	rte_mcfg_mempool_read_unlock();
1334 }
1335 
1336 /* search a mempool from its name */
1337 struct rte_mempool *
rte_mempool_lookup(const char * name)1338 rte_mempool_lookup(const char *name)
1339 {
1340 	struct rte_mempool *mp = NULL;
1341 	struct rte_tailq_entry *te;
1342 	struct rte_mempool_list *mempool_list;
1343 
1344 	mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
1345 
1346 	rte_mcfg_mempool_read_lock();
1347 
1348 	TAILQ_FOREACH(te, mempool_list, next) {
1349 		mp = (struct rte_mempool *) te->data;
1350 		if (strncmp(name, mp->name, RTE_MEMPOOL_NAMESIZE) == 0)
1351 			break;
1352 	}
1353 
1354 	rte_mcfg_mempool_read_unlock();
1355 
1356 	if (te == NULL) {
1357 		rte_errno = ENOENT;
1358 		return NULL;
1359 	}
1360 
1361 	return mp;
1362 }
1363 
rte_mempool_walk(void (* func)(struct rte_mempool *,void *),void * arg)1364 void rte_mempool_walk(void (*func)(struct rte_mempool *, void *),
1365 		      void *arg)
1366 {
1367 	struct rte_tailq_entry *te = NULL;
1368 	struct rte_mempool_list *mempool_list;
1369 	void *tmp_te;
1370 
1371 	mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
1372 
1373 	rte_mcfg_mempool_read_lock();
1374 
1375 	RTE_TAILQ_FOREACH_SAFE(te, mempool_list, next, tmp_te) {
1376 		(*func)((struct rte_mempool *) te->data, arg);
1377 	}
1378 
1379 	rte_mcfg_mempool_read_unlock();
1380 }
1381 
rte_mempool_get_mem_range(const struct rte_mempool * mp,struct rte_mempool_mem_range_info * mem_range)1382 int rte_mempool_get_mem_range(const struct rte_mempool *mp,
1383 		struct rte_mempool_mem_range_info *mem_range)
1384 {
1385 	void *address_low = (void *)UINTPTR_MAX;
1386 	void *address_high = 0;
1387 	size_t address_diff = 0;
1388 	size_t total_size = 0;
1389 	struct rte_mempool_memhdr *hdr;
1390 
1391 	if (mp == NULL || mem_range == NULL)
1392 		return -EINVAL;
1393 
1394 	/* go through memory chunks and find the lowest and highest addresses */
1395 	STAILQ_FOREACH(hdr, &mp->mem_list, next) {
1396 		if (address_low > hdr->addr)
1397 			address_low = hdr->addr;
1398 		if (address_high < RTE_PTR_ADD(hdr->addr, hdr->len))
1399 			address_high = RTE_PTR_ADD(hdr->addr, hdr->len);
1400 		total_size += hdr->len;
1401 	}
1402 
1403 	/* check if mempool was not populated yet (no memory chunks) */
1404 	if (address_low == (void *)UINTPTR_MAX)
1405 		return -EINVAL;
1406 
1407 	address_diff = (size_t)RTE_PTR_DIFF(address_high, address_low);
1408 
1409 	mem_range->start = address_low;
1410 	mem_range->length = address_diff;
1411 	mem_range->is_contiguous = (total_size == address_diff) ? true : false;
1412 
1413 	return 0;
1414 }
1415 
rte_mempool_get_obj_alignment(const struct rte_mempool * mp)1416 size_t rte_mempool_get_obj_alignment(const struct rte_mempool *mp)
1417 {
1418 	if (mp == NULL)
1419 		return 0;
1420 
1421 	if (mp->flags & RTE_MEMPOOL_F_NO_CACHE_ALIGN)
1422 		return sizeof(uint64_t);
1423 	else
1424 		return RTE_MEMPOOL_ALIGN;
1425 }
1426 
1427 struct mempool_callback_data {
1428 	TAILQ_ENTRY(mempool_callback_data) callbacks;
1429 	rte_mempool_event_callback *func;
1430 	void *user_data;
1431 };
1432 
1433 static void
mempool_event_callback_invoke(enum rte_mempool_event event,struct rte_mempool * mp)1434 mempool_event_callback_invoke(enum rte_mempool_event event,
1435 			      struct rte_mempool *mp)
1436 {
1437 	struct mempool_callback_data *cb;
1438 	void *tmp_te;
1439 
1440 	rte_mcfg_tailq_read_lock();
1441 	RTE_TAILQ_FOREACH_SAFE(cb, &callback_tailq, callbacks, tmp_te) {
1442 		rte_mcfg_tailq_read_unlock();
1443 		cb->func(event, mp, cb->user_data);
1444 		rte_mcfg_tailq_read_lock();
1445 	}
1446 	rte_mcfg_tailq_read_unlock();
1447 }
1448 
1449 int
rte_mempool_event_callback_register(rte_mempool_event_callback * func,void * user_data)1450 rte_mempool_event_callback_register(rte_mempool_event_callback *func,
1451 				    void *user_data)
1452 {
1453 	struct mempool_callback_data *cb;
1454 	int ret;
1455 
1456 	if (func == NULL) {
1457 		rte_errno = EINVAL;
1458 		return -rte_errno;
1459 	}
1460 
1461 	rte_mcfg_tailq_write_lock();
1462 	TAILQ_FOREACH(cb, &callback_tailq, callbacks) {
1463 		if (cb->func == func && cb->user_data == user_data) {
1464 			ret = -EEXIST;
1465 			goto exit;
1466 		}
1467 	}
1468 
1469 	cb = calloc(1, sizeof(*cb));
1470 	if (cb == NULL) {
1471 		RTE_MEMPOOL_LOG(ERR, "Cannot allocate event callback!");
1472 		ret = -ENOMEM;
1473 		goto exit;
1474 	}
1475 
1476 	cb->func = func;
1477 	cb->user_data = user_data;
1478 	TAILQ_INSERT_TAIL(&callback_tailq, cb, callbacks);
1479 	ret = 0;
1480 
1481 exit:
1482 	rte_mcfg_tailq_write_unlock();
1483 	rte_errno = -ret;
1484 	return ret;
1485 }
1486 
1487 int
rte_mempool_event_callback_unregister(rte_mempool_event_callback * func,void * user_data)1488 rte_mempool_event_callback_unregister(rte_mempool_event_callback *func,
1489 				      void *user_data)
1490 {
1491 	struct mempool_callback_data *cb;
1492 	int ret = -ENOENT;
1493 
1494 	rte_mcfg_tailq_write_lock();
1495 	TAILQ_FOREACH(cb, &callback_tailq, callbacks) {
1496 		if (cb->func == func && cb->user_data == user_data) {
1497 			TAILQ_REMOVE(&callback_tailq, cb, callbacks);
1498 			ret = 0;
1499 			break;
1500 		}
1501 	}
1502 	rte_mcfg_tailq_write_unlock();
1503 
1504 	if (ret == 0)
1505 		free(cb);
1506 	rte_errno = -ret;
1507 	return ret;
1508 }
1509 
1510 static void
mempool_list_cb(struct rte_mempool * mp,void * arg)1511 mempool_list_cb(struct rte_mempool *mp, void *arg)
1512 {
1513 	struct rte_tel_data *d = (struct rte_tel_data *)arg;
1514 
1515 	rte_tel_data_add_array_string(d, mp->name);
1516 }
1517 
1518 static int
mempool_handle_list(const char * cmd __rte_unused,const char * params __rte_unused,struct rte_tel_data * d)1519 mempool_handle_list(const char *cmd __rte_unused,
1520 		    const char *params __rte_unused, struct rte_tel_data *d)
1521 {
1522 	rte_tel_data_start_array(d, RTE_TEL_STRING_VAL);
1523 	rte_mempool_walk(mempool_list_cb, d);
1524 	return 0;
1525 }
1526 
1527 struct mempool_info_cb_arg {
1528 	char *pool_name;
1529 	struct rte_tel_data *d;
1530 };
1531 
1532 static void
mempool_info_cb(struct rte_mempool * mp,void * arg)1533 mempool_info_cb(struct rte_mempool *mp, void *arg)
1534 {
1535 	struct mempool_info_cb_arg *info = (struct mempool_info_cb_arg *)arg;
1536 	const struct rte_memzone *mz;
1537 	uint64_t cache_count, common_count;
1538 
1539 	if (strncmp(mp->name, info->pool_name, RTE_MEMZONE_NAMESIZE))
1540 		return;
1541 
1542 	rte_tel_data_add_dict_string(info->d, "name", mp->name);
1543 	rte_tel_data_add_dict_uint(info->d, "pool_id", mp->pool_id);
1544 	rte_tel_data_add_dict_uint(info->d, "flags", mp->flags);
1545 	rte_tel_data_add_dict_int(info->d, "socket_id", mp->socket_id);
1546 	rte_tel_data_add_dict_uint(info->d, "size", mp->size);
1547 	rte_tel_data_add_dict_uint(info->d, "cache_size", mp->cache_size);
1548 	rte_tel_data_add_dict_uint(info->d, "elt_size", mp->elt_size);
1549 	rte_tel_data_add_dict_uint(info->d, "header_size", mp->header_size);
1550 	rte_tel_data_add_dict_uint(info->d, "trailer_size", mp->trailer_size);
1551 	rte_tel_data_add_dict_uint(info->d, "private_data_size",
1552 				  mp->private_data_size);
1553 	rte_tel_data_add_dict_int(info->d, "ops_index", mp->ops_index);
1554 	rte_tel_data_add_dict_uint(info->d, "populated_size",
1555 				  mp->populated_size);
1556 
1557 	cache_count = 0;
1558 	if (mp->cache_size > 0) {
1559 		int lcore_id;
1560 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++)
1561 			cache_count += mp->local_cache[lcore_id].len;
1562 	}
1563 	rte_tel_data_add_dict_uint(info->d, "total_cache_count", cache_count);
1564 	common_count = rte_mempool_ops_get_count(mp);
1565 	if ((cache_count + common_count) > mp->size)
1566 		common_count = mp->size - cache_count;
1567 	rte_tel_data_add_dict_uint(info->d, "common_pool_count", common_count);
1568 
1569 	mz = mp->mz;
1570 	rte_tel_data_add_dict_string(info->d, "mz_name", mz->name);
1571 	rte_tel_data_add_dict_uint(info->d, "mz_len", mz->len);
1572 	rte_tel_data_add_dict_uint(info->d, "mz_hugepage_sz",
1573 				  mz->hugepage_sz);
1574 	rte_tel_data_add_dict_int(info->d, "mz_socket_id", mz->socket_id);
1575 	rte_tel_data_add_dict_uint(info->d, "mz_flags", mz->flags);
1576 }
1577 
1578 static int
mempool_handle_info(const char * cmd __rte_unused,const char * params,struct rte_tel_data * d)1579 mempool_handle_info(const char *cmd __rte_unused, const char *params,
1580 		    struct rte_tel_data *d)
1581 {
1582 	struct mempool_info_cb_arg mp_arg;
1583 	char name[RTE_MEMZONE_NAMESIZE];
1584 
1585 	if (!params || strlen(params) == 0)
1586 		return -EINVAL;
1587 
1588 	rte_strlcpy(name, params, RTE_MEMZONE_NAMESIZE);
1589 
1590 	rte_tel_data_start_dict(d);
1591 	mp_arg.pool_name = name;
1592 	mp_arg.d = d;
1593 	rte_mempool_walk(mempool_info_cb, &mp_arg);
1594 
1595 	return 0;
1596 }
1597 
RTE_INIT(mempool_init_telemetry)1598 RTE_INIT(mempool_init_telemetry)
1599 {
1600 	rte_telemetry_register_cmd("/mempool/list", mempool_handle_list,
1601 		"Returns list of available mempool. Takes no parameters");
1602 	rte_telemetry_register_cmd("/mempool/info", mempool_handle_info,
1603 		"Returns mempool info. Parameters: pool_name");
1604 }
1605