1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2014 Intel Corporation.
3 * Copyright(c) 2016 6WIND S.A.
4 * Copyright(c) 2022 SmartShare Systems
5 */
6
7 #include <stdbool.h>
8 #include <stdlib.h>
9 #include <stdio.h>
10 #include <string.h>
11 #include <stdint.h>
12 #include <unistd.h>
13 #include <inttypes.h>
14 #include <errno.h>
15 #include <sys/queue.h>
16
17 #include <rte_common.h>
18 #include <rte_log.h>
19 #include <rte_debug.h>
20 #include <rte_memory.h>
21 #include <rte_memzone.h>
22 #include <rte_malloc.h>
23 #include <rte_eal.h>
24 #include <rte_eal_memconfig.h>
25 #include <rte_errno.h>
26 #include <rte_string_fns.h>
27 #include <rte_tailq.h>
28 #include <rte_eal_paging.h>
29 #include <rte_telemetry.h>
30
31 #include "mempool_trace.h"
32 #include "rte_mempool.h"
33
34 RTE_LOG_REGISTER_DEFAULT(rte_mempool_logtype, INFO);
35
36 TAILQ_HEAD(rte_mempool_list, rte_tailq_entry);
37
38 static struct rte_tailq_elem rte_mempool_tailq = {
39 .name = "RTE_MEMPOOL",
40 };
41 EAL_REGISTER_TAILQ(rte_mempool_tailq)
42
43 TAILQ_HEAD(mempool_callback_tailq, mempool_callback_data);
44
45 static struct mempool_callback_tailq callback_tailq =
46 TAILQ_HEAD_INITIALIZER(callback_tailq);
47
48 /* Invoke all registered mempool event callbacks. */
49 static void
50 mempool_event_callback_invoke(enum rte_mempool_event event,
51 struct rte_mempool *mp);
52
53 /* Note: avoid using floating point since that compiler
54 * may not think that is constant.
55 */
56 #define CALC_CACHE_FLUSHTHRESH(c) (((c) * 3) / 2)
57
58 #if defined(RTE_ARCH_X86)
59 /*
60 * return the greatest common divisor between a and b (fast algorithm)
61 */
get_gcd(unsigned a,unsigned b)62 static unsigned get_gcd(unsigned a, unsigned b)
63 {
64 unsigned c;
65
66 if (0 == a)
67 return b;
68 if (0 == b)
69 return a;
70
71 if (a < b) {
72 c = a;
73 a = b;
74 b = c;
75 }
76
77 while (b != 0) {
78 c = a % b;
79 a = b;
80 b = c;
81 }
82
83 return a;
84 }
85
86 /*
87 * Depending on memory configuration on x86 arch, objects addresses are spread
88 * between channels and ranks in RAM: the pool allocator will add
89 * padding between objects. This function return the new size of the
90 * object.
91 */
92 static unsigned int
arch_mem_object_align(unsigned int obj_size)93 arch_mem_object_align(unsigned int obj_size)
94 {
95 unsigned nrank, nchan;
96 unsigned new_obj_size;
97
98 /* get number of channels */
99 nchan = rte_memory_get_nchannel();
100 if (nchan == 0)
101 nchan = 4;
102
103 nrank = rte_memory_get_nrank();
104 if (nrank == 0)
105 nrank = 1;
106
107 /* process new object size */
108 new_obj_size = (obj_size + RTE_MEMPOOL_ALIGN_MASK) / RTE_MEMPOOL_ALIGN;
109 while (get_gcd(new_obj_size, nrank * nchan) != 1)
110 new_obj_size++;
111 return new_obj_size * RTE_MEMPOOL_ALIGN;
112 }
113 #else
114 static unsigned int
arch_mem_object_align(unsigned int obj_size)115 arch_mem_object_align(unsigned int obj_size)
116 {
117 return obj_size;
118 }
119 #endif
120
121 struct pagesz_walk_arg {
122 int socket_id;
123 size_t min;
124 };
125
126 static int
find_min_pagesz(const struct rte_memseg_list * msl,void * arg)127 find_min_pagesz(const struct rte_memseg_list *msl, void *arg)
128 {
129 struct pagesz_walk_arg *wa = arg;
130 bool valid;
131
132 /*
133 * we need to only look at page sizes available for a particular socket
134 * ID. so, we either need an exact match on socket ID (can match both
135 * native and external memory), or, if SOCKET_ID_ANY was specified as a
136 * socket ID argument, we must only look at native memory and ignore any
137 * page sizes associated with external memory.
138 */
139 valid = msl->socket_id == wa->socket_id;
140 valid |= wa->socket_id == SOCKET_ID_ANY && msl->external == 0;
141
142 if (valid && msl->page_sz < wa->min)
143 wa->min = msl->page_sz;
144
145 return 0;
146 }
147
148 static size_t
get_min_page_size(int socket_id)149 get_min_page_size(int socket_id)
150 {
151 struct pagesz_walk_arg wa;
152
153 wa.min = SIZE_MAX;
154 wa.socket_id = socket_id;
155
156 rte_memseg_list_walk(find_min_pagesz, &wa);
157
158 return wa.min == SIZE_MAX ? (size_t) rte_mem_page_size() : wa.min;
159 }
160
161
162 static void
mempool_add_elem(struct rte_mempool * mp,__rte_unused void * opaque,void * obj,rte_iova_t iova)163 mempool_add_elem(struct rte_mempool *mp, __rte_unused void *opaque,
164 void *obj, rte_iova_t iova)
165 {
166 struct rte_mempool_objhdr *hdr;
167
168 /* set mempool ptr in header */
169 hdr = RTE_PTR_SUB(obj, sizeof(*hdr));
170 hdr->mp = mp;
171 hdr->iova = iova;
172 STAILQ_INSERT_TAIL(&mp->elt_list, hdr, next);
173 mp->populated_size++;
174
175 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
176 hdr->cookie = RTE_MEMPOOL_HEADER_COOKIE2;
177 rte_mempool_get_trailer(obj)->cookie = RTE_MEMPOOL_TRAILER_COOKIE;
178 #endif
179 }
180
181 /* call obj_cb() for each mempool element */
182 uint32_t
rte_mempool_obj_iter(struct rte_mempool * mp,rte_mempool_obj_cb_t * obj_cb,void * obj_cb_arg)183 rte_mempool_obj_iter(struct rte_mempool *mp,
184 rte_mempool_obj_cb_t *obj_cb, void *obj_cb_arg)
185 {
186 struct rte_mempool_objhdr *hdr;
187 void *obj;
188 unsigned n = 0;
189
190 STAILQ_FOREACH(hdr, &mp->elt_list, next) {
191 obj = (char *)hdr + sizeof(*hdr);
192 obj_cb(mp, obj_cb_arg, obj, n);
193 n++;
194 }
195
196 return n;
197 }
198
199 /* call mem_cb() for each mempool memory chunk */
200 uint32_t
rte_mempool_mem_iter(struct rte_mempool * mp,rte_mempool_mem_cb_t * mem_cb,void * mem_cb_arg)201 rte_mempool_mem_iter(struct rte_mempool *mp,
202 rte_mempool_mem_cb_t *mem_cb, void *mem_cb_arg)
203 {
204 struct rte_mempool_memhdr *hdr;
205 unsigned n = 0;
206
207 STAILQ_FOREACH(hdr, &mp->mem_list, next) {
208 mem_cb(mp, mem_cb_arg, hdr, n);
209 n++;
210 }
211
212 return n;
213 }
214
215 /* get the header, trailer and total size of a mempool element. */
216 uint32_t
rte_mempool_calc_obj_size(uint32_t elt_size,uint32_t flags,struct rte_mempool_objsz * sz)217 rte_mempool_calc_obj_size(uint32_t elt_size, uint32_t flags,
218 struct rte_mempool_objsz *sz)
219 {
220 struct rte_mempool_objsz lsz;
221
222 sz = (sz != NULL) ? sz : &lsz;
223
224 sz->header_size = sizeof(struct rte_mempool_objhdr);
225 if ((flags & RTE_MEMPOOL_F_NO_CACHE_ALIGN) == 0)
226 sz->header_size = RTE_ALIGN_CEIL(sz->header_size,
227 RTE_MEMPOOL_ALIGN);
228
229 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
230 sz->trailer_size = sizeof(struct rte_mempool_objtlr);
231 #else
232 sz->trailer_size = 0;
233 #endif
234
235 /* element size is 8 bytes-aligned at least */
236 sz->elt_size = RTE_ALIGN_CEIL(elt_size, sizeof(uint64_t));
237
238 /* expand trailer to next cache line */
239 if ((flags & RTE_MEMPOOL_F_NO_CACHE_ALIGN) == 0) {
240 sz->total_size = sz->header_size + sz->elt_size +
241 sz->trailer_size;
242 sz->trailer_size += ((RTE_MEMPOOL_ALIGN -
243 (sz->total_size & RTE_MEMPOOL_ALIGN_MASK)) &
244 RTE_MEMPOOL_ALIGN_MASK);
245 }
246
247 /*
248 * increase trailer to add padding between objects in order to
249 * spread them across memory channels/ranks
250 */
251 if ((flags & RTE_MEMPOOL_F_NO_SPREAD) == 0) {
252 unsigned new_size;
253 new_size = arch_mem_object_align
254 (sz->header_size + sz->elt_size + sz->trailer_size);
255 sz->trailer_size = new_size - sz->header_size - sz->elt_size;
256 }
257
258 /* this is the size of an object, including header and trailer */
259 sz->total_size = sz->header_size + sz->elt_size + sz->trailer_size;
260
261 return sz->total_size;
262 }
263
264 /* free a memchunk allocated with rte_memzone_reserve() */
265 static void
rte_mempool_memchunk_mz_free(__rte_unused struct rte_mempool_memhdr * memhdr,void * opaque)266 rte_mempool_memchunk_mz_free(__rte_unused struct rte_mempool_memhdr *memhdr,
267 void *opaque)
268 {
269 const struct rte_memzone *mz = opaque;
270 rte_memzone_free(mz);
271 }
272
273 /* Free memory chunks used by a mempool. Objects must be in pool */
274 static void
rte_mempool_free_memchunks(struct rte_mempool * mp)275 rte_mempool_free_memchunks(struct rte_mempool *mp)
276 {
277 struct rte_mempool_memhdr *memhdr;
278 void *elt;
279
280 while (!STAILQ_EMPTY(&mp->elt_list)) {
281 rte_mempool_ops_dequeue_bulk(mp, &elt, 1);
282 (void)elt;
283 STAILQ_REMOVE_HEAD(&mp->elt_list, next);
284 mp->populated_size--;
285 }
286
287 while (!STAILQ_EMPTY(&mp->mem_list)) {
288 memhdr = STAILQ_FIRST(&mp->mem_list);
289 STAILQ_REMOVE_HEAD(&mp->mem_list, next);
290 if (memhdr->free_cb != NULL)
291 memhdr->free_cb(memhdr, memhdr->opaque);
292 rte_free(memhdr);
293 mp->nb_mem_chunks--;
294 }
295 }
296
297 static int
mempool_ops_alloc_once(struct rte_mempool * mp)298 mempool_ops_alloc_once(struct rte_mempool *mp)
299 {
300 int ret;
301
302 /* create the internal ring if not already done */
303 if ((mp->flags & RTE_MEMPOOL_F_POOL_CREATED) == 0) {
304 ret = rte_mempool_ops_alloc(mp);
305 if (ret != 0)
306 return ret;
307 mp->flags |= RTE_MEMPOOL_F_POOL_CREATED;
308 }
309 return 0;
310 }
311
312 /* Add objects in the pool, using a physically contiguous memory
313 * zone. Return the number of objects added, or a negative value
314 * on error.
315 */
316 int
rte_mempool_populate_iova(struct rte_mempool * mp,char * vaddr,rte_iova_t iova,size_t len,rte_mempool_memchunk_free_cb_t * free_cb,void * opaque)317 rte_mempool_populate_iova(struct rte_mempool *mp, char *vaddr,
318 rte_iova_t iova, size_t len, rte_mempool_memchunk_free_cb_t *free_cb,
319 void *opaque)
320 {
321 unsigned i = 0;
322 size_t off;
323 struct rte_mempool_memhdr *memhdr;
324 int ret;
325
326 ret = mempool_ops_alloc_once(mp);
327 if (ret != 0)
328 return ret;
329
330 /* mempool is already populated */
331 if (mp->populated_size >= mp->size)
332 return -ENOSPC;
333
334 memhdr = rte_zmalloc("MEMPOOL_MEMHDR", sizeof(*memhdr), 0);
335 if (memhdr == NULL)
336 return -ENOMEM;
337
338 memhdr->mp = mp;
339 memhdr->addr = vaddr;
340 memhdr->iova = iova;
341 memhdr->len = len;
342 memhdr->free_cb = free_cb;
343 memhdr->opaque = opaque;
344
345 if (mp->flags & RTE_MEMPOOL_F_NO_CACHE_ALIGN)
346 off = RTE_PTR_ALIGN_CEIL(vaddr, 8) - vaddr;
347 else
348 off = RTE_PTR_ALIGN_CEIL(vaddr, RTE_MEMPOOL_ALIGN) - vaddr;
349
350 if (off > len) {
351 ret = 0;
352 goto fail;
353 }
354
355 i = rte_mempool_ops_populate(mp, mp->size - mp->populated_size,
356 (char *)vaddr + off,
357 (iova == RTE_BAD_IOVA) ? RTE_BAD_IOVA : (iova + off),
358 len - off, mempool_add_elem, NULL);
359
360 /* not enough room to store one object */
361 if (i == 0) {
362 ret = 0;
363 goto fail;
364 }
365
366 STAILQ_INSERT_TAIL(&mp->mem_list, memhdr, next);
367 mp->nb_mem_chunks++;
368
369 /* Check if at least some objects in the pool are now usable for IO. */
370 if (!(mp->flags & RTE_MEMPOOL_F_NO_IOVA_CONTIG) && iova != RTE_BAD_IOVA)
371 mp->flags &= ~RTE_MEMPOOL_F_NON_IO;
372
373 /* Report the mempool as ready only when fully populated. */
374 if (mp->populated_size >= mp->size)
375 mempool_event_callback_invoke(RTE_MEMPOOL_EVENT_READY, mp);
376
377 rte_mempool_trace_populate_iova(mp, vaddr, iova, len, free_cb, opaque);
378 return i;
379
380 fail:
381 rte_free(memhdr);
382 return ret;
383 }
384
385 static rte_iova_t
get_iova(void * addr)386 get_iova(void *addr)
387 {
388 struct rte_memseg *ms;
389
390 /* try registered memory first */
391 ms = rte_mem_virt2memseg(addr, NULL);
392 if (ms == NULL || ms->iova == RTE_BAD_IOVA)
393 /* fall back to actual physical address */
394 return rte_mem_virt2iova(addr);
395 return ms->iova + RTE_PTR_DIFF(addr, ms->addr);
396 }
397
398 /* Populate the mempool with a virtual area. Return the number of
399 * objects added, or a negative value on error.
400 */
401 int
rte_mempool_populate_virt(struct rte_mempool * mp,char * addr,size_t len,size_t pg_sz,rte_mempool_memchunk_free_cb_t * free_cb,void * opaque)402 rte_mempool_populate_virt(struct rte_mempool *mp, char *addr,
403 size_t len, size_t pg_sz, rte_mempool_memchunk_free_cb_t *free_cb,
404 void *opaque)
405 {
406 rte_iova_t iova;
407 size_t off, phys_len;
408 int ret, cnt = 0;
409
410 if (mp->flags & RTE_MEMPOOL_F_NO_IOVA_CONTIG)
411 return rte_mempool_populate_iova(mp, addr, RTE_BAD_IOVA,
412 len, free_cb, opaque);
413
414 for (off = 0; off < len &&
415 mp->populated_size < mp->size; off += phys_len) {
416
417 iova = get_iova(addr + off);
418
419 /* populate with the largest group of contiguous pages */
420 for (phys_len = RTE_MIN(
421 (size_t)(RTE_PTR_ALIGN_CEIL(addr + off + 1, pg_sz) -
422 (addr + off)),
423 len - off);
424 off + phys_len < len;
425 phys_len = RTE_MIN(phys_len + pg_sz, len - off)) {
426 rte_iova_t iova_tmp;
427
428 iova_tmp = get_iova(addr + off + phys_len);
429
430 if (iova_tmp == RTE_BAD_IOVA ||
431 iova_tmp != iova + phys_len)
432 break;
433 }
434
435 ret = rte_mempool_populate_iova(mp, addr + off, iova,
436 phys_len, free_cb, opaque);
437 if (ret == 0)
438 continue;
439 if (ret < 0)
440 goto fail;
441 /* no need to call the free callback for next chunks */
442 free_cb = NULL;
443 cnt += ret;
444 }
445
446 rte_mempool_trace_populate_virt(mp, addr, len, pg_sz, free_cb, opaque);
447 return cnt;
448
449 fail:
450 rte_mempool_free_memchunks(mp);
451 return ret;
452 }
453
454 /* Get the minimal page size used in a mempool before populating it. */
455 int
rte_mempool_get_page_size(struct rte_mempool * mp,size_t * pg_sz)456 rte_mempool_get_page_size(struct rte_mempool *mp, size_t *pg_sz)
457 {
458 bool need_iova_contig_obj;
459 bool alloc_in_ext_mem;
460 int ret;
461
462 /* check if we can retrieve a valid socket ID */
463 ret = rte_malloc_heap_socket_is_external(mp->socket_id);
464 if (ret < 0)
465 return -EINVAL;
466 alloc_in_ext_mem = (ret == 1);
467 need_iova_contig_obj = !(mp->flags & RTE_MEMPOOL_F_NO_IOVA_CONTIG);
468
469 if (!need_iova_contig_obj)
470 *pg_sz = 0;
471 else if (rte_eal_has_hugepages() || alloc_in_ext_mem)
472 *pg_sz = get_min_page_size(mp->socket_id);
473 else
474 *pg_sz = rte_mem_page_size();
475
476 rte_mempool_trace_get_page_size(mp, *pg_sz);
477 return 0;
478 }
479
480 /* Default function to populate the mempool: allocate memory in memzones,
481 * and populate them. Return the number of objects added, or a negative
482 * value on error.
483 */
484 int
rte_mempool_populate_default(struct rte_mempool * mp)485 rte_mempool_populate_default(struct rte_mempool *mp)
486 {
487 unsigned int mz_flags = RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY;
488 char mz_name[RTE_MEMZONE_NAMESIZE];
489 const struct rte_memzone *mz;
490 ssize_t mem_size;
491 size_t align, pg_sz, pg_shift = 0;
492 rte_iova_t iova;
493 unsigned mz_id, n;
494 int ret;
495 bool need_iova_contig_obj;
496 size_t max_alloc_size = SIZE_MAX;
497
498 ret = mempool_ops_alloc_once(mp);
499 if (ret != 0)
500 return ret;
501
502 /* mempool must not be populated */
503 if (mp->nb_mem_chunks != 0)
504 return -EEXIST;
505
506 /*
507 * the following section calculates page shift and page size values.
508 *
509 * these values impact the result of calc_mem_size operation, which
510 * returns the amount of memory that should be allocated to store the
511 * desired number of objects. when not zero, it allocates more memory
512 * for the padding between objects, to ensure that an object does not
513 * cross a page boundary. in other words, page size/shift are to be set
514 * to zero if mempool elements won't care about page boundaries.
515 * there are several considerations for page size and page shift here.
516 *
517 * if we don't need our mempools to have physically contiguous objects,
518 * then just set page shift and page size to 0, because the user has
519 * indicated that there's no need to care about anything.
520 *
521 * if we do need contiguous objects (if a mempool driver has its
522 * own calc_size() method returning min_chunk_size = mem_size),
523 * there is also an option to reserve the entire mempool memory
524 * as one contiguous block of memory.
525 *
526 * if we require contiguous objects, but not necessarily the entire
527 * mempool reserved space to be contiguous, pg_sz will be != 0,
528 * and the default ops->populate() will take care of not placing
529 * objects across pages.
530 *
531 * if our IO addresses are physical, we may get memory from bigger
532 * pages, or we might get memory from smaller pages, and how much of it
533 * we require depends on whether we want bigger or smaller pages.
534 * However, requesting each and every memory size is too much work, so
535 * what we'll do instead is walk through the page sizes available, pick
536 * the smallest one and set up page shift to match that one. We will be
537 * wasting some space this way, but it's much nicer than looping around
538 * trying to reserve each and every page size.
539 *
540 * If we fail to get enough contiguous memory, then we'll go and
541 * reserve space in smaller chunks.
542 */
543
544 need_iova_contig_obj = !(mp->flags & RTE_MEMPOOL_F_NO_IOVA_CONTIG);
545 ret = rte_mempool_get_page_size(mp, &pg_sz);
546 if (ret < 0)
547 return ret;
548
549 if (pg_sz != 0)
550 pg_shift = rte_bsf32(pg_sz);
551
552 for (mz_id = 0, n = mp->size; n > 0; mz_id++, n -= ret) {
553 size_t min_chunk_size;
554
555 mem_size = rte_mempool_ops_calc_mem_size(
556 mp, n, pg_shift, &min_chunk_size, &align);
557
558 if (mem_size < 0) {
559 ret = mem_size;
560 goto fail;
561 }
562
563 ret = snprintf(mz_name, sizeof(mz_name),
564 RTE_MEMPOOL_MZ_FORMAT "_%d", mp->name, mz_id);
565 if (ret < 0 || ret >= (int)sizeof(mz_name)) {
566 ret = -ENAMETOOLONG;
567 goto fail;
568 }
569
570 /* if we're trying to reserve contiguous memory, add appropriate
571 * memzone flag.
572 */
573 if (min_chunk_size == (size_t)mem_size)
574 mz_flags |= RTE_MEMZONE_IOVA_CONTIG;
575
576 /* Allocate a memzone, retrying with a smaller area on ENOMEM */
577 do {
578 mz = rte_memzone_reserve_aligned(mz_name,
579 RTE_MIN((size_t)mem_size, max_alloc_size),
580 mp->socket_id, mz_flags, align);
581
582 if (mz != NULL || rte_errno != ENOMEM)
583 break;
584
585 max_alloc_size = RTE_MIN(max_alloc_size,
586 (size_t)mem_size) / 2;
587 } while (mz == NULL && max_alloc_size >= min_chunk_size);
588
589 if (mz == NULL) {
590 ret = -rte_errno;
591 goto fail;
592 }
593
594 if (need_iova_contig_obj)
595 iova = mz->iova;
596 else
597 iova = RTE_BAD_IOVA;
598
599 if (pg_sz == 0 || (mz_flags & RTE_MEMZONE_IOVA_CONTIG))
600 ret = rte_mempool_populate_iova(mp, mz->addr,
601 iova, mz->len,
602 rte_mempool_memchunk_mz_free,
603 (void *)(uintptr_t)mz);
604 else
605 ret = rte_mempool_populate_virt(mp, mz->addr,
606 mz->len, pg_sz,
607 rte_mempool_memchunk_mz_free,
608 (void *)(uintptr_t)mz);
609 if (ret == 0) /* should not happen */
610 ret = -ENOBUFS;
611 if (ret < 0) {
612 rte_memzone_free(mz);
613 goto fail;
614 }
615 }
616
617 rte_mempool_trace_populate_default(mp);
618 return mp->size;
619
620 fail:
621 rte_mempool_free_memchunks(mp);
622 return ret;
623 }
624
625 /* return the memory size required for mempool objects in anonymous mem */
626 static ssize_t
get_anon_size(const struct rte_mempool * mp)627 get_anon_size(const struct rte_mempool *mp)
628 {
629 ssize_t size;
630 size_t pg_sz, pg_shift;
631 size_t min_chunk_size;
632 size_t align;
633
634 pg_sz = rte_mem_page_size();
635 pg_shift = rte_bsf32(pg_sz);
636 size = rte_mempool_ops_calc_mem_size(mp, mp->size, pg_shift,
637 &min_chunk_size, &align);
638
639 return size;
640 }
641
642 /* unmap a memory zone mapped by rte_mempool_populate_anon() */
643 static void
rte_mempool_memchunk_anon_free(struct rte_mempool_memhdr * memhdr,void * opaque)644 rte_mempool_memchunk_anon_free(struct rte_mempool_memhdr *memhdr,
645 void *opaque)
646 {
647 ssize_t size;
648
649 /*
650 * Calculate size since memhdr->len has contiguous chunk length
651 * which may be smaller if anon map is split into many contiguous
652 * chunks. Result must be the same as we calculated on populate.
653 */
654 size = get_anon_size(memhdr->mp);
655 if (size < 0)
656 return;
657
658 rte_mem_unmap(opaque, size);
659 }
660
661 /* populate the mempool with an anonymous mapping */
662 int
rte_mempool_populate_anon(struct rte_mempool * mp)663 rte_mempool_populate_anon(struct rte_mempool *mp)
664 {
665 ssize_t size;
666 int ret;
667 char *addr;
668
669 /* mempool is already populated, error */
670 if ((!STAILQ_EMPTY(&mp->mem_list)) || mp->nb_mem_chunks != 0) {
671 rte_errno = EINVAL;
672 return 0;
673 }
674
675 ret = mempool_ops_alloc_once(mp);
676 if (ret < 0) {
677 rte_errno = -ret;
678 return 0;
679 }
680
681 size = get_anon_size(mp);
682 if (size < 0) {
683 rte_errno = -size;
684 return 0;
685 }
686
687 /* get chunk of virtually continuous memory */
688 addr = rte_mem_map(NULL, size, RTE_PROT_READ | RTE_PROT_WRITE,
689 RTE_MAP_SHARED | RTE_MAP_ANONYMOUS, -1, 0);
690 if (addr == NULL)
691 return 0;
692 /* can't use MMAP_LOCKED, it does not exist on BSD */
693 if (rte_mem_lock(addr, size) < 0) {
694 rte_mem_unmap(addr, size);
695 return 0;
696 }
697
698 ret = rte_mempool_populate_virt(mp, addr, size, rte_mem_page_size(),
699 rte_mempool_memchunk_anon_free, addr);
700 if (ret == 0) /* should not happen */
701 ret = -ENOBUFS;
702 if (ret < 0) {
703 rte_errno = -ret;
704 goto fail;
705 }
706
707 rte_mempool_trace_populate_anon(mp);
708 return mp->populated_size;
709
710 fail:
711 rte_mempool_free_memchunks(mp);
712 return 0;
713 }
714
715 /* free a mempool */
716 void
rte_mempool_free(struct rte_mempool * mp)717 rte_mempool_free(struct rte_mempool *mp)
718 {
719 struct rte_mempool_list *mempool_list = NULL;
720 struct rte_tailq_entry *te;
721
722 if (mp == NULL)
723 return;
724
725 mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
726 rte_mcfg_tailq_write_lock();
727 /* find out tailq entry */
728 TAILQ_FOREACH(te, mempool_list, next) {
729 if (te->data == (void *)mp)
730 break;
731 }
732
733 if (te != NULL) {
734 TAILQ_REMOVE(mempool_list, te, next);
735 rte_free(te);
736 }
737 rte_mcfg_tailq_write_unlock();
738
739 mempool_event_callback_invoke(RTE_MEMPOOL_EVENT_DESTROY, mp);
740 rte_mempool_trace_free(mp);
741 rte_mempool_free_memchunks(mp);
742 rte_mempool_ops_free(mp);
743 rte_memzone_free(mp->mz);
744 }
745
746 static void
mempool_cache_init(struct rte_mempool_cache * cache,uint32_t size)747 mempool_cache_init(struct rte_mempool_cache *cache, uint32_t size)
748 {
749 /* Check that cache have enough space for flush threshold */
750 RTE_BUILD_BUG_ON(CALC_CACHE_FLUSHTHRESH(RTE_MEMPOOL_CACHE_MAX_SIZE) >
751 RTE_SIZEOF_FIELD(struct rte_mempool_cache, objs) /
752 RTE_SIZEOF_FIELD(struct rte_mempool_cache, objs[0]));
753
754 cache->size = size;
755 cache->flushthresh = CALC_CACHE_FLUSHTHRESH(size);
756 cache->len = 0;
757 }
758
759 /*
760 * Create and initialize a cache for objects that are retrieved from and
761 * returned to an underlying mempool. This structure is identical to the
762 * local_cache[lcore_id] pointed to by the mempool structure.
763 */
764 struct rte_mempool_cache *
rte_mempool_cache_create(uint32_t size,int socket_id)765 rte_mempool_cache_create(uint32_t size, int socket_id)
766 {
767 struct rte_mempool_cache *cache;
768
769 if (size == 0 || size > RTE_MEMPOOL_CACHE_MAX_SIZE) {
770 rte_errno = EINVAL;
771 return NULL;
772 }
773
774 cache = rte_zmalloc_socket("MEMPOOL_CACHE", sizeof(*cache),
775 RTE_CACHE_LINE_SIZE, socket_id);
776 if (cache == NULL) {
777 RTE_MEMPOOL_LOG(ERR, "Cannot allocate mempool cache.");
778 rte_errno = ENOMEM;
779 return NULL;
780 }
781
782 mempool_cache_init(cache, size);
783
784 rte_mempool_trace_cache_create(size, socket_id, cache);
785 return cache;
786 }
787
788 /*
789 * Free a cache. It's the responsibility of the user to make sure that any
790 * remaining objects in the cache are flushed to the corresponding
791 * mempool.
792 */
793 void
rte_mempool_cache_free(struct rte_mempool_cache * cache)794 rte_mempool_cache_free(struct rte_mempool_cache *cache)
795 {
796 rte_mempool_trace_cache_free(cache);
797 rte_free(cache);
798 }
799
800 /* create an empty mempool */
801 struct rte_mempool *
rte_mempool_create_empty(const char * name,unsigned n,unsigned elt_size,unsigned cache_size,unsigned private_data_size,int socket_id,unsigned flags)802 rte_mempool_create_empty(const char *name, unsigned n, unsigned elt_size,
803 unsigned cache_size, unsigned private_data_size,
804 int socket_id, unsigned flags)
805 {
806 char mz_name[RTE_MEMZONE_NAMESIZE];
807 struct rte_mempool_list *mempool_list;
808 struct rte_mempool *mp = NULL;
809 struct rte_tailq_entry *te = NULL;
810 const struct rte_memzone *mz = NULL;
811 size_t mempool_size;
812 unsigned int mz_flags = RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY;
813 struct rte_mempool_objsz objsz;
814 unsigned lcore_id;
815 int ret;
816
817 /* compilation-time checks */
818 RTE_BUILD_BUG_ON((sizeof(struct rte_mempool) &
819 RTE_CACHE_LINE_MASK) != 0);
820 RTE_BUILD_BUG_ON((sizeof(struct rte_mempool_cache) &
821 RTE_CACHE_LINE_MASK) != 0);
822 #ifdef RTE_LIBRTE_MEMPOOL_STATS
823 RTE_BUILD_BUG_ON((sizeof(struct rte_mempool_debug_stats) &
824 RTE_CACHE_LINE_MASK) != 0);
825 RTE_BUILD_BUG_ON((offsetof(struct rte_mempool, stats) &
826 RTE_CACHE_LINE_MASK) != 0);
827 #endif
828
829 mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
830
831 /* asked for zero items */
832 if (n == 0) {
833 rte_errno = EINVAL;
834 return NULL;
835 }
836
837 /* asked cache too big */
838 if (cache_size > RTE_MEMPOOL_CACHE_MAX_SIZE ||
839 CALC_CACHE_FLUSHTHRESH(cache_size) > n) {
840 rte_errno = EINVAL;
841 return NULL;
842 }
843
844 /* enforce only user flags are passed by the application */
845 if ((flags & ~RTE_MEMPOOL_VALID_USER_FLAGS) != 0) {
846 rte_errno = EINVAL;
847 return NULL;
848 }
849
850 /*
851 * No objects in the pool can be used for IO until it's populated
852 * with at least some objects with valid IOVA.
853 */
854 flags |= RTE_MEMPOOL_F_NON_IO;
855
856 /* "no cache align" imply "no spread" */
857 if (flags & RTE_MEMPOOL_F_NO_CACHE_ALIGN)
858 flags |= RTE_MEMPOOL_F_NO_SPREAD;
859
860 /* calculate mempool object sizes. */
861 if (!rte_mempool_calc_obj_size(elt_size, flags, &objsz)) {
862 rte_errno = EINVAL;
863 return NULL;
864 }
865
866 rte_mcfg_mempool_write_lock();
867
868 /*
869 * reserve a memory zone for this mempool: private data is
870 * cache-aligned
871 */
872 private_data_size = (private_data_size +
873 RTE_MEMPOOL_ALIGN_MASK) & (~RTE_MEMPOOL_ALIGN_MASK);
874
875
876 /* try to allocate tailq entry */
877 te = rte_zmalloc("MEMPOOL_TAILQ_ENTRY", sizeof(*te), 0);
878 if (te == NULL) {
879 RTE_MEMPOOL_LOG(ERR, "Cannot allocate tailq entry!");
880 goto exit_unlock;
881 }
882
883 mempool_size = RTE_MEMPOOL_HEADER_SIZE(mp, cache_size);
884 mempool_size += private_data_size;
885 mempool_size = RTE_ALIGN_CEIL(mempool_size, RTE_MEMPOOL_ALIGN);
886
887 ret = snprintf(mz_name, sizeof(mz_name), RTE_MEMPOOL_MZ_FORMAT, name);
888 if (ret < 0 || ret >= (int)sizeof(mz_name)) {
889 rte_errno = ENAMETOOLONG;
890 goto exit_unlock;
891 }
892
893 mz = rte_memzone_reserve(mz_name, mempool_size, socket_id, mz_flags);
894 if (mz == NULL)
895 goto exit_unlock;
896
897 /* init the mempool structure */
898 mp = mz->addr;
899 memset(mp, 0, RTE_MEMPOOL_HEADER_SIZE(mp, cache_size));
900 ret = strlcpy(mp->name, name, sizeof(mp->name));
901 if (ret < 0 || ret >= (int)sizeof(mp->name)) {
902 rte_errno = ENAMETOOLONG;
903 goto exit_unlock;
904 }
905 mp->mz = mz;
906 mp->size = n;
907 mp->flags = flags;
908 mp->socket_id = socket_id;
909 mp->elt_size = objsz.elt_size;
910 mp->header_size = objsz.header_size;
911 mp->trailer_size = objsz.trailer_size;
912 /* Size of default caches, zero means disabled. */
913 mp->cache_size = cache_size;
914 mp->private_data_size = private_data_size;
915 STAILQ_INIT(&mp->elt_list);
916 STAILQ_INIT(&mp->mem_list);
917
918 /*
919 * Since we have 4 combinations of the SP/SC/MP/MC examine the flags to
920 * set the correct index into the table of ops structs.
921 */
922 if ((flags & RTE_MEMPOOL_F_SP_PUT) && (flags & RTE_MEMPOOL_F_SC_GET))
923 ret = rte_mempool_set_ops_byname(mp, "ring_sp_sc", NULL);
924 else if (flags & RTE_MEMPOOL_F_SP_PUT)
925 ret = rte_mempool_set_ops_byname(mp, "ring_sp_mc", NULL);
926 else if (flags & RTE_MEMPOOL_F_SC_GET)
927 ret = rte_mempool_set_ops_byname(mp, "ring_mp_sc", NULL);
928 else
929 ret = rte_mempool_set_ops_byname(mp, "ring_mp_mc", NULL);
930
931 if (ret)
932 goto exit_unlock;
933
934 /*
935 * local_cache pointer is set even if cache_size is zero.
936 * The local_cache points to just past the elt_pa[] array.
937 */
938 mp->local_cache = (struct rte_mempool_cache *)
939 RTE_PTR_ADD(mp, RTE_MEMPOOL_HEADER_SIZE(mp, 0));
940
941 /* Init all default caches. */
942 if (cache_size != 0) {
943 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++)
944 mempool_cache_init(&mp->local_cache[lcore_id],
945 cache_size);
946 }
947
948 te->data = mp;
949
950 rte_mcfg_tailq_write_lock();
951 TAILQ_INSERT_TAIL(mempool_list, te, next);
952 rte_mcfg_tailq_write_unlock();
953 rte_mcfg_mempool_write_unlock();
954
955 rte_mempool_trace_create_empty(name, n, elt_size, cache_size,
956 private_data_size, flags, mp);
957 return mp;
958
959 exit_unlock:
960 rte_mcfg_mempool_write_unlock();
961 rte_free(te);
962 rte_mempool_free(mp);
963 return NULL;
964 }
965
966 /* create the mempool */
967 struct rte_mempool *
rte_mempool_create(const char * name,unsigned n,unsigned elt_size,unsigned cache_size,unsigned private_data_size,rte_mempool_ctor_t * mp_init,void * mp_init_arg,rte_mempool_obj_cb_t * obj_init,void * obj_init_arg,int socket_id,unsigned flags)968 rte_mempool_create(const char *name, unsigned n, unsigned elt_size,
969 unsigned cache_size, unsigned private_data_size,
970 rte_mempool_ctor_t *mp_init, void *mp_init_arg,
971 rte_mempool_obj_cb_t *obj_init, void *obj_init_arg,
972 int socket_id, unsigned flags)
973 {
974 struct rte_mempool *mp;
975
976 mp = rte_mempool_create_empty(name, n, elt_size, cache_size,
977 private_data_size, socket_id, flags);
978 if (mp == NULL)
979 return NULL;
980
981 /* call the mempool priv initializer */
982 if (mp_init)
983 mp_init(mp, mp_init_arg);
984
985 if (rte_mempool_populate_default(mp) < 0)
986 goto fail;
987
988 /* call the object initializers */
989 if (obj_init)
990 rte_mempool_obj_iter(mp, obj_init, obj_init_arg);
991
992 rte_mempool_trace_create(name, n, elt_size, cache_size,
993 private_data_size, mp_init, mp_init_arg, obj_init,
994 obj_init_arg, flags, mp);
995 return mp;
996
997 fail:
998 rte_mempool_free(mp);
999 return NULL;
1000 }
1001
1002 /* Return the number of entries in the mempool */
1003 unsigned int
rte_mempool_avail_count(const struct rte_mempool * mp)1004 rte_mempool_avail_count(const struct rte_mempool *mp)
1005 {
1006 unsigned count;
1007 unsigned lcore_id;
1008
1009 count = rte_mempool_ops_get_count(mp);
1010
1011 if (mp->cache_size == 0)
1012 return count;
1013
1014 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++)
1015 count += mp->local_cache[lcore_id].len;
1016
1017 /*
1018 * due to race condition (access to len is not locked), the
1019 * total can be greater than size... so fix the result
1020 */
1021 if (count > mp->size)
1022 return mp->size;
1023 return count;
1024 }
1025
1026 /* return the number of entries allocated from the mempool */
1027 unsigned int
rte_mempool_in_use_count(const struct rte_mempool * mp)1028 rte_mempool_in_use_count(const struct rte_mempool *mp)
1029 {
1030 return mp->size - rte_mempool_avail_count(mp);
1031 }
1032
1033 /* dump the cache status */
1034 static unsigned
rte_mempool_dump_cache(FILE * f,const struct rte_mempool * mp)1035 rte_mempool_dump_cache(FILE *f, const struct rte_mempool *mp)
1036 {
1037 unsigned lcore_id;
1038 unsigned count = 0;
1039 unsigned cache_count;
1040
1041 fprintf(f, " internal cache infos:\n");
1042 fprintf(f, " cache_size=%"PRIu32"\n", mp->cache_size);
1043
1044 if (mp->cache_size == 0)
1045 return count;
1046
1047 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1048 cache_count = mp->local_cache[lcore_id].len;
1049 fprintf(f, " cache_count[%u]=%"PRIu32"\n",
1050 lcore_id, cache_count);
1051 count += cache_count;
1052 }
1053 fprintf(f, " total_cache_count=%u\n", count);
1054 return count;
1055 }
1056
1057 /* check and update cookies or panic (internal) */
rte_mempool_check_cookies(const struct rte_mempool * mp,void * const * obj_table_const,unsigned n,int free)1058 void rte_mempool_check_cookies(const struct rte_mempool *mp,
1059 void * const *obj_table_const, unsigned n, int free)
1060 {
1061 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
1062 struct rte_mempool_objhdr *hdr;
1063 struct rte_mempool_objtlr *tlr;
1064 uint64_t cookie;
1065 void *tmp;
1066 void *obj;
1067 void **obj_table;
1068
1069 /* Force to drop the "const" attribute. This is done only when
1070 * DEBUG is enabled */
1071 tmp = (void *)(uintptr_t)obj_table_const;
1072 obj_table = tmp;
1073
1074 while (n--) {
1075 obj = obj_table[n];
1076
1077 if (rte_mempool_from_obj(obj) != mp)
1078 rte_panic("MEMPOOL: object is owned by another "
1079 "mempool\n");
1080
1081 hdr = rte_mempool_get_header(obj);
1082 cookie = hdr->cookie;
1083
1084 if (free == 0) {
1085 if (cookie != RTE_MEMPOOL_HEADER_COOKIE1) {
1086 RTE_MEMPOOL_LOG(CRIT,
1087 "obj=%p, mempool=%p, cookie=%" PRIx64,
1088 obj, (const void *) mp, cookie);
1089 rte_panic("MEMPOOL: bad header cookie (put)\n");
1090 }
1091 hdr->cookie = RTE_MEMPOOL_HEADER_COOKIE2;
1092 } else if (free == 1) {
1093 if (cookie != RTE_MEMPOOL_HEADER_COOKIE2) {
1094 RTE_MEMPOOL_LOG(CRIT,
1095 "obj=%p, mempool=%p, cookie=%" PRIx64,
1096 obj, (const void *) mp, cookie);
1097 rte_panic("MEMPOOL: bad header cookie (get)\n");
1098 }
1099 hdr->cookie = RTE_MEMPOOL_HEADER_COOKIE1;
1100 } else if (free == 2) {
1101 if (cookie != RTE_MEMPOOL_HEADER_COOKIE1 &&
1102 cookie != RTE_MEMPOOL_HEADER_COOKIE2) {
1103 RTE_MEMPOOL_LOG(CRIT,
1104 "obj=%p, mempool=%p, cookie=%" PRIx64,
1105 obj, (const void *) mp, cookie);
1106 rte_panic("MEMPOOL: bad header cookie (audit)\n");
1107 }
1108 }
1109 tlr = rte_mempool_get_trailer(obj);
1110 cookie = tlr->cookie;
1111 if (cookie != RTE_MEMPOOL_TRAILER_COOKIE) {
1112 RTE_MEMPOOL_LOG(CRIT,
1113 "obj=%p, mempool=%p, cookie=%" PRIx64,
1114 obj, (const void *) mp, cookie);
1115 rte_panic("MEMPOOL: bad trailer cookie\n");
1116 }
1117 }
1118 #else
1119 RTE_SET_USED(mp);
1120 RTE_SET_USED(obj_table_const);
1121 RTE_SET_USED(n);
1122 RTE_SET_USED(free);
1123 #endif
1124 }
1125
1126 void
rte_mempool_contig_blocks_check_cookies(const struct rte_mempool * mp,void * const * first_obj_table_const,unsigned int n,int free)1127 rte_mempool_contig_blocks_check_cookies(const struct rte_mempool *mp,
1128 void * const *first_obj_table_const, unsigned int n, int free)
1129 {
1130 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
1131 struct rte_mempool_info info;
1132 const size_t total_elt_sz =
1133 mp->header_size + mp->elt_size + mp->trailer_size;
1134 unsigned int i, j;
1135
1136 rte_mempool_ops_get_info(mp, &info);
1137
1138 for (i = 0; i < n; ++i) {
1139 void *first_obj = first_obj_table_const[i];
1140
1141 for (j = 0; j < info.contig_block_size; ++j) {
1142 void *obj;
1143
1144 obj = (void *)((uintptr_t)first_obj + j * total_elt_sz);
1145 rte_mempool_check_cookies(mp, &obj, 1, free);
1146 }
1147 }
1148 #else
1149 RTE_SET_USED(mp);
1150 RTE_SET_USED(first_obj_table_const);
1151 RTE_SET_USED(n);
1152 RTE_SET_USED(free);
1153 #endif
1154 }
1155
1156 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
1157 static void
mempool_obj_audit(struct rte_mempool * mp,__rte_unused void * opaque,void * obj,__rte_unused unsigned idx)1158 mempool_obj_audit(struct rte_mempool *mp, __rte_unused void *opaque,
1159 void *obj, __rte_unused unsigned idx)
1160 {
1161 RTE_MEMPOOL_CHECK_COOKIES(mp, &obj, 1, 2);
1162 }
1163
1164 static void
mempool_audit_cookies(struct rte_mempool * mp)1165 mempool_audit_cookies(struct rte_mempool *mp)
1166 {
1167 unsigned num;
1168
1169 num = rte_mempool_obj_iter(mp, mempool_obj_audit, NULL);
1170 if (num != mp->size) {
1171 rte_panic("rte_mempool_obj_iter(mempool=%p, size=%u) "
1172 "iterated only over %u elements\n",
1173 mp, mp->size, num);
1174 }
1175 }
1176 #else
1177 #define mempool_audit_cookies(mp) do {} while(0)
1178 #endif
1179
1180 /* check cookies before and after objects */
1181 static void
mempool_audit_cache(const struct rte_mempool * mp)1182 mempool_audit_cache(const struct rte_mempool *mp)
1183 {
1184 /* check cache size consistency */
1185 unsigned lcore_id;
1186
1187 if (mp->cache_size == 0)
1188 return;
1189
1190 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1191 const struct rte_mempool_cache *cache;
1192 cache = &mp->local_cache[lcore_id];
1193 if (cache->len > RTE_DIM(cache->objs)) {
1194 RTE_MEMPOOL_LOG(CRIT, "badness on cache[%u]",
1195 lcore_id);
1196 rte_panic("MEMPOOL: invalid cache len\n");
1197 }
1198 }
1199 }
1200
1201 /* check the consistency of mempool (size, cookies, ...) */
1202 void
rte_mempool_audit(struct rte_mempool * mp)1203 rte_mempool_audit(struct rte_mempool *mp)
1204 {
1205 mempool_audit_cache(mp);
1206 mempool_audit_cookies(mp);
1207
1208 /* For case where mempool DEBUG is not set, and cache size is 0 */
1209 RTE_SET_USED(mp);
1210 }
1211
1212 /* dump the status of the mempool on the console */
1213 void
rte_mempool_dump(FILE * f,struct rte_mempool * mp)1214 rte_mempool_dump(FILE *f, struct rte_mempool *mp)
1215 {
1216 #ifdef RTE_LIBRTE_MEMPOOL_STATS
1217 struct rte_mempool_info info;
1218 struct rte_mempool_debug_stats sum;
1219 unsigned lcore_id;
1220 #endif
1221 struct rte_mempool_memhdr *memhdr;
1222 struct rte_mempool_ops *ops;
1223 unsigned common_count;
1224 unsigned cache_count;
1225 size_t mem_len = 0;
1226
1227 RTE_ASSERT(f != NULL);
1228 RTE_ASSERT(mp != NULL);
1229
1230 fprintf(f, "mempool <%s>@%p\n", mp->name, mp);
1231 fprintf(f, " flags=%x\n", mp->flags);
1232 fprintf(f, " socket_id=%d\n", mp->socket_id);
1233 fprintf(f, " pool=%p\n", mp->pool_data);
1234 fprintf(f, " iova=0x%" PRIx64 "\n", mp->mz->iova);
1235 fprintf(f, " nb_mem_chunks=%u\n", mp->nb_mem_chunks);
1236 fprintf(f, " size=%"PRIu32"\n", mp->size);
1237 fprintf(f, " populated_size=%"PRIu32"\n", mp->populated_size);
1238 fprintf(f, " header_size=%"PRIu32"\n", mp->header_size);
1239 fprintf(f, " elt_size=%"PRIu32"\n", mp->elt_size);
1240 fprintf(f, " trailer_size=%"PRIu32"\n", mp->trailer_size);
1241 fprintf(f, " total_obj_size=%"PRIu32"\n",
1242 mp->header_size + mp->elt_size + mp->trailer_size);
1243
1244 fprintf(f, " private_data_size=%"PRIu32"\n", mp->private_data_size);
1245
1246 fprintf(f, " ops_index=%d\n", mp->ops_index);
1247 ops = rte_mempool_get_ops(mp->ops_index);
1248 fprintf(f, " ops_name: <%s>\n", (ops != NULL) ? ops->name : "NA");
1249
1250 STAILQ_FOREACH(memhdr, &mp->mem_list, next) {
1251 fprintf(f, " memory chunk at %p, addr=%p, iova=0x%" PRIx64 ", len=%zu\n",
1252 memhdr, memhdr->addr, memhdr->iova, memhdr->len);
1253 mem_len += memhdr->len;
1254 }
1255 if (mem_len != 0) {
1256 fprintf(f, " avg bytes/object=%#Lf\n",
1257 (long double)mem_len / mp->size);
1258 }
1259
1260 cache_count = rte_mempool_dump_cache(f, mp);
1261 common_count = rte_mempool_ops_get_count(mp);
1262 if ((cache_count + common_count) > mp->size)
1263 common_count = mp->size - cache_count;
1264 fprintf(f, " common_pool_count=%u\n", common_count);
1265
1266 /* sum and dump statistics */
1267 #ifdef RTE_LIBRTE_MEMPOOL_STATS
1268 rte_mempool_ops_get_info(mp, &info);
1269 memset(&sum, 0, sizeof(sum));
1270 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE + 1; lcore_id++) {
1271 sum.put_bulk += mp->stats[lcore_id].put_bulk;
1272 sum.put_objs += mp->stats[lcore_id].put_objs;
1273 sum.put_common_pool_bulk += mp->stats[lcore_id].put_common_pool_bulk;
1274 sum.put_common_pool_objs += mp->stats[lcore_id].put_common_pool_objs;
1275 sum.get_common_pool_bulk += mp->stats[lcore_id].get_common_pool_bulk;
1276 sum.get_common_pool_objs += mp->stats[lcore_id].get_common_pool_objs;
1277 sum.get_success_bulk += mp->stats[lcore_id].get_success_bulk;
1278 sum.get_success_objs += mp->stats[lcore_id].get_success_objs;
1279 sum.get_fail_bulk += mp->stats[lcore_id].get_fail_bulk;
1280 sum.get_fail_objs += mp->stats[lcore_id].get_fail_objs;
1281 sum.get_success_blks += mp->stats[lcore_id].get_success_blks;
1282 sum.get_fail_blks += mp->stats[lcore_id].get_fail_blks;
1283 }
1284 if (mp->cache_size != 0) {
1285 /* Add the statistics stored in the mempool caches. */
1286 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1287 sum.put_bulk += mp->local_cache[lcore_id].stats.put_bulk;
1288 sum.put_objs += mp->local_cache[lcore_id].stats.put_objs;
1289 sum.get_success_bulk += mp->local_cache[lcore_id].stats.get_success_bulk;
1290 sum.get_success_objs += mp->local_cache[lcore_id].stats.get_success_objs;
1291 }
1292 }
1293 fprintf(f, " stats:\n");
1294 fprintf(f, " put_bulk=%"PRIu64"\n", sum.put_bulk);
1295 fprintf(f, " put_objs=%"PRIu64"\n", sum.put_objs);
1296 fprintf(f, " put_common_pool_bulk=%"PRIu64"\n", sum.put_common_pool_bulk);
1297 fprintf(f, " put_common_pool_objs=%"PRIu64"\n", sum.put_common_pool_objs);
1298 fprintf(f, " get_common_pool_bulk=%"PRIu64"\n", sum.get_common_pool_bulk);
1299 fprintf(f, " get_common_pool_objs=%"PRIu64"\n", sum.get_common_pool_objs);
1300 fprintf(f, " get_success_bulk=%"PRIu64"\n", sum.get_success_bulk);
1301 fprintf(f, " get_success_objs=%"PRIu64"\n", sum.get_success_objs);
1302 fprintf(f, " get_fail_bulk=%"PRIu64"\n", sum.get_fail_bulk);
1303 fprintf(f, " get_fail_objs=%"PRIu64"\n", sum.get_fail_objs);
1304 if (info.contig_block_size > 0) {
1305 fprintf(f, " get_success_blks=%"PRIu64"\n",
1306 sum.get_success_blks);
1307 fprintf(f, " get_fail_blks=%"PRIu64"\n", sum.get_fail_blks);
1308 }
1309 #else
1310 fprintf(f, " no statistics available\n");
1311 #endif
1312
1313 rte_mempool_audit(mp);
1314 }
1315
1316 /* dump the status of all mempools on the console */
1317 void
rte_mempool_list_dump(FILE * f)1318 rte_mempool_list_dump(FILE *f)
1319 {
1320 struct rte_mempool *mp = NULL;
1321 struct rte_tailq_entry *te;
1322 struct rte_mempool_list *mempool_list;
1323
1324 mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
1325
1326 rte_mcfg_mempool_read_lock();
1327
1328 TAILQ_FOREACH(te, mempool_list, next) {
1329 mp = (struct rte_mempool *) te->data;
1330 rte_mempool_dump(f, mp);
1331 }
1332
1333 rte_mcfg_mempool_read_unlock();
1334 }
1335
1336 /* search a mempool from its name */
1337 struct rte_mempool *
rte_mempool_lookup(const char * name)1338 rte_mempool_lookup(const char *name)
1339 {
1340 struct rte_mempool *mp = NULL;
1341 struct rte_tailq_entry *te;
1342 struct rte_mempool_list *mempool_list;
1343
1344 mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
1345
1346 rte_mcfg_mempool_read_lock();
1347
1348 TAILQ_FOREACH(te, mempool_list, next) {
1349 mp = (struct rte_mempool *) te->data;
1350 if (strncmp(name, mp->name, RTE_MEMPOOL_NAMESIZE) == 0)
1351 break;
1352 }
1353
1354 rte_mcfg_mempool_read_unlock();
1355
1356 if (te == NULL) {
1357 rte_errno = ENOENT;
1358 return NULL;
1359 }
1360
1361 return mp;
1362 }
1363
rte_mempool_walk(void (* func)(struct rte_mempool *,void *),void * arg)1364 void rte_mempool_walk(void (*func)(struct rte_mempool *, void *),
1365 void *arg)
1366 {
1367 struct rte_tailq_entry *te = NULL;
1368 struct rte_mempool_list *mempool_list;
1369 void *tmp_te;
1370
1371 mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
1372
1373 rte_mcfg_mempool_read_lock();
1374
1375 RTE_TAILQ_FOREACH_SAFE(te, mempool_list, next, tmp_te) {
1376 (*func)((struct rte_mempool *) te->data, arg);
1377 }
1378
1379 rte_mcfg_mempool_read_unlock();
1380 }
1381
rte_mempool_get_mem_range(const struct rte_mempool * mp,struct rte_mempool_mem_range_info * mem_range)1382 int rte_mempool_get_mem_range(const struct rte_mempool *mp,
1383 struct rte_mempool_mem_range_info *mem_range)
1384 {
1385 void *address_low = (void *)UINTPTR_MAX;
1386 void *address_high = 0;
1387 size_t address_diff = 0;
1388 size_t total_size = 0;
1389 struct rte_mempool_memhdr *hdr;
1390
1391 if (mp == NULL || mem_range == NULL)
1392 return -EINVAL;
1393
1394 /* go through memory chunks and find the lowest and highest addresses */
1395 STAILQ_FOREACH(hdr, &mp->mem_list, next) {
1396 if (address_low > hdr->addr)
1397 address_low = hdr->addr;
1398 if (address_high < RTE_PTR_ADD(hdr->addr, hdr->len))
1399 address_high = RTE_PTR_ADD(hdr->addr, hdr->len);
1400 total_size += hdr->len;
1401 }
1402
1403 /* check if mempool was not populated yet (no memory chunks) */
1404 if (address_low == (void *)UINTPTR_MAX)
1405 return -EINVAL;
1406
1407 address_diff = (size_t)RTE_PTR_DIFF(address_high, address_low);
1408
1409 mem_range->start = address_low;
1410 mem_range->length = address_diff;
1411 mem_range->is_contiguous = (total_size == address_diff) ? true : false;
1412
1413 return 0;
1414 }
1415
rte_mempool_get_obj_alignment(const struct rte_mempool * mp)1416 size_t rte_mempool_get_obj_alignment(const struct rte_mempool *mp)
1417 {
1418 if (mp == NULL)
1419 return 0;
1420
1421 if (mp->flags & RTE_MEMPOOL_F_NO_CACHE_ALIGN)
1422 return sizeof(uint64_t);
1423 else
1424 return RTE_MEMPOOL_ALIGN;
1425 }
1426
1427 struct mempool_callback_data {
1428 TAILQ_ENTRY(mempool_callback_data) callbacks;
1429 rte_mempool_event_callback *func;
1430 void *user_data;
1431 };
1432
1433 static void
mempool_event_callback_invoke(enum rte_mempool_event event,struct rte_mempool * mp)1434 mempool_event_callback_invoke(enum rte_mempool_event event,
1435 struct rte_mempool *mp)
1436 {
1437 struct mempool_callback_data *cb;
1438 void *tmp_te;
1439
1440 rte_mcfg_tailq_read_lock();
1441 RTE_TAILQ_FOREACH_SAFE(cb, &callback_tailq, callbacks, tmp_te) {
1442 rte_mcfg_tailq_read_unlock();
1443 cb->func(event, mp, cb->user_data);
1444 rte_mcfg_tailq_read_lock();
1445 }
1446 rte_mcfg_tailq_read_unlock();
1447 }
1448
1449 int
rte_mempool_event_callback_register(rte_mempool_event_callback * func,void * user_data)1450 rte_mempool_event_callback_register(rte_mempool_event_callback *func,
1451 void *user_data)
1452 {
1453 struct mempool_callback_data *cb;
1454 int ret;
1455
1456 if (func == NULL) {
1457 rte_errno = EINVAL;
1458 return -rte_errno;
1459 }
1460
1461 rte_mcfg_tailq_write_lock();
1462 TAILQ_FOREACH(cb, &callback_tailq, callbacks) {
1463 if (cb->func == func && cb->user_data == user_data) {
1464 ret = -EEXIST;
1465 goto exit;
1466 }
1467 }
1468
1469 cb = calloc(1, sizeof(*cb));
1470 if (cb == NULL) {
1471 RTE_MEMPOOL_LOG(ERR, "Cannot allocate event callback!");
1472 ret = -ENOMEM;
1473 goto exit;
1474 }
1475
1476 cb->func = func;
1477 cb->user_data = user_data;
1478 TAILQ_INSERT_TAIL(&callback_tailq, cb, callbacks);
1479 ret = 0;
1480
1481 exit:
1482 rte_mcfg_tailq_write_unlock();
1483 rte_errno = -ret;
1484 return ret;
1485 }
1486
1487 int
rte_mempool_event_callback_unregister(rte_mempool_event_callback * func,void * user_data)1488 rte_mempool_event_callback_unregister(rte_mempool_event_callback *func,
1489 void *user_data)
1490 {
1491 struct mempool_callback_data *cb;
1492 int ret = -ENOENT;
1493
1494 rte_mcfg_tailq_write_lock();
1495 TAILQ_FOREACH(cb, &callback_tailq, callbacks) {
1496 if (cb->func == func && cb->user_data == user_data) {
1497 TAILQ_REMOVE(&callback_tailq, cb, callbacks);
1498 ret = 0;
1499 break;
1500 }
1501 }
1502 rte_mcfg_tailq_write_unlock();
1503
1504 if (ret == 0)
1505 free(cb);
1506 rte_errno = -ret;
1507 return ret;
1508 }
1509
1510 static void
mempool_list_cb(struct rte_mempool * mp,void * arg)1511 mempool_list_cb(struct rte_mempool *mp, void *arg)
1512 {
1513 struct rte_tel_data *d = (struct rte_tel_data *)arg;
1514
1515 rte_tel_data_add_array_string(d, mp->name);
1516 }
1517
1518 static int
mempool_handle_list(const char * cmd __rte_unused,const char * params __rte_unused,struct rte_tel_data * d)1519 mempool_handle_list(const char *cmd __rte_unused,
1520 const char *params __rte_unused, struct rte_tel_data *d)
1521 {
1522 rte_tel_data_start_array(d, RTE_TEL_STRING_VAL);
1523 rte_mempool_walk(mempool_list_cb, d);
1524 return 0;
1525 }
1526
1527 struct mempool_info_cb_arg {
1528 char *pool_name;
1529 struct rte_tel_data *d;
1530 };
1531
1532 static void
mempool_info_cb(struct rte_mempool * mp,void * arg)1533 mempool_info_cb(struct rte_mempool *mp, void *arg)
1534 {
1535 struct mempool_info_cb_arg *info = (struct mempool_info_cb_arg *)arg;
1536 const struct rte_memzone *mz;
1537 uint64_t cache_count, common_count;
1538
1539 if (strncmp(mp->name, info->pool_name, RTE_MEMZONE_NAMESIZE))
1540 return;
1541
1542 rte_tel_data_add_dict_string(info->d, "name", mp->name);
1543 rte_tel_data_add_dict_uint(info->d, "pool_id", mp->pool_id);
1544 rte_tel_data_add_dict_uint(info->d, "flags", mp->flags);
1545 rte_tel_data_add_dict_int(info->d, "socket_id", mp->socket_id);
1546 rte_tel_data_add_dict_uint(info->d, "size", mp->size);
1547 rte_tel_data_add_dict_uint(info->d, "cache_size", mp->cache_size);
1548 rte_tel_data_add_dict_uint(info->d, "elt_size", mp->elt_size);
1549 rte_tel_data_add_dict_uint(info->d, "header_size", mp->header_size);
1550 rte_tel_data_add_dict_uint(info->d, "trailer_size", mp->trailer_size);
1551 rte_tel_data_add_dict_uint(info->d, "private_data_size",
1552 mp->private_data_size);
1553 rte_tel_data_add_dict_int(info->d, "ops_index", mp->ops_index);
1554 rte_tel_data_add_dict_uint(info->d, "populated_size",
1555 mp->populated_size);
1556
1557 cache_count = 0;
1558 if (mp->cache_size > 0) {
1559 int lcore_id;
1560 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++)
1561 cache_count += mp->local_cache[lcore_id].len;
1562 }
1563 rte_tel_data_add_dict_uint(info->d, "total_cache_count", cache_count);
1564 common_count = rte_mempool_ops_get_count(mp);
1565 if ((cache_count + common_count) > mp->size)
1566 common_count = mp->size - cache_count;
1567 rte_tel_data_add_dict_uint(info->d, "common_pool_count", common_count);
1568
1569 mz = mp->mz;
1570 rte_tel_data_add_dict_string(info->d, "mz_name", mz->name);
1571 rte_tel_data_add_dict_uint(info->d, "mz_len", mz->len);
1572 rte_tel_data_add_dict_uint(info->d, "mz_hugepage_sz",
1573 mz->hugepage_sz);
1574 rte_tel_data_add_dict_int(info->d, "mz_socket_id", mz->socket_id);
1575 rte_tel_data_add_dict_uint(info->d, "mz_flags", mz->flags);
1576 }
1577
1578 static int
mempool_handle_info(const char * cmd __rte_unused,const char * params,struct rte_tel_data * d)1579 mempool_handle_info(const char *cmd __rte_unused, const char *params,
1580 struct rte_tel_data *d)
1581 {
1582 struct mempool_info_cb_arg mp_arg;
1583 char name[RTE_MEMZONE_NAMESIZE];
1584
1585 if (!params || strlen(params) == 0)
1586 return -EINVAL;
1587
1588 rte_strlcpy(name, params, RTE_MEMZONE_NAMESIZE);
1589
1590 rte_tel_data_start_dict(d);
1591 mp_arg.pool_name = name;
1592 mp_arg.d = d;
1593 rte_mempool_walk(mempool_info_cb, &mp_arg);
1594
1595 return 0;
1596 }
1597
RTE_INIT(mempool_init_telemetry)1598 RTE_INIT(mempool_init_telemetry)
1599 {
1600 rte_telemetry_register_cmd("/mempool/list", mempool_handle_list,
1601 "Returns list of available mempool. Takes no parameters");
1602 rte_telemetry_register_cmd("/mempool/info", mempool_handle_info,
1603 "Returns mempool info. Parameters: pool_name");
1604 }
1605