xref: /spdk/lib/nvme/nvme_ctrlr.c (revision f43b76508486ba8d7475f1c170cf471de6619b14)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2015 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved.
4  *   Copyright (c) 2021-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
5  */
6 
7 #include "spdk/stdinc.h"
8 
9 #include "nvme_internal.h"
10 #include "nvme_io_msg.h"
11 
12 #include "spdk/env.h"
13 #include "spdk/string.h"
14 #include "spdk/endian.h"
15 
16 struct nvme_active_ns_ctx;
17 
18 static int nvme_ctrlr_construct_and_submit_aer(struct spdk_nvme_ctrlr *ctrlr,
19 		struct nvme_async_event_request *aer);
20 static void nvme_ctrlr_identify_active_ns_async(struct nvme_active_ns_ctx *ctx);
21 static int nvme_ctrlr_identify_ns_async(struct spdk_nvme_ns *ns);
22 static int nvme_ctrlr_identify_ns_iocs_specific_async(struct spdk_nvme_ns *ns);
23 static int nvme_ctrlr_identify_id_desc_async(struct spdk_nvme_ns *ns);
24 static void nvme_ctrlr_init_cap(struct spdk_nvme_ctrlr *ctrlr);
25 static void nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
26 				 uint64_t timeout_in_ms);
27 
28 static int
29 nvme_ns_cmp(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
30 {
31 	if (ns1->id < ns2->id) {
32 		return -1;
33 	} else if (ns1->id > ns2->id) {
34 		return 1;
35 	} else {
36 		return 0;
37 	}
38 }
39 
40 RB_GENERATE_STATIC(nvme_ns_tree, spdk_nvme_ns, node, nvme_ns_cmp);
41 
42 #define nvme_ctrlr_get_reg_async(ctrlr, reg, sz, cb_fn, cb_arg) \
43 	nvme_transport_ctrlr_get_reg_ ## sz ## _async(ctrlr, \
44 		offsetof(struct spdk_nvme_registers, reg), cb_fn, cb_arg)
45 
46 #define nvme_ctrlr_set_reg_async(ctrlr, reg, sz, val, cb_fn, cb_arg) \
47 	nvme_transport_ctrlr_set_reg_ ## sz ## _async(ctrlr, \
48 		offsetof(struct spdk_nvme_registers, reg), val, cb_fn, cb_arg)
49 
50 #define nvme_ctrlr_get_cc_async(ctrlr, cb_fn, cb_arg) \
51 	nvme_ctrlr_get_reg_async(ctrlr, cc, 4, cb_fn, cb_arg)
52 
53 #define nvme_ctrlr_get_csts_async(ctrlr, cb_fn, cb_arg) \
54 	nvme_ctrlr_get_reg_async(ctrlr, csts, 4, cb_fn, cb_arg)
55 
56 #define nvme_ctrlr_get_cap_async(ctrlr, cb_fn, cb_arg) \
57 	nvme_ctrlr_get_reg_async(ctrlr, cap, 8, cb_fn, cb_arg)
58 
59 #define nvme_ctrlr_get_vs_async(ctrlr, cb_fn, cb_arg) \
60 	nvme_ctrlr_get_reg_async(ctrlr, vs, 4, cb_fn, cb_arg)
61 
62 #define nvme_ctrlr_set_cc_async(ctrlr, value, cb_fn, cb_arg) \
63 	nvme_ctrlr_set_reg_async(ctrlr, cc, 4, value, cb_fn, cb_arg)
64 
65 static int
66 nvme_ctrlr_get_cc(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cc_register *cc)
67 {
68 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, cc.raw),
69 					      &cc->raw);
70 }
71 
72 static int
73 nvme_ctrlr_get_csts(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_csts_register *csts)
74 {
75 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, csts.raw),
76 					      &csts->raw);
77 }
78 
79 int
80 nvme_ctrlr_get_cap(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cap_register *cap)
81 {
82 	return nvme_transport_ctrlr_get_reg_8(ctrlr, offsetof(struct spdk_nvme_registers, cap.raw),
83 					      &cap->raw);
84 }
85 
86 int
87 nvme_ctrlr_get_vs(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_vs_register *vs)
88 {
89 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, vs.raw),
90 					      &vs->raw);
91 }
92 
93 int
94 nvme_ctrlr_get_cmbsz(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cmbsz_register *cmbsz)
95 {
96 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, cmbsz.raw),
97 					      &cmbsz->raw);
98 }
99 
100 int
101 nvme_ctrlr_get_pmrcap(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_pmrcap_register *pmrcap)
102 {
103 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, pmrcap.raw),
104 					      &pmrcap->raw);
105 }
106 
107 int
108 nvme_ctrlr_get_bpinfo(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_bpinfo_register *bpinfo)
109 {
110 	return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, bpinfo.raw),
111 					      &bpinfo->raw);
112 }
113 
114 int
115 nvme_ctrlr_set_bprsel(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_bprsel_register *bprsel)
116 {
117 	return nvme_transport_ctrlr_set_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, bprsel.raw),
118 					      bprsel->raw);
119 }
120 
121 int
122 nvme_ctrlr_set_bpmbl(struct spdk_nvme_ctrlr *ctrlr, uint64_t bpmbl_value)
123 {
124 	return nvme_transport_ctrlr_set_reg_8(ctrlr, offsetof(struct spdk_nvme_registers, bpmbl),
125 					      bpmbl_value);
126 }
127 
128 static int
129 nvme_ctrlr_set_nssr(struct spdk_nvme_ctrlr *ctrlr, uint32_t nssr_value)
130 {
131 	return nvme_transport_ctrlr_set_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, nssr),
132 					      nssr_value);
133 }
134 
135 bool
136 nvme_ctrlr_multi_iocs_enabled(struct spdk_nvme_ctrlr *ctrlr)
137 {
138 	return ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_IOCS &&
139 	       ctrlr->opts.command_set == SPDK_NVME_CC_CSS_IOCS;
140 }
141 
142 /* When the field in spdk_nvme_ctrlr_opts are changed and you change this function, please
143  * also update the nvme_ctrl_opts_init function in nvme_ctrlr.c
144  */
145 void
146 spdk_nvme_ctrlr_get_default_ctrlr_opts(struct spdk_nvme_ctrlr_opts *opts, size_t opts_size)
147 {
148 	assert(opts);
149 
150 	opts->opts_size = opts_size;
151 
152 #define FIELD_OK(field) \
153 	offsetof(struct spdk_nvme_ctrlr_opts, field) + sizeof(opts->field) <= opts_size
154 
155 #define SET_FIELD(field, value) \
156 	if (offsetof(struct spdk_nvme_ctrlr_opts, field) + sizeof(opts->field) <= opts_size) { \
157 		opts->field = value; \
158 	} \
159 
160 	SET_FIELD(num_io_queues, DEFAULT_MAX_IO_QUEUES);
161 	SET_FIELD(use_cmb_sqs, false);
162 	SET_FIELD(no_shn_notification, false);
163 	SET_FIELD(enable_interrupts, false);
164 	SET_FIELD(arb_mechanism, SPDK_NVME_CC_AMS_RR);
165 	SET_FIELD(arbitration_burst, 0);
166 	SET_FIELD(low_priority_weight, 0);
167 	SET_FIELD(medium_priority_weight, 0);
168 	SET_FIELD(high_priority_weight, 0);
169 	SET_FIELD(keep_alive_timeout_ms, MIN_KEEP_ALIVE_TIMEOUT_IN_MS);
170 	SET_FIELD(transport_retry_count, SPDK_NVME_DEFAULT_RETRY_COUNT);
171 	SET_FIELD(io_queue_size, DEFAULT_IO_QUEUE_SIZE);
172 
173 	if (nvme_driver_init() == 0) {
174 		if (FIELD_OK(hostnqn)) {
175 			nvme_get_default_hostnqn(opts->hostnqn, sizeof(opts->hostnqn));
176 		}
177 
178 		if (FIELD_OK(extended_host_id)) {
179 			memcpy(opts->extended_host_id, &g_spdk_nvme_driver->default_extended_host_id,
180 			       sizeof(opts->extended_host_id));
181 		}
182 
183 	}
184 
185 	SET_FIELD(io_queue_requests, DEFAULT_IO_QUEUE_REQUESTS);
186 
187 	if (FIELD_OK(src_addr)) {
188 		memset(opts->src_addr, 0, sizeof(opts->src_addr));
189 	}
190 
191 	if (FIELD_OK(src_svcid)) {
192 		memset(opts->src_svcid, 0, sizeof(opts->src_svcid));
193 	}
194 
195 	if (FIELD_OK(host_id)) {
196 		memset(opts->host_id, 0, sizeof(opts->host_id));
197 	}
198 
199 	SET_FIELD(command_set, CHAR_BIT);
200 	SET_FIELD(admin_timeout_ms, NVME_MAX_ADMIN_TIMEOUT_IN_SECS * 1000);
201 	SET_FIELD(header_digest, false);
202 	SET_FIELD(data_digest, false);
203 	SET_FIELD(disable_error_logging, false);
204 	SET_FIELD(transport_ack_timeout, SPDK_NVME_DEFAULT_TRANSPORT_ACK_TIMEOUT);
205 	SET_FIELD(admin_queue_size, DEFAULT_ADMIN_QUEUE_SIZE);
206 	SET_FIELD(fabrics_connect_timeout_us, NVME_FABRIC_CONNECT_COMMAND_TIMEOUT);
207 	SET_FIELD(disable_read_ana_log_page, false);
208 	SET_FIELD(disable_read_changed_ns_list_log_page, false);
209 	SET_FIELD(tls_psk, NULL);
210 	SET_FIELD(dhchap_key, NULL);
211 	SET_FIELD(dhchap_ctrlr_key, NULL);
212 	SET_FIELD(dhchap_digests,
213 		  SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA256) |
214 		  SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA384) |
215 		  SPDK_BIT(SPDK_NVMF_DHCHAP_HASH_SHA512));
216 	SET_FIELD(dhchap_dhgroups,
217 		  SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_NULL) |
218 		  SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_2048) |
219 		  SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_3072) |
220 		  SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_4096) |
221 		  SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_6144) |
222 		  SPDK_BIT(SPDK_NVMF_DHCHAP_DHGROUP_8192));
223 #undef FIELD_OK
224 #undef SET_FIELD
225 }
226 
227 const struct spdk_nvme_ctrlr_opts *
228 spdk_nvme_ctrlr_get_opts(struct spdk_nvme_ctrlr *ctrlr)
229 {
230 	return &ctrlr->opts;
231 }
232 
233 /**
234  * This function will be called when the process allocates the IO qpair.
235  * Note: the ctrlr_lock must be held when calling this function.
236  */
237 static void
238 nvme_ctrlr_proc_add_io_qpair(struct spdk_nvme_qpair *qpair)
239 {
240 	struct spdk_nvme_ctrlr_process	*active_proc;
241 	struct spdk_nvme_ctrlr		*ctrlr = qpair->ctrlr;
242 
243 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
244 	if (active_proc) {
245 		TAILQ_INSERT_TAIL(&active_proc->allocated_io_qpairs, qpair, per_process_tailq);
246 		qpair->active_proc = active_proc;
247 	}
248 }
249 
250 /**
251  * This function will be called when the process frees the IO qpair.
252  * Note: the ctrlr_lock must be held when calling this function.
253  */
254 static void
255 nvme_ctrlr_proc_remove_io_qpair(struct spdk_nvme_qpair *qpair)
256 {
257 	struct spdk_nvme_ctrlr_process	*active_proc;
258 	struct spdk_nvme_ctrlr		*ctrlr = qpair->ctrlr;
259 	struct spdk_nvme_qpair          *active_qpair, *tmp_qpair;
260 
261 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
262 	if (!active_proc) {
263 		return;
264 	}
265 
266 	TAILQ_FOREACH_SAFE(active_qpair, &active_proc->allocated_io_qpairs,
267 			   per_process_tailq, tmp_qpair) {
268 		if (active_qpair == qpair) {
269 			TAILQ_REMOVE(&active_proc->allocated_io_qpairs,
270 				     active_qpair, per_process_tailq);
271 
272 			break;
273 		}
274 	}
275 }
276 
277 void
278 spdk_nvme_ctrlr_get_default_io_qpair_opts(struct spdk_nvme_ctrlr *ctrlr,
279 		struct spdk_nvme_io_qpair_opts *opts,
280 		size_t opts_size)
281 {
282 	assert(ctrlr);
283 
284 	assert(opts);
285 
286 	memset(opts, 0, opts_size);
287 	opts->opts_size = opts_size;
288 
289 #define FIELD_OK(field) \
290 	offsetof(struct spdk_nvme_io_qpair_opts, field) + sizeof(opts->field) <= opts_size
291 
292 #define SET_FIELD(field, value) \
293         if (FIELD_OK(field)) { \
294                 opts->field = value; \
295         } \
296 
297 	SET_FIELD(qprio, SPDK_NVME_QPRIO_URGENT);
298 	SET_FIELD(io_queue_size, ctrlr->opts.io_queue_size);
299 	SET_FIELD(io_queue_requests, ctrlr->opts.io_queue_requests);
300 	SET_FIELD(delay_cmd_submit, false);
301 	SET_FIELD(sq.vaddr, NULL);
302 	SET_FIELD(sq.paddr, 0);
303 	SET_FIELD(sq.buffer_size, 0);
304 	SET_FIELD(cq.vaddr, NULL);
305 	SET_FIELD(cq.paddr, 0);
306 	SET_FIELD(cq.buffer_size, 0);
307 	SET_FIELD(create_only, false);
308 	SET_FIELD(async_mode, false);
309 	SET_FIELD(disable_pcie_sgl_merge, false);
310 
311 #undef FIELD_OK
312 #undef SET_FIELD
313 }
314 
315 static void
316 nvme_ctrlr_io_qpair_opts_copy(struct spdk_nvme_io_qpair_opts *dst,
317 			      const struct spdk_nvme_io_qpair_opts *src, size_t opts_size_src)
318 {
319 	if (!opts_size_src) {
320 		SPDK_ERRLOG("opts_size_src should not be zero value\n");
321 		assert(false);
322 	}
323 
324 #define FIELD_OK(field) \
325         offsetof(struct spdk_nvme_io_qpair_opts, field) + sizeof(src->field) <= opts_size_src
326 
327 #define SET_FIELD(field) \
328         if (FIELD_OK(field)) { \
329                 dst->field = src->field; \
330         } \
331 
332 	SET_FIELD(qprio);
333 	SET_FIELD(io_queue_size);
334 	SET_FIELD(io_queue_requests);
335 	SET_FIELD(delay_cmd_submit);
336 	SET_FIELD(sq.vaddr);
337 	SET_FIELD(sq.paddr);
338 	SET_FIELD(sq.buffer_size);
339 	SET_FIELD(cq.vaddr);
340 	SET_FIELD(cq.paddr);
341 	SET_FIELD(cq.buffer_size);
342 	SET_FIELD(create_only);
343 	SET_FIELD(async_mode);
344 	SET_FIELD(disable_pcie_sgl_merge);
345 
346 	dst->opts_size = opts_size_src;
347 
348 	/* You should not remove this statement, but need to update the assert statement
349 	 * if you add a new field, and also add a corresponding SET_FIELD statement */
350 	SPDK_STATIC_ASSERT(sizeof(struct spdk_nvme_io_qpair_opts) == 80, "Incorrect size");
351 
352 #undef FIELD_OK
353 #undef SET_FIELD
354 }
355 
356 static struct spdk_nvme_qpair *
357 nvme_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
358 			   const struct spdk_nvme_io_qpair_opts *opts)
359 {
360 	int32_t					qid;
361 	struct spdk_nvme_qpair			*qpair;
362 	union spdk_nvme_cc_register		cc;
363 
364 	if (!ctrlr) {
365 		return NULL;
366 	}
367 
368 	nvme_ctrlr_lock(ctrlr);
369 	cc.raw = ctrlr->process_init_cc.raw;
370 
371 	if (opts->qprio & ~SPDK_NVME_CREATE_IO_SQ_QPRIO_MASK) {
372 		nvme_ctrlr_unlock(ctrlr);
373 		return NULL;
374 	}
375 
376 	/*
377 	 * Only value SPDK_NVME_QPRIO_URGENT(0) is valid for the
378 	 * default round robin arbitration method.
379 	 */
380 	if ((cc.bits.ams == SPDK_NVME_CC_AMS_RR) && (opts->qprio != SPDK_NVME_QPRIO_URGENT)) {
381 		NVME_CTRLR_ERRLOG(ctrlr, "invalid queue priority for default round robin arbitration method\n");
382 		nvme_ctrlr_unlock(ctrlr);
383 		return NULL;
384 	}
385 
386 	qid = spdk_nvme_ctrlr_alloc_qid(ctrlr);
387 	if (qid < 0) {
388 		nvme_ctrlr_unlock(ctrlr);
389 		return NULL;
390 	}
391 
392 	qpair = nvme_transport_ctrlr_create_io_qpair(ctrlr, qid, opts);
393 	if (qpair == NULL) {
394 		NVME_CTRLR_ERRLOG(ctrlr, "nvme_transport_ctrlr_create_io_qpair() failed\n");
395 		spdk_nvme_ctrlr_free_qid(ctrlr, qid);
396 		nvme_ctrlr_unlock(ctrlr);
397 		return NULL;
398 	}
399 
400 	TAILQ_INSERT_TAIL(&ctrlr->active_io_qpairs, qpair, tailq);
401 
402 	nvme_ctrlr_proc_add_io_qpair(qpair);
403 
404 	nvme_ctrlr_unlock(ctrlr);
405 
406 	return qpair;
407 }
408 
409 int
410 spdk_nvme_ctrlr_connect_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
411 {
412 	int rc;
413 
414 	if (nvme_qpair_get_state(qpair) != NVME_QPAIR_DISCONNECTED) {
415 		return -EISCONN;
416 	}
417 
418 	nvme_ctrlr_lock(ctrlr);
419 	rc = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair);
420 	nvme_ctrlr_unlock(ctrlr);
421 
422 	if (ctrlr->quirks & NVME_QUIRK_DELAY_AFTER_QUEUE_ALLOC) {
423 		spdk_delay_us(100);
424 	}
425 
426 	return rc;
427 }
428 
429 void
430 spdk_nvme_ctrlr_disconnect_io_qpair(struct spdk_nvme_qpair *qpair)
431 {
432 	struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
433 
434 	nvme_ctrlr_lock(ctrlr);
435 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
436 	nvme_ctrlr_unlock(ctrlr);
437 }
438 
439 int
440 spdk_nvme_ctrlr_get_admin_qp_fd(struct spdk_nvme_ctrlr *ctrlr,
441 				struct spdk_event_handler_opts *opts)
442 {
443 	return spdk_nvme_qpair_get_fd(ctrlr->adminq, opts);
444 }
445 
446 struct spdk_nvme_qpair *
447 spdk_nvme_ctrlr_alloc_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
448 			       const struct spdk_nvme_io_qpair_opts *user_opts,
449 			       size_t opts_size)
450 {
451 
452 	struct spdk_nvme_qpair		*qpair = NULL;
453 	struct spdk_nvme_io_qpair_opts	opts;
454 	int				rc;
455 
456 	nvme_ctrlr_lock(ctrlr);
457 
458 	if (spdk_unlikely(ctrlr->state != NVME_CTRLR_STATE_READY)) {
459 		/* When controller is resetting or initializing, free_io_qids is deleted or not created yet.
460 		 * We can't create IO qpair in that case */
461 		goto unlock;
462 	}
463 
464 	/*
465 	 * Get the default options, then overwrite them with the user-provided options
466 	 * up to opts_size.
467 	 *
468 	 * This allows for extensions of the opts structure without breaking
469 	 * ABI compatibility.
470 	 */
471 	spdk_nvme_ctrlr_get_default_io_qpair_opts(ctrlr, &opts, sizeof(opts));
472 	if (user_opts) {
473 		nvme_ctrlr_io_qpair_opts_copy(&opts, user_opts, spdk_min(opts.opts_size, opts_size));
474 
475 		/* If user passes buffers, make sure they're big enough for the requested queue size */
476 		if (opts.sq.vaddr) {
477 			if (opts.sq.buffer_size < (opts.io_queue_size * sizeof(struct spdk_nvme_cmd))) {
478 				NVME_CTRLR_ERRLOG(ctrlr, "sq buffer size %" PRIx64 " is too small for sq size %zx\n",
479 						  opts.sq.buffer_size, (opts.io_queue_size * sizeof(struct spdk_nvme_cmd)));
480 				goto unlock;
481 			}
482 		}
483 		if (opts.cq.vaddr) {
484 			if (opts.cq.buffer_size < (opts.io_queue_size * sizeof(struct spdk_nvme_cpl))) {
485 				NVME_CTRLR_ERRLOG(ctrlr, "cq buffer size %" PRIx64 " is too small for cq size %zx\n",
486 						  opts.cq.buffer_size, (opts.io_queue_size * sizeof(struct spdk_nvme_cpl)));
487 				goto unlock;
488 			}
489 		}
490 	}
491 
492 	if (ctrlr->opts.enable_interrupts && opts.delay_cmd_submit) {
493 		NVME_CTRLR_ERRLOG(ctrlr, "delay command submit cannot work with interrupts\n");
494 		goto unlock;
495 	}
496 
497 	qpair = nvme_ctrlr_create_io_qpair(ctrlr, &opts);
498 
499 	if (qpair == NULL || opts.create_only == true) {
500 		goto unlock;
501 	}
502 
503 	rc = spdk_nvme_ctrlr_connect_io_qpair(ctrlr, qpair);
504 	if (rc != 0) {
505 		NVME_CTRLR_ERRLOG(ctrlr, "nvme_transport_ctrlr_connect_io_qpair() failed\n");
506 		nvme_ctrlr_proc_remove_io_qpair(qpair);
507 		TAILQ_REMOVE(&ctrlr->active_io_qpairs, qpair, tailq);
508 		spdk_bit_array_set(ctrlr->free_io_qids, qpair->id);
509 		nvme_transport_ctrlr_delete_io_qpair(ctrlr, qpair);
510 		qpair = NULL;
511 		goto unlock;
512 	}
513 
514 unlock:
515 	nvme_ctrlr_unlock(ctrlr);
516 
517 	return qpair;
518 }
519 
520 int
521 spdk_nvme_ctrlr_reconnect_io_qpair(struct spdk_nvme_qpair *qpair)
522 {
523 	struct spdk_nvme_ctrlr *ctrlr;
524 	enum nvme_qpair_state qpair_state;
525 	int rc;
526 
527 	assert(qpair != NULL);
528 	assert(nvme_qpair_is_admin_queue(qpair) == false);
529 	assert(qpair->ctrlr != NULL);
530 
531 	ctrlr = qpair->ctrlr;
532 	nvme_ctrlr_lock(ctrlr);
533 	qpair_state = nvme_qpair_get_state(qpair);
534 
535 	if (ctrlr->is_removed) {
536 		rc = -ENODEV;
537 		goto out;
538 	}
539 
540 	if (ctrlr->is_resetting || qpair_state == NVME_QPAIR_DISCONNECTING) {
541 		rc = -EAGAIN;
542 		goto out;
543 	}
544 
545 	if (ctrlr->is_failed || qpair_state == NVME_QPAIR_DESTROYING) {
546 		rc = -ENXIO;
547 		goto out;
548 	}
549 
550 	if (qpair_state != NVME_QPAIR_DISCONNECTED) {
551 		rc = 0;
552 		goto out;
553 	}
554 
555 	rc = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair);
556 	if (rc) {
557 		rc = -EAGAIN;
558 		goto out;
559 	}
560 
561 out:
562 	nvme_ctrlr_unlock(ctrlr);
563 	return rc;
564 }
565 
566 spdk_nvme_qp_failure_reason
567 spdk_nvme_ctrlr_get_admin_qp_failure_reason(struct spdk_nvme_ctrlr *ctrlr)
568 {
569 	return ctrlr->adminq->transport_failure_reason;
570 }
571 
572 /*
573  * This internal function will attempt to take the controller
574  * lock before calling disconnect on a controller qpair.
575  * Functions already holding the controller lock should
576  * call nvme_transport_ctrlr_disconnect_qpair directly.
577  */
578 void
579 nvme_ctrlr_disconnect_qpair(struct spdk_nvme_qpair *qpair)
580 {
581 	struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
582 
583 	assert(ctrlr != NULL);
584 	nvme_ctrlr_lock(ctrlr);
585 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
586 	nvme_ctrlr_unlock(ctrlr);
587 }
588 
589 int
590 spdk_nvme_ctrlr_free_io_qpair(struct spdk_nvme_qpair *qpair)
591 {
592 	struct spdk_nvme_ctrlr *ctrlr;
593 
594 	if (qpair == NULL) {
595 		return 0;
596 	}
597 
598 	ctrlr = qpair->ctrlr;
599 
600 	if (qpair->in_completion_context) {
601 		/*
602 		 * There are many cases where it is convenient to delete an io qpair in the context
603 		 *  of that qpair's completion routine.  To handle this properly, set a flag here
604 		 *  so that the completion routine will perform an actual delete after the context
605 		 *  unwinds.
606 		 */
607 		qpair->delete_after_completion_context = 1;
608 		return 0;
609 	}
610 
611 	if (qpair->auth.cb_fn != NULL) {
612 		qpair->auth.cb_fn(qpair->auth.cb_ctx, -ECANCELED);
613 		qpair->auth.cb_fn = NULL;
614 	}
615 
616 	qpair->destroy_in_progress = 1;
617 
618 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
619 
620 	if (qpair->poll_group && (qpair->active_proc == nvme_ctrlr_get_current_process(ctrlr))) {
621 		spdk_nvme_poll_group_remove(qpair->poll_group->group, qpair);
622 	}
623 
624 	/* Do not retry. */
625 	nvme_qpair_set_state(qpair, NVME_QPAIR_DESTROYING);
626 
627 	/* In the multi-process case, a process may call this function on a foreign
628 	 * I/O qpair (i.e. one that this process did not create) when that qpairs process
629 	 * exits unexpectedly.  In that case, we must not try to abort any reqs associated
630 	 * with that qpair, since the callbacks will also be foreign to this process.
631 	 */
632 	if (qpair->active_proc == nvme_ctrlr_get_current_process(ctrlr)) {
633 		nvme_qpair_abort_all_queued_reqs(qpair);
634 	}
635 
636 	nvme_ctrlr_lock(ctrlr);
637 
638 	nvme_ctrlr_proc_remove_io_qpair(qpair);
639 
640 	TAILQ_REMOVE(&ctrlr->active_io_qpairs, qpair, tailq);
641 	spdk_nvme_ctrlr_free_qid(ctrlr, qpair->id);
642 
643 	nvme_transport_ctrlr_delete_io_qpair(ctrlr, qpair);
644 	nvme_ctrlr_unlock(ctrlr);
645 	return 0;
646 }
647 
648 static void
649 nvme_ctrlr_construct_intel_support_log_page_list(struct spdk_nvme_ctrlr *ctrlr,
650 		struct spdk_nvme_intel_log_page_directory *log_page_directory)
651 {
652 	if (log_page_directory == NULL) {
653 		return;
654 	}
655 
656 	assert(ctrlr->cdata.vid == SPDK_PCI_VID_INTEL);
657 
658 	ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY] = true;
659 
660 	if (log_page_directory->read_latency_log_len ||
661 	    (ctrlr->quirks & NVME_INTEL_QUIRK_READ_LATENCY)) {
662 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_READ_CMD_LATENCY] = true;
663 	}
664 	if (log_page_directory->write_latency_log_len ||
665 	    (ctrlr->quirks & NVME_INTEL_QUIRK_WRITE_LATENCY)) {
666 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_WRITE_CMD_LATENCY] = true;
667 	}
668 	if (log_page_directory->temperature_statistics_log_len) {
669 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_TEMPERATURE] = true;
670 	}
671 	if (log_page_directory->smart_log_len) {
672 		ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_SMART] = true;
673 	}
674 	if (log_page_directory->marketing_description_log_len) {
675 		ctrlr->log_page_supported[SPDK_NVME_INTEL_MARKETING_DESCRIPTION] = true;
676 	}
677 }
678 
679 struct intel_log_pages_ctx {
680 	struct spdk_nvme_intel_log_page_directory log_page_directory;
681 	struct spdk_nvme_ctrlr *ctrlr;
682 };
683 
684 static void
685 nvme_ctrlr_set_intel_support_log_pages_done(void *arg, const struct spdk_nvme_cpl *cpl)
686 {
687 	struct intel_log_pages_ctx *ctx = arg;
688 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
689 
690 	if (!spdk_nvme_cpl_is_error(cpl)) {
691 		nvme_ctrlr_construct_intel_support_log_page_list(ctrlr, &ctx->log_page_directory);
692 	}
693 
694 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
695 			     ctrlr->opts.admin_timeout_ms);
696 	free(ctx);
697 }
698 
699 static int
700 nvme_ctrlr_set_intel_support_log_pages(struct spdk_nvme_ctrlr *ctrlr)
701 {
702 	int rc = 0;
703 	struct intel_log_pages_ctx *ctx;
704 
705 	ctx = calloc(1, sizeof(*ctx));
706 	if (!ctx) {
707 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
708 				     ctrlr->opts.admin_timeout_ms);
709 		return 0;
710 	}
711 
712 	ctx->ctrlr = ctrlr;
713 
714 	rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY,
715 					      SPDK_NVME_GLOBAL_NS_TAG, &ctx->log_page_directory,
716 					      sizeof(struct spdk_nvme_intel_log_page_directory),
717 					      0, nvme_ctrlr_set_intel_support_log_pages_done, ctx);
718 	if (rc != 0) {
719 		free(ctx);
720 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
721 				     ctrlr->opts.admin_timeout_ms);
722 		return 0;
723 	}
724 
725 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_SUPPORTED_INTEL_LOG_PAGES,
726 			     ctrlr->opts.admin_timeout_ms);
727 
728 	return 0;
729 }
730 
731 static int
732 nvme_ctrlr_alloc_ana_log_page(struct spdk_nvme_ctrlr *ctrlr)
733 {
734 	uint32_t ana_log_page_size;
735 
736 	ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + ctrlr->cdata.nanagrpid *
737 			    sizeof(struct spdk_nvme_ana_group_descriptor) + ctrlr->active_ns_count *
738 			    sizeof(uint32_t);
739 
740 	/* Number of active namespaces may have changed.
741 	 * Check if ANA log page fits into existing buffer.
742 	 */
743 	if (ana_log_page_size > ctrlr->ana_log_page_size) {
744 		void *new_buffer;
745 
746 		if (ctrlr->ana_log_page) {
747 			new_buffer = realloc(ctrlr->ana_log_page, ana_log_page_size);
748 		} else {
749 			new_buffer = calloc(1, ana_log_page_size);
750 		}
751 
752 		if (!new_buffer) {
753 			NVME_CTRLR_ERRLOG(ctrlr, "could not allocate ANA log page buffer, size %u\n",
754 					  ana_log_page_size);
755 			return -ENXIO;
756 		}
757 
758 		ctrlr->ana_log_page = new_buffer;
759 		if (ctrlr->copied_ana_desc) {
760 			new_buffer = realloc(ctrlr->copied_ana_desc, ana_log_page_size);
761 		} else {
762 			new_buffer = calloc(1, ana_log_page_size);
763 		}
764 
765 		if (!new_buffer) {
766 			NVME_CTRLR_ERRLOG(ctrlr, "could not allocate a buffer to parse ANA descriptor, size %u\n",
767 					  ana_log_page_size);
768 			return -ENOMEM;
769 		}
770 
771 		ctrlr->copied_ana_desc = new_buffer;
772 		ctrlr->ana_log_page_size = ana_log_page_size;
773 	}
774 
775 	return 0;
776 }
777 
778 static int
779 nvme_ctrlr_update_ana_log_page(struct spdk_nvme_ctrlr *ctrlr)
780 {
781 	struct nvme_completion_poll_status *status;
782 	int rc;
783 
784 	rc = nvme_ctrlr_alloc_ana_log_page(ctrlr);
785 	if (rc != 0) {
786 		return rc;
787 	}
788 
789 	status = calloc(1, sizeof(*status));
790 	if (status == NULL) {
791 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
792 		return -ENOMEM;
793 	}
794 
795 	rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
796 					      SPDK_NVME_GLOBAL_NS_TAG, ctrlr->ana_log_page,
797 					      ctrlr->ana_log_page_size, 0,
798 					      nvme_completion_poll_cb, status);
799 	if (rc != 0) {
800 		free(status);
801 		return rc;
802 	}
803 
804 	if (nvme_wait_for_completion_robust_lock_timeout(ctrlr->adminq, status, &ctrlr->ctrlr_lock,
805 			ctrlr->opts.admin_timeout_ms * 1000)) {
806 		if (!status->timed_out) {
807 			free(status);
808 		}
809 		return -EIO;
810 	}
811 
812 	free(status);
813 	return 0;
814 }
815 
816 static int
817 nvme_ctrlr_update_ns_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
818 				void *cb_arg)
819 {
820 	struct spdk_nvme_ctrlr *ctrlr = cb_arg;
821 	struct spdk_nvme_ns *ns;
822 	uint32_t i, nsid;
823 
824 	for (i = 0; i < desc->num_of_nsid; i++) {
825 		nsid = desc->nsid[i];
826 		if (nsid == 0 || nsid > ctrlr->cdata.nn) {
827 			continue;
828 		}
829 
830 		ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
831 		assert(ns != NULL);
832 
833 		ns->ana_group_id = desc->ana_group_id;
834 		ns->ana_state = desc->ana_state;
835 	}
836 
837 	return 0;
838 }
839 
840 int
841 nvme_ctrlr_parse_ana_log_page(struct spdk_nvme_ctrlr *ctrlr,
842 			      spdk_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
843 {
844 	struct spdk_nvme_ana_group_descriptor *copied_desc;
845 	uint8_t *orig_desc;
846 	uint32_t i, desc_size, copy_len;
847 	int rc = 0;
848 
849 	if (ctrlr->ana_log_page == NULL) {
850 		return -EINVAL;
851 	}
852 
853 	copied_desc = ctrlr->copied_ana_desc;
854 
855 	orig_desc = (uint8_t *)ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
856 	copy_len = ctrlr->ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
857 
858 	for (i = 0; i < ctrlr->ana_log_page->num_ana_group_desc; i++) {
859 		memcpy(copied_desc, orig_desc, copy_len);
860 
861 		rc = cb_fn(copied_desc, cb_arg);
862 		if (rc != 0) {
863 			break;
864 		}
865 
866 		desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
867 			    copied_desc->num_of_nsid * sizeof(uint32_t);
868 		orig_desc += desc_size;
869 		copy_len -= desc_size;
870 	}
871 
872 	return rc;
873 }
874 
875 static int
876 nvme_ctrlr_set_supported_log_pages(struct spdk_nvme_ctrlr *ctrlr)
877 {
878 	int	rc = 0;
879 
880 	memset(ctrlr->log_page_supported, 0, sizeof(ctrlr->log_page_supported));
881 	/* Mandatory pages */
882 	ctrlr->log_page_supported[SPDK_NVME_LOG_ERROR] = true;
883 	ctrlr->log_page_supported[SPDK_NVME_LOG_HEALTH_INFORMATION] = true;
884 	ctrlr->log_page_supported[SPDK_NVME_LOG_FIRMWARE_SLOT] = true;
885 	if (ctrlr->cdata.lpa.celp) {
886 		ctrlr->log_page_supported[SPDK_NVME_LOG_COMMAND_EFFECTS_LOG] = true;
887 	}
888 
889 	if (ctrlr->cdata.cmic.ana_reporting) {
890 		ctrlr->log_page_supported[SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS] = true;
891 		if (!ctrlr->opts.disable_read_ana_log_page) {
892 			rc = nvme_ctrlr_update_ana_log_page(ctrlr);
893 			if (rc == 0) {
894 				nvme_ctrlr_parse_ana_log_page(ctrlr, nvme_ctrlr_update_ns_ana_states,
895 							      ctrlr);
896 			}
897 		}
898 	}
899 
900 	if (ctrlr->cdata.ctratt.bits.fdps) {
901 		ctrlr->log_page_supported[SPDK_NVME_LOG_FDP_CONFIGURATIONS] = true;
902 		ctrlr->log_page_supported[SPDK_NVME_LOG_RECLAIM_UNIT_HANDLE_USAGE] = true;
903 		ctrlr->log_page_supported[SPDK_NVME_LOG_FDP_STATISTICS] = true;
904 		ctrlr->log_page_supported[SPDK_NVME_LOG_FDP_EVENTS] = true;
905 	}
906 
907 	if (ctrlr->cdata.vid == SPDK_PCI_VID_INTEL &&
908 	    ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE &&
909 	    !(ctrlr->quirks & NVME_INTEL_QUIRK_NO_LOG_PAGES)) {
910 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_INTEL_LOG_PAGES,
911 				     ctrlr->opts.admin_timeout_ms);
912 
913 	} else {
914 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
915 				     ctrlr->opts.admin_timeout_ms);
916 
917 	}
918 
919 	return rc;
920 }
921 
922 static void
923 nvme_ctrlr_set_intel_supported_features(struct spdk_nvme_ctrlr *ctrlr)
924 {
925 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_MAX_LBA] = true;
926 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_NATIVE_MAX_LBA] = true;
927 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_POWER_GOVERNOR_SETTING] = true;
928 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_SMBUS_ADDRESS] = true;
929 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_LED_PATTERN] = true;
930 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_RESET_TIMED_WORKLOAD_COUNTERS] = true;
931 	ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING] = true;
932 }
933 
934 static void
935 nvme_ctrlr_set_arbitration_feature(struct spdk_nvme_ctrlr *ctrlr)
936 {
937 	uint32_t cdw11;
938 	struct nvme_completion_poll_status *status;
939 
940 	if (ctrlr->opts.arbitration_burst == 0) {
941 		return;
942 	}
943 
944 	if (ctrlr->opts.arbitration_burst > 7) {
945 		NVME_CTRLR_WARNLOG(ctrlr, "Valid arbitration burst values is from 0-7\n");
946 		return;
947 	}
948 
949 	status = calloc(1, sizeof(*status));
950 	if (!status) {
951 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
952 		return;
953 	}
954 
955 	cdw11 = ctrlr->opts.arbitration_burst;
956 
957 	if (spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_WRR_SUPPORTED) {
958 		cdw11 |= (uint32_t)ctrlr->opts.low_priority_weight << 8;
959 		cdw11 |= (uint32_t)ctrlr->opts.medium_priority_weight << 16;
960 		cdw11 |= (uint32_t)ctrlr->opts.high_priority_weight << 24;
961 	}
962 
963 	if (spdk_nvme_ctrlr_cmd_set_feature(ctrlr, SPDK_NVME_FEAT_ARBITRATION,
964 					    cdw11, 0, NULL, 0,
965 					    nvme_completion_poll_cb, status) < 0) {
966 		NVME_CTRLR_ERRLOG(ctrlr, "Set arbitration feature failed\n");
967 		free(status);
968 		return;
969 	}
970 
971 	if (nvme_wait_for_completion_timeout(ctrlr->adminq, status,
972 					     ctrlr->opts.admin_timeout_ms * 1000)) {
973 		NVME_CTRLR_ERRLOG(ctrlr, "Timeout to set arbitration feature\n");
974 	}
975 
976 	if (!status->timed_out) {
977 		free(status);
978 	}
979 }
980 
981 static void
982 nvme_ctrlr_set_supported_features(struct spdk_nvme_ctrlr *ctrlr)
983 {
984 	memset(ctrlr->feature_supported, 0, sizeof(ctrlr->feature_supported));
985 	/* Mandatory features */
986 	ctrlr->feature_supported[SPDK_NVME_FEAT_ARBITRATION] = true;
987 	ctrlr->feature_supported[SPDK_NVME_FEAT_POWER_MANAGEMENT] = true;
988 	ctrlr->feature_supported[SPDK_NVME_FEAT_TEMPERATURE_THRESHOLD] = true;
989 	ctrlr->feature_supported[SPDK_NVME_FEAT_ERROR_RECOVERY] = true;
990 	ctrlr->feature_supported[SPDK_NVME_FEAT_NUMBER_OF_QUEUES] = true;
991 	ctrlr->feature_supported[SPDK_NVME_FEAT_INTERRUPT_COALESCING] = true;
992 	ctrlr->feature_supported[SPDK_NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION] = true;
993 	ctrlr->feature_supported[SPDK_NVME_FEAT_WRITE_ATOMICITY] = true;
994 	ctrlr->feature_supported[SPDK_NVME_FEAT_ASYNC_EVENT_CONFIGURATION] = true;
995 	/* Optional features */
996 	if (ctrlr->cdata.vwc.present) {
997 		ctrlr->feature_supported[SPDK_NVME_FEAT_VOLATILE_WRITE_CACHE] = true;
998 	}
999 	if (ctrlr->cdata.apsta.supported) {
1000 		ctrlr->feature_supported[SPDK_NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION] = true;
1001 	}
1002 	if (ctrlr->cdata.hmpre) {
1003 		ctrlr->feature_supported[SPDK_NVME_FEAT_HOST_MEM_BUFFER] = true;
1004 	}
1005 	if (ctrlr->cdata.vid == SPDK_PCI_VID_INTEL) {
1006 		nvme_ctrlr_set_intel_supported_features(ctrlr);
1007 	}
1008 
1009 	nvme_ctrlr_set_arbitration_feature(ctrlr);
1010 }
1011 
1012 static void
1013 nvme_ctrlr_set_host_feature_done(void *arg, const struct spdk_nvme_cpl *cpl)
1014 {
1015 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
1016 
1017 	spdk_free(ctrlr->tmp_ptr);
1018 	ctrlr->tmp_ptr = NULL;
1019 
1020 	if (spdk_nvme_cpl_is_error(cpl)) {
1021 		NVME_CTRLR_ERRLOG(ctrlr, "Set host behavior support feature failed: SC %x SCT %x\n",
1022 				  cpl->status.sc, cpl->status.sct);
1023 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1024 		return;
1025 	}
1026 
1027 	ctrlr->feature_supported[SPDK_NVME_FEAT_HOST_BEHAVIOR_SUPPORT] = true;
1028 
1029 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_DB_BUF_CFG,
1030 			     ctrlr->opts.admin_timeout_ms);
1031 }
1032 
1033 /* We do not want to do add synchronous operation anymore.
1034  * We set the Host Behavior Support feature asynchronousin in different states.
1035  */
1036 static int
1037 nvme_ctrlr_set_host_feature(struct spdk_nvme_ctrlr *ctrlr)
1038 {
1039 	struct spdk_nvme_host_behavior *host;
1040 	int rc;
1041 
1042 	if (!ctrlr->cdata.ctratt.bits.elbas) {
1043 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_DB_BUF_CFG,
1044 				     ctrlr->opts.admin_timeout_ms);
1045 		return 0;
1046 	}
1047 
1048 	ctrlr->tmp_ptr = spdk_dma_zmalloc(sizeof(struct spdk_nvme_host_behavior), 4096, NULL);
1049 	if (!ctrlr->tmp_ptr) {
1050 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate host behavior support data\n");
1051 		rc = -ENOMEM;
1052 		goto error;
1053 	}
1054 
1055 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_SET_HOST_FEATURE,
1056 			     ctrlr->opts.admin_timeout_ms);
1057 
1058 	host = ctrlr->tmp_ptr;
1059 
1060 	host->lbafee = 1;
1061 
1062 	rc = spdk_nvme_ctrlr_cmd_set_feature(ctrlr, SPDK_NVME_FEAT_HOST_BEHAVIOR_SUPPORT,
1063 					     0, 0, host, sizeof(struct spdk_nvme_host_behavior),
1064 					     nvme_ctrlr_set_host_feature_done, ctrlr);
1065 	if (rc != 0) {
1066 		NVME_CTRLR_ERRLOG(ctrlr, "Set host behavior support feature failed: %d\n", rc);
1067 		goto error;
1068 	}
1069 
1070 	return 0;
1071 
1072 error:
1073 	spdk_free(ctrlr->tmp_ptr);
1074 	ctrlr->tmp_ptr = NULL;
1075 
1076 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1077 	return rc;
1078 }
1079 
1080 bool
1081 spdk_nvme_ctrlr_is_failed(struct spdk_nvme_ctrlr *ctrlr)
1082 {
1083 	return ctrlr->is_failed;
1084 }
1085 
1086 void
1087 nvme_ctrlr_fail(struct spdk_nvme_ctrlr *ctrlr, bool hot_remove)
1088 {
1089 	/*
1090 	 * Set the flag here and leave the work failure of qpairs to
1091 	 * spdk_nvme_qpair_process_completions().
1092 	 */
1093 	if (hot_remove) {
1094 		ctrlr->is_removed = true;
1095 	}
1096 
1097 	if (ctrlr->is_failed) {
1098 		NVME_CTRLR_NOTICELOG(ctrlr, "already in failed state\n");
1099 		return;
1100 	}
1101 
1102 	if (ctrlr->is_disconnecting) {
1103 		NVME_CTRLR_DEBUGLOG(ctrlr, "already disconnecting\n");
1104 		return;
1105 	}
1106 
1107 	ctrlr->is_failed = true;
1108 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1109 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq);
1110 	NVME_CTRLR_ERRLOG(ctrlr, "in failed state.\n");
1111 }
1112 
1113 /**
1114  * This public API function will try to take the controller lock.
1115  * Any private functions being called from a thread already holding
1116  * the ctrlr lock should call nvme_ctrlr_fail directly.
1117  */
1118 void
1119 spdk_nvme_ctrlr_fail(struct spdk_nvme_ctrlr *ctrlr)
1120 {
1121 	nvme_ctrlr_lock(ctrlr);
1122 	nvme_ctrlr_fail(ctrlr, false);
1123 	nvme_ctrlr_unlock(ctrlr);
1124 }
1125 
1126 static void
1127 nvme_ctrlr_shutdown_set_cc_done(void *_ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1128 {
1129 	struct nvme_ctrlr_detach_ctx *ctx = _ctx;
1130 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
1131 
1132 	if (spdk_nvme_cpl_is_error(cpl)) {
1133 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to write CC.SHN\n");
1134 		ctx->shutdown_complete = true;
1135 		return;
1136 	}
1137 
1138 	if (ctrlr->opts.no_shn_notification) {
1139 		ctx->shutdown_complete = true;
1140 		return;
1141 	}
1142 
1143 	/*
1144 	 * The NVMe specification defines RTD3E to be the time between
1145 	 *  setting SHN = 1 until the controller will set SHST = 10b.
1146 	 * If the device doesn't report RTD3 entry latency, or if it
1147 	 *  reports RTD3 entry latency less than 10 seconds, pick
1148 	 *  10 seconds as a reasonable amount of time to
1149 	 *  wait before proceeding.
1150 	 */
1151 	NVME_CTRLR_DEBUGLOG(ctrlr, "RTD3E = %" PRIu32 " us\n", ctrlr->cdata.rtd3e);
1152 	ctx->shutdown_timeout_ms = SPDK_CEIL_DIV(ctrlr->cdata.rtd3e, 1000);
1153 	ctx->shutdown_timeout_ms = spdk_max(ctx->shutdown_timeout_ms, 10000);
1154 	NVME_CTRLR_DEBUGLOG(ctrlr, "shutdown timeout = %" PRIu32 " ms\n", ctx->shutdown_timeout_ms);
1155 
1156 	ctx->shutdown_start_tsc = spdk_get_ticks();
1157 	ctx->state = NVME_CTRLR_DETACH_CHECK_CSTS;
1158 }
1159 
1160 static void
1161 nvme_ctrlr_shutdown_get_cc_done(void *_ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1162 {
1163 	struct nvme_ctrlr_detach_ctx *ctx = _ctx;
1164 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
1165 	union spdk_nvme_cc_register cc;
1166 	int rc;
1167 
1168 	if (spdk_nvme_cpl_is_error(cpl)) {
1169 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
1170 		ctx->shutdown_complete = true;
1171 		return;
1172 	}
1173 
1174 	assert(value <= UINT32_MAX);
1175 	cc.raw = (uint32_t)value;
1176 
1177 	if (ctrlr->opts.no_shn_notification) {
1178 		NVME_CTRLR_INFOLOG(ctrlr, "Disable SSD without shutdown notification\n");
1179 		if (cc.bits.en == 0) {
1180 			ctx->shutdown_complete = true;
1181 			return;
1182 		}
1183 
1184 		cc.bits.en = 0;
1185 	} else {
1186 		cc.bits.shn = SPDK_NVME_SHN_NORMAL;
1187 	}
1188 
1189 	rc = nvme_ctrlr_set_cc_async(ctrlr, cc.raw, nvme_ctrlr_shutdown_set_cc_done, ctx);
1190 	if (rc != 0) {
1191 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to write CC.SHN\n");
1192 		ctx->shutdown_complete = true;
1193 	}
1194 }
1195 
1196 static void
1197 nvme_ctrlr_shutdown_async(struct spdk_nvme_ctrlr *ctrlr,
1198 			  struct nvme_ctrlr_detach_ctx *ctx)
1199 {
1200 	int rc;
1201 
1202 	if (ctrlr->is_removed) {
1203 		ctx->shutdown_complete = true;
1204 		return;
1205 	}
1206 
1207 	if (ctrlr->adminq == NULL ||
1208 	    ctrlr->adminq->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE) {
1209 		NVME_CTRLR_INFOLOG(ctrlr, "Adminq is not connected.\n");
1210 		ctx->shutdown_complete = true;
1211 		return;
1212 	}
1213 
1214 	ctx->state = NVME_CTRLR_DETACH_SET_CC;
1215 	rc = nvme_ctrlr_get_cc_async(ctrlr, nvme_ctrlr_shutdown_get_cc_done, ctx);
1216 	if (rc != 0) {
1217 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
1218 		ctx->shutdown_complete = true;
1219 	}
1220 }
1221 
1222 static void
1223 nvme_ctrlr_shutdown_get_csts_done(void *_ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1224 {
1225 	struct nvme_ctrlr_detach_ctx *ctx = _ctx;
1226 
1227 	if (spdk_nvme_cpl_is_error(cpl)) {
1228 		NVME_CTRLR_ERRLOG(ctx->ctrlr, "Failed to read the CSTS register\n");
1229 		ctx->shutdown_complete = true;
1230 		return;
1231 	}
1232 
1233 	assert(value <= UINT32_MAX);
1234 	ctx->csts.raw = (uint32_t)value;
1235 	ctx->state = NVME_CTRLR_DETACH_GET_CSTS_DONE;
1236 }
1237 
1238 static int
1239 nvme_ctrlr_shutdown_poll_async(struct spdk_nvme_ctrlr *ctrlr,
1240 			       struct nvme_ctrlr_detach_ctx *ctx)
1241 {
1242 	union spdk_nvme_csts_register	csts;
1243 	uint32_t			ms_waited;
1244 
1245 	switch (ctx->state) {
1246 	case NVME_CTRLR_DETACH_SET_CC:
1247 	case NVME_CTRLR_DETACH_GET_CSTS:
1248 		/* We're still waiting for the register operation to complete */
1249 		spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
1250 		return -EAGAIN;
1251 
1252 	case NVME_CTRLR_DETACH_CHECK_CSTS:
1253 		ctx->state = NVME_CTRLR_DETACH_GET_CSTS;
1254 		if (nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_shutdown_get_csts_done, ctx)) {
1255 			NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
1256 			return -EIO;
1257 		}
1258 		return -EAGAIN;
1259 
1260 	case NVME_CTRLR_DETACH_GET_CSTS_DONE:
1261 		ctx->state = NVME_CTRLR_DETACH_CHECK_CSTS;
1262 		break;
1263 
1264 	default:
1265 		assert(0 && "Should never happen");
1266 		return -EINVAL;
1267 	}
1268 
1269 	ms_waited = (spdk_get_ticks() - ctx->shutdown_start_tsc) * 1000 / spdk_get_ticks_hz();
1270 	csts.raw = ctx->csts.raw;
1271 
1272 	if (csts.bits.shst == SPDK_NVME_SHST_COMPLETE) {
1273 		NVME_CTRLR_DEBUGLOG(ctrlr, "shutdown complete in %u milliseconds\n", ms_waited);
1274 		return 0;
1275 	}
1276 
1277 	if (ms_waited < ctx->shutdown_timeout_ms) {
1278 		return -EAGAIN;
1279 	}
1280 
1281 	NVME_CTRLR_ERRLOG(ctrlr, "did not shutdown within %u milliseconds\n",
1282 			  ctx->shutdown_timeout_ms);
1283 	if (ctrlr->quirks & NVME_QUIRK_SHST_COMPLETE) {
1284 		NVME_CTRLR_ERRLOG(ctrlr, "likely due to shutdown handling in the VMWare emulated NVMe SSD\n");
1285 	}
1286 
1287 	return 0;
1288 }
1289 
1290 static inline uint64_t
1291 nvme_ctrlr_get_ready_timeout(struct spdk_nvme_ctrlr *ctrlr)
1292 {
1293 	return ctrlr->cap.bits.to * 500;
1294 }
1295 
1296 static void
1297 nvme_ctrlr_set_cc_en_done(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
1298 {
1299 	struct spdk_nvme_ctrlr *ctrlr = ctx;
1300 
1301 	if (spdk_nvme_cpl_is_error(cpl)) {
1302 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to set the CC register\n");
1303 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1304 		return;
1305 	}
1306 
1307 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1,
1308 			     nvme_ctrlr_get_ready_timeout(ctrlr));
1309 }
1310 
1311 static int
1312 nvme_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
1313 {
1314 	union spdk_nvme_cc_register	cc;
1315 	int				rc;
1316 
1317 	rc = nvme_transport_ctrlr_enable(ctrlr);
1318 	if (rc != 0) {
1319 		NVME_CTRLR_ERRLOG(ctrlr, "transport ctrlr_enable failed\n");
1320 		return rc;
1321 	}
1322 
1323 	cc.raw = ctrlr->process_init_cc.raw;
1324 	if (cc.bits.en != 0) {
1325 		NVME_CTRLR_ERRLOG(ctrlr, "called with CC.EN = 1\n");
1326 		return -EINVAL;
1327 	}
1328 
1329 	cc.bits.en = 1;
1330 	cc.bits.css = 0;
1331 	cc.bits.shn = 0;
1332 	cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
1333 	cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
1334 
1335 	/* Page size is 2 ^ (12 + mps). */
1336 	cc.bits.mps = spdk_u32log2(ctrlr->page_size) - 12;
1337 
1338 	/*
1339 	 * Since NVMe 1.0, a controller should have at least one bit set in CAP.CSS.
1340 	 * A controller that does not have any bit set in CAP.CSS is not spec compliant.
1341 	 * Try to support such a controller regardless.
1342 	 */
1343 	if (ctrlr->cap.bits.css == 0) {
1344 		NVME_CTRLR_INFOLOG(ctrlr, "Drive reports no command sets supported. Assuming NVM is supported.\n");
1345 		ctrlr->cap.bits.css = SPDK_NVME_CAP_CSS_NVM;
1346 	}
1347 
1348 	/*
1349 	 * If the user did not explicitly request a command set, or supplied a value larger than
1350 	 * what can be saved in CC.CSS, use the most reasonable default.
1351 	 */
1352 	if (ctrlr->opts.command_set >= CHAR_BIT) {
1353 		if (ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_IOCS) {
1354 			ctrlr->opts.command_set = SPDK_NVME_CC_CSS_IOCS;
1355 		} else if (ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_NVM) {
1356 			ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM;
1357 		} else if (ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_NOIO) {
1358 			/* Technically we should respond with CC_CSS_NOIO in
1359 			 * this case, but we use NVM instead to work around
1360 			 * buggy targets and to match Linux driver behavior.
1361 			 */
1362 			ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM;
1363 		} else {
1364 			/* Invalid supported bits detected, falling back to NVM. */
1365 			ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM;
1366 		}
1367 	}
1368 
1369 	/* Verify that the selected command set is supported by the controller. */
1370 	if (!(ctrlr->cap.bits.css & (1u << ctrlr->opts.command_set))) {
1371 		NVME_CTRLR_DEBUGLOG(ctrlr, "Requested I/O command set %u but supported mask is 0x%x\n",
1372 				    ctrlr->opts.command_set, ctrlr->cap.bits.css);
1373 		NVME_CTRLR_DEBUGLOG(ctrlr, "Falling back to NVM. Assuming NVM is supported.\n");
1374 		ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM;
1375 	}
1376 
1377 	cc.bits.css = ctrlr->opts.command_set;
1378 
1379 	switch (ctrlr->opts.arb_mechanism) {
1380 	case SPDK_NVME_CC_AMS_RR:
1381 		break;
1382 	case SPDK_NVME_CC_AMS_WRR:
1383 		if (SPDK_NVME_CAP_AMS_WRR & ctrlr->cap.bits.ams) {
1384 			break;
1385 		}
1386 		return -EINVAL;
1387 	case SPDK_NVME_CC_AMS_VS:
1388 		if (SPDK_NVME_CAP_AMS_VS & ctrlr->cap.bits.ams) {
1389 			break;
1390 		}
1391 		return -EINVAL;
1392 	default:
1393 		return -EINVAL;
1394 	}
1395 
1396 	cc.bits.ams = ctrlr->opts.arb_mechanism;
1397 	ctrlr->process_init_cc.raw = cc.raw;
1398 
1399 	if (nvme_ctrlr_set_cc_async(ctrlr, cc.raw, nvme_ctrlr_set_cc_en_done, ctrlr)) {
1400 		NVME_CTRLR_ERRLOG(ctrlr, "set_cc() failed\n");
1401 		return -EIO;
1402 	}
1403 
1404 	return 0;
1405 }
1406 
1407 static const char *
1408 nvme_ctrlr_state_string(enum nvme_ctrlr_state state)
1409 {
1410 	switch (state) {
1411 	case NVME_CTRLR_STATE_INIT_DELAY:
1412 		return "delay init";
1413 	case NVME_CTRLR_STATE_CONNECT_ADMINQ:
1414 		return "connect adminq";
1415 	case NVME_CTRLR_STATE_WAIT_FOR_CONNECT_ADMINQ:
1416 		return "wait for connect adminq";
1417 	case NVME_CTRLR_STATE_READ_VS:
1418 		return "read vs";
1419 	case NVME_CTRLR_STATE_READ_VS_WAIT_FOR_VS:
1420 		return "read vs wait for vs";
1421 	case NVME_CTRLR_STATE_READ_CAP:
1422 		return "read cap";
1423 	case NVME_CTRLR_STATE_READ_CAP_WAIT_FOR_CAP:
1424 		return "read cap wait for cap";
1425 	case NVME_CTRLR_STATE_CHECK_EN:
1426 		return "check en";
1427 	case NVME_CTRLR_STATE_CHECK_EN_WAIT_FOR_CC:
1428 		return "check en wait for cc";
1429 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1:
1430 		return "disable and wait for CSTS.RDY = 1";
1431 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
1432 		return "disable and wait for CSTS.RDY = 1 reg";
1433 	case NVME_CTRLR_STATE_SET_EN_0:
1434 		return "set CC.EN = 0";
1435 	case NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC:
1436 		return "set CC.EN = 0 wait for cc";
1437 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0:
1438 		return "disable and wait for CSTS.RDY = 0";
1439 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0_WAIT_FOR_CSTS:
1440 		return "disable and wait for CSTS.RDY = 0 reg";
1441 	case NVME_CTRLR_STATE_DISABLED:
1442 		return "controller is disabled";
1443 	case NVME_CTRLR_STATE_ENABLE:
1444 		return "enable controller by writing CC.EN = 1";
1445 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_CC:
1446 		return "enable controller by writing CC.EN = 1 reg";
1447 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1:
1448 		return "wait for CSTS.RDY = 1";
1449 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
1450 		return "wait for CSTS.RDY = 1 reg";
1451 	case NVME_CTRLR_STATE_RESET_ADMIN_QUEUE:
1452 		return "reset admin queue";
1453 	case NVME_CTRLR_STATE_IDENTIFY:
1454 		return "identify controller";
1455 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY:
1456 		return "wait for identify controller";
1457 	case NVME_CTRLR_STATE_CONFIGURE_AER:
1458 		return "configure AER";
1459 	case NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER:
1460 		return "wait for configure aer";
1461 	case NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT:
1462 		return "set keep alive timeout";
1463 	case NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT:
1464 		return "wait for set keep alive timeout";
1465 	case NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC:
1466 		return "identify controller iocs specific";
1467 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_IOCS_SPECIFIC:
1468 		return "wait for identify controller iocs specific";
1469 	case NVME_CTRLR_STATE_GET_ZNS_CMD_EFFECTS_LOG:
1470 		return "get zns cmd and effects log page";
1471 	case NVME_CTRLR_STATE_WAIT_FOR_GET_ZNS_CMD_EFFECTS_LOG:
1472 		return "wait for get zns cmd and effects log page";
1473 	case NVME_CTRLR_STATE_SET_NUM_QUEUES:
1474 		return "set number of queues";
1475 	case NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES:
1476 		return "wait for set number of queues";
1477 	case NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS:
1478 		return "identify active ns";
1479 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS:
1480 		return "wait for identify active ns";
1481 	case NVME_CTRLR_STATE_IDENTIFY_NS:
1482 		return "identify ns";
1483 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS:
1484 		return "wait for identify ns";
1485 	case NVME_CTRLR_STATE_IDENTIFY_ID_DESCS:
1486 		return "identify namespace id descriptors";
1487 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS:
1488 		return "wait for identify namespace id descriptors";
1489 	case NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC:
1490 		return "identify ns iocs specific";
1491 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC:
1492 		return "wait for identify ns iocs specific";
1493 	case NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES:
1494 		return "set supported log pages";
1495 	case NVME_CTRLR_STATE_SET_SUPPORTED_INTEL_LOG_PAGES:
1496 		return "set supported INTEL log pages";
1497 	case NVME_CTRLR_STATE_WAIT_FOR_SUPPORTED_INTEL_LOG_PAGES:
1498 		return "wait for supported INTEL log pages";
1499 	case NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES:
1500 		return "set supported features";
1501 	case NVME_CTRLR_STATE_SET_HOST_FEATURE:
1502 		return "set host behavior support feature";
1503 	case NVME_CTRLR_STATE_WAIT_FOR_SET_HOST_FEATURE:
1504 		return "wait for set host behavior support feature";
1505 	case NVME_CTRLR_STATE_SET_DB_BUF_CFG:
1506 		return "set doorbell buffer config";
1507 	case NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG:
1508 		return "wait for doorbell buffer config";
1509 	case NVME_CTRLR_STATE_SET_HOST_ID:
1510 		return "set host ID";
1511 	case NVME_CTRLR_STATE_WAIT_FOR_HOST_ID:
1512 		return "wait for set host ID";
1513 	case NVME_CTRLR_STATE_TRANSPORT_READY:
1514 		return "transport ready";
1515 	case NVME_CTRLR_STATE_READY:
1516 		return "ready";
1517 	case NVME_CTRLR_STATE_ERROR:
1518 		return "error";
1519 	case NVME_CTRLR_STATE_DISCONNECTED:
1520 		return "disconnected";
1521 	}
1522 	return "unknown";
1523 };
1524 
1525 static void
1526 _nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
1527 		      uint64_t timeout_in_ms, bool quiet)
1528 {
1529 	uint64_t ticks_per_ms, timeout_in_ticks, now_ticks;
1530 
1531 	ctrlr->state = state;
1532 	if (timeout_in_ms == NVME_TIMEOUT_KEEP_EXISTING) {
1533 		if (!quiet) {
1534 			NVME_CTRLR_DEBUGLOG(ctrlr, "setting state to %s (keeping existing timeout)\n",
1535 					    nvme_ctrlr_state_string(ctrlr->state));
1536 		}
1537 		return;
1538 	}
1539 
1540 	if (timeout_in_ms == NVME_TIMEOUT_INFINITE) {
1541 		goto inf;
1542 	}
1543 
1544 	ticks_per_ms = spdk_get_ticks_hz() / 1000;
1545 	if (timeout_in_ms > UINT64_MAX / ticks_per_ms) {
1546 		NVME_CTRLR_ERRLOG(ctrlr,
1547 				  "Specified timeout would cause integer overflow. Defaulting to no timeout.\n");
1548 		goto inf;
1549 	}
1550 
1551 	now_ticks = spdk_get_ticks();
1552 	timeout_in_ticks = timeout_in_ms * ticks_per_ms;
1553 	if (timeout_in_ticks > UINT64_MAX - now_ticks) {
1554 		NVME_CTRLR_ERRLOG(ctrlr,
1555 				  "Specified timeout would cause integer overflow. Defaulting to no timeout.\n");
1556 		goto inf;
1557 	}
1558 
1559 	ctrlr->state_timeout_tsc = timeout_in_ticks + now_ticks;
1560 	if (!quiet) {
1561 		NVME_CTRLR_DEBUGLOG(ctrlr, "setting state to %s (timeout %" PRIu64 " ms)\n",
1562 				    nvme_ctrlr_state_string(ctrlr->state), timeout_in_ms);
1563 	}
1564 	return;
1565 inf:
1566 	if (!quiet) {
1567 		NVME_CTRLR_DEBUGLOG(ctrlr, "setting state to %s (no timeout)\n",
1568 				    nvme_ctrlr_state_string(ctrlr->state));
1569 	}
1570 	ctrlr->state_timeout_tsc = NVME_TIMEOUT_INFINITE;
1571 }
1572 
1573 static void
1574 nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
1575 		     uint64_t timeout_in_ms)
1576 {
1577 	_nvme_ctrlr_set_state(ctrlr, state, timeout_in_ms, false);
1578 }
1579 
1580 static void
1581 nvme_ctrlr_set_state_quiet(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
1582 			   uint64_t timeout_in_ms)
1583 {
1584 	_nvme_ctrlr_set_state(ctrlr, state, timeout_in_ms, true);
1585 }
1586 
1587 static void
1588 nvme_ctrlr_free_zns_specific_data(struct spdk_nvme_ctrlr *ctrlr)
1589 {
1590 	spdk_free(ctrlr->cdata_zns);
1591 	ctrlr->cdata_zns = NULL;
1592 }
1593 
1594 static void
1595 nvme_ctrlr_free_iocs_specific_data(struct spdk_nvme_ctrlr *ctrlr)
1596 {
1597 	nvme_ctrlr_free_zns_specific_data(ctrlr);
1598 }
1599 
1600 static void
1601 nvme_ctrlr_free_doorbell_buffer(struct spdk_nvme_ctrlr *ctrlr)
1602 {
1603 	if (ctrlr->shadow_doorbell) {
1604 		spdk_free(ctrlr->shadow_doorbell);
1605 		ctrlr->shadow_doorbell = NULL;
1606 	}
1607 
1608 	if (ctrlr->eventidx) {
1609 		spdk_free(ctrlr->eventidx);
1610 		ctrlr->eventidx = NULL;
1611 	}
1612 }
1613 
1614 static void
1615 nvme_ctrlr_set_doorbell_buffer_config_done(void *arg, const struct spdk_nvme_cpl *cpl)
1616 {
1617 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
1618 
1619 	if (spdk_nvme_cpl_is_error(cpl)) {
1620 		NVME_CTRLR_WARNLOG(ctrlr, "Doorbell buffer config failed\n");
1621 	} else {
1622 		NVME_CTRLR_INFOLOG(ctrlr, "Doorbell buffer config enabled\n");
1623 	}
1624 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID,
1625 			     ctrlr->opts.admin_timeout_ms);
1626 }
1627 
1628 static int
1629 nvme_ctrlr_set_doorbell_buffer_config(struct spdk_nvme_ctrlr *ctrlr)
1630 {
1631 	int rc = 0;
1632 	uint64_t prp1, prp2, len;
1633 
1634 	if (!ctrlr->cdata.oacs.doorbell_buffer_config) {
1635 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID,
1636 				     ctrlr->opts.admin_timeout_ms);
1637 		return 0;
1638 	}
1639 
1640 	if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
1641 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID,
1642 				     ctrlr->opts.admin_timeout_ms);
1643 		return 0;
1644 	}
1645 
1646 	/* only 1 page size for doorbell buffer */
1647 	ctrlr->shadow_doorbell = spdk_zmalloc(ctrlr->page_size, ctrlr->page_size,
1648 					      NULL, SPDK_ENV_LCORE_ID_ANY,
1649 					      SPDK_MALLOC_DMA | SPDK_MALLOC_SHARE);
1650 	if (ctrlr->shadow_doorbell == NULL) {
1651 		rc = -ENOMEM;
1652 		goto error;
1653 	}
1654 
1655 	len = ctrlr->page_size;
1656 	prp1 = spdk_vtophys(ctrlr->shadow_doorbell, &len);
1657 	if (prp1 == SPDK_VTOPHYS_ERROR || len != ctrlr->page_size) {
1658 		rc = -EFAULT;
1659 		goto error;
1660 	}
1661 
1662 	ctrlr->eventidx = spdk_zmalloc(ctrlr->page_size, ctrlr->page_size,
1663 				       NULL, SPDK_ENV_LCORE_ID_ANY,
1664 				       SPDK_MALLOC_DMA | SPDK_MALLOC_SHARE);
1665 	if (ctrlr->eventidx == NULL) {
1666 		rc = -ENOMEM;
1667 		goto error;
1668 	}
1669 
1670 	len = ctrlr->page_size;
1671 	prp2 = spdk_vtophys(ctrlr->eventidx, &len);
1672 	if (prp2 == SPDK_VTOPHYS_ERROR || len != ctrlr->page_size) {
1673 		rc = -EFAULT;
1674 		goto error;
1675 	}
1676 
1677 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG,
1678 			     ctrlr->opts.admin_timeout_ms);
1679 
1680 	rc = nvme_ctrlr_cmd_doorbell_buffer_config(ctrlr, prp1, prp2,
1681 			nvme_ctrlr_set_doorbell_buffer_config_done, ctrlr);
1682 	if (rc != 0) {
1683 		goto error;
1684 	}
1685 
1686 	return 0;
1687 
1688 error:
1689 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
1690 	nvme_ctrlr_free_doorbell_buffer(ctrlr);
1691 	return rc;
1692 }
1693 
1694 void
1695 nvme_ctrlr_abort_queued_aborts(struct spdk_nvme_ctrlr *ctrlr)
1696 {
1697 	struct nvme_request	*req, *tmp;
1698 	struct spdk_nvme_cpl	cpl = {};
1699 
1700 	cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
1701 	cpl.status.sct = SPDK_NVME_SCT_GENERIC;
1702 
1703 	STAILQ_FOREACH_SAFE(req, &ctrlr->queued_aborts, stailq, tmp) {
1704 		STAILQ_REMOVE_HEAD(&ctrlr->queued_aborts, stailq);
1705 		ctrlr->outstanding_aborts++;
1706 
1707 		nvme_complete_request(req->cb_fn, req->cb_arg, req->qpair, req, &cpl);
1708 	}
1709 }
1710 
1711 static int
1712 nvme_ctrlr_disconnect(struct spdk_nvme_ctrlr *ctrlr)
1713 {
1714 	if (ctrlr->is_resetting || ctrlr->is_removed) {
1715 		/*
1716 		 * Controller is already resetting or has been removed. Return
1717 		 *  immediately since there is no need to kick off another
1718 		 *  reset in these cases.
1719 		 */
1720 		return ctrlr->is_resetting ? -EBUSY : -ENXIO;
1721 	}
1722 
1723 	ctrlr->is_resetting = true;
1724 	ctrlr->is_failed = false;
1725 	ctrlr->is_disconnecting = true;
1726 	ctrlr->prepare_for_reset = true;
1727 
1728 	NVME_CTRLR_NOTICELOG(ctrlr, "resetting controller\n");
1729 
1730 	/* Disable keep-alive, it'll be re-enabled as part of the init process */
1731 	ctrlr->keep_alive_interval_ticks = 0;
1732 
1733 	/* Abort all of the queued abort requests */
1734 	nvme_ctrlr_abort_queued_aborts(ctrlr);
1735 
1736 	nvme_transport_admin_qpair_abort_aers(ctrlr->adminq);
1737 
1738 	ctrlr->adminq->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
1739 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq);
1740 
1741 	return 0;
1742 }
1743 
1744 static void
1745 nvme_ctrlr_disconnect_done(struct spdk_nvme_ctrlr *ctrlr)
1746 {
1747 	assert(ctrlr->is_failed == false);
1748 	ctrlr->is_disconnecting = false;
1749 
1750 	/* Doorbell buffer config is invalid during reset */
1751 	nvme_ctrlr_free_doorbell_buffer(ctrlr);
1752 
1753 	/* I/O Command Set Specific Identify Controller data is invalidated during reset */
1754 	nvme_ctrlr_free_iocs_specific_data(ctrlr);
1755 
1756 	spdk_bit_array_free(&ctrlr->free_io_qids);
1757 
1758 	/* Set the state back to DISCONNECTED to cause a full hardware reset. */
1759 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISCONNECTED, NVME_TIMEOUT_INFINITE);
1760 }
1761 
1762 int
1763 spdk_nvme_ctrlr_disconnect(struct spdk_nvme_ctrlr *ctrlr)
1764 {
1765 	int rc;
1766 
1767 	nvme_ctrlr_lock(ctrlr);
1768 	rc = nvme_ctrlr_disconnect(ctrlr);
1769 	nvme_ctrlr_unlock(ctrlr);
1770 
1771 	return rc;
1772 }
1773 
1774 void
1775 spdk_nvme_ctrlr_reconnect_async(struct spdk_nvme_ctrlr *ctrlr)
1776 {
1777 	nvme_ctrlr_lock(ctrlr);
1778 
1779 	ctrlr->prepare_for_reset = false;
1780 
1781 	/* Set the state back to INIT to cause a full hardware reset. */
1782 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE);
1783 
1784 	/* Return without releasing ctrlr_lock. ctrlr_lock will be released when
1785 	 * spdk_nvme_ctrlr_reset_poll_async() returns 0.
1786 	 */
1787 }
1788 
1789 int
1790 nvme_ctrlr_reinitialize_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
1791 {
1792 	bool async;
1793 	int rc;
1794 
1795 	if (nvme_ctrlr_get_current_process(ctrlr) != qpair->active_proc ||
1796 	    spdk_nvme_ctrlr_is_fabrics(ctrlr) || nvme_qpair_is_admin_queue(qpair)) {
1797 		assert(false);
1798 		return -EINVAL;
1799 	}
1800 
1801 	/* Force a synchronous connect. */
1802 	async = qpair->async;
1803 	qpair->async = false;
1804 	rc = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair);
1805 	qpair->async = async;
1806 
1807 	if (rc != 0) {
1808 		qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
1809 	}
1810 
1811 	return rc;
1812 }
1813 
1814 /**
1815  * This function will be called when the controller is being reinitialized.
1816  * Note: the ctrlr_lock must be held when calling this function.
1817  */
1818 int
1819 spdk_nvme_ctrlr_reconnect_poll_async(struct spdk_nvme_ctrlr *ctrlr)
1820 {
1821 	struct spdk_nvme_ns *ns, *tmp_ns;
1822 	struct spdk_nvme_qpair	*qpair;
1823 	int rc = 0, rc_tmp = 0;
1824 
1825 	if (nvme_ctrlr_process_init(ctrlr) != 0) {
1826 		NVME_CTRLR_ERRLOG(ctrlr, "controller reinitialization failed\n");
1827 		rc = -1;
1828 	}
1829 	if (ctrlr->state != NVME_CTRLR_STATE_READY && rc != -1) {
1830 		return -EAGAIN;
1831 	}
1832 
1833 	/*
1834 	 * For non-fabrics controllers, the memory locations of the transport qpair
1835 	 * don't change when the controller is reset. They simply need to be
1836 	 * re-enabled with admin commands to the controller. For fabric
1837 	 * controllers we need to disconnect and reconnect the qpair on its
1838 	 * own thread outside of the context of the reset.
1839 	 */
1840 	if (rc == 0 && !spdk_nvme_ctrlr_is_fabrics(ctrlr)) {
1841 		/* Reinitialize qpairs */
1842 		TAILQ_FOREACH(qpair, &ctrlr->active_io_qpairs, tailq) {
1843 			/* Always clear the qid bit here, even for a foreign qpair. We need
1844 			 * to make sure another process doesn't get the chance to grab that
1845 			 * qid.
1846 			 */
1847 			assert(spdk_bit_array_get(ctrlr->free_io_qids, qpair->id));
1848 			spdk_bit_array_clear(ctrlr->free_io_qids, qpair->id);
1849 			if (nvme_ctrlr_get_current_process(ctrlr) != qpair->active_proc) {
1850 				/*
1851 				 * We cannot reinitialize a foreign qpair. The qpair's owning
1852 				 * process will take care of it. Set failure reason to FAILURE_RESET
1853 				 * to ensure that happens.
1854 				 */
1855 				qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_RESET;
1856 				continue;
1857 			}
1858 			rc_tmp = nvme_ctrlr_reinitialize_io_qpair(ctrlr, qpair);
1859 			if (rc_tmp != 0) {
1860 				rc = rc_tmp;
1861 			}
1862 		}
1863 	}
1864 
1865 	/*
1866 	 * Take this opportunity to remove inactive namespaces. During a reset namespace
1867 	 * handles can be invalidated.
1868 	 */
1869 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &ctrlr->ns, tmp_ns) {
1870 		if (!ns->active) {
1871 			RB_REMOVE(nvme_ns_tree, &ctrlr->ns, ns);
1872 			spdk_free(ns);
1873 		}
1874 	}
1875 
1876 	if (rc) {
1877 		nvme_ctrlr_fail(ctrlr, false);
1878 	}
1879 	ctrlr->is_resetting = false;
1880 
1881 	nvme_ctrlr_unlock(ctrlr);
1882 
1883 	if (!ctrlr->cdata.oaes.ns_attribute_notices) {
1884 		/*
1885 		 * If controller doesn't support ns_attribute_notices and
1886 		 * namespace attributes change (e.g. number of namespaces)
1887 		 * we need to update system handling device reset.
1888 		 */
1889 		nvme_io_msg_ctrlr_update(ctrlr);
1890 	}
1891 
1892 	return rc;
1893 }
1894 
1895 /*
1896  * For PCIe transport, spdk_nvme_ctrlr_disconnect() will do a Controller Level Reset
1897  * (Change CC.EN from 1 to 0) as a operation to disconnect the admin qpair.
1898  * The following two functions are added to do a Controller Level Reset. They have
1899  * to be called under the nvme controller's lock.
1900  */
1901 void
1902 nvme_ctrlr_disable(struct spdk_nvme_ctrlr *ctrlr)
1903 {
1904 	assert(ctrlr->is_disconnecting == true);
1905 
1906 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CHECK_EN, NVME_TIMEOUT_INFINITE);
1907 }
1908 
1909 int
1910 nvme_ctrlr_disable_poll(struct spdk_nvme_ctrlr *ctrlr)
1911 {
1912 	int rc = 0;
1913 
1914 	if (nvme_ctrlr_process_init(ctrlr) != 0) {
1915 		NVME_CTRLR_ERRLOG(ctrlr, "failed to disable controller\n");
1916 		rc = -1;
1917 	}
1918 
1919 	if (ctrlr->state != NVME_CTRLR_STATE_DISABLED && rc != -1) {
1920 		return -EAGAIN;
1921 	}
1922 
1923 	return rc;
1924 }
1925 
1926 static void
1927 nvme_ctrlr_fail_io_qpairs(struct spdk_nvme_ctrlr *ctrlr)
1928 {
1929 	struct spdk_nvme_qpair	*qpair;
1930 
1931 	TAILQ_FOREACH(qpair, &ctrlr->active_io_qpairs, tailq) {
1932 		qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
1933 	}
1934 }
1935 
1936 int
1937 spdk_nvme_ctrlr_reset(struct spdk_nvme_ctrlr *ctrlr)
1938 {
1939 	int rc;
1940 
1941 	nvme_ctrlr_lock(ctrlr);
1942 
1943 	rc = nvme_ctrlr_disconnect(ctrlr);
1944 	if (rc == 0) {
1945 		nvme_ctrlr_fail_io_qpairs(ctrlr);
1946 	}
1947 
1948 	nvme_ctrlr_unlock(ctrlr);
1949 
1950 	if (rc != 0) {
1951 		if (rc == -EBUSY) {
1952 			rc = 0;
1953 		}
1954 		return rc;
1955 	}
1956 
1957 	while (1) {
1958 		rc = spdk_nvme_ctrlr_process_admin_completions(ctrlr);
1959 		if (rc == -ENXIO) {
1960 			break;
1961 		}
1962 	}
1963 
1964 	spdk_nvme_ctrlr_reconnect_async(ctrlr);
1965 
1966 	while (true) {
1967 		rc = spdk_nvme_ctrlr_reconnect_poll_async(ctrlr);
1968 		if (rc != -EAGAIN) {
1969 			break;
1970 		}
1971 	}
1972 
1973 	return rc;
1974 }
1975 
1976 int
1977 spdk_nvme_ctrlr_reset_subsystem(struct spdk_nvme_ctrlr *ctrlr)
1978 {
1979 	union spdk_nvme_cap_register cap;
1980 	int rc = 0;
1981 
1982 	cap = spdk_nvme_ctrlr_get_regs_cap(ctrlr);
1983 	if (cap.bits.nssrs == 0) {
1984 		NVME_CTRLR_WARNLOG(ctrlr, "subsystem reset is not supported\n");
1985 		return -ENOTSUP;
1986 	}
1987 
1988 	NVME_CTRLR_NOTICELOG(ctrlr, "resetting subsystem\n");
1989 	nvme_ctrlr_lock(ctrlr);
1990 	ctrlr->is_resetting = true;
1991 	rc = nvme_ctrlr_set_nssr(ctrlr, SPDK_NVME_NSSR_VALUE);
1992 	ctrlr->is_resetting = false;
1993 
1994 	nvme_ctrlr_unlock(ctrlr);
1995 	/*
1996 	 * No more cleanup at this point like in the ctrlr reset. A subsystem reset will cause
1997 	 * a hot remove for PCIe transport. The hot remove handling does all the necessary ctrlr cleanup.
1998 	 */
1999 	return rc;
2000 }
2001 
2002 int
2003 spdk_nvme_ctrlr_set_trid(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_transport_id *trid)
2004 {
2005 	int rc = 0;
2006 
2007 	nvme_ctrlr_lock(ctrlr);
2008 
2009 	if (ctrlr->is_failed == false) {
2010 		rc = -EPERM;
2011 		goto out;
2012 	}
2013 
2014 	if (trid->trtype != ctrlr->trid.trtype) {
2015 		rc = -EINVAL;
2016 		goto out;
2017 	}
2018 
2019 	if (strncmp(trid->subnqn, ctrlr->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
2020 		rc = -EINVAL;
2021 		goto out;
2022 	}
2023 
2024 	ctrlr->trid = *trid;
2025 
2026 out:
2027 	nvme_ctrlr_unlock(ctrlr);
2028 	return rc;
2029 }
2030 
2031 void
2032 spdk_nvme_ctrlr_set_remove_cb(struct spdk_nvme_ctrlr *ctrlr,
2033 			      spdk_nvme_remove_cb remove_cb, void *remove_ctx)
2034 {
2035 	if (!spdk_process_is_primary()) {
2036 		return;
2037 	}
2038 
2039 	nvme_ctrlr_lock(ctrlr);
2040 	ctrlr->remove_cb = remove_cb;
2041 	ctrlr->cb_ctx = remove_ctx;
2042 	nvme_ctrlr_unlock(ctrlr);
2043 }
2044 
2045 int
2046 spdk_nvme_ctrlr_set_keys(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ctrlr_key_opts *opts)
2047 {
2048 	nvme_ctrlr_lock(ctrlr);
2049 	if (SPDK_GET_FIELD(opts, dhchap_key, ctrlr->opts.dhchap_key) == NULL &&
2050 	    SPDK_GET_FIELD(opts, dhchap_ctrlr_key, ctrlr->opts.dhchap_ctrlr_key) != NULL) {
2051 		NVME_CTRLR_ERRLOG(ctrlr, "DH-HMAC-CHAP controller key requires host key to be set\n");
2052 		nvme_ctrlr_unlock(ctrlr);
2053 		return -EINVAL;
2054 	}
2055 
2056 	ctrlr->opts.dhchap_key =
2057 		SPDK_GET_FIELD(opts, dhchap_key, ctrlr->opts.dhchap_key);
2058 	ctrlr->opts.dhchap_ctrlr_key =
2059 		SPDK_GET_FIELD(opts, dhchap_ctrlr_key, ctrlr->opts.dhchap_ctrlr_key);
2060 	nvme_ctrlr_unlock(ctrlr);
2061 
2062 	return 0;
2063 }
2064 
2065 static void
2066 nvme_ctrlr_identify_done(void *arg, const struct spdk_nvme_cpl *cpl)
2067 {
2068 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
2069 
2070 	if (spdk_nvme_cpl_is_error(cpl)) {
2071 		NVME_CTRLR_ERRLOG(ctrlr, "nvme_identify_controller failed!\n");
2072 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2073 		return;
2074 	}
2075 
2076 	/*
2077 	 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
2078 	 *  controller supports.
2079 	 */
2080 	ctrlr->max_xfer_size = nvme_transport_ctrlr_get_max_xfer_size(ctrlr);
2081 	NVME_CTRLR_DEBUGLOG(ctrlr, "transport max_xfer_size %u\n", ctrlr->max_xfer_size);
2082 	if (ctrlr->cdata.mdts > 0) {
2083 		ctrlr->max_xfer_size = spdk_min(ctrlr->max_xfer_size,
2084 						ctrlr->min_page_size * (1 << ctrlr->cdata.mdts));
2085 		NVME_CTRLR_DEBUGLOG(ctrlr, "MDTS max_xfer_size %u\n", ctrlr->max_xfer_size);
2086 	}
2087 
2088 	NVME_CTRLR_DEBUGLOG(ctrlr, "CNTLID 0x%04" PRIx16 "\n", ctrlr->cdata.cntlid);
2089 	if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
2090 		ctrlr->cntlid = ctrlr->cdata.cntlid;
2091 	} else {
2092 		/*
2093 		 * Fabrics controllers should already have CNTLID from the Connect command.
2094 		 *
2095 		 * If CNTLID from Connect doesn't match CNTLID in the Identify Controller data,
2096 		 * trust the one from Connect.
2097 		 */
2098 		if (ctrlr->cntlid != ctrlr->cdata.cntlid) {
2099 			NVME_CTRLR_DEBUGLOG(ctrlr, "Identify CNTLID 0x%04" PRIx16 " != Connect CNTLID 0x%04" PRIx16 "\n",
2100 					    ctrlr->cdata.cntlid, ctrlr->cntlid);
2101 		}
2102 	}
2103 
2104 	if (ctrlr->cdata.sgls.supported && !(ctrlr->quirks & NVME_QUIRK_NOT_USE_SGL)) {
2105 		assert(ctrlr->cdata.sgls.supported != 0x3);
2106 		ctrlr->flags |= SPDK_NVME_CTRLR_SGL_SUPPORTED;
2107 		if (ctrlr->cdata.sgls.supported == 0x2) {
2108 			ctrlr->flags |= SPDK_NVME_CTRLR_SGL_REQUIRES_DWORD_ALIGNMENT;
2109 		}
2110 
2111 		ctrlr->max_sges = nvme_transport_ctrlr_get_max_sges(ctrlr);
2112 		NVME_CTRLR_DEBUGLOG(ctrlr, "transport max_sges %u\n", ctrlr->max_sges);
2113 	}
2114 
2115 	if (ctrlr->cdata.sgls.metadata_address && !(ctrlr->quirks & NVME_QUIRK_NOT_USE_SGL)) {
2116 		ctrlr->flags |= SPDK_NVME_CTRLR_MPTR_SGL_SUPPORTED;
2117 	}
2118 
2119 	if (ctrlr->cdata.oacs.security && !(ctrlr->quirks & NVME_QUIRK_OACS_SECURITY)) {
2120 		ctrlr->flags |= SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED;
2121 	}
2122 
2123 	if (ctrlr->cdata.oacs.directives) {
2124 		ctrlr->flags |= SPDK_NVME_CTRLR_DIRECTIVES_SUPPORTED;
2125 	}
2126 
2127 	NVME_CTRLR_DEBUGLOG(ctrlr, "fuses compare and write: %d\n",
2128 			    ctrlr->cdata.fuses.compare_and_write);
2129 	if (ctrlr->cdata.fuses.compare_and_write) {
2130 		ctrlr->flags |= SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED;
2131 	}
2132 
2133 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CONFIGURE_AER,
2134 			     ctrlr->opts.admin_timeout_ms);
2135 }
2136 
2137 static int
2138 nvme_ctrlr_identify(struct spdk_nvme_ctrlr *ctrlr)
2139 {
2140 	int	rc;
2141 
2142 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY,
2143 			     ctrlr->opts.admin_timeout_ms);
2144 
2145 	rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_CTRLR, 0, 0, 0,
2146 				     &ctrlr->cdata, sizeof(ctrlr->cdata),
2147 				     nvme_ctrlr_identify_done, ctrlr);
2148 	if (rc != 0) {
2149 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2150 		return rc;
2151 	}
2152 
2153 	return 0;
2154 }
2155 
2156 static void
2157 nvme_ctrlr_get_zns_cmd_and_effects_log_done(void *arg, const struct spdk_nvme_cpl *cpl)
2158 {
2159 	struct spdk_nvme_cmds_and_effect_log_page *log_page;
2160 	struct spdk_nvme_ctrlr *ctrlr = arg;
2161 
2162 	if (spdk_nvme_cpl_is_error(cpl)) {
2163 		NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_get_zns_cmd_and_effects_log failed!\n");
2164 		spdk_free(ctrlr->tmp_ptr);
2165 		ctrlr->tmp_ptr = NULL;
2166 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2167 		return;
2168 	}
2169 
2170 	log_page = ctrlr->tmp_ptr;
2171 
2172 	if (log_page->io_cmds_supported[SPDK_NVME_OPC_ZONE_APPEND].csupp) {
2173 		ctrlr->flags |= SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
2174 	}
2175 	spdk_free(ctrlr->tmp_ptr);
2176 	ctrlr->tmp_ptr = NULL;
2177 
2178 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_NUM_QUEUES, ctrlr->opts.admin_timeout_ms);
2179 }
2180 
2181 static int
2182 nvme_ctrlr_get_zns_cmd_and_effects_log(struct spdk_nvme_ctrlr *ctrlr)
2183 {
2184 	int rc;
2185 
2186 	assert(!ctrlr->tmp_ptr);
2187 	ctrlr->tmp_ptr = spdk_zmalloc(sizeof(struct spdk_nvme_cmds_and_effect_log_page), 64, NULL,
2188 				      SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_SHARE | SPDK_MALLOC_DMA);
2189 	if (!ctrlr->tmp_ptr) {
2190 		rc = -ENOMEM;
2191 		goto error;
2192 	}
2193 
2194 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_GET_ZNS_CMD_EFFECTS_LOG,
2195 			     ctrlr->opts.admin_timeout_ms);
2196 
2197 	rc = spdk_nvme_ctrlr_cmd_get_log_page_ext(ctrlr, SPDK_NVME_LOG_COMMAND_EFFECTS_LOG,
2198 			0, ctrlr->tmp_ptr, sizeof(struct spdk_nvme_cmds_and_effect_log_page),
2199 			0, 0, 0, SPDK_NVME_CSI_ZNS << 24,
2200 			nvme_ctrlr_get_zns_cmd_and_effects_log_done, ctrlr);
2201 	if (rc != 0) {
2202 		goto error;
2203 	}
2204 
2205 	return 0;
2206 
2207 error:
2208 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2209 	spdk_free(ctrlr->tmp_ptr);
2210 	ctrlr->tmp_ptr = NULL;
2211 	return rc;
2212 }
2213 
2214 static void
2215 nvme_ctrlr_identify_zns_specific_done(void *arg, const struct spdk_nvme_cpl *cpl)
2216 {
2217 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
2218 
2219 	if (spdk_nvme_cpl_is_error(cpl)) {
2220 		/* no need to print an error, the controller simply does not support ZNS */
2221 		nvme_ctrlr_free_zns_specific_data(ctrlr);
2222 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_NUM_QUEUES,
2223 				     ctrlr->opts.admin_timeout_ms);
2224 		return;
2225 	}
2226 
2227 	/* A zero zasl value means use mdts */
2228 	if (ctrlr->cdata_zns->zasl) {
2229 		uint32_t max_append = ctrlr->min_page_size * (1 << ctrlr->cdata_zns->zasl);
2230 		ctrlr->max_zone_append_size = spdk_min(ctrlr->max_xfer_size, max_append);
2231 	} else {
2232 		ctrlr->max_zone_append_size = ctrlr->max_xfer_size;
2233 	}
2234 
2235 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_GET_ZNS_CMD_EFFECTS_LOG,
2236 			     ctrlr->opts.admin_timeout_ms);
2237 }
2238 
2239 /**
2240  * This function will try to fetch the I/O Command Specific Controller data structure for
2241  * each I/O Command Set supported by SPDK.
2242  *
2243  * If an I/O Command Set is not supported by the controller, "Invalid Field in Command"
2244  * will be returned. Since we are fetching in a exploratively way, getting an error back
2245  * from the controller should not be treated as fatal.
2246  *
2247  * I/O Command Sets not supported by SPDK will be skipped (e.g. Key Value Command Set).
2248  *
2249  * I/O Command Sets without a IOCS specific data structure (i.e. a zero-filled IOCS specific
2250  * data structure) will be skipped (e.g. NVM Command Set, Key Value Command Set).
2251  */
2252 static int
2253 nvme_ctrlr_identify_iocs_specific(struct spdk_nvme_ctrlr *ctrlr)
2254 {
2255 	int	rc;
2256 
2257 	if (!nvme_ctrlr_multi_iocs_enabled(ctrlr)) {
2258 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_NUM_QUEUES,
2259 				     ctrlr->opts.admin_timeout_ms);
2260 		return 0;
2261 	}
2262 
2263 	/*
2264 	 * Since SPDK currently only needs to fetch a single Command Set, keep the code here,
2265 	 * instead of creating multiple NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC substates,
2266 	 * which would require additional functions and complexity for no good reason.
2267 	 */
2268 	assert(!ctrlr->cdata_zns);
2269 	ctrlr->cdata_zns = spdk_zmalloc(sizeof(*ctrlr->cdata_zns), 64, NULL, SPDK_ENV_NUMA_ID_ANY,
2270 					SPDK_MALLOC_SHARE | SPDK_MALLOC_DMA);
2271 	if (!ctrlr->cdata_zns) {
2272 		rc = -ENOMEM;
2273 		goto error;
2274 	}
2275 
2276 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_IOCS_SPECIFIC,
2277 			     ctrlr->opts.admin_timeout_ms);
2278 
2279 	rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_CTRLR_IOCS, 0, 0, SPDK_NVME_CSI_ZNS,
2280 				     ctrlr->cdata_zns, sizeof(*ctrlr->cdata_zns),
2281 				     nvme_ctrlr_identify_zns_specific_done, ctrlr);
2282 	if (rc != 0) {
2283 		goto error;
2284 	}
2285 
2286 	return 0;
2287 
2288 error:
2289 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2290 	nvme_ctrlr_free_zns_specific_data(ctrlr);
2291 	return rc;
2292 }
2293 
2294 enum nvme_active_ns_state {
2295 	NVME_ACTIVE_NS_STATE_IDLE,
2296 	NVME_ACTIVE_NS_STATE_PROCESSING,
2297 	NVME_ACTIVE_NS_STATE_DONE,
2298 	NVME_ACTIVE_NS_STATE_ERROR
2299 };
2300 
2301 typedef void (*nvme_active_ns_ctx_deleter)(struct nvme_active_ns_ctx *);
2302 
2303 struct nvme_active_ns_ctx {
2304 	struct spdk_nvme_ctrlr *ctrlr;
2305 	uint32_t page_count;
2306 	uint32_t next_nsid;
2307 	uint32_t *new_ns_list;
2308 	nvme_active_ns_ctx_deleter deleter;
2309 
2310 	enum nvme_active_ns_state state;
2311 };
2312 
2313 static struct nvme_active_ns_ctx *
2314 nvme_active_ns_ctx_create(struct spdk_nvme_ctrlr *ctrlr, nvme_active_ns_ctx_deleter deleter)
2315 {
2316 	struct nvme_active_ns_ctx *ctx;
2317 	uint32_t *new_ns_list = NULL;
2318 
2319 	ctx = calloc(1, sizeof(*ctx));
2320 	if (!ctx) {
2321 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate nvme_active_ns_ctx!\n");
2322 		return NULL;
2323 	}
2324 
2325 	new_ns_list = spdk_zmalloc(sizeof(struct spdk_nvme_ns_list), ctrlr->page_size,
2326 				   NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_SHARE);
2327 	if (!new_ns_list) {
2328 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate active_ns_list!\n");
2329 		free(ctx);
2330 		return NULL;
2331 	}
2332 
2333 	ctx->page_count = 1;
2334 	ctx->new_ns_list = new_ns_list;
2335 	ctx->ctrlr = ctrlr;
2336 	ctx->deleter = deleter;
2337 
2338 	return ctx;
2339 }
2340 
2341 static void
2342 nvme_active_ns_ctx_destroy(struct nvme_active_ns_ctx *ctx)
2343 {
2344 	spdk_free(ctx->new_ns_list);
2345 	free(ctx);
2346 }
2347 
2348 static int
2349 nvme_ctrlr_destruct_namespace(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
2350 {
2351 	struct spdk_nvme_ns tmp, *ns;
2352 
2353 	assert(ctrlr != NULL);
2354 
2355 	tmp.id = nsid;
2356 	ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
2357 	if (ns == NULL) {
2358 		return -EINVAL;
2359 	}
2360 
2361 	nvme_ns_destruct(ns);
2362 	ns->active = false;
2363 
2364 	return 0;
2365 }
2366 
2367 static int
2368 nvme_ctrlr_construct_namespace(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
2369 {
2370 	struct spdk_nvme_ns *ns;
2371 
2372 	if (nsid < 1 || nsid > ctrlr->cdata.nn) {
2373 		return -EINVAL;
2374 	}
2375 
2376 	/* Namespaces are constructed on demand, so simply request it. */
2377 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2378 	if (ns == NULL) {
2379 		return -ENOMEM;
2380 	}
2381 
2382 	ns->active = true;
2383 
2384 	return 0;
2385 }
2386 
2387 static void
2388 nvme_ctrlr_identify_active_ns_swap(struct spdk_nvme_ctrlr *ctrlr, uint32_t *new_ns_list,
2389 				   size_t max_entries)
2390 {
2391 	uint32_t active_ns_count = 0;
2392 	size_t i;
2393 	uint32_t nsid;
2394 	struct spdk_nvme_ns *ns, *tmp_ns;
2395 	int rc;
2396 
2397 	/* First, remove namespaces that no longer exist */
2398 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &ctrlr->ns, tmp_ns) {
2399 		nsid = new_ns_list[0];
2400 		active_ns_count = 0;
2401 		while (nsid != 0) {
2402 			if (nsid == ns->id) {
2403 				break;
2404 			}
2405 
2406 			nsid = new_ns_list[active_ns_count++];
2407 		}
2408 
2409 		if (nsid != ns->id) {
2410 			/* Did not find this namespace id in the new list. */
2411 			NVME_CTRLR_DEBUGLOG(ctrlr, "Namespace %u was removed\n", ns->id);
2412 			nvme_ctrlr_destruct_namespace(ctrlr, ns->id);
2413 		}
2414 	}
2415 
2416 	/* Next, add new namespaces */
2417 	active_ns_count = 0;
2418 	for (i = 0; i < max_entries; i++) {
2419 		nsid = new_ns_list[active_ns_count];
2420 
2421 		if (nsid == 0) {
2422 			break;
2423 		}
2424 
2425 		/* If the namespace already exists, this will not construct it a second time. */
2426 		rc = nvme_ctrlr_construct_namespace(ctrlr, nsid);
2427 		if (rc != 0) {
2428 			/* We can't easily handle a failure here. But just move on. */
2429 			assert(false);
2430 			NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to allocate a namespace object.\n");
2431 			continue;
2432 		}
2433 
2434 		active_ns_count++;
2435 	}
2436 
2437 	ctrlr->active_ns_count = active_ns_count;
2438 }
2439 
2440 static void
2441 nvme_ctrlr_identify_active_ns_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2442 {
2443 	struct nvme_active_ns_ctx *ctx = arg;
2444 	uint32_t *new_ns_list = NULL;
2445 
2446 	if (spdk_nvme_cpl_is_error(cpl)) {
2447 		ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2448 		goto out;
2449 	}
2450 
2451 	ctx->next_nsid = ctx->new_ns_list[1024 * ctx->page_count - 1];
2452 	if (ctx->next_nsid == 0) {
2453 		ctx->state = NVME_ACTIVE_NS_STATE_DONE;
2454 		goto out;
2455 	}
2456 
2457 	ctx->page_count++;
2458 	new_ns_list = spdk_realloc(ctx->new_ns_list,
2459 				   ctx->page_count * sizeof(struct spdk_nvme_ns_list),
2460 				   ctx->ctrlr->page_size);
2461 	if (!new_ns_list) {
2462 		SPDK_ERRLOG("Failed to reallocate active_ns_list!\n");
2463 		ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2464 		goto out;
2465 	}
2466 
2467 	ctx->new_ns_list = new_ns_list;
2468 	nvme_ctrlr_identify_active_ns_async(ctx);
2469 	return;
2470 
2471 out:
2472 	if (ctx->deleter) {
2473 		ctx->deleter(ctx);
2474 	}
2475 }
2476 
2477 static void
2478 nvme_ctrlr_identify_active_ns_async(struct nvme_active_ns_ctx *ctx)
2479 {
2480 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
2481 	uint32_t i;
2482 	int rc;
2483 
2484 	if (ctrlr->cdata.nn == 0) {
2485 		ctx->state = NVME_ACTIVE_NS_STATE_DONE;
2486 		goto out;
2487 	}
2488 
2489 	assert(ctx->new_ns_list != NULL);
2490 
2491 	/*
2492 	 * If controller doesn't support active ns list CNS 0x02 dummy up
2493 	 * an active ns list, i.e. all namespaces report as active
2494 	 */
2495 	if (ctrlr->vs.raw < SPDK_NVME_VERSION(1, 1, 0) || ctrlr->quirks & NVME_QUIRK_IDENTIFY_CNS) {
2496 		uint32_t *new_ns_list;
2497 
2498 		/*
2499 		 * Active NS list must always end with zero element.
2500 		 * So, we allocate for cdata.nn+1.
2501 		 */
2502 		ctx->page_count = spdk_divide_round_up(ctrlr->cdata.nn + 1,
2503 						       sizeof(struct spdk_nvme_ns_list) / sizeof(new_ns_list[0]));
2504 		new_ns_list = spdk_realloc(ctx->new_ns_list,
2505 					   ctx->page_count * sizeof(struct spdk_nvme_ns_list),
2506 					   ctx->ctrlr->page_size);
2507 		if (!new_ns_list) {
2508 			SPDK_ERRLOG("Failed to reallocate active_ns_list!\n");
2509 			ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2510 			goto out;
2511 		}
2512 
2513 		ctx->new_ns_list = new_ns_list;
2514 		ctx->new_ns_list[ctrlr->cdata.nn] = 0;
2515 		for (i = 0; i < ctrlr->cdata.nn; i++) {
2516 			ctx->new_ns_list[i] = i + 1;
2517 		}
2518 
2519 		ctx->state = NVME_ACTIVE_NS_STATE_DONE;
2520 		goto out;
2521 	}
2522 
2523 	ctx->state = NVME_ACTIVE_NS_STATE_PROCESSING;
2524 	rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_ACTIVE_NS_LIST, 0, ctx->next_nsid, 0,
2525 				     &ctx->new_ns_list[1024 * (ctx->page_count - 1)], sizeof(struct spdk_nvme_ns_list),
2526 				     nvme_ctrlr_identify_active_ns_async_done, ctx);
2527 	if (rc != 0) {
2528 		ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2529 		goto out;
2530 	}
2531 
2532 	return;
2533 
2534 out:
2535 	if (ctx->deleter) {
2536 		ctx->deleter(ctx);
2537 	}
2538 }
2539 
2540 static void
2541 _nvme_active_ns_ctx_deleter(struct nvme_active_ns_ctx *ctx)
2542 {
2543 	struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
2544 	struct spdk_nvme_ns *ns;
2545 
2546 	if (ctx->state == NVME_ACTIVE_NS_STATE_ERROR) {
2547 		nvme_active_ns_ctx_destroy(ctx);
2548 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2549 		return;
2550 	}
2551 
2552 	assert(ctx->state == NVME_ACTIVE_NS_STATE_DONE);
2553 
2554 	RB_FOREACH(ns, nvme_ns_tree, &ctrlr->ns) {
2555 		nvme_ns_free_iocs_specific_data(ns);
2556 	}
2557 
2558 	nvme_ctrlr_identify_active_ns_swap(ctrlr, ctx->new_ns_list, ctx->page_count * 1024);
2559 	nvme_active_ns_ctx_destroy(ctx);
2560 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS, ctrlr->opts.admin_timeout_ms);
2561 }
2562 
2563 static void
2564 _nvme_ctrlr_identify_active_ns(struct spdk_nvme_ctrlr *ctrlr)
2565 {
2566 	struct nvme_active_ns_ctx *ctx;
2567 
2568 	ctx = nvme_active_ns_ctx_create(ctrlr, _nvme_active_ns_ctx_deleter);
2569 	if (!ctx) {
2570 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2571 		return;
2572 	}
2573 
2574 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS,
2575 			     ctrlr->opts.admin_timeout_ms);
2576 	nvme_ctrlr_identify_active_ns_async(ctx);
2577 }
2578 
2579 int
2580 nvme_ctrlr_identify_active_ns(struct spdk_nvme_ctrlr *ctrlr)
2581 {
2582 	struct nvme_active_ns_ctx *ctx;
2583 	int rc;
2584 
2585 	ctx = nvme_active_ns_ctx_create(ctrlr, NULL);
2586 	if (!ctx) {
2587 		return -ENOMEM;
2588 	}
2589 
2590 	nvme_ctrlr_identify_active_ns_async(ctx);
2591 	while (ctx->state == NVME_ACTIVE_NS_STATE_PROCESSING) {
2592 		rc = spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
2593 		if (rc < 0) {
2594 			ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
2595 			break;
2596 		}
2597 	}
2598 
2599 	if (ctx->state == NVME_ACTIVE_NS_STATE_ERROR) {
2600 		nvme_active_ns_ctx_destroy(ctx);
2601 		return -ENXIO;
2602 	}
2603 
2604 	assert(ctx->state == NVME_ACTIVE_NS_STATE_DONE);
2605 	nvme_ctrlr_identify_active_ns_swap(ctrlr, ctx->new_ns_list, ctx->page_count * 1024);
2606 	nvme_active_ns_ctx_destroy(ctx);
2607 
2608 	return 0;
2609 }
2610 
2611 static void
2612 nvme_ctrlr_identify_ns_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2613 {
2614 	struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
2615 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2616 	uint32_t nsid;
2617 	int rc;
2618 
2619 	if (spdk_nvme_cpl_is_error(cpl)) {
2620 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2621 		return;
2622 	}
2623 
2624 	nvme_ns_set_identify_data(ns);
2625 
2626 	/* move on to the next active NS */
2627 	nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id);
2628 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2629 	if (ns == NULL) {
2630 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ID_DESCS,
2631 				     ctrlr->opts.admin_timeout_ms);
2632 		return;
2633 	}
2634 	ns->ctrlr = ctrlr;
2635 	ns->id = nsid;
2636 
2637 	rc = nvme_ctrlr_identify_ns_async(ns);
2638 	if (rc) {
2639 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2640 	}
2641 }
2642 
2643 static int
2644 nvme_ctrlr_identify_ns_async(struct spdk_nvme_ns *ns)
2645 {
2646 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2647 	struct spdk_nvme_ns_data *nsdata;
2648 
2649 	nsdata = &ns->nsdata;
2650 
2651 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS,
2652 			     ctrlr->opts.admin_timeout_ms);
2653 	return nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS, 0, ns->id, 0,
2654 				       nsdata, sizeof(*nsdata),
2655 				       nvme_ctrlr_identify_ns_async_done, ns);
2656 }
2657 
2658 static int
2659 nvme_ctrlr_identify_namespaces(struct spdk_nvme_ctrlr *ctrlr)
2660 {
2661 	uint32_t nsid;
2662 	struct spdk_nvme_ns *ns;
2663 	int rc;
2664 
2665 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
2666 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2667 	if (ns == NULL) {
2668 		/* No active NS, move on to the next state */
2669 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ID_DESCS,
2670 				     ctrlr->opts.admin_timeout_ms);
2671 		return 0;
2672 	}
2673 
2674 	ns->ctrlr = ctrlr;
2675 	ns->id = nsid;
2676 
2677 	rc = nvme_ctrlr_identify_ns_async(ns);
2678 	if (rc) {
2679 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2680 	}
2681 
2682 	return rc;
2683 }
2684 
2685 static int
2686 nvme_ctrlr_identify_namespaces_iocs_specific_next(struct spdk_nvme_ctrlr *ctrlr, uint32_t prev_nsid)
2687 {
2688 	uint32_t nsid;
2689 	struct spdk_nvme_ns *ns;
2690 	int rc;
2691 
2692 	if (!prev_nsid) {
2693 		nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
2694 	} else {
2695 		/* move on to the next active NS */
2696 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, prev_nsid);
2697 	}
2698 
2699 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2700 	if (ns == NULL) {
2701 		/* No first/next active NS, move on to the next state */
2702 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES,
2703 				     ctrlr->opts.admin_timeout_ms);
2704 		return 0;
2705 	}
2706 
2707 	/* loop until we find a ns which has (supported) iocs specific data */
2708 	while (!nvme_ns_has_supported_iocs_specific_data(ns)) {
2709 		nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id);
2710 		ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2711 		if (ns == NULL) {
2712 			/* no namespace with (supported) iocs specific data found */
2713 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES,
2714 					     ctrlr->opts.admin_timeout_ms);
2715 			return 0;
2716 		}
2717 	}
2718 
2719 	rc = nvme_ctrlr_identify_ns_iocs_specific_async(ns);
2720 	if (rc) {
2721 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2722 	}
2723 
2724 	return rc;
2725 }
2726 
2727 static void
2728 nvme_ctrlr_identify_ns_zns_specific_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2729 {
2730 	struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
2731 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2732 
2733 	if (spdk_nvme_cpl_is_error(cpl)) {
2734 		nvme_ns_free_zns_specific_data(ns);
2735 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2736 		return;
2737 	}
2738 
2739 	nvme_ctrlr_identify_namespaces_iocs_specific_next(ctrlr, ns->id);
2740 }
2741 
2742 static int
2743 nvme_ctrlr_identify_ns_zns_specific_async(struct spdk_nvme_ns *ns)
2744 {
2745 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2746 	int rc;
2747 
2748 	assert(!ns->nsdata_zns);
2749 	ns->nsdata_zns = spdk_zmalloc(sizeof(*ns->nsdata_zns), 64, NULL, SPDK_ENV_NUMA_ID_ANY,
2750 				      SPDK_MALLOC_SHARE);
2751 	if (!ns->nsdata_zns) {
2752 		return -ENOMEM;
2753 	}
2754 
2755 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC,
2756 			     ctrlr->opts.admin_timeout_ms);
2757 	rc = nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS_IOCS, 0, ns->id, ns->csi,
2758 				     ns->nsdata_zns, sizeof(*ns->nsdata_zns),
2759 				     nvme_ctrlr_identify_ns_zns_specific_async_done, ns);
2760 	if (rc) {
2761 		nvme_ns_free_zns_specific_data(ns);
2762 	}
2763 
2764 	return rc;
2765 }
2766 
2767 static void
2768 nvme_ctrlr_identify_ns_nvm_specific_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2769 {
2770 	struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
2771 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2772 
2773 	if (spdk_nvme_cpl_is_error(cpl)) {
2774 		nvme_ns_free_nvm_specific_data(ns);
2775 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2776 		return;
2777 	}
2778 
2779 	nvme_ctrlr_identify_namespaces_iocs_specific_next(ctrlr, ns->id);
2780 }
2781 
2782 static int
2783 nvme_ctrlr_identify_ns_nvm_specific_async(struct spdk_nvme_ns *ns)
2784 {
2785 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2786 	int rc;
2787 
2788 	assert(!ns->nsdata_nvm);
2789 	ns->nsdata_nvm = spdk_zmalloc(sizeof(*ns->nsdata_nvm), 64, NULL, SPDK_ENV_NUMA_ID_ANY,
2790 				      SPDK_MALLOC_SHARE);
2791 	if (!ns->nsdata_nvm) {
2792 		return -ENOMEM;
2793 	}
2794 
2795 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC,
2796 			     ctrlr->opts.admin_timeout_ms);
2797 	rc = nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS_IOCS, 0, ns->id, ns->csi,
2798 				     ns->nsdata_nvm, sizeof(*ns->nsdata_nvm),
2799 				     nvme_ctrlr_identify_ns_nvm_specific_async_done, ns);
2800 	if (rc) {
2801 		nvme_ns_free_nvm_specific_data(ns);
2802 	}
2803 
2804 	return rc;
2805 }
2806 
2807 static int
2808 nvme_ctrlr_identify_ns_iocs_specific_async(struct spdk_nvme_ns *ns)
2809 {
2810 	switch (ns->csi) {
2811 	case SPDK_NVME_CSI_ZNS:
2812 		return nvme_ctrlr_identify_ns_zns_specific_async(ns);
2813 	case SPDK_NVME_CSI_NVM:
2814 		if (ns->ctrlr->cdata.ctratt.bits.elbas) {
2815 			return nvme_ctrlr_identify_ns_nvm_specific_async(ns);
2816 		}
2817 	/* fallthrough */
2818 	default:
2819 		/*
2820 		 * This switch must handle all cases for which
2821 		 * nvme_ns_has_supported_iocs_specific_data() returns true,
2822 		 * other cases should never happen.
2823 		 */
2824 		assert(0);
2825 	}
2826 
2827 	return -EINVAL;
2828 }
2829 
2830 static int
2831 nvme_ctrlr_identify_namespaces_iocs_specific(struct spdk_nvme_ctrlr *ctrlr)
2832 {
2833 	if (!nvme_ctrlr_multi_iocs_enabled(ctrlr)) {
2834 		/* Multi IOCS not supported/enabled, move on to the next state */
2835 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES,
2836 				     ctrlr->opts.admin_timeout_ms);
2837 		return 0;
2838 	}
2839 
2840 	return nvme_ctrlr_identify_namespaces_iocs_specific_next(ctrlr, 0);
2841 }
2842 
2843 static void
2844 nvme_ctrlr_identify_id_desc_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
2845 {
2846 	struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
2847 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2848 	uint32_t nsid;
2849 	int rc;
2850 
2851 	if (spdk_nvme_cpl_is_error(cpl)) {
2852 		/*
2853 		 * Many controllers claim to be compatible with NVMe 1.3, however,
2854 		 * they do not implement NS ID Desc List. Therefore, instead of setting
2855 		 * the state to NVME_CTRLR_STATE_ERROR, silently ignore the completion
2856 		 * error and move on to the next state.
2857 		 *
2858 		 * The proper way is to create a new quirk for controllers that violate
2859 		 * the NVMe 1.3 spec by not supporting NS ID Desc List.
2860 		 * (Re-using the NVME_QUIRK_IDENTIFY_CNS quirk is not possible, since
2861 		 * it is too generic and was added in order to handle controllers that
2862 		 * violate the NVMe 1.1 spec by not supporting ACTIVE LIST).
2863 		 */
2864 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2865 				     ctrlr->opts.admin_timeout_ms);
2866 		return;
2867 	}
2868 
2869 	nvme_ns_set_id_desc_list_data(ns);
2870 
2871 	/* move on to the next active NS */
2872 	nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id);
2873 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2874 	if (ns == NULL) {
2875 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2876 				     ctrlr->opts.admin_timeout_ms);
2877 		return;
2878 	}
2879 
2880 	rc = nvme_ctrlr_identify_id_desc_async(ns);
2881 	if (rc) {
2882 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2883 	}
2884 }
2885 
2886 static int
2887 nvme_ctrlr_identify_id_desc_async(struct spdk_nvme_ns *ns)
2888 {
2889 	struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
2890 
2891 	memset(ns->id_desc_list, 0, sizeof(ns->id_desc_list));
2892 
2893 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS,
2894 			     ctrlr->opts.admin_timeout_ms);
2895 	return nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS_ID_DESCRIPTOR_LIST,
2896 				       0, ns->id, 0, ns->id_desc_list, sizeof(ns->id_desc_list),
2897 				       nvme_ctrlr_identify_id_desc_async_done, ns);
2898 }
2899 
2900 static int
2901 nvme_ctrlr_identify_id_desc_namespaces(struct spdk_nvme_ctrlr *ctrlr)
2902 {
2903 	uint32_t nsid;
2904 	struct spdk_nvme_ns *ns;
2905 	int rc;
2906 
2907 	if ((ctrlr->vs.raw < SPDK_NVME_VERSION(1, 3, 0) &&
2908 	     !(ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_IOCS)) ||
2909 	    (ctrlr->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
2910 		NVME_CTRLR_DEBUGLOG(ctrlr, "Version < 1.3; not attempting to retrieve NS ID Descriptor List\n");
2911 		/* NS ID Desc List not supported, move on to the next state */
2912 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2913 				     ctrlr->opts.admin_timeout_ms);
2914 		return 0;
2915 	}
2916 
2917 	nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
2918 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
2919 	if (ns == NULL) {
2920 		/* No active NS, move on to the next state */
2921 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
2922 				     ctrlr->opts.admin_timeout_ms);
2923 		return 0;
2924 	}
2925 
2926 	rc = nvme_ctrlr_identify_id_desc_async(ns);
2927 	if (rc) {
2928 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2929 	}
2930 
2931 	return rc;
2932 }
2933 
2934 static void
2935 nvme_ctrlr_update_nvmf_ioccsz(struct spdk_nvme_ctrlr *ctrlr)
2936 {
2937 	if (spdk_nvme_ctrlr_is_fabrics(ctrlr)) {
2938 		if (ctrlr->cdata.nvmf_specific.ioccsz < 4) {
2939 			NVME_CTRLR_ERRLOG(ctrlr, "Incorrect IOCCSZ %u, the minimum value should be 4\n",
2940 					  ctrlr->cdata.nvmf_specific.ioccsz);
2941 			ctrlr->cdata.nvmf_specific.ioccsz = 4;
2942 			assert(0);
2943 		}
2944 		ctrlr->ioccsz_bytes = ctrlr->cdata.nvmf_specific.ioccsz * 16 - sizeof(struct spdk_nvme_cmd);
2945 		ctrlr->icdoff = ctrlr->cdata.nvmf_specific.icdoff;
2946 	}
2947 }
2948 
2949 static void
2950 nvme_ctrlr_set_num_queues_done(void *arg, const struct spdk_nvme_cpl *cpl)
2951 {
2952 	uint32_t cq_allocated, sq_allocated, min_allocated, i;
2953 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
2954 
2955 	if (spdk_nvme_cpl_is_error(cpl)) {
2956 		NVME_CTRLR_ERRLOG(ctrlr, "Set Features - Number of Queues failed!\n");
2957 		ctrlr->opts.num_io_queues = 0;
2958 	} else {
2959 		/*
2960 		 * Data in cdw0 is 0-based.
2961 		 * Lower 16-bits indicate number of submission queues allocated.
2962 		 * Upper 16-bits indicate number of completion queues allocated.
2963 		 */
2964 		sq_allocated = (cpl->cdw0 & 0xFFFF) + 1;
2965 		cq_allocated = (cpl->cdw0 >> 16) + 1;
2966 
2967 		/*
2968 		 * For 1:1 queue mapping, set number of allocated queues to be minimum of
2969 		 * submission and completion queues.
2970 		 */
2971 		min_allocated = spdk_min(sq_allocated, cq_allocated);
2972 
2973 		/* Set number of queues to be minimum of requested and actually allocated. */
2974 		ctrlr->opts.num_io_queues = spdk_min(min_allocated, ctrlr->opts.num_io_queues);
2975 
2976 		if (ctrlr->opts.enable_interrupts) {
2977 			ctrlr->opts.num_io_queues = spdk_min(MAX_IO_QUEUES_WITH_INTERRUPTS,
2978 							     ctrlr->opts.num_io_queues);
2979 			if (nvme_transport_ctrlr_enable_interrupts(ctrlr) < 0) {
2980 				NVME_CTRLR_ERRLOG(ctrlr, "Failed to enable interrupts!\n");
2981 				ctrlr->opts.enable_interrupts = false;
2982 			}
2983 		}
2984 	}
2985 
2986 	ctrlr->free_io_qids = spdk_bit_array_create(ctrlr->opts.num_io_queues + 1);
2987 	if (ctrlr->free_io_qids == NULL) {
2988 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
2989 		return;
2990 	}
2991 
2992 	/* Initialize list of free I/O queue IDs. QID 0 is the admin queue (implicitly allocated). */
2993 	for (i = 1; i <= ctrlr->opts.num_io_queues; i++) {
2994 		spdk_nvme_ctrlr_free_qid(ctrlr, i);
2995 	}
2996 
2997 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS,
2998 			     ctrlr->opts.admin_timeout_ms);
2999 }
3000 
3001 static int
3002 nvme_ctrlr_set_num_queues(struct spdk_nvme_ctrlr *ctrlr)
3003 {
3004 	int rc;
3005 
3006 	if (ctrlr->opts.num_io_queues > SPDK_NVME_MAX_IO_QUEUES) {
3007 		NVME_CTRLR_NOTICELOG(ctrlr, "Limiting requested num_io_queues %u to max %d\n",
3008 				     ctrlr->opts.num_io_queues, SPDK_NVME_MAX_IO_QUEUES);
3009 		ctrlr->opts.num_io_queues = SPDK_NVME_MAX_IO_QUEUES;
3010 	} else if (ctrlr->opts.num_io_queues < 1) {
3011 		NVME_CTRLR_NOTICELOG(ctrlr, "Requested num_io_queues 0, increasing to 1\n");
3012 		ctrlr->opts.num_io_queues = 1;
3013 	}
3014 
3015 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES,
3016 			     ctrlr->opts.admin_timeout_ms);
3017 
3018 	rc = nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->opts.num_io_queues,
3019 					   nvme_ctrlr_set_num_queues_done, ctrlr);
3020 	if (rc != 0) {
3021 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3022 		return rc;
3023 	}
3024 
3025 	return 0;
3026 }
3027 
3028 static void
3029 nvme_ctrlr_set_keep_alive_timeout_done(void *arg, const struct spdk_nvme_cpl *cpl)
3030 {
3031 	uint32_t keep_alive_interval_us;
3032 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
3033 
3034 	if (spdk_nvme_cpl_is_error(cpl)) {
3035 		if ((cpl->status.sct == SPDK_NVME_SCT_GENERIC) &&
3036 		    (cpl->status.sc == SPDK_NVME_SC_INVALID_FIELD)) {
3037 			NVME_CTRLR_DEBUGLOG(ctrlr, "Keep alive timeout Get Feature is not supported\n");
3038 		} else {
3039 			NVME_CTRLR_ERRLOG(ctrlr, "Keep alive timeout Get Feature failed: SC %x SCT %x\n",
3040 					  cpl->status.sc, cpl->status.sct);
3041 			ctrlr->opts.keep_alive_timeout_ms = 0;
3042 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3043 			return;
3044 		}
3045 	} else {
3046 		if (ctrlr->opts.keep_alive_timeout_ms != cpl->cdw0) {
3047 			NVME_CTRLR_DEBUGLOG(ctrlr, "Controller adjusted keep alive timeout to %u ms\n",
3048 					    cpl->cdw0);
3049 		}
3050 
3051 		ctrlr->opts.keep_alive_timeout_ms = cpl->cdw0;
3052 	}
3053 
3054 	if (ctrlr->opts.keep_alive_timeout_ms == 0) {
3055 		ctrlr->keep_alive_interval_ticks = 0;
3056 	} else {
3057 		keep_alive_interval_us = ctrlr->opts.keep_alive_timeout_ms * 1000 / 2;
3058 
3059 		NVME_CTRLR_DEBUGLOG(ctrlr, "Sending keep alive every %u us\n", keep_alive_interval_us);
3060 
3061 		ctrlr->keep_alive_interval_ticks = (keep_alive_interval_us * spdk_get_ticks_hz()) /
3062 						   UINT64_C(1000000);
3063 
3064 		/* Schedule the first Keep Alive to be sent as soon as possible. */
3065 		ctrlr->next_keep_alive_tick = spdk_get_ticks();
3066 	}
3067 
3068 	if (spdk_nvme_ctrlr_is_discovery(ctrlr)) {
3069 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
3070 	} else {
3071 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC,
3072 				     ctrlr->opts.admin_timeout_ms);
3073 	}
3074 }
3075 
3076 static int
3077 nvme_ctrlr_set_keep_alive_timeout(struct spdk_nvme_ctrlr *ctrlr)
3078 {
3079 	int rc;
3080 
3081 	if (ctrlr->opts.keep_alive_timeout_ms == 0) {
3082 		if (spdk_nvme_ctrlr_is_discovery(ctrlr)) {
3083 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
3084 		} else {
3085 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC,
3086 					     ctrlr->opts.admin_timeout_ms);
3087 		}
3088 		return 0;
3089 	}
3090 
3091 	/* Note: Discovery controller identify data does not populate KAS according to spec. */
3092 	if (!spdk_nvme_ctrlr_is_discovery(ctrlr) && ctrlr->cdata.kas == 0) {
3093 		NVME_CTRLR_DEBUGLOG(ctrlr, "Controller KAS is 0 - not enabling Keep Alive\n");
3094 		ctrlr->opts.keep_alive_timeout_ms = 0;
3095 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC,
3096 				     ctrlr->opts.admin_timeout_ms);
3097 		return 0;
3098 	}
3099 
3100 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT,
3101 			     ctrlr->opts.admin_timeout_ms);
3102 
3103 	/* Retrieve actual keep alive timeout, since the controller may have adjusted it. */
3104 	rc = spdk_nvme_ctrlr_cmd_get_feature(ctrlr, SPDK_NVME_FEAT_KEEP_ALIVE_TIMER, 0, NULL, 0,
3105 					     nvme_ctrlr_set_keep_alive_timeout_done, ctrlr);
3106 	if (rc != 0) {
3107 		NVME_CTRLR_ERRLOG(ctrlr, "Keep alive timeout Get Feature failed: %d\n", rc);
3108 		ctrlr->opts.keep_alive_timeout_ms = 0;
3109 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3110 		return rc;
3111 	}
3112 
3113 	return 0;
3114 }
3115 
3116 static void
3117 nvme_ctrlr_set_host_id_done(void *arg, const struct spdk_nvme_cpl *cpl)
3118 {
3119 	struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
3120 
3121 	if (spdk_nvme_cpl_is_error(cpl)) {
3122 		/*
3123 		 * Treat Set Features - Host ID failure as non-fatal, since the Host ID feature
3124 		 * is optional.
3125 		 */
3126 		NVME_CTRLR_WARNLOG(ctrlr, "Set Features - Host ID failed: SC 0x%x SCT 0x%x\n",
3127 				   cpl->status.sc, cpl->status.sct);
3128 	} else {
3129 		NVME_CTRLR_DEBUGLOG(ctrlr, "Set Features - Host ID was successful\n");
3130 	}
3131 
3132 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_TRANSPORT_READY, ctrlr->opts.admin_timeout_ms);
3133 }
3134 
3135 static int
3136 nvme_ctrlr_set_host_id(struct spdk_nvme_ctrlr *ctrlr)
3137 {
3138 	uint8_t *host_id;
3139 	uint32_t host_id_size;
3140 	int rc;
3141 
3142 	if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
3143 		/*
3144 		 * NVMe-oF sends the host ID during Connect and doesn't allow
3145 		 * Set Features - Host Identifier after Connect, so we don't need to do anything here.
3146 		 */
3147 		NVME_CTRLR_DEBUGLOG(ctrlr, "NVMe-oF transport - not sending Set Features - Host ID\n");
3148 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_TRANSPORT_READY, ctrlr->opts.admin_timeout_ms);
3149 		return 0;
3150 	}
3151 
3152 	if (ctrlr->cdata.ctratt.bits.host_id_exhid_supported) {
3153 		NVME_CTRLR_DEBUGLOG(ctrlr, "Using 128-bit extended host identifier\n");
3154 		host_id = ctrlr->opts.extended_host_id;
3155 		host_id_size = sizeof(ctrlr->opts.extended_host_id);
3156 	} else {
3157 		NVME_CTRLR_DEBUGLOG(ctrlr, "Using 64-bit host identifier\n");
3158 		host_id = ctrlr->opts.host_id;
3159 		host_id_size = sizeof(ctrlr->opts.host_id);
3160 	}
3161 
3162 	/* If the user specified an all-zeroes host identifier, don't send the command. */
3163 	if (spdk_mem_all_zero(host_id, host_id_size)) {
3164 		NVME_CTRLR_DEBUGLOG(ctrlr, "User did not specify host ID - not sending Set Features - Host ID\n");
3165 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_TRANSPORT_READY, ctrlr->opts.admin_timeout_ms);
3166 		return 0;
3167 	}
3168 
3169 	SPDK_LOGDUMP(nvme, "host_id", host_id, host_id_size);
3170 
3171 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_HOST_ID,
3172 			     ctrlr->opts.admin_timeout_ms);
3173 
3174 	rc = nvme_ctrlr_cmd_set_host_id(ctrlr, host_id, host_id_size, nvme_ctrlr_set_host_id_done, ctrlr);
3175 	if (rc != 0) {
3176 		NVME_CTRLR_ERRLOG(ctrlr, "Set Features - Host ID failed: %d\n", rc);
3177 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3178 		return rc;
3179 	}
3180 
3181 	return 0;
3182 }
3183 
3184 void
3185 nvme_ctrlr_update_namespaces(struct spdk_nvme_ctrlr *ctrlr)
3186 {
3187 	uint32_t nsid;
3188 	struct spdk_nvme_ns *ns;
3189 
3190 	for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
3191 	     nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
3192 		ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
3193 		nvme_ns_construct(ns, nsid, ctrlr);
3194 	}
3195 }
3196 
3197 static int
3198 nvme_ctrlr_clear_changed_ns_log(struct spdk_nvme_ctrlr *ctrlr)
3199 {
3200 	struct nvme_completion_poll_status	*status;
3201 	int		rc = -ENOMEM;
3202 	char		*buffer = NULL;
3203 	uint32_t	nsid;
3204 	size_t		buf_size = (SPDK_NVME_MAX_CHANGED_NAMESPACES * sizeof(uint32_t));
3205 
3206 	if (ctrlr->opts.disable_read_changed_ns_list_log_page) {
3207 		return 0;
3208 	}
3209 
3210 	buffer = spdk_dma_zmalloc(buf_size, 4096, NULL);
3211 	if (!buffer) {
3212 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate buffer for getting "
3213 				  "changed ns log.\n");
3214 		return rc;
3215 	}
3216 
3217 	status = calloc(1, sizeof(*status));
3218 	if (!status) {
3219 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
3220 		goto free_buffer;
3221 	}
3222 
3223 	rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
3224 					      SPDK_NVME_LOG_CHANGED_NS_LIST,
3225 					      SPDK_NVME_GLOBAL_NS_TAG,
3226 					      buffer, buf_size, 0,
3227 					      nvme_completion_poll_cb, status);
3228 
3229 	if (rc) {
3230 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_cmd_get_log_page() failed: rc=%d\n", rc);
3231 		free(status);
3232 		goto free_buffer;
3233 	}
3234 
3235 	rc = nvme_wait_for_completion_timeout(ctrlr->adminq, status,
3236 					      ctrlr->opts.admin_timeout_ms * 1000);
3237 	if (!status->timed_out) {
3238 		free(status);
3239 	}
3240 
3241 	if (rc) {
3242 		NVME_CTRLR_ERRLOG(ctrlr, "wait for spdk_nvme_ctrlr_cmd_get_log_page failed: rc=%d\n", rc);
3243 		goto free_buffer;
3244 	}
3245 
3246 	/* only check the case of overflow. */
3247 	nsid = from_le32(buffer);
3248 	if (nsid == 0xffffffffu) {
3249 		NVME_CTRLR_WARNLOG(ctrlr, "changed ns log overflowed.\n");
3250 	}
3251 
3252 free_buffer:
3253 	spdk_dma_free(buffer);
3254 	return rc;
3255 }
3256 
3257 static void
3258 nvme_ctrlr_process_async_event(struct spdk_nvme_ctrlr *ctrlr,
3259 			       const struct spdk_nvme_cpl *cpl)
3260 {
3261 	union spdk_nvme_async_event_completion event;
3262 	struct spdk_nvme_ctrlr_process *active_proc;
3263 	int rc;
3264 
3265 	event.raw = cpl->cdw0;
3266 
3267 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
3268 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
3269 		nvme_ctrlr_clear_changed_ns_log(ctrlr);
3270 
3271 		rc = nvme_ctrlr_identify_active_ns(ctrlr);
3272 		if (rc) {
3273 			return;
3274 		}
3275 		nvme_ctrlr_update_namespaces(ctrlr);
3276 		nvme_io_msg_ctrlr_update(ctrlr);
3277 	}
3278 
3279 	if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
3280 	    (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
3281 		if (!ctrlr->opts.disable_read_ana_log_page) {
3282 			rc = nvme_ctrlr_update_ana_log_page(ctrlr);
3283 			if (rc) {
3284 				return;
3285 			}
3286 			nvme_ctrlr_parse_ana_log_page(ctrlr, nvme_ctrlr_update_ns_ana_states,
3287 						      ctrlr);
3288 		}
3289 	}
3290 
3291 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3292 	if (active_proc && active_proc->aer_cb_fn) {
3293 		active_proc->aer_cb_fn(active_proc->aer_cb_arg, cpl);
3294 	}
3295 }
3296 
3297 static void
3298 nvme_ctrlr_queue_async_event(struct spdk_nvme_ctrlr *ctrlr,
3299 			     const struct spdk_nvme_cpl *cpl)
3300 {
3301 	struct  spdk_nvme_ctrlr_aer_completion *nvme_event;
3302 	struct spdk_nvme_ctrlr_process *proc;
3303 
3304 	/* Add async event to each process objects event list */
3305 	TAILQ_FOREACH(proc, &ctrlr->active_procs, tailq) {
3306 		/* Must be shared memory so other processes can access */
3307 		nvme_event = spdk_zmalloc(sizeof(*nvme_event), 0, NULL, SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_SHARE);
3308 		if (!nvme_event) {
3309 			NVME_CTRLR_ERRLOG(ctrlr, "Alloc nvme event failed, ignore the event\n");
3310 			return;
3311 		}
3312 		nvme_event->cpl = *cpl;
3313 
3314 		STAILQ_INSERT_TAIL(&proc->async_events, nvme_event, link);
3315 	}
3316 }
3317 
3318 static void
3319 nvme_ctrlr_complete_queued_async_events(struct spdk_nvme_ctrlr *ctrlr)
3320 {
3321 	struct  spdk_nvme_ctrlr_aer_completion  *nvme_event, *nvme_event_tmp;
3322 	struct spdk_nvme_ctrlr_process	*active_proc;
3323 
3324 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3325 
3326 	STAILQ_FOREACH_SAFE(nvme_event, &active_proc->async_events, link, nvme_event_tmp) {
3327 		STAILQ_REMOVE(&active_proc->async_events, nvme_event,
3328 			      spdk_nvme_ctrlr_aer_completion, link);
3329 		nvme_ctrlr_process_async_event(ctrlr, &nvme_event->cpl);
3330 		spdk_free(nvme_event);
3331 
3332 	}
3333 }
3334 
3335 static void
3336 nvme_ctrlr_async_event_cb(void *arg, const struct spdk_nvme_cpl *cpl)
3337 {
3338 	struct nvme_async_event_request	*aer = arg;
3339 	struct spdk_nvme_ctrlr		*ctrlr = aer->ctrlr;
3340 
3341 	if (cpl->status.sct == SPDK_NVME_SCT_GENERIC &&
3342 	    cpl->status.sc == SPDK_NVME_SC_ABORTED_SQ_DELETION) {
3343 		/*
3344 		 *  This is simulated when controller is being shut down, to
3345 		 *  effectively abort outstanding asynchronous event requests
3346 		 *  and make sure all memory is freed.  Do not repost the
3347 		 *  request in this case.
3348 		 */
3349 		return;
3350 	}
3351 
3352 	if (cpl->status.sct == SPDK_NVME_SCT_COMMAND_SPECIFIC &&
3353 	    cpl->status.sc == SPDK_NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED) {
3354 		/*
3355 		 *  SPDK will only send as many AERs as the device says it supports,
3356 		 *  so this status code indicates an out-of-spec device.  Do not repost
3357 		 *  the request in this case.
3358 		 */
3359 		NVME_CTRLR_ERRLOG(ctrlr, "Controller appears out-of-spec for asynchronous event request\n"
3360 				  "handling.  Do not repost this AER.\n");
3361 		return;
3362 	}
3363 
3364 	/* Add the events to the list */
3365 	nvme_ctrlr_queue_async_event(ctrlr, cpl);
3366 
3367 	/* If the ctrlr was removed or in the destruct state, we should not send aer again */
3368 	if (ctrlr->is_removed || ctrlr->is_destructed) {
3369 		return;
3370 	}
3371 
3372 	/*
3373 	 * Repost another asynchronous event request to replace the one
3374 	 *  that just completed.
3375 	 */
3376 	if (nvme_ctrlr_construct_and_submit_aer(ctrlr, aer)) {
3377 		/*
3378 		 * We can't do anything to recover from a failure here,
3379 		 * so just print a warning message and leave the AER unsubmitted.
3380 		 */
3381 		NVME_CTRLR_ERRLOG(ctrlr, "resubmitting AER failed!\n");
3382 	}
3383 }
3384 
3385 static int
3386 nvme_ctrlr_construct_and_submit_aer(struct spdk_nvme_ctrlr *ctrlr,
3387 				    struct nvme_async_event_request *aer)
3388 {
3389 	struct nvme_request *req;
3390 
3391 	aer->ctrlr = ctrlr;
3392 	req = nvme_allocate_request_null(ctrlr->adminq, nvme_ctrlr_async_event_cb, aer);
3393 	aer->req = req;
3394 	if (req == NULL) {
3395 		return -1;
3396 	}
3397 
3398 	req->cmd.opc = SPDK_NVME_OPC_ASYNC_EVENT_REQUEST;
3399 	return nvme_ctrlr_submit_admin_request(ctrlr, req);
3400 }
3401 
3402 static void
3403 nvme_ctrlr_configure_aer_done(void *arg, const struct spdk_nvme_cpl *cpl)
3404 {
3405 	struct nvme_async_event_request		*aer;
3406 	int					rc;
3407 	uint32_t				i;
3408 	struct spdk_nvme_ctrlr *ctrlr =	(struct spdk_nvme_ctrlr *)arg;
3409 
3410 	if (spdk_nvme_cpl_is_error(cpl)) {
3411 		NVME_CTRLR_NOTICELOG(ctrlr, "nvme_ctrlr_configure_aer failed!\n");
3412 		ctrlr->num_aers = 0;
3413 	} else {
3414 		/* aerl is a zero-based value, so we need to add 1 here. */
3415 		ctrlr->num_aers = spdk_min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl + 1));
3416 	}
3417 
3418 	for (i = 0; i < ctrlr->num_aers; i++) {
3419 		aer = &ctrlr->aer[i];
3420 		rc = nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
3421 		if (rc) {
3422 			NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_construct_and_submit_aer failed!\n");
3423 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3424 			return;
3425 		}
3426 	}
3427 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT, ctrlr->opts.admin_timeout_ms);
3428 }
3429 
3430 static int
3431 nvme_ctrlr_configure_aer(struct spdk_nvme_ctrlr *ctrlr)
3432 {
3433 	union spdk_nvme_feat_async_event_configuration	config;
3434 	int						rc;
3435 
3436 	config.raw = 0;
3437 
3438 	if (spdk_nvme_ctrlr_is_discovery(ctrlr)) {
3439 		config.bits.discovery_log_change_notice = 1;
3440 	} else {
3441 		config.bits.crit_warn.bits.available_spare = 1;
3442 		config.bits.crit_warn.bits.temperature = 1;
3443 		config.bits.crit_warn.bits.device_reliability = 1;
3444 		config.bits.crit_warn.bits.read_only = 1;
3445 		config.bits.crit_warn.bits.volatile_memory_backup = 1;
3446 
3447 		if (ctrlr->vs.raw >= SPDK_NVME_VERSION(1, 2, 0)) {
3448 			if (ctrlr->cdata.oaes.ns_attribute_notices) {
3449 				config.bits.ns_attr_notice = 1;
3450 			}
3451 			if (ctrlr->cdata.oaes.fw_activation_notices) {
3452 				config.bits.fw_activation_notice = 1;
3453 			}
3454 			if (ctrlr->cdata.oaes.ana_change_notices) {
3455 				config.bits.ana_change_notice = 1;
3456 			}
3457 		}
3458 		if (ctrlr->vs.raw >= SPDK_NVME_VERSION(1, 3, 0) && ctrlr->cdata.lpa.telemetry) {
3459 			config.bits.telemetry_log_notice = 1;
3460 		}
3461 	}
3462 
3463 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER,
3464 			     ctrlr->opts.admin_timeout_ms);
3465 
3466 	rc = nvme_ctrlr_cmd_set_async_event_config(ctrlr, config,
3467 			nvme_ctrlr_configure_aer_done,
3468 			ctrlr);
3469 	if (rc != 0) {
3470 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3471 		return rc;
3472 	}
3473 
3474 	return 0;
3475 }
3476 
3477 struct spdk_nvme_ctrlr_process *
3478 nvme_ctrlr_get_process(struct spdk_nvme_ctrlr *ctrlr, pid_t pid)
3479 {
3480 	struct spdk_nvme_ctrlr_process	*active_proc;
3481 
3482 	TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) {
3483 		if (active_proc->pid == pid) {
3484 			return active_proc;
3485 		}
3486 	}
3487 
3488 	return NULL;
3489 }
3490 
3491 struct spdk_nvme_ctrlr_process *
3492 nvme_ctrlr_get_current_process(struct spdk_nvme_ctrlr *ctrlr)
3493 {
3494 	return nvme_ctrlr_get_process(ctrlr, getpid());
3495 }
3496 
3497 /**
3498  * This function will be called when a process is using the controller.
3499  *  1. For the primary process, it is called when constructing the controller.
3500  *  2. For the secondary process, it is called at probing the controller.
3501  * Note: will check whether the process is already added for the same process.
3502  */
3503 int
3504 nvme_ctrlr_add_process(struct spdk_nvme_ctrlr *ctrlr, void *devhandle)
3505 {
3506 	struct spdk_nvme_ctrlr_process	*ctrlr_proc;
3507 	pid_t				pid = getpid();
3508 
3509 	/* Check whether the process is already added or not */
3510 	if (nvme_ctrlr_get_process(ctrlr, pid)) {
3511 		return 0;
3512 	}
3513 
3514 	/* Initialize the per process properties for this ctrlr */
3515 	ctrlr_proc = spdk_zmalloc(sizeof(struct spdk_nvme_ctrlr_process),
3516 				  64, NULL, SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_SHARE);
3517 	if (ctrlr_proc == NULL) {
3518 		NVME_CTRLR_ERRLOG(ctrlr, "failed to allocate memory to track the process props\n");
3519 
3520 		return -1;
3521 	}
3522 
3523 	ctrlr_proc->is_primary = spdk_process_is_primary();
3524 	ctrlr_proc->pid = pid;
3525 	STAILQ_INIT(&ctrlr_proc->active_reqs);
3526 	ctrlr_proc->devhandle = devhandle;
3527 	ctrlr_proc->ref = 0;
3528 	TAILQ_INIT(&ctrlr_proc->allocated_io_qpairs);
3529 	STAILQ_INIT(&ctrlr_proc->async_events);
3530 
3531 	TAILQ_INSERT_TAIL(&ctrlr->active_procs, ctrlr_proc, tailq);
3532 
3533 	return 0;
3534 }
3535 
3536 /**
3537  * This function will be called when the process detaches the controller.
3538  * Note: the ctrlr_lock must be held when calling this function.
3539  */
3540 static void
3541 nvme_ctrlr_remove_process(struct spdk_nvme_ctrlr *ctrlr,
3542 			  struct spdk_nvme_ctrlr_process *proc)
3543 {
3544 	struct spdk_nvme_qpair	*qpair, *tmp_qpair;
3545 
3546 	assert(STAILQ_EMPTY(&proc->active_reqs));
3547 
3548 	TAILQ_FOREACH_SAFE(qpair, &proc->allocated_io_qpairs, per_process_tailq, tmp_qpair) {
3549 		spdk_nvme_ctrlr_free_io_qpair(qpair);
3550 	}
3551 
3552 	TAILQ_REMOVE(&ctrlr->active_procs, proc, tailq);
3553 
3554 	if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
3555 		spdk_pci_device_detach(proc->devhandle);
3556 	}
3557 
3558 	spdk_free(proc);
3559 }
3560 
3561 /**
3562  * This function will be called when the process exited unexpectedly
3563  *  in order to free any incomplete nvme request, allocated IO qpairs
3564  *  and allocated memory.
3565  * Note: the ctrlr_lock must be held when calling this function.
3566  */
3567 static void
3568 nvme_ctrlr_cleanup_process(struct spdk_nvme_ctrlr_process *proc)
3569 {
3570 	struct nvme_request	*req, *tmp_req;
3571 	struct spdk_nvme_qpair	*qpair, *tmp_qpair;
3572 	struct spdk_nvme_ctrlr_aer_completion *event;
3573 
3574 	STAILQ_FOREACH_SAFE(req, &proc->active_reqs, stailq, tmp_req) {
3575 		STAILQ_REMOVE(&proc->active_reqs, req, nvme_request, stailq);
3576 
3577 		assert(req->pid == proc->pid);
3578 		nvme_cleanup_user_req(req);
3579 		nvme_free_request(req);
3580 	}
3581 
3582 	/* Remove async event from each process objects event list */
3583 	while (!STAILQ_EMPTY(&proc->async_events)) {
3584 		event = STAILQ_FIRST(&proc->async_events);
3585 		STAILQ_REMOVE_HEAD(&proc->async_events, link);
3586 		spdk_free(event);
3587 	}
3588 
3589 	TAILQ_FOREACH_SAFE(qpair, &proc->allocated_io_qpairs, per_process_tailq, tmp_qpair) {
3590 		TAILQ_REMOVE(&proc->allocated_io_qpairs, qpair, per_process_tailq);
3591 
3592 		/*
3593 		 * The process may have been killed while some qpairs were in their
3594 		 *  completion context.  Clear that flag here to allow these IO
3595 		 *  qpairs to be deleted.
3596 		 */
3597 		qpair->in_completion_context = 0;
3598 
3599 		qpair->no_deletion_notification_needed = 1;
3600 
3601 		spdk_nvme_ctrlr_free_io_qpair(qpair);
3602 	}
3603 
3604 	spdk_free(proc);
3605 }
3606 
3607 /**
3608  * This function will be called when destructing the controller.
3609  *  1. There is no more admin request on this controller.
3610  *  2. Clean up any left resource allocation when its associated process is gone.
3611  */
3612 void
3613 nvme_ctrlr_free_processes(struct spdk_nvme_ctrlr *ctrlr)
3614 {
3615 	struct spdk_nvme_ctrlr_process	*active_proc, *tmp;
3616 
3617 	/* Free all the processes' properties and make sure no pending admin IOs */
3618 	TAILQ_FOREACH_SAFE(active_proc, &ctrlr->active_procs, tailq, tmp) {
3619 		TAILQ_REMOVE(&ctrlr->active_procs, active_proc, tailq);
3620 
3621 		assert(STAILQ_EMPTY(&active_proc->active_reqs));
3622 
3623 		spdk_free(active_proc);
3624 	}
3625 }
3626 
3627 /**
3628  * This function will be called when any other process attaches or
3629  *  detaches the controller in order to cleanup those unexpectedly
3630  *  terminated processes.
3631  * Note: the ctrlr_lock must be held when calling this function.
3632  */
3633 static int
3634 nvme_ctrlr_remove_inactive_proc(struct spdk_nvme_ctrlr *ctrlr)
3635 {
3636 	struct spdk_nvme_ctrlr_process	*active_proc, *tmp;
3637 	int				active_proc_count = 0;
3638 
3639 	TAILQ_FOREACH_SAFE(active_proc, &ctrlr->active_procs, tailq, tmp) {
3640 		if ((kill(active_proc->pid, 0) == -1) && (errno == ESRCH)) {
3641 			NVME_CTRLR_ERRLOG(ctrlr, "process %d terminated unexpected\n", active_proc->pid);
3642 
3643 			TAILQ_REMOVE(&ctrlr->active_procs, active_proc, tailq);
3644 
3645 			nvme_ctrlr_cleanup_process(active_proc);
3646 		} else {
3647 			active_proc_count++;
3648 		}
3649 	}
3650 
3651 	return active_proc_count;
3652 }
3653 
3654 void
3655 nvme_ctrlr_proc_get_ref(struct spdk_nvme_ctrlr *ctrlr)
3656 {
3657 	struct spdk_nvme_ctrlr_process	*active_proc;
3658 
3659 	nvme_ctrlr_lock(ctrlr);
3660 
3661 	nvme_ctrlr_remove_inactive_proc(ctrlr);
3662 
3663 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3664 	if (active_proc) {
3665 		active_proc->ref++;
3666 	}
3667 
3668 	nvme_ctrlr_unlock(ctrlr);
3669 }
3670 
3671 void
3672 nvme_ctrlr_proc_put_ref(struct spdk_nvme_ctrlr *ctrlr)
3673 {
3674 	struct spdk_nvme_ctrlr_process	*active_proc;
3675 	int				proc_count;
3676 
3677 	nvme_ctrlr_lock(ctrlr);
3678 
3679 	proc_count = nvme_ctrlr_remove_inactive_proc(ctrlr);
3680 
3681 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3682 	if (active_proc) {
3683 		active_proc->ref--;
3684 		assert(active_proc->ref >= 0);
3685 
3686 		/*
3687 		 * The last active process will be removed at the end of
3688 		 * the destruction of the controller.
3689 		 */
3690 		if (active_proc->ref == 0 && proc_count != 1) {
3691 			nvme_ctrlr_remove_process(ctrlr, active_proc);
3692 		}
3693 	}
3694 
3695 	nvme_ctrlr_unlock(ctrlr);
3696 }
3697 
3698 int
3699 nvme_ctrlr_get_ref_count(struct spdk_nvme_ctrlr *ctrlr)
3700 {
3701 	struct spdk_nvme_ctrlr_process	*active_proc;
3702 	int				ref = 0;
3703 
3704 	nvme_ctrlr_lock(ctrlr);
3705 
3706 	nvme_ctrlr_remove_inactive_proc(ctrlr);
3707 
3708 	TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) {
3709 		ref += active_proc->ref;
3710 	}
3711 
3712 	nvme_ctrlr_unlock(ctrlr);
3713 
3714 	return ref;
3715 }
3716 
3717 /**
3718  *  Get the PCI device handle which is only visible to its associated process.
3719  */
3720 struct spdk_pci_device *
3721 nvme_ctrlr_proc_get_devhandle(struct spdk_nvme_ctrlr *ctrlr)
3722 {
3723 	struct spdk_nvme_ctrlr_process	*active_proc;
3724 	struct spdk_pci_device		*devhandle = NULL;
3725 
3726 	nvme_ctrlr_lock(ctrlr);
3727 
3728 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
3729 	if (active_proc) {
3730 		devhandle = active_proc->devhandle;
3731 	}
3732 
3733 	nvme_ctrlr_unlock(ctrlr);
3734 
3735 	return devhandle;
3736 }
3737 
3738 static void
3739 nvme_ctrlr_process_init_vs_done(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3740 {
3741 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3742 
3743 	if (spdk_nvme_cpl_is_error(cpl)) {
3744 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the VS register\n");
3745 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3746 		return;
3747 	}
3748 
3749 	assert(value <= UINT32_MAX);
3750 	ctrlr->vs.raw = (uint32_t)value;
3751 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_CAP, NVME_TIMEOUT_INFINITE);
3752 }
3753 
3754 static void
3755 nvme_ctrlr_process_init_cap_done(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3756 {
3757 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3758 
3759 	if (spdk_nvme_cpl_is_error(cpl)) {
3760 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CAP register\n");
3761 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3762 		return;
3763 	}
3764 
3765 	ctrlr->cap.raw = value;
3766 	nvme_ctrlr_init_cap(ctrlr);
3767 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CHECK_EN, NVME_TIMEOUT_INFINITE);
3768 }
3769 
3770 static void
3771 nvme_ctrlr_process_init_check_en(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3772 {
3773 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3774 	enum nvme_ctrlr_state state;
3775 
3776 	if (spdk_nvme_cpl_is_error(cpl)) {
3777 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
3778 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3779 		return;
3780 	}
3781 
3782 	assert(value <= UINT32_MAX);
3783 	ctrlr->process_init_cc.raw = (uint32_t)value;
3784 
3785 	if (ctrlr->process_init_cc.bits.en) {
3786 		NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 1\n");
3787 		state = NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1;
3788 	} else {
3789 		state = NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0;
3790 	}
3791 
3792 	nvme_ctrlr_set_state(ctrlr, state, nvme_ctrlr_get_ready_timeout(ctrlr));
3793 }
3794 
3795 static void
3796 nvme_ctrlr_process_init_set_en_0(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3797 {
3798 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3799 
3800 	if (spdk_nvme_cpl_is_error(cpl)) {
3801 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to write the CC register\n");
3802 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3803 		return;
3804 	}
3805 
3806 	/*
3807 	 * Wait 2.5 seconds before accessing PCI registers.
3808 	 * Not using sleep() to avoid blocking other controller's initialization.
3809 	 */
3810 	if (ctrlr->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) {
3811 		NVME_CTRLR_DEBUGLOG(ctrlr, "Applying quirk: delay 2.5 seconds before reading registers\n");
3812 		ctrlr->sleep_timeout_tsc = spdk_get_ticks() + (2500 * spdk_get_ticks_hz() / 1000);
3813 	}
3814 
3815 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0,
3816 			     nvme_ctrlr_get_ready_timeout(ctrlr));
3817 }
3818 
3819 static void
3820 nvme_ctrlr_process_init_set_en_0_read_cc(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3821 {
3822 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3823 	union spdk_nvme_cc_register cc;
3824 	int rc;
3825 
3826 	if (spdk_nvme_cpl_is_error(cpl)) {
3827 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
3828 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3829 		return;
3830 	}
3831 
3832 	assert(value <= UINT32_MAX);
3833 	cc.raw = (uint32_t)value;
3834 	cc.bits.en = 0;
3835 	ctrlr->process_init_cc.raw = cc.raw;
3836 
3837 	nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC,
3838 			     nvme_ctrlr_get_ready_timeout(ctrlr));
3839 
3840 	rc = nvme_ctrlr_set_cc_async(ctrlr, cc.raw, nvme_ctrlr_process_init_set_en_0, ctrlr);
3841 	if (rc != 0) {
3842 		NVME_CTRLR_ERRLOG(ctrlr, "set_cc() failed\n");
3843 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3844 	}
3845 }
3846 
3847 static void
3848 nvme_ctrlr_process_init_wait_for_ready_1(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3849 {
3850 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3851 	union spdk_nvme_csts_register csts;
3852 
3853 	if (spdk_nvme_cpl_is_error(cpl)) {
3854 		/* While a device is resetting, it may be unable to service MMIO reads
3855 		 * temporarily. Allow for this case.
3856 		 */
3857 		if (!ctrlr->is_failed && ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) {
3858 			NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to read the CSTS register\n");
3859 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1,
3860 					     NVME_TIMEOUT_KEEP_EXISTING);
3861 		} else {
3862 			NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
3863 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3864 		}
3865 
3866 		return;
3867 	}
3868 
3869 	assert(value <= UINT32_MAX);
3870 	csts.raw = (uint32_t)value;
3871 	if (csts.bits.rdy == 1 || csts.bits.cfs == 1) {
3872 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_EN_0,
3873 				     nvme_ctrlr_get_ready_timeout(ctrlr));
3874 	} else {
3875 		NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 1 && CSTS.RDY = 0 - waiting for reset to complete\n");
3876 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1,
3877 					   NVME_TIMEOUT_KEEP_EXISTING);
3878 	}
3879 }
3880 
3881 static void
3882 nvme_ctrlr_process_init_wait_for_ready_0(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
3883 {
3884 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3885 	union spdk_nvme_csts_register csts;
3886 
3887 	if (spdk_nvme_cpl_is_error(cpl)) {
3888 		/* While a device is resetting, it may be unable to service MMIO reads
3889 		 * temporarily. Allow for this case.
3890 		 */
3891 		if (!ctrlr->is_failed && ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) {
3892 			NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to read the CSTS register\n");
3893 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0,
3894 					     NVME_TIMEOUT_KEEP_EXISTING);
3895 		} else {
3896 			NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
3897 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3898 		}
3899 
3900 		return;
3901 	}
3902 
3903 	assert(value <= UINT32_MAX);
3904 	csts.raw = (uint32_t)value;
3905 	if (csts.bits.rdy == 0) {
3906 		NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 0 && CSTS.RDY = 0\n");
3907 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLED,
3908 				     nvme_ctrlr_get_ready_timeout(ctrlr));
3909 	} else {
3910 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0,
3911 					   NVME_TIMEOUT_KEEP_EXISTING);
3912 	}
3913 }
3914 
3915 static void
3916 nvme_ctrlr_process_init_enable_wait_for_ready_1(void *ctx, uint64_t value,
3917 		const struct spdk_nvme_cpl *cpl)
3918 {
3919 	struct spdk_nvme_ctrlr *ctrlr = ctx;
3920 	union spdk_nvme_csts_register csts;
3921 
3922 	if (spdk_nvme_cpl_is_error(cpl)) {
3923 		/* While a device is resetting, it may be unable to service MMIO reads
3924 		 * temporarily. Allow for this case.
3925 		 */
3926 		if (!ctrlr->is_failed && ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) {
3927 			NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to read the CSTS register\n");
3928 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1,
3929 					     NVME_TIMEOUT_KEEP_EXISTING);
3930 		} else {
3931 			NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
3932 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
3933 		}
3934 
3935 		return;
3936 	}
3937 
3938 	assert(value <= UINT32_MAX);
3939 	csts.raw = value;
3940 	if (csts.bits.rdy == 1) {
3941 		NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 1 && CSTS.RDY = 1 - controller is ready\n");
3942 		/*
3943 		 * The controller has been enabled.
3944 		 *  Perform the rest of initialization serially.
3945 		 */
3946 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_RESET_ADMIN_QUEUE,
3947 				     ctrlr->opts.admin_timeout_ms);
3948 	} else {
3949 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1,
3950 					   NVME_TIMEOUT_KEEP_EXISTING);
3951 	}
3952 }
3953 
3954 /**
3955  * This function will be called repeatedly during initialization until the controller is ready.
3956  */
3957 int
3958 nvme_ctrlr_process_init(struct spdk_nvme_ctrlr *ctrlr)
3959 {
3960 	uint32_t ready_timeout_in_ms;
3961 	uint64_t ticks;
3962 	int rc = 0;
3963 
3964 	ticks = spdk_get_ticks();
3965 
3966 	/*
3967 	 * May need to avoid accessing any register on the target controller
3968 	 * for a while. Return early without touching the FSM.
3969 	 * Check sleep_timeout_tsc > 0 for unit test.
3970 	 */
3971 	if ((ctrlr->sleep_timeout_tsc > 0) &&
3972 	    (ticks <= ctrlr->sleep_timeout_tsc)) {
3973 		return 0;
3974 	}
3975 	ctrlr->sleep_timeout_tsc = 0;
3976 
3977 	ready_timeout_in_ms = nvme_ctrlr_get_ready_timeout(ctrlr);
3978 
3979 	/*
3980 	 * Check if the current initialization step is done or has timed out.
3981 	 */
3982 	switch (ctrlr->state) {
3983 	case NVME_CTRLR_STATE_INIT_DELAY:
3984 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, ready_timeout_in_ms);
3985 		if (ctrlr->quirks & NVME_QUIRK_DELAY_BEFORE_INIT) {
3986 			/*
3987 			 * Controller may need some delay before it's enabled.
3988 			 *
3989 			 * This is a workaround for an issue where the PCIe-attached NVMe controller
3990 			 * is not ready after VFIO reset. We delay the initialization rather than the
3991 			 * enabling itself, because this is required only for the very first enabling
3992 			 * - directly after a VFIO reset.
3993 			 */
3994 			NVME_CTRLR_DEBUGLOG(ctrlr, "Adding 2 second delay before initializing the controller\n");
3995 			ctrlr->sleep_timeout_tsc = ticks + (2000 * spdk_get_ticks_hz() / 1000);
3996 		}
3997 		break;
3998 
3999 	case NVME_CTRLR_STATE_DISCONNECTED:
4000 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE);
4001 		break;
4002 
4003 	case NVME_CTRLR_STATE_CONNECT_ADMINQ: /* synonymous with NVME_CTRLR_STATE_INIT and NVME_CTRLR_STATE_DISCONNECTED */
4004 		rc = nvme_transport_ctrlr_connect_qpair(ctrlr, ctrlr->adminq);
4005 		if (rc == 0) {
4006 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_CONNECT_ADMINQ,
4007 					     NVME_TIMEOUT_INFINITE);
4008 		} else {
4009 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
4010 		}
4011 		break;
4012 
4013 	case NVME_CTRLR_STATE_WAIT_FOR_CONNECT_ADMINQ:
4014 		spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
4015 
4016 		switch (nvme_qpair_get_state(ctrlr->adminq)) {
4017 		case NVME_QPAIR_CONNECTING:
4018 			if (ctrlr->is_failed) {
4019 				nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq);
4020 				break;
4021 			}
4022 
4023 			break;
4024 		case NVME_QPAIR_CONNECTED:
4025 			nvme_qpair_set_state(ctrlr->adminq, NVME_QPAIR_ENABLED);
4026 		/* Fall through */
4027 		case NVME_QPAIR_ENABLED:
4028 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_VS,
4029 					     NVME_TIMEOUT_INFINITE);
4030 			/* Abort any queued requests that were sent while the adminq was connecting
4031 			 * to avoid stalling the init process during a reset, as requests don't get
4032 			 * resubmitted while the controller is resetting and subsequent commands
4033 			 * would get queued too.
4034 			 */
4035 			nvme_qpair_abort_queued_reqs(ctrlr->adminq);
4036 			break;
4037 		case NVME_QPAIR_DISCONNECTING:
4038 			assert(ctrlr->adminq->async == true);
4039 			break;
4040 		case NVME_QPAIR_DISCONNECTED:
4041 		/* fallthrough */
4042 		default:
4043 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
4044 			break;
4045 		}
4046 
4047 		break;
4048 
4049 	case NVME_CTRLR_STATE_READ_VS:
4050 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_VS_WAIT_FOR_VS, NVME_TIMEOUT_INFINITE);
4051 		rc = nvme_ctrlr_get_vs_async(ctrlr, nvme_ctrlr_process_init_vs_done, ctrlr);
4052 		break;
4053 
4054 	case NVME_CTRLR_STATE_READ_CAP:
4055 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_CAP_WAIT_FOR_CAP, NVME_TIMEOUT_INFINITE);
4056 		rc = nvme_ctrlr_get_cap_async(ctrlr, nvme_ctrlr_process_init_cap_done, ctrlr);
4057 		break;
4058 
4059 	case NVME_CTRLR_STATE_CHECK_EN:
4060 		/* Begin the hardware initialization by making sure the controller is disabled. */
4061 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CHECK_EN_WAIT_FOR_CC, ready_timeout_in_ms);
4062 		rc = nvme_ctrlr_get_cc_async(ctrlr, nvme_ctrlr_process_init_check_en, ctrlr);
4063 		break;
4064 
4065 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1:
4066 		/*
4067 		 * Controller is currently enabled. We need to disable it to cause a reset.
4068 		 *
4069 		 * If CC.EN = 1 && CSTS.RDY = 0, the controller is in the process of becoming ready.
4070 		 *  Wait for the ready bit to be 1 before disabling the controller.
4071 		 */
4072 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS,
4073 					   NVME_TIMEOUT_KEEP_EXISTING);
4074 		rc = nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_process_init_wait_for_ready_1, ctrlr);
4075 		break;
4076 
4077 	case NVME_CTRLR_STATE_SET_EN_0:
4078 		NVME_CTRLR_DEBUGLOG(ctrlr, "Setting CC.EN = 0\n");
4079 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC, ready_timeout_in_ms);
4080 		rc = nvme_ctrlr_get_cc_async(ctrlr, nvme_ctrlr_process_init_set_en_0_read_cc, ctrlr);
4081 		break;
4082 
4083 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0:
4084 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0_WAIT_FOR_CSTS,
4085 					   NVME_TIMEOUT_KEEP_EXISTING);
4086 		rc = nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_process_init_wait_for_ready_0, ctrlr);
4087 		break;
4088 
4089 	case NVME_CTRLR_STATE_DISABLED:
4090 		if (ctrlr->is_disconnecting) {
4091 			NVME_CTRLR_DEBUGLOG(ctrlr, "Ctrlr was disabled.\n");
4092 		} else {
4093 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE, ready_timeout_in_ms);
4094 
4095 			/*
4096 			 * Delay 100us before setting CC.EN = 1.  Some NVMe SSDs miss CC.EN getting
4097 			 *  set to 1 if it is too soon after CSTS.RDY is reported as 0.
4098 			 */
4099 			spdk_delay_us(100);
4100 		}
4101 		break;
4102 
4103 	case NVME_CTRLR_STATE_ENABLE:
4104 		NVME_CTRLR_DEBUGLOG(ctrlr, "Setting CC.EN = 1\n");
4105 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_CC, ready_timeout_in_ms);
4106 		rc = nvme_ctrlr_enable(ctrlr);
4107 		if (rc) {
4108 			NVME_CTRLR_ERRLOG(ctrlr, "Ctrlr enable failed with error: %d", rc);
4109 		}
4110 		return rc;
4111 
4112 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1:
4113 		nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS,
4114 					   NVME_TIMEOUT_KEEP_EXISTING);
4115 		rc = nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_process_init_enable_wait_for_ready_1,
4116 					       ctrlr);
4117 		break;
4118 
4119 	case NVME_CTRLR_STATE_RESET_ADMIN_QUEUE:
4120 		nvme_transport_qpair_reset(ctrlr->adminq);
4121 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY, NVME_TIMEOUT_INFINITE);
4122 		break;
4123 
4124 	case NVME_CTRLR_STATE_IDENTIFY:
4125 		rc = nvme_ctrlr_identify(ctrlr);
4126 		break;
4127 
4128 	case NVME_CTRLR_STATE_CONFIGURE_AER:
4129 		rc = nvme_ctrlr_configure_aer(ctrlr);
4130 		break;
4131 
4132 	case NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT:
4133 		rc = nvme_ctrlr_set_keep_alive_timeout(ctrlr);
4134 		break;
4135 
4136 	case NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC:
4137 		rc = nvme_ctrlr_identify_iocs_specific(ctrlr);
4138 		break;
4139 
4140 	case NVME_CTRLR_STATE_GET_ZNS_CMD_EFFECTS_LOG:
4141 		rc = nvme_ctrlr_get_zns_cmd_and_effects_log(ctrlr);
4142 		break;
4143 
4144 	case NVME_CTRLR_STATE_SET_NUM_QUEUES:
4145 		nvme_ctrlr_update_nvmf_ioccsz(ctrlr);
4146 		rc = nvme_ctrlr_set_num_queues(ctrlr);
4147 		break;
4148 
4149 	case NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS:
4150 		_nvme_ctrlr_identify_active_ns(ctrlr);
4151 		break;
4152 
4153 	case NVME_CTRLR_STATE_IDENTIFY_NS:
4154 		rc = nvme_ctrlr_identify_namespaces(ctrlr);
4155 		break;
4156 
4157 	case NVME_CTRLR_STATE_IDENTIFY_ID_DESCS:
4158 		rc = nvme_ctrlr_identify_id_desc_namespaces(ctrlr);
4159 		break;
4160 
4161 	case NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC:
4162 		rc = nvme_ctrlr_identify_namespaces_iocs_specific(ctrlr);
4163 		break;
4164 
4165 	case NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES:
4166 		rc = nvme_ctrlr_set_supported_log_pages(ctrlr);
4167 		break;
4168 
4169 	case NVME_CTRLR_STATE_SET_SUPPORTED_INTEL_LOG_PAGES:
4170 		rc = nvme_ctrlr_set_intel_support_log_pages(ctrlr);
4171 		break;
4172 
4173 	case NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES:
4174 		nvme_ctrlr_set_supported_features(ctrlr);
4175 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_FEATURE,
4176 				     ctrlr->opts.admin_timeout_ms);
4177 		break;
4178 
4179 	case NVME_CTRLR_STATE_SET_HOST_FEATURE:
4180 		rc = nvme_ctrlr_set_host_feature(ctrlr);
4181 		break;
4182 
4183 	case NVME_CTRLR_STATE_SET_DB_BUF_CFG:
4184 		rc = nvme_ctrlr_set_doorbell_buffer_config(ctrlr);
4185 		break;
4186 
4187 	case NVME_CTRLR_STATE_SET_HOST_ID:
4188 		rc = nvme_ctrlr_set_host_id(ctrlr);
4189 		break;
4190 
4191 	case NVME_CTRLR_STATE_TRANSPORT_READY:
4192 		rc = nvme_transport_ctrlr_ready(ctrlr);
4193 		if (rc) {
4194 			NVME_CTRLR_ERRLOG(ctrlr, "Transport controller ready step failed: rc %d\n", rc);
4195 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
4196 		} else {
4197 			nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
4198 		}
4199 		break;
4200 
4201 	case NVME_CTRLR_STATE_READY:
4202 		NVME_CTRLR_DEBUGLOG(ctrlr, "Ctrlr already in ready state\n");
4203 		return 0;
4204 
4205 	case NVME_CTRLR_STATE_ERROR:
4206 		NVME_CTRLR_ERRLOG(ctrlr, "Ctrlr is in error state\n");
4207 		return -1;
4208 
4209 	case NVME_CTRLR_STATE_READ_VS_WAIT_FOR_VS:
4210 	case NVME_CTRLR_STATE_READ_CAP_WAIT_FOR_CAP:
4211 	case NVME_CTRLR_STATE_CHECK_EN_WAIT_FOR_CC:
4212 	case NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC:
4213 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
4214 	case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0_WAIT_FOR_CSTS:
4215 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_CC:
4216 	case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
4217 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY:
4218 	case NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER:
4219 	case NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT:
4220 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_IOCS_SPECIFIC:
4221 	case NVME_CTRLR_STATE_WAIT_FOR_GET_ZNS_CMD_EFFECTS_LOG:
4222 	case NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES:
4223 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS:
4224 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS:
4225 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS:
4226 	case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC:
4227 	case NVME_CTRLR_STATE_WAIT_FOR_SUPPORTED_INTEL_LOG_PAGES:
4228 	case NVME_CTRLR_STATE_WAIT_FOR_SET_HOST_FEATURE:
4229 	case NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG:
4230 	case NVME_CTRLR_STATE_WAIT_FOR_HOST_ID:
4231 		/*
4232 		 * nvme_ctrlr_process_init() may be called from the completion context
4233 		 * for the admin qpair. Avoid recursive calls for this case.
4234 		 */
4235 		if (!ctrlr->adminq->in_completion_context) {
4236 			spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
4237 		}
4238 		break;
4239 
4240 	default:
4241 		assert(0);
4242 		return -1;
4243 	}
4244 
4245 	if (rc) {
4246 		NVME_CTRLR_ERRLOG(ctrlr, "Ctrlr operation failed with error: %d, ctrlr state: %d (%s)\n",
4247 				  rc, ctrlr->state, nvme_ctrlr_state_string(ctrlr->state));
4248 	}
4249 
4250 	/* Note: we use the ticks captured when we entered this function.
4251 	 * This covers environments where the SPDK process gets swapped out after
4252 	 * we tried to advance the state but before we check the timeout here.
4253 	 * It is not normal for this to happen, but harmless to handle it in this
4254 	 * way.
4255 	 */
4256 	if (ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE &&
4257 	    ticks > ctrlr->state_timeout_tsc) {
4258 		NVME_CTRLR_ERRLOG(ctrlr, "Initialization timed out in state %d (%s)\n",
4259 				  ctrlr->state, nvme_ctrlr_state_string(ctrlr->state));
4260 		return -1;
4261 	}
4262 
4263 	return rc;
4264 }
4265 
4266 int
4267 nvme_robust_mutex_init_recursive_shared(pthread_mutex_t *mtx)
4268 {
4269 	pthread_mutexattr_t attr;
4270 	int rc = 0;
4271 
4272 	if (pthread_mutexattr_init(&attr)) {
4273 		return -1;
4274 	}
4275 	if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE) ||
4276 #ifndef __FreeBSD__
4277 	    pthread_mutexattr_setrobust(&attr, PTHREAD_MUTEX_ROBUST) ||
4278 	    pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED) ||
4279 #endif
4280 	    pthread_mutex_init(mtx, &attr)) {
4281 		rc = -1;
4282 	}
4283 	pthread_mutexattr_destroy(&attr);
4284 	return rc;
4285 }
4286 
4287 int
4288 nvme_ctrlr_construct(struct spdk_nvme_ctrlr *ctrlr)
4289 {
4290 	int rc;
4291 
4292 	if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
4293 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT_DELAY, NVME_TIMEOUT_INFINITE);
4294 	} else {
4295 		nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE);
4296 	}
4297 
4298 	if (ctrlr->opts.admin_queue_size > SPDK_NVME_ADMIN_QUEUE_MAX_ENTRIES) {
4299 		NVME_CTRLR_ERRLOG(ctrlr, "admin_queue_size %u exceeds max defined by NVMe spec, use max value\n",
4300 				  ctrlr->opts.admin_queue_size);
4301 		ctrlr->opts.admin_queue_size = SPDK_NVME_ADMIN_QUEUE_MAX_ENTRIES;
4302 	}
4303 
4304 	if (ctrlr->quirks & NVME_QUIRK_MINIMUM_ADMIN_QUEUE_SIZE &&
4305 	    (ctrlr->opts.admin_queue_size % SPDK_NVME_ADMIN_QUEUE_QUIRK_ENTRIES_MULTIPLE) != 0) {
4306 		NVME_CTRLR_ERRLOG(ctrlr,
4307 				  "admin_queue_size %u is invalid for this NVMe device, adjust to next multiple\n",
4308 				  ctrlr->opts.admin_queue_size);
4309 		ctrlr->opts.admin_queue_size = SPDK_ALIGN_CEIL(ctrlr->opts.admin_queue_size,
4310 					       SPDK_NVME_ADMIN_QUEUE_QUIRK_ENTRIES_MULTIPLE);
4311 	}
4312 
4313 	if (ctrlr->opts.admin_queue_size < SPDK_NVME_ADMIN_QUEUE_MIN_ENTRIES) {
4314 		NVME_CTRLR_ERRLOG(ctrlr,
4315 				  "admin_queue_size %u is less than minimum defined by NVMe spec, use min value\n",
4316 				  ctrlr->opts.admin_queue_size);
4317 		ctrlr->opts.admin_queue_size = SPDK_NVME_ADMIN_QUEUE_MIN_ENTRIES;
4318 	}
4319 
4320 	ctrlr->flags = 0;
4321 	ctrlr->free_io_qids = NULL;
4322 	ctrlr->is_resetting = false;
4323 	ctrlr->is_failed = false;
4324 	ctrlr->is_destructed = false;
4325 
4326 	TAILQ_INIT(&ctrlr->active_io_qpairs);
4327 	STAILQ_INIT(&ctrlr->queued_aborts);
4328 	ctrlr->outstanding_aborts = 0;
4329 
4330 	ctrlr->ana_log_page = NULL;
4331 	ctrlr->ana_log_page_size = 0;
4332 
4333 	rc = nvme_robust_mutex_init_recursive_shared(&ctrlr->ctrlr_lock);
4334 	if (rc != 0) {
4335 		return rc;
4336 	}
4337 
4338 	TAILQ_INIT(&ctrlr->active_procs);
4339 	STAILQ_INIT(&ctrlr->register_operations);
4340 
4341 	RB_INIT(&ctrlr->ns);
4342 
4343 	return rc;
4344 }
4345 
4346 static void
4347 nvme_ctrlr_init_cap(struct spdk_nvme_ctrlr *ctrlr)
4348 {
4349 	if (ctrlr->cap.bits.ams & SPDK_NVME_CAP_AMS_WRR) {
4350 		ctrlr->flags |= SPDK_NVME_CTRLR_WRR_SUPPORTED;
4351 	}
4352 
4353 	ctrlr->min_page_size = 1u << (12 + ctrlr->cap.bits.mpsmin);
4354 
4355 	/* For now, always select page_size == min_page_size. */
4356 	ctrlr->page_size = ctrlr->min_page_size;
4357 
4358 	ctrlr->opts.io_queue_size = spdk_max(ctrlr->opts.io_queue_size, SPDK_NVME_IO_QUEUE_MIN_ENTRIES);
4359 	ctrlr->opts.io_queue_size = spdk_min(ctrlr->opts.io_queue_size, MAX_IO_QUEUE_ENTRIES);
4360 	if (ctrlr->quirks & NVME_QUIRK_MINIMUM_IO_QUEUE_SIZE &&
4361 	    ctrlr->opts.io_queue_size == DEFAULT_IO_QUEUE_SIZE) {
4362 		/* If the user specifically set an IO queue size different than the
4363 		 * default, use that value.  Otherwise overwrite with the quirked value.
4364 		 * This allows this quirk to be overridden when necessary.
4365 		 * However, cap.mqes still needs to be respected.
4366 		 */
4367 		ctrlr->opts.io_queue_size = DEFAULT_IO_QUEUE_SIZE_FOR_QUIRK;
4368 	}
4369 	ctrlr->opts.io_queue_size = spdk_min(ctrlr->opts.io_queue_size, ctrlr->cap.bits.mqes + 1u);
4370 
4371 	ctrlr->opts.io_queue_requests = spdk_max(ctrlr->opts.io_queue_requests, ctrlr->opts.io_queue_size);
4372 }
4373 
4374 void
4375 nvme_ctrlr_destruct_finish(struct spdk_nvme_ctrlr *ctrlr)
4376 {
4377 	int rc;
4378 
4379 	if (ctrlr->lock_depth > 0) {
4380 		SPDK_ERRLOG("lock currently held (depth=%d)!\n", ctrlr->lock_depth);
4381 		assert(false);
4382 	}
4383 
4384 	rc = pthread_mutex_destroy(&ctrlr->ctrlr_lock);
4385 	if (rc) {
4386 		SPDK_ERRLOG("could not destroy ctrlr_lock: %s\n", spdk_strerror(rc));
4387 		assert(false);
4388 	}
4389 
4390 	nvme_ctrlr_free_processes(ctrlr);
4391 }
4392 
4393 void
4394 nvme_ctrlr_destruct_async(struct spdk_nvme_ctrlr *ctrlr,
4395 			  struct nvme_ctrlr_detach_ctx *ctx)
4396 {
4397 	struct spdk_nvme_qpair *qpair, *tmp;
4398 
4399 	NVME_CTRLR_DEBUGLOG(ctrlr, "Prepare to destruct SSD\n");
4400 
4401 	ctrlr->prepare_for_reset = false;
4402 	ctrlr->is_destructed = true;
4403 
4404 	spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
4405 
4406 	nvme_ctrlr_abort_queued_aborts(ctrlr);
4407 	nvme_transport_admin_qpair_abort_aers(ctrlr->adminq);
4408 
4409 	TAILQ_FOREACH_SAFE(qpair, &ctrlr->active_io_qpairs, tailq, tmp) {
4410 		spdk_nvme_ctrlr_free_io_qpair(qpair);
4411 	}
4412 
4413 	nvme_ctrlr_free_doorbell_buffer(ctrlr);
4414 	nvme_ctrlr_free_iocs_specific_data(ctrlr);
4415 
4416 	nvme_ctrlr_shutdown_async(ctrlr, ctx);
4417 }
4418 
4419 int
4420 nvme_ctrlr_destruct_poll_async(struct spdk_nvme_ctrlr *ctrlr,
4421 			       struct nvme_ctrlr_detach_ctx *ctx)
4422 {
4423 	struct spdk_nvme_ns *ns, *tmp_ns;
4424 	int rc = 0;
4425 
4426 	if (!ctx->shutdown_complete) {
4427 		rc = nvme_ctrlr_shutdown_poll_async(ctrlr, ctx);
4428 		if (rc == -EAGAIN) {
4429 			return -EAGAIN;
4430 		}
4431 		/* Destruct ctrlr forcefully for any other error. */
4432 	}
4433 
4434 	if (ctx->cb_fn) {
4435 		ctx->cb_fn(ctrlr);
4436 	}
4437 
4438 	nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq);
4439 
4440 	RB_FOREACH_SAFE(ns, nvme_ns_tree, &ctrlr->ns, tmp_ns) {
4441 		nvme_ctrlr_destruct_namespace(ctrlr, ns->id);
4442 		RB_REMOVE(nvme_ns_tree, &ctrlr->ns, ns);
4443 		spdk_free(ns);
4444 	}
4445 
4446 	ctrlr->active_ns_count = 0;
4447 
4448 	spdk_bit_array_free(&ctrlr->free_io_qids);
4449 
4450 	free(ctrlr->ana_log_page);
4451 	free(ctrlr->copied_ana_desc);
4452 	ctrlr->ana_log_page = NULL;
4453 	ctrlr->copied_ana_desc = NULL;
4454 	ctrlr->ana_log_page_size = 0;
4455 
4456 	nvme_transport_ctrlr_destruct(ctrlr);
4457 
4458 	return rc;
4459 }
4460 
4461 void
4462 nvme_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
4463 {
4464 	struct nvme_ctrlr_detach_ctx ctx = { .ctrlr = ctrlr };
4465 	int rc;
4466 
4467 	nvme_ctrlr_destruct_async(ctrlr, &ctx);
4468 
4469 	while (1) {
4470 		rc = nvme_ctrlr_destruct_poll_async(ctrlr, &ctx);
4471 		if (rc != -EAGAIN) {
4472 			break;
4473 		}
4474 		nvme_delay(1000);
4475 	}
4476 }
4477 
4478 int
4479 nvme_ctrlr_submit_admin_request(struct spdk_nvme_ctrlr *ctrlr,
4480 				struct nvme_request *req)
4481 {
4482 	return nvme_qpair_submit_request(ctrlr->adminq, req);
4483 }
4484 
4485 static void
4486 nvme_keep_alive_completion(void *cb_ctx, const struct spdk_nvme_cpl *cpl)
4487 {
4488 	/* Do nothing */
4489 }
4490 
4491 /*
4492  * Check if we need to send a Keep Alive command.
4493  * Caller must hold ctrlr->ctrlr_lock.
4494  */
4495 static int
4496 nvme_ctrlr_keep_alive(struct spdk_nvme_ctrlr *ctrlr)
4497 {
4498 	uint64_t now;
4499 	struct nvme_request *req;
4500 	struct spdk_nvme_cmd *cmd;
4501 	int rc = 0;
4502 
4503 	now = spdk_get_ticks();
4504 	if (now < ctrlr->next_keep_alive_tick) {
4505 		return rc;
4506 	}
4507 
4508 	req = nvme_allocate_request_null(ctrlr->adminq, nvme_keep_alive_completion, NULL);
4509 	if (req == NULL) {
4510 		return rc;
4511 	}
4512 
4513 	cmd = &req->cmd;
4514 	cmd->opc = SPDK_NVME_OPC_KEEP_ALIVE;
4515 
4516 	rc = nvme_ctrlr_submit_admin_request(ctrlr, req);
4517 	if (rc != 0) {
4518 		NVME_CTRLR_ERRLOG(ctrlr, "Submitting Keep Alive failed\n");
4519 		rc = -ENXIO;
4520 	}
4521 
4522 	ctrlr->next_keep_alive_tick = now + ctrlr->keep_alive_interval_ticks;
4523 	return rc;
4524 }
4525 
4526 int32_t
4527 spdk_nvme_ctrlr_process_admin_completions(struct spdk_nvme_ctrlr *ctrlr)
4528 {
4529 	int32_t num_completions;
4530 	int32_t rc;
4531 	struct spdk_nvme_ctrlr_process	*active_proc;
4532 
4533 	nvme_ctrlr_lock(ctrlr);
4534 
4535 	if (ctrlr->keep_alive_interval_ticks) {
4536 		rc = nvme_ctrlr_keep_alive(ctrlr);
4537 		if (rc) {
4538 			nvme_ctrlr_unlock(ctrlr);
4539 			return rc;
4540 		}
4541 	}
4542 
4543 	rc = nvme_io_msg_process(ctrlr);
4544 	if (rc < 0) {
4545 		nvme_ctrlr_unlock(ctrlr);
4546 		return rc;
4547 	}
4548 	num_completions = rc;
4549 
4550 	rc = spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
4551 
4552 	/* Each process has an async list, complete the ones for this process object */
4553 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
4554 	if (active_proc) {
4555 		nvme_ctrlr_complete_queued_async_events(ctrlr);
4556 	}
4557 
4558 	if (rc == -ENXIO && ctrlr->is_disconnecting) {
4559 		nvme_ctrlr_disconnect_done(ctrlr);
4560 	}
4561 
4562 	nvme_ctrlr_unlock(ctrlr);
4563 
4564 	if (rc < 0) {
4565 		num_completions = rc;
4566 	} else {
4567 		num_completions += rc;
4568 	}
4569 
4570 	return num_completions;
4571 }
4572 
4573 const struct spdk_nvme_ctrlr_data *
4574 spdk_nvme_ctrlr_get_data(struct spdk_nvme_ctrlr *ctrlr)
4575 {
4576 	return &ctrlr->cdata;
4577 }
4578 
4579 union spdk_nvme_csts_register spdk_nvme_ctrlr_get_regs_csts(struct spdk_nvme_ctrlr *ctrlr)
4580 {
4581 	union spdk_nvme_csts_register csts;
4582 
4583 	if (nvme_ctrlr_get_csts(ctrlr, &csts)) {
4584 		csts.raw = SPDK_NVME_INVALID_REGISTER_VALUE;
4585 	}
4586 	return csts;
4587 }
4588 
4589 union spdk_nvme_cc_register spdk_nvme_ctrlr_get_regs_cc(struct spdk_nvme_ctrlr *ctrlr)
4590 {
4591 	union spdk_nvme_cc_register cc;
4592 
4593 	if (nvme_ctrlr_get_cc(ctrlr, &cc)) {
4594 		cc.raw = SPDK_NVME_INVALID_REGISTER_VALUE;
4595 	}
4596 	return cc;
4597 }
4598 
4599 union spdk_nvme_cap_register spdk_nvme_ctrlr_get_regs_cap(struct spdk_nvme_ctrlr *ctrlr)
4600 {
4601 	return ctrlr->cap;
4602 }
4603 
4604 union spdk_nvme_vs_register spdk_nvme_ctrlr_get_regs_vs(struct spdk_nvme_ctrlr *ctrlr)
4605 {
4606 	return ctrlr->vs;
4607 }
4608 
4609 union spdk_nvme_cmbsz_register spdk_nvme_ctrlr_get_regs_cmbsz(struct spdk_nvme_ctrlr *ctrlr)
4610 {
4611 	union spdk_nvme_cmbsz_register cmbsz;
4612 
4613 	if (nvme_ctrlr_get_cmbsz(ctrlr, &cmbsz)) {
4614 		cmbsz.raw = 0;
4615 	}
4616 
4617 	return cmbsz;
4618 }
4619 
4620 union spdk_nvme_pmrcap_register spdk_nvme_ctrlr_get_regs_pmrcap(struct spdk_nvme_ctrlr *ctrlr)
4621 {
4622 	union spdk_nvme_pmrcap_register pmrcap;
4623 
4624 	if (nvme_ctrlr_get_pmrcap(ctrlr, &pmrcap)) {
4625 		pmrcap.raw = 0;
4626 	}
4627 
4628 	return pmrcap;
4629 }
4630 
4631 union spdk_nvme_bpinfo_register spdk_nvme_ctrlr_get_regs_bpinfo(struct spdk_nvme_ctrlr *ctrlr)
4632 {
4633 	union spdk_nvme_bpinfo_register bpinfo;
4634 
4635 	if (nvme_ctrlr_get_bpinfo(ctrlr, &bpinfo)) {
4636 		bpinfo.raw = 0;
4637 	}
4638 
4639 	return bpinfo;
4640 }
4641 
4642 uint64_t
4643 spdk_nvme_ctrlr_get_pmrsz(struct spdk_nvme_ctrlr *ctrlr)
4644 {
4645 	return ctrlr->pmr_size;
4646 }
4647 
4648 uint32_t
4649 spdk_nvme_ctrlr_get_num_ns(struct spdk_nvme_ctrlr *ctrlr)
4650 {
4651 	return ctrlr->cdata.nn;
4652 }
4653 
4654 bool
4655 spdk_nvme_ctrlr_is_active_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
4656 {
4657 	struct spdk_nvme_ns tmp, *ns;
4658 
4659 	tmp.id = nsid;
4660 	ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
4661 
4662 	if (ns != NULL) {
4663 		return ns->active;
4664 	}
4665 
4666 	return false;
4667 }
4668 
4669 uint32_t
4670 spdk_nvme_ctrlr_get_first_active_ns(struct spdk_nvme_ctrlr *ctrlr)
4671 {
4672 	struct spdk_nvme_ns *ns;
4673 
4674 	ns = RB_MIN(nvme_ns_tree, &ctrlr->ns);
4675 	if (ns == NULL) {
4676 		return 0;
4677 	}
4678 
4679 	while (ns != NULL) {
4680 		if (ns->active) {
4681 			return ns->id;
4682 		}
4683 
4684 		ns = RB_NEXT(nvme_ns_tree, &ctrlr->ns, ns);
4685 	}
4686 
4687 	return 0;
4688 }
4689 
4690 uint32_t
4691 spdk_nvme_ctrlr_get_next_active_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t prev_nsid)
4692 {
4693 	struct spdk_nvme_ns tmp, *ns;
4694 
4695 	tmp.id = prev_nsid;
4696 	ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
4697 	if (ns == NULL) {
4698 		return 0;
4699 	}
4700 
4701 	ns = RB_NEXT(nvme_ns_tree, &ctrlr->ns, ns);
4702 	while (ns != NULL) {
4703 		if (ns->active) {
4704 			return ns->id;
4705 		}
4706 
4707 		ns = RB_NEXT(nvme_ns_tree, &ctrlr->ns, ns);
4708 	}
4709 
4710 	return 0;
4711 }
4712 
4713 struct spdk_nvme_ns *
4714 spdk_nvme_ctrlr_get_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
4715 {
4716 	struct spdk_nvme_ns tmp;
4717 	struct spdk_nvme_ns *ns;
4718 
4719 	if (nsid < 1 || nsid > ctrlr->cdata.nn) {
4720 		return NULL;
4721 	}
4722 
4723 	nvme_ctrlr_lock(ctrlr);
4724 
4725 	tmp.id = nsid;
4726 	ns = RB_FIND(nvme_ns_tree, &ctrlr->ns, &tmp);
4727 
4728 	if (ns == NULL) {
4729 		ns = spdk_zmalloc(sizeof(struct spdk_nvme_ns), 64, NULL, SPDK_ENV_NUMA_ID_ANY, SPDK_MALLOC_SHARE);
4730 		if (ns == NULL) {
4731 			nvme_ctrlr_unlock(ctrlr);
4732 			return NULL;
4733 		}
4734 
4735 		NVME_CTRLR_DEBUGLOG(ctrlr, "Namespace %u was added\n", nsid);
4736 		ns->id = nsid;
4737 		RB_INSERT(nvme_ns_tree, &ctrlr->ns, ns);
4738 	}
4739 
4740 	nvme_ctrlr_unlock(ctrlr);
4741 
4742 	return ns;
4743 }
4744 
4745 struct spdk_pci_device *
4746 spdk_nvme_ctrlr_get_pci_device(struct spdk_nvme_ctrlr *ctrlr)
4747 {
4748 	if (ctrlr == NULL) {
4749 		return NULL;
4750 	}
4751 
4752 	if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
4753 		return NULL;
4754 	}
4755 
4756 	return nvme_ctrlr_proc_get_devhandle(ctrlr);
4757 }
4758 
4759 int32_t
4760 spdk_nvme_ctrlr_get_numa_id(struct spdk_nvme_ctrlr *ctrlr)
4761 {
4762 	if (ctrlr->numa.id_valid) {
4763 		return ctrlr->numa.id;
4764 	} else {
4765 		return SPDK_ENV_NUMA_ID_ANY;
4766 	}
4767 }
4768 
4769 uint16_t
4770 spdk_nvme_ctrlr_get_id(struct spdk_nvme_ctrlr *ctrlr)
4771 {
4772 	return ctrlr->cntlid;
4773 }
4774 
4775 uint32_t
4776 spdk_nvme_ctrlr_get_max_xfer_size(const struct spdk_nvme_ctrlr *ctrlr)
4777 {
4778 	return ctrlr->max_xfer_size;
4779 }
4780 
4781 uint16_t
4782 spdk_nvme_ctrlr_get_max_sges(const struct spdk_nvme_ctrlr *ctrlr)
4783 {
4784 	if (ctrlr->flags & SPDK_NVME_CTRLR_SGL_SUPPORTED) {
4785 		return ctrlr->max_sges;
4786 	} else {
4787 		return UINT16_MAX;
4788 	}
4789 }
4790 
4791 void
4792 spdk_nvme_ctrlr_register_aer_callback(struct spdk_nvme_ctrlr *ctrlr,
4793 				      spdk_nvme_aer_cb aer_cb_fn,
4794 				      void *aer_cb_arg)
4795 {
4796 	struct spdk_nvme_ctrlr_process *active_proc;
4797 
4798 	nvme_ctrlr_lock(ctrlr);
4799 
4800 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
4801 	if (active_proc) {
4802 		active_proc->aer_cb_fn = aer_cb_fn;
4803 		active_proc->aer_cb_arg = aer_cb_arg;
4804 	}
4805 
4806 	nvme_ctrlr_unlock(ctrlr);
4807 }
4808 
4809 void
4810 spdk_nvme_ctrlr_disable_read_changed_ns_list_log_page(struct spdk_nvme_ctrlr *ctrlr)
4811 {
4812 	ctrlr->opts.disable_read_changed_ns_list_log_page = true;
4813 }
4814 
4815 void
4816 spdk_nvme_ctrlr_register_timeout_callback(struct spdk_nvme_ctrlr *ctrlr,
4817 		uint64_t timeout_io_us, uint64_t timeout_admin_us,
4818 		spdk_nvme_timeout_cb cb_fn, void *cb_arg)
4819 {
4820 	struct spdk_nvme_ctrlr_process	*active_proc;
4821 
4822 	nvme_ctrlr_lock(ctrlr);
4823 
4824 	active_proc = nvme_ctrlr_get_current_process(ctrlr);
4825 	if (active_proc) {
4826 		active_proc->timeout_io_ticks = timeout_io_us * spdk_get_ticks_hz() / 1000000ULL;
4827 		active_proc->timeout_admin_ticks = timeout_admin_us * spdk_get_ticks_hz() / 1000000ULL;
4828 		active_proc->timeout_cb_fn = cb_fn;
4829 		active_proc->timeout_cb_arg = cb_arg;
4830 	}
4831 
4832 	ctrlr->timeout_enabled = true;
4833 
4834 	nvme_ctrlr_unlock(ctrlr);
4835 }
4836 
4837 bool
4838 spdk_nvme_ctrlr_is_log_page_supported(struct spdk_nvme_ctrlr *ctrlr, uint8_t log_page)
4839 {
4840 	/* No bounds check necessary, since log_page is uint8_t and log_page_supported has 256 entries */
4841 	SPDK_STATIC_ASSERT(sizeof(ctrlr->log_page_supported) == 256, "log_page_supported size mismatch");
4842 	return ctrlr->log_page_supported[log_page];
4843 }
4844 
4845 bool
4846 spdk_nvme_ctrlr_is_feature_supported(struct spdk_nvme_ctrlr *ctrlr, uint8_t feature_code)
4847 {
4848 	/* No bounds check necessary, since feature_code is uint8_t and feature_supported has 256 entries */
4849 	SPDK_STATIC_ASSERT(sizeof(ctrlr->feature_supported) == 256, "feature_supported size mismatch");
4850 	return ctrlr->feature_supported[feature_code];
4851 }
4852 
4853 int
4854 spdk_nvme_ctrlr_attach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
4855 			  struct spdk_nvme_ctrlr_list *payload)
4856 {
4857 	struct nvme_completion_poll_status	*status;
4858 	struct spdk_nvme_ns			*ns;
4859 	int					res;
4860 
4861 	if (nsid == 0) {
4862 		return -EINVAL;
4863 	}
4864 
4865 	status = calloc(1, sizeof(*status));
4866 	if (!status) {
4867 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4868 		return -ENOMEM;
4869 	}
4870 
4871 	res = nvme_ctrlr_cmd_attach_ns(ctrlr, nsid, payload,
4872 				       nvme_completion_poll_cb, status);
4873 	if (res) {
4874 		free(status);
4875 		return res;
4876 	}
4877 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4878 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_attach_ns failed!\n");
4879 		if (!status->timed_out) {
4880 			free(status);
4881 		}
4882 		return -ENXIO;
4883 	}
4884 	free(status);
4885 
4886 	res = nvme_ctrlr_identify_active_ns(ctrlr);
4887 	if (res) {
4888 		return res;
4889 	}
4890 
4891 	ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
4892 	if (ns == NULL) {
4893 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_get_ns failed!\n");
4894 		return -ENXIO;
4895 	}
4896 
4897 	return nvme_ns_construct(ns, nsid, ctrlr);
4898 }
4899 
4900 int
4901 spdk_nvme_ctrlr_detach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
4902 			  struct spdk_nvme_ctrlr_list *payload)
4903 {
4904 	struct nvme_completion_poll_status	*status;
4905 	int					res;
4906 
4907 	if (nsid == 0) {
4908 		return -EINVAL;
4909 	}
4910 
4911 	status = calloc(1, sizeof(*status));
4912 	if (!status) {
4913 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4914 		return -ENOMEM;
4915 	}
4916 
4917 	res = nvme_ctrlr_cmd_detach_ns(ctrlr, nsid, payload,
4918 				       nvme_completion_poll_cb, status);
4919 	if (res) {
4920 		free(status);
4921 		return res;
4922 	}
4923 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4924 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_detach_ns failed!\n");
4925 		if (!status->timed_out) {
4926 			free(status);
4927 		}
4928 		return -ENXIO;
4929 	}
4930 	free(status);
4931 
4932 	return nvme_ctrlr_identify_active_ns(ctrlr);
4933 }
4934 
4935 uint32_t
4936 spdk_nvme_ctrlr_create_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns_data *payload)
4937 {
4938 	struct nvme_completion_poll_status	*status;
4939 	int					res;
4940 	uint32_t				nsid;
4941 
4942 	status = calloc(1, sizeof(*status));
4943 	if (!status) {
4944 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4945 		return 0;
4946 	}
4947 
4948 	res = nvme_ctrlr_cmd_create_ns(ctrlr, payload, nvme_completion_poll_cb, status);
4949 	if (res) {
4950 		free(status);
4951 		return 0;
4952 	}
4953 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4954 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_create_ns failed!\n");
4955 		if (!status->timed_out) {
4956 			free(status);
4957 		}
4958 		return 0;
4959 	}
4960 
4961 	nsid = status->cpl.cdw0;
4962 	free(status);
4963 
4964 	assert(nsid > 0);
4965 
4966 	/* Return the namespace ID that was created */
4967 	return nsid;
4968 }
4969 
4970 int
4971 spdk_nvme_ctrlr_delete_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
4972 {
4973 	struct nvme_completion_poll_status	*status;
4974 	int					res;
4975 
4976 	if (nsid == 0) {
4977 		return -EINVAL;
4978 	}
4979 
4980 	status = calloc(1, sizeof(*status));
4981 	if (!status) {
4982 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
4983 		return -ENOMEM;
4984 	}
4985 
4986 	res = nvme_ctrlr_cmd_delete_ns(ctrlr, nsid, nvme_completion_poll_cb, status);
4987 	if (res) {
4988 		free(status);
4989 		return res;
4990 	}
4991 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
4992 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_delete_ns failed!\n");
4993 		if (!status->timed_out) {
4994 			free(status);
4995 		}
4996 		return -ENXIO;
4997 	}
4998 	free(status);
4999 
5000 	return nvme_ctrlr_identify_active_ns(ctrlr);
5001 }
5002 
5003 int
5004 spdk_nvme_ctrlr_format(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
5005 		       struct spdk_nvme_format *format)
5006 {
5007 	struct nvme_completion_poll_status	*status;
5008 	int					res;
5009 
5010 	status = calloc(1, sizeof(*status));
5011 	if (!status) {
5012 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
5013 		return -ENOMEM;
5014 	}
5015 
5016 	res = nvme_ctrlr_cmd_format(ctrlr, nsid, format, nvme_completion_poll_cb,
5017 				    status);
5018 	if (res) {
5019 		free(status);
5020 		return res;
5021 	}
5022 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
5023 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_format failed!\n");
5024 		if (!status->timed_out) {
5025 			free(status);
5026 		}
5027 		return -ENXIO;
5028 	}
5029 	free(status);
5030 
5031 	return spdk_nvme_ctrlr_reset(ctrlr);
5032 }
5033 
5034 int
5035 spdk_nvme_ctrlr_update_firmware(struct spdk_nvme_ctrlr *ctrlr, void *payload, uint32_t size,
5036 				int slot, enum spdk_nvme_fw_commit_action commit_action, struct spdk_nvme_status *completion_status)
5037 {
5038 	struct spdk_nvme_fw_commit		fw_commit;
5039 	struct nvme_completion_poll_status	*status;
5040 	int					res;
5041 	unsigned int				size_remaining;
5042 	unsigned int				offset;
5043 	unsigned int				transfer;
5044 	uint8_t					*p;
5045 
5046 	if (!completion_status) {
5047 		return -EINVAL;
5048 	}
5049 	memset(completion_status, 0, sizeof(struct spdk_nvme_status));
5050 	if (size % 4) {
5051 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_update_firmware invalid size!\n");
5052 		return -1;
5053 	}
5054 
5055 	/* Current support only for SPDK_NVME_FW_COMMIT_REPLACE_IMG
5056 	 * and SPDK_NVME_FW_COMMIT_REPLACE_AND_ENABLE_IMG
5057 	 */
5058 	if ((commit_action != SPDK_NVME_FW_COMMIT_REPLACE_IMG) &&
5059 	    (commit_action != SPDK_NVME_FW_COMMIT_REPLACE_AND_ENABLE_IMG)) {
5060 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_update_firmware invalid command!\n");
5061 		return -1;
5062 	}
5063 
5064 	status = calloc(1, sizeof(*status));
5065 	if (!status) {
5066 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
5067 		return -ENOMEM;
5068 	}
5069 
5070 	/* Firmware download */
5071 	size_remaining = size;
5072 	offset = 0;
5073 	p = payload;
5074 
5075 	while (size_remaining > 0) {
5076 		transfer = spdk_min(size_remaining, ctrlr->min_page_size);
5077 
5078 		memset(status, 0, sizeof(*status));
5079 		res = nvme_ctrlr_cmd_fw_image_download(ctrlr, transfer, offset, p,
5080 						       nvme_completion_poll_cb,
5081 						       status);
5082 		if (res) {
5083 			free(status);
5084 			return res;
5085 		}
5086 
5087 		if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
5088 			NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_fw_image_download failed!\n");
5089 			if (!status->timed_out) {
5090 				free(status);
5091 			}
5092 			return -ENXIO;
5093 		}
5094 		p += transfer;
5095 		offset += transfer;
5096 		size_remaining -= transfer;
5097 	}
5098 
5099 	/* Firmware commit */
5100 	memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit));
5101 	fw_commit.fs = slot;
5102 	fw_commit.ca = commit_action;
5103 
5104 	memset(status, 0, sizeof(*status));
5105 	res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit, nvme_completion_poll_cb,
5106 				       status);
5107 	if (res) {
5108 		free(status);
5109 		return res;
5110 	}
5111 
5112 	res = nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock);
5113 
5114 	memcpy(completion_status, &status->cpl.status, sizeof(struct spdk_nvme_status));
5115 
5116 	if (!status->timed_out) {
5117 		free(status);
5118 	}
5119 
5120 	if (res) {
5121 		if (completion_status->sct != SPDK_NVME_SCT_COMMAND_SPECIFIC ||
5122 		    completion_status->sc != SPDK_NVME_SC_FIRMWARE_REQ_NVM_RESET) {
5123 			if (completion_status->sct == SPDK_NVME_SCT_COMMAND_SPECIFIC  &&
5124 			    completion_status->sc == SPDK_NVME_SC_FIRMWARE_REQ_CONVENTIONAL_RESET) {
5125 				NVME_CTRLR_NOTICELOG(ctrlr,
5126 						     "firmware activation requires conventional reset to be performed. !\n");
5127 			} else {
5128 				NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_commit failed!\n");
5129 			}
5130 			return -ENXIO;
5131 		}
5132 	}
5133 
5134 	return spdk_nvme_ctrlr_reset(ctrlr);
5135 }
5136 
5137 int
5138 spdk_nvme_ctrlr_reserve_cmb(struct spdk_nvme_ctrlr *ctrlr)
5139 {
5140 	int rc, size;
5141 	union spdk_nvme_cmbsz_register cmbsz;
5142 
5143 	cmbsz = spdk_nvme_ctrlr_get_regs_cmbsz(ctrlr);
5144 
5145 	if (cmbsz.bits.rds == 0 || cmbsz.bits.wds == 0) {
5146 		return -ENOTSUP;
5147 	}
5148 
5149 	size = cmbsz.bits.sz * (0x1000 << (cmbsz.bits.szu * 4));
5150 
5151 	nvme_ctrlr_lock(ctrlr);
5152 	rc = nvme_transport_ctrlr_reserve_cmb(ctrlr);
5153 	nvme_ctrlr_unlock(ctrlr);
5154 
5155 	if (rc < 0) {
5156 		return rc;
5157 	}
5158 
5159 	return size;
5160 }
5161 
5162 void *
5163 spdk_nvme_ctrlr_map_cmb(struct spdk_nvme_ctrlr *ctrlr, size_t *size)
5164 {
5165 	void *buf;
5166 
5167 	nvme_ctrlr_lock(ctrlr);
5168 	buf = nvme_transport_ctrlr_map_cmb(ctrlr, size);
5169 	nvme_ctrlr_unlock(ctrlr);
5170 
5171 	return buf;
5172 }
5173 
5174 void
5175 spdk_nvme_ctrlr_unmap_cmb(struct spdk_nvme_ctrlr *ctrlr)
5176 {
5177 	nvme_ctrlr_lock(ctrlr);
5178 	nvme_transport_ctrlr_unmap_cmb(ctrlr);
5179 	nvme_ctrlr_unlock(ctrlr);
5180 }
5181 
5182 int
5183 spdk_nvme_ctrlr_enable_pmr(struct spdk_nvme_ctrlr *ctrlr)
5184 {
5185 	int rc;
5186 
5187 	nvme_ctrlr_lock(ctrlr);
5188 	rc = nvme_transport_ctrlr_enable_pmr(ctrlr);
5189 	nvme_ctrlr_unlock(ctrlr);
5190 
5191 	return rc;
5192 }
5193 
5194 int
5195 spdk_nvme_ctrlr_disable_pmr(struct spdk_nvme_ctrlr *ctrlr)
5196 {
5197 	int rc;
5198 
5199 	nvme_ctrlr_lock(ctrlr);
5200 	rc = nvme_transport_ctrlr_disable_pmr(ctrlr);
5201 	nvme_ctrlr_unlock(ctrlr);
5202 
5203 	return rc;
5204 }
5205 
5206 void *
5207 spdk_nvme_ctrlr_map_pmr(struct spdk_nvme_ctrlr *ctrlr, size_t *size)
5208 {
5209 	void *buf;
5210 
5211 	nvme_ctrlr_lock(ctrlr);
5212 	buf = nvme_transport_ctrlr_map_pmr(ctrlr, size);
5213 	nvme_ctrlr_unlock(ctrlr);
5214 
5215 	return buf;
5216 }
5217 
5218 int
5219 spdk_nvme_ctrlr_unmap_pmr(struct spdk_nvme_ctrlr *ctrlr)
5220 {
5221 	int rc;
5222 
5223 	nvme_ctrlr_lock(ctrlr);
5224 	rc = nvme_transport_ctrlr_unmap_pmr(ctrlr);
5225 	nvme_ctrlr_unlock(ctrlr);
5226 
5227 	return rc;
5228 }
5229 
5230 int
5231 spdk_nvme_ctrlr_read_boot_partition_start(struct spdk_nvme_ctrlr *ctrlr, void *payload,
5232 		uint32_t bprsz, uint32_t bprof, uint32_t bpid)
5233 {
5234 	union spdk_nvme_bprsel_register bprsel;
5235 	union spdk_nvme_bpinfo_register bpinfo;
5236 	uint64_t bpmbl, bpmb_size;
5237 
5238 	if (ctrlr->cap.bits.bps == 0) {
5239 		return -ENOTSUP;
5240 	}
5241 
5242 	if (nvme_ctrlr_get_bpinfo(ctrlr, &bpinfo)) {
5243 		NVME_CTRLR_ERRLOG(ctrlr, "get bpinfo failed\n");
5244 		return -EIO;
5245 	}
5246 
5247 	if (bpinfo.bits.brs == SPDK_NVME_BRS_READ_IN_PROGRESS) {
5248 		NVME_CTRLR_ERRLOG(ctrlr, "Boot Partition read already initiated\n");
5249 		return -EALREADY;
5250 	}
5251 
5252 	nvme_ctrlr_lock(ctrlr);
5253 
5254 	bpmb_size = bprsz * 4096;
5255 	bpmbl = spdk_vtophys(payload, &bpmb_size);
5256 	if (bpmbl == SPDK_VTOPHYS_ERROR) {
5257 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_vtophys of bpmbl failed\n");
5258 		nvme_ctrlr_unlock(ctrlr);
5259 		return -EFAULT;
5260 	}
5261 
5262 	if (bpmb_size != bprsz * 4096) {
5263 		NVME_CTRLR_ERRLOG(ctrlr, "Boot Partition buffer is not physically contiguous\n");
5264 		nvme_ctrlr_unlock(ctrlr);
5265 		return -EFAULT;
5266 	}
5267 
5268 	if (nvme_ctrlr_set_bpmbl(ctrlr, bpmbl)) {
5269 		NVME_CTRLR_ERRLOG(ctrlr, "set_bpmbl() failed\n");
5270 		nvme_ctrlr_unlock(ctrlr);
5271 		return -EIO;
5272 	}
5273 
5274 	bprsel.bits.bpid = bpid;
5275 	bprsel.bits.bprof = bprof;
5276 	bprsel.bits.bprsz = bprsz;
5277 
5278 	if (nvme_ctrlr_set_bprsel(ctrlr, &bprsel)) {
5279 		NVME_CTRLR_ERRLOG(ctrlr, "set_bprsel() failed\n");
5280 		nvme_ctrlr_unlock(ctrlr);
5281 		return -EIO;
5282 	}
5283 
5284 	nvme_ctrlr_unlock(ctrlr);
5285 	return 0;
5286 }
5287 
5288 int
5289 spdk_nvme_ctrlr_read_boot_partition_poll(struct spdk_nvme_ctrlr *ctrlr)
5290 {
5291 	int rc = 0;
5292 	union spdk_nvme_bpinfo_register bpinfo;
5293 
5294 	if (nvme_ctrlr_get_bpinfo(ctrlr, &bpinfo)) {
5295 		NVME_CTRLR_ERRLOG(ctrlr, "get bpinfo failed\n");
5296 		return -EIO;
5297 	}
5298 
5299 	switch (bpinfo.bits.brs) {
5300 	case SPDK_NVME_BRS_NO_READ:
5301 		NVME_CTRLR_ERRLOG(ctrlr, "Boot Partition read not initiated\n");
5302 		rc = -EINVAL;
5303 		break;
5304 	case SPDK_NVME_BRS_READ_IN_PROGRESS:
5305 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition read in progress\n");
5306 		rc = -EAGAIN;
5307 		break;
5308 	case SPDK_NVME_BRS_READ_ERROR:
5309 		NVME_CTRLR_ERRLOG(ctrlr, "Error completing Boot Partition read\n");
5310 		rc = -EIO;
5311 		break;
5312 	case SPDK_NVME_BRS_READ_SUCCESS:
5313 		NVME_CTRLR_INFOLOG(ctrlr, "Boot Partition read completed successfully\n");
5314 		break;
5315 	default:
5316 		NVME_CTRLR_ERRLOG(ctrlr, "Invalid Boot Partition read status\n");
5317 		rc = -EINVAL;
5318 	}
5319 
5320 	return rc;
5321 }
5322 
5323 static void
5324 nvme_write_boot_partition_cb(void *arg, const struct spdk_nvme_cpl *cpl)
5325 {
5326 	int res;
5327 	struct spdk_nvme_ctrlr *ctrlr = arg;
5328 	struct spdk_nvme_fw_commit fw_commit;
5329 	struct spdk_nvme_cpl err_cpl =
5330 	{.status = {.sct = SPDK_NVME_SCT_GENERIC, .sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR }};
5331 
5332 	if (spdk_nvme_cpl_is_error(cpl)) {
5333 		NVME_CTRLR_ERRLOG(ctrlr, "Write Boot Partition failed\n");
5334 		ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, cpl);
5335 		return;
5336 	}
5337 
5338 	if (ctrlr->bp_ws == SPDK_NVME_BP_WS_DOWNLOADING) {
5339 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Downloading at Offset %d Success\n", ctrlr->fw_offset);
5340 		ctrlr->fw_payload = (uint8_t *)ctrlr->fw_payload + ctrlr->fw_transfer_size;
5341 		ctrlr->fw_offset += ctrlr->fw_transfer_size;
5342 		ctrlr->fw_size_remaining -= ctrlr->fw_transfer_size;
5343 		ctrlr->fw_transfer_size = spdk_min(ctrlr->fw_size_remaining, ctrlr->min_page_size);
5344 		res = nvme_ctrlr_cmd_fw_image_download(ctrlr, ctrlr->fw_transfer_size, ctrlr->fw_offset,
5345 						       ctrlr->fw_payload, nvme_write_boot_partition_cb, ctrlr);
5346 		if (res) {
5347 			NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_image_download failed!\n");
5348 			ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5349 			return;
5350 		}
5351 
5352 		if (ctrlr->fw_transfer_size < ctrlr->min_page_size) {
5353 			ctrlr->bp_ws = SPDK_NVME_BP_WS_DOWNLOADED;
5354 		}
5355 	} else if (ctrlr->bp_ws == SPDK_NVME_BP_WS_DOWNLOADED) {
5356 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Download Success\n");
5357 		memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit));
5358 		fw_commit.bpid = ctrlr->bpid;
5359 		fw_commit.ca = SPDK_NVME_FW_COMMIT_REPLACE_BOOT_PARTITION;
5360 		res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit,
5361 					       nvme_write_boot_partition_cb, ctrlr);
5362 		if (res) {
5363 			NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_commit failed!\n");
5364 			NVME_CTRLR_ERRLOG(ctrlr, "commit action: %d\n", fw_commit.ca);
5365 			ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5366 			return;
5367 		}
5368 
5369 		ctrlr->bp_ws = SPDK_NVME_BP_WS_REPLACE;
5370 	} else if (ctrlr->bp_ws == SPDK_NVME_BP_WS_REPLACE) {
5371 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Replacement Success\n");
5372 		memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit));
5373 		fw_commit.bpid = ctrlr->bpid;
5374 		fw_commit.ca = SPDK_NVME_FW_COMMIT_ACTIVATE_BOOT_PARTITION;
5375 		res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit,
5376 					       nvme_write_boot_partition_cb, ctrlr);
5377 		if (res) {
5378 			NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_commit failed!\n");
5379 			NVME_CTRLR_ERRLOG(ctrlr, "commit action: %d\n", fw_commit.ca);
5380 			ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5381 			return;
5382 		}
5383 
5384 		ctrlr->bp_ws = SPDK_NVME_BP_WS_ACTIVATE;
5385 	} else if (ctrlr->bp_ws == SPDK_NVME_BP_WS_ACTIVATE) {
5386 		NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Activation Success\n");
5387 		ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, cpl);
5388 	} else {
5389 		NVME_CTRLR_ERRLOG(ctrlr, "Invalid Boot Partition write state\n");
5390 		ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
5391 		return;
5392 	}
5393 }
5394 
5395 int
5396 spdk_nvme_ctrlr_write_boot_partition(struct spdk_nvme_ctrlr *ctrlr,
5397 				     void *payload, uint32_t size, uint32_t bpid,
5398 				     spdk_nvme_cmd_cb cb_fn, void *cb_arg)
5399 {
5400 	int res;
5401 
5402 	if (ctrlr->cap.bits.bps == 0) {
5403 		return -ENOTSUP;
5404 	}
5405 
5406 	ctrlr->bp_ws = SPDK_NVME_BP_WS_DOWNLOADING;
5407 	ctrlr->bpid = bpid;
5408 	ctrlr->bp_write_cb_fn = cb_fn;
5409 	ctrlr->bp_write_cb_arg = cb_arg;
5410 	ctrlr->fw_offset = 0;
5411 	ctrlr->fw_size_remaining = size;
5412 	ctrlr->fw_payload = payload;
5413 	ctrlr->fw_transfer_size = spdk_min(ctrlr->fw_size_remaining, ctrlr->min_page_size);
5414 
5415 	res = nvme_ctrlr_cmd_fw_image_download(ctrlr, ctrlr->fw_transfer_size, ctrlr->fw_offset,
5416 					       ctrlr->fw_payload, nvme_write_boot_partition_cb, ctrlr);
5417 
5418 	return res;
5419 }
5420 
5421 bool
5422 spdk_nvme_ctrlr_is_discovery(struct spdk_nvme_ctrlr *ctrlr)
5423 {
5424 	assert(ctrlr);
5425 
5426 	return !strncmp(ctrlr->trid.subnqn, SPDK_NVMF_DISCOVERY_NQN,
5427 			strlen(SPDK_NVMF_DISCOVERY_NQN));
5428 }
5429 
5430 bool
5431 spdk_nvme_ctrlr_is_fabrics(struct spdk_nvme_ctrlr *ctrlr)
5432 {
5433 	assert(ctrlr);
5434 
5435 	return spdk_nvme_trtype_is_fabrics(ctrlr->trid.trtype);
5436 }
5437 
5438 int
5439 spdk_nvme_ctrlr_security_receive(struct spdk_nvme_ctrlr *ctrlr, uint8_t secp,
5440 				 uint16_t spsp, uint8_t nssf, void *payload, size_t size)
5441 {
5442 	struct nvme_completion_poll_status	*status;
5443 	int					res;
5444 
5445 	status = calloc(1, sizeof(*status));
5446 	if (!status) {
5447 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
5448 		return -ENOMEM;
5449 	}
5450 
5451 	res = spdk_nvme_ctrlr_cmd_security_receive(ctrlr, secp, spsp, nssf, payload, size,
5452 			nvme_completion_poll_cb, status);
5453 	if (res) {
5454 		free(status);
5455 		return res;
5456 	}
5457 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
5458 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_cmd_security_receive failed!\n");
5459 		if (!status->timed_out) {
5460 			free(status);
5461 		}
5462 		return -ENXIO;
5463 	}
5464 	free(status);
5465 
5466 	return 0;
5467 }
5468 
5469 int
5470 spdk_nvme_ctrlr_security_send(struct spdk_nvme_ctrlr *ctrlr, uint8_t secp,
5471 			      uint16_t spsp, uint8_t nssf, void *payload, size_t size)
5472 {
5473 	struct nvme_completion_poll_status	*status;
5474 	int					res;
5475 
5476 	status = calloc(1, sizeof(*status));
5477 	if (!status) {
5478 		NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
5479 		return -ENOMEM;
5480 	}
5481 
5482 	res = spdk_nvme_ctrlr_cmd_security_send(ctrlr, secp, spsp, nssf, payload, size,
5483 						nvme_completion_poll_cb,
5484 						status);
5485 	if (res) {
5486 		free(status);
5487 		return res;
5488 	}
5489 	if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
5490 		NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_cmd_security_send failed!\n");
5491 		if (!status->timed_out) {
5492 			free(status);
5493 		}
5494 		return -ENXIO;
5495 	}
5496 
5497 	free(status);
5498 
5499 	return 0;
5500 }
5501 
5502 uint64_t
5503 spdk_nvme_ctrlr_get_flags(struct spdk_nvme_ctrlr *ctrlr)
5504 {
5505 	return ctrlr->flags;
5506 }
5507 
5508 const struct spdk_nvme_transport_id *
5509 spdk_nvme_ctrlr_get_transport_id(struct spdk_nvme_ctrlr *ctrlr)
5510 {
5511 	return &ctrlr->trid;
5512 }
5513 
5514 int32_t
5515 spdk_nvme_ctrlr_alloc_qid(struct spdk_nvme_ctrlr *ctrlr)
5516 {
5517 	uint32_t qid;
5518 
5519 	assert(ctrlr->free_io_qids);
5520 	nvme_ctrlr_lock(ctrlr);
5521 	qid = spdk_bit_array_find_first_set(ctrlr->free_io_qids, 1);
5522 	if (qid > ctrlr->opts.num_io_queues) {
5523 		NVME_CTRLR_ERRLOG(ctrlr, "No free I/O queue IDs\n");
5524 		nvme_ctrlr_unlock(ctrlr);
5525 		return -1;
5526 	}
5527 
5528 	spdk_bit_array_clear(ctrlr->free_io_qids, qid);
5529 	nvme_ctrlr_unlock(ctrlr);
5530 	return qid;
5531 }
5532 
5533 void
5534 spdk_nvme_ctrlr_free_qid(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid)
5535 {
5536 	assert(qid <= ctrlr->opts.num_io_queues);
5537 
5538 	nvme_ctrlr_lock(ctrlr);
5539 
5540 	if (spdk_likely(ctrlr->free_io_qids)) {
5541 		spdk_bit_array_set(ctrlr->free_io_qids, qid);
5542 	}
5543 
5544 	nvme_ctrlr_unlock(ctrlr);
5545 }
5546 
5547 int
5548 spdk_nvme_ctrlr_get_memory_domains(const struct spdk_nvme_ctrlr *ctrlr,
5549 				   struct spdk_memory_domain **domains, int array_size)
5550 {
5551 	return nvme_transport_ctrlr_get_memory_domains(ctrlr, domains, array_size);
5552 }
5553 
5554 int
5555 spdk_nvme_ctrlr_authenticate(struct spdk_nvme_ctrlr *ctrlr,
5556 			     spdk_nvme_authenticate_cb cb_fn, void *cb_ctx)
5557 {
5558 	return spdk_nvme_qpair_authenticate(ctrlr->adminq, cb_fn, cb_ctx);
5559 }
5560