1 /* $NetBSD: nouveau_nvkm_subdev_mmu_vmm.c,v 1.4 2021/12/19 11:34:46 riastradh Exp $ */
2
3 /*
4 * Copyright 2017 Red Hat Inc.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: nouveau_nvkm_subdev_mmu_vmm.c,v 1.4 2021/12/19 11:34:46 riastradh Exp $");
26
27 #define NVKM_VMM_LEVELS_MAX 5
28 #include "vmm.h"
29
30 #include <subdev/fb.h>
31
32 #include <linux/nbsd-namespace.h>
33
34 static void
nvkm_vmm_pt_del(struct nvkm_vmm_pt ** ppgt)35 nvkm_vmm_pt_del(struct nvkm_vmm_pt **ppgt)
36 {
37 struct nvkm_vmm_pt *pgt = *ppgt;
38 if (pgt) {
39 kvfree(pgt->pde);
40 kfree(pgt);
41 *ppgt = NULL;
42 }
43 }
44
45
46 static struct nvkm_vmm_pt *
nvkm_vmm_pt_new(const struct nvkm_vmm_desc * desc,bool sparse,const struct nvkm_vmm_page * page)47 nvkm_vmm_pt_new(const struct nvkm_vmm_desc *desc, bool sparse,
48 const struct nvkm_vmm_page *page)
49 {
50 const u32 pten = 1 << desc->bits;
51 struct nvkm_vmm_pt *pgt;
52 u32 lpte = 0;
53
54 if (desc->type > PGT) {
55 if (desc->type == SPT) {
56 const struct nvkm_vmm_desc *pair = page[-1].desc;
57 lpte = pten >> (desc->bits - pair->bits);
58 } else {
59 lpte = pten;
60 }
61 }
62
63 if (!(pgt = kzalloc(sizeof(*pgt) + lpte, GFP_KERNEL)))
64 return NULL;
65 pgt->page = page ? page->shift : 0;
66 pgt->sparse = sparse;
67
68 if (desc->type == PGD) {
69 pgt->pde = kvcalloc(pten, sizeof(*pgt->pde), GFP_KERNEL);
70 if (!pgt->pde) {
71 kfree(pgt);
72 return NULL;
73 }
74 }
75
76 return pgt;
77 }
78
79 struct nvkm_vmm_iter {
80 const struct nvkm_vmm_page *page;
81 const struct nvkm_vmm_desc *desc;
82 struct nvkm_vmm *vmm;
83 u64 cnt;
84 u16 max, lvl;
85 u32 pte[NVKM_VMM_LEVELS_MAX];
86 struct nvkm_vmm_pt *pt[NVKM_VMM_LEVELS_MAX];
87 int flush;
88 };
89
90 #ifdef CONFIG_NOUVEAU_DEBUG_MMU
91 static const char *
nvkm_vmm_desc_type(const struct nvkm_vmm_desc * desc)92 nvkm_vmm_desc_type(const struct nvkm_vmm_desc *desc)
93 {
94 switch (desc->type) {
95 case PGD: return "PGD";
96 case PGT: return "PGT";
97 case SPT: return "SPT";
98 case LPT: return "LPT";
99 default:
100 return "UNKNOWN";
101 }
102 }
103
104 static void
nvkm_vmm_trace(struct nvkm_vmm_iter * it,char * buf)105 nvkm_vmm_trace(struct nvkm_vmm_iter *it, char *buf)
106 {
107 int lvl;
108 for (lvl = it->max; lvl >= 0; lvl--) {
109 if (lvl >= it->lvl)
110 buf += sprintf(buf, "%05x:", it->pte[lvl]);
111 else
112 buf += sprintf(buf, "xxxxx:");
113 }
114 }
115
116 #define TRA(i,f,a...) do { \
117 char _buf[NVKM_VMM_LEVELS_MAX * 7]; \
118 struct nvkm_vmm_iter *_it = (i); \
119 nvkm_vmm_trace(_it, _buf); \
120 VMM_TRACE(_it->vmm, "%s "f, _buf, ##a); \
121 } while(0)
122 #else
123 #define TRA(i,f,a...)
124 #endif
125
126 static inline void
nvkm_vmm_flush_mark(struct nvkm_vmm_iter * it)127 nvkm_vmm_flush_mark(struct nvkm_vmm_iter *it)
128 {
129 it->flush = min(it->flush, it->max - it->lvl);
130 }
131
132 static inline void
nvkm_vmm_flush(struct nvkm_vmm_iter * it)133 nvkm_vmm_flush(struct nvkm_vmm_iter *it)
134 {
135 if (it->flush != NVKM_VMM_LEVELS_MAX) {
136 if (it->vmm->func->flush) {
137 TRA(it, "flush: %d", it->flush);
138 it->vmm->func->flush(it->vmm, it->flush);
139 }
140 it->flush = NVKM_VMM_LEVELS_MAX;
141 }
142 }
143
144 static void
nvkm_vmm_unref_pdes(struct nvkm_vmm_iter * it)145 nvkm_vmm_unref_pdes(struct nvkm_vmm_iter *it)
146 {
147 const struct nvkm_vmm_desc *desc = it->desc;
148 const int type = desc[it->lvl].type == SPT;
149 struct nvkm_vmm_pt *pgd = it->pt[it->lvl + 1];
150 struct nvkm_vmm_pt *pgt = it->pt[it->lvl];
151 struct nvkm_mmu_pt *pt = pgt->pt[type];
152 struct nvkm_vmm *vmm = it->vmm;
153 u32 pdei = it->pte[it->lvl + 1];
154
155 /* Recurse up the tree, unreferencing/destroying unneeded PDs. */
156 it->lvl++;
157 if (--pgd->refs[0]) {
158 const struct nvkm_vmm_desc_func *func = desc[it->lvl].func;
159 /* PD has other valid PDEs, so we need a proper update. */
160 TRA(it, "PDE unmap %s", nvkm_vmm_desc_type(&desc[it->lvl - 1]));
161 pgt->pt[type] = NULL;
162 if (!pgt->refs[!type]) {
163 /* PDE no longer required. */
164 if (pgd->pt[0]) {
165 if (pgt->sparse) {
166 func->sparse(vmm, pgd->pt[0], pdei, 1);
167 pgd->pde[pdei] = NVKM_VMM_PDE_SPARSE;
168 } else {
169 func->unmap(vmm, pgd->pt[0], pdei, 1);
170 pgd->pde[pdei] = NULL;
171 }
172 } else {
173 /* Special handling for Tesla-class GPUs,
174 * where there's no central PD, but each
175 * instance has its own embedded PD.
176 */
177 func->pde(vmm, pgd, pdei);
178 pgd->pde[pdei] = NULL;
179 }
180 } else {
181 /* PDE was pointing at dual-PTs and we're removing
182 * one of them, leaving the other in place.
183 */
184 func->pde(vmm, pgd, pdei);
185 }
186
187 /* GPU may have cached the PTs, flush before freeing. */
188 nvkm_vmm_flush_mark(it);
189 nvkm_vmm_flush(it);
190 } else {
191 /* PD has no valid PDEs left, so we can just destroy it. */
192 nvkm_vmm_unref_pdes(it);
193 }
194
195 /* Destroy PD/PT. */
196 TRA(it, "PDE free %s", nvkm_vmm_desc_type(&desc[it->lvl - 1]));
197 nvkm_mmu_ptc_put(vmm->mmu, vmm->bootstrapped, &pt);
198 if (!pgt->refs[!type])
199 nvkm_vmm_pt_del(&pgt);
200 it->lvl--;
201 }
202
203 static void
nvkm_vmm_unref_sptes(struct nvkm_vmm_iter * it,struct nvkm_vmm_pt * pgt,const struct nvkm_vmm_desc * desc,u32 ptei,u32 ptes)204 nvkm_vmm_unref_sptes(struct nvkm_vmm_iter *it, struct nvkm_vmm_pt *pgt,
205 const struct nvkm_vmm_desc *desc, u32 ptei, u32 ptes)
206 {
207 const struct nvkm_vmm_desc *pair = it->page[-1].desc;
208 const u32 sptb = desc->bits - pair->bits;
209 const u32 sptn = 1 << sptb;
210 struct nvkm_vmm *vmm = it->vmm;
211 u32 spti = ptei & (sptn - 1), lpti, pteb;
212
213 /* Determine how many SPTEs are being touched under each LPTE,
214 * and drop reference counts.
215 */
216 for (lpti = ptei >> sptb; ptes; spti = 0, lpti++) {
217 const u32 pten = min(sptn - spti, ptes);
218 pgt->pte[lpti] -= pten;
219 ptes -= pten;
220 }
221
222 /* We're done here if there's no corresponding LPT. */
223 if (!pgt->refs[0])
224 return;
225
226 for (ptei = pteb = ptei >> sptb; ptei < lpti; pteb = ptei) {
227 /* Skip over any LPTEs that still have valid SPTEs. */
228 if (pgt->pte[pteb] & NVKM_VMM_PTE_SPTES) {
229 for (ptes = 1, ptei++; ptei < lpti; ptes++, ptei++) {
230 if (!(pgt->pte[ptei] & NVKM_VMM_PTE_SPTES))
231 break;
232 }
233 continue;
234 }
235
236 /* As there's no more non-UNMAPPED SPTEs left in the range
237 * covered by a number of LPTEs, the LPTEs once again take
238 * control over their address range.
239 *
240 * Determine how many LPTEs need to transition state.
241 */
242 pgt->pte[ptei] &= ~NVKM_VMM_PTE_VALID;
243 for (ptes = 1, ptei++; ptei < lpti; ptes++, ptei++) {
244 if (pgt->pte[ptei] & NVKM_VMM_PTE_SPTES)
245 break;
246 pgt->pte[ptei] &= ~NVKM_VMM_PTE_VALID;
247 }
248
249 if (pgt->pte[pteb] & NVKM_VMM_PTE_SPARSE) {
250 TRA(it, "LPTE %05x: U -> S %d PTEs", pteb, ptes);
251 pair->func->sparse(vmm, pgt->pt[0], pteb, ptes);
252 } else
253 if (pair->func->invalid) {
254 /* If the MMU supports it, restore the LPTE to the
255 * INVALID state to tell the MMU there is no point
256 * trying to fetch the corresponding SPTEs.
257 */
258 TRA(it, "LPTE %05x: U -> I %d PTEs", pteb, ptes);
259 pair->func->invalid(vmm, pgt->pt[0], pteb, ptes);
260 }
261 }
262 }
263
264 static bool
nvkm_vmm_unref_ptes(struct nvkm_vmm_iter * it,bool pfn,u32 ptei,u32 ptes)265 nvkm_vmm_unref_ptes(struct nvkm_vmm_iter *it, bool pfn, u32 ptei, u32 ptes)
266 {
267 const struct nvkm_vmm_desc *desc = it->desc;
268 const int type = desc->type == SPT;
269 struct nvkm_vmm_pt *pgt = it->pt[0];
270 bool dma;
271
272 if (pfn) {
273 /* Need to clear PTE valid bits before we dma_unmap_page(). */
274 dma = desc->func->pfn_clear(it->vmm, pgt->pt[type], ptei, ptes);
275 if (dma) {
276 /* GPU may have cached the PT, flush before unmap. */
277 nvkm_vmm_flush_mark(it);
278 nvkm_vmm_flush(it);
279 desc->func->pfn_unmap(it->vmm, pgt->pt[type], ptei, ptes);
280 }
281 }
282
283 /* Drop PTE references. */
284 pgt->refs[type] -= ptes;
285
286 /* Dual-PTs need special handling, unless PDE becoming invalid. */
287 if (desc->type == SPT && (pgt->refs[0] || pgt->refs[1]))
288 nvkm_vmm_unref_sptes(it, pgt, desc, ptei, ptes);
289
290 /* PT no longer neeed? Destroy it. */
291 if (!pgt->refs[type]) {
292 it->lvl++;
293 TRA(it, "%s empty", nvkm_vmm_desc_type(desc));
294 it->lvl--;
295 nvkm_vmm_unref_pdes(it);
296 return false; /* PTE writes for unmap() not necessary. */
297 }
298
299 return true;
300 }
301
302 static void
nvkm_vmm_ref_sptes(struct nvkm_vmm_iter * it,struct nvkm_vmm_pt * pgt,const struct nvkm_vmm_desc * desc,u32 ptei,u32 ptes)303 nvkm_vmm_ref_sptes(struct nvkm_vmm_iter *it, struct nvkm_vmm_pt *pgt,
304 const struct nvkm_vmm_desc *desc, u32 ptei, u32 ptes)
305 {
306 const struct nvkm_vmm_desc *pair = it->page[-1].desc;
307 const u32 sptb = desc->bits - pair->bits;
308 const u32 sptn = 1 << sptb;
309 struct nvkm_vmm *vmm = it->vmm;
310 u32 spti = ptei & (sptn - 1), lpti, pteb;
311
312 /* Determine how many SPTEs are being touched under each LPTE,
313 * and increase reference counts.
314 */
315 for (lpti = ptei >> sptb; ptes; spti = 0, lpti++) {
316 const u32 pten = min(sptn - spti, ptes);
317 pgt->pte[lpti] += pten;
318 ptes -= pten;
319 }
320
321 /* We're done here if there's no corresponding LPT. */
322 if (!pgt->refs[0])
323 return;
324
325 for (ptei = pteb = ptei >> sptb; ptei < lpti; pteb = ptei) {
326 /* Skip over any LPTEs that already have valid SPTEs. */
327 if (pgt->pte[pteb] & NVKM_VMM_PTE_VALID) {
328 for (ptes = 1, ptei++; ptei < lpti; ptes++, ptei++) {
329 if (!(pgt->pte[ptei] & NVKM_VMM_PTE_VALID))
330 break;
331 }
332 continue;
333 }
334
335 /* As there are now non-UNMAPPED SPTEs in the range covered
336 * by a number of LPTEs, we need to transfer control of the
337 * address range to the SPTEs.
338 *
339 * Determine how many LPTEs need to transition state.
340 */
341 pgt->pte[ptei] |= NVKM_VMM_PTE_VALID;
342 for (ptes = 1, ptei++; ptei < lpti; ptes++, ptei++) {
343 if (pgt->pte[ptei] & NVKM_VMM_PTE_VALID)
344 break;
345 pgt->pte[ptei] |= NVKM_VMM_PTE_VALID;
346 }
347
348 if (pgt->pte[pteb] & NVKM_VMM_PTE_SPARSE) {
349 const u32 spti = pteb * sptn;
350 const u32 sptc = ptes * sptn;
351 /* The entire LPTE is marked as sparse, we need
352 * to make sure that the SPTEs are too.
353 */
354 TRA(it, "SPTE %05x: U -> S %d PTEs", spti, sptc);
355 desc->func->sparse(vmm, pgt->pt[1], spti, sptc);
356 /* Sparse LPTEs prevent SPTEs from being accessed. */
357 TRA(it, "LPTE %05x: S -> U %d PTEs", pteb, ptes);
358 pair->func->unmap(vmm, pgt->pt[0], pteb, ptes);
359 } else
360 if (pair->func->invalid) {
361 /* MMU supports blocking SPTEs by marking an LPTE
362 * as INVALID. We need to reverse that here.
363 */
364 TRA(it, "LPTE %05x: I -> U %d PTEs", pteb, ptes);
365 pair->func->unmap(vmm, pgt->pt[0], pteb, ptes);
366 }
367 }
368 }
369
370 static bool
nvkm_vmm_ref_ptes(struct nvkm_vmm_iter * it,bool pfn,u32 ptei,u32 ptes)371 nvkm_vmm_ref_ptes(struct nvkm_vmm_iter *it, bool pfn, u32 ptei, u32 ptes)
372 {
373 const struct nvkm_vmm_desc *desc = it->desc;
374 const int type = desc->type == SPT;
375 struct nvkm_vmm_pt *pgt = it->pt[0];
376
377 /* Take PTE references. */
378 pgt->refs[type] += ptes;
379
380 /* Dual-PTs need special handling. */
381 if (desc->type == SPT)
382 nvkm_vmm_ref_sptes(it, pgt, desc, ptei, ptes);
383
384 return true;
385 }
386
387 static void
nvkm_vmm_sparse_ptes(const struct nvkm_vmm_desc * desc,struct nvkm_vmm_pt * pgt,u32 ptei,u32 ptes)388 nvkm_vmm_sparse_ptes(const struct nvkm_vmm_desc *desc,
389 struct nvkm_vmm_pt *pgt, u32 ptei, u32 ptes)
390 {
391 if (desc->type == PGD) {
392 while (ptes--)
393 pgt->pde[ptei++] = NVKM_VMM_PDE_SPARSE;
394 } else
395 if (desc->type == LPT) {
396 memset(&pgt->pte[ptei], NVKM_VMM_PTE_SPARSE, ptes);
397 }
398 }
399
400 static bool
nvkm_vmm_sparse_unref_ptes(struct nvkm_vmm_iter * it,bool pfn,u32 ptei,u32 ptes)401 nvkm_vmm_sparse_unref_ptes(struct nvkm_vmm_iter *it, bool pfn, u32 ptei, u32 ptes)
402 {
403 struct nvkm_vmm_pt *pt = it->pt[0];
404 if (it->desc->type == PGD)
405 memset(&pt->pde[ptei], 0x00, sizeof(pt->pde[0]) * ptes);
406 else
407 if (it->desc->type == LPT)
408 memset(&pt->pte[ptei], 0x00, sizeof(pt->pte[0]) * ptes);
409 return nvkm_vmm_unref_ptes(it, pfn, ptei, ptes);
410 }
411
412 static bool
nvkm_vmm_sparse_ref_ptes(struct nvkm_vmm_iter * it,bool pfn,u32 ptei,u32 ptes)413 nvkm_vmm_sparse_ref_ptes(struct nvkm_vmm_iter *it, bool pfn, u32 ptei, u32 ptes)
414 {
415 nvkm_vmm_sparse_ptes(it->desc, it->pt[0], ptei, ptes);
416 return nvkm_vmm_ref_ptes(it, pfn, ptei, ptes);
417 }
418
419 static bool
nvkm_vmm_ref_hwpt(struct nvkm_vmm_iter * it,struct nvkm_vmm_pt * pgd,u32 pdei)420 nvkm_vmm_ref_hwpt(struct nvkm_vmm_iter *it, struct nvkm_vmm_pt *pgd, u32 pdei)
421 {
422 const struct nvkm_vmm_desc *desc = &it->desc[it->lvl - 1];
423 const int type = desc->type == SPT;
424 struct nvkm_vmm_pt *pgt = pgd->pde[pdei];
425 const bool zero = !pgt->sparse && !desc->func->invalid;
426 struct nvkm_vmm *vmm = it->vmm;
427 struct nvkm_mmu *mmu = vmm->mmu;
428 struct nvkm_mmu_pt *pt;
429 u32 pten = 1 << desc->bits;
430 u32 pteb, ptei, ptes;
431 u32 size = desc->size * pten;
432
433 pgd->refs[0]++;
434
435 pgt->pt[type] = nvkm_mmu_ptc_get(mmu, size, desc->align, zero);
436 if (!pgt->pt[type]) {
437 it->lvl--;
438 nvkm_vmm_unref_pdes(it);
439 return false;
440 }
441
442 if (zero)
443 goto done;
444
445 pt = pgt->pt[type];
446
447 if (desc->type == LPT && pgt->refs[1]) {
448 /* SPT already exists covering the same range as this LPT,
449 * which means we need to be careful that any LPTEs which
450 * overlap valid SPTEs are unmapped as opposed to invalid
451 * or sparse, which would prevent the MMU from looking at
452 * the SPTEs on some GPUs.
453 */
454 for (ptei = pteb = 0; ptei < pten; pteb = ptei) {
455 bool spte = pgt->pte[ptei] & NVKM_VMM_PTE_SPTES;
456 for (ptes = 1, ptei++; ptei < pten; ptes++, ptei++) {
457 bool next = pgt->pte[ptei] & NVKM_VMM_PTE_SPTES;
458 if (spte != next)
459 break;
460 }
461
462 if (!spte) {
463 if (pgt->sparse)
464 desc->func->sparse(vmm, pt, pteb, ptes);
465 else
466 desc->func->invalid(vmm, pt, pteb, ptes);
467 memset(&pgt->pte[pteb], 0x00, ptes);
468 } else {
469 desc->func->unmap(vmm, pt, pteb, ptes);
470 while (ptes--)
471 pgt->pte[pteb++] |= NVKM_VMM_PTE_VALID;
472 }
473 }
474 } else {
475 if (pgt->sparse) {
476 nvkm_vmm_sparse_ptes(desc, pgt, 0, pten);
477 desc->func->sparse(vmm, pt, 0, pten);
478 } else {
479 desc->func->invalid(vmm, pt, 0, pten);
480 }
481 }
482
483 done:
484 TRA(it, "PDE write %s", nvkm_vmm_desc_type(desc));
485 it->desc[it->lvl].func->pde(it->vmm, pgd, pdei);
486 nvkm_vmm_flush_mark(it);
487 return true;
488 }
489
490 static bool
nvkm_vmm_ref_swpt(struct nvkm_vmm_iter * it,struct nvkm_vmm_pt * pgd,u32 pdei)491 nvkm_vmm_ref_swpt(struct nvkm_vmm_iter *it, struct nvkm_vmm_pt *pgd, u32 pdei)
492 {
493 const struct nvkm_vmm_desc *desc = &it->desc[it->lvl - 1];
494 struct nvkm_vmm_pt *pgt = pgd->pde[pdei];
495
496 pgt = nvkm_vmm_pt_new(desc, NVKM_VMM_PDE_SPARSED(pgt), it->page);
497 if (!pgt) {
498 if (!pgd->refs[0])
499 nvkm_vmm_unref_pdes(it);
500 return false;
501 }
502
503 pgd->pde[pdei] = pgt;
504 return true;
505 }
506
507 static inline u64
nvkm_vmm_iter(struct nvkm_vmm * vmm,const struct nvkm_vmm_page * page,u64 addr,u64 size,const char * name,bool ref,bool pfn,bool (* REF_PTES)(struct nvkm_vmm_iter *,bool pfn,u32,u32),nvkm_vmm_pte_func MAP_PTES,struct nvkm_vmm_map * map,nvkm_vmm_pxe_func CLR_PTES)508 nvkm_vmm_iter(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
509 u64 addr, u64 size, const char *name, bool ref, bool pfn,
510 bool (*REF_PTES)(struct nvkm_vmm_iter *, bool pfn, u32, u32),
511 nvkm_vmm_pte_func MAP_PTES, struct nvkm_vmm_map *map,
512 nvkm_vmm_pxe_func CLR_PTES)
513 {
514 const struct nvkm_vmm_desc *desc = page->desc;
515 struct nvkm_vmm_iter it;
516 u64 bits = addr >> page->shift;
517
518 it.page = page;
519 it.desc = desc;
520 it.vmm = vmm;
521 it.cnt = size >> page->shift;
522 it.flush = NVKM_VMM_LEVELS_MAX;
523
524 /* Deconstruct address into PTE indices for each mapping level. */
525 for (it.lvl = 0; desc[it.lvl].bits; it.lvl++) {
526 it.pte[it.lvl] = bits & ((1 << desc[it.lvl].bits) - 1);
527 bits >>= desc[it.lvl].bits;
528 }
529 it.max = --it.lvl;
530 it.pt[it.max] = vmm->pd;
531
532 it.lvl = 0;
533 TRA(&it, "%s: %016"PRIx64" %016"PRIx64" %d %lld PTEs", name,
534 addr, size, page->shift, it.cnt);
535 it.lvl = it.max;
536
537 /* Depth-first traversal of page tables. */
538 while (it.cnt) {
539 struct nvkm_vmm_pt *pgt = it.pt[it.lvl];
540 const int type = desc->type == SPT;
541 const u32 pten = 1 << desc->bits;
542 const u32 ptei = it.pte[0];
543 const u32 ptes = min_t(u64, it.cnt, pten - ptei);
544
545 /* Walk down the tree, finding page tables for each level. */
546 for (; it.lvl; it.lvl--) {
547 const u32 pdei = it.pte[it.lvl];
548 struct nvkm_vmm_pt *pgd = pgt;
549
550 /* Software PT. */
551 if (ref && NVKM_VMM_PDE_INVALID(pgd->pde[pdei])) {
552 if (!nvkm_vmm_ref_swpt(&it, pgd, pdei))
553 goto fail;
554 }
555 it.pt[it.lvl - 1] = pgt = pgd->pde[pdei];
556
557 /* Hardware PT.
558 *
559 * This is a separate step from above due to GF100 and
560 * newer having dual page tables at some levels, which
561 * are refcounted independently.
562 */
563 if (ref && !pgt->refs[desc[it.lvl - 1].type == SPT]) {
564 if (!nvkm_vmm_ref_hwpt(&it, pgd, pdei))
565 goto fail;
566 }
567 }
568
569 /* Handle PTE updates. */
570 if (!REF_PTES || REF_PTES(&it, pfn, ptei, ptes)) {
571 struct nvkm_mmu_pt *pt = pgt->pt[type];
572 if (MAP_PTES || CLR_PTES) {
573 if (MAP_PTES)
574 MAP_PTES(vmm, pt, ptei, ptes, map);
575 else
576 CLR_PTES(vmm, pt, ptei, ptes);
577 nvkm_vmm_flush_mark(&it);
578 }
579 }
580
581 /* Walk back up the tree to the next position. */
582 it.pte[it.lvl] += ptes;
583 it.cnt -= ptes;
584 if (it.cnt) {
585 while (it.pte[it.lvl] == (1 << desc[it.lvl].bits)) {
586 it.pte[it.lvl++] = 0;
587 it.pte[it.lvl]++;
588 }
589 }
590 };
591
592 nvkm_vmm_flush(&it);
593 return ~0ULL;
594
595 fail:
596 /* Reconstruct the failure address so the caller is able to
597 * reverse any partially completed operations.
598 */
599 addr = it.pte[it.max--];
600 do {
601 addr = addr << desc[it.max].bits;
602 addr |= it.pte[it.max];
603 } while (it.max--);
604
605 return addr << page->shift;
606 }
607
608 static void
nvkm_vmm_ptes_sparse_put(struct nvkm_vmm * vmm,const struct nvkm_vmm_page * page,u64 addr,u64 size)609 nvkm_vmm_ptes_sparse_put(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
610 u64 addr, u64 size)
611 {
612 nvkm_vmm_iter(vmm, page, addr, size, "sparse unref", false, false,
613 nvkm_vmm_sparse_unref_ptes, NULL, NULL,
614 page->desc->func->invalid ?
615 page->desc->func->invalid : page->desc->func->unmap);
616 }
617
618 static int
nvkm_vmm_ptes_sparse_get(struct nvkm_vmm * vmm,const struct nvkm_vmm_page * page,u64 addr,u64 size)619 nvkm_vmm_ptes_sparse_get(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
620 u64 addr, u64 size)
621 {
622 if ((page->type & NVKM_VMM_PAGE_SPARSE)) {
623 u64 fail = nvkm_vmm_iter(vmm, page, addr, size, "sparse ref",
624 true, false, nvkm_vmm_sparse_ref_ptes,
625 NULL, NULL, page->desc->func->sparse);
626 if (fail != ~0ULL) {
627 if ((size = fail - addr))
628 nvkm_vmm_ptes_sparse_put(vmm, page, addr, size);
629 return -ENOMEM;
630 }
631 return 0;
632 }
633 return -EINVAL;
634 }
635
636 static int
nvkm_vmm_ptes_sparse(struct nvkm_vmm * vmm,u64 addr,u64 size,bool ref)637 nvkm_vmm_ptes_sparse(struct nvkm_vmm *vmm, u64 addr, u64 size, bool ref)
638 {
639 const struct nvkm_vmm_page *page = vmm->func->page;
640 int m = 0, i;
641 u64 start = addr;
642 u64 block;
643
644 while (size) {
645 /* Limit maximum page size based on remaining size. */
646 while (size < (1ULL << page[m].shift))
647 m++;
648 i = m;
649
650 /* Find largest page size suitable for alignment. */
651 while (!IS_ALIGNED(addr, 1ULL << page[i].shift))
652 i++;
653
654 /* Determine number of PTEs at this page size. */
655 if (i != m) {
656 /* Limited to alignment boundary of next page size. */
657 u64 next = 1ULL << page[i - 1].shift;
658 u64 part = ALIGN(addr, next) - addr;
659 if (size - part >= next)
660 block = (part >> page[i].shift) << page[i].shift;
661 else
662 block = (size >> page[i].shift) << page[i].shift;
663 } else {
664 block = (size >> page[i].shift) << page[i].shift;
665 }
666
667 /* Perform operation. */
668 if (ref) {
669 int ret = nvkm_vmm_ptes_sparse_get(vmm, &page[i], addr, block);
670 if (ret) {
671 if ((size = addr - start))
672 nvkm_vmm_ptes_sparse(vmm, start, size, false);
673 return ret;
674 }
675 } else {
676 nvkm_vmm_ptes_sparse_put(vmm, &page[i], addr, block);
677 }
678
679 size -= block;
680 addr += block;
681 }
682
683 return 0;
684 }
685
686 static void
nvkm_vmm_ptes_unmap_put(struct nvkm_vmm * vmm,const struct nvkm_vmm_page * page,u64 addr,u64 size,bool sparse,bool pfn)687 nvkm_vmm_ptes_unmap_put(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
688 u64 addr, u64 size, bool sparse, bool pfn)
689 {
690 const struct nvkm_vmm_desc_func *func = page->desc->func;
691 nvkm_vmm_iter(vmm, page, addr, size, "unmap + unref",
692 false, pfn, nvkm_vmm_unref_ptes, NULL, NULL,
693 sparse ? func->sparse : func->invalid ? func->invalid :
694 func->unmap);
695 }
696
697 static int
nvkm_vmm_ptes_get_map(struct nvkm_vmm * vmm,const struct nvkm_vmm_page * page,u64 addr,u64 size,struct nvkm_vmm_map * map,nvkm_vmm_pte_func func)698 nvkm_vmm_ptes_get_map(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
699 u64 addr, u64 size, struct nvkm_vmm_map *map,
700 nvkm_vmm_pte_func func)
701 {
702 u64 fail = nvkm_vmm_iter(vmm, page, addr, size, "ref + map", true,
703 false, nvkm_vmm_ref_ptes, func, map, NULL);
704 if (fail != ~0ULL) {
705 if ((size = fail - addr))
706 nvkm_vmm_ptes_unmap_put(vmm, page, addr, size, false, false);
707 return -ENOMEM;
708 }
709 return 0;
710 }
711
712 static void
nvkm_vmm_ptes_unmap(struct nvkm_vmm * vmm,const struct nvkm_vmm_page * page,u64 addr,u64 size,bool sparse,bool pfn)713 nvkm_vmm_ptes_unmap(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
714 u64 addr, u64 size, bool sparse, bool pfn)
715 {
716 const struct nvkm_vmm_desc_func *func = page->desc->func;
717 nvkm_vmm_iter(vmm, page, addr, size, "unmap", false, pfn,
718 NULL, NULL, NULL,
719 sparse ? func->sparse : func->invalid ? func->invalid :
720 func->unmap);
721 }
722
723 static void
nvkm_vmm_ptes_map(struct nvkm_vmm * vmm,const struct nvkm_vmm_page * page,u64 addr,u64 size,struct nvkm_vmm_map * map,nvkm_vmm_pte_func func)724 nvkm_vmm_ptes_map(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
725 u64 addr, u64 size, struct nvkm_vmm_map *map,
726 nvkm_vmm_pte_func func)
727 {
728 nvkm_vmm_iter(vmm, page, addr, size, "map", false, false,
729 NULL, func, map, NULL);
730 }
731
732 static void
nvkm_vmm_ptes_put(struct nvkm_vmm * vmm,const struct nvkm_vmm_page * page,u64 addr,u64 size)733 nvkm_vmm_ptes_put(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
734 u64 addr, u64 size)
735 {
736 nvkm_vmm_iter(vmm, page, addr, size, "unref", false, false,
737 nvkm_vmm_unref_ptes, NULL, NULL, NULL);
738 }
739
740 static int
nvkm_vmm_ptes_get(struct nvkm_vmm * vmm,const struct nvkm_vmm_page * page,u64 addr,u64 size)741 nvkm_vmm_ptes_get(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
742 u64 addr, u64 size)
743 {
744 u64 fail = nvkm_vmm_iter(vmm, page, addr, size, "ref", true, false,
745 nvkm_vmm_ref_ptes, NULL, NULL, NULL);
746 if (fail != ~0ULL) {
747 if (fail != addr)
748 nvkm_vmm_ptes_put(vmm, page, addr, fail - addr);
749 return -ENOMEM;
750 }
751 return 0;
752 }
753
754 static inline struct nvkm_vma *
nvkm_vma_new(u64 addr,u64 size)755 nvkm_vma_new(u64 addr, u64 size)
756 {
757 struct nvkm_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
758 if (vma) {
759 vma->addr = addr;
760 vma->size = size;
761 vma->page = NVKM_VMA_PAGE_NONE;
762 vma->refd = NVKM_VMA_PAGE_NONE;
763 }
764 return vma;
765 }
766
767 struct nvkm_vma *
nvkm_vma_tail(struct nvkm_vma * vma,u64 tail)768 nvkm_vma_tail(struct nvkm_vma *vma, u64 tail)
769 {
770 struct nvkm_vma *new;
771
772 BUG_ON(vma->size == tail);
773
774 if (!(new = nvkm_vma_new(vma->addr + (vma->size - tail), tail)))
775 return NULL;
776 vma->size -= tail;
777
778 new->mapref = vma->mapref;
779 new->sparse = vma->sparse;
780 new->page = vma->page;
781 new->refd = vma->refd;
782 new->used = vma->used;
783 new->part = vma->part;
784 new->user = vma->user;
785 new->busy = vma->busy;
786 new->mapped = vma->mapped;
787 list_add(&new->head, &vma->head);
788 return new;
789 }
790
791 #ifdef __NetBSD__
792 struct nvkm_vma_key {
793 u64 size;
794 u64 addr;
795 } __packed;
796
797 static int
compare_vma_free_nodes(void * cookie,const void * va,const void * vb)798 compare_vma_free_nodes(void *cookie, const void *va, const void *vb)
799 {
800 const struct nvkm_vma *a = va, *b = vb;
801
802 if (a->size < b->size)
803 return -1;
804 if (a->size > b->size)
805 return +1;
806 if (a->addr < b->addr)
807 return -1;
808 if (a->addr > b->addr)
809 return +1;
810 return 0;
811 }
812
813 static int
compare_vma_free_key(void * cookie,const void * vn,const void * vk)814 compare_vma_free_key(void *cookie, const void *vn, const void *vk)
815 {
816 const struct nvkm_vma *n = vn;
817 const struct nvkm_vma_key *k = vk;
818
819 if (n->size < k->size)
820 return -1;
821 if (n->size > k->size)
822 return +1;
823 if (n->addr < k->addr)
824 return -1;
825 if (n->addr > k->addr)
826 return +1;
827 return 0;
828 }
829
830 static const rb_tree_ops_t vmm_free_rb_ops = {
831 .rbto_compare_nodes = compare_vma_free_nodes,
832 .rbto_compare_key = compare_vma_free_key,
833 .rbto_node_offset = offsetof(struct nvkm_vma, tree),
834 };
835 #endif
836
837 static inline void
nvkm_vmm_free_remove(struct nvkm_vmm * vmm,struct nvkm_vma * vma)838 nvkm_vmm_free_remove(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
839 {
840 #ifdef __NetBSD__
841 rb_tree_remove_node(&vmm->free, vma);
842 #else
843 rb_erase(&vma->tree, &vmm->free);
844 #endif
845 }
846
847 static inline void
nvkm_vmm_free_delete(struct nvkm_vmm * vmm,struct nvkm_vma * vma)848 nvkm_vmm_free_delete(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
849 {
850 nvkm_vmm_free_remove(vmm, vma);
851 list_del(&vma->head);
852 kfree(vma);
853 }
854
855 static void
nvkm_vmm_free_insert(struct nvkm_vmm * vmm,struct nvkm_vma * vma)856 nvkm_vmm_free_insert(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
857 {
858 #ifdef __NetBSD__
859 struct nvkm_vma *collision __diagused =
860 rb_tree_insert_node(&vmm->free, vma);
861 KASSERT(collision == vma);
862 #else
863 struct rb_node **ptr = &vmm->free.rb_node;
864 struct rb_node *parent = NULL;
865
866 while (*ptr) {
867 struct nvkm_vma *this = rb_entry(*ptr, typeof(*this), tree);
868 parent = *ptr;
869 if (vma->size < this->size)
870 ptr = &parent->rb_left;
871 else
872 if (vma->size > this->size)
873 ptr = &parent->rb_right;
874 else
875 if (vma->addr < this->addr)
876 ptr = &parent->rb_left;
877 else
878 if (vma->addr > this->addr)
879 ptr = &parent->rb_right;
880 else
881 BUG();
882 }
883
884 rb_link_node(&vma->tree, parent, ptr);
885 rb_insert_color(&vma->tree, &vmm->free);
886 #endif
887 }
888
889 #ifdef __NetBSD__
890 static int
compare_vma_nodes(void * cookie,const void * va,const void * vb)891 compare_vma_nodes(void *cookie, const void *va, const void *vb)
892 {
893 const struct nvkm_vma *a = va, *b = vb;
894
895 if (a->addr < b->addr)
896 return -1;
897 if (a->addr > b->addr)
898 return +1;
899 return 0;
900 }
901
902 static int
compare_vma_key(void * cookie,const void * vn,const void * vk)903 compare_vma_key(void *cookie, const void *vn, const void *vk)
904 {
905 const struct nvkm_vma *n = vn;
906 const u64 *k = vk;
907
908 if (n->addr < *k)
909 return -1;
910 if (n->addr > *k)
911 return +1;
912 return 0;
913 }
914
915 static const rb_tree_ops_t vmm_rb_ops = {
916 .rbto_compare_nodes = compare_vma_nodes,
917 .rbto_compare_key = compare_vma_key,
918 .rbto_node_offset = offsetof(struct nvkm_vma, tree),
919 };
920 #endif
921
922 static inline void
nvkm_vmm_node_remove(struct nvkm_vmm * vmm,struct nvkm_vma * vma)923 nvkm_vmm_node_remove(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
924 {
925 #ifdef __NetBSD__
926 rb_tree_remove_node(&vmm->root, vma);
927 #else
928 rb_erase(&vma->tree, &vmm->root);
929 #endif
930 }
931
932 static inline void
nvkm_vmm_node_delete(struct nvkm_vmm * vmm,struct nvkm_vma * vma)933 nvkm_vmm_node_delete(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
934 {
935 nvkm_vmm_node_remove(vmm, vma);
936 list_del(&vma->head);
937 kfree(vma);
938 }
939
940 static void
nvkm_vmm_node_insert(struct nvkm_vmm * vmm,struct nvkm_vma * vma)941 nvkm_vmm_node_insert(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
942 {
943 #ifdef __NetBSD__
944 struct nvkm_vma *collision __diagused =
945 rb_tree_insert_node(&vmm->root, vma);
946 KASSERT(collision == vma);
947 #else
948 struct rb_node **ptr = &vmm->root.rb_node;
949 struct rb_node *parent = NULL;
950
951 while (*ptr) {
952 struct nvkm_vma *this = rb_entry(*ptr, typeof(*this), tree);
953 parent = *ptr;
954 if (vma->addr < this->addr)
955 ptr = &parent->rb_left;
956 else
957 if (vma->addr > this->addr)
958 ptr = &parent->rb_right;
959 else
960 BUG();
961 }
962
963 rb_link_node(&vma->tree, parent, ptr);
964 rb_insert_color(&vma->tree, &vmm->root);
965 #endif
966 }
967
968 struct nvkm_vma *
nvkm_vmm_node_search(struct nvkm_vmm * vmm,u64 addr)969 nvkm_vmm_node_search(struct nvkm_vmm *vmm, u64 addr)
970 {
971 #ifdef __NetBSD__
972 return rb_tree_find_node(&vmm->root, &addr);
973 #else
974 struct rb_node *node = vmm->root.rb_node;
975 while (node) {
976 struct nvkm_vma *vma = rb_entry(node, typeof(*vma), tree);
977 if (addr < vma->addr)
978 node = node->rb_left;
979 else
980 if (addr >= vma->addr + vma->size)
981 node = node->rb_right;
982 else
983 return vma;
984 }
985 return NULL;
986 #endif
987 }
988
989 #define node(root, dir) (((root)->head.dir == &vmm->list) ? NULL : \
990 list_entry((root)->head.dir, struct nvkm_vma, head))
991
992 static struct nvkm_vma *
nvkm_vmm_node_merge(struct nvkm_vmm * vmm,struct nvkm_vma * prev,struct nvkm_vma * vma,struct nvkm_vma * next,u64 size)993 nvkm_vmm_node_merge(struct nvkm_vmm *vmm, struct nvkm_vma *prev,
994 struct nvkm_vma *vma, struct nvkm_vma *next, u64 size)
995 {
996 if (next) {
997 if (vma->size == size) {
998 vma->size += next->size;
999 nvkm_vmm_node_delete(vmm, next);
1000 if (prev) {
1001 prev->size += vma->size;
1002 nvkm_vmm_node_delete(vmm, vma);
1003 return prev;
1004 }
1005 return vma;
1006 }
1007 BUG_ON(prev);
1008
1009 nvkm_vmm_node_remove(vmm, next);
1010 vma->size -= size;
1011 next->addr -= size;
1012 next->size += size;
1013 nvkm_vmm_node_insert(vmm, next);
1014 return next;
1015 }
1016
1017 if (prev) {
1018 if (vma->size != size) {
1019 nvkm_vmm_node_remove(vmm, vma);
1020 prev->size += size;
1021 vma->addr += size;
1022 vma->size -= size;
1023 nvkm_vmm_node_insert(vmm, vma);
1024 } else {
1025 prev->size += vma->size;
1026 nvkm_vmm_node_delete(vmm, vma);
1027 }
1028 return prev;
1029 }
1030
1031 return vma;
1032 }
1033
1034 struct nvkm_vma *
nvkm_vmm_node_split(struct nvkm_vmm * vmm,struct nvkm_vma * vma,u64 addr,u64 size)1035 nvkm_vmm_node_split(struct nvkm_vmm *vmm,
1036 struct nvkm_vma *vma, u64 addr, u64 size)
1037 {
1038 struct nvkm_vma *prev = NULL;
1039
1040 if (vma->addr != addr) {
1041 prev = vma;
1042 if (!(vma = nvkm_vma_tail(vma, vma->size + vma->addr - addr)))
1043 return NULL;
1044 vma->part = true;
1045 nvkm_vmm_node_insert(vmm, vma);
1046 }
1047
1048 if (vma->size != size) {
1049 struct nvkm_vma *tmp;
1050 if (!(tmp = nvkm_vma_tail(vma, vma->size - size))) {
1051 nvkm_vmm_node_merge(vmm, prev, vma, NULL, vma->size);
1052 return NULL;
1053 }
1054 tmp->part = true;
1055 nvkm_vmm_node_insert(vmm, tmp);
1056 }
1057
1058 return vma;
1059 }
1060
1061 static void
nvkm_vma_dump(struct nvkm_vma * vma)1062 nvkm_vma_dump(struct nvkm_vma *vma)
1063 {
1064 printk(KERN_ERR "%016"PRIx64" %016"PRIx64" %c%c%c%c%c%c%c%c%c %p\n",
1065 vma->addr, (u64)vma->size,
1066 vma->used ? '-' : 'F',
1067 vma->mapref ? 'R' : '-',
1068 vma->sparse ? 'S' : '-',
1069 vma->page != NVKM_VMA_PAGE_NONE ? '0' + vma->page : '-',
1070 vma->refd != NVKM_VMA_PAGE_NONE ? '0' + vma->refd : '-',
1071 vma->part ? 'P' : '-',
1072 vma->user ? 'U' : '-',
1073 vma->busy ? 'B' : '-',
1074 vma->mapped ? 'M' : '-',
1075 vma->memory);
1076 }
1077
1078 static void
nvkm_vmm_dump(struct nvkm_vmm * vmm)1079 nvkm_vmm_dump(struct nvkm_vmm *vmm)
1080 {
1081 struct nvkm_vma *vma;
1082 list_for_each_entry(vma, &vmm->list, head) {
1083 nvkm_vma_dump(vma);
1084 }
1085 }
1086
1087 static void
nvkm_vmm_dtor(struct nvkm_vmm * vmm)1088 nvkm_vmm_dtor(struct nvkm_vmm *vmm)
1089 {
1090 struct nvkm_vma *vma;
1091 struct rb_node *node;
1092
1093 if (0)
1094 nvkm_vmm_dump(vmm);
1095
1096 #ifdef __NetBSD__
1097 __USE(node);
1098 while ((vma = RB_TREE_MIN(&vmm->root)) != NULL)
1099 nvkm_vmm_put(vmm, &vma);
1100 #else
1101 while ((node = rb_first(&vmm->root))) {
1102 struct nvkm_vma *vma = rb_entry(node, typeof(*vma), tree);
1103 nvkm_vmm_put(vmm, &vma);
1104 }
1105 #endif
1106
1107 if (vmm->bootstrapped) {
1108 const struct nvkm_vmm_page *page = vmm->func->page;
1109 const u64 limit = vmm->limit - vmm->start;
1110
1111 while (page[1].shift)
1112 page++;
1113
1114 nvkm_mmu_ptc_dump(vmm->mmu);
1115 nvkm_vmm_ptes_put(vmm, page, vmm->start, limit);
1116 }
1117
1118 vma = list_first_entry(&vmm->list, typeof(*vma), head);
1119 list_del(&vma->head);
1120 kfree(vma);
1121 WARN_ON(!list_empty(&vmm->list));
1122
1123 if (vmm->nullp) {
1124 #ifdef __NetBSD__
1125 struct nvkm_device *device = vmm->mmu->subdev.device;
1126 const bus_dma_tag_t dmat = device->func->dma_tag(device);
1127 bus_dmamap_unload(dmat, vmm->nullmap);
1128 bus_dmamem_unmap(dmat, vmm->nullp, 16 * 1024);
1129 bus_dmamap_destroy(dmat, vmm->nullmap);
1130 bus_dmamem_free(dmat, &vmm->nullseg, 1);
1131 #else
1132 dma_free_coherent(vmm->mmu->subdev.device->dev, 16 * 1024,
1133 vmm->nullp, vmm->null);
1134 #endif
1135 }
1136
1137 if (vmm->pd) {
1138 nvkm_mmu_ptc_put(vmm->mmu, true, &vmm->pd->pt[0]);
1139 nvkm_vmm_pt_del(&vmm->pd);
1140 }
1141
1142 mutex_destroy(&vmm->mutex);
1143 }
1144
1145 static int
nvkm_vmm_ctor_managed(struct nvkm_vmm * vmm,u64 addr,u64 size)1146 nvkm_vmm_ctor_managed(struct nvkm_vmm *vmm, u64 addr, u64 size)
1147 {
1148 struct nvkm_vma *vma;
1149 if (!(vma = nvkm_vma_new(addr, size)))
1150 return -ENOMEM;
1151 vma->mapref = true;
1152 vma->sparse = false;
1153 vma->used = true;
1154 vma->user = true;
1155 nvkm_vmm_node_insert(vmm, vma);
1156 list_add_tail(&vma->head, &vmm->list);
1157 return 0;
1158 }
1159
1160 int
nvkm_vmm_ctor(const struct nvkm_vmm_func * func,struct nvkm_mmu * mmu,u32 pd_header,bool managed,u64 addr,u64 size,struct lock_class_key * key,const char * name,struct nvkm_vmm * vmm)1161 nvkm_vmm_ctor(const struct nvkm_vmm_func *func, struct nvkm_mmu *mmu,
1162 u32 pd_header, bool managed, u64 addr, u64 size,
1163 struct lock_class_key *key, const char *name,
1164 struct nvkm_vmm *vmm)
1165 {
1166 static struct lock_class_key _key;
1167 const struct nvkm_vmm_page *page = func->page;
1168 const struct nvkm_vmm_desc *desc;
1169 struct nvkm_vma *vma;
1170 int levels, bits = 0, ret;
1171
1172 vmm->func = func;
1173 vmm->mmu = mmu;
1174 vmm->name = name;
1175 vmm->debug = mmu->subdev.debug;
1176 kref_init(&vmm->kref);
1177
1178 __mutex_init(&vmm->mutex, "&vmm->mutex", key ? key : &_key);
1179
1180 /* Locate the smallest page size supported by the backend, it will
1181 * have the the deepest nesting of page tables.
1182 */
1183 while (page[1].shift)
1184 page++;
1185
1186 /* Locate the structure that describes the layout of the top-level
1187 * page table, and determine the number of valid bits in a virtual
1188 * address.
1189 */
1190 for (levels = 0, desc = page->desc; desc->bits; desc++, levels++)
1191 bits += desc->bits;
1192 bits += page->shift;
1193 desc--;
1194
1195 if (WARN_ON(levels > NVKM_VMM_LEVELS_MAX))
1196 return -EINVAL;
1197
1198 /* Allocate top-level page table. */
1199 vmm->pd = nvkm_vmm_pt_new(desc, false, NULL);
1200 if (!vmm->pd)
1201 return -ENOMEM;
1202 vmm->pd->refs[0] = 1;
1203 INIT_LIST_HEAD(&vmm->join);
1204
1205 /* ... and the GPU storage for it, except on Tesla-class GPUs that
1206 * have the PD embedded in the instance structure.
1207 */
1208 if (desc->size) {
1209 const u32 size = pd_header + desc->size * (1 << desc->bits);
1210 vmm->pd->pt[0] = nvkm_mmu_ptc_get(mmu, size, desc->align, true);
1211 if (!vmm->pd->pt[0])
1212 return -ENOMEM;
1213 }
1214
1215 /* Initialise address-space MM. */
1216 INIT_LIST_HEAD(&vmm->list);
1217 #ifdef __NetBSD__
1218 rb_tree_init(&vmm->free, &vmm_free_rb_ops);
1219 rb_tree_init(&vmm->root, &vmm_rb_ops);
1220 #else
1221 vmm->free = RB_ROOT;
1222 vmm->root = RB_ROOT;
1223 #endif
1224
1225 if (managed) {
1226 /* Address-space will be managed by the client for the most
1227 * part, except for a specified area where NVKM allocations
1228 * are allowed to be placed.
1229 */
1230 vmm->start = 0;
1231 vmm->limit = 1ULL << bits;
1232 if (addr + size < addr || addr + size > vmm->limit)
1233 return -EINVAL;
1234
1235 /* Client-managed area before the NVKM-managed area. */
1236 if (addr && (ret = nvkm_vmm_ctor_managed(vmm, 0, addr)))
1237 return ret;
1238
1239 /* NVKM-managed area. */
1240 if (size) {
1241 if (!(vma = nvkm_vma_new(addr, size)))
1242 return -ENOMEM;
1243 nvkm_vmm_free_insert(vmm, vma);
1244 list_add_tail(&vma->head, &vmm->list);
1245 }
1246
1247 /* Client-managed area after the NVKM-managed area. */
1248 addr = addr + size;
1249 size = vmm->limit - addr;
1250 if (size && (ret = nvkm_vmm_ctor_managed(vmm, addr, size)))
1251 return ret;
1252 } else {
1253 /* Address-space fully managed by NVKM, requiring calls to
1254 * nvkm_vmm_get()/nvkm_vmm_put() to allocate address-space.
1255 */
1256 vmm->start = addr;
1257 vmm->limit = size ? (addr + size) : (1ULL << bits);
1258 if (vmm->start > vmm->limit || vmm->limit > (1ULL << bits))
1259 return -EINVAL;
1260
1261 if (!(vma = nvkm_vma_new(vmm->start, vmm->limit - vmm->start)))
1262 return -ENOMEM;
1263
1264 nvkm_vmm_free_insert(vmm, vma);
1265 list_add(&vma->head, &vmm->list);
1266 }
1267
1268 return 0;
1269 }
1270
1271 int
nvkm_vmm_new_(const struct nvkm_vmm_func * func,struct nvkm_mmu * mmu,u32 hdr,bool managed,u64 addr,u64 size,struct lock_class_key * key,const char * name,struct nvkm_vmm ** pvmm)1272 nvkm_vmm_new_(const struct nvkm_vmm_func *func, struct nvkm_mmu *mmu,
1273 u32 hdr, bool managed, u64 addr, u64 size,
1274 struct lock_class_key *key, const char *name,
1275 struct nvkm_vmm **pvmm)
1276 {
1277 if (!(*pvmm = kzalloc(sizeof(**pvmm), GFP_KERNEL)))
1278 return -ENOMEM;
1279 return nvkm_vmm_ctor(func, mmu, hdr, managed, addr, size, key, name, *pvmm);
1280 }
1281
1282 static struct nvkm_vma *
nvkm_vmm_pfn_split_merge(struct nvkm_vmm * vmm,struct nvkm_vma * vma,u64 addr,u64 size,u8 page,bool map)1283 nvkm_vmm_pfn_split_merge(struct nvkm_vmm *vmm, struct nvkm_vma *vma,
1284 u64 addr, u64 size, u8 page, bool map)
1285 {
1286 struct nvkm_vma *prev = NULL;
1287 struct nvkm_vma *next = NULL;
1288
1289 if (vma->addr == addr && vma->part && (prev = node(vma, prev))) {
1290 if (prev->memory || prev->mapped != map)
1291 prev = NULL;
1292 }
1293
1294 if (vma->addr + vma->size == addr + size && (next = node(vma, next))) {
1295 if (!next->part ||
1296 next->memory || next->mapped != map)
1297 next = NULL;
1298 }
1299
1300 if (prev || next)
1301 return nvkm_vmm_node_merge(vmm, prev, vma, next, size);
1302 return nvkm_vmm_node_split(vmm, vma, addr, size);
1303 }
1304
1305 int
nvkm_vmm_pfn_unmap(struct nvkm_vmm * vmm,u64 addr,u64 size)1306 nvkm_vmm_pfn_unmap(struct nvkm_vmm *vmm, u64 addr, u64 size)
1307 {
1308 struct nvkm_vma *vma = nvkm_vmm_node_search(vmm, addr);
1309 struct nvkm_vma *next;
1310 u64 limit = addr + size;
1311 u64 start = addr;
1312
1313 if (!vma)
1314 return -EINVAL;
1315
1316 do {
1317 if (!vma->mapped || vma->memory)
1318 continue;
1319
1320 size = min(limit - start, vma->size - (start - vma->addr));
1321
1322 nvkm_vmm_ptes_unmap_put(vmm, &vmm->func->page[vma->refd],
1323 start, size, false, true);
1324
1325 next = nvkm_vmm_pfn_split_merge(vmm, vma, start, size, 0, false);
1326 if (!WARN_ON(!next)) {
1327 vma = next;
1328 vma->refd = NVKM_VMA_PAGE_NONE;
1329 vma->mapped = false;
1330 }
1331 } while ((vma = node(vma, next)) && (start = vma->addr) < limit);
1332
1333 return 0;
1334 }
1335
1336 /*TODO:
1337 * - Avoid PT readback (for dma_unmap etc), this might end up being dealt
1338 * with inside HMM, which would be a lot nicer for us to deal with.
1339 * - Multiple page sizes (particularly for huge page support).
1340 * - Support for systems without a 4KiB page size.
1341 */
1342 int
nvkm_vmm_pfn_map(struct nvkm_vmm * vmm,u8 shift,u64 addr,u64 size,u64 * pfn)1343 nvkm_vmm_pfn_map(struct nvkm_vmm *vmm, u8 shift, u64 addr, u64 size, u64 *pfn)
1344 {
1345 const struct nvkm_vmm_page *page = vmm->func->page;
1346 struct nvkm_vma *vma, *tmp;
1347 u64 limit = addr + size;
1348 u64 start = addr;
1349 int pm = size >> shift;
1350 int pi = 0;
1351
1352 /* Only support mapping where the page size of the incoming page
1353 * array matches a page size available for direct mapping.
1354 */
1355 while (page->shift && page->shift != shift &&
1356 page->desc->func->pfn == NULL)
1357 page++;
1358
1359 if (!page->shift || !IS_ALIGNED(addr, 1ULL << shift) ||
1360 !IS_ALIGNED(size, 1ULL << shift) ||
1361 addr + size < addr || addr + size > vmm->limit) {
1362 VMM_DEBUG(vmm, "paged map %d %d %016"PRIx64" %016"PRIx64"\n",
1363 shift, page->shift, addr, size);
1364 return -EINVAL;
1365 }
1366
1367 if (!(vma = nvkm_vmm_node_search(vmm, addr)))
1368 return -ENOENT;
1369
1370 do {
1371 bool map = !!(pfn[pi] & NVKM_VMM_PFN_V);
1372 bool mapped = vma->mapped;
1373 u64 size = limit - start;
1374 u64 addr = start;
1375 int pn, ret = 0;
1376
1377 /* Narrow the operation window to cover a single action (page
1378 * should be mapped or not) within a single VMA.
1379 */
1380 for (pn = 0; pi + pn < pm; pn++) {
1381 if (map != !!(pfn[pi + pn] & NVKM_VMM_PFN_V))
1382 break;
1383 }
1384 size = min_t(u64, size, pn << page->shift);
1385 size = min_t(u64, size, vma->size + vma->addr - addr);
1386
1387 /* Reject any operation to unmanaged regions, and areas that
1388 * have nvkm_memory objects mapped in them already.
1389 */
1390 if (!vma->mapref || vma->memory) {
1391 ret = -EINVAL;
1392 goto next;
1393 }
1394
1395 /* In order to both properly refcount GPU page tables, and
1396 * prevent "normal" mappings and these direct mappings from
1397 * interfering with each other, we need to track contiguous
1398 * ranges that have been mapped with this interface.
1399 *
1400 * Here we attempt to either split an existing VMA so we're
1401 * able to flag the region as either unmapped/mapped, or to
1402 * merge with adjacent VMAs that are already compatible.
1403 *
1404 * If the region is already compatible, nothing is required.
1405 */
1406 if (map != mapped) {
1407 tmp = nvkm_vmm_pfn_split_merge(vmm, vma, addr, size,
1408 page -
1409 vmm->func->page, map);
1410 if (WARN_ON(!tmp)) {
1411 ret = -ENOMEM;
1412 goto next;
1413 }
1414
1415 if ((tmp->mapped = map))
1416 tmp->refd = page - vmm->func->page;
1417 else
1418 tmp->refd = NVKM_VMA_PAGE_NONE;
1419 vma = tmp;
1420 }
1421
1422 /* Update HW page tables. */
1423 if (map) {
1424 struct nvkm_vmm_map args;
1425 args.page = page;
1426 args.pfn = &pfn[pi];
1427
1428 if (!mapped) {
1429 ret = nvkm_vmm_ptes_get_map(vmm, page, addr,
1430 size, &args, page->
1431 desc->func->pfn);
1432 } else {
1433 nvkm_vmm_ptes_map(vmm, page, addr, size, &args,
1434 page->desc->func->pfn);
1435 }
1436 } else {
1437 if (mapped) {
1438 nvkm_vmm_ptes_unmap_put(vmm, page, addr, size,
1439 false, true);
1440 }
1441 }
1442
1443 next:
1444 /* Iterate to next operation. */
1445 if (vma->addr + vma->size == addr + size)
1446 vma = node(vma, next);
1447 start += size;
1448
1449 if (ret) {
1450 /* Failure is signalled by clearing the valid bit on
1451 * any PFN that couldn't be modified as requested.
1452 */
1453 while (size) {
1454 pfn[pi++] = NVKM_VMM_PFN_NONE;
1455 size -= 1 << page->shift;
1456 }
1457 } else {
1458 pi += size >> page->shift;
1459 }
1460 } while (vma && start < limit);
1461
1462 return 0;
1463 }
1464
1465 void
nvkm_vmm_unmap_region(struct nvkm_vmm * vmm,struct nvkm_vma * vma)1466 nvkm_vmm_unmap_region(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
1467 {
1468 struct nvkm_vma *prev = NULL;
1469 struct nvkm_vma *next;
1470
1471 nvkm_memory_tags_put(vma->memory, vmm->mmu->subdev.device, &vma->tags);
1472 nvkm_memory_unref(&vma->memory);
1473 vma->mapped = false;
1474
1475 if (vma->part && (prev = node(vma, prev)) && prev->mapped)
1476 prev = NULL;
1477 if ((next = node(vma, next)) && (!next->part || next->mapped))
1478 next = NULL;
1479 nvkm_vmm_node_merge(vmm, prev, vma, next, vma->size);
1480 }
1481
1482 void
nvkm_vmm_unmap_locked(struct nvkm_vmm * vmm,struct nvkm_vma * vma,bool pfn)1483 nvkm_vmm_unmap_locked(struct nvkm_vmm *vmm, struct nvkm_vma *vma, bool pfn)
1484 {
1485 const struct nvkm_vmm_page *page = &vmm->func->page[vma->refd];
1486
1487 if (vma->mapref) {
1488 nvkm_vmm_ptes_unmap_put(vmm, page, vma->addr, vma->size, vma->sparse, pfn);
1489 vma->refd = NVKM_VMA_PAGE_NONE;
1490 } else {
1491 nvkm_vmm_ptes_unmap(vmm, page, vma->addr, vma->size, vma->sparse, pfn);
1492 }
1493
1494 nvkm_vmm_unmap_region(vmm, vma);
1495 }
1496
1497 void
nvkm_vmm_unmap(struct nvkm_vmm * vmm,struct nvkm_vma * vma)1498 nvkm_vmm_unmap(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
1499 {
1500 if (vma->memory) {
1501 mutex_lock(&vmm->mutex);
1502 nvkm_vmm_unmap_locked(vmm, vma, false);
1503 mutex_unlock(&vmm->mutex);
1504 }
1505 }
1506
1507 static int
nvkm_vmm_map_valid(struct nvkm_vmm * vmm,struct nvkm_vma * vma,void * argv,u32 argc,struct nvkm_vmm_map * map)1508 nvkm_vmm_map_valid(struct nvkm_vmm *vmm, struct nvkm_vma *vma,
1509 void *argv, u32 argc, struct nvkm_vmm_map *map)
1510 {
1511 switch (nvkm_memory_target(map->memory)) {
1512 case NVKM_MEM_TARGET_VRAM:
1513 if (!(map->page->type & NVKM_VMM_PAGE_VRAM)) {
1514 VMM_DEBUG(vmm, "%d !VRAM", map->page->shift);
1515 return -EINVAL;
1516 }
1517 break;
1518 case NVKM_MEM_TARGET_HOST:
1519 case NVKM_MEM_TARGET_NCOH:
1520 if (!(map->page->type & NVKM_VMM_PAGE_HOST)) {
1521 VMM_DEBUG(vmm, "%d !HOST", map->page->shift);
1522 return -EINVAL;
1523 }
1524 break;
1525 default:
1526 WARN_ON(1);
1527 return -ENOSYS;
1528 }
1529
1530 if (!IS_ALIGNED( vma->addr, 1ULL << map->page->shift) ||
1531 !IS_ALIGNED((u64)vma->size, 1ULL << map->page->shift) ||
1532 !IS_ALIGNED( map->offset, 1ULL << map->page->shift) ||
1533 nvkm_memory_page(map->memory) < map->page->shift) {
1534 VMM_DEBUG(vmm, "alignment %016"PRIx64" %016"PRIx64" %016"PRIx64" %d %d",
1535 vma->addr, (u64)vma->size, map->offset, map->page->shift,
1536 nvkm_memory_page(map->memory));
1537 return -EINVAL;
1538 }
1539
1540 return vmm->func->valid(vmm, argv, argc, map);
1541 }
1542
1543 static int
nvkm_vmm_map_choose(struct nvkm_vmm * vmm,struct nvkm_vma * vma,void * argv,u32 argc,struct nvkm_vmm_map * map)1544 nvkm_vmm_map_choose(struct nvkm_vmm *vmm, struct nvkm_vma *vma,
1545 void *argv, u32 argc, struct nvkm_vmm_map *map)
1546 {
1547 for (map->page = vmm->func->page; map->page->shift; map->page++) {
1548 VMM_DEBUG(vmm, "trying %d", map->page->shift);
1549 if (!nvkm_vmm_map_valid(vmm, vma, argv, argc, map))
1550 return 0;
1551 }
1552 return -EINVAL;
1553 }
1554
1555 static int
nvkm_vmm_map_locked(struct nvkm_vmm * vmm,struct nvkm_vma * vma,void * argv,u32 argc,struct nvkm_vmm_map * map)1556 nvkm_vmm_map_locked(struct nvkm_vmm *vmm, struct nvkm_vma *vma,
1557 void *argv, u32 argc, struct nvkm_vmm_map *map)
1558 {
1559 nvkm_vmm_pte_func func;
1560 int ret;
1561
1562 /* Make sure we won't overrun the end of the memory object. */
1563 if (unlikely(nvkm_memory_size(map->memory) < map->offset + vma->size)) {
1564 VMM_DEBUG(vmm, "overrun %016"PRIx64" %016"PRIx64" %016"PRIx64"",
1565 nvkm_memory_size(map->memory),
1566 map->offset, (u64)vma->size);
1567 return -EINVAL;
1568 }
1569
1570 /* Check remaining arguments for validity. */
1571 if (vma->page == NVKM_VMA_PAGE_NONE &&
1572 vma->refd == NVKM_VMA_PAGE_NONE) {
1573 /* Find the largest page size we can perform the mapping at. */
1574 const u32 debug = vmm->debug;
1575 vmm->debug = 0;
1576 ret = nvkm_vmm_map_choose(vmm, vma, argv, argc, map);
1577 vmm->debug = debug;
1578 if (ret) {
1579 VMM_DEBUG(vmm, "invalid at any page size");
1580 nvkm_vmm_map_choose(vmm, vma, argv, argc, map);
1581 return -EINVAL;
1582 }
1583 } else {
1584 /* Page size of the VMA is already pre-determined. */
1585 if (vma->refd != NVKM_VMA_PAGE_NONE)
1586 map->page = &vmm->func->page[vma->refd];
1587 else
1588 map->page = &vmm->func->page[vma->page];
1589
1590 ret = nvkm_vmm_map_valid(vmm, vma, argv, argc, map);
1591 if (ret) {
1592 VMM_DEBUG(vmm, "invalid %d\n", ret);
1593 return ret;
1594 }
1595 }
1596
1597 /* Deal with the 'offset' argument, and fetch the backend function. */
1598 map->off = map->offset;
1599 if (map->mem) {
1600 for (; map->off; map->mem = map->mem->next) {
1601 u64 size = (u64)map->mem->length << NVKM_RAM_MM_SHIFT;
1602 if (size > map->off)
1603 break;
1604 map->off -= size;
1605 }
1606 func = map->page->desc->func->mem;
1607 #ifndef __NetBSD__ /* XXX prime? */
1608 } else
1609 if (map->sgl) {
1610 for (; map->off; map->sgl = sg_next(map->sgl)) {
1611 u64 size = sg_dma_len(map->sgl);
1612 if (size > map->off)
1613 break;
1614 map->off -= size;
1615 }
1616 func = map->page->desc->func->sgl;
1617 #endif
1618 } else {
1619 map->dma += map->offset >> PAGE_SHIFT;
1620 map->off = map->offset & PAGE_MASK;
1621 func = map->page->desc->func->dma;
1622 }
1623
1624 /* Perform the map. */
1625 if (vma->refd == NVKM_VMA_PAGE_NONE) {
1626 ret = nvkm_vmm_ptes_get_map(vmm, map->page, vma->addr, vma->size, map, func);
1627 if (ret)
1628 return ret;
1629
1630 vma->refd = map->page - vmm->func->page;
1631 } else {
1632 nvkm_vmm_ptes_map(vmm, map->page, vma->addr, vma->size, map, func);
1633 }
1634
1635 nvkm_memory_tags_put(vma->memory, vmm->mmu->subdev.device, &vma->tags);
1636 nvkm_memory_unref(&vma->memory);
1637 vma->memory = nvkm_memory_ref(map->memory);
1638 vma->mapped = true;
1639 vma->tags = map->tags;
1640 return 0;
1641 }
1642
1643 int
nvkm_vmm_map(struct nvkm_vmm * vmm,struct nvkm_vma * vma,void * argv,u32 argc,struct nvkm_vmm_map * map)1644 nvkm_vmm_map(struct nvkm_vmm *vmm, struct nvkm_vma *vma, void *argv, u32 argc,
1645 struct nvkm_vmm_map *map)
1646 {
1647 int ret;
1648 mutex_lock(&vmm->mutex);
1649 ret = nvkm_vmm_map_locked(vmm, vma, argv, argc, map);
1650 vma->busy = false;
1651 mutex_unlock(&vmm->mutex);
1652 return ret;
1653 }
1654
1655 static void
nvkm_vmm_put_region(struct nvkm_vmm * vmm,struct nvkm_vma * vma)1656 nvkm_vmm_put_region(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
1657 {
1658 struct nvkm_vma *prev, *next;
1659
1660 if ((prev = node(vma, prev)) && !prev->used) {
1661 vma->addr = prev->addr;
1662 vma->size += prev->size;
1663 nvkm_vmm_free_delete(vmm, prev);
1664 }
1665
1666 if ((next = node(vma, next)) && !next->used) {
1667 vma->size += next->size;
1668 nvkm_vmm_free_delete(vmm, next);
1669 }
1670
1671 nvkm_vmm_free_insert(vmm, vma);
1672 }
1673
1674 void
nvkm_vmm_put_locked(struct nvkm_vmm * vmm,struct nvkm_vma * vma)1675 nvkm_vmm_put_locked(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
1676 {
1677 const struct nvkm_vmm_page *page = vmm->func->page;
1678 struct nvkm_vma *next = vma;
1679
1680 BUG_ON(vma->part);
1681
1682 if (vma->mapref || !vma->sparse) {
1683 do {
1684 const bool mem = next->memory != NULL;
1685 const bool map = next->mapped;
1686 const u8 refd = next->refd;
1687 const u64 addr = next->addr;
1688 u64 size = next->size;
1689
1690 /* Merge regions that are in the same state. */
1691 while ((next = node(next, next)) && next->part &&
1692 (next->mapped == map) &&
1693 (next->memory != NULL) == mem &&
1694 (next->refd == refd))
1695 size += next->size;
1696
1697 if (map) {
1698 /* Region(s) are mapped, merge the unmap
1699 * and dereference into a single walk of
1700 * the page tree.
1701 */
1702 nvkm_vmm_ptes_unmap_put(vmm, &page[refd], addr,
1703 size, vma->sparse,
1704 !mem);
1705 } else
1706 if (refd != NVKM_VMA_PAGE_NONE) {
1707 /* Drop allocation-time PTE references. */
1708 nvkm_vmm_ptes_put(vmm, &page[refd], addr, size);
1709 }
1710 } while (next && next->part);
1711 }
1712
1713 /* Merge any mapped regions that were split from the initial
1714 * address-space allocation back into the allocated VMA, and
1715 * release memory/compression resources.
1716 */
1717 next = vma;
1718 do {
1719 if (next->mapped)
1720 nvkm_vmm_unmap_region(vmm, next);
1721 } while ((next = node(vma, next)) && next->part);
1722
1723 if (vma->sparse && !vma->mapref) {
1724 /* Sparse region that was allocated with a fixed page size,
1725 * meaning all relevant PTEs were referenced once when the
1726 * region was allocated, and remained that way, regardless
1727 * of whether memory was mapped into it afterwards.
1728 *
1729 * The process of unmapping, unsparsing, and dereferencing
1730 * PTEs can be done in a single page tree walk.
1731 */
1732 nvkm_vmm_ptes_sparse_put(vmm, &page[vma->refd], vma->addr, vma->size);
1733 } else
1734 if (vma->sparse) {
1735 /* Sparse region that wasn't allocated with a fixed page size,
1736 * PTE references were taken both at allocation time (to make
1737 * the GPU see the region as sparse), and when mapping memory
1738 * into the region.
1739 *
1740 * The latter was handled above, and the remaining references
1741 * are dealt with here.
1742 */
1743 nvkm_vmm_ptes_sparse(vmm, vma->addr, vma->size, false);
1744 }
1745
1746 /* Remove VMA from the list of allocated nodes. */
1747 nvkm_vmm_node_remove(vmm, vma);
1748
1749 /* Merge VMA back into the free list. */
1750 vma->page = NVKM_VMA_PAGE_NONE;
1751 vma->refd = NVKM_VMA_PAGE_NONE;
1752 vma->used = false;
1753 vma->user = false;
1754 nvkm_vmm_put_region(vmm, vma);
1755 }
1756
1757 void
nvkm_vmm_put(struct nvkm_vmm * vmm,struct nvkm_vma ** pvma)1758 nvkm_vmm_put(struct nvkm_vmm *vmm, struct nvkm_vma **pvma)
1759 {
1760 struct nvkm_vma *vma = *pvma;
1761 if (vma) {
1762 mutex_lock(&vmm->mutex);
1763 nvkm_vmm_put_locked(vmm, vma);
1764 mutex_unlock(&vmm->mutex);
1765 *pvma = NULL;
1766 }
1767 }
1768
1769 int
nvkm_vmm_get_locked(struct nvkm_vmm * vmm,bool getref,bool mapref,bool sparse,u8 shift,u8 align,u64 size,struct nvkm_vma ** pvma)1770 nvkm_vmm_get_locked(struct nvkm_vmm *vmm, bool getref, bool mapref, bool sparse,
1771 u8 shift, u8 align, u64 size, struct nvkm_vma **pvma)
1772 {
1773 const struct nvkm_vmm_page *page = &vmm->func->page[NVKM_VMA_PAGE_NONE];
1774 #ifndef __NetBSD__
1775 struct rb_node *node = NULL, *temp;
1776 #endif
1777 struct nvkm_vma *vma = NULL, *tmp;
1778 u64 addr, tail;
1779 int ret;
1780
1781 VMM_TRACE(vmm, "getref %d mapref %d sparse %d "
1782 "shift: %d align: %d size: %016"PRIx64"",
1783 getref, mapref, sparse, shift, align, size);
1784
1785 /* Zero-sized, or lazily-allocated sparse VMAs, make no sense. */
1786 if (unlikely(!size || (!getref && !mapref && sparse))) {
1787 VMM_DEBUG(vmm, "args %016"PRIx64" %d %d %d",
1788 size, getref, mapref, sparse);
1789 return -EINVAL;
1790 }
1791
1792 /* Tesla-class GPUs can only select page size per-PDE, which means
1793 * we're required to know the mapping granularity up-front to find
1794 * a suitable region of address-space.
1795 *
1796 * The same goes if we're requesting up-front allocation of PTES.
1797 */
1798 if (unlikely((getref || vmm->func->page_block) && !shift)) {
1799 VMM_DEBUG(vmm, "page size required: %d %016"PRIx64"",
1800 getref, vmm->func->page_block);
1801 return -EINVAL;
1802 }
1803
1804 /* If a specific page size was requested, determine its index and
1805 * make sure the requested size is a multiple of the page size.
1806 */
1807 if (shift) {
1808 for (page = vmm->func->page; page->shift; page++) {
1809 if (shift == page->shift)
1810 break;
1811 }
1812
1813 if (!page->shift || !IS_ALIGNED(size, 1ULL << page->shift)) {
1814 VMM_DEBUG(vmm, "page %d %016"PRIx64"", shift, size);
1815 return -EINVAL;
1816 }
1817 align = max_t(u8, align, shift);
1818 } else {
1819 align = max_t(u8, align, 12);
1820 }
1821
1822 /* Locate smallest block that can possibly satisfy the allocation. */
1823 #ifdef __NetBSD__
1824 struct nvkm_vma_key key = { .size = size, .addr = 0 };
1825 for (struct nvkm_vma *this = rb_tree_find_node_geq(&vmm->free, &key);
1826 this != NULL; this = RB_TREE_NEXT(&vmm->free, this)) {
1827 #else
1828 temp = vmm->free.rb_node;
1829 while (temp) {
1830 struct nvkm_vma *this = rb_entry(temp, typeof(*this), tree);
1831 if (this->size < size) {
1832 temp = temp->rb_right;
1833 } else {
1834 node = temp;
1835 temp = temp->rb_left;
1836 }
1837 }
1838
1839 if (unlikely(!node))
1840 return -ENOSPC;
1841
1842 /* Take into account alignment restrictions, trying larger blocks
1843 * in turn until we find a suitable free block.
1844 */
1845 do {
1846 struct nvkm_vma *this = rb_entry(node, typeof(*this), tree);
1847 #endif
1848 struct nvkm_vma *prev = node(this, prev);
1849 struct nvkm_vma *next = node(this, next);
1850 const int p = page - vmm->func->page;
1851
1852 addr = this->addr;
1853 if (vmm->func->page_block && prev && prev->page != p)
1854 addr = ALIGN(addr, vmm->func->page_block);
1855 addr = ALIGN(addr, 1ULL << align);
1856
1857 tail = this->addr + this->size;
1858 if (vmm->func->page_block && next && next->page != p)
1859 tail = ALIGN_DOWN(tail, vmm->func->page_block);
1860
1861 if (addr <= tail && tail - addr >= size) {
1862 nvkm_vmm_free_remove(vmm, this);
1863 vma = this;
1864 break;
1865 }
1866 #ifdef __NetBSD__
1867 }
1868 #else
1869 } while ((node = rb_next(node)));
1870 #endif
1871
1872 if (unlikely(!vma))
1873 return -ENOSPC;
1874
1875 /* If the VMA we found isn't already exactly the requested size,
1876 * it needs to be split, and the remaining free blocks returned.
1877 */
1878 if (addr != vma->addr) {
1879 if (!(tmp = nvkm_vma_tail(vma, vma->size + vma->addr - addr))) {
1880 nvkm_vmm_put_region(vmm, vma);
1881 return -ENOMEM;
1882 }
1883 nvkm_vmm_free_insert(vmm, vma);
1884 vma = tmp;
1885 }
1886
1887 if (size != vma->size) {
1888 if (!(tmp = nvkm_vma_tail(vma, vma->size - size))) {
1889 nvkm_vmm_put_region(vmm, vma);
1890 return -ENOMEM;
1891 }
1892 nvkm_vmm_free_insert(vmm, tmp);
1893 }
1894
1895 /* Pre-allocate page tables and/or setup sparse mappings. */
1896 if (sparse && getref)
1897 ret = nvkm_vmm_ptes_sparse_get(vmm, page, vma->addr, vma->size);
1898 else if (sparse)
1899 ret = nvkm_vmm_ptes_sparse(vmm, vma->addr, vma->size, true);
1900 else if (getref)
1901 ret = nvkm_vmm_ptes_get(vmm, page, vma->addr, vma->size);
1902 else
1903 ret = 0;
1904 if (ret) {
1905 nvkm_vmm_put_region(vmm, vma);
1906 return ret;
1907 }
1908
1909 vma->mapref = mapref && !getref;
1910 vma->sparse = sparse;
1911 vma->page = page - vmm->func->page;
1912 vma->refd = getref ? vma->page : NVKM_VMA_PAGE_NONE;
1913 vma->used = true;
1914 nvkm_vmm_node_insert(vmm, vma);
1915 *pvma = vma;
1916 return 0;
1917 }
1918
1919 int
nvkm_vmm_get(struct nvkm_vmm * vmm,u8 page,u64 size,struct nvkm_vma ** pvma)1920 nvkm_vmm_get(struct nvkm_vmm *vmm, u8 page, u64 size, struct nvkm_vma **pvma)
1921 {
1922 int ret;
1923 mutex_lock(&vmm->mutex);
1924 ret = nvkm_vmm_get_locked(vmm, false, true, false, page, 0, size, pvma);
1925 mutex_unlock(&vmm->mutex);
1926 return ret;
1927 }
1928
1929 void
nvkm_vmm_part(struct nvkm_vmm * vmm,struct nvkm_memory * inst)1930 nvkm_vmm_part(struct nvkm_vmm *vmm, struct nvkm_memory *inst)
1931 {
1932 if (inst && vmm && vmm->func->part) {
1933 mutex_lock(&vmm->mutex);
1934 vmm->func->part(vmm, inst);
1935 mutex_unlock(&vmm->mutex);
1936 }
1937 }
1938
1939 int
nvkm_vmm_join(struct nvkm_vmm * vmm,struct nvkm_memory * inst)1940 nvkm_vmm_join(struct nvkm_vmm *vmm, struct nvkm_memory *inst)
1941 {
1942 int ret = 0;
1943 if (vmm->func->join) {
1944 mutex_lock(&vmm->mutex);
1945 ret = vmm->func->join(vmm, inst);
1946 mutex_unlock(&vmm->mutex);
1947 }
1948 return ret;
1949 }
1950
1951 static bool
nvkm_vmm_boot_ptes(struct nvkm_vmm_iter * it,bool pfn,u32 ptei,u32 ptes)1952 nvkm_vmm_boot_ptes(struct nvkm_vmm_iter *it, bool pfn, u32 ptei, u32 ptes)
1953 {
1954 const struct nvkm_vmm_desc *desc = it->desc;
1955 const int type = desc->type == SPT;
1956 nvkm_memory_boot(it->pt[0]->pt[type]->memory, it->vmm);
1957 return false;
1958 }
1959
1960 int
nvkm_vmm_boot(struct nvkm_vmm * vmm)1961 nvkm_vmm_boot(struct nvkm_vmm *vmm)
1962 {
1963 const struct nvkm_vmm_page *page = vmm->func->page;
1964 const u64 limit = vmm->limit - vmm->start;
1965 int ret;
1966
1967 while (page[1].shift)
1968 page++;
1969
1970 ret = nvkm_vmm_ptes_get(vmm, page, vmm->start, limit);
1971 if (ret)
1972 return ret;
1973
1974 nvkm_vmm_iter(vmm, page, vmm->start, limit, "bootstrap", false, false,
1975 nvkm_vmm_boot_ptes, NULL, NULL, NULL);
1976 vmm->bootstrapped = true;
1977 return 0;
1978 }
1979
1980 static void
nvkm_vmm_del(struct kref * kref)1981 nvkm_vmm_del(struct kref *kref)
1982 {
1983 struct nvkm_vmm *vmm = container_of(kref, typeof(*vmm), kref);
1984 nvkm_vmm_dtor(vmm);
1985 kfree(vmm);
1986 }
1987
1988 void
nvkm_vmm_unref(struct nvkm_vmm ** pvmm)1989 nvkm_vmm_unref(struct nvkm_vmm **pvmm)
1990 {
1991 struct nvkm_vmm *vmm = *pvmm;
1992 if (vmm) {
1993 kref_put(&vmm->kref, nvkm_vmm_del);
1994 *pvmm = NULL;
1995 }
1996 }
1997
1998 struct nvkm_vmm *
nvkm_vmm_ref(struct nvkm_vmm * vmm)1999 nvkm_vmm_ref(struct nvkm_vmm *vmm)
2000 {
2001 if (vmm)
2002 kref_get(&vmm->kref);
2003 return vmm;
2004 }
2005
2006 int
nvkm_vmm_new(struct nvkm_device * device,u64 addr,u64 size,void * argv,u32 argc,struct lock_class_key * key,const char * name,struct nvkm_vmm ** pvmm)2007 nvkm_vmm_new(struct nvkm_device *device, u64 addr, u64 size, void *argv,
2008 u32 argc, struct lock_class_key *key, const char *name,
2009 struct nvkm_vmm **pvmm)
2010 {
2011 struct nvkm_mmu *mmu = device->mmu;
2012 struct nvkm_vmm *vmm = NULL;
2013 int ret;
2014 ret = mmu->func->vmm.ctor(mmu, false, addr, size, argv, argc,
2015 key, name, &vmm);
2016 if (ret)
2017 nvkm_vmm_unref(&vmm);
2018 *pvmm = vmm;
2019 return ret;
2020 }
2021