xref: /netbsd-src/sys/external/bsd/drm2/dist/drm/nouveau/nvkm/subdev/clk/nouveau_nvkm_subdev_clk_nv50.c (revision 41ec02673d281bbb3d38e6c78504ce6e30c228c1)
1 /*	$NetBSD: nouveau_nvkm_subdev_clk_nv50.c,v 1.3 2021/12/18 23:45:39 riastradh Exp $	*/
2 
3 /*
4  * Copyright 2012 Red Hat Inc.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Ben Skeggs
25  */
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: nouveau_nvkm_subdev_clk_nv50.c,v 1.3 2021/12/18 23:45:39 riastradh Exp $");
28 
29 #include "nv50.h"
30 #include "pll.h"
31 #include "seq.h"
32 
33 #include <subdev/bios.h>
34 #include <subdev/bios/pll.h>
35 
36 static u32
read_div(struct nv50_clk * clk)37 read_div(struct nv50_clk *clk)
38 {
39 	struct nvkm_device *device = clk->base.subdev.device;
40 	switch (device->chipset) {
41 	case 0x50: /* it exists, but only has bit 31, not the dividers.. */
42 	case 0x84:
43 	case 0x86:
44 	case 0x98:
45 	case 0xa0:
46 		return nvkm_rd32(device, 0x004700);
47 	case 0x92:
48 	case 0x94:
49 	case 0x96:
50 		return nvkm_rd32(device, 0x004800);
51 	default:
52 		return 0x00000000;
53 	}
54 }
55 
56 static u32
read_pll_src(struct nv50_clk * clk,u32 base)57 read_pll_src(struct nv50_clk *clk, u32 base)
58 {
59 	struct nvkm_subdev *subdev = &clk->base.subdev;
60 	struct nvkm_device *device = subdev->device;
61 	u32 coef, ref = nvkm_clk_read(&clk->base, nv_clk_src_crystal);
62 	u32 rsel = nvkm_rd32(device, 0x00e18c);
63 	int P, N, M, id;
64 
65 	switch (device->chipset) {
66 	case 0x50:
67 	case 0xa0:
68 		switch (base) {
69 		case 0x4020:
70 		case 0x4028: id = !!(rsel & 0x00000004); break;
71 		case 0x4008: id = !!(rsel & 0x00000008); break;
72 		case 0x4030: id = 0; break;
73 		default:
74 			nvkm_error(subdev, "ref: bad pll %06x\n", base);
75 			return 0;
76 		}
77 
78 		coef = nvkm_rd32(device, 0x00e81c + (id * 0x0c));
79 		ref *=  (coef & 0x01000000) ? 2 : 4;
80 		P    =  (coef & 0x00070000) >> 16;
81 		N    = ((coef & 0x0000ff00) >> 8) + 1;
82 		M    = ((coef & 0x000000ff) >> 0) + 1;
83 		break;
84 	case 0x84:
85 	case 0x86:
86 	case 0x92:
87 		coef = nvkm_rd32(device, 0x00e81c);
88 		P    = (coef & 0x00070000) >> 16;
89 		N    = (coef & 0x0000ff00) >> 8;
90 		M    = (coef & 0x000000ff) >> 0;
91 		break;
92 	case 0x94:
93 	case 0x96:
94 	case 0x98:
95 		rsel = nvkm_rd32(device, 0x00c050);
96 		switch (base) {
97 		case 0x4020: rsel = (rsel & 0x00000003) >> 0; break;
98 		case 0x4008: rsel = (rsel & 0x0000000c) >> 2; break;
99 		case 0x4028: rsel = (rsel & 0x00001800) >> 11; break;
100 		case 0x4030: rsel = 3; break;
101 		default:
102 			nvkm_error(subdev, "ref: bad pll %06x\n", base);
103 			return 0;
104 		}
105 
106 		switch (rsel) {
107 		case 0: id = 1; break;
108 		case 1: return nvkm_clk_read(&clk->base, nv_clk_src_crystal);
109 		case 2: return nvkm_clk_read(&clk->base, nv_clk_src_href);
110 		case 3: id = 0; break;
111 		}
112 
113 		coef =  nvkm_rd32(device, 0x00e81c + (id * 0x28));
114 		P    = (nvkm_rd32(device, 0x00e824 + (id * 0x28)) >> 16) & 7;
115 		P   += (coef & 0x00070000) >> 16;
116 		N    = (coef & 0x0000ff00) >> 8;
117 		M    = (coef & 0x000000ff) >> 0;
118 		break;
119 	default:
120 		BUG();
121 	}
122 
123 	if (M)
124 		return (ref * N / M) >> P;
125 
126 	return 0;
127 }
128 
129 static u32
read_pll_ref(struct nv50_clk * clk,u32 base)130 read_pll_ref(struct nv50_clk *clk, u32 base)
131 {
132 	struct nvkm_subdev *subdev = &clk->base.subdev;
133 	struct nvkm_device *device = subdev->device;
134 	u32 src, mast = nvkm_rd32(device, 0x00c040);
135 
136 	switch (base) {
137 	case 0x004028:
138 		src = !!(mast & 0x00200000);
139 		break;
140 	case 0x004020:
141 		src = !!(mast & 0x00400000);
142 		break;
143 	case 0x004008:
144 		src = !!(mast & 0x00010000);
145 		break;
146 	case 0x004030:
147 		src = !!(mast & 0x02000000);
148 		break;
149 	case 0x00e810:
150 		return nvkm_clk_read(&clk->base, nv_clk_src_crystal);
151 	default:
152 		nvkm_error(subdev, "bad pll %06x\n", base);
153 		return 0;
154 	}
155 
156 	if (src)
157 		return nvkm_clk_read(&clk->base, nv_clk_src_href);
158 
159 	return read_pll_src(clk, base);
160 }
161 
162 static u32
read_pll(struct nv50_clk * clk,u32 base)163 read_pll(struct nv50_clk *clk, u32 base)
164 {
165 	struct nvkm_device *device = clk->base.subdev.device;
166 	u32 mast = nvkm_rd32(device, 0x00c040);
167 	u32 ctrl = nvkm_rd32(device, base + 0);
168 	u32 coef = nvkm_rd32(device, base + 4);
169 	u32 ref = read_pll_ref(clk, base);
170 	u32 freq = 0;
171 	int N1, N2, M1, M2;
172 
173 	if (base == 0x004028 && (mast & 0x00100000)) {
174 		/* wtf, appears to only disable post-divider on gt200 */
175 		if (device->chipset != 0xa0)
176 			return nvkm_clk_read(&clk->base, nv_clk_src_dom6);
177 	}
178 
179 	N2 = (coef & 0xff000000) >> 24;
180 	M2 = (coef & 0x00ff0000) >> 16;
181 	N1 = (coef & 0x0000ff00) >> 8;
182 	M1 = (coef & 0x000000ff);
183 	if ((ctrl & 0x80000000) && M1) {
184 		freq = ref * N1 / M1;
185 		if ((ctrl & 0x40000100) == 0x40000000) {
186 			if (M2)
187 				freq = freq * N2 / M2;
188 			else
189 				freq = 0;
190 		}
191 	}
192 
193 	return freq;
194 }
195 
196 int
nv50_clk_read(struct nvkm_clk * base,enum nv_clk_src src)197 nv50_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
198 {
199 	struct nv50_clk *clk = nv50_clk(base);
200 	struct nvkm_subdev *subdev = &clk->base.subdev;
201 	struct nvkm_device *device = subdev->device;
202 	u32 mast = nvkm_rd32(device, 0x00c040);
203 	u32 P = 0;
204 
205 	switch (src) {
206 	case nv_clk_src_crystal:
207 		return device->crystal;
208 	case nv_clk_src_href:
209 		return 100000; /* PCIE reference clock */
210 	case nv_clk_src_hclk:
211 		return div_u64((u64)nvkm_clk_read(&clk->base, nv_clk_src_href) * 27778, 10000);
212 	case nv_clk_src_hclkm3:
213 		return nvkm_clk_read(&clk->base, nv_clk_src_hclk) * 3;
214 	case nv_clk_src_hclkm3d2:
215 		return nvkm_clk_read(&clk->base, nv_clk_src_hclk) * 3 / 2;
216 	case nv_clk_src_host:
217 		switch (mast & 0x30000000) {
218 		case 0x00000000: return nvkm_clk_read(&clk->base, nv_clk_src_href);
219 		case 0x10000000: break;
220 		case 0x20000000: /* !0x50 */
221 		case 0x30000000: return nvkm_clk_read(&clk->base, nv_clk_src_hclk);
222 		}
223 		break;
224 	case nv_clk_src_core:
225 		if (!(mast & 0x00100000))
226 			P = (nvkm_rd32(device, 0x004028) & 0x00070000) >> 16;
227 		switch (mast & 0x00000003) {
228 		case 0x00000000: return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P;
229 		case 0x00000001: return nvkm_clk_read(&clk->base, nv_clk_src_dom6);
230 		case 0x00000002: return read_pll(clk, 0x004020) >> P;
231 		case 0x00000003: return read_pll(clk, 0x004028) >> P;
232 		}
233 		break;
234 	case nv_clk_src_shader:
235 		P = (nvkm_rd32(device, 0x004020) & 0x00070000) >> 16;
236 		switch (mast & 0x00000030) {
237 		case 0x00000000:
238 			if (mast & 0x00000080)
239 				return nvkm_clk_read(&clk->base, nv_clk_src_host) >> P;
240 			return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P;
241 		case 0x00000010: break;
242 		case 0x00000020: return read_pll(clk, 0x004028) >> P;
243 		case 0x00000030: return read_pll(clk, 0x004020) >> P;
244 		}
245 		break;
246 	case nv_clk_src_mem:
247 		P = (nvkm_rd32(device, 0x004008) & 0x00070000) >> 16;
248 		if (nvkm_rd32(device, 0x004008) & 0x00000200) {
249 			switch (mast & 0x0000c000) {
250 			case 0x00000000:
251 				return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P;
252 			case 0x00008000:
253 			case 0x0000c000:
254 				return nvkm_clk_read(&clk->base, nv_clk_src_href) >> P;
255 			}
256 		} else {
257 			return read_pll(clk, 0x004008) >> P;
258 		}
259 		break;
260 	case nv_clk_src_vdec:
261 		P = (read_div(clk) & 0x00000700) >> 8;
262 		switch (device->chipset) {
263 		case 0x84:
264 		case 0x86:
265 		case 0x92:
266 		case 0x94:
267 		case 0x96:
268 		case 0xa0:
269 			switch (mast & 0x00000c00) {
270 			case 0x00000000:
271 				if (device->chipset == 0xa0) /* wtf?? */
272 					return nvkm_clk_read(&clk->base, nv_clk_src_core) >> P;
273 				return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P;
274 			case 0x00000400:
275 				return 0;
276 			case 0x00000800:
277 				if (mast & 0x01000000)
278 					return read_pll(clk, 0x004028) >> P;
279 				return read_pll(clk, 0x004030) >> P;
280 			case 0x00000c00:
281 				return nvkm_clk_read(&clk->base, nv_clk_src_core) >> P;
282 			}
283 			break;
284 		case 0x98:
285 			switch (mast & 0x00000c00) {
286 			case 0x00000000:
287 				return nvkm_clk_read(&clk->base, nv_clk_src_core) >> P;
288 			case 0x00000400:
289 				return 0;
290 			case 0x00000800:
291 				return nvkm_clk_read(&clk->base, nv_clk_src_hclkm3d2) >> P;
292 			case 0x00000c00:
293 				return nvkm_clk_read(&clk->base, nv_clk_src_mem) >> P;
294 			}
295 			break;
296 		}
297 		break;
298 	case nv_clk_src_dom6:
299 		switch (device->chipset) {
300 		case 0x50:
301 		case 0xa0:
302 			return read_pll(clk, 0x00e810) >> 2;
303 		case 0x84:
304 		case 0x86:
305 		case 0x92:
306 		case 0x94:
307 		case 0x96:
308 		case 0x98:
309 			P = (read_div(clk) & 0x00000007) >> 0;
310 			switch (mast & 0x0c000000) {
311 			case 0x00000000: return nvkm_clk_read(&clk->base, nv_clk_src_href);
312 			case 0x04000000: break;
313 			case 0x08000000: return nvkm_clk_read(&clk->base, nv_clk_src_hclk);
314 			case 0x0c000000:
315 				return nvkm_clk_read(&clk->base, nv_clk_src_hclkm3) >> P;
316 			}
317 			break;
318 		default:
319 			break;
320 		}
321 	default:
322 		break;
323 	}
324 
325 	nvkm_debug(subdev, "unknown clock source %d %08x\n", src, mast);
326 	return -EINVAL;
327 }
328 
329 static u32
calc_pll(struct nv50_clk * clk,u32 reg,u32 idx,int * N,int * M,int * P)330 calc_pll(struct nv50_clk *clk, u32 reg, u32 idx, int *N, int *M, int *P)
331 {
332 	struct nvkm_subdev *subdev = &clk->base.subdev;
333 	struct nvbios_pll pll;
334 	int ret;
335 
336 	ret = nvbios_pll_parse(subdev->device->bios, reg, &pll);
337 	if (ret)
338 		return 0;
339 
340 	pll.vco2.max_freq = 0;
341 	pll.refclk = read_pll_ref(clk, reg);
342 	if (!pll.refclk)
343 		return 0;
344 
345 	return nv04_pll_calc(subdev, &pll, idx, N, M, NULL, NULL, P);
346 }
347 
348 static inline u32
calc_div(u32 src,u32 target,int * div)349 calc_div(u32 src, u32 target, int *div)
350 {
351 	u32 clk0 = src, clk1 = src;
352 	for (*div = 0; *div <= 7; (*div)++) {
353 		if (clk0 <= target) {
354 			clk1 = clk0 << (*div ? 1 : 0);
355 			break;
356 		}
357 		clk0 >>= 1;
358 	}
359 
360 	if (target - clk0 <= clk1 - target)
361 		return clk0;
362 	(*div)--;
363 	return clk1;
364 }
365 
366 static inline u32
clk_same(u32 a,u32 b)367 clk_same(u32 a, u32 b)
368 {
369 	return ((a / 1000) == (b / 1000));
370 }
371 
372 int
nv50_clk_calc(struct nvkm_clk * base,struct nvkm_cstate * cstate)373 nv50_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
374 {
375 	struct nv50_clk *clk = nv50_clk(base);
376 	struct nv50_clk_hwsq *hwsq = &clk->hwsq;
377 	struct nvkm_subdev *subdev = &clk->base.subdev;
378 	struct nvkm_device *device = subdev->device;
379 	const int shader = cstate->domain[nv_clk_src_shader];
380 	const int core = cstate->domain[nv_clk_src_core];
381 	const int vdec = cstate->domain[nv_clk_src_vdec];
382 	const int dom6 = cstate->domain[nv_clk_src_dom6];
383 	u32 mastm = 0, mastv = 0;
384 	u32 divsm = 0, divsv = 0;
385 	int N, M, P1, P2;
386 	int freq, out;
387 
388 	/* prepare a hwsq script from which we'll perform the reclock */
389 	out = clk_init(hwsq, subdev);
390 	if (out)
391 		return out;
392 
393 	clk_wr32(hwsq, fifo, 0x00000001); /* block fifo */
394 	clk_nsec(hwsq, 8000);
395 	clk_setf(hwsq, 0x10, 0x00); /* disable fb */
396 	clk_wait(hwsq, 0x00, 0x01); /* wait for fb disabled */
397 
398 	/* vdec: avoid modifying xpll until we know exactly how the other
399 	 * clock domains work, i suspect at least some of them can also be
400 	 * tied to xpll...
401 	 */
402 	if (vdec) {
403 		/* see how close we can get using nvclk as a source */
404 		freq = calc_div(core, vdec, &P1);
405 
406 		/* see how close we can get using xpll/hclk as a source */
407 		if (device->chipset != 0x98)
408 			out = read_pll(clk, 0x004030);
409 		else
410 			out = nvkm_clk_read(&clk->base, nv_clk_src_hclkm3d2);
411 		out = calc_div(out, vdec, &P2);
412 
413 		/* select whichever gets us closest */
414 		if (abs(vdec - freq) <= abs(vdec - out)) {
415 			if (device->chipset != 0x98)
416 				mastv |= 0x00000c00;
417 			divsv |= P1 << 8;
418 		} else {
419 			mastv |= 0x00000800;
420 			divsv |= P2 << 8;
421 		}
422 
423 		mastm |= 0x00000c00;
424 		divsm |= 0x00000700;
425 	}
426 
427 	/* dom6: nfi what this is, but we're limited to various combinations
428 	 * of the host clock frequency
429 	 */
430 	if (dom6) {
431 		if (clk_same(dom6, nvkm_clk_read(&clk->base, nv_clk_src_href))) {
432 			mastv |= 0x00000000;
433 		} else
434 		if (clk_same(dom6, nvkm_clk_read(&clk->base, nv_clk_src_hclk))) {
435 			mastv |= 0x08000000;
436 		} else {
437 			freq = nvkm_clk_read(&clk->base, nv_clk_src_hclk) * 3;
438 			calc_div(freq, dom6, &P1);
439 
440 			mastv |= 0x0c000000;
441 			divsv |= P1;
442 		}
443 
444 		mastm |= 0x0c000000;
445 		divsm |= 0x00000007;
446 	}
447 
448 	/* vdec/dom6: switch to "safe" clocks temporarily, update dividers
449 	 * and then switch to target clocks
450 	 */
451 	clk_mask(hwsq, mast, mastm, 0x00000000);
452 	clk_mask(hwsq, divs, divsm, divsv);
453 	clk_mask(hwsq, mast, mastm, mastv);
454 
455 	/* core/shader: disconnect nvclk/sclk from their PLLs (nvclk to dom6,
456 	 * sclk to hclk) before reprogramming
457 	 */
458 	if (device->chipset < 0x92)
459 		clk_mask(hwsq, mast, 0x001000b0, 0x00100080);
460 	else
461 		clk_mask(hwsq, mast, 0x000000b3, 0x00000081);
462 
463 	/* core: for the moment at least, always use nvpll */
464 	freq = calc_pll(clk, 0x4028, core, &N, &M, &P1);
465 	if (freq == 0)
466 		return -ERANGE;
467 
468 	clk_mask(hwsq, nvpll[0], 0xc03f0100,
469 				 0x80000000 | (P1 << 19) | (P1 << 16));
470 	clk_mask(hwsq, nvpll[1], 0x0000ffff, (N << 8) | M);
471 
472 	/* shader: tie to nvclk if possible, otherwise use spll.  have to be
473 	 * very careful that the shader clock is at least twice the core, or
474 	 * some chipsets will be very unhappy.  i expect most or all of these
475 	 * cases will be handled by tying to nvclk, but it's possible there's
476 	 * corners
477 	 */
478 	if (P1-- && shader == (core << 1)) {
479 		clk_mask(hwsq, spll[0], 0xc03f0100, (P1 << 19) | (P1 << 16));
480 		clk_mask(hwsq, mast, 0x00100033, 0x00000023);
481 	} else {
482 		freq = calc_pll(clk, 0x4020, shader, &N, &M, &P1);
483 		if (freq == 0)
484 			return -ERANGE;
485 
486 		clk_mask(hwsq, spll[0], 0xc03f0100,
487 					0x80000000 | (P1 << 19) | (P1 << 16));
488 		clk_mask(hwsq, spll[1], 0x0000ffff, (N << 8) | M);
489 		clk_mask(hwsq, mast, 0x00100033, 0x00000033);
490 	}
491 
492 	/* restore normal operation */
493 	clk_setf(hwsq, 0x10, 0x01); /* enable fb */
494 	clk_wait(hwsq, 0x00, 0x00); /* wait for fb enabled */
495 	clk_wr32(hwsq, fifo, 0x00000000); /* un-block fifo */
496 	return 0;
497 }
498 
499 int
nv50_clk_prog(struct nvkm_clk * base)500 nv50_clk_prog(struct nvkm_clk *base)
501 {
502 	struct nv50_clk *clk = nv50_clk(base);
503 	return clk_exec(&clk->hwsq, true);
504 }
505 
506 void
nv50_clk_tidy(struct nvkm_clk * base)507 nv50_clk_tidy(struct nvkm_clk *base)
508 {
509 	struct nv50_clk *clk = nv50_clk(base);
510 	clk_exec(&clk->hwsq, false);
511 }
512 
513 int
nv50_clk_new_(const struct nvkm_clk_func * func,struct nvkm_device * device,int index,bool allow_reclock,struct nvkm_clk ** pclk)514 nv50_clk_new_(const struct nvkm_clk_func *func, struct nvkm_device *device,
515 	      int index, bool allow_reclock, struct nvkm_clk **pclk)
516 {
517 	struct nv50_clk *clk;
518 	int ret;
519 
520 	if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL)))
521 		return -ENOMEM;
522 	ret = nvkm_clk_ctor(func, device, index, allow_reclock, &clk->base);
523 	*pclk = &clk->base;
524 	if (ret)
525 		return ret;
526 
527 	clk->hwsq.r_fifo = hwsq_reg(0x002504);
528 	clk->hwsq.r_spll[0] = hwsq_reg(0x004020);
529 	clk->hwsq.r_spll[1] = hwsq_reg(0x004024);
530 	clk->hwsq.r_nvpll[0] = hwsq_reg(0x004028);
531 	clk->hwsq.r_nvpll[1] = hwsq_reg(0x00402c);
532 	switch (device->chipset) {
533 	case 0x92:
534 	case 0x94:
535 	case 0x96:
536 		clk->hwsq.r_divs = hwsq_reg(0x004800);
537 		break;
538 	default:
539 		clk->hwsq.r_divs = hwsq_reg(0x004700);
540 		break;
541 	}
542 	clk->hwsq.r_mast = hwsq_reg(0x00c040);
543 	return 0;
544 }
545 
546 static const struct nvkm_clk_func
547 nv50_clk = {
548 	.read = nv50_clk_read,
549 	.calc = nv50_clk_calc,
550 	.prog = nv50_clk_prog,
551 	.tidy = nv50_clk_tidy,
552 	.domains = {
553 		{ nv_clk_src_crystal, 0xff },
554 		{ nv_clk_src_href   , 0xff },
555 		{ nv_clk_src_core   , 0xff, 0, "core", 1000 },
556 		{ nv_clk_src_shader , 0xff, 0, "shader", 1000 },
557 		{ nv_clk_src_mem    , 0xff, 0, "memory", 1000 },
558 		{ nv_clk_src_max }
559 	}
560 };
561 
562 int
nv50_clk_new(struct nvkm_device * device,int index,struct nvkm_clk ** pclk)563 nv50_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk)
564 {
565 	return nv50_clk_new_(&nv50_clk, device, index, false, pclk);
566 }
567