xref: /openbsd-src/gnu/gcc/gcc/reload.c (revision 4e0f4870b0b8c4d71dfcec05b705b57ff6c23ea4)
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2    Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3    1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006  Free Software Foundation,
4    Inc.
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12 
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING.  If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA.  */
22 
23 /* This file contains subroutines used only from the file reload1.c.
24    It knows how to scan one insn for operands and values
25    that need to be copied into registers to make valid code.
26    It also finds other operands and values which are valid
27    but for which equivalent values in registers exist and
28    ought to be used instead.
29 
30    Before processing the first insn of the function, call `init_reload'.
31    init_reload actually has to be called earlier anyway.
32 
33    To scan an insn, call `find_reloads'.  This does two things:
34    1. sets up tables describing which values must be reloaded
35    for this insn, and what kind of hard regs they must be reloaded into;
36    2. optionally record the locations where those values appear in
37    the data, so they can be replaced properly later.
38    This is done only if the second arg to `find_reloads' is nonzero.
39 
40    The third arg to `find_reloads' specifies the number of levels
41    of indirect addressing supported by the machine.  If it is zero,
42    indirect addressing is not valid.  If it is one, (MEM (REG n))
43    is valid even if (REG n) did not get a hard register; if it is two,
44    (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
45    hard register, and similarly for higher values.
46 
47    Then you must choose the hard regs to reload those pseudo regs into,
48    and generate appropriate load insns before this insn and perhaps
49    also store insns after this insn.  Set up the array `reload_reg_rtx'
50    to contain the REG rtx's for the registers you used.  In some
51    cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
52    for certain reloads.  Then that tells you which register to use,
53    so you do not need to allocate one.  But you still do need to add extra
54    instructions to copy the value into and out of that register.
55 
56    Finally you must call `subst_reloads' to substitute the reload reg rtx's
57    into the locations already recorded.
58 
59 NOTE SIDE EFFECTS:
60 
61    find_reloads can alter the operands of the instruction it is called on.
62 
63    1. Two operands of any sort may be interchanged, if they are in a
64    commutative instruction.
65    This happens only if find_reloads thinks the instruction will compile
66    better that way.
67 
68    2. Pseudo-registers that are equivalent to constants are replaced
69    with those constants if they are not in hard registers.
70 
71 1 happens every time find_reloads is called.
72 2 happens only when REPLACE is 1, which is only when
73 actually doing the reloads, not when just counting them.
74 
75 Using a reload register for several reloads in one insn:
76 
77 When an insn has reloads, it is considered as having three parts:
78 the input reloads, the insn itself after reloading, and the output reloads.
79 Reloads of values used in memory addresses are often needed for only one part.
80 
81 When this is so, reload_when_needed records which part needs the reload.
82 Two reloads for different parts of the insn can share the same reload
83 register.
84 
85 When a reload is used for addresses in multiple parts, or when it is
86 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
87 a register with any other reload.  */
88 
89 #define REG_OK_STRICT
90 
91 #include "config.h"
92 #include "system.h"
93 #include "coretypes.h"
94 #include "tm.h"
95 #include "rtl.h"
96 #include "tm_p.h"
97 #include "insn-config.h"
98 #include "expr.h"
99 #include "optabs.h"
100 #include "recog.h"
101 #include "reload.h"
102 #include "regs.h"
103 #include "addresses.h"
104 #include "hard-reg-set.h"
105 #include "flags.h"
106 #include "real.h"
107 #include "output.h"
108 #include "function.h"
109 #include "toplev.h"
110 #include "params.h"
111 #include "target.h"
112 
113 /* True if X is a constant that can be forced into the constant pool.  */
114 #define CONST_POOL_OK_P(X)			\
115   (CONSTANT_P (X)				\
116    && GET_CODE (X) != HIGH			\
117    && !targetm.cannot_force_const_mem (X))
118 
119 /* True if C is a non-empty register class that has too few registers
120    to be safely used as a reload target class.  */
121 #define SMALL_REGISTER_CLASS_P(C) \
122   (reg_class_size [(C)] == 1 \
123    || (reg_class_size [(C)] >= 1 && CLASS_LIKELY_SPILLED_P (C)))
124 
125 
126 /* All reloads of the current insn are recorded here.  See reload.h for
127    comments.  */
128 int n_reloads;
129 struct reload rld[MAX_RELOADS];
130 
131 /* All the "earlyclobber" operands of the current insn
132    are recorded here.  */
133 int n_earlyclobbers;
134 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
135 
136 int reload_n_operands;
137 
138 /* Replacing reloads.
139 
140    If `replace_reloads' is nonzero, then as each reload is recorded
141    an entry is made for it in the table `replacements'.
142    Then later `subst_reloads' can look through that table and
143    perform all the replacements needed.  */
144 
145 /* Nonzero means record the places to replace.  */
146 static int replace_reloads;
147 
148 /* Each replacement is recorded with a structure like this.  */
149 struct replacement
150 {
151   rtx *where;			/* Location to store in */
152   rtx *subreg_loc;		/* Location of SUBREG if WHERE is inside
153 				   a SUBREG; 0 otherwise.  */
154   int what;			/* which reload this is for */
155   enum machine_mode mode;	/* mode it must have */
156 };
157 
158 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
159 
160 /* Number of replacements currently recorded.  */
161 static int n_replacements;
162 
163 /* Used to track what is modified by an operand.  */
164 struct decomposition
165 {
166   int reg_flag;		/* Nonzero if referencing a register.  */
167   int safe;		/* Nonzero if this can't conflict with anything.  */
168   rtx base;		/* Base address for MEM.  */
169   HOST_WIDE_INT start;	/* Starting offset or register number.  */
170   HOST_WIDE_INT end;	/* Ending offset or register number.  */
171 };
172 
173 #ifdef SECONDARY_MEMORY_NEEDED
174 
175 /* Save MEMs needed to copy from one class of registers to another.  One MEM
176    is used per mode, but normally only one or two modes are ever used.
177 
178    We keep two versions, before and after register elimination.  The one
179    after register elimination is record separately for each operand.  This
180    is done in case the address is not valid to be sure that we separately
181    reload each.  */
182 
183 static rtx secondary_memlocs[NUM_MACHINE_MODES];
184 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
185 static int secondary_memlocs_elim_used = 0;
186 #endif
187 
188 /* The instruction we are doing reloads for;
189    so we can test whether a register dies in it.  */
190 static rtx this_insn;
191 
192 /* Nonzero if this instruction is a user-specified asm with operands.  */
193 static int this_insn_is_asm;
194 
195 /* If hard_regs_live_known is nonzero,
196    we can tell which hard regs are currently live,
197    at least enough to succeed in choosing dummy reloads.  */
198 static int hard_regs_live_known;
199 
200 /* Indexed by hard reg number,
201    element is nonnegative if hard reg has been spilled.
202    This vector is passed to `find_reloads' as an argument
203    and is not changed here.  */
204 static short *static_reload_reg_p;
205 
206 /* Set to 1 in subst_reg_equivs if it changes anything.  */
207 static int subst_reg_equivs_changed;
208 
209 /* On return from push_reload, holds the reload-number for the OUT
210    operand, which can be different for that from the input operand.  */
211 static int output_reloadnum;
212 
213   /* Compare two RTX's.  */
214 #define MATCHES(x, y) \
215  (x == y || (x != 0 && (REG_P (x)				\
216 			? REG_P (y) && REGNO (x) == REGNO (y)	\
217 			: rtx_equal_p (x, y) && ! side_effects_p (x))))
218 
219   /* Indicates if two reloads purposes are for similar enough things that we
220      can merge their reloads.  */
221 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
222   ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER	\
223    || ((when1) == (when2) && (op1) == (op2))		\
224    || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
225    || ((when1) == RELOAD_FOR_OPERAND_ADDRESS		\
226        && (when2) == RELOAD_FOR_OPERAND_ADDRESS)	\
227    || ((when1) == RELOAD_FOR_OTHER_ADDRESS		\
228        && (when2) == RELOAD_FOR_OTHER_ADDRESS))
229 
230   /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged.  */
231 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
232   ((when1) != (when2)					\
233    || ! ((op1) == (op2)					\
234 	 || (when1) == RELOAD_FOR_INPUT			\
235 	 || (when1) == RELOAD_FOR_OPERAND_ADDRESS	\
236 	 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
237 
238   /* If we are going to reload an address, compute the reload type to
239      use.  */
240 #define ADDR_TYPE(type)					\
241   ((type) == RELOAD_FOR_INPUT_ADDRESS			\
242    ? RELOAD_FOR_INPADDR_ADDRESS				\
243    : ((type) == RELOAD_FOR_OUTPUT_ADDRESS		\
244       ? RELOAD_FOR_OUTADDR_ADDRESS			\
245       : (type)))
246 
247 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
248 				  enum machine_mode, enum reload_type,
249 				  enum insn_code *, secondary_reload_info *);
250 static enum reg_class find_valid_class (enum machine_mode, enum machine_mode,
251 					int, unsigned int);
252 static int reload_inner_reg_of_subreg (rtx, enum machine_mode, int);
253 static void push_replacement (rtx *, int, enum machine_mode);
254 static void dup_replacements (rtx *, rtx *);
255 static void combine_reloads (void);
256 static int find_reusable_reload (rtx *, rtx, enum reg_class,
257 				 enum reload_type, int, int);
258 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
259 			      enum machine_mode, enum reg_class, int, int);
260 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
261 static struct decomposition decompose (rtx);
262 static int immune_p (rtx, rtx, struct decomposition);
263 static int alternative_allows_memconst (const char *, int);
264 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
265 				int *);
266 static rtx make_memloc (rtx, int);
267 static int maybe_memory_address_p (enum machine_mode, rtx, rtx *);
268 static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
269 				 int, enum reload_type, int, rtx);
270 static rtx subst_reg_equivs (rtx, rtx);
271 static rtx subst_indexed_address (rtx);
272 static void update_auto_inc_notes (rtx, int, int);
273 static int find_reloads_address_1 (enum machine_mode, rtx, int,
274 				   enum rtx_code, enum rtx_code, rtx *,
275 				   int, enum reload_type,int, rtx);
276 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
277 				       enum machine_mode, int,
278 				       enum reload_type, int);
279 static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
280 					int, rtx);
281 static void copy_replacements_1 (rtx *, rtx *, int);
282 static int find_inc_amount (rtx, rtx);
283 static int refers_to_mem_for_reload_p (rtx);
284 static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
285 					 rtx, rtx *);
286 
287 /* Add NEW to reg_equiv_alt_mem_list[REGNO] if it's not present in the
288    list yet.  */
289 
290 static void
push_reg_equiv_alt_mem(int regno,rtx mem)291 push_reg_equiv_alt_mem (int regno, rtx mem)
292 {
293   rtx it;
294 
295   for (it = reg_equiv_alt_mem_list [regno]; it; it = XEXP (it, 1))
296     if (rtx_equal_p (XEXP (it, 0), mem))
297       return;
298 
299   reg_equiv_alt_mem_list [regno]
300     = alloc_EXPR_LIST (REG_EQUIV, mem,
301 		       reg_equiv_alt_mem_list [regno]);
302 }
303 
304 /* Determine if any secondary reloads are needed for loading (if IN_P is
305    nonzero) or storing (if IN_P is zero) X to or from a reload register of
306    register class RELOAD_CLASS in mode RELOAD_MODE.  If secondary reloads
307    are needed, push them.
308 
309    Return the reload number of the secondary reload we made, or -1 if
310    we didn't need one.  *PICODE is set to the insn_code to use if we do
311    need a secondary reload.  */
312 
313 static int
push_secondary_reload(int in_p,rtx x,int opnum,int optional,enum reg_class reload_class,enum machine_mode reload_mode,enum reload_type type,enum insn_code * picode,secondary_reload_info * prev_sri)314 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
315 		       enum reg_class reload_class,
316 		       enum machine_mode reload_mode, enum reload_type type,
317 		       enum insn_code *picode, secondary_reload_info *prev_sri)
318 {
319   enum reg_class class = NO_REGS;
320   enum reg_class scratch_class;
321   enum machine_mode mode = reload_mode;
322   enum insn_code icode = CODE_FOR_nothing;
323   enum insn_code t_icode = CODE_FOR_nothing;
324   enum reload_type secondary_type;
325   int s_reload, t_reload = -1;
326   const char *scratch_constraint;
327   char letter;
328   secondary_reload_info sri;
329 
330   if (type == RELOAD_FOR_INPUT_ADDRESS
331       || type == RELOAD_FOR_OUTPUT_ADDRESS
332       || type == RELOAD_FOR_INPADDR_ADDRESS
333       || type == RELOAD_FOR_OUTADDR_ADDRESS)
334     secondary_type = type;
335   else
336     secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
337 
338   *picode = CODE_FOR_nothing;
339 
340   /* If X is a paradoxical SUBREG, use the inner value to determine both the
341      mode and object being reloaded.  */
342   if (GET_CODE (x) == SUBREG
343       && (GET_MODE_SIZE (GET_MODE (x))
344 	  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
345     {
346       x = SUBREG_REG (x);
347       reload_mode = GET_MODE (x);
348     }
349 
350   /* If X is a pseudo-register that has an equivalent MEM (actually, if it
351      is still a pseudo-register by now, it *must* have an equivalent MEM
352      but we don't want to assume that), use that equivalent when seeing if
353      a secondary reload is needed since whether or not a reload is needed
354      might be sensitive to the form of the MEM.  */
355 
356   if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
357       && reg_equiv_mem[REGNO (x)] != 0)
358     x = reg_equiv_mem[REGNO (x)];
359 
360   sri.icode = CODE_FOR_nothing;
361   sri.prev_sri = prev_sri;
362   class = targetm.secondary_reload (in_p, x, reload_class, reload_mode, &sri);
363   icode = sri.icode;
364 
365   /* If we don't need any secondary registers, done.  */
366   if (class == NO_REGS && icode == CODE_FOR_nothing)
367     return -1;
368 
369   if (class != NO_REGS)
370     t_reload = push_secondary_reload (in_p, x, opnum, optional, class,
371 				      reload_mode, type, &t_icode, &sri);
372 
373   /* If we will be using an insn, the secondary reload is for a
374      scratch register.  */
375 
376   if (icode != CODE_FOR_nothing)
377     {
378       /* If IN_P is nonzero, the reload register will be the output in
379 	 operand 0.  If IN_P is zero, the reload register will be the input
380 	 in operand 1.  Outputs should have an initial "=", which we must
381 	 skip.  */
382 
383       /* ??? It would be useful to be able to handle only two, or more than
384 	 three, operands, but for now we can only handle the case of having
385 	 exactly three: output, input and one temp/scratch.  */
386       gcc_assert (insn_data[(int) icode].n_operands == 3);
387 
388       /* ??? We currently have no way to represent a reload that needs
389 	 an icode to reload from an intermediate tertiary reload register.
390 	 We should probably have a new field in struct reload to tag a
391 	 chain of scratch operand reloads onto.   */
392       gcc_assert (class == NO_REGS);
393 
394       scratch_constraint = insn_data[(int) icode].operand[2].constraint;
395       gcc_assert (*scratch_constraint == '=');
396       scratch_constraint++;
397       if (*scratch_constraint == '&')
398 	scratch_constraint++;
399       letter = *scratch_constraint;
400       scratch_class = (letter == 'r' ? GENERAL_REGS
401 		       : REG_CLASS_FROM_CONSTRAINT ((unsigned char) letter,
402 						   scratch_constraint));
403 
404       class = scratch_class;
405       mode = insn_data[(int) icode].operand[2].mode;
406     }
407 
408   /* This case isn't valid, so fail.  Reload is allowed to use the same
409      register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
410      in the case of a secondary register, we actually need two different
411      registers for correct code.  We fail here to prevent the possibility of
412      silently generating incorrect code later.
413 
414      The convention is that secondary input reloads are valid only if the
415      secondary_class is different from class.  If you have such a case, you
416      can not use secondary reloads, you must work around the problem some
417      other way.
418 
419      Allow this when a reload_in/out pattern is being used.  I.e. assume
420      that the generated code handles this case.  */
421 
422   gcc_assert (!in_p || class != reload_class || icode != CODE_FOR_nothing
423 	      || t_icode != CODE_FOR_nothing);
424 
425   /* See if we can reuse an existing secondary reload.  */
426   for (s_reload = 0; s_reload < n_reloads; s_reload++)
427     if (rld[s_reload].secondary_p
428 	&& (reg_class_subset_p (class, rld[s_reload].class)
429 	    || reg_class_subset_p (rld[s_reload].class, class))
430 	&& ((in_p && rld[s_reload].inmode == mode)
431 	    || (! in_p && rld[s_reload].outmode == mode))
432 	&& ((in_p && rld[s_reload].secondary_in_reload == t_reload)
433 	    || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
434 	&& ((in_p && rld[s_reload].secondary_in_icode == t_icode)
435 	    || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
436 	&& (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
437 	&& MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
438 			     opnum, rld[s_reload].opnum))
439       {
440 	if (in_p)
441 	  rld[s_reload].inmode = mode;
442 	if (! in_p)
443 	  rld[s_reload].outmode = mode;
444 
445 	if (reg_class_subset_p (class, rld[s_reload].class))
446 	  rld[s_reload].class = class;
447 
448 	rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
449 	rld[s_reload].optional &= optional;
450 	rld[s_reload].secondary_p = 1;
451 	if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
452 			    opnum, rld[s_reload].opnum))
453 	  rld[s_reload].when_needed = RELOAD_OTHER;
454       }
455 
456   if (s_reload == n_reloads)
457     {
458 #ifdef SECONDARY_MEMORY_NEEDED
459       /* If we need a memory location to copy between the two reload regs,
460 	 set it up now.  Note that we do the input case before making
461 	 the reload and the output case after.  This is due to the
462 	 way reloads are output.  */
463 
464       if (in_p && icode == CODE_FOR_nothing
465 	  && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
466 	{
467 	  get_secondary_mem (x, reload_mode, opnum, type);
468 
469 	  /* We may have just added new reloads.  Make sure we add
470 	     the new reload at the end.  */
471 	  s_reload = n_reloads;
472 	}
473 #endif
474 
475       /* We need to make a new secondary reload for this register class.  */
476       rld[s_reload].in = rld[s_reload].out = 0;
477       rld[s_reload].class = class;
478 
479       rld[s_reload].inmode = in_p ? mode : VOIDmode;
480       rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
481       rld[s_reload].reg_rtx = 0;
482       rld[s_reload].optional = optional;
483       rld[s_reload].inc = 0;
484       /* Maybe we could combine these, but it seems too tricky.  */
485       rld[s_reload].nocombine = 1;
486       rld[s_reload].in_reg = 0;
487       rld[s_reload].out_reg = 0;
488       rld[s_reload].opnum = opnum;
489       rld[s_reload].when_needed = secondary_type;
490       rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
491       rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
492       rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
493       rld[s_reload].secondary_out_icode
494 	= ! in_p ? t_icode : CODE_FOR_nothing;
495       rld[s_reload].secondary_p = 1;
496 
497       n_reloads++;
498 
499 #ifdef SECONDARY_MEMORY_NEEDED
500       if (! in_p && icode == CODE_FOR_nothing
501 	  && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
502 	get_secondary_mem (x, mode, opnum, type);
503 #endif
504     }
505 
506   *picode = icode;
507   return s_reload;
508 }
509 
510 /* If a secondary reload is needed, return its class.  If both an intermediate
511    register and a scratch register is needed, we return the class of the
512    intermediate register.  */
513 enum reg_class
secondary_reload_class(bool in_p,enum reg_class class,enum machine_mode mode,rtx x)514 secondary_reload_class (bool in_p, enum reg_class class,
515 			enum machine_mode mode, rtx x)
516 {
517   enum insn_code icode;
518   secondary_reload_info sri;
519 
520   sri.icode = CODE_FOR_nothing;
521   sri.prev_sri = NULL;
522   class = targetm.secondary_reload (in_p, x, class, mode, &sri);
523   icode = sri.icode;
524 
525   /* If there are no secondary reloads at all, we return NO_REGS.
526      If an intermediate register is needed, we return its class.  */
527   if (icode == CODE_FOR_nothing || class != NO_REGS)
528     return class;
529 
530   /* No intermediate register is needed, but we have a special reload
531      pattern, which we assume for now needs a scratch register.  */
532   return scratch_reload_class (icode);
533 }
534 
535 /* ICODE is the insn_code of a reload pattern.  Check that it has exactly
536    three operands, verify that operand 2 is an output operand, and return
537    its register class.
538    ??? We'd like to be able to handle any pattern with at least 2 operands,
539    for zero or more scratch registers, but that needs more infrastructure.  */
540 enum reg_class
scratch_reload_class(enum insn_code icode)541 scratch_reload_class (enum insn_code icode)
542 {
543   const char *scratch_constraint;
544   char scratch_letter;
545   enum reg_class class;
546 
547   gcc_assert (insn_data[(int) icode].n_operands == 3);
548   scratch_constraint = insn_data[(int) icode].operand[2].constraint;
549   gcc_assert (*scratch_constraint == '=');
550   scratch_constraint++;
551   if (*scratch_constraint == '&')
552     scratch_constraint++;
553   scratch_letter = *scratch_constraint;
554   if (scratch_letter == 'r')
555     return GENERAL_REGS;
556   class = REG_CLASS_FROM_CONSTRAINT ((unsigned char) scratch_letter,
557 				     scratch_constraint);
558   gcc_assert (class != NO_REGS);
559   return class;
560 }
561 
562 #ifdef SECONDARY_MEMORY_NEEDED
563 
564 /* Return a memory location that will be used to copy X in mode MODE.
565    If we haven't already made a location for this mode in this insn,
566    call find_reloads_address on the location being returned.  */
567 
568 rtx
get_secondary_mem(rtx x ATTRIBUTE_UNUSED,enum machine_mode mode,int opnum,enum reload_type type)569 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
570 		   int opnum, enum reload_type type)
571 {
572   rtx loc;
573   int mem_valid;
574 
575   /* By default, if MODE is narrower than a word, widen it to a word.
576      This is required because most machines that require these memory
577      locations do not support short load and stores from all registers
578      (e.g., FP registers).  */
579 
580 #ifdef SECONDARY_MEMORY_NEEDED_MODE
581   mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
582 #else
583   if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
584     mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
585 #endif
586 
587   /* If we already have made a MEM for this operand in MODE, return it.  */
588   if (secondary_memlocs_elim[(int) mode][opnum] != 0)
589     return secondary_memlocs_elim[(int) mode][opnum];
590 
591   /* If this is the first time we've tried to get a MEM for this mode,
592      allocate a new one.  `something_changed' in reload will get set
593      by noticing that the frame size has changed.  */
594 
595   if (secondary_memlocs[(int) mode] == 0)
596     {
597 #ifdef SECONDARY_MEMORY_NEEDED_RTX
598       secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
599 #else
600       secondary_memlocs[(int) mode]
601 	= assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
602 #endif
603     }
604 
605   /* Get a version of the address doing any eliminations needed.  If that
606      didn't give us a new MEM, make a new one if it isn't valid.  */
607 
608   loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
609   mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
610 
611   if (! mem_valid && loc == secondary_memlocs[(int) mode])
612     loc = copy_rtx (loc);
613 
614   /* The only time the call below will do anything is if the stack
615      offset is too large.  In that case IND_LEVELS doesn't matter, so we
616      can just pass a zero.  Adjust the type to be the address of the
617      corresponding object.  If the address was valid, save the eliminated
618      address.  If it wasn't valid, we need to make a reload each time, so
619      don't save it.  */
620 
621   if (! mem_valid)
622     {
623       type =  (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
624 	       : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
625 	       : RELOAD_OTHER);
626 
627       find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
628 			    opnum, type, 0, 0);
629     }
630 
631   secondary_memlocs_elim[(int) mode][opnum] = loc;
632   if (secondary_memlocs_elim_used <= (int)mode)
633     secondary_memlocs_elim_used = (int)mode + 1;
634   return loc;
635 }
636 
637 /* Clear any secondary memory locations we've made.  */
638 
639 void
clear_secondary_mem(void)640 clear_secondary_mem (void)
641 {
642   memset (secondary_memlocs, 0, sizeof secondary_memlocs);
643 }
644 #endif /* SECONDARY_MEMORY_NEEDED */
645 
646 
647 /* Find the largest class which has at least one register valid in
648    mode INNER, and which for every such register, that register number
649    plus N is also valid in OUTER (if in range) and is cheap to move
650    into REGNO.  Such a class must exist.  */
651 
652 static enum reg_class
find_valid_class(enum machine_mode outer ATTRIBUTE_UNUSED,enum machine_mode inner ATTRIBUTE_UNUSED,int n,unsigned int dest_regno ATTRIBUTE_UNUSED)653 find_valid_class (enum machine_mode outer ATTRIBUTE_UNUSED,
654 		  enum machine_mode inner ATTRIBUTE_UNUSED, int n,
655 		  unsigned int dest_regno ATTRIBUTE_UNUSED)
656 {
657   int best_cost = -1;
658   int class;
659   int regno;
660   enum reg_class best_class = NO_REGS;
661   enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
662   unsigned int best_size = 0;
663   int cost;
664 
665   for (class = 1; class < N_REG_CLASSES; class++)
666     {
667       int bad = 0;
668       int good = 0;
669       for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
670 	if (TEST_HARD_REG_BIT (reg_class_contents[class], regno))
671 	  {
672 	    if (HARD_REGNO_MODE_OK (regno, inner))
673 	      {
674 		good = 1;
675 		if (! TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
676 		    || ! HARD_REGNO_MODE_OK (regno + n, outer))
677 		  bad = 1;
678 	      }
679 	  }
680 
681       if (bad || !good)
682 	continue;
683       cost = REGISTER_MOVE_COST (outer, class, dest_class);
684 
685       if ((reg_class_size[class] > best_size
686 	   && (best_cost < 0 || best_cost >= cost))
687 	  || best_cost > cost)
688 	{
689 	  best_class = class;
690 	  best_size = reg_class_size[class];
691 	  best_cost = REGISTER_MOVE_COST (outer, class, dest_class);
692 	}
693     }
694 
695   gcc_assert (best_size != 0);
696 
697   return best_class;
698 }
699 
700 /* Return the number of a previously made reload that can be combined with
701    a new one, or n_reloads if none of the existing reloads can be used.
702    OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
703    push_reload, they determine the kind of the new reload that we try to
704    combine.  P_IN points to the corresponding value of IN, which can be
705    modified by this function.
706    DONT_SHARE is nonzero if we can't share any input-only reload for IN.  */
707 
708 static int
find_reusable_reload(rtx * p_in,rtx out,enum reg_class class,enum reload_type type,int opnum,int dont_share)709 find_reusable_reload (rtx *p_in, rtx out, enum reg_class class,
710 		      enum reload_type type, int opnum, int dont_share)
711 {
712   rtx in = *p_in;
713   int i;
714   /* We can't merge two reloads if the output of either one is
715      earlyclobbered.  */
716 
717   if (earlyclobber_operand_p (out))
718     return n_reloads;
719 
720   /* We can use an existing reload if the class is right
721      and at least one of IN and OUT is a match
722      and the other is at worst neutral.
723      (A zero compared against anything is neutral.)
724 
725      If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
726      for the same thing since that can cause us to need more reload registers
727      than we otherwise would.  */
728 
729   for (i = 0; i < n_reloads; i++)
730     if ((reg_class_subset_p (class, rld[i].class)
731 	 || reg_class_subset_p (rld[i].class, class))
732 	/* If the existing reload has a register, it must fit our class.  */
733 	&& (rld[i].reg_rtx == 0
734 	    || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
735 				  true_regnum (rld[i].reg_rtx)))
736 	&& ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
737 	     && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
738 	    || (out != 0 && MATCHES (rld[i].out, out)
739 		&& (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
740 	&& (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
741 	&& (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
742 	&& MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
743       return i;
744 
745   /* Reloading a plain reg for input can match a reload to postincrement
746      that reg, since the postincrement's value is the right value.
747      Likewise, it can match a preincrement reload, since we regard
748      the preincrementation as happening before any ref in this insn
749      to that register.  */
750   for (i = 0; i < n_reloads; i++)
751     if ((reg_class_subset_p (class, rld[i].class)
752 	 || reg_class_subset_p (rld[i].class, class))
753 	/* If the existing reload has a register, it must fit our
754 	   class.  */
755 	&& (rld[i].reg_rtx == 0
756 	    || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
757 				  true_regnum (rld[i].reg_rtx)))
758 	&& out == 0 && rld[i].out == 0 && rld[i].in != 0
759 	&& ((REG_P (in)
760 	     && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
761 	     && MATCHES (XEXP (rld[i].in, 0), in))
762 	    || (REG_P (rld[i].in)
763 		&& GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
764 		&& MATCHES (XEXP (in, 0), rld[i].in)))
765 	&& (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
766 	&& (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
767 	&& MERGABLE_RELOADS (type, rld[i].when_needed,
768 			     opnum, rld[i].opnum))
769       {
770 	/* Make sure reload_in ultimately has the increment,
771 	   not the plain register.  */
772 	if (REG_P (in))
773 	  *p_in = rld[i].in;
774 	return i;
775       }
776   return n_reloads;
777 }
778 
779 /* Return nonzero if X is a SUBREG which will require reloading of its
780    SUBREG_REG expression.  */
781 
782 static int
reload_inner_reg_of_subreg(rtx x,enum machine_mode mode,int output)783 reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, int output)
784 {
785   rtx inner;
786 
787   /* Only SUBREGs are problematical.  */
788   if (GET_CODE (x) != SUBREG)
789     return 0;
790 
791   inner = SUBREG_REG (x);
792 
793   /* If INNER is a constant or PLUS, then INNER must be reloaded.  */
794   if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
795     return 1;
796 
797   /* If INNER is not a hard register, then INNER will not need to
798      be reloaded.  */
799   if (!REG_P (inner)
800       || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
801     return 0;
802 
803   /* If INNER is not ok for MODE, then INNER will need reloading.  */
804   if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
805     return 1;
806 
807   /* If the outer part is a word or smaller, INNER larger than a
808      word and the number of regs for INNER is not the same as the
809      number of words in INNER, then INNER will need reloading.  */
810   return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
811 	  && output
812 	  && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
813 	  && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
814 	      != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
815 }
816 
817 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
818    requiring an extra reload register.  The caller has already found that
819    IN contains some reference to REGNO, so check that we can produce the
820    new value in a single step.  E.g. if we have
821    (set (reg r13) (plus (reg r13) (const int 1))), and there is an
822    instruction that adds one to a register, this should succeed.
823    However, if we have something like
824    (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
825    needs to be loaded into a register first, we need a separate reload
826    register.
827    Such PLUS reloads are generated by find_reload_address_part.
828    The out-of-range PLUS expressions are usually introduced in the instruction
829    patterns by register elimination and substituting pseudos without a home
830    by their function-invariant equivalences.  */
831 static int
can_reload_into(rtx in,int regno,enum machine_mode mode)832 can_reload_into (rtx in, int regno, enum machine_mode mode)
833 {
834   rtx dst, test_insn;
835   int r = 0;
836   struct recog_data save_recog_data;
837 
838   /* For matching constraints, we often get notional input reloads where
839      we want to use the original register as the reload register.  I.e.
840      technically this is a non-optional input-output reload, but IN is
841      already a valid register, and has been chosen as the reload register.
842      Speed this up, since it trivially works.  */
843   if (REG_P (in))
844     return 1;
845 
846   /* To test MEMs properly, we'd have to take into account all the reloads
847      that are already scheduled, which can become quite complicated.
848      And since we've already handled address reloads for this MEM, it
849      should always succeed anyway.  */
850   if (MEM_P (in))
851     return 1;
852 
853   /* If we can make a simple SET insn that does the job, everything should
854      be fine.  */
855   dst =  gen_rtx_REG (mode, regno);
856   test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
857   save_recog_data = recog_data;
858   if (recog_memoized (test_insn) >= 0)
859     {
860       extract_insn (test_insn);
861       r = constrain_operands (1);
862     }
863   recog_data = save_recog_data;
864   return r;
865 }
866 
867 /* Record one reload that needs to be performed.
868    IN is an rtx saying where the data are to be found before this instruction.
869    OUT says where they must be stored after the instruction.
870    (IN is zero for data not read, and OUT is zero for data not written.)
871    INLOC and OUTLOC point to the places in the instructions where
872    IN and OUT were found.
873    If IN and OUT are both nonzero, it means the same register must be used
874    to reload both IN and OUT.
875 
876    CLASS is a register class required for the reloaded data.
877    INMODE is the machine mode that the instruction requires
878    for the reg that replaces IN and OUTMODE is likewise for OUT.
879 
880    If IN is zero, then OUT's location and mode should be passed as
881    INLOC and INMODE.
882 
883    STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
884 
885    OPTIONAL nonzero means this reload does not need to be performed:
886    it can be discarded if that is more convenient.
887 
888    OPNUM and TYPE say what the purpose of this reload is.
889 
890    The return value is the reload-number for this reload.
891 
892    If both IN and OUT are nonzero, in some rare cases we might
893    want to make two separate reloads.  (Actually we never do this now.)
894    Therefore, the reload-number for OUT is stored in
895    output_reloadnum when we return; the return value applies to IN.
896    Usually (presently always), when IN and OUT are nonzero,
897    the two reload-numbers are equal, but the caller should be careful to
898    distinguish them.  */
899 
900 int
push_reload(rtx in,rtx out,rtx * inloc,rtx * outloc,enum reg_class class,enum machine_mode inmode,enum machine_mode outmode,int strict_low,int optional,int opnum,enum reload_type type)901 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
902 	     enum reg_class class, enum machine_mode inmode,
903 	     enum machine_mode outmode, int strict_low, int optional,
904 	     int opnum, enum reload_type type)
905 {
906   int i;
907   int dont_share = 0;
908   int dont_remove_subreg = 0;
909   rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
910   int secondary_in_reload = -1, secondary_out_reload = -1;
911   enum insn_code secondary_in_icode = CODE_FOR_nothing;
912   enum insn_code secondary_out_icode = CODE_FOR_nothing;
913 
914   /* INMODE and/or OUTMODE could be VOIDmode if no mode
915      has been specified for the operand.  In that case,
916      use the operand's mode as the mode to reload.  */
917   if (inmode == VOIDmode && in != 0)
918     inmode = GET_MODE (in);
919   if (outmode == VOIDmode && out != 0)
920     outmode = GET_MODE (out);
921 
922   /* If IN is a pseudo register everywhere-equivalent to a constant, and
923      it is not in a hard register, reload straight from the constant,
924      since we want to get rid of such pseudo registers.
925      Often this is done earlier, but not always in find_reloads_address.  */
926   if (in != 0 && REG_P (in))
927     {
928       int regno = REGNO (in);
929 
930       if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
931 	  && reg_equiv_constant[regno] != 0)
932 	in = reg_equiv_constant[regno];
933     }
934 
935   /* Likewise for OUT.  Of course, OUT will never be equivalent to
936      an actual constant, but it might be equivalent to a memory location
937      (in the case of a parameter).  */
938   if (out != 0 && REG_P (out))
939     {
940       int regno = REGNO (out);
941 
942       if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
943 	  && reg_equiv_constant[regno] != 0)
944 	out = reg_equiv_constant[regno];
945     }
946 
947   /* If we have a read-write operand with an address side-effect,
948      change either IN or OUT so the side-effect happens only once.  */
949   if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
950     switch (GET_CODE (XEXP (in, 0)))
951       {
952       case POST_INC: case POST_DEC:   case POST_MODIFY:
953 	in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
954 	break;
955 
956       case PRE_INC: case PRE_DEC: case PRE_MODIFY:
957 	out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
958 	break;
959 
960       default:
961 	break;
962       }
963 
964   /* If we are reloading a (SUBREG constant ...), really reload just the
965      inside expression in its own mode.  Similarly for (SUBREG (PLUS ...)).
966      If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
967      a pseudo and hence will become a MEM) with M1 wider than M2 and the
968      register is a pseudo, also reload the inside expression.
969      For machines that extend byte loads, do this for any SUBREG of a pseudo
970      where both M1 and M2 are a word or smaller, M1 is wider than M2, and
971      M2 is an integral mode that gets extended when loaded.
972      Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
973      either M1 is not valid for R or M2 is wider than a word but we only
974      need one word to store an M2-sized quantity in R.
975      (However, if OUT is nonzero, we need to reload the reg *and*
976      the subreg, so do nothing here, and let following statement handle it.)
977 
978      Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
979      we can't handle it here because CONST_INT does not indicate a mode.
980 
981      Similarly, we must reload the inside expression if we have a
982      STRICT_LOW_PART (presumably, in == out in the cas).
983 
984      Also reload the inner expression if it does not require a secondary
985      reload but the SUBREG does.
986 
987      Finally, reload the inner expression if it is a register that is in
988      the class whose registers cannot be referenced in a different size
989      and M1 is not the same size as M2.  If subreg_lowpart_p is false, we
990      cannot reload just the inside since we might end up with the wrong
991      register class.  But if it is inside a STRICT_LOW_PART, we have
992      no choice, so we hope we do get the right register class there.  */
993 
994   if (in != 0 && GET_CODE (in) == SUBREG
995       && (subreg_lowpart_p (in) || strict_low)
996 #ifdef CANNOT_CHANGE_MODE_CLASS
997       && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, class)
998 #endif
999       && (CONSTANT_P (SUBREG_REG (in))
1000 	  || GET_CODE (SUBREG_REG (in)) == PLUS
1001 	  || strict_low
1002 	  || (((REG_P (SUBREG_REG (in))
1003 		&& REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1004 	       || MEM_P (SUBREG_REG (in)))
1005 	      && ((GET_MODE_SIZE (inmode)
1006 		   > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1007 #ifdef LOAD_EXTEND_OP
1008 		  || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1009 		      && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1010 			  <= UNITS_PER_WORD)
1011 		      && (GET_MODE_SIZE (inmode)
1012 			  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1013 		      && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
1014 		      && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
1015 #endif
1016 #ifdef WORD_REGISTER_OPERATIONS
1017 		  || ((GET_MODE_SIZE (inmode)
1018 		       < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1019 		      && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1020 			  ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1021 			   / UNITS_PER_WORD)))
1022 #endif
1023 		  ))
1024 	  || (REG_P (SUBREG_REG (in))
1025 	      && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1026 	      /* The case where out is nonzero
1027 		 is handled differently in the following statement.  */
1028 	      && (out == 0 || subreg_lowpart_p (in))
1029 	      && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1030 		   && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1031 		       > UNITS_PER_WORD)
1032 		   && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1033 			/ UNITS_PER_WORD)
1034 		       != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1035 						[GET_MODE (SUBREG_REG (in))]))
1036 		  || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1037 	  || (secondary_reload_class (1, class, inmode, in) != NO_REGS
1038 	      && (secondary_reload_class (1, class, GET_MODE (SUBREG_REG (in)),
1039 					  SUBREG_REG (in))
1040 		  == NO_REGS))
1041 #ifdef CANNOT_CHANGE_MODE_CLASS
1042 	  || (REG_P (SUBREG_REG (in))
1043 	      && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1044 	      && REG_CANNOT_CHANGE_MODE_P
1045 	      (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1046 #endif
1047 	  ))
1048     {
1049       in_subreg_loc = inloc;
1050       inloc = &SUBREG_REG (in);
1051       in = *inloc;
1052 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1053       if (MEM_P (in))
1054 	/* This is supposed to happen only for paradoxical subregs made by
1055 	   combine.c.  (SUBREG (MEM)) isn't supposed to occur other ways.  */
1056 	gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
1057 #endif
1058       inmode = GET_MODE (in);
1059     }
1060 
1061   /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1062      either M1 is not valid for R or M2 is wider than a word but we only
1063      need one word to store an M2-sized quantity in R.
1064 
1065      However, we must reload the inner reg *as well as* the subreg in
1066      that case.  */
1067 
1068   /* Similar issue for (SUBREG constant ...) if it was not handled by the
1069      code above.  This can happen if SUBREG_BYTE != 0.  */
1070 
1071   if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
1072     {
1073       enum reg_class in_class = class;
1074 
1075       if (REG_P (SUBREG_REG (in)))
1076 	in_class
1077 	  = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
1078 			      subreg_regno_offset (REGNO (SUBREG_REG (in)),
1079 						   GET_MODE (SUBREG_REG (in)),
1080 						   SUBREG_BYTE (in),
1081 						   GET_MODE (in)),
1082 			      REGNO (SUBREG_REG (in)));
1083 
1084       /* This relies on the fact that emit_reload_insns outputs the
1085 	 instructions for input reloads of type RELOAD_OTHER in the same
1086 	 order as the reloads.  Thus if the outer reload is also of type
1087 	 RELOAD_OTHER, we are guaranteed that this inner reload will be
1088 	 output before the outer reload.  */
1089       push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1090 		   in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1091       dont_remove_subreg = 1;
1092     }
1093 
1094   /* Similarly for paradoxical and problematical SUBREGs on the output.
1095      Note that there is no reason we need worry about the previous value
1096      of SUBREG_REG (out); even if wider than out,
1097      storing in a subreg is entitled to clobber it all
1098      (except in the case of STRICT_LOW_PART,
1099      and in that case the constraint should label it input-output.)  */
1100   if (out != 0 && GET_CODE (out) == SUBREG
1101       && (subreg_lowpart_p (out) || strict_low)
1102 #ifdef CANNOT_CHANGE_MODE_CLASS
1103       && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, class)
1104 #endif
1105       && (CONSTANT_P (SUBREG_REG (out))
1106 	  || strict_low
1107 	  || (((REG_P (SUBREG_REG (out))
1108 		&& REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1109 	       || MEM_P (SUBREG_REG (out)))
1110 	      && ((GET_MODE_SIZE (outmode)
1111 		   > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1112 #ifdef WORD_REGISTER_OPERATIONS
1113 		  || ((GET_MODE_SIZE (outmode)
1114 		       < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1115 		      && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1116 			  ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1117 			   / UNITS_PER_WORD)))
1118 #endif
1119 		  ))
1120 	  || (REG_P (SUBREG_REG (out))
1121 	      && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1122 	      && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1123 		   && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1124 		       > UNITS_PER_WORD)
1125 		   && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1126 			/ UNITS_PER_WORD)
1127 		       != (int) hard_regno_nregs[REGNO (SUBREG_REG (out))]
1128 						[GET_MODE (SUBREG_REG (out))]))
1129 		  || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1130 	  || (secondary_reload_class (0, class, outmode, out) != NO_REGS
1131 	      && (secondary_reload_class (0, class, GET_MODE (SUBREG_REG (out)),
1132 					  SUBREG_REG (out))
1133 		  == NO_REGS))
1134 #ifdef CANNOT_CHANGE_MODE_CLASS
1135 	  || (REG_P (SUBREG_REG (out))
1136 	      && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1137 	      && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1138 					   GET_MODE (SUBREG_REG (out)),
1139 					   outmode))
1140 #endif
1141 	  ))
1142     {
1143       out_subreg_loc = outloc;
1144       outloc = &SUBREG_REG (out);
1145       out = *outloc;
1146 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1147       gcc_assert (!MEM_P (out)
1148 		  || GET_MODE_SIZE (GET_MODE (out))
1149 		     <= GET_MODE_SIZE (outmode));
1150 #endif
1151       outmode = GET_MODE (out);
1152     }
1153 
1154   /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1155      either M1 is not valid for R or M2 is wider than a word but we only
1156      need one word to store an M2-sized quantity in R.
1157 
1158      However, we must reload the inner reg *as well as* the subreg in
1159      that case.  In this case, the inner reg is an in-out reload.  */
1160 
1161   if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
1162     {
1163       /* This relies on the fact that emit_reload_insns outputs the
1164 	 instructions for output reloads of type RELOAD_OTHER in reverse
1165 	 order of the reloads.  Thus if the outer reload is also of type
1166 	 RELOAD_OTHER, we are guaranteed that this inner reload will be
1167 	 output after the outer reload.  */
1168       dont_remove_subreg = 1;
1169       push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1170 		   &SUBREG_REG (out),
1171 		   find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
1172 				     subreg_regno_offset (REGNO (SUBREG_REG (out)),
1173 							  GET_MODE (SUBREG_REG (out)),
1174 							  SUBREG_BYTE (out),
1175 							  GET_MODE (out)),
1176 				     REGNO (SUBREG_REG (out))),
1177 		   VOIDmode, VOIDmode, 0, 0,
1178 		   opnum, RELOAD_OTHER);
1179     }
1180 
1181   /* If IN appears in OUT, we can't share any input-only reload for IN.  */
1182   if (in != 0 && out != 0 && MEM_P (out)
1183       && (REG_P (in) || MEM_P (in) || GET_CODE (in) == PLUS)
1184       && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1185     dont_share = 1;
1186 
1187   /* If IN is a SUBREG of a hard register, make a new REG.  This
1188      simplifies some of the cases below.  */
1189 
1190   if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1191       && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1192       && ! dont_remove_subreg)
1193     in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1194 
1195   /* Similarly for OUT.  */
1196   if (out != 0 && GET_CODE (out) == SUBREG
1197       && REG_P (SUBREG_REG (out))
1198       && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1199       && ! dont_remove_subreg)
1200     out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1201 
1202   /* Narrow down the class of register wanted if that is
1203      desirable on this machine for efficiency.  */
1204   {
1205     enum reg_class preferred_class = class;
1206 
1207     if (in != 0)
1208       preferred_class = PREFERRED_RELOAD_CLASS (in, class);
1209 
1210   /* Output reloads may need analogous treatment, different in detail.  */
1211 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1212     if (out != 0)
1213       preferred_class = PREFERRED_OUTPUT_RELOAD_CLASS (out, preferred_class);
1214 #endif
1215 
1216     /* Discard what the target said if we cannot do it.  */
1217     if (preferred_class != NO_REGS
1218 	|| (optional && type == RELOAD_FOR_OUTPUT))
1219       class = preferred_class;
1220   }
1221 
1222   /* Make sure we use a class that can handle the actual pseudo
1223      inside any subreg.  For example, on the 386, QImode regs
1224      can appear within SImode subregs.  Although GENERAL_REGS
1225      can handle SImode, QImode needs a smaller class.  */
1226 #ifdef LIMIT_RELOAD_CLASS
1227   if (in_subreg_loc)
1228     class = LIMIT_RELOAD_CLASS (inmode, class);
1229   else if (in != 0 && GET_CODE (in) == SUBREG)
1230     class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1231 
1232   if (out_subreg_loc)
1233     class = LIMIT_RELOAD_CLASS (outmode, class);
1234   if (out != 0 && GET_CODE (out) == SUBREG)
1235     class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1236 #endif
1237 
1238   /* Verify that this class is at least possible for the mode that
1239      is specified.  */
1240   if (this_insn_is_asm)
1241     {
1242       enum machine_mode mode;
1243       if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1244 	mode = inmode;
1245       else
1246 	mode = outmode;
1247       if (mode == VOIDmode)
1248 	{
1249 	  error_for_asm (this_insn, "cannot reload integer constant "
1250 			 "operand in %<asm%>");
1251 	  mode = word_mode;
1252 	  if (in != 0)
1253 	    inmode = word_mode;
1254 	  if (out != 0)
1255 	    outmode = word_mode;
1256 	}
1257       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1258 	if (HARD_REGNO_MODE_OK (i, mode)
1259 	    && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1260 	  {
1261 	    int nregs = hard_regno_nregs[i][mode];
1262 
1263 	    int j;
1264 	    for (j = 1; j < nregs; j++)
1265 	      if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1266 		break;
1267 	    if (j == nregs)
1268 	      break;
1269 	  }
1270       if (i == FIRST_PSEUDO_REGISTER)
1271 	{
1272 	  error_for_asm (this_insn, "impossible register constraint "
1273 			 "in %<asm%>");
1274 	  /* Avoid further trouble with this insn.  */
1275 	  PATTERN (this_insn) = gen_rtx_USE (VOIDmode, const0_rtx);
1276 	  /* We used to continue here setting class to ALL_REGS, but it triggers
1277 	     sanity check on i386 for:
1278 	     void foo(long double d)
1279 	     {
1280 	       asm("" :: "a" (d));
1281 	     }
1282 	     Returning zero here ought to be safe as we take care in
1283 	     find_reloads to not process the reloads when instruction was
1284 	     replaced by USE.  */
1285 
1286 	  return 0;
1287 	}
1288     }
1289 
1290   /* Optional output reloads are always OK even if we have no register class,
1291      since the function of these reloads is only to have spill_reg_store etc.
1292      set, so that the storing insn can be deleted later.  */
1293   gcc_assert (class != NO_REGS
1294 	      || (optional != 0 && type == RELOAD_FOR_OUTPUT));
1295 
1296   i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1297 
1298   if (i == n_reloads)
1299     {
1300       /* See if we need a secondary reload register to move between CLASS
1301 	 and IN or CLASS and OUT.  Get the icode and push any required reloads
1302 	 needed for each of them if so.  */
1303 
1304       if (in != 0)
1305 	secondary_in_reload
1306 	  = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1307 				   &secondary_in_icode, NULL);
1308       if (out != 0 && GET_CODE (out) != SCRATCH)
1309 	secondary_out_reload
1310 	  = push_secondary_reload (0, out, opnum, optional, class, outmode,
1311 				   type, &secondary_out_icode, NULL);
1312 
1313       /* We found no existing reload suitable for re-use.
1314 	 So add an additional reload.  */
1315 
1316 #ifdef SECONDARY_MEMORY_NEEDED
1317       /* If a memory location is needed for the copy, make one.  */
1318       if (in != 0
1319 	  && (REG_P (in)
1320 	      || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
1321 	  && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1322 	  && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
1323 				      class, inmode))
1324 	get_secondary_mem (in, inmode, opnum, type);
1325 #endif
1326 
1327       i = n_reloads;
1328       rld[i].in = in;
1329       rld[i].out = out;
1330       rld[i].class = class;
1331       rld[i].inmode = inmode;
1332       rld[i].outmode = outmode;
1333       rld[i].reg_rtx = 0;
1334       rld[i].optional = optional;
1335       rld[i].inc = 0;
1336       rld[i].nocombine = 0;
1337       rld[i].in_reg = inloc ? *inloc : 0;
1338       rld[i].out_reg = outloc ? *outloc : 0;
1339       rld[i].opnum = opnum;
1340       rld[i].when_needed = type;
1341       rld[i].secondary_in_reload = secondary_in_reload;
1342       rld[i].secondary_out_reload = secondary_out_reload;
1343       rld[i].secondary_in_icode = secondary_in_icode;
1344       rld[i].secondary_out_icode = secondary_out_icode;
1345       rld[i].secondary_p = 0;
1346 
1347       n_reloads++;
1348 
1349 #ifdef SECONDARY_MEMORY_NEEDED
1350       if (out != 0
1351           && (REG_P (out)
1352 	      || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
1353 	  && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1354 	  && SECONDARY_MEMORY_NEEDED (class,
1355 				      REGNO_REG_CLASS (reg_or_subregno (out)),
1356 				      outmode))
1357 	get_secondary_mem (out, outmode, opnum, type);
1358 #endif
1359     }
1360   else
1361     {
1362       /* We are reusing an existing reload,
1363 	 but we may have additional information for it.
1364 	 For example, we may now have both IN and OUT
1365 	 while the old one may have just one of them.  */
1366 
1367       /* The modes can be different.  If they are, we want to reload in
1368 	 the larger mode, so that the value is valid for both modes.  */
1369       if (inmode != VOIDmode
1370 	  && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1371 	rld[i].inmode = inmode;
1372       if (outmode != VOIDmode
1373 	  && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1374 	rld[i].outmode = outmode;
1375       if (in != 0)
1376 	{
1377 	  rtx in_reg = inloc ? *inloc : 0;
1378 	  /* If we merge reloads for two distinct rtl expressions that
1379 	     are identical in content, there might be duplicate address
1380 	     reloads.  Remove the extra set now, so that if we later find
1381 	     that we can inherit this reload, we can get rid of the
1382 	     address reloads altogether.
1383 
1384 	     Do not do this if both reloads are optional since the result
1385 	     would be an optional reload which could potentially leave
1386 	     unresolved address replacements.
1387 
1388 	     It is not sufficient to call transfer_replacements since
1389 	     choose_reload_regs will remove the replacements for address
1390 	     reloads of inherited reloads which results in the same
1391 	     problem.  */
1392 	  if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1393 	      && ! (rld[i].optional && optional))
1394 	    {
1395 	      /* We must keep the address reload with the lower operand
1396 		 number alive.  */
1397 	      if (opnum > rld[i].opnum)
1398 		{
1399 		  remove_address_replacements (in);
1400 		  in = rld[i].in;
1401 		  in_reg = rld[i].in_reg;
1402 		}
1403 	      else
1404 		remove_address_replacements (rld[i].in);
1405 	    }
1406 	  rld[i].in = in;
1407 	  rld[i].in_reg = in_reg;
1408 	}
1409       if (out != 0)
1410 	{
1411 	  rld[i].out = out;
1412 	  rld[i].out_reg = outloc ? *outloc : 0;
1413 	}
1414       if (reg_class_subset_p (class, rld[i].class))
1415 	rld[i].class = class;
1416       rld[i].optional &= optional;
1417       if (MERGE_TO_OTHER (type, rld[i].when_needed,
1418 			  opnum, rld[i].opnum))
1419 	rld[i].when_needed = RELOAD_OTHER;
1420       rld[i].opnum = MIN (rld[i].opnum, opnum);
1421     }
1422 
1423   /* If the ostensible rtx being reloaded differs from the rtx found
1424      in the location to substitute, this reload is not safe to combine
1425      because we cannot reliably tell whether it appears in the insn.  */
1426 
1427   if (in != 0 && in != *inloc)
1428     rld[i].nocombine = 1;
1429 
1430 #if 0
1431   /* This was replaced by changes in find_reloads_address_1 and the new
1432      function inc_for_reload, which go with a new meaning of reload_inc.  */
1433 
1434   /* If this is an IN/OUT reload in an insn that sets the CC,
1435      it must be for an autoincrement.  It doesn't work to store
1436      the incremented value after the insn because that would clobber the CC.
1437      So we must do the increment of the value reloaded from,
1438      increment it, store it back, then decrement again.  */
1439   if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1440     {
1441       out = 0;
1442       rld[i].out = 0;
1443       rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1444       /* If we did not find a nonzero amount-to-increment-by,
1445 	 that contradicts the belief that IN is being incremented
1446 	 in an address in this insn.  */
1447       gcc_assert (rld[i].inc != 0);
1448     }
1449 #endif
1450 
1451   /* If we will replace IN and OUT with the reload-reg,
1452      record where they are located so that substitution need
1453      not do a tree walk.  */
1454 
1455   if (replace_reloads)
1456     {
1457       if (inloc != 0)
1458 	{
1459 	  struct replacement *r = &replacements[n_replacements++];
1460 	  r->what = i;
1461 	  r->subreg_loc = in_subreg_loc;
1462 	  r->where = inloc;
1463 	  r->mode = inmode;
1464 	}
1465       if (outloc != 0 && outloc != inloc)
1466 	{
1467 	  struct replacement *r = &replacements[n_replacements++];
1468 	  r->what = i;
1469 	  r->where = outloc;
1470 	  r->subreg_loc = out_subreg_loc;
1471 	  r->mode = outmode;
1472 	}
1473     }
1474 
1475   /* If this reload is just being introduced and it has both
1476      an incoming quantity and an outgoing quantity that are
1477      supposed to be made to match, see if either one of the two
1478      can serve as the place to reload into.
1479 
1480      If one of them is acceptable, set rld[i].reg_rtx
1481      to that one.  */
1482 
1483   if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1484     {
1485       rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1486 					  inmode, outmode,
1487 					  rld[i].class, i,
1488 					  earlyclobber_operand_p (out));
1489 
1490       /* If the outgoing register already contains the same value
1491 	 as the incoming one, we can dispense with loading it.
1492 	 The easiest way to tell the caller that is to give a phony
1493 	 value for the incoming operand (same as outgoing one).  */
1494       if (rld[i].reg_rtx == out
1495 	  && (REG_P (in) || CONSTANT_P (in))
1496 	  && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1497 				  static_reload_reg_p, i, inmode))
1498 	rld[i].in = out;
1499     }
1500 
1501   /* If this is an input reload and the operand contains a register that
1502      dies in this insn and is used nowhere else, see if it is the right class
1503      to be used for this reload.  Use it if so.  (This occurs most commonly
1504      in the case of paradoxical SUBREGs and in-out reloads).  We cannot do
1505      this if it is also an output reload that mentions the register unless
1506      the output is a SUBREG that clobbers an entire register.
1507 
1508      Note that the operand might be one of the spill regs, if it is a
1509      pseudo reg and we are in a block where spilling has not taken place.
1510      But if there is no spilling in this block, that is OK.
1511      An explicitly used hard reg cannot be a spill reg.  */
1512 
1513   if (rld[i].reg_rtx == 0 && in != 0 && hard_regs_live_known)
1514     {
1515       rtx note;
1516       int regno;
1517       enum machine_mode rel_mode = inmode;
1518 
1519       if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1520 	rel_mode = outmode;
1521 
1522       for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1523 	if (REG_NOTE_KIND (note) == REG_DEAD
1524 	    && REG_P (XEXP (note, 0))
1525 	    && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1526 	    && reg_mentioned_p (XEXP (note, 0), in)
1527 	    /* Check that we don't use a hardreg for an uninitialized
1528 	       pseudo.  See also find_dummy_reload().  */
1529 	    && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1530 		|| ! bitmap_bit_p (ENTRY_BLOCK_PTR->il.rtl->global_live_at_end,
1531 				   ORIGINAL_REGNO (XEXP (note, 0))))
1532 	    && ! refers_to_regno_for_reload_p (regno,
1533 					       (regno
1534 						+ hard_regno_nregs[regno]
1535 								  [rel_mode]),
1536 					       PATTERN (this_insn), inloc)
1537 	    /* If this is also an output reload, IN cannot be used as
1538 	       the reload register if it is set in this insn unless IN
1539 	       is also OUT.  */
1540 	    && (out == 0 || in == out
1541 		|| ! hard_reg_set_here_p (regno,
1542 					  (regno
1543 					   + hard_regno_nregs[regno]
1544 							     [rel_mode]),
1545 					  PATTERN (this_insn)))
1546 	    /* ??? Why is this code so different from the previous?
1547 	       Is there any simple coherent way to describe the two together?
1548 	       What's going on here.  */
1549 	    && (in != out
1550 		|| (GET_CODE (in) == SUBREG
1551 		    && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1552 			 / UNITS_PER_WORD)
1553 			== ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1554 			     + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1555 	    /* Make sure the operand fits in the reg that dies.  */
1556 	    && (GET_MODE_SIZE (rel_mode)
1557 		<= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1558 	    && HARD_REGNO_MODE_OK (regno, inmode)
1559 	    && HARD_REGNO_MODE_OK (regno, outmode))
1560 	  {
1561 	    unsigned int offs;
1562 	    unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1563 				      hard_regno_nregs[regno][outmode]);
1564 
1565 	    for (offs = 0; offs < nregs; offs++)
1566 	      if (fixed_regs[regno + offs]
1567 		  || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1568 					  regno + offs))
1569 		break;
1570 
1571 	    if (offs == nregs
1572 		&& (! (refers_to_regno_for_reload_p
1573 		       (regno, (regno + hard_regno_nregs[regno][inmode]),
1574 				in, (rtx *)0))
1575 		    || can_reload_into (in, regno, inmode)))
1576 	      {
1577 		rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1578 		break;
1579 	      }
1580 	  }
1581     }
1582 
1583   if (out)
1584     output_reloadnum = i;
1585 
1586   return i;
1587 }
1588 
1589 /* Record an additional place we must replace a value
1590    for which we have already recorded a reload.
1591    RELOADNUM is the value returned by push_reload
1592    when the reload was recorded.
1593    This is used in insn patterns that use match_dup.  */
1594 
1595 static void
push_replacement(rtx * loc,int reloadnum,enum machine_mode mode)1596 push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
1597 {
1598   if (replace_reloads)
1599     {
1600       struct replacement *r = &replacements[n_replacements++];
1601       r->what = reloadnum;
1602       r->where = loc;
1603       r->subreg_loc = 0;
1604       r->mode = mode;
1605     }
1606 }
1607 
1608 /* Duplicate any replacement we have recorded to apply at
1609    location ORIG_LOC to also be performed at DUP_LOC.
1610    This is used in insn patterns that use match_dup.  */
1611 
1612 static void
dup_replacements(rtx * dup_loc,rtx * orig_loc)1613 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1614 {
1615   int i, n = n_replacements;
1616 
1617   for (i = 0; i < n; i++)
1618     {
1619       struct replacement *r = &replacements[i];
1620       if (r->where == orig_loc)
1621 	push_replacement (dup_loc, r->what, r->mode);
1622     }
1623 }
1624 
1625 /* Transfer all replacements that used to be in reload FROM to be in
1626    reload TO.  */
1627 
1628 void
transfer_replacements(int to,int from)1629 transfer_replacements (int to, int from)
1630 {
1631   int i;
1632 
1633   for (i = 0; i < n_replacements; i++)
1634     if (replacements[i].what == from)
1635       replacements[i].what = to;
1636 }
1637 
1638 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1639    or a subpart of it.  If we have any replacements registered for IN_RTX,
1640    cancel the reloads that were supposed to load them.
1641    Return nonzero if we canceled any reloads.  */
1642 int
remove_address_replacements(rtx in_rtx)1643 remove_address_replacements (rtx in_rtx)
1644 {
1645   int i, j;
1646   char reload_flags[MAX_RELOADS];
1647   int something_changed = 0;
1648 
1649   memset (reload_flags, 0, sizeof reload_flags);
1650   for (i = 0, j = 0; i < n_replacements; i++)
1651     {
1652       if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1653 	reload_flags[replacements[i].what] |= 1;
1654       else
1655 	{
1656 	  replacements[j++] = replacements[i];
1657 	  reload_flags[replacements[i].what] |= 2;
1658 	}
1659     }
1660   /* Note that the following store must be done before the recursive calls.  */
1661   n_replacements = j;
1662 
1663   for (i = n_reloads - 1; i >= 0; i--)
1664     {
1665       if (reload_flags[i] == 1)
1666 	{
1667 	  deallocate_reload_reg (i);
1668 	  remove_address_replacements (rld[i].in);
1669 	  rld[i].in = 0;
1670 	  something_changed = 1;
1671 	}
1672     }
1673   return something_changed;
1674 }
1675 
1676 /* If there is only one output reload, and it is not for an earlyclobber
1677    operand, try to combine it with a (logically unrelated) input reload
1678    to reduce the number of reload registers needed.
1679 
1680    This is safe if the input reload does not appear in
1681    the value being output-reloaded, because this implies
1682    it is not needed any more once the original insn completes.
1683 
1684    If that doesn't work, see we can use any of the registers that
1685    die in this insn as a reload register.  We can if it is of the right
1686    class and does not appear in the value being output-reloaded.  */
1687 
1688 static void
combine_reloads(void)1689 combine_reloads (void)
1690 {
1691   int i;
1692   int output_reload = -1;
1693   int secondary_out = -1;
1694   rtx note;
1695 
1696   /* Find the output reload; return unless there is exactly one
1697      and that one is mandatory.  */
1698 
1699   for (i = 0; i < n_reloads; i++)
1700     if (rld[i].out != 0)
1701       {
1702 	if (output_reload >= 0)
1703 	  return;
1704 	output_reload = i;
1705       }
1706 
1707   if (output_reload < 0 || rld[output_reload].optional)
1708     return;
1709 
1710   /* An input-output reload isn't combinable.  */
1711 
1712   if (rld[output_reload].in != 0)
1713     return;
1714 
1715   /* If this reload is for an earlyclobber operand, we can't do anything.  */
1716   if (earlyclobber_operand_p (rld[output_reload].out))
1717     return;
1718 
1719   /* If there is a reload for part of the address of this operand, we would
1720      need to chnage it to RELOAD_FOR_OTHER_ADDRESS.  But that would extend
1721      its life to the point where doing this combine would not lower the
1722      number of spill registers needed.  */
1723   for (i = 0; i < n_reloads; i++)
1724     if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1725 	 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1726 	&& rld[i].opnum == rld[output_reload].opnum)
1727       return;
1728 
1729   /* Check each input reload; can we combine it?  */
1730 
1731   for (i = 0; i < n_reloads; i++)
1732     if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1733 	/* Life span of this reload must not extend past main insn.  */
1734 	&& rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1735 	&& rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1736 	&& rld[i].when_needed != RELOAD_OTHER
1737 	&& (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1738 	    == CLASS_MAX_NREGS (rld[output_reload].class,
1739 				rld[output_reload].outmode))
1740 	&& rld[i].inc == 0
1741 	&& rld[i].reg_rtx == 0
1742 #ifdef SECONDARY_MEMORY_NEEDED
1743 	/* Don't combine two reloads with different secondary
1744 	   memory locations.  */
1745 	&& (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1746 	    || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1747 	    || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1748 			    secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1749 #endif
1750 	&& (SMALL_REGISTER_CLASSES
1751 	    ? (rld[i].class == rld[output_reload].class)
1752 	    : (reg_class_subset_p (rld[i].class,
1753 				   rld[output_reload].class)
1754 	       || reg_class_subset_p (rld[output_reload].class,
1755 				      rld[i].class)))
1756 	&& (MATCHES (rld[i].in, rld[output_reload].out)
1757 	    /* Args reversed because the first arg seems to be
1758 	       the one that we imagine being modified
1759 	       while the second is the one that might be affected.  */
1760 	    || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1761 						      rld[i].in)
1762 		/* However, if the input is a register that appears inside
1763 		   the output, then we also can't share.
1764 		   Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1765 		   If the same reload reg is used for both reg 69 and the
1766 		   result to be stored in memory, then that result
1767 		   will clobber the address of the memory ref.  */
1768 		&& ! (REG_P (rld[i].in)
1769 		      && reg_overlap_mentioned_for_reload_p (rld[i].in,
1770 							     rld[output_reload].out))))
1771 	&& ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1772 					 rld[i].when_needed != RELOAD_FOR_INPUT)
1773 	&& (reg_class_size[(int) rld[i].class]
1774 	    || SMALL_REGISTER_CLASSES)
1775 	/* We will allow making things slightly worse by combining an
1776 	   input and an output, but no worse than that.  */
1777 	&& (rld[i].when_needed == RELOAD_FOR_INPUT
1778 	    || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1779       {
1780 	int j;
1781 
1782 	/* We have found a reload to combine with!  */
1783 	rld[i].out = rld[output_reload].out;
1784 	rld[i].out_reg = rld[output_reload].out_reg;
1785 	rld[i].outmode = rld[output_reload].outmode;
1786 	/* Mark the old output reload as inoperative.  */
1787 	rld[output_reload].out = 0;
1788 	/* The combined reload is needed for the entire insn.  */
1789 	rld[i].when_needed = RELOAD_OTHER;
1790 	/* If the output reload had a secondary reload, copy it.  */
1791 	if (rld[output_reload].secondary_out_reload != -1)
1792 	  {
1793 	    rld[i].secondary_out_reload
1794 	      = rld[output_reload].secondary_out_reload;
1795 	    rld[i].secondary_out_icode
1796 	      = rld[output_reload].secondary_out_icode;
1797 	  }
1798 
1799 #ifdef SECONDARY_MEMORY_NEEDED
1800 	/* Copy any secondary MEM.  */
1801 	if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1802 	  secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1803 	    = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1804 #endif
1805 	/* If required, minimize the register class.  */
1806 	if (reg_class_subset_p (rld[output_reload].class,
1807 				rld[i].class))
1808 	  rld[i].class = rld[output_reload].class;
1809 
1810 	/* Transfer all replacements from the old reload to the combined.  */
1811 	for (j = 0; j < n_replacements; j++)
1812 	  if (replacements[j].what == output_reload)
1813 	    replacements[j].what = i;
1814 
1815 	return;
1816       }
1817 
1818   /* If this insn has only one operand that is modified or written (assumed
1819      to be the first),  it must be the one corresponding to this reload.  It
1820      is safe to use anything that dies in this insn for that output provided
1821      that it does not occur in the output (we already know it isn't an
1822      earlyclobber.  If this is an asm insn, give up.  */
1823 
1824   if (INSN_CODE (this_insn) == -1)
1825     return;
1826 
1827   for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1828     if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1829 	|| insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1830       return;
1831 
1832   /* See if some hard register that dies in this insn and is not used in
1833      the output is the right class.  Only works if the register we pick
1834      up can fully hold our output reload.  */
1835   for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1836     if (REG_NOTE_KIND (note) == REG_DEAD
1837 	&& REG_P (XEXP (note, 0))
1838 	&& ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1839 						 rld[output_reload].out)
1840 	&& REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1841 	&& HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1842 	&& TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1843 			      REGNO (XEXP (note, 0)))
1844 	&& (hard_regno_nregs[REGNO (XEXP (note, 0))][rld[output_reload].outmode]
1845 	    <= hard_regno_nregs[REGNO (XEXP (note, 0))][GET_MODE (XEXP (note, 0))])
1846 	/* Ensure that a secondary or tertiary reload for this output
1847 	   won't want this register.  */
1848 	&& ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1849 	    || (! (TEST_HARD_REG_BIT
1850 		   (reg_class_contents[(int) rld[secondary_out].class],
1851 		    REGNO (XEXP (note, 0))))
1852 		&& ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1853 		    ||  ! (TEST_HARD_REG_BIT
1854 			   (reg_class_contents[(int) rld[secondary_out].class],
1855 			    REGNO (XEXP (note, 0)))))))
1856 	&& ! fixed_regs[REGNO (XEXP (note, 0))]
1857 	/* Check that we don't use a hardreg for an uninitialized
1858 	   pseudo.  See also find_dummy_reload().  */
1859 	&& (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1860 	    || ! bitmap_bit_p (ENTRY_BLOCK_PTR->il.rtl->global_live_at_end,
1861 			       ORIGINAL_REGNO (XEXP (note, 0)))))
1862       {
1863 	rld[output_reload].reg_rtx
1864 	  = gen_rtx_REG (rld[output_reload].outmode,
1865 			 REGNO (XEXP (note, 0)));
1866 	return;
1867       }
1868 }
1869 
1870 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1871    See if one of IN and OUT is a register that may be used;
1872    this is desirable since a spill-register won't be needed.
1873    If so, return the register rtx that proves acceptable.
1874 
1875    INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1876    CLASS is the register class required for the reload.
1877 
1878    If FOR_REAL is >= 0, it is the number of the reload,
1879    and in some cases when it can be discovered that OUT doesn't need
1880    to be computed, clear out rld[FOR_REAL].out.
1881 
1882    If FOR_REAL is -1, this should not be done, because this call
1883    is just to see if a register can be found, not to find and install it.
1884 
1885    EARLYCLOBBER is nonzero if OUT is an earlyclobber operand.  This
1886    puts an additional constraint on being able to use IN for OUT since
1887    IN must not appear elsewhere in the insn (it is assumed that IN itself
1888    is safe from the earlyclobber).  */
1889 
1890 static rtx
find_dummy_reload(rtx real_in,rtx real_out,rtx * inloc,rtx * outloc,enum machine_mode inmode,enum machine_mode outmode,enum reg_class class,int for_real,int earlyclobber)1891 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1892 		   enum machine_mode inmode, enum machine_mode outmode,
1893 		   enum reg_class class, int for_real, int earlyclobber)
1894 {
1895   rtx in = real_in;
1896   rtx out = real_out;
1897   int in_offset = 0;
1898   int out_offset = 0;
1899   rtx value = 0;
1900 
1901   /* If operands exceed a word, we can't use either of them
1902      unless they have the same size.  */
1903   if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1904       && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1905 	  || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1906     return 0;
1907 
1908   /* Note that {in,out}_offset are needed only when 'in' or 'out'
1909      respectively refers to a hard register.  */
1910 
1911   /* Find the inside of any subregs.  */
1912   while (GET_CODE (out) == SUBREG)
1913     {
1914       if (REG_P (SUBREG_REG (out))
1915 	  && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1916 	out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1917 					   GET_MODE (SUBREG_REG (out)),
1918 					   SUBREG_BYTE (out),
1919 					   GET_MODE (out));
1920       out = SUBREG_REG (out);
1921     }
1922   while (GET_CODE (in) == SUBREG)
1923     {
1924       if (REG_P (SUBREG_REG (in))
1925 	  && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1926 	in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1927 					  GET_MODE (SUBREG_REG (in)),
1928 					  SUBREG_BYTE (in),
1929 					  GET_MODE (in));
1930       in = SUBREG_REG (in);
1931     }
1932 
1933   /* Narrow down the reg class, the same way push_reload will;
1934      otherwise we might find a dummy now, but push_reload won't.  */
1935   {
1936     enum reg_class preferred_class = PREFERRED_RELOAD_CLASS (in, class);
1937     if (preferred_class != NO_REGS)
1938       class = preferred_class;
1939   }
1940 
1941   /* See if OUT will do.  */
1942   if (REG_P (out)
1943       && REGNO (out) < FIRST_PSEUDO_REGISTER)
1944     {
1945       unsigned int regno = REGNO (out) + out_offset;
1946       unsigned int nwords = hard_regno_nregs[regno][outmode];
1947       rtx saved_rtx;
1948 
1949       /* When we consider whether the insn uses OUT,
1950 	 ignore references within IN.  They don't prevent us
1951 	 from copying IN into OUT, because those refs would
1952 	 move into the insn that reloads IN.
1953 
1954 	 However, we only ignore IN in its role as this reload.
1955 	 If the insn uses IN elsewhere and it contains OUT,
1956 	 that counts.  We can't be sure it's the "same" operand
1957 	 so it might not go through this reload.  */
1958       saved_rtx = *inloc;
1959       *inloc = const0_rtx;
1960 
1961       if (regno < FIRST_PSEUDO_REGISTER
1962 	  && HARD_REGNO_MODE_OK (regno, outmode)
1963 	  && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1964 					     PATTERN (this_insn), outloc))
1965 	{
1966 	  unsigned int i;
1967 
1968 	  for (i = 0; i < nwords; i++)
1969 	    if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1970 				     regno + i))
1971 	      break;
1972 
1973 	  if (i == nwords)
1974 	    {
1975 	      if (REG_P (real_out))
1976 		value = real_out;
1977 	      else
1978 		value = gen_rtx_REG (outmode, regno);
1979 	    }
1980 	}
1981 
1982       *inloc = saved_rtx;
1983     }
1984 
1985   /* Consider using IN if OUT was not acceptable
1986      or if OUT dies in this insn (like the quotient in a divmod insn).
1987      We can't use IN unless it is dies in this insn,
1988      which means we must know accurately which hard regs are live.
1989      Also, the result can't go in IN if IN is used within OUT,
1990      or if OUT is an earlyclobber and IN appears elsewhere in the insn.  */
1991   if (hard_regs_live_known
1992       && REG_P (in)
1993       && REGNO (in) < FIRST_PSEUDO_REGISTER
1994       && (value == 0
1995 	  || find_reg_note (this_insn, REG_UNUSED, real_out))
1996       && find_reg_note (this_insn, REG_DEAD, real_in)
1997       && !fixed_regs[REGNO (in)]
1998       && HARD_REGNO_MODE_OK (REGNO (in),
1999 			     /* The only case where out and real_out might
2000 				have different modes is where real_out
2001 				is a subreg, and in that case, out
2002 				has a real mode.  */
2003 			     (GET_MODE (out) != VOIDmode
2004 			      ? GET_MODE (out) : outmode))
2005         /* But only do all this if we can be sure, that this input
2006            operand doesn't correspond with an uninitialized pseudoreg.
2007            global can assign some hardreg to it, which is the same as
2008 	   a different pseudo also currently live (as it can ignore the
2009 	   conflict).  So we never must introduce writes to such hardregs,
2010 	   as they would clobber the other live pseudo using the same.
2011 	   See also PR20973.  */
2012       && (ORIGINAL_REGNO (in) < FIRST_PSEUDO_REGISTER
2013           || ! bitmap_bit_p (ENTRY_BLOCK_PTR->il.rtl->global_live_at_end,
2014 			     ORIGINAL_REGNO (in))))
2015     {
2016       unsigned int regno = REGNO (in) + in_offset;
2017       unsigned int nwords = hard_regno_nregs[regno][inmode];
2018 
2019       if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
2020 	  && ! hard_reg_set_here_p (regno, regno + nwords,
2021 				    PATTERN (this_insn))
2022 	  && (! earlyclobber
2023 	      || ! refers_to_regno_for_reload_p (regno, regno + nwords,
2024 						 PATTERN (this_insn), inloc)))
2025 	{
2026 	  unsigned int i;
2027 
2028 	  for (i = 0; i < nwords; i++)
2029 	    if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
2030 				     regno + i))
2031 	      break;
2032 
2033 	  if (i == nwords)
2034 	    {
2035 	      /* If we were going to use OUT as the reload reg
2036 		 and changed our mind, it means OUT is a dummy that
2037 		 dies here.  So don't bother copying value to it.  */
2038 	      if (for_real >= 0 && value == real_out)
2039 		rld[for_real].out = 0;
2040 	      if (REG_P (real_in))
2041 		value = real_in;
2042 	      else
2043 		value = gen_rtx_REG (inmode, regno);
2044 	    }
2045 	}
2046     }
2047 
2048   return value;
2049 }
2050 
2051 /* This page contains subroutines used mainly for determining
2052    whether the IN or an OUT of a reload can serve as the
2053    reload register.  */
2054 
2055 /* Return 1 if X is an operand of an insn that is being earlyclobbered.  */
2056 
2057 int
earlyclobber_operand_p(rtx x)2058 earlyclobber_operand_p (rtx x)
2059 {
2060   int i;
2061 
2062   for (i = 0; i < n_earlyclobbers; i++)
2063     if (reload_earlyclobbers[i] == x)
2064       return 1;
2065 
2066   return 0;
2067 }
2068 
2069 /* Return 1 if expression X alters a hard reg in the range
2070    from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2071    either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2072    X should be the body of an instruction.  */
2073 
2074 static int
hard_reg_set_here_p(unsigned int beg_regno,unsigned int end_regno,rtx x)2075 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2076 {
2077   if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2078     {
2079       rtx op0 = SET_DEST (x);
2080 
2081       while (GET_CODE (op0) == SUBREG)
2082 	op0 = SUBREG_REG (op0);
2083       if (REG_P (op0))
2084 	{
2085 	  unsigned int r = REGNO (op0);
2086 
2087 	  /* See if this reg overlaps range under consideration.  */
2088 	  if (r < end_regno
2089 	      && r + hard_regno_nregs[r][GET_MODE (op0)] > beg_regno)
2090 	    return 1;
2091 	}
2092     }
2093   else if (GET_CODE (x) == PARALLEL)
2094     {
2095       int i = XVECLEN (x, 0) - 1;
2096 
2097       for (; i >= 0; i--)
2098 	if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2099 	  return 1;
2100     }
2101 
2102   return 0;
2103 }
2104 
2105 /* Return 1 if ADDR is a valid memory address for mode MODE,
2106    and check that each pseudo reg has the proper kind of
2107    hard reg.  */
2108 
2109 int
strict_memory_address_p(enum machine_mode mode ATTRIBUTE_UNUSED,rtx addr)2110 strict_memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr)
2111 {
2112   GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2113   return 0;
2114 
2115  win:
2116   return 1;
2117 }
2118 
2119 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2120    if they are the same hard reg, and has special hacks for
2121    autoincrement and autodecrement.
2122    This is specifically intended for find_reloads to use
2123    in determining whether two operands match.
2124    X is the operand whose number is the lower of the two.
2125 
2126    The value is 2 if Y contains a pre-increment that matches
2127    a non-incrementing address in X.  */
2128 
2129 /* ??? To be completely correct, we should arrange to pass
2130    for X the output operand and for Y the input operand.
2131    For now, we assume that the output operand has the lower number
2132    because that is natural in (SET output (... input ...)).  */
2133 
2134 int
operands_match_p(rtx x,rtx y)2135 operands_match_p (rtx x, rtx y)
2136 {
2137   int i;
2138   RTX_CODE code = GET_CODE (x);
2139   const char *fmt;
2140   int success_2;
2141 
2142   if (x == y)
2143     return 1;
2144   if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2145       && (REG_P (y) || (GET_CODE (y) == SUBREG
2146 				  && REG_P (SUBREG_REG (y)))))
2147     {
2148       int j;
2149 
2150       if (code == SUBREG)
2151 	{
2152 	  i = REGNO (SUBREG_REG (x));
2153 	  if (i >= FIRST_PSEUDO_REGISTER)
2154 	    goto slow;
2155 	  i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2156 				    GET_MODE (SUBREG_REG (x)),
2157 				    SUBREG_BYTE (x),
2158 				    GET_MODE (x));
2159 	}
2160       else
2161 	i = REGNO (x);
2162 
2163       if (GET_CODE (y) == SUBREG)
2164 	{
2165 	  j = REGNO (SUBREG_REG (y));
2166 	  if (j >= FIRST_PSEUDO_REGISTER)
2167 	    goto slow;
2168 	  j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2169 				    GET_MODE (SUBREG_REG (y)),
2170 				    SUBREG_BYTE (y),
2171 				    GET_MODE (y));
2172 	}
2173       else
2174 	j = REGNO (y);
2175 
2176       /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2177 	 multiple hard register group of scalar integer registers, so that
2178 	 for example (reg:DI 0) and (reg:SI 1) will be considered the same
2179 	 register.  */
2180       if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2181 	  && SCALAR_INT_MODE_P (GET_MODE (x))
2182 	  && i < FIRST_PSEUDO_REGISTER)
2183 	i += hard_regno_nregs[i][GET_MODE (x)] - 1;
2184       if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2185 	  && SCALAR_INT_MODE_P (GET_MODE (y))
2186 	  && j < FIRST_PSEUDO_REGISTER)
2187 	j += hard_regno_nregs[j][GET_MODE (y)] - 1;
2188 
2189       return i == j;
2190     }
2191   /* If two operands must match, because they are really a single
2192      operand of an assembler insn, then two postincrements are invalid
2193      because the assembler insn would increment only once.
2194      On the other hand, a postincrement matches ordinary indexing
2195      if the postincrement is the output operand.  */
2196   if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2197     return operands_match_p (XEXP (x, 0), y);
2198   /* Two preincrements are invalid
2199      because the assembler insn would increment only once.
2200      On the other hand, a preincrement matches ordinary indexing
2201      if the preincrement is the input operand.
2202      In this case, return 2, since some callers need to do special
2203      things when this happens.  */
2204   if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2205       || GET_CODE (y) == PRE_MODIFY)
2206     return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2207 
2208  slow:
2209 
2210   /* Now we have disposed of all the cases in which different rtx codes
2211      can match.  */
2212   if (code != GET_CODE (y))
2213     return 0;
2214 
2215   /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.  */
2216   if (GET_MODE (x) != GET_MODE (y))
2217     return 0;
2218 
2219   switch (code)
2220     {
2221     case CONST_INT:
2222     case CONST_DOUBLE:
2223       return 0;
2224 
2225     case LABEL_REF:
2226       return XEXP (x, 0) == XEXP (y, 0);
2227     case SYMBOL_REF:
2228       return XSTR (x, 0) == XSTR (y, 0);
2229 
2230     default:
2231       break;
2232     }
2233 
2234   /* Compare the elements.  If any pair of corresponding elements
2235      fail to match, return 0 for the whole things.  */
2236 
2237   success_2 = 0;
2238   fmt = GET_RTX_FORMAT (code);
2239   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2240     {
2241       int val, j;
2242       switch (fmt[i])
2243 	{
2244 	case 'w':
2245 	  if (XWINT (x, i) != XWINT (y, i))
2246 	    return 0;
2247 	  break;
2248 
2249 	case 'i':
2250 	  if (XINT (x, i) != XINT (y, i))
2251 	    return 0;
2252 	  break;
2253 
2254 	case 'e':
2255 	  val = operands_match_p (XEXP (x, i), XEXP (y, i));
2256 	  if (val == 0)
2257 	    return 0;
2258 	  /* If any subexpression returns 2,
2259 	     we should return 2 if we are successful.  */
2260 	  if (val == 2)
2261 	    success_2 = 1;
2262 	  break;
2263 
2264 	case '0':
2265 	  break;
2266 
2267 	case 'E':
2268 	  if (XVECLEN (x, i) != XVECLEN (y, i))
2269 	    return 0;
2270 	  for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2271 	    {
2272 	      val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2273 	      if (val == 0)
2274 		return 0;
2275 	      if (val == 2)
2276 		success_2 = 1;
2277 	    }
2278 	  break;
2279 
2280 	  /* It is believed that rtx's at this level will never
2281 	     contain anything but integers and other rtx's,
2282 	     except for within LABEL_REFs and SYMBOL_REFs.  */
2283 	default:
2284 	  gcc_unreachable ();
2285 	}
2286     }
2287   return 1 + success_2;
2288 }
2289 
2290 /* Describe the range of registers or memory referenced by X.
2291    If X is a register, set REG_FLAG and put the first register
2292    number into START and the last plus one into END.
2293    If X is a memory reference, put a base address into BASE
2294    and a range of integer offsets into START and END.
2295    If X is pushing on the stack, we can assume it causes no trouble,
2296    so we set the SAFE field.  */
2297 
2298 static struct decomposition
decompose(rtx x)2299 decompose (rtx x)
2300 {
2301   struct decomposition val;
2302   int all_const = 0;
2303 
2304   memset (&val, 0, sizeof (val));
2305 
2306   switch (GET_CODE (x))
2307     {
2308     case MEM:
2309       {
2310 	rtx base = NULL_RTX, offset = 0;
2311 	rtx addr = XEXP (x, 0);
2312 
2313 	if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2314 	    || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2315 	  {
2316 	    val.base = XEXP (addr, 0);
2317 	    val.start = -GET_MODE_SIZE (GET_MODE (x));
2318 	    val.end = GET_MODE_SIZE (GET_MODE (x));
2319 	    val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2320 	    return val;
2321 	  }
2322 
2323 	if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2324 	  {
2325 	    if (GET_CODE (XEXP (addr, 1)) == PLUS
2326 		&& XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2327 		&& CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2328 	      {
2329 		val.base  = XEXP (addr, 0);
2330 		val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2331 		val.end   = INTVAL (XEXP (XEXP (addr, 1), 1));
2332 		val.safe  = REGNO (val.base) == STACK_POINTER_REGNUM;
2333 		return val;
2334 	      }
2335 	  }
2336 
2337 	if (GET_CODE (addr) == CONST)
2338 	  {
2339 	    addr = XEXP (addr, 0);
2340 	    all_const = 1;
2341 	  }
2342 	if (GET_CODE (addr) == PLUS)
2343 	  {
2344 	    if (CONSTANT_P (XEXP (addr, 0)))
2345 	      {
2346 		base = XEXP (addr, 1);
2347 		offset = XEXP (addr, 0);
2348 	      }
2349 	    else if (CONSTANT_P (XEXP (addr, 1)))
2350 	      {
2351 		base = XEXP (addr, 0);
2352 		offset = XEXP (addr, 1);
2353 	      }
2354 	  }
2355 
2356 	if (offset == 0)
2357 	  {
2358 	    base = addr;
2359 	    offset = const0_rtx;
2360 	  }
2361 	if (GET_CODE (offset) == CONST)
2362 	  offset = XEXP (offset, 0);
2363 	if (GET_CODE (offset) == PLUS)
2364 	  {
2365 	    if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2366 	      {
2367 		base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2368 		offset = XEXP (offset, 0);
2369 	      }
2370 	    else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2371 	      {
2372 		base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2373 		offset = XEXP (offset, 1);
2374 	      }
2375 	    else
2376 	      {
2377 		base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2378 		offset = const0_rtx;
2379 	      }
2380 	  }
2381 	else if (GET_CODE (offset) != CONST_INT)
2382 	  {
2383 	    base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2384 	    offset = const0_rtx;
2385 	  }
2386 
2387 	if (all_const && GET_CODE (base) == PLUS)
2388 	  base = gen_rtx_CONST (GET_MODE (base), base);
2389 
2390 	gcc_assert (GET_CODE (offset) == CONST_INT);
2391 
2392 	val.start = INTVAL (offset);
2393 	val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2394 	val.base = base;
2395       }
2396       break;
2397 
2398     case REG:
2399       val.reg_flag = 1;
2400       val.start = true_regnum (x);
2401       if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2402 	{
2403 	  /* A pseudo with no hard reg.  */
2404 	  val.start = REGNO (x);
2405 	  val.end = val.start + 1;
2406 	}
2407       else
2408 	/* A hard reg.  */
2409 	val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
2410       break;
2411 
2412     case SUBREG:
2413       if (!REG_P (SUBREG_REG (x)))
2414 	/* This could be more precise, but it's good enough.  */
2415 	return decompose (SUBREG_REG (x));
2416       val.reg_flag = 1;
2417       val.start = true_regnum (x);
2418       if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2419 	return decompose (SUBREG_REG (x));
2420       else
2421 	/* A hard reg.  */
2422 	val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
2423       break;
2424 
2425     case SCRATCH:
2426       /* This hasn't been assigned yet, so it can't conflict yet.  */
2427       val.safe = 1;
2428       break;
2429 
2430     default:
2431       gcc_assert (CONSTANT_P (x));
2432       val.safe = 1;
2433       break;
2434     }
2435   return val;
2436 }
2437 
2438 /* Return 1 if altering Y will not modify the value of X.
2439    Y is also described by YDATA, which should be decompose (Y).  */
2440 
2441 static int
immune_p(rtx x,rtx y,struct decomposition ydata)2442 immune_p (rtx x, rtx y, struct decomposition ydata)
2443 {
2444   struct decomposition xdata;
2445 
2446   if (ydata.reg_flag)
2447     return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2448   if (ydata.safe)
2449     return 1;
2450 
2451   gcc_assert (MEM_P (y));
2452   /* If Y is memory and X is not, Y can't affect X.  */
2453   if (!MEM_P (x))
2454     return 1;
2455 
2456   xdata = decompose (x);
2457 
2458   if (! rtx_equal_p (xdata.base, ydata.base))
2459     {
2460       /* If bases are distinct symbolic constants, there is no overlap.  */
2461       if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2462 	return 1;
2463       /* Constants and stack slots never overlap.  */
2464       if (CONSTANT_P (xdata.base)
2465 	  && (ydata.base == frame_pointer_rtx
2466 	      || ydata.base == hard_frame_pointer_rtx
2467 	      || ydata.base == stack_pointer_rtx))
2468 	return 1;
2469       if (CONSTANT_P (ydata.base)
2470 	  && (xdata.base == frame_pointer_rtx
2471 	      || xdata.base == hard_frame_pointer_rtx
2472 	      || xdata.base == stack_pointer_rtx))
2473 	return 1;
2474       /* If either base is variable, we don't know anything.  */
2475       return 0;
2476     }
2477 
2478   return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2479 }
2480 
2481 /* Similar, but calls decompose.  */
2482 
2483 int
safe_from_earlyclobber(rtx op,rtx clobber)2484 safe_from_earlyclobber (rtx op, rtx clobber)
2485 {
2486   struct decomposition early_data;
2487 
2488   early_data = decompose (clobber);
2489   return immune_p (op, clobber, early_data);
2490 }
2491 
2492 /* Main entry point of this file: search the body of INSN
2493    for values that need reloading and record them with push_reload.
2494    REPLACE nonzero means record also where the values occur
2495    so that subst_reloads can be used.
2496 
2497    IND_LEVELS says how many levels of indirection are supported by this
2498    machine; a value of zero means that a memory reference is not a valid
2499    memory address.
2500 
2501    LIVE_KNOWN says we have valid information about which hard
2502    regs are live at each point in the program; this is true when
2503    we are called from global_alloc but false when stupid register
2504    allocation has been done.
2505 
2506    RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2507    which is nonnegative if the reg has been commandeered for reloading into.
2508    It is copied into STATIC_RELOAD_REG_P and referenced from there
2509    by various subroutines.
2510 
2511    Return TRUE if some operands need to be changed, because of swapping
2512    commutative operands, reg_equiv_address substitution, or whatever.  */
2513 
2514 int
find_reloads(rtx insn,int replace,int ind_levels,int live_known,short * reload_reg_p)2515 find_reloads (rtx insn, int replace, int ind_levels, int live_known,
2516 	      short *reload_reg_p)
2517 {
2518   int insn_code_number;
2519   int i, j;
2520   int noperands;
2521   /* These start out as the constraints for the insn
2522      and they are chewed up as we consider alternatives.  */
2523   char *constraints[MAX_RECOG_OPERANDS];
2524   /* These are the preferred classes for an operand, or NO_REGS if it isn't
2525      a register.  */
2526   enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2527   char pref_or_nothing[MAX_RECOG_OPERANDS];
2528   /* Nonzero for a MEM operand whose entire address needs a reload.
2529      May be -1 to indicate the entire address may or may not need a reload.  */
2530   int address_reloaded[MAX_RECOG_OPERANDS];
2531   /* Nonzero for an address operand that needs to be completely reloaded.
2532      May be -1 to indicate the entire operand may or may not need a reload.  */
2533   int address_operand_reloaded[MAX_RECOG_OPERANDS];
2534   /* Value of enum reload_type to use for operand.  */
2535   enum reload_type operand_type[MAX_RECOG_OPERANDS];
2536   /* Value of enum reload_type to use within address of operand.  */
2537   enum reload_type address_type[MAX_RECOG_OPERANDS];
2538   /* Save the usage of each operand.  */
2539   enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2540   int no_input_reloads = 0, no_output_reloads = 0;
2541   int n_alternatives;
2542   int this_alternative[MAX_RECOG_OPERANDS];
2543   char this_alternative_match_win[MAX_RECOG_OPERANDS];
2544   char this_alternative_win[MAX_RECOG_OPERANDS];
2545   char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2546   char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2547   int this_alternative_matches[MAX_RECOG_OPERANDS];
2548   int swapped;
2549   int goal_alternative[MAX_RECOG_OPERANDS];
2550   int this_alternative_number;
2551   int goal_alternative_number = 0;
2552   int operand_reloadnum[MAX_RECOG_OPERANDS];
2553   int goal_alternative_matches[MAX_RECOG_OPERANDS];
2554   int goal_alternative_matched[MAX_RECOG_OPERANDS];
2555   char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2556   char goal_alternative_win[MAX_RECOG_OPERANDS];
2557   char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2558   char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2559   int goal_alternative_swapped;
2560   int best;
2561   int commutative;
2562   char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2563   rtx substed_operand[MAX_RECOG_OPERANDS];
2564   rtx body = PATTERN (insn);
2565   rtx set = single_set (insn);
2566   int goal_earlyclobber = 0, this_earlyclobber;
2567   enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2568   int retval = 0;
2569 
2570   this_insn = insn;
2571   n_reloads = 0;
2572   n_replacements = 0;
2573   n_earlyclobbers = 0;
2574   replace_reloads = replace;
2575   hard_regs_live_known = live_known;
2576   static_reload_reg_p = reload_reg_p;
2577 
2578   /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2579      neither are insns that SET cc0.  Insns that use CC0 are not allowed
2580      to have any input reloads.  */
2581   if (JUMP_P (insn) || CALL_P (insn))
2582     no_output_reloads = 1;
2583 
2584 #ifdef HAVE_cc0
2585   if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2586     no_input_reloads = 1;
2587   if (reg_set_p (cc0_rtx, PATTERN (insn)))
2588     no_output_reloads = 1;
2589 #endif
2590 
2591 #ifdef SECONDARY_MEMORY_NEEDED
2592   /* The eliminated forms of any secondary memory locations are per-insn, so
2593      clear them out here.  */
2594 
2595   if (secondary_memlocs_elim_used)
2596     {
2597       memset (secondary_memlocs_elim, 0,
2598 	      sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2599       secondary_memlocs_elim_used = 0;
2600     }
2601 #endif
2602 
2603   /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2604      is cheap to move between them.  If it is not, there may not be an insn
2605      to do the copy, so we may need a reload.  */
2606   if (GET_CODE (body) == SET
2607       && REG_P (SET_DEST (body))
2608       && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2609       && REG_P (SET_SRC (body))
2610       && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2611       && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2612 			     REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2613 			     REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2614     return 0;
2615 
2616   extract_insn (insn);
2617 
2618   noperands = reload_n_operands = recog_data.n_operands;
2619   n_alternatives = recog_data.n_alternatives;
2620 
2621   /* Just return "no reloads" if insn has no operands with constraints.  */
2622   if (noperands == 0 || n_alternatives == 0)
2623     return 0;
2624 
2625   insn_code_number = INSN_CODE (insn);
2626   this_insn_is_asm = insn_code_number < 0;
2627 
2628   memcpy (operand_mode, recog_data.operand_mode,
2629 	  noperands * sizeof (enum machine_mode));
2630   memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
2631 
2632   commutative = -1;
2633 
2634   /* If we will need to know, later, whether some pair of operands
2635      are the same, we must compare them now and save the result.
2636      Reloading the base and index registers will clobber them
2637      and afterward they will fail to match.  */
2638 
2639   for (i = 0; i < noperands; i++)
2640     {
2641       char *p;
2642       int c;
2643 
2644       substed_operand[i] = recog_data.operand[i];
2645       p = constraints[i];
2646 
2647       modified[i] = RELOAD_READ;
2648 
2649       /* Scan this operand's constraint to see if it is an output operand,
2650 	 an in-out operand, is commutative, or should match another.  */
2651 
2652       while ((c = *p))
2653 	{
2654 	  p += CONSTRAINT_LEN (c, p);
2655 	  switch (c)
2656 	    {
2657 	    case '=':
2658 	      modified[i] = RELOAD_WRITE;
2659 	      break;
2660 	    case '+':
2661 	      modified[i] = RELOAD_READ_WRITE;
2662 	      break;
2663 	    case '%':
2664 	      {
2665 		/* The last operand should not be marked commutative.  */
2666 		gcc_assert (i != noperands - 1);
2667 
2668 		/* We currently only support one commutative pair of
2669 		   operands.  Some existing asm code currently uses more
2670 		   than one pair.  Previously, that would usually work,
2671 		   but sometimes it would crash the compiler.  We
2672 		   continue supporting that case as well as we can by
2673 		   silently ignoring all but the first pair.  In the
2674 		   future we may handle it correctly.  */
2675 		if (commutative < 0)
2676 		  commutative = i;
2677 		else
2678 		  gcc_assert (this_insn_is_asm);
2679 	      }
2680 	      break;
2681 	    /* Use of ISDIGIT is tempting here, but it may get expensive because
2682 	       of locale support we don't want.  */
2683 	    case '0': case '1': case '2': case '3': case '4':
2684 	    case '5': case '6': case '7': case '8': case '9':
2685 	      {
2686 		c = strtoul (p - 1, &p, 10);
2687 
2688 		operands_match[c][i]
2689 		  = operands_match_p (recog_data.operand[c],
2690 				      recog_data.operand[i]);
2691 
2692 		/* An operand may not match itself.  */
2693 		gcc_assert (c != i);
2694 
2695 		/* If C can be commuted with C+1, and C might need to match I,
2696 		   then C+1 might also need to match I.  */
2697 		if (commutative >= 0)
2698 		  {
2699 		    if (c == commutative || c == commutative + 1)
2700 		      {
2701 			int other = c + (c == commutative ? 1 : -1);
2702 			operands_match[other][i]
2703 			  = operands_match_p (recog_data.operand[other],
2704 					      recog_data.operand[i]);
2705 		      }
2706 		    if (i == commutative || i == commutative + 1)
2707 		      {
2708 			int other = i + (i == commutative ? 1 : -1);
2709 			operands_match[c][other]
2710 			  = operands_match_p (recog_data.operand[c],
2711 					      recog_data.operand[other]);
2712 		      }
2713 		    /* Note that C is supposed to be less than I.
2714 		       No need to consider altering both C and I because in
2715 		       that case we would alter one into the other.  */
2716 		  }
2717 	      }
2718 	    }
2719 	}
2720     }
2721 
2722   /* Examine each operand that is a memory reference or memory address
2723      and reload parts of the addresses into index registers.
2724      Also here any references to pseudo regs that didn't get hard regs
2725      but are equivalent to constants get replaced in the insn itself
2726      with those constants.  Nobody will ever see them again.
2727 
2728      Finally, set up the preferred classes of each operand.  */
2729 
2730   for (i = 0; i < noperands; i++)
2731     {
2732       RTX_CODE code = GET_CODE (recog_data.operand[i]);
2733 
2734       address_reloaded[i] = 0;
2735       address_operand_reloaded[i] = 0;
2736       operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2737 			 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2738 			 : RELOAD_OTHER);
2739       address_type[i]
2740 	= (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2741 	   : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2742 	   : RELOAD_OTHER);
2743 
2744       if (*constraints[i] == 0)
2745 	/* Ignore things like match_operator operands.  */
2746 	;
2747       else if (constraints[i][0] == 'p'
2748 	       || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
2749 	{
2750 	  address_operand_reloaded[i]
2751 	    = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2752 				    recog_data.operand[i],
2753 				    recog_data.operand_loc[i],
2754 				    i, operand_type[i], ind_levels, insn);
2755 
2756 	  /* If we now have a simple operand where we used to have a
2757 	     PLUS or MULT, re-recognize and try again.  */
2758 	  if ((OBJECT_P (*recog_data.operand_loc[i])
2759 	       || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2760 	      && (GET_CODE (recog_data.operand[i]) == MULT
2761 		  || GET_CODE (recog_data.operand[i]) == PLUS))
2762 	    {
2763 	      INSN_CODE (insn) = -1;
2764 	      retval = find_reloads (insn, replace, ind_levels, live_known,
2765 				     reload_reg_p);
2766 	      return retval;
2767 	    }
2768 
2769 	  recog_data.operand[i] = *recog_data.operand_loc[i];
2770 	  substed_operand[i] = recog_data.operand[i];
2771 
2772 	  /* Address operands are reloaded in their existing mode,
2773 	     no matter what is specified in the machine description.  */
2774 	  operand_mode[i] = GET_MODE (recog_data.operand[i]);
2775 	}
2776       else if (code == MEM)
2777 	{
2778 	  address_reloaded[i]
2779 	    = find_reloads_address (GET_MODE (recog_data.operand[i]),
2780 				    recog_data.operand_loc[i],
2781 				    XEXP (recog_data.operand[i], 0),
2782 				    &XEXP (recog_data.operand[i], 0),
2783 				    i, address_type[i], ind_levels, insn);
2784 	  recog_data.operand[i] = *recog_data.operand_loc[i];
2785 	  substed_operand[i] = recog_data.operand[i];
2786 	}
2787       else if (code == SUBREG)
2788 	{
2789 	  rtx reg = SUBREG_REG (recog_data.operand[i]);
2790 	  rtx op
2791 	    = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2792 				   ind_levels,
2793 				   set != 0
2794 				   && &SET_DEST (set) == recog_data.operand_loc[i],
2795 				   insn,
2796 				   &address_reloaded[i]);
2797 
2798 	  /* If we made a MEM to load (a part of) the stackslot of a pseudo
2799 	     that didn't get a hard register, emit a USE with a REG_EQUAL
2800 	     note in front so that we might inherit a previous, possibly
2801 	     wider reload.  */
2802 
2803 	  if (replace
2804 	      && MEM_P (op)
2805 	      && REG_P (reg)
2806 	      && (GET_MODE_SIZE (GET_MODE (reg))
2807 		  >= GET_MODE_SIZE (GET_MODE (op))))
2808 	    set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2809 						   insn),
2810 				 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
2811 
2812 	  substed_operand[i] = recog_data.operand[i] = op;
2813 	}
2814       else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2815 	/* We can get a PLUS as an "operand" as a result of register
2816 	   elimination.  See eliminate_regs and gen_reload.  We handle
2817 	   a unary operator by reloading the operand.  */
2818 	substed_operand[i] = recog_data.operand[i]
2819 	  = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2820 				 ind_levels, 0, insn,
2821 				 &address_reloaded[i]);
2822       else if (code == REG)
2823 	{
2824 	  /* This is equivalent to calling find_reloads_toplev.
2825 	     The code is duplicated for speed.
2826 	     When we find a pseudo always equivalent to a constant,
2827 	     we replace it by the constant.  We must be sure, however,
2828 	     that we don't try to replace it in the insn in which it
2829 	     is being set.  */
2830 	  int regno = REGNO (recog_data.operand[i]);
2831 	  if (reg_equiv_constant[regno] != 0
2832 	      && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2833 	    {
2834 	      /* Record the existing mode so that the check if constants are
2835 		 allowed will work when operand_mode isn't specified.  */
2836 
2837 	      if (operand_mode[i] == VOIDmode)
2838 		operand_mode[i] = GET_MODE (recog_data.operand[i]);
2839 
2840 	      substed_operand[i] = recog_data.operand[i]
2841 		= reg_equiv_constant[regno];
2842 	    }
2843 	  if (reg_equiv_memory_loc[regno] != 0
2844 	      && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2845 	    /* We need not give a valid is_set_dest argument since the case
2846 	       of a constant equivalence was checked above.  */
2847 	    substed_operand[i] = recog_data.operand[i]
2848 	      = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2849 				     ind_levels, 0, insn,
2850 				     &address_reloaded[i]);
2851 	}
2852       /* If the operand is still a register (we didn't replace it with an
2853 	 equivalent), get the preferred class to reload it into.  */
2854       code = GET_CODE (recog_data.operand[i]);
2855       preferred_class[i]
2856 	= ((code == REG && REGNO (recog_data.operand[i])
2857 	    >= FIRST_PSEUDO_REGISTER)
2858 	   ? reg_preferred_class (REGNO (recog_data.operand[i]))
2859 	   : NO_REGS);
2860       pref_or_nothing[i]
2861 	= (code == REG
2862 	   && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2863 	   && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2864     }
2865 
2866   /* If this is simply a copy from operand 1 to operand 0, merge the
2867      preferred classes for the operands.  */
2868   if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2869       && recog_data.operand[1] == SET_SRC (set))
2870     {
2871       preferred_class[0] = preferred_class[1]
2872 	= reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2873       pref_or_nothing[0] |= pref_or_nothing[1];
2874       pref_or_nothing[1] |= pref_or_nothing[0];
2875     }
2876 
2877   /* Now see what we need for pseudo-regs that didn't get hard regs
2878      or got the wrong kind of hard reg.  For this, we must consider
2879      all the operands together against the register constraints.  */
2880 
2881   best = MAX_RECOG_OPERANDS * 2 + 600;
2882 
2883   swapped = 0;
2884   goal_alternative_swapped = 0;
2885  try_swapped:
2886 
2887   /* The constraints are made of several alternatives.
2888      Each operand's constraint looks like foo,bar,... with commas
2889      separating the alternatives.  The first alternatives for all
2890      operands go together, the second alternatives go together, etc.
2891 
2892      First loop over alternatives.  */
2893 
2894   for (this_alternative_number = 0;
2895        this_alternative_number < n_alternatives;
2896        this_alternative_number++)
2897     {
2898       /* Loop over operands for one constraint alternative.  */
2899       /* LOSERS counts those that don't fit this alternative
2900 	 and would require loading.  */
2901       int losers = 0;
2902       /* BAD is set to 1 if it some operand can't fit this alternative
2903 	 even after reloading.  */
2904       int bad = 0;
2905       /* REJECT is a count of how undesirable this alternative says it is
2906 	 if any reloading is required.  If the alternative matches exactly
2907 	 then REJECT is ignored, but otherwise it gets this much
2908 	 counted against it in addition to the reloading needed.  Each
2909 	 ? counts three times here since we want the disparaging caused by
2910 	 a bad register class to only count 1/3 as much.  */
2911       int reject = 0;
2912 
2913       this_earlyclobber = 0;
2914 
2915       for (i = 0; i < noperands; i++)
2916 	{
2917 	  char *p = constraints[i];
2918 	  char *end;
2919 	  int len;
2920 	  int win = 0;
2921 	  int did_match = 0;
2922 	  /* 0 => this operand can be reloaded somehow for this alternative.  */
2923 	  int badop = 1;
2924 	  /* 0 => this operand can be reloaded if the alternative allows regs.  */
2925 	  int winreg = 0;
2926 	  int c;
2927 	  int m;
2928 	  rtx operand = recog_data.operand[i];
2929 	  int offset = 0;
2930 	  /* Nonzero means this is a MEM that must be reloaded into a reg
2931 	     regardless of what the constraint says.  */
2932 	  int force_reload = 0;
2933 	  int offmemok = 0;
2934 	  /* Nonzero if a constant forced into memory would be OK for this
2935 	     operand.  */
2936 	  int constmemok = 0;
2937 	  int earlyclobber = 0;
2938 
2939 	  /* If the predicate accepts a unary operator, it means that
2940 	     we need to reload the operand, but do not do this for
2941 	     match_operator and friends.  */
2942 	  if (UNARY_P (operand) && *p != 0)
2943 	    operand = XEXP (operand, 0);
2944 
2945 	  /* If the operand is a SUBREG, extract
2946 	     the REG or MEM (or maybe even a constant) within.
2947 	     (Constants can occur as a result of reg_equiv_constant.)  */
2948 
2949 	  while (GET_CODE (operand) == SUBREG)
2950 	    {
2951 	      /* Offset only matters when operand is a REG and
2952 		 it is a hard reg.  This is because it is passed
2953 		 to reg_fits_class_p if it is a REG and all pseudos
2954 		 return 0 from that function.  */
2955 	      if (REG_P (SUBREG_REG (operand))
2956 		  && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2957 		{
2958 		  if (!subreg_offset_representable_p
2959 			(REGNO (SUBREG_REG (operand)),
2960 			 GET_MODE (SUBREG_REG (operand)),
2961 			 SUBREG_BYTE (operand),
2962 			 GET_MODE (operand)))
2963 		     force_reload = 1;
2964 		  offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
2965 						 GET_MODE (SUBREG_REG (operand)),
2966 						 SUBREG_BYTE (operand),
2967 						 GET_MODE (operand));
2968 		}
2969 	      operand = SUBREG_REG (operand);
2970 	      /* Force reload if this is a constant or PLUS or if there may
2971 		 be a problem accessing OPERAND in the outer mode.  */
2972 	      if (CONSTANT_P (operand)
2973 		  || GET_CODE (operand) == PLUS
2974 		  /* We must force a reload of paradoxical SUBREGs
2975 		     of a MEM because the alignment of the inner value
2976 		     may not be enough to do the outer reference.  On
2977 		     big-endian machines, it may also reference outside
2978 		     the object.
2979 
2980 		     On machines that extend byte operations and we have a
2981 		     SUBREG where both the inner and outer modes are no wider
2982 		     than a word and the inner mode is narrower, is integral,
2983 		     and gets extended when loaded from memory, combine.c has
2984 		     made assumptions about the behavior of the machine in such
2985 		     register access.  If the data is, in fact, in memory we
2986 		     must always load using the size assumed to be in the
2987 		     register and let the insn do the different-sized
2988 		     accesses.
2989 
2990 		     This is doubly true if WORD_REGISTER_OPERATIONS.  In
2991 		     this case eliminate_regs has left non-paradoxical
2992 		     subregs for push_reload to see.  Make sure it does
2993 		     by forcing the reload.
2994 
2995 		     ??? When is it right at this stage to have a subreg
2996 		     of a mem that is _not_ to be handled specially?  IMO
2997 		     those should have been reduced to just a mem.  */
2998 		  || ((MEM_P (operand)
2999 		       || (REG_P (operand)
3000 			   && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3001 #ifndef WORD_REGISTER_OPERATIONS
3002 		      && (((GET_MODE_BITSIZE (GET_MODE (operand))
3003 			    < BIGGEST_ALIGNMENT)
3004 			   && (GET_MODE_SIZE (operand_mode[i])
3005 			       > GET_MODE_SIZE (GET_MODE (operand))))
3006 			  || BYTES_BIG_ENDIAN
3007 #ifdef LOAD_EXTEND_OP
3008 			  || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3009 			      && (GET_MODE_SIZE (GET_MODE (operand))
3010 				  <= UNITS_PER_WORD)
3011 			      && (GET_MODE_SIZE (operand_mode[i])
3012 				  > GET_MODE_SIZE (GET_MODE (operand)))
3013 			      && INTEGRAL_MODE_P (GET_MODE (operand))
3014 			      && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
3015 #endif
3016 			  )
3017 #endif
3018 		      )
3019 		  )
3020 		force_reload = 1;
3021 	    }
3022 
3023 	  this_alternative[i] = (int) NO_REGS;
3024 	  this_alternative_win[i] = 0;
3025 	  this_alternative_match_win[i] = 0;
3026 	  this_alternative_offmemok[i] = 0;
3027 	  this_alternative_earlyclobber[i] = 0;
3028 	  this_alternative_matches[i] = -1;
3029 
3030 	  /* An empty constraint or empty alternative
3031 	     allows anything which matched the pattern.  */
3032 	  if (*p == 0 || *p == ',')
3033 	    win = 1, badop = 0;
3034 
3035 	  /* Scan this alternative's specs for this operand;
3036 	     set WIN if the operand fits any letter in this alternative.
3037 	     Otherwise, clear BADOP if this operand could
3038 	     fit some letter after reloads,
3039 	     or set WINREG if this operand could fit after reloads
3040 	     provided the constraint allows some registers.  */
3041 
3042 	  do
3043 	    switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
3044 	      {
3045 	      case '\0':
3046 		len = 0;
3047 		break;
3048 	      case ',':
3049 		c = '\0';
3050 		break;
3051 
3052 	      case '=':  case '+':  case '*':
3053 		break;
3054 
3055 	      case '%':
3056 		/* We only support one commutative marker, the first
3057 		   one.  We already set commutative above.  */
3058 		break;
3059 
3060 	      case '?':
3061 		reject += 6;
3062 		break;
3063 
3064 	      case '!':
3065 		reject = 600;
3066 		break;
3067 
3068 	      case '#':
3069 		/* Ignore rest of this alternative as far as
3070 		   reloading is concerned.  */
3071 		do
3072 		  p++;
3073 		while (*p && *p != ',');
3074 		len = 0;
3075 		break;
3076 
3077 	      case '0':  case '1':  case '2':  case '3':  case '4':
3078 	      case '5':  case '6':  case '7':  case '8':  case '9':
3079 		m = strtoul (p, &end, 10);
3080 		p = end;
3081 		len = 0;
3082 
3083 		this_alternative_matches[i] = m;
3084 		/* We are supposed to match a previous operand.
3085 		   If we do, we win if that one did.
3086 		   If we do not, count both of the operands as losers.
3087 		   (This is too conservative, since most of the time
3088 		   only a single reload insn will be needed to make
3089 		   the two operands win.  As a result, this alternative
3090 		   may be rejected when it is actually desirable.)  */
3091 		if ((swapped && (m != commutative || i != commutative + 1))
3092 		    /* If we are matching as if two operands were swapped,
3093 		       also pretend that operands_match had been computed
3094 		       with swapped.
3095 		       But if I is the second of those and C is the first,
3096 		       don't exchange them, because operands_match is valid
3097 		       only on one side of its diagonal.  */
3098 		    ? (operands_match
3099 		       [(m == commutative || m == commutative + 1)
3100 		       ? 2 * commutative + 1 - m : m]
3101 		       [(i == commutative || i == commutative + 1)
3102 		       ? 2 * commutative + 1 - i : i])
3103 		    : operands_match[m][i])
3104 		  {
3105 		    /* If we are matching a non-offsettable address where an
3106 		       offsettable address was expected, then we must reject
3107 		       this combination, because we can't reload it.  */
3108 		    if (this_alternative_offmemok[m]
3109 			&& MEM_P (recog_data.operand[m])
3110 			&& this_alternative[m] == (int) NO_REGS
3111 			&& ! this_alternative_win[m])
3112 		      bad = 1;
3113 
3114 		    did_match = this_alternative_win[m];
3115 		  }
3116 		else
3117 		  {
3118 		    /* Operands don't match.  */
3119 		    rtx value;
3120 		    int loc1, loc2;
3121 		    /* Retroactively mark the operand we had to match
3122 		       as a loser, if it wasn't already.  */
3123 		    if (this_alternative_win[m])
3124 		      losers++;
3125 		    this_alternative_win[m] = 0;
3126 		    if (this_alternative[m] == (int) NO_REGS)
3127 		      bad = 1;
3128 		    /* But count the pair only once in the total badness of
3129 		       this alternative, if the pair can be a dummy reload.
3130 		       The pointers in operand_loc are not swapped; swap
3131 		       them by hand if necessary.  */
3132 		    if (swapped && i == commutative)
3133 		      loc1 = commutative + 1;
3134 		    else if (swapped && i == commutative + 1)
3135 		      loc1 = commutative;
3136 		    else
3137 		      loc1 = i;
3138 		    if (swapped && m == commutative)
3139 		      loc2 = commutative + 1;
3140 		    else if (swapped && m == commutative + 1)
3141 		      loc2 = commutative;
3142 		    else
3143 		      loc2 = m;
3144 		    value
3145 		      = find_dummy_reload (recog_data.operand[i],
3146 					   recog_data.operand[m],
3147 					   recog_data.operand_loc[loc1],
3148 					   recog_data.operand_loc[loc2],
3149 					   operand_mode[i], operand_mode[m],
3150 					   this_alternative[m], -1,
3151 					   this_alternative_earlyclobber[m]);
3152 
3153 		    if (value != 0)
3154 		      losers--;
3155 		  }
3156 		/* This can be fixed with reloads if the operand
3157 		   we are supposed to match can be fixed with reloads.  */
3158 		badop = 0;
3159 		this_alternative[i] = this_alternative[m];
3160 
3161 		/* If we have to reload this operand and some previous
3162 		   operand also had to match the same thing as this
3163 		   operand, we don't know how to do that.  So reject this
3164 		   alternative.  */
3165 		if (! did_match || force_reload)
3166 		  for (j = 0; j < i; j++)
3167 		    if (this_alternative_matches[j]
3168 			== this_alternative_matches[i])
3169 		      badop = 1;
3170 		break;
3171 
3172 	      case 'p':
3173 		/* All necessary reloads for an address_operand
3174 		   were handled in find_reloads_address.  */
3175 		this_alternative[i]
3176 		  = (int) base_reg_class (VOIDmode, ADDRESS, SCRATCH);
3177 		win = 1;
3178 		badop = 0;
3179 		break;
3180 
3181 	      case 'm':
3182 		if (force_reload)
3183 		  break;
3184 		if (MEM_P (operand)
3185 		    || (REG_P (operand)
3186 			&& REGNO (operand) >= FIRST_PSEUDO_REGISTER
3187 			&& reg_renumber[REGNO (operand)] < 0))
3188 		  win = 1;
3189 		if (CONST_POOL_OK_P (operand))
3190 		  badop = 0;
3191 		constmemok = 1;
3192 		break;
3193 
3194 	      case '<':
3195 		if (MEM_P (operand)
3196 		    && ! address_reloaded[i]
3197 		    && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3198 			|| GET_CODE (XEXP (operand, 0)) == POST_DEC))
3199 		  win = 1;
3200 		break;
3201 
3202 	      case '>':
3203 		if (MEM_P (operand)
3204 		    && ! address_reloaded[i]
3205 		    && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3206 			|| GET_CODE (XEXP (operand, 0)) == POST_INC))
3207 		  win = 1;
3208 		break;
3209 
3210 		/* Memory operand whose address is not offsettable.  */
3211 	      case 'V':
3212 		if (force_reload)
3213 		  break;
3214 		if (MEM_P (operand)
3215 		    && ! (ind_levels ? offsettable_memref_p (operand)
3216 			  : offsettable_nonstrict_memref_p (operand))
3217 		    /* Certain mem addresses will become offsettable
3218 		       after they themselves are reloaded.  This is important;
3219 		       we don't want our own handling of unoffsettables
3220 		       to override the handling of reg_equiv_address.  */
3221 		    && !(REG_P (XEXP (operand, 0))
3222 			 && (ind_levels == 0
3223 			     || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3224 		  win = 1;
3225 		break;
3226 
3227 		/* Memory operand whose address is offsettable.  */
3228 	      case 'o':
3229 		if (force_reload)
3230 		  break;
3231 		if ((MEM_P (operand)
3232 		     /* If IND_LEVELS, find_reloads_address won't reload a
3233 			pseudo that didn't get a hard reg, so we have to
3234 			reject that case.  */
3235 		     && ((ind_levels ? offsettable_memref_p (operand)
3236 			  : offsettable_nonstrict_memref_p (operand))
3237 			 /* A reloaded address is offsettable because it is now
3238 			    just a simple register indirect.  */
3239 			 || address_reloaded[i] == 1))
3240 		    || (REG_P (operand)
3241 			&& REGNO (operand) >= FIRST_PSEUDO_REGISTER
3242 			&& reg_renumber[REGNO (operand)] < 0
3243 			/* If reg_equiv_address is nonzero, we will be
3244 			   loading it into a register; hence it will be
3245 			   offsettable, but we cannot say that reg_equiv_mem
3246 			   is offsettable without checking.  */
3247 			&& ((reg_equiv_mem[REGNO (operand)] != 0
3248 			     && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3249 			    || (reg_equiv_address[REGNO (operand)] != 0))))
3250 		  win = 1;
3251 		if (CONST_POOL_OK_P (operand)
3252 		    || MEM_P (operand))
3253 		  badop = 0;
3254 		constmemok = 1;
3255 		offmemok = 1;
3256 		break;
3257 
3258 	      case '&':
3259 		/* Output operand that is stored before the need for the
3260 		   input operands (and their index registers) is over.  */
3261 		earlyclobber = 1, this_earlyclobber = 1;
3262 		break;
3263 
3264 	      case 'E':
3265 	      case 'F':
3266 		if (GET_CODE (operand) == CONST_DOUBLE
3267 		    || (GET_CODE (operand) == CONST_VECTOR
3268 			&& (GET_MODE_CLASS (GET_MODE (operand))
3269 			    == MODE_VECTOR_FLOAT)))
3270 		  win = 1;
3271 		break;
3272 
3273 	      case 'G':
3274 	      case 'H':
3275 		if (GET_CODE (operand) == CONST_DOUBLE
3276 		    && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
3277 		  win = 1;
3278 		break;
3279 
3280 	      case 's':
3281 		if (GET_CODE (operand) == CONST_INT
3282 		    || (GET_CODE (operand) == CONST_DOUBLE
3283 			&& GET_MODE (operand) == VOIDmode))
3284 		  break;
3285 	      case 'i':
3286 		if (CONSTANT_P (operand)
3287 		    && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand)))
3288 		  win = 1;
3289 		break;
3290 
3291 	      case 'n':
3292 		if (GET_CODE (operand) == CONST_INT
3293 		    || (GET_CODE (operand) == CONST_DOUBLE
3294 			&& GET_MODE (operand) == VOIDmode))
3295 		  win = 1;
3296 		break;
3297 
3298 	      case 'I':
3299 	      case 'J':
3300 	      case 'K':
3301 	      case 'L':
3302 	      case 'M':
3303 	      case 'N':
3304 	      case 'O':
3305 	      case 'P':
3306 		if (GET_CODE (operand) == CONST_INT
3307 		    && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3308 		  win = 1;
3309 		break;
3310 
3311 	      case 'X':
3312 		force_reload = 0;
3313 		win = 1;
3314 		break;
3315 
3316 	      case 'g':
3317 		if (! force_reload
3318 		    /* A PLUS is never a valid operand, but reload can make
3319 		       it from a register when eliminating registers.  */
3320 		    && GET_CODE (operand) != PLUS
3321 		    /* A SCRATCH is not a valid operand.  */
3322 		    && GET_CODE (operand) != SCRATCH
3323 		    && (! CONSTANT_P (operand)
3324 			|| ! flag_pic
3325 			|| LEGITIMATE_PIC_OPERAND_P (operand))
3326 		    && (GENERAL_REGS == ALL_REGS
3327 			|| !REG_P (operand)
3328 			|| (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3329 			    && reg_renumber[REGNO (operand)] < 0)))
3330 		  win = 1;
3331 		/* Drop through into 'r' case.  */
3332 
3333 	      case 'r':
3334 		this_alternative[i]
3335 		  = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3336 		goto reg;
3337 
3338 	      default:
3339 		if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
3340 		  {
3341 #ifdef EXTRA_CONSTRAINT_STR
3342 		    if (EXTRA_MEMORY_CONSTRAINT (c, p))
3343 		      {
3344 			if (force_reload)
3345 			  break;
3346 		        if (EXTRA_CONSTRAINT_STR (operand, c, p))
3347 		          win = 1;
3348 			/* If the address was already reloaded,
3349 			   we win as well.  */
3350 			else if (MEM_P (operand)
3351 				 && address_reloaded[i] == 1)
3352 			  win = 1;
3353 			/* Likewise if the address will be reloaded because
3354 			   reg_equiv_address is nonzero.  For reg_equiv_mem
3355 			   we have to check.  */
3356 		        else if (REG_P (operand)
3357 				 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3358 				 && reg_renumber[REGNO (operand)] < 0
3359 				 && ((reg_equiv_mem[REGNO (operand)] != 0
3360 				      && EXTRA_CONSTRAINT_STR (reg_equiv_mem[REGNO (operand)], c, p))
3361 				     || (reg_equiv_address[REGNO (operand)] != 0)))
3362 			  win = 1;
3363 
3364 			/* If we didn't already win, we can reload
3365 			   constants via force_const_mem, and other
3366 			   MEMs by reloading the address like for 'o'.  */
3367 			if (CONST_POOL_OK_P (operand)
3368 			    || MEM_P (operand))
3369 			  badop = 0;
3370 			constmemok = 1;
3371 			offmemok = 1;
3372 			break;
3373 		      }
3374 		    if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3375 		      {
3376 		        if (EXTRA_CONSTRAINT_STR (operand, c, p))
3377 		          win = 1;
3378 
3379 			/* If we didn't already win, we can reload
3380 			   the address into a base register.  */
3381 			this_alternative[i]
3382 			  = (int) base_reg_class (VOIDmode, ADDRESS, SCRATCH);
3383 			badop = 0;
3384 			break;
3385 		      }
3386 
3387 		    if (EXTRA_CONSTRAINT_STR (operand, c, p))
3388 		      win = 1;
3389 #endif
3390 		    break;
3391 		  }
3392 
3393 		this_alternative[i]
3394 		  = (int) (reg_class_subunion
3395 			   [this_alternative[i]]
3396 			   [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3397 	      reg:
3398 		if (GET_MODE (operand) == BLKmode)
3399 		  break;
3400 		winreg = 1;
3401 		if (REG_P (operand)
3402 		    && reg_fits_class_p (operand, this_alternative[i],
3403 					 offset, GET_MODE (recog_data.operand[i])))
3404 		  win = 1;
3405 		break;
3406 	      }
3407 	  while ((p += len), c);
3408 
3409 	  constraints[i] = p;
3410 
3411 	  /* If this operand could be handled with a reg,
3412 	     and some reg is allowed, then this operand can be handled.  */
3413 	  if (winreg && this_alternative[i] != (int) NO_REGS)
3414 	    badop = 0;
3415 
3416 	  /* Record which operands fit this alternative.  */
3417 	  this_alternative_earlyclobber[i] = earlyclobber;
3418 	  if (win && ! force_reload)
3419 	    this_alternative_win[i] = 1;
3420 	  else if (did_match && ! force_reload)
3421 	    this_alternative_match_win[i] = 1;
3422 	  else
3423 	    {
3424 	      int const_to_mem = 0;
3425 
3426 	      this_alternative_offmemok[i] = offmemok;
3427 	      losers++;
3428 	      if (badop)
3429 		bad = 1;
3430 	      /* Alternative loses if it has no regs for a reg operand.  */
3431 	      if (REG_P (operand)
3432 		  && this_alternative[i] == (int) NO_REGS
3433 		  && this_alternative_matches[i] < 0)
3434 		bad = 1;
3435 
3436 	      /* If this is a constant that is reloaded into the desired
3437 		 class by copying it to memory first, count that as another
3438 		 reload.  This is consistent with other code and is
3439 		 required to avoid choosing another alternative when
3440 		 the constant is moved into memory by this function on
3441 		 an early reload pass.  Note that the test here is
3442 		 precisely the same as in the code below that calls
3443 		 force_const_mem.  */
3444 	      if (CONST_POOL_OK_P (operand)
3445 		  && ((PREFERRED_RELOAD_CLASS (operand,
3446 					       (enum reg_class) this_alternative[i])
3447 		       == NO_REGS)
3448 		      || no_input_reloads)
3449 		  && operand_mode[i] != VOIDmode)
3450 		{
3451 		  const_to_mem = 1;
3452 		  if (this_alternative[i] != (int) NO_REGS)
3453 		    losers++;
3454 		}
3455 
3456 	      /* Alternative loses if it requires a type of reload not
3457 		 permitted for this insn.  We can always reload SCRATCH
3458 		 and objects with a REG_UNUSED note.  */
3459 	      if (GET_CODE (operand) != SCRATCH
3460 		       && modified[i] != RELOAD_READ && no_output_reloads
3461 		       && ! find_reg_note (insn, REG_UNUSED, operand))
3462 		bad = 1;
3463 	      else if (modified[i] != RELOAD_WRITE && no_input_reloads
3464 		       && ! const_to_mem)
3465 		bad = 1;
3466 
3467 	      /* If we can't reload this value at all, reject this
3468 		 alternative.  Note that we could also lose due to
3469 		 LIMIT_RELOAD_CLASS, but we don't check that
3470 		 here.  */
3471 
3472 	      if (! CONSTANT_P (operand)
3473 		  && (enum reg_class) this_alternative[i] != NO_REGS)
3474 		{
3475 		  if (PREFERRED_RELOAD_CLASS
3476 			(operand, (enum reg_class) this_alternative[i])
3477 		      == NO_REGS)
3478 		    reject = 600;
3479 
3480 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
3481 		  if (operand_type[i] == RELOAD_FOR_OUTPUT
3482 		      && PREFERRED_OUTPUT_RELOAD_CLASS
3483 			   (operand, (enum reg_class) this_alternative[i])
3484 		         == NO_REGS)
3485 		    reject = 600;
3486 #endif
3487 		}
3488 
3489 	      /* We prefer to reload pseudos over reloading other things,
3490 		 since such reloads may be able to be eliminated later.
3491 		 If we are reloading a SCRATCH, we won't be generating any
3492 		 insns, just using a register, so it is also preferred.
3493 		 So bump REJECT in other cases.  Don't do this in the
3494 		 case where we are forcing a constant into memory and
3495 		 it will then win since we don't want to have a different
3496 		 alternative match then.  */
3497 	      if (! (REG_P (operand)
3498 		     && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3499 		  && GET_CODE (operand) != SCRATCH
3500 		  && ! (const_to_mem && constmemok))
3501 		reject += 2;
3502 
3503 	      /* Input reloads can be inherited more often than output
3504 		 reloads can be removed, so penalize output reloads.  */
3505 	      if (operand_type[i] != RELOAD_FOR_INPUT
3506 		  && GET_CODE (operand) != SCRATCH)
3507 		reject++;
3508 	    }
3509 
3510 	  /* If this operand is a pseudo register that didn't get a hard
3511 	     reg and this alternative accepts some register, see if the
3512 	     class that we want is a subset of the preferred class for this
3513 	     register.  If not, but it intersects that class, use the
3514 	     preferred class instead.  If it does not intersect the preferred
3515 	     class, show that usage of this alternative should be discouraged;
3516 	     it will be discouraged more still if the register is `preferred
3517 	     or nothing'.  We do this because it increases the chance of
3518 	     reusing our spill register in a later insn and avoiding a pair
3519 	     of memory stores and loads.
3520 
3521 	     Don't bother with this if this alternative will accept this
3522 	     operand.
3523 
3524 	     Don't do this for a multiword operand, since it is only a
3525 	     small win and has the risk of requiring more spill registers,
3526 	     which could cause a large loss.
3527 
3528 	     Don't do this if the preferred class has only one register
3529 	     because we might otherwise exhaust the class.  */
3530 
3531 	  if (! win && ! did_match
3532 	      && this_alternative[i] != (int) NO_REGS
3533 	      && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3534 	      && reg_class_size [(int) preferred_class[i]] > 0
3535 	      && ! SMALL_REGISTER_CLASS_P (preferred_class[i]))
3536 	    {
3537 	      if (! reg_class_subset_p (this_alternative[i],
3538 					preferred_class[i]))
3539 		{
3540 		  /* Since we don't have a way of forming the intersection,
3541 		     we just do something special if the preferred class
3542 		     is a subset of the class we have; that's the most
3543 		     common case anyway.  */
3544 		  if (reg_class_subset_p (preferred_class[i],
3545 					  this_alternative[i]))
3546 		    this_alternative[i] = (int) preferred_class[i];
3547 		  else
3548 		    reject += (2 + 2 * pref_or_nothing[i]);
3549 		}
3550 	    }
3551 	}
3552 
3553       /* Now see if any output operands that are marked "earlyclobber"
3554 	 in this alternative conflict with any input operands
3555 	 or any memory addresses.  */
3556 
3557       for (i = 0; i < noperands; i++)
3558 	if (this_alternative_earlyclobber[i]
3559 	    && (this_alternative_win[i] || this_alternative_match_win[i]))
3560 	  {
3561 	    struct decomposition early_data;
3562 
3563 	    early_data = decompose (recog_data.operand[i]);
3564 
3565 	    gcc_assert (modified[i] != RELOAD_READ);
3566 
3567 	    if (this_alternative[i] == NO_REGS)
3568 	      {
3569 		this_alternative_earlyclobber[i] = 0;
3570 		gcc_assert (this_insn_is_asm);
3571 		error_for_asm (this_insn,
3572 			       "%<&%> constraint used with no register class");
3573 	      }
3574 
3575 	    for (j = 0; j < noperands; j++)
3576 	      /* Is this an input operand or a memory ref?  */
3577 	      if ((MEM_P (recog_data.operand[j])
3578 		   || modified[j] != RELOAD_WRITE)
3579 		  && j != i
3580 		  /* Ignore things like match_operator operands.  */
3581 		  && *recog_data.constraints[j] != 0
3582 		  /* Don't count an input operand that is constrained to match
3583 		     the early clobber operand.  */
3584 		  && ! (this_alternative_matches[j] == i
3585 			&& rtx_equal_p (recog_data.operand[i],
3586 					recog_data.operand[j]))
3587 		  /* Is it altered by storing the earlyclobber operand?  */
3588 		  && !immune_p (recog_data.operand[j], recog_data.operand[i],
3589 				early_data))
3590 		{
3591 		  /* If the output is in a non-empty few-regs class,
3592 		     it's costly to reload it, so reload the input instead.  */
3593 		  if (SMALL_REGISTER_CLASS_P (this_alternative[i])
3594 		      && (REG_P (recog_data.operand[j])
3595 			  || GET_CODE (recog_data.operand[j]) == SUBREG))
3596 		    {
3597 		      losers++;
3598 		      this_alternative_win[j] = 0;
3599 		      this_alternative_match_win[j] = 0;
3600 		    }
3601 		  else
3602 		    break;
3603 		}
3604 	    /* If an earlyclobber operand conflicts with something,
3605 	       it must be reloaded, so request this and count the cost.  */
3606 	    if (j != noperands)
3607 	      {
3608 		losers++;
3609 		this_alternative_win[i] = 0;
3610 		this_alternative_match_win[j] = 0;
3611 		for (j = 0; j < noperands; j++)
3612 		  if (this_alternative_matches[j] == i
3613 		      && this_alternative_match_win[j])
3614 		    {
3615 		      this_alternative_win[j] = 0;
3616 		      this_alternative_match_win[j] = 0;
3617 		      losers++;
3618 		    }
3619 	      }
3620 	  }
3621 
3622       /* If one alternative accepts all the operands, no reload required,
3623 	 choose that alternative; don't consider the remaining ones.  */
3624       if (losers == 0)
3625 	{
3626 	  /* Unswap these so that they are never swapped at `finish'.  */
3627 	  if (commutative >= 0)
3628 	    {
3629 	      recog_data.operand[commutative] = substed_operand[commutative];
3630 	      recog_data.operand[commutative + 1]
3631 		= substed_operand[commutative + 1];
3632 	    }
3633 	  for (i = 0; i < noperands; i++)
3634 	    {
3635 	      goal_alternative_win[i] = this_alternative_win[i];
3636 	      goal_alternative_match_win[i] = this_alternative_match_win[i];
3637 	      goal_alternative[i] = this_alternative[i];
3638 	      goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3639 	      goal_alternative_matches[i] = this_alternative_matches[i];
3640 	      goal_alternative_earlyclobber[i]
3641 		= this_alternative_earlyclobber[i];
3642 	    }
3643 	  goal_alternative_number = this_alternative_number;
3644 	  goal_alternative_swapped = swapped;
3645 	  goal_earlyclobber = this_earlyclobber;
3646 	  goto finish;
3647 	}
3648 
3649       /* REJECT, set by the ! and ? constraint characters and when a register
3650 	 would be reloaded into a non-preferred class, discourages the use of
3651 	 this alternative for a reload goal.  REJECT is incremented by six
3652 	 for each ? and two for each non-preferred class.  */
3653       losers = losers * 6 + reject;
3654 
3655       /* If this alternative can be made to work by reloading,
3656 	 and it needs less reloading than the others checked so far,
3657 	 record it as the chosen goal for reloading.  */
3658       if (! bad && best > losers)
3659 	{
3660 	  for (i = 0; i < noperands; i++)
3661 	    {
3662 	      goal_alternative[i] = this_alternative[i];
3663 	      goal_alternative_win[i] = this_alternative_win[i];
3664 	      goal_alternative_match_win[i] = this_alternative_match_win[i];
3665 	      goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3666 	      goal_alternative_matches[i] = this_alternative_matches[i];
3667 	      goal_alternative_earlyclobber[i]
3668 		= this_alternative_earlyclobber[i];
3669 	    }
3670 	  goal_alternative_swapped = swapped;
3671 	  best = losers;
3672 	  goal_alternative_number = this_alternative_number;
3673 	  goal_earlyclobber = this_earlyclobber;
3674 	}
3675     }
3676 
3677   /* If insn is commutative (it's safe to exchange a certain pair of operands)
3678      then we need to try each alternative twice,
3679      the second time matching those two operands
3680      as if we had exchanged them.
3681      To do this, really exchange them in operands.
3682 
3683      If we have just tried the alternatives the second time,
3684      return operands to normal and drop through.  */
3685 
3686   if (commutative >= 0)
3687     {
3688       swapped = !swapped;
3689       if (swapped)
3690 	{
3691 	  enum reg_class tclass;
3692 	  int t;
3693 
3694 	  recog_data.operand[commutative] = substed_operand[commutative + 1];
3695 	  recog_data.operand[commutative + 1] = substed_operand[commutative];
3696 	  /* Swap the duplicates too.  */
3697 	  for (i = 0; i < recog_data.n_dups; i++)
3698 	    if (recog_data.dup_num[i] == commutative
3699 		|| recog_data.dup_num[i] == commutative + 1)
3700 	      *recog_data.dup_loc[i]
3701 		 = recog_data.operand[(int) recog_data.dup_num[i]];
3702 
3703 	  tclass = preferred_class[commutative];
3704 	  preferred_class[commutative] = preferred_class[commutative + 1];
3705 	  preferred_class[commutative + 1] = tclass;
3706 
3707 	  t = pref_or_nothing[commutative];
3708 	  pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3709 	  pref_or_nothing[commutative + 1] = t;
3710 
3711 	  t = address_reloaded[commutative];
3712 	  address_reloaded[commutative] = address_reloaded[commutative + 1];
3713 	  address_reloaded[commutative + 1] = t;
3714 
3715 	  memcpy (constraints, recog_data.constraints,
3716 		  noperands * sizeof (char *));
3717 	  goto try_swapped;
3718 	}
3719       else
3720 	{
3721 	  recog_data.operand[commutative] = substed_operand[commutative];
3722 	  recog_data.operand[commutative + 1]
3723 	    = substed_operand[commutative + 1];
3724 	  /* Unswap the duplicates too.  */
3725 	  for (i = 0; i < recog_data.n_dups; i++)
3726 	    if (recog_data.dup_num[i] == commutative
3727 		|| recog_data.dup_num[i] == commutative + 1)
3728 	      *recog_data.dup_loc[i]
3729 		 = recog_data.operand[(int) recog_data.dup_num[i]];
3730 	}
3731     }
3732 
3733   /* The operands don't meet the constraints.
3734      goal_alternative describes the alternative
3735      that we could reach by reloading the fewest operands.
3736      Reload so as to fit it.  */
3737 
3738   if (best == MAX_RECOG_OPERANDS * 2 + 600)
3739     {
3740       /* No alternative works with reloads??  */
3741       if (insn_code_number >= 0)
3742 	fatal_insn ("unable to generate reloads for:", insn);
3743       error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
3744       /* Avoid further trouble with this insn.  */
3745       PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3746       n_reloads = 0;
3747       return 0;
3748     }
3749 
3750   /* Jump to `finish' from above if all operands are valid already.
3751      In that case, goal_alternative_win is all 1.  */
3752  finish:
3753 
3754   /* Right now, for any pair of operands I and J that are required to match,
3755      with I < J,
3756      goal_alternative_matches[J] is I.
3757      Set up goal_alternative_matched as the inverse function:
3758      goal_alternative_matched[I] = J.  */
3759 
3760   for (i = 0; i < noperands; i++)
3761     goal_alternative_matched[i] = -1;
3762 
3763   for (i = 0; i < noperands; i++)
3764     if (! goal_alternative_win[i]
3765 	&& goal_alternative_matches[i] >= 0)
3766       goal_alternative_matched[goal_alternative_matches[i]] = i;
3767 
3768   for (i = 0; i < noperands; i++)
3769     goal_alternative_win[i] |= goal_alternative_match_win[i];
3770 
3771   /* If the best alternative is with operands 1 and 2 swapped,
3772      consider them swapped before reporting the reloads.  Update the
3773      operand numbers of any reloads already pushed.  */
3774 
3775   if (goal_alternative_swapped)
3776     {
3777       rtx tem;
3778 
3779       tem = substed_operand[commutative];
3780       substed_operand[commutative] = substed_operand[commutative + 1];
3781       substed_operand[commutative + 1] = tem;
3782       tem = recog_data.operand[commutative];
3783       recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3784       recog_data.operand[commutative + 1] = tem;
3785       tem = *recog_data.operand_loc[commutative];
3786       *recog_data.operand_loc[commutative]
3787 	= *recog_data.operand_loc[commutative + 1];
3788       *recog_data.operand_loc[commutative + 1] = tem;
3789 
3790       for (i = 0; i < n_reloads; i++)
3791 	{
3792 	  if (rld[i].opnum == commutative)
3793 	    rld[i].opnum = commutative + 1;
3794 	  else if (rld[i].opnum == commutative + 1)
3795 	    rld[i].opnum = commutative;
3796 	}
3797     }
3798 
3799   for (i = 0; i < noperands; i++)
3800     {
3801       operand_reloadnum[i] = -1;
3802 
3803       /* If this is an earlyclobber operand, we need to widen the scope.
3804 	 The reload must remain valid from the start of the insn being
3805 	 reloaded until after the operand is stored into its destination.
3806 	 We approximate this with RELOAD_OTHER even though we know that we
3807 	 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3808 
3809 	 One special case that is worth checking is when we have an
3810 	 output that is earlyclobber but isn't used past the insn (typically
3811 	 a SCRATCH).  In this case, we only need have the reload live
3812 	 through the insn itself, but not for any of our input or output
3813 	 reloads.
3814 	 But we must not accidentally narrow the scope of an existing
3815 	 RELOAD_OTHER reload - leave these alone.
3816 
3817 	 In any case, anything needed to address this operand can remain
3818 	 however they were previously categorized.  */
3819 
3820       if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3821 	operand_type[i]
3822 	  = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3823 	     ? RELOAD_FOR_INSN : RELOAD_OTHER);
3824     }
3825 
3826   /* Any constants that aren't allowed and can't be reloaded
3827      into registers are here changed into memory references.  */
3828   for (i = 0; i < noperands; i++)
3829     if (! goal_alternative_win[i]
3830 	&& CONST_POOL_OK_P (recog_data.operand[i])
3831 	&& ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3832 				     (enum reg_class) goal_alternative[i])
3833 	     == NO_REGS)
3834 	    || no_input_reloads)
3835 	&& operand_mode[i] != VOIDmode)
3836       {
3837 	substed_operand[i] = recog_data.operand[i]
3838 	  = find_reloads_toplev (force_const_mem (operand_mode[i],
3839 						  recog_data.operand[i]),
3840 				 i, address_type[i], ind_levels, 0, insn,
3841 				 NULL);
3842 	if (alternative_allows_memconst (recog_data.constraints[i],
3843 					 goal_alternative_number))
3844 	  goal_alternative_win[i] = 1;
3845       }
3846 
3847   /* Likewise any invalid constants appearing as operand of a PLUS
3848      that is to be reloaded.  */
3849   for (i = 0; i < noperands; i++)
3850     if (! goal_alternative_win[i]
3851 	&& GET_CODE (recog_data.operand[i]) == PLUS
3852 	&& CONST_POOL_OK_P (XEXP (recog_data.operand[i], 1))
3853 	&& (PREFERRED_RELOAD_CLASS (XEXP (recog_data.operand[i], 1),
3854 				    (enum reg_class) goal_alternative[i])
3855 	     == NO_REGS)
3856 	&& operand_mode[i] != VOIDmode)
3857       {
3858 	rtx tem = force_const_mem (operand_mode[i],
3859 				   XEXP (recog_data.operand[i], 1));
3860 	tem = gen_rtx_PLUS (operand_mode[i],
3861 			    XEXP (recog_data.operand[i], 0), tem);
3862 
3863 	substed_operand[i] = recog_data.operand[i]
3864 	  = find_reloads_toplev (tem, i, address_type[i],
3865 				 ind_levels, 0, insn, NULL);
3866       }
3867 
3868   /* Record the values of the earlyclobber operands for the caller.  */
3869   if (goal_earlyclobber)
3870     for (i = 0; i < noperands; i++)
3871       if (goal_alternative_earlyclobber[i])
3872 	reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3873 
3874   /* Now record reloads for all the operands that need them.  */
3875   for (i = 0; i < noperands; i++)
3876     if (! goal_alternative_win[i])
3877       {
3878 	/* Operands that match previous ones have already been handled.  */
3879 	if (goal_alternative_matches[i] >= 0)
3880 	  ;
3881 	/* Handle an operand with a nonoffsettable address
3882 	   appearing where an offsettable address will do
3883 	   by reloading the address into a base register.
3884 
3885 	   ??? We can also do this when the operand is a register and
3886 	   reg_equiv_mem is not offsettable, but this is a bit tricky,
3887 	   so we don't bother with it.  It may not be worth doing.  */
3888 	else if (goal_alternative_matched[i] == -1
3889 		 && goal_alternative_offmemok[i]
3890 		 && MEM_P (recog_data.operand[i]))
3891 	  {
3892 	    /* If the address to be reloaded is a VOIDmode constant,
3893 	       use Pmode as mode of the reload register, as would have
3894 	       been done by find_reloads_address.  */
3895 	    enum machine_mode address_mode;
3896 	    address_mode = GET_MODE (XEXP (recog_data.operand[i], 0));
3897 	    if (address_mode == VOIDmode)
3898 	      address_mode = Pmode;
3899 
3900 	    operand_reloadnum[i]
3901 	      = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3902 			     &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3903 			     base_reg_class (VOIDmode, MEM, SCRATCH),
3904 			     address_mode,
3905 			     VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3906 	    rld[operand_reloadnum[i]].inc
3907 	      = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3908 
3909 	    /* If this operand is an output, we will have made any
3910 	       reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3911 	       now we are treating part of the operand as an input, so
3912 	       we must change these to RELOAD_FOR_INPUT_ADDRESS.  */
3913 
3914 	    if (modified[i] == RELOAD_WRITE)
3915 	      {
3916 		for (j = 0; j < n_reloads; j++)
3917 		  {
3918 		    if (rld[j].opnum == i)
3919 		      {
3920 			if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3921 			  rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3922 			else if (rld[j].when_needed
3923 				 == RELOAD_FOR_OUTADDR_ADDRESS)
3924 			  rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3925 		      }
3926 		  }
3927 	      }
3928 	  }
3929 	else if (goal_alternative_matched[i] == -1)
3930 	  {
3931 	    operand_reloadnum[i]
3932 	      = push_reload ((modified[i] != RELOAD_WRITE
3933 			      ? recog_data.operand[i] : 0),
3934 			     (modified[i] != RELOAD_READ
3935 			      ? recog_data.operand[i] : 0),
3936 			     (modified[i] != RELOAD_WRITE
3937 			      ? recog_data.operand_loc[i] : 0),
3938 			     (modified[i] != RELOAD_READ
3939 			      ? recog_data.operand_loc[i] : 0),
3940 			     (enum reg_class) goal_alternative[i],
3941 			     (modified[i] == RELOAD_WRITE
3942 			      ? VOIDmode : operand_mode[i]),
3943 			     (modified[i] == RELOAD_READ
3944 			      ? VOIDmode : operand_mode[i]),
3945 			     (insn_code_number < 0 ? 0
3946 			      : insn_data[insn_code_number].operand[i].strict_low),
3947 			     0, i, operand_type[i]);
3948 	  }
3949 	/* In a matching pair of operands, one must be input only
3950 	   and the other must be output only.
3951 	   Pass the input operand as IN and the other as OUT.  */
3952 	else if (modified[i] == RELOAD_READ
3953 		 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3954 	  {
3955 	    operand_reloadnum[i]
3956 	      = push_reload (recog_data.operand[i],
3957 			     recog_data.operand[goal_alternative_matched[i]],
3958 			     recog_data.operand_loc[i],
3959 			     recog_data.operand_loc[goal_alternative_matched[i]],
3960 			     (enum reg_class) goal_alternative[i],
3961 			     operand_mode[i],
3962 			     operand_mode[goal_alternative_matched[i]],
3963 			     0, 0, i, RELOAD_OTHER);
3964 	    operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3965 	  }
3966 	else if (modified[i] == RELOAD_WRITE
3967 		 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3968 	  {
3969 	    operand_reloadnum[goal_alternative_matched[i]]
3970 	      = push_reload (recog_data.operand[goal_alternative_matched[i]],
3971 			     recog_data.operand[i],
3972 			     recog_data.operand_loc[goal_alternative_matched[i]],
3973 			     recog_data.operand_loc[i],
3974 			     (enum reg_class) goal_alternative[i],
3975 			     operand_mode[goal_alternative_matched[i]],
3976 			     operand_mode[i],
3977 			     0, 0, i, RELOAD_OTHER);
3978 	    operand_reloadnum[i] = output_reloadnum;
3979 	  }
3980 	else
3981 	  {
3982 	    gcc_assert (insn_code_number < 0);
3983 	    error_for_asm (insn, "inconsistent operand constraints "
3984 			   "in an %<asm%>");
3985 	    /* Avoid further trouble with this insn.  */
3986 	    PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3987 	    n_reloads = 0;
3988 	    return 0;
3989 	  }
3990       }
3991     else if (goal_alternative_matched[i] < 0
3992 	     && goal_alternative_matches[i] < 0
3993 	     && address_operand_reloaded[i] != 1
3994 	     && optimize)
3995       {
3996 	/* For each non-matching operand that's a MEM or a pseudo-register
3997 	   that didn't get a hard register, make an optional reload.
3998 	   This may get done even if the insn needs no reloads otherwise.  */
3999 
4000 	rtx operand = recog_data.operand[i];
4001 
4002 	while (GET_CODE (operand) == SUBREG)
4003 	  operand = SUBREG_REG (operand);
4004 	if ((MEM_P (operand)
4005 	     || (REG_P (operand)
4006 		 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4007 	    /* If this is only for an output, the optional reload would not
4008 	       actually cause us to use a register now, just note that
4009 	       something is stored here.  */
4010 	    && ((enum reg_class) goal_alternative[i] != NO_REGS
4011 		|| modified[i] == RELOAD_WRITE)
4012 	    && ! no_input_reloads
4013 	    /* An optional output reload might allow to delete INSN later.
4014 	       We mustn't make in-out reloads on insns that are not permitted
4015 	       output reloads.
4016 	       If this is an asm, we can't delete it; we must not even call
4017 	       push_reload for an optional output reload in this case,
4018 	       because we can't be sure that the constraint allows a register,
4019 	       and push_reload verifies the constraints for asms.  */
4020 	    && (modified[i] == RELOAD_READ
4021 		|| (! no_output_reloads && ! this_insn_is_asm)))
4022 	  operand_reloadnum[i]
4023 	    = push_reload ((modified[i] != RELOAD_WRITE
4024 			    ? recog_data.operand[i] : 0),
4025 			   (modified[i] != RELOAD_READ
4026 			    ? recog_data.operand[i] : 0),
4027 			   (modified[i] != RELOAD_WRITE
4028 			    ? recog_data.operand_loc[i] : 0),
4029 			   (modified[i] != RELOAD_READ
4030 			    ? recog_data.operand_loc[i] : 0),
4031 			   (enum reg_class) goal_alternative[i],
4032 			   (modified[i] == RELOAD_WRITE
4033 			    ? VOIDmode : operand_mode[i]),
4034 			   (modified[i] == RELOAD_READ
4035 			    ? VOIDmode : operand_mode[i]),
4036 			   (insn_code_number < 0 ? 0
4037 			    : insn_data[insn_code_number].operand[i].strict_low),
4038 			   1, i, operand_type[i]);
4039 	/* If a memory reference remains (either as a MEM or a pseudo that
4040 	   did not get a hard register), yet we can't make an optional
4041 	   reload, check if this is actually a pseudo register reference;
4042 	   we then need to emit a USE and/or a CLOBBER so that reload
4043 	   inheritance will do the right thing.  */
4044 	else if (replace
4045 		 && (MEM_P (operand)
4046 		     || (REG_P (operand)
4047 			 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
4048 			 && reg_renumber [REGNO (operand)] < 0)))
4049 	  {
4050 	    operand = *recog_data.operand_loc[i];
4051 
4052 	    while (GET_CODE (operand) == SUBREG)
4053 	      operand = SUBREG_REG (operand);
4054 	    if (REG_P (operand))
4055 	      {
4056 		if (modified[i] != RELOAD_WRITE)
4057 		  /* We mark the USE with QImode so that we recognize
4058 		     it as one that can be safely deleted at the end
4059 		     of reload.  */
4060 		  PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
4061 					      insn), QImode);
4062 		if (modified[i] != RELOAD_READ)
4063 		  emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
4064 	      }
4065 	  }
4066       }
4067     else if (goal_alternative_matches[i] >= 0
4068 	     && goal_alternative_win[goal_alternative_matches[i]]
4069 	     && modified[i] == RELOAD_READ
4070 	     && modified[goal_alternative_matches[i]] == RELOAD_WRITE
4071 	     && ! no_input_reloads && ! no_output_reloads
4072 	     && optimize)
4073       {
4074 	/* Similarly, make an optional reload for a pair of matching
4075 	   objects that are in MEM or a pseudo that didn't get a hard reg.  */
4076 
4077 	rtx operand = recog_data.operand[i];
4078 
4079 	while (GET_CODE (operand) == SUBREG)
4080 	  operand = SUBREG_REG (operand);
4081 	if ((MEM_P (operand)
4082 	     || (REG_P (operand)
4083 		 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4084 	    && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
4085 		!= NO_REGS))
4086 	  operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
4087 	    = push_reload (recog_data.operand[goal_alternative_matches[i]],
4088 			   recog_data.operand[i],
4089 			   recog_data.operand_loc[goal_alternative_matches[i]],
4090 			   recog_data.operand_loc[i],
4091 			   (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4092 			   operand_mode[goal_alternative_matches[i]],
4093 			   operand_mode[i],
4094 			   0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4095       }
4096 
4097   /* Perform whatever substitutions on the operands we are supposed
4098      to make due to commutativity or replacement of registers
4099      with equivalent constants or memory slots.  */
4100 
4101   for (i = 0; i < noperands; i++)
4102     {
4103       /* We only do this on the last pass through reload, because it is
4104 	 possible for some data (like reg_equiv_address) to be changed during
4105 	 later passes.  Moreover, we lose the opportunity to get a useful
4106 	 reload_{in,out}_reg when we do these replacements.  */
4107 
4108       if (replace)
4109 	{
4110 	  rtx substitution = substed_operand[i];
4111 
4112 	  *recog_data.operand_loc[i] = substitution;
4113 
4114 	  /* If we're replacing an operand with a LABEL_REF, we need
4115 	     to make sure that there's a REG_LABEL note attached to
4116 	     this instruction.  */
4117 	  if (!JUMP_P (insn)
4118 	      && GET_CODE (substitution) == LABEL_REF
4119 	      && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
4120 	    REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
4121 						  XEXP (substitution, 0),
4122 						  REG_NOTES (insn));
4123 	}
4124       else
4125 	retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4126     }
4127 
4128   /* If this insn pattern contains any MATCH_DUP's, make sure that
4129      they will be substituted if the operands they match are substituted.
4130      Also do now any substitutions we already did on the operands.
4131 
4132      Don't do this if we aren't making replacements because we might be
4133      propagating things allocated by frame pointer elimination into places
4134      it doesn't expect.  */
4135 
4136   if (insn_code_number >= 0 && replace)
4137     for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4138       {
4139 	int opno = recog_data.dup_num[i];
4140 	*recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4141 	dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4142       }
4143 
4144 #if 0
4145   /* This loses because reloading of prior insns can invalidate the equivalence
4146      (or at least find_equiv_reg isn't smart enough to find it any more),
4147      causing this insn to need more reload regs than it needed before.
4148      It may be too late to make the reload regs available.
4149      Now this optimization is done safely in choose_reload_regs.  */
4150 
4151   /* For each reload of a reg into some other class of reg,
4152      search for an existing equivalent reg (same value now) in the right class.
4153      We can use it as long as we don't need to change its contents.  */
4154   for (i = 0; i < n_reloads; i++)
4155     if (rld[i].reg_rtx == 0
4156 	&& rld[i].in != 0
4157 	&& REG_P (rld[i].in)
4158 	&& rld[i].out == 0)
4159       {
4160 	rld[i].reg_rtx
4161 	  = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
4162 			    static_reload_reg_p, 0, rld[i].inmode);
4163 	/* Prevent generation of insn to load the value
4164 	   because the one we found already has the value.  */
4165 	if (rld[i].reg_rtx)
4166 	  rld[i].in = rld[i].reg_rtx;
4167       }
4168 #endif
4169 
4170   /* If we detected error and replaced asm instruction by USE, forget about the
4171      reloads.  */
4172   if (GET_CODE (PATTERN (insn)) == USE
4173       && GET_CODE (XEXP (PATTERN (insn), 0)) == CONST_INT)
4174     n_reloads = 0;
4175 
4176   /* Perhaps an output reload can be combined with another
4177      to reduce needs by one.  */
4178   if (!goal_earlyclobber)
4179     combine_reloads ();
4180 
4181   /* If we have a pair of reloads for parts of an address, they are reloading
4182      the same object, the operands themselves were not reloaded, and they
4183      are for two operands that are supposed to match, merge the reloads and
4184      change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS.  */
4185 
4186   for (i = 0; i < n_reloads; i++)
4187     {
4188       int k;
4189 
4190       for (j = i + 1; j < n_reloads; j++)
4191 	if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4192 	     || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4193 	     || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4194 	     || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4195 	    && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4196 		|| rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4197 		|| rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4198 		|| rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4199 	    && rtx_equal_p (rld[i].in, rld[j].in)
4200 	    && (operand_reloadnum[rld[i].opnum] < 0
4201 		|| rld[operand_reloadnum[rld[i].opnum]].optional)
4202 	    && (operand_reloadnum[rld[j].opnum] < 0
4203 		|| rld[operand_reloadnum[rld[j].opnum]].optional)
4204 	    && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4205 		|| (goal_alternative_matches[rld[j].opnum]
4206 		    == rld[i].opnum)))
4207 	  {
4208 	    for (k = 0; k < n_replacements; k++)
4209 	      if (replacements[k].what == j)
4210 		replacements[k].what = i;
4211 
4212 	    if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4213 		|| rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4214 	      rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4215 	    else
4216 	      rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4217 	    rld[j].in = 0;
4218 	  }
4219     }
4220 
4221   /* Scan all the reloads and update their type.
4222      If a reload is for the address of an operand and we didn't reload
4223      that operand, change the type.  Similarly, change the operand number
4224      of a reload when two operands match.  If a reload is optional, treat it
4225      as though the operand isn't reloaded.
4226 
4227      ??? This latter case is somewhat odd because if we do the optional
4228      reload, it means the object is hanging around.  Thus we need only
4229      do the address reload if the optional reload was NOT done.
4230 
4231      Change secondary reloads to be the address type of their operand, not
4232      the normal type.
4233 
4234      If an operand's reload is now RELOAD_OTHER, change any
4235      RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4236      RELOAD_FOR_OTHER_ADDRESS.  */
4237 
4238   for (i = 0; i < n_reloads; i++)
4239     {
4240       if (rld[i].secondary_p
4241 	  && rld[i].when_needed == operand_type[rld[i].opnum])
4242 	rld[i].when_needed = address_type[rld[i].opnum];
4243 
4244       if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4245 	   || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4246 	   || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4247 	   || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4248 	  && (operand_reloadnum[rld[i].opnum] < 0
4249 	      || rld[operand_reloadnum[rld[i].opnum]].optional))
4250 	{
4251 	  /* If we have a secondary reload to go along with this reload,
4252 	     change its type to RELOAD_FOR_OPADDR_ADDR.  */
4253 
4254 	  if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4255 	       || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4256 	      && rld[i].secondary_in_reload != -1)
4257 	    {
4258 	      int secondary_in_reload = rld[i].secondary_in_reload;
4259 
4260 	      rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4261 
4262 	      /* If there's a tertiary reload we have to change it also.  */
4263 	      if (secondary_in_reload > 0
4264 		  && rld[secondary_in_reload].secondary_in_reload != -1)
4265 		rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4266 		  = RELOAD_FOR_OPADDR_ADDR;
4267 	    }
4268 
4269 	  if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4270 	       || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4271 	      && rld[i].secondary_out_reload != -1)
4272 	    {
4273 	      int secondary_out_reload = rld[i].secondary_out_reload;
4274 
4275 	      rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4276 
4277 	      /* If there's a tertiary reload we have to change it also.  */
4278 	      if (secondary_out_reload
4279 		  && rld[secondary_out_reload].secondary_out_reload != -1)
4280 		rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4281 		  = RELOAD_FOR_OPADDR_ADDR;
4282 	    }
4283 
4284 	  if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4285 	      || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4286 	    rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4287 	  else
4288 	    rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4289 	}
4290 
4291       if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4292 	   || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4293 	  && operand_reloadnum[rld[i].opnum] >= 0
4294 	  && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4295 	      == RELOAD_OTHER))
4296 	rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4297 
4298       if (goal_alternative_matches[rld[i].opnum] >= 0)
4299 	rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4300     }
4301 
4302   /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4303      If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4304      reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4305 
4306      choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4307      conflict with RELOAD_FOR_OPERAND_ADDRESS reloads.  This is true for a
4308      single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4309      However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4310      then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4311      RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4312      This is complicated by the fact that a single operand can have more
4313      than one RELOAD_FOR_OPERAND_ADDRESS reload.  It is very difficult to fix
4314      choose_reload_regs without affecting code quality, and cases that
4315      actually fail are extremely rare, so it turns out to be better to fix
4316      the problem here by not generating cases that choose_reload_regs will
4317      fail for.  */
4318   /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4319      RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4320      a single operand.
4321      We can reduce the register pressure by exploiting that a
4322      RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4323      does not conflict with any of them, if it is only used for the first of
4324      the RELOAD_FOR_X_ADDRESS reloads.  */
4325   {
4326     int first_op_addr_num = -2;
4327     int first_inpaddr_num[MAX_RECOG_OPERANDS];
4328     int first_outpaddr_num[MAX_RECOG_OPERANDS];
4329     int need_change = 0;
4330     /* We use last_op_addr_reload and the contents of the above arrays
4331        first as flags - -2 means no instance encountered, -1 means exactly
4332        one instance encountered.
4333        If more than one instance has been encountered, we store the reload
4334        number of the first reload of the kind in question; reload numbers
4335        are known to be non-negative.  */
4336     for (i = 0; i < noperands; i++)
4337       first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4338     for (i = n_reloads - 1; i >= 0; i--)
4339       {
4340 	switch (rld[i].when_needed)
4341 	  {
4342 	  case RELOAD_FOR_OPERAND_ADDRESS:
4343 	    if (++first_op_addr_num >= 0)
4344 	      {
4345 		first_op_addr_num = i;
4346 		need_change = 1;
4347 	      }
4348 	    break;
4349 	  case RELOAD_FOR_INPUT_ADDRESS:
4350 	    if (++first_inpaddr_num[rld[i].opnum] >= 0)
4351 	      {
4352 		first_inpaddr_num[rld[i].opnum] = i;
4353 		need_change = 1;
4354 	      }
4355 	    break;
4356 	  case RELOAD_FOR_OUTPUT_ADDRESS:
4357 	    if (++first_outpaddr_num[rld[i].opnum] >= 0)
4358 	      {
4359 		first_outpaddr_num[rld[i].opnum] = i;
4360 		need_change = 1;
4361 	      }
4362 	    break;
4363 	  default:
4364 	    break;
4365 	  }
4366       }
4367 
4368     if (need_change)
4369       {
4370 	for (i = 0; i < n_reloads; i++)
4371 	  {
4372 	    int first_num;
4373 	    enum reload_type type;
4374 
4375 	    switch (rld[i].when_needed)
4376 	      {
4377 	      case RELOAD_FOR_OPADDR_ADDR:
4378 		first_num = first_op_addr_num;
4379 		type = RELOAD_FOR_OPERAND_ADDRESS;
4380 		break;
4381 	      case RELOAD_FOR_INPADDR_ADDRESS:
4382 		first_num = first_inpaddr_num[rld[i].opnum];
4383 		type = RELOAD_FOR_INPUT_ADDRESS;
4384 		break;
4385 	      case RELOAD_FOR_OUTADDR_ADDRESS:
4386 		first_num = first_outpaddr_num[rld[i].opnum];
4387 		type = RELOAD_FOR_OUTPUT_ADDRESS;
4388 		break;
4389 	      default:
4390 		continue;
4391 	      }
4392 	    if (first_num < 0)
4393 	      continue;
4394 	    else if (i > first_num)
4395 	      rld[i].when_needed = type;
4396 	    else
4397 	      {
4398 		/* Check if the only TYPE reload that uses reload I is
4399 		   reload FIRST_NUM.  */
4400 		for (j = n_reloads - 1; j > first_num; j--)
4401 		  {
4402 		    if (rld[j].when_needed == type
4403 			&& (rld[i].secondary_p
4404 			    ? rld[j].secondary_in_reload == i
4405 			    : reg_mentioned_p (rld[i].in, rld[j].in)))
4406 		      {
4407 			rld[i].when_needed = type;
4408 			break;
4409 		      }
4410 		  }
4411 	      }
4412 	  }
4413       }
4414   }
4415 
4416   /* See if we have any reloads that are now allowed to be merged
4417      because we've changed when the reload is needed to
4418      RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS.  Only
4419      check for the most common cases.  */
4420 
4421   for (i = 0; i < n_reloads; i++)
4422     if (rld[i].in != 0 && rld[i].out == 0
4423 	&& (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4424 	    || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4425 	    || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4426       for (j = 0; j < n_reloads; j++)
4427 	if (i != j && rld[j].in != 0 && rld[j].out == 0
4428 	    && rld[j].when_needed == rld[i].when_needed
4429 	    && MATCHES (rld[i].in, rld[j].in)
4430 	    && rld[i].class == rld[j].class
4431 	    && !rld[i].nocombine && !rld[j].nocombine
4432 	    && rld[i].reg_rtx == rld[j].reg_rtx)
4433 	  {
4434 	    rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4435 	    transfer_replacements (i, j);
4436 	    rld[j].in = 0;
4437 	  }
4438 
4439 #ifdef HAVE_cc0
4440   /* If we made any reloads for addresses, see if they violate a
4441      "no input reloads" requirement for this insn.  But loads that we
4442      do after the insn (such as for output addresses) are fine.  */
4443   if (no_input_reloads)
4444     for (i = 0; i < n_reloads; i++)
4445       gcc_assert (rld[i].in == 0
4446 		  || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
4447 		  || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
4448 #endif
4449 
4450   /* Compute reload_mode and reload_nregs.  */
4451   for (i = 0; i < n_reloads; i++)
4452     {
4453       rld[i].mode
4454 	= (rld[i].inmode == VOIDmode
4455 	   || (GET_MODE_SIZE (rld[i].outmode)
4456 	       > GET_MODE_SIZE (rld[i].inmode)))
4457 	  ? rld[i].outmode : rld[i].inmode;
4458 
4459       rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4460     }
4461 
4462   /* Special case a simple move with an input reload and a
4463      destination of a hard reg, if the hard reg is ok, use it.  */
4464   for (i = 0; i < n_reloads; i++)
4465     if (rld[i].when_needed == RELOAD_FOR_INPUT
4466 	&& GET_CODE (PATTERN (insn)) == SET
4467 	&& REG_P (SET_DEST (PATTERN (insn)))
4468 	&& SET_SRC (PATTERN (insn)) == rld[i].in)
4469       {
4470 	rtx dest = SET_DEST (PATTERN (insn));
4471 	unsigned int regno = REGNO (dest);
4472 
4473 	if (regno < FIRST_PSEUDO_REGISTER
4474 	    && TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno)
4475 	    && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4476 	  {
4477 	    int nr = hard_regno_nregs[regno][rld[i].mode];
4478 	    int ok = 1, nri;
4479 
4480 	    for (nri = 1; nri < nr; nri ++)
4481 	      if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno + nri))
4482 		ok = 0;
4483 
4484 	    if (ok)
4485 	      rld[i].reg_rtx = dest;
4486 	  }
4487       }
4488 
4489   return retval;
4490 }
4491 
4492 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4493    accepts a memory operand with constant address.  */
4494 
4495 static int
alternative_allows_memconst(const char * constraint,int altnum)4496 alternative_allows_memconst (const char *constraint, int altnum)
4497 {
4498   int c;
4499   /* Skip alternatives before the one requested.  */
4500   while (altnum > 0)
4501     {
4502       while (*constraint++ != ',');
4503       altnum--;
4504     }
4505   /* Scan the requested alternative for 'm' or 'o'.
4506      If one of them is present, this alternative accepts memory constants.  */
4507   for (; (c = *constraint) && c != ',' && c != '#';
4508        constraint += CONSTRAINT_LEN (c, constraint))
4509     if (c == 'm' || c == 'o' || EXTRA_MEMORY_CONSTRAINT (c, constraint))
4510       return 1;
4511   return 0;
4512 }
4513 
4514 /* Scan X for memory references and scan the addresses for reloading.
4515    Also checks for references to "constant" regs that we want to eliminate
4516    and replaces them with the values they stand for.
4517    We may alter X destructively if it contains a reference to such.
4518    If X is just a constant reg, we return the equivalent value
4519    instead of X.
4520 
4521    IND_LEVELS says how many levels of indirect addressing this machine
4522    supports.
4523 
4524    OPNUM and TYPE identify the purpose of the reload.
4525 
4526    IS_SET_DEST is true if X is the destination of a SET, which is not
4527    appropriate to be replaced by a constant.
4528 
4529    INSN, if nonzero, is the insn in which we do the reload.  It is used
4530    to determine if we may generate output reloads, and where to put USEs
4531    for pseudos that we have to replace with stack slots.
4532 
4533    ADDRESS_RELOADED.  If nonzero, is a pointer to where we put the
4534    result of find_reloads_address.  */
4535 
4536 static rtx
find_reloads_toplev(rtx x,int opnum,enum reload_type type,int ind_levels,int is_set_dest,rtx insn,int * address_reloaded)4537 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4538 		     int ind_levels, int is_set_dest, rtx insn,
4539 		     int *address_reloaded)
4540 {
4541   RTX_CODE code = GET_CODE (x);
4542 
4543   const char *fmt = GET_RTX_FORMAT (code);
4544   int i;
4545   int copied;
4546 
4547   if (code == REG)
4548     {
4549       /* This code is duplicated for speed in find_reloads.  */
4550       int regno = REGNO (x);
4551       if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4552 	x = reg_equiv_constant[regno];
4553 #if 0
4554       /*  This creates (subreg (mem...)) which would cause an unnecessary
4555 	  reload of the mem.  */
4556       else if (reg_equiv_mem[regno] != 0)
4557 	x = reg_equiv_mem[regno];
4558 #endif
4559       else if (reg_equiv_memory_loc[regno]
4560 	       && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4561 	{
4562 	  rtx mem = make_memloc (x, regno);
4563 	  if (reg_equiv_address[regno]
4564 	      || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4565 	    {
4566 	      /* If this is not a toplevel operand, find_reloads doesn't see
4567 		 this substitution.  We have to emit a USE of the pseudo so
4568 		 that delete_output_reload can see it.  */
4569 	      if (replace_reloads && recog_data.operand[opnum] != x)
4570 		/* We mark the USE with QImode so that we recognize it
4571 		   as one that can be safely deleted at the end of
4572 		   reload.  */
4573 		PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4574 			  QImode);
4575 	      x = mem;
4576 	      i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4577 					opnum, type, ind_levels, insn);
4578 	      if (!rtx_equal_p (mem, x))
4579 		push_reg_equiv_alt_mem (regno, x);
4580 	      if (address_reloaded)
4581 		*address_reloaded = i;
4582 	    }
4583 	}
4584       return x;
4585     }
4586   if (code == MEM)
4587     {
4588       rtx tem = x;
4589 
4590       i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4591 				opnum, type, ind_levels, insn);
4592       if (address_reloaded)
4593 	*address_reloaded = i;
4594 
4595       return tem;
4596     }
4597 
4598   if (code == SUBREG && REG_P (SUBREG_REG (x)))
4599     {
4600       /* Check for SUBREG containing a REG that's equivalent to a
4601 	 constant.  If the constant has a known value, truncate it
4602 	 right now.  Similarly if we are extracting a single-word of a
4603 	 multi-word constant.  If the constant is symbolic, allow it
4604 	 to be substituted normally.  push_reload will strip the
4605 	 subreg later.  The constant must not be VOIDmode, because we
4606 	 will lose the mode of the register (this should never happen
4607 	 because one of the cases above should handle it).  */
4608 
4609       int regno = REGNO (SUBREG_REG (x));
4610       rtx tem;
4611 
4612       if (subreg_lowpart_p (x)
4613 	  && regno >= FIRST_PSEUDO_REGISTER
4614 	  && reg_renumber[regno] < 0
4615 	  && reg_equiv_constant[regno] != 0
4616 	  && (tem = gen_lowpart_common (GET_MODE (x),
4617 					reg_equiv_constant[regno])) != 0)
4618 	return tem;
4619 
4620       if (regno >= FIRST_PSEUDO_REGISTER
4621 	  && reg_renumber[regno] < 0
4622 	  && reg_equiv_constant[regno] != 0)
4623 	{
4624 	  tem =
4625 	    simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
4626 				 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4627 	  gcc_assert (tem);
4628 	  return tem;
4629 	}
4630 
4631       /* If the subreg contains a reg that will be converted to a mem,
4632 	 convert the subreg to a narrower memref now.
4633 	 Otherwise, we would get (subreg (mem ...) ...),
4634 	 which would force reload of the mem.
4635 
4636 	 We also need to do this if there is an equivalent MEM that is
4637 	 not offsettable.  In that case, alter_subreg would produce an
4638 	 invalid address on big-endian machines.
4639 
4640 	 For machines that extend byte loads, we must not reload using
4641 	 a wider mode if we have a paradoxical SUBREG.  find_reloads will
4642 	 force a reload in that case.  So we should not do anything here.  */
4643 
4644       if (regno >= FIRST_PSEUDO_REGISTER
4645 #ifdef LOAD_EXTEND_OP
4646 	       && (GET_MODE_SIZE (GET_MODE (x))
4647 		   <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4648 #endif
4649 	       && (reg_equiv_address[regno] != 0
4650 		   || (reg_equiv_mem[regno] != 0
4651 		       && (! strict_memory_address_p (GET_MODE (x),
4652 						      XEXP (reg_equiv_mem[regno], 0))
4653 			   || ! offsettable_memref_p (reg_equiv_mem[regno])
4654 			   || num_not_at_initial_offset))))
4655 	x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4656 					 insn);
4657     }
4658 
4659   for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4660     {
4661       if (fmt[i] == 'e')
4662 	{
4663 	  rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4664 					      ind_levels, is_set_dest, insn,
4665 					      address_reloaded);
4666 	  /* If we have replaced a reg with it's equivalent memory loc -
4667 	     that can still be handled here e.g. if it's in a paradoxical
4668 	     subreg - we must make the change in a copy, rather than using
4669 	     a destructive change.  This way, find_reloads can still elect
4670 	     not to do the change.  */
4671 	  if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4672 	    {
4673 	      x = shallow_copy_rtx (x);
4674 	      copied = 1;
4675 	    }
4676 	  XEXP (x, i) = new_part;
4677 	}
4678     }
4679   return x;
4680 }
4681 
4682 /* Return a mem ref for the memory equivalent of reg REGNO.
4683    This mem ref is not shared with anything.  */
4684 
4685 static rtx
make_memloc(rtx ad,int regno)4686 make_memloc (rtx ad, int regno)
4687 {
4688   /* We must rerun eliminate_regs, in case the elimination
4689      offsets have changed.  */
4690   rtx tem
4691     = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4692 
4693   /* If TEM might contain a pseudo, we must copy it to avoid
4694      modifying it when we do the substitution for the reload.  */
4695   if (rtx_varies_p (tem, 0))
4696     tem = copy_rtx (tem);
4697 
4698   tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4699   tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4700 
4701   /* Copy the result if it's still the same as the equivalence, to avoid
4702      modifying it when we do the substitution for the reload.  */
4703   if (tem == reg_equiv_memory_loc[regno])
4704     tem = copy_rtx (tem);
4705   return tem;
4706 }
4707 
4708 /* Returns true if AD could be turned into a valid memory reference
4709    to mode MODE by reloading the part pointed to by PART into a
4710    register.  */
4711 
4712 static int
maybe_memory_address_p(enum machine_mode mode,rtx ad,rtx * part)4713 maybe_memory_address_p (enum machine_mode mode, rtx ad, rtx *part)
4714 {
4715   int retv;
4716   rtx tem = *part;
4717   rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4718 
4719   *part = reg;
4720   retv = memory_address_p (mode, ad);
4721   *part = tem;
4722 
4723   return retv;
4724 }
4725 
4726 /* Record all reloads needed for handling memory address AD
4727    which appears in *LOC in a memory reference to mode MODE
4728    which itself is found in location  *MEMREFLOC.
4729    Note that we take shortcuts assuming that no multi-reg machine mode
4730    occurs as part of an address.
4731 
4732    OPNUM and TYPE specify the purpose of this reload.
4733 
4734    IND_LEVELS says how many levels of indirect addressing this machine
4735    supports.
4736 
4737    INSN, if nonzero, is the insn in which we do the reload.  It is used
4738    to determine if we may generate output reloads, and where to put USEs
4739    for pseudos that we have to replace with stack slots.
4740 
4741    Value is one if this address is reloaded or replaced as a whole; it is
4742    zero if the top level of this address was not reloaded or replaced, and
4743    it is -1 if it may or may not have been reloaded or replaced.
4744 
4745    Note that there is no verification that the address will be valid after
4746    this routine does its work.  Instead, we rely on the fact that the address
4747    was valid when reload started.  So we need only undo things that reload
4748    could have broken.  These are wrong register types, pseudos not allocated
4749    to a hard register, and frame pointer elimination.  */
4750 
4751 static int
find_reloads_address(enum machine_mode mode,rtx * memrefloc,rtx ad,rtx * loc,int opnum,enum reload_type type,int ind_levels,rtx insn)4752 find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4753 		      rtx *loc, int opnum, enum reload_type type,
4754 		      int ind_levels, rtx insn)
4755 {
4756   int regno;
4757   int removed_and = 0;
4758   int op_index;
4759   rtx tem;
4760 
4761   /* If the address is a register, see if it is a legitimate address and
4762      reload if not.  We first handle the cases where we need not reload
4763      or where we must reload in a non-standard way.  */
4764 
4765   if (REG_P (ad))
4766     {
4767       regno = REGNO (ad);
4768 
4769       /* If the register is equivalent to an invariant expression, substitute
4770 	 the invariant, and eliminate any eliminable register references.  */
4771       tem = reg_equiv_constant[regno];
4772       if (tem != 0
4773 	  && (tem = eliminate_regs (tem, mode, insn))
4774 	  && strict_memory_address_p (mode, tem))
4775 	{
4776 	  *loc = ad = tem;
4777 	  return 0;
4778 	}
4779 
4780       tem = reg_equiv_memory_loc[regno];
4781       if (tem != 0)
4782 	{
4783 	  if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4784 	    {
4785 	      tem = make_memloc (ad, regno);
4786 	      if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4787 		{
4788 		  rtx orig = tem;
4789 
4790 		  find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4791 					&XEXP (tem, 0), opnum,
4792 					ADDR_TYPE (type), ind_levels, insn);
4793 		  if (tem != orig)
4794 		    push_reg_equiv_alt_mem (regno, tem);
4795 		}
4796 	      /* We can avoid a reload if the register's equivalent memory
4797 		 expression is valid as an indirect memory address.
4798 		 But not all addresses are valid in a mem used as an indirect
4799 		 address: only reg or reg+constant.  */
4800 
4801 	      if (ind_levels > 0
4802 		  && strict_memory_address_p (mode, tem)
4803 		  && (REG_P (XEXP (tem, 0))
4804 		      || (GET_CODE (XEXP (tem, 0)) == PLUS
4805 			  && REG_P (XEXP (XEXP (tem, 0), 0))
4806 			  && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4807 		{
4808 		  /* TEM is not the same as what we'll be replacing the
4809 		     pseudo with after reload, put a USE in front of INSN
4810 		     in the final reload pass.  */
4811 		  if (replace_reloads
4812 		      && num_not_at_initial_offset
4813 		      && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4814 		    {
4815 		      *loc = tem;
4816 		      /* We mark the USE with QImode so that we
4817 			 recognize it as one that can be safely
4818 			 deleted at the end of reload.  */
4819 		      PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4820 						  insn), QImode);
4821 
4822 		      /* This doesn't really count as replacing the address
4823 			 as a whole, since it is still a memory access.  */
4824 		    }
4825 		  return 0;
4826 		}
4827 	      ad = tem;
4828 	    }
4829 	}
4830 
4831       /* The only remaining case where we can avoid a reload is if this is a
4832 	 hard register that is valid as a base register and which is not the
4833 	 subject of a CLOBBER in this insn.  */
4834 
4835       else if (regno < FIRST_PSEUDO_REGISTER
4836 	       && regno_ok_for_base_p (regno, mode, MEM, SCRATCH)
4837 	       && ! regno_clobbered_p (regno, this_insn, mode, 0))
4838 	return 0;
4839 
4840       /* If we do not have one of the cases above, we must do the reload.  */
4841       push_reload (ad, NULL_RTX, loc, (rtx*) 0, base_reg_class (mode, MEM, SCRATCH),
4842 		   GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4843       return 1;
4844     }
4845 
4846   if (strict_memory_address_p (mode, ad))
4847     {
4848       /* The address appears valid, so reloads are not needed.
4849 	 But the address may contain an eliminable register.
4850 	 This can happen because a machine with indirect addressing
4851 	 may consider a pseudo register by itself a valid address even when
4852 	 it has failed to get a hard reg.
4853 	 So do a tree-walk to find and eliminate all such regs.  */
4854 
4855       /* But first quickly dispose of a common case.  */
4856       if (GET_CODE (ad) == PLUS
4857 	  && GET_CODE (XEXP (ad, 1)) == CONST_INT
4858 	  && REG_P (XEXP (ad, 0))
4859 	  && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4860 	return 0;
4861 
4862       subst_reg_equivs_changed = 0;
4863       *loc = subst_reg_equivs (ad, insn);
4864 
4865       if (! subst_reg_equivs_changed)
4866 	return 0;
4867 
4868       /* Check result for validity after substitution.  */
4869       if (strict_memory_address_p (mode, ad))
4870 	return 0;
4871     }
4872 
4873 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4874   do
4875     {
4876       if (memrefloc)
4877 	{
4878 	  LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4879 				     ind_levels, win);
4880 	}
4881       break;
4882     win:
4883       *memrefloc = copy_rtx (*memrefloc);
4884       XEXP (*memrefloc, 0) = ad;
4885       move_replacements (&ad, &XEXP (*memrefloc, 0));
4886       return -1;
4887     }
4888   while (0);
4889 #endif
4890 
4891   /* The address is not valid.  We have to figure out why.  First see if
4892      we have an outer AND and remove it if so.  Then analyze what's inside.  */
4893 
4894   if (GET_CODE (ad) == AND)
4895     {
4896       removed_and = 1;
4897       loc = &XEXP (ad, 0);
4898       ad = *loc;
4899     }
4900 
4901   /* One possibility for why the address is invalid is that it is itself
4902      a MEM.  This can happen when the frame pointer is being eliminated, a
4903      pseudo is not allocated to a hard register, and the offset between the
4904      frame and stack pointers is not its initial value.  In that case the
4905      pseudo will have been replaced by a MEM referring to the
4906      stack pointer.  */
4907   if (MEM_P (ad))
4908     {
4909       /* First ensure that the address in this MEM is valid.  Then, unless
4910 	 indirect addresses are valid, reload the MEM into a register.  */
4911       tem = ad;
4912       find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4913 			    opnum, ADDR_TYPE (type),
4914 			    ind_levels == 0 ? 0 : ind_levels - 1, insn);
4915 
4916       /* If tem was changed, then we must create a new memory reference to
4917 	 hold it and store it back into memrefloc.  */
4918       if (tem != ad && memrefloc)
4919 	{
4920 	  *memrefloc = copy_rtx (*memrefloc);
4921 	  copy_replacements (tem, XEXP (*memrefloc, 0));
4922 	  loc = &XEXP (*memrefloc, 0);
4923 	  if (removed_and)
4924 	    loc = &XEXP (*loc, 0);
4925 	}
4926 
4927       /* Check similar cases as for indirect addresses as above except
4928 	 that we can allow pseudos and a MEM since they should have been
4929 	 taken care of above.  */
4930 
4931       if (ind_levels == 0
4932 	  || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4933 	  || MEM_P (XEXP (tem, 0))
4934 	  || ! (REG_P (XEXP (tem, 0))
4935 		|| (GET_CODE (XEXP (tem, 0)) == PLUS
4936 		    && REG_P (XEXP (XEXP (tem, 0), 0))
4937 		    && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4938 	{
4939 	  /* Must use TEM here, not AD, since it is the one that will
4940 	     have any subexpressions reloaded, if needed.  */
4941 	  push_reload (tem, NULL_RTX, loc, (rtx*) 0,
4942 		       base_reg_class (mode, MEM, SCRATCH), GET_MODE (tem),
4943 		       VOIDmode, 0,
4944 		       0, opnum, type);
4945 	  return ! removed_and;
4946 	}
4947       else
4948 	return 0;
4949     }
4950 
4951   /* If we have address of a stack slot but it's not valid because the
4952      displacement is too large, compute the sum in a register.
4953      Handle all base registers here, not just fp/ap/sp, because on some
4954      targets (namely SH) we can also get too large displacements from
4955      big-endian corrections.  */
4956   else if (GET_CODE (ad) == PLUS
4957 	   && REG_P (XEXP (ad, 0))
4958 	   && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4959 	   && GET_CODE (XEXP (ad, 1)) == CONST_INT
4960 	   && regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, PLUS,
4961 				   CONST_INT))
4962 
4963     {
4964       /* Unshare the MEM rtx so we can safely alter it.  */
4965       if (memrefloc)
4966 	{
4967 	  *memrefloc = copy_rtx (*memrefloc);
4968 	  loc = &XEXP (*memrefloc, 0);
4969 	  if (removed_and)
4970 	    loc = &XEXP (*loc, 0);
4971 	}
4972 
4973       if (double_reg_address_ok)
4974 	{
4975 	  /* Unshare the sum as well.  */
4976 	  *loc = ad = copy_rtx (ad);
4977 
4978 	  /* Reload the displacement into an index reg.
4979 	     We assume the frame pointer or arg pointer is a base reg.  */
4980 	  find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4981 				     INDEX_REG_CLASS, GET_MODE (ad), opnum,
4982 				     type, ind_levels);
4983 	  return 0;
4984 	}
4985       else
4986 	{
4987 	  /* If the sum of two regs is not necessarily valid,
4988 	     reload the sum into a base reg.
4989 	     That will at least work.  */
4990 	  find_reloads_address_part (ad, loc,
4991 				     base_reg_class (mode, MEM, SCRATCH),
4992 				     Pmode, opnum, type, ind_levels);
4993 	}
4994       return ! removed_and;
4995     }
4996 
4997   /* If we have an indexed stack slot, there are three possible reasons why
4998      it might be invalid: The index might need to be reloaded, the address
4999      might have been made by frame pointer elimination and hence have a
5000      constant out of range, or both reasons might apply.
5001 
5002      We can easily check for an index needing reload, but even if that is the
5003      case, we might also have an invalid constant.  To avoid making the
5004      conservative assumption and requiring two reloads, we see if this address
5005      is valid when not interpreted strictly.  If it is, the only problem is
5006      that the index needs a reload and find_reloads_address_1 will take care
5007      of it.
5008 
5009      Handle all base registers here, not just fp/ap/sp, because on some
5010      targets (namely SPARC) we can also get invalid addresses from preventive
5011      subreg big-endian corrections made by find_reloads_toplev.  We
5012      can also get expressions involving LO_SUM (rather than PLUS) from
5013      find_reloads_subreg_address.
5014 
5015      If we decide to do something, it must be that `double_reg_address_ok'
5016      is true.  We generate a reload of the base register + constant and
5017      rework the sum so that the reload register will be added to the index.
5018      This is safe because we know the address isn't shared.
5019 
5020      We check for the base register as both the first and second operand of
5021      the innermost PLUS and/or LO_SUM.  */
5022 
5023   for (op_index = 0; op_index < 2; ++op_index)
5024     {
5025       rtx operand, addend;
5026       enum rtx_code inner_code;
5027 
5028       if (GET_CODE (ad) != PLUS)
5029 	  continue;
5030 
5031       inner_code = GET_CODE (XEXP (ad, 0));
5032       if (!(GET_CODE (ad) == PLUS
5033 	    && GET_CODE (XEXP (ad, 1)) == CONST_INT
5034 	    && (inner_code == PLUS || inner_code == LO_SUM)))
5035 	continue;
5036 
5037       operand = XEXP (XEXP (ad, 0), op_index);
5038       if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
5039 	continue;
5040 
5041       addend = XEXP (XEXP (ad, 0), 1 - op_index);
5042 
5043       if ((regno_ok_for_base_p (REGNO (operand), mode, inner_code,
5044 				GET_CODE (addend))
5045 	   || operand == frame_pointer_rtx
5046 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
5047 	   || operand == hard_frame_pointer_rtx
5048 #endif
5049 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
5050 	   || operand == arg_pointer_rtx
5051 #endif
5052 	   || operand == stack_pointer_rtx)
5053 	  && ! maybe_memory_address_p (mode, ad,
5054 				       &XEXP (XEXP (ad, 0), 1 - op_index)))
5055 	{
5056 	  rtx offset_reg;
5057 	  enum reg_class cls;
5058 
5059 	  offset_reg = plus_constant (operand, INTVAL (XEXP (ad, 1)));
5060 
5061 	  /* Form the adjusted address.  */
5062 	  if (GET_CODE (XEXP (ad, 0)) == PLUS)
5063 	    ad = gen_rtx_PLUS (GET_MODE (ad),
5064 			       op_index == 0 ? offset_reg : addend,
5065 			       op_index == 0 ? addend : offset_reg);
5066 	  else
5067 	    ad = gen_rtx_LO_SUM (GET_MODE (ad),
5068 				 op_index == 0 ? offset_reg : addend,
5069 				 op_index == 0 ? addend : offset_reg);
5070 	  *loc = ad;
5071 
5072 	  cls = base_reg_class (mode, MEM, GET_CODE (addend));
5073 	  find_reloads_address_part (XEXP (ad, op_index),
5074 				     &XEXP (ad, op_index), cls,
5075 				     GET_MODE (ad), opnum, type, ind_levels);
5076 	  find_reloads_address_1 (mode,
5077 				  XEXP (ad, 1 - op_index), 1, GET_CODE (ad),
5078 				  GET_CODE (XEXP (ad, op_index)),
5079 				  &XEXP (ad, 1 - op_index), opnum,
5080 				  type, 0, insn);
5081 
5082 	  return 0;
5083 	}
5084     }
5085 
5086   /* See if address becomes valid when an eliminable register
5087      in a sum is replaced.  */
5088 
5089   tem = ad;
5090   if (GET_CODE (ad) == PLUS)
5091     tem = subst_indexed_address (ad);
5092   if (tem != ad && strict_memory_address_p (mode, tem))
5093     {
5094       /* Ok, we win that way.  Replace any additional eliminable
5095 	 registers.  */
5096 
5097       subst_reg_equivs_changed = 0;
5098       tem = subst_reg_equivs (tem, insn);
5099 
5100       /* Make sure that didn't make the address invalid again.  */
5101 
5102       if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
5103 	{
5104 	  *loc = tem;
5105 	  return 0;
5106 	}
5107     }
5108 
5109   /* If constants aren't valid addresses, reload the constant address
5110      into a register.  */
5111   if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
5112     {
5113       /* If AD is an address in the constant pool, the MEM rtx may be shared.
5114 	 Unshare it so we can safely alter it.  */
5115       if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5116 	  && CONSTANT_POOL_ADDRESS_P (ad))
5117 	{
5118 	  *memrefloc = copy_rtx (*memrefloc);
5119 	  loc = &XEXP (*memrefloc, 0);
5120 	  if (removed_and)
5121 	    loc = &XEXP (*loc, 0);
5122 	}
5123 
5124       find_reloads_address_part (ad, loc, base_reg_class (mode, MEM, SCRATCH),
5125 				 Pmode, opnum, type, ind_levels);
5126       return ! removed_and;
5127     }
5128 
5129   return find_reloads_address_1 (mode, ad, 0, MEM, SCRATCH, loc, opnum, type,
5130 				 ind_levels, insn);
5131 }
5132 
5133 /* Find all pseudo regs appearing in AD
5134    that are eliminable in favor of equivalent values
5135    and do not have hard regs; replace them by their equivalents.
5136    INSN, if nonzero, is the insn in which we do the reload.  We put USEs in
5137    front of it for pseudos that we have to replace with stack slots.  */
5138 
5139 static rtx
subst_reg_equivs(rtx ad,rtx insn)5140 subst_reg_equivs (rtx ad, rtx insn)
5141 {
5142   RTX_CODE code = GET_CODE (ad);
5143   int i;
5144   const char *fmt;
5145 
5146   switch (code)
5147     {
5148     case HIGH:
5149     case CONST_INT:
5150     case CONST:
5151     case CONST_DOUBLE:
5152     case CONST_VECTOR:
5153     case SYMBOL_REF:
5154     case LABEL_REF:
5155     case PC:
5156     case CC0:
5157       return ad;
5158 
5159     case REG:
5160       {
5161 	int regno = REGNO (ad);
5162 
5163 	if (reg_equiv_constant[regno] != 0)
5164 	  {
5165 	    subst_reg_equivs_changed = 1;
5166 	    return reg_equiv_constant[regno];
5167 	  }
5168 	if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
5169 	  {
5170 	    rtx mem = make_memloc (ad, regno);
5171 	    if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
5172 	      {
5173 		subst_reg_equivs_changed = 1;
5174 		/* We mark the USE with QImode so that we recognize it
5175 		   as one that can be safely deleted at the end of
5176 		   reload.  */
5177 		PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5178 			  QImode);
5179 		return mem;
5180 	      }
5181 	  }
5182       }
5183       return ad;
5184 
5185     case PLUS:
5186       /* Quickly dispose of a common case.  */
5187       if (XEXP (ad, 0) == frame_pointer_rtx
5188 	  && GET_CODE (XEXP (ad, 1)) == CONST_INT)
5189 	return ad;
5190       break;
5191 
5192     default:
5193       break;
5194     }
5195 
5196   fmt = GET_RTX_FORMAT (code);
5197   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5198     if (fmt[i] == 'e')
5199       XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5200   return ad;
5201 }
5202 
5203 /* Compute the sum of X and Y, making canonicalizations assumed in an
5204    address, namely: sum constant integers, surround the sum of two
5205    constants with a CONST, put the constant as the second operand, and
5206    group the constant on the outermost sum.
5207 
5208    This routine assumes both inputs are already in canonical form.  */
5209 
5210 rtx
form_sum(rtx x,rtx y)5211 form_sum (rtx x, rtx y)
5212 {
5213   rtx tem;
5214   enum machine_mode mode = GET_MODE (x);
5215 
5216   if (mode == VOIDmode)
5217     mode = GET_MODE (y);
5218 
5219   if (mode == VOIDmode)
5220     mode = Pmode;
5221 
5222   if (GET_CODE (x) == CONST_INT)
5223     return plus_constant (y, INTVAL (x));
5224   else if (GET_CODE (y) == CONST_INT)
5225     return plus_constant (x, INTVAL (y));
5226   else if (CONSTANT_P (x))
5227     tem = x, x = y, y = tem;
5228 
5229   if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5230     return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
5231 
5232   /* Note that if the operands of Y are specified in the opposite
5233      order in the recursive calls below, infinite recursion will occur.  */
5234   if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5235     return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
5236 
5237   /* If both constant, encapsulate sum.  Otherwise, just form sum.  A
5238      constant will have been placed second.  */
5239   if (CONSTANT_P (x) && CONSTANT_P (y))
5240     {
5241       if (GET_CODE (x) == CONST)
5242 	x = XEXP (x, 0);
5243       if (GET_CODE (y) == CONST)
5244 	y = XEXP (y, 0);
5245 
5246       return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5247     }
5248 
5249   return gen_rtx_PLUS (mode, x, y);
5250 }
5251 
5252 /* If ADDR is a sum containing a pseudo register that should be
5253    replaced with a constant (from reg_equiv_constant),
5254    return the result of doing so, and also apply the associative
5255    law so that the result is more likely to be a valid address.
5256    (But it is not guaranteed to be one.)
5257 
5258    Note that at most one register is replaced, even if more are
5259    replaceable.  Also, we try to put the result into a canonical form
5260    so it is more likely to be a valid address.
5261 
5262    In all other cases, return ADDR.  */
5263 
5264 static rtx
subst_indexed_address(rtx addr)5265 subst_indexed_address (rtx addr)
5266 {
5267   rtx op0 = 0, op1 = 0, op2 = 0;
5268   rtx tem;
5269   int regno;
5270 
5271   if (GET_CODE (addr) == PLUS)
5272     {
5273       /* Try to find a register to replace.  */
5274       op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5275       if (REG_P (op0)
5276 	  && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5277 	  && reg_renumber[regno] < 0
5278 	  && reg_equiv_constant[regno] != 0)
5279 	op0 = reg_equiv_constant[regno];
5280       else if (REG_P (op1)
5281 	       && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5282 	       && reg_renumber[regno] < 0
5283 	       && reg_equiv_constant[regno] != 0)
5284 	op1 = reg_equiv_constant[regno];
5285       else if (GET_CODE (op0) == PLUS
5286 	       && (tem = subst_indexed_address (op0)) != op0)
5287 	op0 = tem;
5288       else if (GET_CODE (op1) == PLUS
5289 	       && (tem = subst_indexed_address (op1)) != op1)
5290 	op1 = tem;
5291       else
5292 	return addr;
5293 
5294       /* Pick out up to three things to add.  */
5295       if (GET_CODE (op1) == PLUS)
5296 	op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5297       else if (GET_CODE (op0) == PLUS)
5298 	op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5299 
5300       /* Compute the sum.  */
5301       if (op2 != 0)
5302 	op1 = form_sum (op1, op2);
5303       if (op1 != 0)
5304 	op0 = form_sum (op0, op1);
5305 
5306       return op0;
5307     }
5308   return addr;
5309 }
5310 
5311 /* Update the REG_INC notes for an insn.  It updates all REG_INC
5312    notes for the instruction which refer to REGNO the to refer
5313    to the reload number.
5314 
5315    INSN is the insn for which any REG_INC notes need updating.
5316 
5317    REGNO is the register number which has been reloaded.
5318 
5319    RELOADNUM is the reload number.  */
5320 
5321 static void
update_auto_inc_notes(rtx insn ATTRIBUTE_UNUSED,int regno ATTRIBUTE_UNUSED,int reloadnum ATTRIBUTE_UNUSED)5322 update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5323 		       int reloadnum ATTRIBUTE_UNUSED)
5324 {
5325 #ifdef AUTO_INC_DEC
5326   rtx link;
5327 
5328   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5329     if (REG_NOTE_KIND (link) == REG_INC
5330         && (int) REGNO (XEXP (link, 0)) == regno)
5331       push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5332 #endif
5333 }
5334 
5335 /* Record the pseudo registers we must reload into hard registers in a
5336    subexpression of a would-be memory address, X referring to a value
5337    in mode MODE.  (This function is not called if the address we find
5338    is strictly valid.)
5339 
5340    CONTEXT = 1 means we are considering regs as index regs,
5341    = 0 means we are considering them as base regs.
5342    OUTER_CODE is the code of the enclosing RTX, typically a MEM, a PLUS,
5343    or an autoinc code.
5344    If CONTEXT == 0 and OUTER_CODE is a PLUS or LO_SUM, then INDEX_CODE
5345    is the code of the index part of the address.  Otherwise, pass SCRATCH
5346    for this argument.
5347    OPNUM and TYPE specify the purpose of any reloads made.
5348 
5349    IND_LEVELS says how many levels of indirect addressing are
5350    supported at this point in the address.
5351 
5352    INSN, if nonzero, is the insn in which we do the reload.  It is used
5353    to determine if we may generate output reloads.
5354 
5355    We return nonzero if X, as a whole, is reloaded or replaced.  */
5356 
5357 /* Note that we take shortcuts assuming that no multi-reg machine mode
5358    occurs as part of an address.
5359    Also, this is not fully machine-customizable; it works for machines
5360    such as VAXen and 68000's and 32000's, but other possible machines
5361    could have addressing modes that this does not handle right.
5362    If you add push_reload calls here, you need to make sure gen_reload
5363    handles those cases gracefully.  */
5364 
5365 static int
find_reloads_address_1(enum machine_mode mode,rtx x,int context,enum rtx_code outer_code,enum rtx_code index_code,rtx * loc,int opnum,enum reload_type type,int ind_levels,rtx insn)5366 find_reloads_address_1 (enum machine_mode mode, rtx x, int context,
5367 			enum rtx_code outer_code, enum rtx_code index_code,
5368 			rtx *loc, int opnum, enum reload_type type,
5369 			int ind_levels, rtx insn)
5370 {
5371 #define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE, OUTER, INDEX)		\
5372   ((CONTEXT) == 0							\
5373    ? regno_ok_for_base_p (REGNO, MODE, OUTER, INDEX)			\
5374    : REGNO_OK_FOR_INDEX_P (REGNO))
5375 
5376   enum reg_class context_reg_class;
5377   RTX_CODE code = GET_CODE (x);
5378 
5379   if (context == 1)
5380     context_reg_class = INDEX_REG_CLASS;
5381   else
5382     context_reg_class = base_reg_class (mode, outer_code, index_code);
5383 
5384   switch (code)
5385     {
5386     case PLUS:
5387       {
5388 	rtx orig_op0 = XEXP (x, 0);
5389 	rtx orig_op1 = XEXP (x, 1);
5390 	RTX_CODE code0 = GET_CODE (orig_op0);
5391 	RTX_CODE code1 = GET_CODE (orig_op1);
5392 	rtx op0 = orig_op0;
5393 	rtx op1 = orig_op1;
5394 
5395 	if (GET_CODE (op0) == SUBREG)
5396 	  {
5397 	    op0 = SUBREG_REG (op0);
5398 	    code0 = GET_CODE (op0);
5399 	    if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5400 	      op0 = gen_rtx_REG (word_mode,
5401 				 (REGNO (op0) +
5402 				  subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5403 						       GET_MODE (SUBREG_REG (orig_op0)),
5404 						       SUBREG_BYTE (orig_op0),
5405 						       GET_MODE (orig_op0))));
5406 	  }
5407 
5408 	if (GET_CODE (op1) == SUBREG)
5409 	  {
5410 	    op1 = SUBREG_REG (op1);
5411 	    code1 = GET_CODE (op1);
5412 	    if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5413 	      /* ??? Why is this given op1's mode and above for
5414 		 ??? op0 SUBREGs we use word_mode?  */
5415 	      op1 = gen_rtx_REG (GET_MODE (op1),
5416 				 (REGNO (op1) +
5417 				  subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5418 						       GET_MODE (SUBREG_REG (orig_op1)),
5419 						       SUBREG_BYTE (orig_op1),
5420 						       GET_MODE (orig_op1))));
5421 	  }
5422 	/* Plus in the index register may be created only as a result of
5423 	   register rematerialization for expression like &localvar*4.  Reload it.
5424 	   It may be possible to combine the displacement on the outer level,
5425 	   but it is probably not worthwhile to do so.  */
5426 	if (context == 1)
5427 	  {
5428 	    find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5429 				  opnum, ADDR_TYPE (type), ind_levels, insn);
5430 	    push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5431 			 context_reg_class,
5432 			 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5433 	    return 1;
5434 	  }
5435 
5436 	if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5437 	    || code0 == ZERO_EXTEND || code1 == MEM)
5438 	  {
5439 	    find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5440 				    &XEXP (x, 0), opnum, type, ind_levels,
5441 				    insn);
5442 	    find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
5443 				    &XEXP (x, 1), opnum, type, ind_levels,
5444 				    insn);
5445 	  }
5446 
5447 	else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5448 		 || code1 == ZERO_EXTEND || code0 == MEM)
5449 	  {
5450 	    find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
5451 				    &XEXP (x, 0), opnum, type, ind_levels,
5452 				    insn);
5453 	    find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5454 				    &XEXP (x, 1), opnum, type, ind_levels,
5455 				    insn);
5456 	  }
5457 
5458 	else if (code0 == CONST_INT || code0 == CONST
5459 		 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5460 	  find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
5461 				  &XEXP (x, 1), opnum, type, ind_levels,
5462 				  insn);
5463 
5464 	else if (code1 == CONST_INT || code1 == CONST
5465 		 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5466 	  find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
5467 				  &XEXP (x, 0), opnum, type, ind_levels,
5468 				  insn);
5469 
5470 	else if (code0 == REG && code1 == REG)
5471 	  {
5472 	    if (REGNO_OK_FOR_INDEX_P (REGNO (op0))
5473 		&& regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
5474 	      return 0;
5475 	    else if (REGNO_OK_FOR_INDEX_P (REGNO (op1))
5476 		     && regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
5477 	      return 0;
5478 	    else if (regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
5479 	      find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5480 				      &XEXP (x, 0), opnum, type, ind_levels,
5481 				      insn);
5482 	    else if (regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
5483 	      find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5484 				      &XEXP (x, 1), opnum, type, ind_levels,
5485 				      insn);
5486 	    else if (REGNO_OK_FOR_INDEX_P (REGNO (op1)))
5487 	      find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5488 				      &XEXP (x, 0), opnum, type, ind_levels,
5489 				      insn);
5490 	    else if (REGNO_OK_FOR_INDEX_P (REGNO (op0)))
5491 	      find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5492 				      &XEXP (x, 1), opnum, type, ind_levels,
5493 				      insn);
5494 	    else
5495 	      {
5496 		find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5497 					&XEXP (x, 0), opnum, type, ind_levels,
5498 					insn);
5499 		find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5500 					&XEXP (x, 1), opnum, type, ind_levels,
5501 					insn);
5502 	      }
5503 	  }
5504 
5505 	else if (code0 == REG)
5506 	  {
5507 	    find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5508 				    &XEXP (x, 0), opnum, type, ind_levels,
5509 				    insn);
5510 	    find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5511 				    &XEXP (x, 1), opnum, type, ind_levels,
5512 				    insn);
5513 	  }
5514 
5515 	else if (code1 == REG)
5516 	  {
5517 	    find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5518 				    &XEXP (x, 1), opnum, type, ind_levels,
5519 				    insn);
5520 	    find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5521 				    &XEXP (x, 0), opnum, type, ind_levels,
5522 				    insn);
5523 	  }
5524       }
5525 
5526       return 0;
5527 
5528     case POST_MODIFY:
5529     case PRE_MODIFY:
5530       {
5531 	rtx op0 = XEXP (x, 0);
5532 	rtx op1 = XEXP (x, 1);
5533 	enum rtx_code index_code;
5534 	int regno;
5535 	int reloadnum;
5536 
5537 	if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5538 	  return 0;
5539 
5540 	/* Currently, we only support {PRE,POST}_MODIFY constructs
5541 	   where a base register is {inc,dec}remented by the contents
5542 	   of another register or by a constant value.  Thus, these
5543 	   operands must match.  */
5544 	gcc_assert (op0 == XEXP (op1, 0));
5545 
5546 	/* Require index register (or constant).  Let's just handle the
5547 	   register case in the meantime... If the target allows
5548 	   auto-modify by a constant then we could try replacing a pseudo
5549 	   register with its equivalent constant where applicable.
5550 
5551 	   If we later decide to reload the whole PRE_MODIFY or
5552 	   POST_MODIFY, inc_for_reload might clobber the reload register
5553 	   before reading the index.  The index register might therefore
5554 	   need to live longer than a TYPE reload normally would, so be
5555 	   conservative and class it as RELOAD_OTHER.  */
5556 	if (REG_P (XEXP (op1, 1)))
5557 	  if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5558 	    find_reloads_address_1 (mode, XEXP (op1, 1), 1, code, SCRATCH,
5559 				    &XEXP (op1, 1), opnum, RELOAD_OTHER,
5560 				    ind_levels, insn);
5561 
5562 	gcc_assert (REG_P (XEXP (op1, 0)));
5563 
5564 	regno = REGNO (XEXP (op1, 0));
5565 	index_code = GET_CODE (XEXP (op1, 1));
5566 
5567 	/* A register that is incremented cannot be constant!  */
5568 	gcc_assert (regno < FIRST_PSEUDO_REGISTER
5569 		    || reg_equiv_constant[regno] == 0);
5570 
5571 	/* Handle a register that is equivalent to a memory location
5572 	    which cannot be addressed directly.  */
5573 	if (reg_equiv_memory_loc[regno] != 0
5574 	    && (reg_equiv_address[regno] != 0
5575 		|| num_not_at_initial_offset))
5576 	  {
5577 	    rtx tem = make_memloc (XEXP (x, 0), regno);
5578 
5579 	    if (reg_equiv_address[regno]
5580 		|| ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5581 	      {
5582 		rtx orig = tem;
5583 
5584 		/* First reload the memory location's address.
5585 		    We can't use ADDR_TYPE (type) here, because we need to
5586 		    write back the value after reading it, hence we actually
5587 		    need two registers.  */
5588 		find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5589 				      &XEXP (tem, 0), opnum,
5590 				      RELOAD_OTHER,
5591 				      ind_levels, insn);
5592 
5593 		if (tem != orig)
5594 		  push_reg_equiv_alt_mem (regno, tem);
5595 
5596 		/* Then reload the memory location into a base
5597 		   register.  */
5598 		reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5599 					 &XEXP (op1, 0),
5600 					 base_reg_class (mode, code,
5601 							 index_code),
5602 					 GET_MODE (x), GET_MODE (x), 0,
5603 					 0, opnum, RELOAD_OTHER);
5604 
5605 		update_auto_inc_notes (this_insn, regno, reloadnum);
5606 		return 0;
5607 	      }
5608 	  }
5609 
5610 	if (reg_renumber[regno] >= 0)
5611 	  regno = reg_renumber[regno];
5612 
5613 	/* We require a base register here...  */
5614 	if (!regno_ok_for_base_p (regno, GET_MODE (x), code, index_code))
5615 	  {
5616 	    reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5617 				     &XEXP (op1, 0), &XEXP (x, 0),
5618 				     base_reg_class (mode, code, index_code),
5619 				     GET_MODE (x), GET_MODE (x), 0, 0,
5620 				     opnum, RELOAD_OTHER);
5621 
5622 	    update_auto_inc_notes (this_insn, regno, reloadnum);
5623 	    return 0;
5624 	  }
5625       }
5626       return 0;
5627 
5628     case POST_INC:
5629     case POST_DEC:
5630     case PRE_INC:
5631     case PRE_DEC:
5632       if (REG_P (XEXP (x, 0)))
5633 	{
5634 	  int regno = REGNO (XEXP (x, 0));
5635 	  int value = 0;
5636 	  rtx x_orig = x;
5637 
5638 	  /* A register that is incremented cannot be constant!  */
5639 	  gcc_assert (regno < FIRST_PSEUDO_REGISTER
5640 		      || reg_equiv_constant[regno] == 0);
5641 
5642 	  /* Handle a register that is equivalent to a memory location
5643 	     which cannot be addressed directly.  */
5644 	  if (reg_equiv_memory_loc[regno] != 0
5645 	      && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5646 	    {
5647 	      rtx tem = make_memloc (XEXP (x, 0), regno);
5648 	      if (reg_equiv_address[regno]
5649 		  || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5650 		{
5651 		  rtx orig = tem;
5652 
5653 		  /* First reload the memory location's address.
5654 		     We can't use ADDR_TYPE (type) here, because we need to
5655 		     write back the value after reading it, hence we actually
5656 		     need two registers.  */
5657 		  find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5658 					&XEXP (tem, 0), opnum, type,
5659 					ind_levels, insn);
5660 		  if (tem != orig)
5661 		    push_reg_equiv_alt_mem (regno, tem);
5662 		  /* Put this inside a new increment-expression.  */
5663 		  x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5664 		  /* Proceed to reload that, as if it contained a register.  */
5665 		}
5666 	    }
5667 
5668 	  /* If we have a hard register that is ok as an index,
5669 	     don't make a reload.  If an autoincrement of a nice register
5670 	     isn't "valid", it must be that no autoincrement is "valid".
5671 	     If that is true and something made an autoincrement anyway,
5672 	     this must be a special context where one is allowed.
5673 	     (For example, a "push" instruction.)
5674 	     We can't improve this address, so leave it alone.  */
5675 
5676 	  /* Otherwise, reload the autoincrement into a suitable hard reg
5677 	     and record how much to increment by.  */
5678 
5679 	  if (reg_renumber[regno] >= 0)
5680 	    regno = reg_renumber[regno];
5681 	  if (regno >= FIRST_PSEUDO_REGISTER
5682 	      || !REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5683 				      index_code))
5684 	    {
5685 	      int reloadnum;
5686 
5687 	      /* If we can output the register afterwards, do so, this
5688 		 saves the extra update.
5689 		 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5690 		 CALL_INSN - and it does not set CC0.
5691 		 But don't do this if we cannot directly address the
5692 		 memory location, since this will make it harder to
5693 		 reuse address reloads, and increases register pressure.
5694 		 Also don't do this if we can probably update x directly.  */
5695 	      rtx equiv = (MEM_P (XEXP (x, 0))
5696 			   ? XEXP (x, 0)
5697 			   : reg_equiv_mem[regno]);
5698 	      int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5699 	      if (insn && NONJUMP_INSN_P (insn) && equiv
5700 		  && memory_operand (equiv, GET_MODE (equiv))
5701 #ifdef HAVE_cc0
5702 		  && ! sets_cc0_p (PATTERN (insn))
5703 #endif
5704 		  && ! (icode != CODE_FOR_nothing
5705 			&& ((*insn_data[icode].operand[0].predicate)
5706 			    (equiv, Pmode))
5707 			&& ((*insn_data[icode].operand[1].predicate)
5708 			    (equiv, Pmode))))
5709 		{
5710 		  /* We use the original pseudo for loc, so that
5711 		     emit_reload_insns() knows which pseudo this
5712 		     reload refers to and updates the pseudo rtx, not
5713 		     its equivalent memory location, as well as the
5714 		     corresponding entry in reg_last_reload_reg.  */
5715 		  loc = &XEXP (x_orig, 0);
5716 		  x = XEXP (x, 0);
5717 		  reloadnum
5718 		    = push_reload (x, x, loc, loc,
5719 				   context_reg_class,
5720 				   GET_MODE (x), GET_MODE (x), 0, 0,
5721 				   opnum, RELOAD_OTHER);
5722 		}
5723 	      else
5724 		{
5725 		  reloadnum
5726 		    = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5727 				   context_reg_class,
5728 				   GET_MODE (x), GET_MODE (x), 0, 0,
5729 				   opnum, type);
5730 		  rld[reloadnum].inc
5731 		    = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5732 
5733 		  value = 1;
5734 		}
5735 
5736 	      update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5737 				     reloadnum);
5738 	    }
5739 	  return value;
5740 	}
5741 
5742       else if (MEM_P (XEXP (x, 0)))
5743 	{
5744 	  /* This is probably the result of a substitution, by eliminate_regs,
5745 	     of an equivalent address for a pseudo that was not allocated to a
5746 	     hard register.  Verify that the specified address is valid and
5747 	     reload it into a register.  */
5748 	  /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE.  */
5749 	  rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5750 	  rtx link;
5751 	  int reloadnum;
5752 
5753 	  /* Since we know we are going to reload this item, don't decrement
5754 	     for the indirection level.
5755 
5756 	     Note that this is actually conservative:  it would be slightly
5757 	     more efficient to use the value of SPILL_INDIRECT_LEVELS from
5758 	     reload1.c here.  */
5759 	  /* We can't use ADDR_TYPE (type) here, because we need to
5760 	     write back the value after reading it, hence we actually
5761 	     need two registers.  */
5762 	  find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5763 				XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5764 				opnum, type, ind_levels, insn);
5765 
5766 	  reloadnum = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5767 				   context_reg_class,
5768 				   GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5769 	  rld[reloadnum].inc
5770 	    = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5771 
5772 	  link = FIND_REG_INC_NOTE (this_insn, tem);
5773 	  if (link != 0)
5774 	    push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5775 
5776 	  return 1;
5777 	}
5778       return 0;
5779 
5780     case TRUNCATE:
5781     case SIGN_EXTEND:
5782     case ZERO_EXTEND:
5783       /* Look for parts to reload in the inner expression and reload them
5784 	 too, in addition to this operation.  Reloading all inner parts in
5785 	 addition to this one shouldn't be necessary, but at this point,
5786 	 we don't know if we can possibly omit any part that *can* be
5787 	 reloaded.  Targets that are better off reloading just either part
5788 	 (or perhaps even a different part of an outer expression), should
5789 	 define LEGITIMIZE_RELOAD_ADDRESS.  */
5790       find_reloads_address_1 (GET_MODE (XEXP (x, 0)), XEXP (x, 0),
5791 			      context, code, SCRATCH, &XEXP (x, 0), opnum,
5792 			      type, ind_levels, insn);
5793       push_reload (x, NULL_RTX, loc, (rtx*) 0,
5794 		   context_reg_class,
5795 		   GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5796       return 1;
5797 
5798     case MEM:
5799       /* This is probably the result of a substitution, by eliminate_regs, of
5800 	 an equivalent address for a pseudo that was not allocated to a hard
5801 	 register.  Verify that the specified address is valid and reload it
5802 	 into a register.
5803 
5804 	 Since we know we are going to reload this item, don't decrement for
5805 	 the indirection level.
5806 
5807 	 Note that this is actually conservative:  it would be slightly more
5808 	 efficient to use the value of SPILL_INDIRECT_LEVELS from
5809 	 reload1.c here.  */
5810 
5811       find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5812 			    opnum, ADDR_TYPE (type), ind_levels, insn);
5813       push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5814 		   context_reg_class,
5815 		   GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5816       return 1;
5817 
5818     case REG:
5819       {
5820 	int regno = REGNO (x);
5821 
5822 	if (reg_equiv_constant[regno] != 0)
5823 	  {
5824 	    find_reloads_address_part (reg_equiv_constant[regno], loc,
5825 				       context_reg_class,
5826 				       GET_MODE (x), opnum, type, ind_levels);
5827 	    return 1;
5828 	  }
5829 
5830 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5831 	 that feeds this insn.  */
5832 	if (reg_equiv_mem[regno] != 0)
5833 	  {
5834 	    push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
5835 			 context_reg_class,
5836 			 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5837 	    return 1;
5838 	  }
5839 #endif
5840 
5841 	if (reg_equiv_memory_loc[regno]
5842 	    && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5843 	  {
5844 	    rtx tem = make_memloc (x, regno);
5845 	    if (reg_equiv_address[regno] != 0
5846 		|| ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5847 	      {
5848 		x = tem;
5849 		find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5850 				      &XEXP (x, 0), opnum, ADDR_TYPE (type),
5851 				      ind_levels, insn);
5852 		if (x != tem)
5853 		  push_reg_equiv_alt_mem (regno, x);
5854 	      }
5855 	  }
5856 
5857 	if (reg_renumber[regno] >= 0)
5858 	  regno = reg_renumber[regno];
5859 
5860 	if (regno >= FIRST_PSEUDO_REGISTER
5861 	    || !REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5862 				    index_code))
5863 	  {
5864 	    push_reload (x, NULL_RTX, loc, (rtx*) 0,
5865 			 context_reg_class,
5866 			 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5867 	    return 1;
5868 	  }
5869 
5870 	/* If a register appearing in an address is the subject of a CLOBBER
5871 	   in this insn, reload it into some other register to be safe.
5872 	   The CLOBBER is supposed to make the register unavailable
5873 	   from before this insn to after it.  */
5874 	if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5875 	  {
5876 	    push_reload (x, NULL_RTX, loc, (rtx*) 0,
5877 			 context_reg_class,
5878 			 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5879 	    return 1;
5880 	  }
5881       }
5882       return 0;
5883 
5884     case SUBREG:
5885       if (REG_P (SUBREG_REG (x)))
5886 	{
5887 	  /* If this is a SUBREG of a hard register and the resulting register
5888 	     is of the wrong class, reload the whole SUBREG.  This avoids
5889 	     needless copies if SUBREG_REG is multi-word.  */
5890 	  if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5891 	    {
5892 	      int regno ATTRIBUTE_UNUSED = subreg_regno (x);
5893 
5894 	      if (!REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5895 				       index_code))
5896 		{
5897 		  push_reload (x, NULL_RTX, loc, (rtx*) 0,
5898 			       context_reg_class,
5899 			       GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5900 		  return 1;
5901 		}
5902 	    }
5903 	  /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5904 	     is larger than the class size, then reload the whole SUBREG.  */
5905 	  else
5906 	    {
5907 	      enum reg_class class = context_reg_class;
5908 	      if ((unsigned) CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5909 		  > reg_class_size[class])
5910 		{
5911 		  x = find_reloads_subreg_address (x, 0, opnum,
5912 						   ADDR_TYPE (type),
5913 						   ind_levels, insn);
5914 		  push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5915 			       GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5916 		  return 1;
5917 		}
5918 	    }
5919 	}
5920       break;
5921 
5922     default:
5923       break;
5924     }
5925 
5926   {
5927     const char *fmt = GET_RTX_FORMAT (code);
5928     int i;
5929 
5930     for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5931       {
5932 	if (fmt[i] == 'e')
5933 	  /* Pass SCRATCH for INDEX_CODE, since CODE can never be a PLUS once
5934 	     we get here.  */
5935 	  find_reloads_address_1 (mode, XEXP (x, i), context, code, SCRATCH,
5936 				  &XEXP (x, i), opnum, type, ind_levels, insn);
5937       }
5938   }
5939 
5940 #undef REG_OK_FOR_CONTEXT
5941   return 0;
5942 }
5943 
5944 /* X, which is found at *LOC, is a part of an address that needs to be
5945    reloaded into a register of class CLASS.  If X is a constant, or if
5946    X is a PLUS that contains a constant, check that the constant is a
5947    legitimate operand and that we are supposed to be able to load
5948    it into the register.
5949 
5950    If not, force the constant into memory and reload the MEM instead.
5951 
5952    MODE is the mode to use, in case X is an integer constant.
5953 
5954    OPNUM and TYPE describe the purpose of any reloads made.
5955 
5956    IND_LEVELS says how many levels of indirect addressing this machine
5957    supports.  */
5958 
5959 static void
find_reloads_address_part(rtx x,rtx * loc,enum reg_class class,enum machine_mode mode,int opnum,enum reload_type type,int ind_levels)5960 find_reloads_address_part (rtx x, rtx *loc, enum reg_class class,
5961 			   enum machine_mode mode, int opnum,
5962 			   enum reload_type type, int ind_levels)
5963 {
5964   if (CONSTANT_P (x)
5965       && (! LEGITIMATE_CONSTANT_P (x)
5966 	  || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5967     {
5968       rtx tem;
5969 
5970       tem = x = force_const_mem (mode, x);
5971       find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5972 			    opnum, type, ind_levels, 0);
5973     }
5974 
5975   else if (GET_CODE (x) == PLUS
5976 	   && CONSTANT_P (XEXP (x, 1))
5977 	   && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5978 	       || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5979     {
5980       rtx tem;
5981 
5982       tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5983       x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5984       find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5985 			    opnum, type, ind_levels, 0);
5986     }
5987 
5988   push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5989 	       mode, VOIDmode, 0, 0, opnum, type);
5990 }
5991 
5992 /* X, a subreg of a pseudo, is a part of an address that needs to be
5993    reloaded.
5994 
5995    If the pseudo is equivalent to a memory location that cannot be directly
5996    addressed, make the necessary address reloads.
5997 
5998    If address reloads have been necessary, or if the address is changed
5999    by register elimination, return the rtx of the memory location;
6000    otherwise, return X.
6001 
6002    If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
6003    memory location.
6004 
6005    OPNUM and TYPE identify the purpose of the reload.
6006 
6007    IND_LEVELS says how many levels of indirect addressing are
6008    supported at this point in the address.
6009 
6010    INSN, if nonzero, is the insn in which we do the reload.  It is used
6011    to determine where to put USEs for pseudos that we have to replace with
6012    stack slots.  */
6013 
6014 static rtx
find_reloads_subreg_address(rtx x,int force_replace,int opnum,enum reload_type type,int ind_levels,rtx insn)6015 find_reloads_subreg_address (rtx x, int force_replace, int opnum,
6016 			     enum reload_type type, int ind_levels, rtx insn)
6017 {
6018   int regno = REGNO (SUBREG_REG (x));
6019 
6020   if (reg_equiv_memory_loc[regno])
6021     {
6022       /* If the address is not directly addressable, or if the address is not
6023 	 offsettable, then it must be replaced.  */
6024       if (! force_replace
6025 	  && (reg_equiv_address[regno]
6026 	      || ! offsettable_memref_p (reg_equiv_mem[regno])))
6027 	force_replace = 1;
6028 
6029       if (force_replace || num_not_at_initial_offset)
6030 	{
6031 	  rtx tem = make_memloc (SUBREG_REG (x), regno);
6032 
6033 	  /* If the address changes because of register elimination, then
6034 	     it must be replaced.  */
6035 	  if (force_replace
6036 	      || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
6037 	    {
6038 	      unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
6039 	      unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
6040 	      int offset;
6041 	      rtx orig = tem;
6042 	      enum machine_mode orig_mode = GET_MODE (orig);
6043 	      int reloaded;
6044 
6045 	      /* For big-endian paradoxical subregs, SUBREG_BYTE does not
6046 		 hold the correct (negative) byte offset.  */
6047 	      if (BYTES_BIG_ENDIAN && outer_size > inner_size)
6048 		offset = inner_size - outer_size;
6049 	      else
6050 		offset = SUBREG_BYTE (x);
6051 
6052 	      XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
6053 	      PUT_MODE (tem, GET_MODE (x));
6054 
6055 	      /* If this was a paradoxical subreg that we replaced, the
6056 		 resulting memory must be sufficiently aligned to allow
6057 		 us to widen the mode of the memory.  */
6058 	      if (outer_size > inner_size)
6059 		{
6060 		  rtx base;
6061 
6062 		  base = XEXP (tem, 0);
6063 		  if (GET_CODE (base) == PLUS)
6064 		    {
6065 		      if (GET_CODE (XEXP (base, 1)) == CONST_INT
6066 			  && INTVAL (XEXP (base, 1)) % outer_size != 0)
6067 			return x;
6068 		      base = XEXP (base, 0);
6069 		    }
6070 		  if (!REG_P (base)
6071 		      || (REGNO_POINTER_ALIGN (REGNO (base))
6072 			  < outer_size * BITS_PER_UNIT))
6073 		    return x;
6074 		}
6075 
6076 	      reloaded = find_reloads_address (GET_MODE (tem), &tem,
6077 					       XEXP (tem, 0), &XEXP (tem, 0),
6078 					       opnum, type, ind_levels, insn);
6079 	      /* ??? Do we need to handle nonzero offsets somehow?  */
6080 	      if (!offset && tem != orig)
6081 		push_reg_equiv_alt_mem (regno, tem);
6082 
6083 	      /* For some processors an address may be valid in the
6084 		 original mode but not in a smaller mode.  For
6085 		 example, ARM accepts a scaled index register in
6086 		 SImode but not in HImode.  find_reloads_address
6087 		 assumes that we pass it a valid address, and doesn't
6088 		 force a reload.  This will probably be fine if
6089 		 find_reloads_address finds some reloads.  But if it
6090 		 doesn't find any, then we may have just converted a
6091 		 valid address into an invalid one.  Check for that
6092 		 here.  */
6093 	      if (reloaded != 1
6094 		  && strict_memory_address_p (orig_mode, XEXP (tem, 0))
6095 		  && !strict_memory_address_p (GET_MODE (tem),
6096 					       XEXP (tem, 0)))
6097 		push_reload (XEXP (tem, 0), NULL_RTX, &XEXP (tem, 0), (rtx*) 0,
6098 			     base_reg_class (GET_MODE (tem), MEM, SCRATCH),
6099 			     GET_MODE (XEXP (tem, 0)), VOIDmode, 0, 0,
6100 			     opnum, type);
6101 
6102 	      /* If this is not a toplevel operand, find_reloads doesn't see
6103 		 this substitution.  We have to emit a USE of the pseudo so
6104 		 that delete_output_reload can see it.  */
6105 	      if (replace_reloads && recog_data.operand[opnum] != x)
6106 		/* We mark the USE with QImode so that we recognize it
6107 		   as one that can be safely deleted at the end of
6108 		   reload.  */
6109 		PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
6110 							 SUBREG_REG (x)),
6111 					    insn), QImode);
6112 	      x = tem;
6113 	    }
6114 	}
6115     }
6116   return x;
6117 }
6118 
6119 /* Substitute into the current INSN the registers into which we have reloaded
6120    the things that need reloading.  The array `replacements'
6121    contains the locations of all pointers that must be changed
6122    and says what to replace them with.
6123 
6124    Return the rtx that X translates into; usually X, but modified.  */
6125 
6126 void
subst_reloads(rtx insn)6127 subst_reloads (rtx insn)
6128 {
6129   int i;
6130 
6131   for (i = 0; i < n_replacements; i++)
6132     {
6133       struct replacement *r = &replacements[i];
6134       rtx reloadreg = rld[r->what].reg_rtx;
6135       if (reloadreg)
6136 	{
6137 #ifdef ENABLE_CHECKING
6138 	  /* Internal consistency test.  Check that we don't modify
6139 	     anything in the equivalence arrays.  Whenever something from
6140 	     those arrays needs to be reloaded, it must be unshared before
6141 	     being substituted into; the equivalence must not be modified.
6142 	     Otherwise, if the equivalence is used after that, it will
6143 	     have been modified, and the thing substituted (probably a
6144 	     register) is likely overwritten and not a usable equivalence.  */
6145 	  int check_regno;
6146 
6147 	  for (check_regno = 0; check_regno < max_regno; check_regno++)
6148 	    {
6149 #define CHECK_MODF(ARRAY)						\
6150 	      gcc_assert (!ARRAY[check_regno]				\
6151 			  || !loc_mentioned_in_p (r->where,		\
6152 						  ARRAY[check_regno]))
6153 
6154 	      CHECK_MODF (reg_equiv_constant);
6155 	      CHECK_MODF (reg_equiv_memory_loc);
6156 	      CHECK_MODF (reg_equiv_address);
6157 	      CHECK_MODF (reg_equiv_mem);
6158 #undef CHECK_MODF
6159 	    }
6160 #endif /* ENABLE_CHECKING */
6161 
6162 	  /* If we're replacing a LABEL_REF with a register, add a
6163 	     REG_LABEL note to indicate to flow which label this
6164 	     register refers to.  */
6165 	  if (GET_CODE (*r->where) == LABEL_REF
6166 	      && JUMP_P (insn))
6167 	    {
6168 	      REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
6169 						    XEXP (*r->where, 0),
6170 						    REG_NOTES (insn));
6171 	      JUMP_LABEL (insn) = XEXP (*r->where, 0);
6172 	   }
6173 
6174 	  /* Encapsulate RELOADREG so its machine mode matches what
6175 	     used to be there.  Note that gen_lowpart_common will
6176 	     do the wrong thing if RELOADREG is multi-word.  RELOADREG
6177 	     will always be a REG here.  */
6178 	  if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
6179 	    reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6180 
6181 	  /* If we are putting this into a SUBREG and RELOADREG is a
6182 	     SUBREG, we would be making nested SUBREGs, so we have to fix
6183 	     this up.  Note that r->where == &SUBREG_REG (*r->subreg_loc).  */
6184 
6185 	  if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
6186 	    {
6187 	      if (GET_MODE (*r->subreg_loc)
6188 		  == GET_MODE (SUBREG_REG (reloadreg)))
6189 		*r->subreg_loc = SUBREG_REG (reloadreg);
6190 	      else
6191 		{
6192 		  int final_offset =
6193 		    SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
6194 
6195 		  /* When working with SUBREGs the rule is that the byte
6196 		     offset must be a multiple of the SUBREG's mode.  */
6197 		  final_offset = (final_offset /
6198 				  GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6199 		  final_offset = (final_offset *
6200 				  GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6201 
6202 		  *r->where = SUBREG_REG (reloadreg);
6203 		  SUBREG_BYTE (*r->subreg_loc) = final_offset;
6204 		}
6205 	    }
6206 	  else
6207 	    *r->where = reloadreg;
6208 	}
6209       /* If reload got no reg and isn't optional, something's wrong.  */
6210       else
6211 	gcc_assert (rld[r->what].optional);
6212     }
6213 }
6214 
6215 /* Make a copy of any replacements being done into X and move those
6216    copies to locations in Y, a copy of X.  */
6217 
6218 void
copy_replacements(rtx x,rtx y)6219 copy_replacements (rtx x, rtx y)
6220 {
6221   /* We can't support X being a SUBREG because we might then need to know its
6222      location if something inside it was replaced.  */
6223   gcc_assert (GET_CODE (x) != SUBREG);
6224 
6225   copy_replacements_1 (&x, &y, n_replacements);
6226 }
6227 
6228 static void
copy_replacements_1(rtx * px,rtx * py,int orig_replacements)6229 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6230 {
6231   int i, j;
6232   rtx x, y;
6233   struct replacement *r;
6234   enum rtx_code code;
6235   const char *fmt;
6236 
6237   for (j = 0; j < orig_replacements; j++)
6238     {
6239       if (replacements[j].subreg_loc == px)
6240 	{
6241 	  r = &replacements[n_replacements++];
6242 	  r->where = replacements[j].where;
6243 	  r->subreg_loc = py;
6244 	  r->what = replacements[j].what;
6245 	  r->mode = replacements[j].mode;
6246 	}
6247       else if (replacements[j].where == px)
6248 	{
6249 	  r = &replacements[n_replacements++];
6250 	  r->where = py;
6251 	  r->subreg_loc = 0;
6252 	  r->what = replacements[j].what;
6253 	  r->mode = replacements[j].mode;
6254 	}
6255     }
6256 
6257   x = *px;
6258   y = *py;
6259   code = GET_CODE (x);
6260   fmt = GET_RTX_FORMAT (code);
6261 
6262   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6263     {
6264       if (fmt[i] == 'e')
6265 	copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6266       else if (fmt[i] == 'E')
6267 	for (j = XVECLEN (x, i); --j >= 0; )
6268 	  copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6269 			       orig_replacements);
6270     }
6271 }
6272 
6273 /* Change any replacements being done to *X to be done to *Y.  */
6274 
6275 void
move_replacements(rtx * x,rtx * y)6276 move_replacements (rtx *x, rtx *y)
6277 {
6278   int i;
6279 
6280   for (i = 0; i < n_replacements; i++)
6281     if (replacements[i].subreg_loc == x)
6282       replacements[i].subreg_loc = y;
6283     else if (replacements[i].where == x)
6284       {
6285 	replacements[i].where = y;
6286 	replacements[i].subreg_loc = 0;
6287       }
6288 }
6289 
6290 /* If LOC was scheduled to be replaced by something, return the replacement.
6291    Otherwise, return *LOC.  */
6292 
6293 rtx
find_replacement(rtx * loc)6294 find_replacement (rtx *loc)
6295 {
6296   struct replacement *r;
6297 
6298   for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6299     {
6300       rtx reloadreg = rld[r->what].reg_rtx;
6301 
6302       if (reloadreg && r->where == loc)
6303 	{
6304 	  if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6305 	    reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
6306 
6307 	  return reloadreg;
6308 	}
6309       else if (reloadreg && r->subreg_loc == loc)
6310 	{
6311 	  /* RELOADREG must be either a REG or a SUBREG.
6312 
6313 	     ??? Is it actually still ever a SUBREG?  If so, why?  */
6314 
6315 	  if (REG_P (reloadreg))
6316 	    return gen_rtx_REG (GET_MODE (*loc),
6317 				(REGNO (reloadreg) +
6318 				 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
6319 						      GET_MODE (SUBREG_REG (*loc)),
6320 						      SUBREG_BYTE (*loc),
6321 						      GET_MODE (*loc))));
6322 	  else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6323 	    return reloadreg;
6324 	  else
6325 	    {
6326 	      int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6327 
6328 	      /* When working with SUBREGs the rule is that the byte
6329 		 offset must be a multiple of the SUBREG's mode.  */
6330 	      final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6331 	      final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6332 	      return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6333 				     final_offset);
6334 	    }
6335 	}
6336     }
6337 
6338   /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6339      what's inside and make a new rtl if so.  */
6340   if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6341       || GET_CODE (*loc) == MULT)
6342     {
6343       rtx x = find_replacement (&XEXP (*loc, 0));
6344       rtx y = find_replacement (&XEXP (*loc, 1));
6345 
6346       if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6347 	return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6348     }
6349 
6350   return *loc;
6351 }
6352 
6353 /* Return nonzero if register in range [REGNO, ENDREGNO)
6354    appears either explicitly or implicitly in X
6355    other than being stored into (except for earlyclobber operands).
6356 
6357    References contained within the substructure at LOC do not count.
6358    LOC may be zero, meaning don't ignore anything.
6359 
6360    This is similar to refers_to_regno_p in rtlanal.c except that we
6361    look at equivalences for pseudos that didn't get hard registers.  */
6362 
6363 static int
refers_to_regno_for_reload_p(unsigned int regno,unsigned int endregno,rtx x,rtx * loc)6364 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6365 			      rtx x, rtx *loc)
6366 {
6367   int i;
6368   unsigned int r;
6369   RTX_CODE code;
6370   const char *fmt;
6371 
6372   if (x == 0)
6373     return 0;
6374 
6375  repeat:
6376   code = GET_CODE (x);
6377 
6378   switch (code)
6379     {
6380     case REG:
6381       r = REGNO (x);
6382 
6383       /* If this is a pseudo, a hard register must not have been allocated.
6384 	 X must therefore either be a constant or be in memory.  */
6385       if (r >= FIRST_PSEUDO_REGISTER)
6386 	{
6387 	  if (reg_equiv_memory_loc[r])
6388 	    return refers_to_regno_for_reload_p (regno, endregno,
6389 						 reg_equiv_memory_loc[r],
6390 						 (rtx*) 0);
6391 
6392 	  gcc_assert (reg_equiv_constant[r] || reg_equiv_invariant[r]);
6393 	  return 0;
6394 	}
6395 
6396       return (endregno > r
6397 	      && regno < r + (r < FIRST_PSEUDO_REGISTER
6398 			      ? hard_regno_nregs[r][GET_MODE (x)]
6399 			      : 1));
6400 
6401     case SUBREG:
6402       /* If this is a SUBREG of a hard reg, we can see exactly which
6403 	 registers are being modified.  Otherwise, handle normally.  */
6404       if (REG_P (SUBREG_REG (x))
6405 	  && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6406 	{
6407 	  unsigned int inner_regno = subreg_regno (x);
6408 	  unsigned int inner_endregno
6409 	    = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6410 			     ? hard_regno_nregs[inner_regno][GET_MODE (x)] : 1);
6411 
6412 	  return endregno > inner_regno && regno < inner_endregno;
6413 	}
6414       break;
6415 
6416     case CLOBBER:
6417     case SET:
6418       if (&SET_DEST (x) != loc
6419 	  /* Note setting a SUBREG counts as referring to the REG it is in for
6420 	     a pseudo but not for hard registers since we can
6421 	     treat each word individually.  */
6422 	  && ((GET_CODE (SET_DEST (x)) == SUBREG
6423 	       && loc != &SUBREG_REG (SET_DEST (x))
6424 	       && REG_P (SUBREG_REG (SET_DEST (x)))
6425 	       && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6426 	       && refers_to_regno_for_reload_p (regno, endregno,
6427 						SUBREG_REG (SET_DEST (x)),
6428 						loc))
6429 	      /* If the output is an earlyclobber operand, this is
6430 		 a conflict.  */
6431 	      || ((!REG_P (SET_DEST (x))
6432 		   || earlyclobber_operand_p (SET_DEST (x)))
6433 		  && refers_to_regno_for_reload_p (regno, endregno,
6434 						   SET_DEST (x), loc))))
6435 	return 1;
6436 
6437       if (code == CLOBBER || loc == &SET_SRC (x))
6438 	return 0;
6439       x = SET_SRC (x);
6440       goto repeat;
6441 
6442     default:
6443       break;
6444     }
6445 
6446   /* X does not match, so try its subexpressions.  */
6447 
6448   fmt = GET_RTX_FORMAT (code);
6449   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6450     {
6451       if (fmt[i] == 'e' && loc != &XEXP (x, i))
6452 	{
6453 	  if (i == 0)
6454 	    {
6455 	      x = XEXP (x, 0);
6456 	      goto repeat;
6457 	    }
6458 	  else
6459 	    if (refers_to_regno_for_reload_p (regno, endregno,
6460 					      XEXP (x, i), loc))
6461 	      return 1;
6462 	}
6463       else if (fmt[i] == 'E')
6464 	{
6465 	  int j;
6466 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6467 	    if (loc != &XVECEXP (x, i, j)
6468 		&& refers_to_regno_for_reload_p (regno, endregno,
6469 						 XVECEXP (x, i, j), loc))
6470 	      return 1;
6471 	}
6472     }
6473   return 0;
6474 }
6475 
6476 /* Nonzero if modifying X will affect IN.  If X is a register or a SUBREG,
6477    we check if any register number in X conflicts with the relevant register
6478    numbers.  If X is a constant, return 0.  If X is a MEM, return 1 iff IN
6479    contains a MEM (we don't bother checking for memory addresses that can't
6480    conflict because we expect this to be a rare case.
6481 
6482    This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6483    that we look at equivalences for pseudos that didn't get hard registers.  */
6484 
6485 int
reg_overlap_mentioned_for_reload_p(rtx x,rtx in)6486 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6487 {
6488   int regno, endregno;
6489 
6490   /* Overly conservative.  */
6491   if (GET_CODE (x) == STRICT_LOW_PART
6492       || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6493     x = XEXP (x, 0);
6494 
6495   /* If either argument is a constant, then modifying X can not affect IN.  */
6496   if (CONSTANT_P (x) || CONSTANT_P (in))
6497     return 0;
6498   else if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
6499     return refers_to_mem_for_reload_p (in);
6500   else if (GET_CODE (x) == SUBREG)
6501     {
6502       regno = REGNO (SUBREG_REG (x));
6503       if (regno < FIRST_PSEUDO_REGISTER)
6504 	regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6505 				      GET_MODE (SUBREG_REG (x)),
6506 				      SUBREG_BYTE (x),
6507 				      GET_MODE (x));
6508     }
6509   else if (REG_P (x))
6510     {
6511       regno = REGNO (x);
6512 
6513       /* If this is a pseudo, it must not have been assigned a hard register.
6514 	 Therefore, it must either be in memory or be a constant.  */
6515 
6516       if (regno >= FIRST_PSEUDO_REGISTER)
6517 	{
6518 	  if (reg_equiv_memory_loc[regno])
6519 	    return refers_to_mem_for_reload_p (in);
6520 	  gcc_assert (reg_equiv_constant[regno]);
6521 	  return 0;
6522 	}
6523     }
6524   else if (MEM_P (x))
6525     return refers_to_mem_for_reload_p (in);
6526   else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6527 	   || GET_CODE (x) == CC0)
6528     return reg_mentioned_p (x, in);
6529   else
6530     {
6531       gcc_assert (GET_CODE (x) == PLUS);
6532 
6533       /* We actually want to know if X is mentioned somewhere inside IN.
6534 	 We must not say that (plus (sp) (const_int 124)) is in
6535 	 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6536 	 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6537 	 into a RELOAD_OTHER on behalf of another RELOAD_OTHER.  */
6538       while (MEM_P (in))
6539 	in = XEXP (in, 0);
6540       if (REG_P (in))
6541 	return 0;
6542       else if (GET_CODE (in) == PLUS)
6543 	return (rtx_equal_p (x, in)
6544 		|| reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6545 		|| reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6546       else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6547 		   || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6548     }
6549 
6550   endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6551 		      ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
6552 
6553   return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6554 }
6555 
6556 /* Return nonzero if anything in X contains a MEM.  Look also for pseudo
6557    registers.  */
6558 
6559 static int
refers_to_mem_for_reload_p(rtx x)6560 refers_to_mem_for_reload_p (rtx x)
6561 {
6562   const char *fmt;
6563   int i;
6564 
6565   if (MEM_P (x))
6566     return 1;
6567 
6568   if (REG_P (x))
6569     return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6570 	    && reg_equiv_memory_loc[REGNO (x)]);
6571 
6572   fmt = GET_RTX_FORMAT (GET_CODE (x));
6573   for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6574     if (fmt[i] == 'e'
6575 	&& (MEM_P (XEXP (x, i))
6576 	    || refers_to_mem_for_reload_p (XEXP (x, i))))
6577       return 1;
6578 
6579   return 0;
6580 }
6581 
6582 /* Check the insns before INSN to see if there is a suitable register
6583    containing the same value as GOAL.
6584    If OTHER is -1, look for a register in class CLASS.
6585    Otherwise, just see if register number OTHER shares GOAL's value.
6586 
6587    Return an rtx for the register found, or zero if none is found.
6588 
6589    If RELOAD_REG_P is (short *)1,
6590    we reject any hard reg that appears in reload_reg_rtx
6591    because such a hard reg is also needed coming into this insn.
6592 
6593    If RELOAD_REG_P is any other nonzero value,
6594    it is a vector indexed by hard reg number
6595    and we reject any hard reg whose element in the vector is nonnegative
6596    as well as any that appears in reload_reg_rtx.
6597 
6598    If GOAL is zero, then GOALREG is a register number; we look
6599    for an equivalent for that register.
6600 
6601    MODE is the machine mode of the value we want an equivalence for.
6602    If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6603 
6604    This function is used by jump.c as well as in the reload pass.
6605 
6606    If GOAL is the sum of the stack pointer and a constant, we treat it
6607    as if it were a constant except that sp is required to be unchanging.  */
6608 
6609 rtx
find_equiv_reg(rtx goal,rtx insn,enum reg_class class,int other,short * reload_reg_p,int goalreg,enum machine_mode mode)6610 find_equiv_reg (rtx goal, rtx insn, enum reg_class class, int other,
6611 		short *reload_reg_p, int goalreg, enum machine_mode mode)
6612 {
6613   rtx p = insn;
6614   rtx goaltry, valtry, value, where;
6615   rtx pat;
6616   int regno = -1;
6617   int valueno;
6618   int goal_mem = 0;
6619   int goal_const = 0;
6620   int goal_mem_addr_varies = 0;
6621   int need_stable_sp = 0;
6622   int nregs;
6623   int valuenregs;
6624   int num = 0;
6625 
6626   if (goal == 0)
6627     regno = goalreg;
6628   else if (REG_P (goal))
6629     regno = REGNO (goal);
6630   else if (MEM_P (goal))
6631     {
6632       enum rtx_code code = GET_CODE (XEXP (goal, 0));
6633       if (MEM_VOLATILE_P (goal))
6634 	return 0;
6635       if (flag_float_store && SCALAR_FLOAT_MODE_P (GET_MODE (goal)))
6636 	return 0;
6637       /* An address with side effects must be reexecuted.  */
6638       switch (code)
6639 	{
6640 	case POST_INC:
6641 	case PRE_INC:
6642 	case POST_DEC:
6643 	case PRE_DEC:
6644 	case POST_MODIFY:
6645 	case PRE_MODIFY:
6646 	  return 0;
6647 	default:
6648 	  break;
6649 	}
6650       goal_mem = 1;
6651     }
6652   else if (CONSTANT_P (goal))
6653     goal_const = 1;
6654   else if (GET_CODE (goal) == PLUS
6655 	   && XEXP (goal, 0) == stack_pointer_rtx
6656 	   && CONSTANT_P (XEXP (goal, 1)))
6657     goal_const = need_stable_sp = 1;
6658   else if (GET_CODE (goal) == PLUS
6659 	   && XEXP (goal, 0) == frame_pointer_rtx
6660 	   && CONSTANT_P (XEXP (goal, 1)))
6661     goal_const = 1;
6662   else
6663     return 0;
6664 
6665   num = 0;
6666   /* Scan insns back from INSN, looking for one that copies
6667      a value into or out of GOAL.
6668      Stop and give up if we reach a label.  */
6669 
6670   while (1)
6671     {
6672       p = PREV_INSN (p);
6673       num++;
6674       if (p == 0 || LABEL_P (p)
6675 	  || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
6676 	return 0;
6677 
6678       if (NONJUMP_INSN_P (p)
6679 	  /* If we don't want spill regs ...  */
6680 	  && (! (reload_reg_p != 0
6681 		 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6682 	      /* ... then ignore insns introduced by reload; they aren't
6683 		 useful and can cause results in reload_as_needed to be
6684 		 different from what they were when calculating the need for
6685 		 spills.  If we notice an input-reload insn here, we will
6686 		 reject it below, but it might hide a usable equivalent.
6687 		 That makes bad code.  It may even fail: perhaps no reg was
6688 		 spilled for this insn because it was assumed we would find
6689 		 that equivalent.  */
6690 	      || INSN_UID (p) < reload_first_uid))
6691 	{
6692 	  rtx tem;
6693 	  pat = single_set (p);
6694 
6695 	  /* First check for something that sets some reg equal to GOAL.  */
6696 	  if (pat != 0
6697 	      && ((regno >= 0
6698 		   && true_regnum (SET_SRC (pat)) == regno
6699 		   && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6700 		  ||
6701 		  (regno >= 0
6702 		   && true_regnum (SET_DEST (pat)) == regno
6703 		   && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6704 		  ||
6705 		  (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6706 		   /* When looking for stack pointer + const,
6707 		      make sure we don't use a stack adjust.  */
6708 		   && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6709 		   && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6710 		  || (goal_mem
6711 		      && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6712 		      && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6713 		  || (goal_mem
6714 		      && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6715 		      && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6716 		  /* If we are looking for a constant,
6717 		     and something equivalent to that constant was copied
6718 		     into a reg, we can use that reg.  */
6719 		  || (goal_const && REG_NOTES (p) != 0
6720 		      && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6721 		      && ((rtx_equal_p (XEXP (tem, 0), goal)
6722 			   && (valueno
6723 			       = true_regnum (valtry = SET_DEST (pat))) >= 0)
6724 			  || (REG_P (SET_DEST (pat))
6725 			      && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6726 			      && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6727 			      && GET_CODE (goal) == CONST_INT
6728 			      && 0 != (goaltry
6729 				       = operand_subword (XEXP (tem, 0), 0, 0,
6730 							  VOIDmode))
6731 			      && rtx_equal_p (goal, goaltry)
6732 			      && (valtry
6733 				  = operand_subword (SET_DEST (pat), 0, 0,
6734 						     VOIDmode))
6735 			      && (valueno = true_regnum (valtry)) >= 0)))
6736 		  || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6737 							  NULL_RTX))
6738 		      && REG_P (SET_DEST (pat))
6739 		      && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6740 		      && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6741 		      && GET_CODE (goal) == CONST_INT
6742 		      && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6743 							  VOIDmode))
6744 		      && rtx_equal_p (goal, goaltry)
6745 		      && (valtry
6746 			  = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6747 		      && (valueno = true_regnum (valtry)) >= 0)))
6748 	    {
6749 	      if (other >= 0)
6750 		{
6751 		  if (valueno != other)
6752 		    continue;
6753 		}
6754 	      else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6755 		continue;
6756 	      else
6757 		{
6758 		  int i;
6759 
6760 		  for (i = hard_regno_nregs[valueno][mode] - 1; i >= 0; i--)
6761 		    if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6762 					     valueno + i))
6763 		      break;
6764 		  if (i >= 0)
6765 		    continue;
6766 		}
6767 	      value = valtry;
6768 	      where = p;
6769 	      break;
6770 	    }
6771 	}
6772     }
6773 
6774   /* We found a previous insn copying GOAL into a suitable other reg VALUE
6775      (or copying VALUE into GOAL, if GOAL is also a register).
6776      Now verify that VALUE is really valid.  */
6777 
6778   /* VALUENO is the register number of VALUE; a hard register.  */
6779 
6780   /* Don't try to re-use something that is killed in this insn.  We want
6781      to be able to trust REG_UNUSED notes.  */
6782   if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6783     return 0;
6784 
6785   /* If we propose to get the value from the stack pointer or if GOAL is
6786      a MEM based on the stack pointer, we need a stable SP.  */
6787   if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6788       || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6789 							  goal)))
6790     need_stable_sp = 1;
6791 
6792   /* Reject VALUE if the copy-insn moved the wrong sort of datum.  */
6793   if (GET_MODE (value) != mode)
6794     return 0;
6795 
6796   /* Reject VALUE if it was loaded from GOAL
6797      and is also a register that appears in the address of GOAL.  */
6798 
6799   if (goal_mem && value == SET_DEST (single_set (where))
6800       && refers_to_regno_for_reload_p (valueno,
6801 				       (valueno
6802 					+ hard_regno_nregs[valueno][mode]),
6803 				       goal, (rtx*) 0))
6804     return 0;
6805 
6806   /* Reject registers that overlap GOAL.  */
6807 
6808   if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6809     nregs = hard_regno_nregs[regno][mode];
6810   else
6811     nregs = 1;
6812   valuenregs = hard_regno_nregs[valueno][mode];
6813 
6814   if (!goal_mem && !goal_const
6815       && regno + nregs > valueno && regno < valueno + valuenregs)
6816     return 0;
6817 
6818   /* Reject VALUE if it is one of the regs reserved for reloads.
6819      Reload1 knows how to reuse them anyway, and it would get
6820      confused if we allocated one without its knowledge.
6821      (Now that insns introduced by reload are ignored above,
6822      this case shouldn't happen, but I'm not positive.)  */
6823 
6824   if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6825     {
6826       int i;
6827       for (i = 0; i < valuenregs; ++i)
6828 	if (reload_reg_p[valueno + i] >= 0)
6829 	  return 0;
6830     }
6831 
6832   /* Reject VALUE if it is a register being used for an input reload
6833      even if it is not one of those reserved.  */
6834 
6835   if (reload_reg_p != 0)
6836     {
6837       int i;
6838       for (i = 0; i < n_reloads; i++)
6839 	if (rld[i].reg_rtx != 0 && rld[i].in)
6840 	  {
6841 	    int regno1 = REGNO (rld[i].reg_rtx);
6842 	    int nregs1 = hard_regno_nregs[regno1]
6843 					 [GET_MODE (rld[i].reg_rtx)];
6844 	    if (regno1 < valueno + valuenregs
6845 		&& regno1 + nregs1 > valueno)
6846 	      return 0;
6847 	  }
6848     }
6849 
6850   if (goal_mem)
6851     /* We must treat frame pointer as varying here,
6852        since it can vary--in a nonlocal goto as generated by expand_goto.  */
6853     goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6854 
6855   /* Now verify that the values of GOAL and VALUE remain unaltered
6856      until INSN is reached.  */
6857 
6858   p = insn;
6859   while (1)
6860     {
6861       p = PREV_INSN (p);
6862       if (p == where)
6863 	return value;
6864 
6865       /* Don't trust the conversion past a function call
6866 	 if either of the two is in a call-clobbered register, or memory.  */
6867       if (CALL_P (p))
6868 	{
6869 	  int i;
6870 
6871 	  if (goal_mem || need_stable_sp)
6872 	    return 0;
6873 
6874 	  if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6875 	    for (i = 0; i < nregs; ++i)
6876 	      if (call_used_regs[regno + i]
6877 		  || HARD_REGNO_CALL_PART_CLOBBERED (regno + i, mode))
6878 		return 0;
6879 
6880 	  if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6881 	    for (i = 0; i < valuenregs; ++i)
6882 	      if (call_used_regs[valueno + i]
6883 		  || HARD_REGNO_CALL_PART_CLOBBERED (valueno + i, mode))
6884 		return 0;
6885 	}
6886 
6887       if (INSN_P (p))
6888 	{
6889 	  pat = PATTERN (p);
6890 
6891 	  /* Watch out for unspec_volatile, and volatile asms.  */
6892 	  if (volatile_insn_p (pat))
6893 	    return 0;
6894 
6895 	  /* If this insn P stores in either GOAL or VALUE, return 0.
6896 	     If GOAL is a memory ref and this insn writes memory, return 0.
6897 	     If GOAL is a memory ref and its address is not constant,
6898 	     and this insn P changes a register used in GOAL, return 0.  */
6899 
6900 	  if (GET_CODE (pat) == COND_EXEC)
6901 	    pat = COND_EXEC_CODE (pat);
6902 	  if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6903 	    {
6904 	      rtx dest = SET_DEST (pat);
6905 	      while (GET_CODE (dest) == SUBREG
6906 		     || GET_CODE (dest) == ZERO_EXTRACT
6907 		     || GET_CODE (dest) == STRICT_LOW_PART)
6908 		dest = XEXP (dest, 0);
6909 	      if (REG_P (dest))
6910 		{
6911 		  int xregno = REGNO (dest);
6912 		  int xnregs;
6913 		  if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6914 		    xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6915 		  else
6916 		    xnregs = 1;
6917 		  if (xregno < regno + nregs && xregno + xnregs > regno)
6918 		    return 0;
6919 		  if (xregno < valueno + valuenregs
6920 		      && xregno + xnregs > valueno)
6921 		    return 0;
6922 		  if (goal_mem_addr_varies
6923 		      && reg_overlap_mentioned_for_reload_p (dest, goal))
6924 		    return 0;
6925 		  if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6926 		    return 0;
6927 		}
6928 	      else if (goal_mem && MEM_P (dest)
6929 		       && ! push_operand (dest, GET_MODE (dest)))
6930 		return 0;
6931 	      else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6932 		       && reg_equiv_memory_loc[regno] != 0)
6933 		return 0;
6934 	      else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6935 		return 0;
6936 	    }
6937 	  else if (GET_CODE (pat) == PARALLEL)
6938 	    {
6939 	      int i;
6940 	      for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6941 		{
6942 		  rtx v1 = XVECEXP (pat, 0, i);
6943 		  if (GET_CODE (v1) == COND_EXEC)
6944 		    v1 = COND_EXEC_CODE (v1);
6945 		  if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6946 		    {
6947 		      rtx dest = SET_DEST (v1);
6948 		      while (GET_CODE (dest) == SUBREG
6949 			     || GET_CODE (dest) == ZERO_EXTRACT
6950 			     || GET_CODE (dest) == STRICT_LOW_PART)
6951 			dest = XEXP (dest, 0);
6952 		      if (REG_P (dest))
6953 			{
6954 			  int xregno = REGNO (dest);
6955 			  int xnregs;
6956 			  if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6957 			    xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6958 			  else
6959 			    xnregs = 1;
6960 			  if (xregno < regno + nregs
6961 			      && xregno + xnregs > regno)
6962 			    return 0;
6963 			  if (xregno < valueno + valuenregs
6964 			      && xregno + xnregs > valueno)
6965 			    return 0;
6966 			  if (goal_mem_addr_varies
6967 			      && reg_overlap_mentioned_for_reload_p (dest,
6968 								     goal))
6969 			    return 0;
6970 			  if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6971 			    return 0;
6972 			}
6973 		      else if (goal_mem && MEM_P (dest)
6974 			       && ! push_operand (dest, GET_MODE (dest)))
6975 			return 0;
6976 		      else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6977 			       && reg_equiv_memory_loc[regno] != 0)
6978 			return 0;
6979 		      else if (need_stable_sp
6980 			       && push_operand (dest, GET_MODE (dest)))
6981 			return 0;
6982 		    }
6983 		}
6984 	    }
6985 
6986 	  if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
6987 	    {
6988 	      rtx link;
6989 
6990 	      for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6991 		   link = XEXP (link, 1))
6992 		{
6993 		  pat = XEXP (link, 0);
6994 		  if (GET_CODE (pat) == CLOBBER)
6995 		    {
6996 		      rtx dest = SET_DEST (pat);
6997 
6998 		      if (REG_P (dest))
6999 			{
7000 			  int xregno = REGNO (dest);
7001 			  int xnregs
7002 			    = hard_regno_nregs[xregno][GET_MODE (dest)];
7003 
7004 			  if (xregno < regno + nregs
7005 			      && xregno + xnregs > regno)
7006 			    return 0;
7007 			  else if (xregno < valueno + valuenregs
7008 				   && xregno + xnregs > valueno)
7009 			    return 0;
7010 			  else if (goal_mem_addr_varies
7011 				   && reg_overlap_mentioned_for_reload_p (dest,
7012 								     goal))
7013 			    return 0;
7014 			}
7015 
7016 		      else if (goal_mem && MEM_P (dest)
7017 			       && ! push_operand (dest, GET_MODE (dest)))
7018 			return 0;
7019 		      else if (need_stable_sp
7020 			       && push_operand (dest, GET_MODE (dest)))
7021 			return 0;
7022 		    }
7023 		}
7024 	    }
7025 
7026 #ifdef AUTO_INC_DEC
7027 	  /* If this insn auto-increments or auto-decrements
7028 	     either regno or valueno, return 0 now.
7029 	     If GOAL is a memory ref and its address is not constant,
7030 	     and this insn P increments a register used in GOAL, return 0.  */
7031 	  {
7032 	    rtx link;
7033 
7034 	    for (link = REG_NOTES (p); link; link = XEXP (link, 1))
7035 	      if (REG_NOTE_KIND (link) == REG_INC
7036 		  && REG_P (XEXP (link, 0)))
7037 		{
7038 		  int incno = REGNO (XEXP (link, 0));
7039 		  if (incno < regno + nregs && incno >= regno)
7040 		    return 0;
7041 		  if (incno < valueno + valuenregs && incno >= valueno)
7042 		    return 0;
7043 		  if (goal_mem_addr_varies
7044 		      && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
7045 							     goal))
7046 		    return 0;
7047 		}
7048 	  }
7049 #endif
7050 	}
7051     }
7052 }
7053 
7054 /* Find a place where INCED appears in an increment or decrement operator
7055    within X, and return the amount INCED is incremented or decremented by.
7056    The value is always positive.  */
7057 
7058 static int
find_inc_amount(rtx x,rtx inced)7059 find_inc_amount (rtx x, rtx inced)
7060 {
7061   enum rtx_code code = GET_CODE (x);
7062   const char *fmt;
7063   int i;
7064 
7065   if (code == MEM)
7066     {
7067       rtx addr = XEXP (x, 0);
7068       if ((GET_CODE (addr) == PRE_DEC
7069 	   || GET_CODE (addr) == POST_DEC
7070 	   || GET_CODE (addr) == PRE_INC
7071 	   || GET_CODE (addr) == POST_INC)
7072 	  && XEXP (addr, 0) == inced)
7073 	return GET_MODE_SIZE (GET_MODE (x));
7074       else if ((GET_CODE (addr) == PRE_MODIFY
7075 		|| GET_CODE (addr) == POST_MODIFY)
7076 	       && GET_CODE (XEXP (addr, 1)) == PLUS
7077 	       && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
7078 	       && XEXP (addr, 0) == inced
7079 	       && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
7080 	{
7081 	  i = INTVAL (XEXP (XEXP (addr, 1), 1));
7082 	  return i < 0 ? -i : i;
7083 	}
7084     }
7085 
7086   fmt = GET_RTX_FORMAT (code);
7087   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7088     {
7089       if (fmt[i] == 'e')
7090 	{
7091 	  int tem = find_inc_amount (XEXP (x, i), inced);
7092 	  if (tem != 0)
7093 	    return tem;
7094 	}
7095       if (fmt[i] == 'E')
7096 	{
7097 	  int j;
7098 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7099 	    {
7100 	      int tem = find_inc_amount (XVECEXP (x, i, j), inced);
7101 	      if (tem != 0)
7102 		return tem;
7103 	    }
7104 	}
7105     }
7106 
7107   return 0;
7108 }
7109 
7110 /* Return 1 if registers from REGNO to ENDREGNO are the subjects of a
7111    REG_INC note in insn INSN.  REGNO must refer to a hard register.  */
7112 
7113 #ifdef AUTO_INC_DEC
7114 static int
reg_inc_found_and_valid_p(unsigned int regno,unsigned int endregno,rtx insn)7115 reg_inc_found_and_valid_p (unsigned int regno, unsigned int endregno,
7116 			   rtx insn)
7117 {
7118   rtx link;
7119 
7120   gcc_assert (insn);
7121 
7122   if (! INSN_P (insn))
7123     return 0;
7124 
7125   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
7126     if (REG_NOTE_KIND (link) == REG_INC)
7127       {
7128 	unsigned int test = (int) REGNO (XEXP (link, 0));
7129 	if (test >= regno && test < endregno)
7130 	  return 1;
7131       }
7132   return 0;
7133 }
7134 #else
7135 
7136 #define reg_inc_found_and_valid_p(regno,endregno,insn) 0
7137 
7138 #endif
7139 
7140 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
7141    If SETS is 1, also consider SETs.  If SETS is 2, enable checking
7142    REG_INC.  REGNO must refer to a hard register.  */
7143 
7144 int
regno_clobbered_p(unsigned int regno,rtx insn,enum machine_mode mode,int sets)7145 regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
7146 		   int sets)
7147 {
7148   unsigned int nregs, endregno;
7149 
7150   /* regno must be a hard register.  */
7151   gcc_assert (regno < FIRST_PSEUDO_REGISTER);
7152 
7153   nregs = hard_regno_nregs[regno][mode];
7154   endregno = regno + nregs;
7155 
7156   if ((GET_CODE (PATTERN (insn)) == CLOBBER
7157        || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7158       && REG_P (XEXP (PATTERN (insn), 0)))
7159     {
7160       unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
7161 
7162       return test >= regno && test < endregno;
7163     }
7164 
7165   if (sets == 2 && reg_inc_found_and_valid_p (regno, endregno, insn))
7166     return 1;
7167 
7168   if (GET_CODE (PATTERN (insn)) == PARALLEL)
7169     {
7170       int i = XVECLEN (PATTERN (insn), 0) - 1;
7171 
7172       for (; i >= 0; i--)
7173 	{
7174 	  rtx elt = XVECEXP (PATTERN (insn), 0, i);
7175 	  if ((GET_CODE (elt) == CLOBBER
7176 	       || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7177 	      && REG_P (XEXP (elt, 0)))
7178 	    {
7179 	      unsigned int test = REGNO (XEXP (elt, 0));
7180 
7181 	      if (test >= regno && test < endregno)
7182 		return 1;
7183 	    }
7184 	  if (sets == 2
7185 	      && reg_inc_found_and_valid_p (regno, endregno, elt))
7186 	    return 1;
7187 	}
7188     }
7189 
7190   return 0;
7191 }
7192 
7193 /* Find the low part, with mode MODE, of a hard regno RELOADREG.  */
7194 rtx
reload_adjust_reg_for_mode(rtx reloadreg,enum machine_mode mode)7195 reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
7196 {
7197   int regno;
7198 
7199   if (GET_MODE (reloadreg) == mode)
7200     return reloadreg;
7201 
7202   regno = REGNO (reloadreg);
7203 
7204   if (WORDS_BIG_ENDIAN)
7205     regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
7206       - (int) hard_regno_nregs[regno][mode];
7207 
7208   return gen_rtx_REG (mode, regno);
7209 }
7210 
7211 static const char *const reload_when_needed_name[] =
7212 {
7213   "RELOAD_FOR_INPUT",
7214   "RELOAD_FOR_OUTPUT",
7215   "RELOAD_FOR_INSN",
7216   "RELOAD_FOR_INPUT_ADDRESS",
7217   "RELOAD_FOR_INPADDR_ADDRESS",
7218   "RELOAD_FOR_OUTPUT_ADDRESS",
7219   "RELOAD_FOR_OUTADDR_ADDRESS",
7220   "RELOAD_FOR_OPERAND_ADDRESS",
7221   "RELOAD_FOR_OPADDR_ADDR",
7222   "RELOAD_OTHER",
7223   "RELOAD_FOR_OTHER_ADDRESS"
7224 };
7225 
7226 /* These functions are used to print the variables set by 'find_reloads' */
7227 
7228 void
debug_reload_to_stream(FILE * f)7229 debug_reload_to_stream (FILE *f)
7230 {
7231   int r;
7232   const char *prefix;
7233 
7234   if (! f)
7235     f = stderr;
7236   for (r = 0; r < n_reloads; r++)
7237     {
7238       fprintf (f, "Reload %d: ", r);
7239 
7240       if (rld[r].in != 0)
7241 	{
7242 	  fprintf (f, "reload_in (%s) = ",
7243 		   GET_MODE_NAME (rld[r].inmode));
7244 	  print_inline_rtx (f, rld[r].in, 24);
7245 	  fprintf (f, "\n\t");
7246 	}
7247 
7248       if (rld[r].out != 0)
7249 	{
7250 	  fprintf (f, "reload_out (%s) = ",
7251 		   GET_MODE_NAME (rld[r].outmode));
7252 	  print_inline_rtx (f, rld[r].out, 24);
7253 	  fprintf (f, "\n\t");
7254 	}
7255 
7256       fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
7257 
7258       fprintf (f, "%s (opnum = %d)",
7259 	       reload_when_needed_name[(int) rld[r].when_needed],
7260 	       rld[r].opnum);
7261 
7262       if (rld[r].optional)
7263 	fprintf (f, ", optional");
7264 
7265       if (rld[r].nongroup)
7266 	fprintf (f, ", nongroup");
7267 
7268       if (rld[r].inc != 0)
7269 	fprintf (f, ", inc by %d", rld[r].inc);
7270 
7271       if (rld[r].nocombine)
7272 	fprintf (f, ", can't combine");
7273 
7274       if (rld[r].secondary_p)
7275 	fprintf (f, ", secondary_reload_p");
7276 
7277       if (rld[r].in_reg != 0)
7278 	{
7279 	  fprintf (f, "\n\treload_in_reg: ");
7280 	  print_inline_rtx (f, rld[r].in_reg, 24);
7281 	}
7282 
7283       if (rld[r].out_reg != 0)
7284 	{
7285 	  fprintf (f, "\n\treload_out_reg: ");
7286 	  print_inline_rtx (f, rld[r].out_reg, 24);
7287 	}
7288 
7289       if (rld[r].reg_rtx != 0)
7290 	{
7291 	  fprintf (f, "\n\treload_reg_rtx: ");
7292 	  print_inline_rtx (f, rld[r].reg_rtx, 24);
7293 	}
7294 
7295       prefix = "\n\t";
7296       if (rld[r].secondary_in_reload != -1)
7297 	{
7298 	  fprintf (f, "%ssecondary_in_reload = %d",
7299 		   prefix, rld[r].secondary_in_reload);
7300 	  prefix = ", ";
7301 	}
7302 
7303       if (rld[r].secondary_out_reload != -1)
7304 	fprintf (f, "%ssecondary_out_reload = %d\n",
7305 		 prefix, rld[r].secondary_out_reload);
7306 
7307       prefix = "\n\t";
7308       if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7309 	{
7310 	  fprintf (f, "%ssecondary_in_icode = %s", prefix,
7311 		   insn_data[rld[r].secondary_in_icode].name);
7312 	  prefix = ", ";
7313 	}
7314 
7315       if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7316 	fprintf (f, "%ssecondary_out_icode = %s", prefix,
7317 		 insn_data[rld[r].secondary_out_icode].name);
7318 
7319       fprintf (f, "\n");
7320     }
7321 }
7322 
7323 void
debug_reload(void)7324 debug_reload (void)
7325 {
7326   debug_reload_to_stream (stderr);
7327 }
7328