xref: /netbsd-src/sys/external/bsd/drm2/dist/drm/nouveau/dispnv04/nouveau_dispnv04_arb.c (revision 41ec02673d281bbb3d38e6c78504ce6e30c228c1)
1 /*	$NetBSD: nouveau_dispnv04_arb.c,v 1.5 2021/12/18 23:45:32 riastradh Exp $	*/
2 
3 /*
4  * Copyright 1993-2003 NVIDIA, Corporation
5  * Copyright 2007-2009 Stuart Bennett
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the "Software"),
9  * to deal in the Software without restriction, including without limitation
10  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11  * and/or sell copies of the Software, and to permit persons to whom the
12  * Software is furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
21  * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
22  * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: nouveau_dispnv04_arb.c,v 1.5 2021/12/18 23:45:32 riastradh Exp $");
28 
29 #include "nouveau_drv.h"
30 #include "nouveau_reg.h"
31 #include "hw.h"
32 
33 /****************************************************************************\
34 *                                                                            *
35 * The video arbitration routines calculate some "magic" numbers.  Fixes      *
36 * the snow seen when accessing the framebuffer without it.                   *
37 * It just works (I hope).                                                    *
38 *                                                                            *
39 \****************************************************************************/
40 
41 struct nv_fifo_info {
42 	int lwm;
43 	int burst;
44 };
45 
46 struct nv_sim_state {
47 	int pclk_khz;
48 	int mclk_khz;
49 	int nvclk_khz;
50 	int bpp;
51 	int mem_page_miss;
52 	int mem_latency;
53 	int memory_type;
54 	int memory_width;
55 	int two_heads;
56 };
57 
58 static void
nv04_calc_arb(struct nv_fifo_info * fifo,struct nv_sim_state * arb)59 nv04_calc_arb(struct nv_fifo_info *fifo, struct nv_sim_state *arb)
60 {
61 	int pagemiss, cas, bpp;
62 	int nvclks, mclks, crtpagemiss;
63 	int found, mclk_extra, mclk_loop, cbs, m1, p1;
64 	int mclk_freq, pclk_freq, nvclk_freq;
65 	int us_m, us_n, us_p, crtc_drain_rate;
66 	int cpm_us, us_crt, clwm;
67 
68 	pclk_freq = arb->pclk_khz;
69 	mclk_freq = arb->mclk_khz;
70 	nvclk_freq = arb->nvclk_khz;
71 	pagemiss = arb->mem_page_miss;
72 	cas = arb->mem_latency;
73 	bpp = arb->bpp;
74 	cbs = 128;
75 
76 	nvclks = 10;
77 	mclks = 13 + cas;
78 	mclk_extra = 3;
79 	found = 0;
80 
81 	while (!found) {
82 		found = 1;
83 
84 		mclk_loop = mclks + mclk_extra;
85 		us_m = mclk_loop * 1000 * 1000 / mclk_freq;
86 		us_n = nvclks * 1000 * 1000 / nvclk_freq;
87 		us_p = nvclks * 1000 * 1000 / pclk_freq;
88 
89 		crtc_drain_rate = pclk_freq * bpp / 8;
90 		crtpagemiss = 2;
91 		crtpagemiss += 1;
92 		cpm_us = crtpagemiss * pagemiss * 1000 * 1000 / mclk_freq;
93 		us_crt = cpm_us + us_m + us_n + us_p;
94 		clwm = us_crt * crtc_drain_rate / (1000 * 1000);
95 		clwm++;
96 
97 		m1 = clwm + cbs - 512;
98 		p1 = m1 * pclk_freq / mclk_freq;
99 		p1 = p1 * bpp / 8;
100 		if ((p1 < m1 && m1 > 0) || clwm > 519) {
101 			found = !mclk_extra;
102 			mclk_extra--;
103 		}
104 		if (clwm < 384)
105 			clwm = 384;
106 
107 		fifo->lwm = clwm;
108 		fifo->burst = cbs;
109 	}
110 }
111 
112 static void
nv10_calc_arb(struct nv_fifo_info * fifo,struct nv_sim_state * arb)113 nv10_calc_arb(struct nv_fifo_info *fifo, struct nv_sim_state *arb)
114 {
115 	int fill_rate, drain_rate;
116 	int pclks, nvclks, mclks, xclks;
117 	int pclk_freq, nvclk_freq, mclk_freq;
118 	int fill_lat, extra_lat;
119 	int max_burst_o, max_burst_l;
120 	int fifo_len, min_lwm, max_lwm;
121 	const int burst_lat = 80; /* Maximum allowable latency due
122 				   * to the CRTC FIFO burst. (ns) */
123 
124 	pclk_freq = arb->pclk_khz;
125 	nvclk_freq = arb->nvclk_khz;
126 	mclk_freq = arb->mclk_khz;
127 
128 	fill_rate = mclk_freq * arb->memory_width / 8; /* kB/s */
129 	drain_rate = pclk_freq * arb->bpp / 8; /* kB/s */
130 
131 	fifo_len = arb->two_heads ? 1536 : 1024; /* B */
132 
133 	/* Fixed FIFO refill latency. */
134 
135 	pclks = 4;	/* lwm detect. */
136 
137 	nvclks = 3	/* lwm -> sync. */
138 		+ 2	/* fbi bus cycles (1 req + 1 busy) */
139 		+ 1	/* 2 edge sync.  may be very close to edge so
140 			 * just put one. */
141 		+ 1	/* fbi_d_rdv_n */
142 		+ 1	/* Fbi_d_rdata */
143 		+ 1;	/* crtfifo load */
144 
145 	mclks = 1	/* 2 edge sync.  may be very close to edge so
146 			 * just put one. */
147 		+ 1	/* arb_hp_req */
148 		+ 5	/* tiling pipeline */
149 		+ 2	/* latency fifo */
150 		+ 2	/* memory request to fbio block */
151 		+ 7;	/* data returned from fbio block */
152 
153 	/* Need to accumulate 256 bits for read */
154 	mclks += (arb->memory_type == 0 ? 2 : 1)
155 		* arb->memory_width / 32;
156 
157 	fill_lat = mclks * 1000 * 1000 / mclk_freq   /* minimum mclk latency */
158 		+ nvclks * 1000 * 1000 / nvclk_freq  /* nvclk latency */
159 		+ pclks * 1000 * 1000 / pclk_freq;   /* pclk latency */
160 
161 	/* Conditional FIFO refill latency. */
162 
163 	xclks = 2 * arb->mem_page_miss + mclks /* Extra latency due to
164 						* the overlay. */
165 		+ 2 * arb->mem_page_miss       /* Extra pagemiss latency. */
166 		+ (arb->bpp == 32 ? 8 : 4);    /* Margin of error. */
167 
168 	extra_lat = xclks * 1000 * 1000 / mclk_freq;
169 
170 	if (arb->two_heads)
171 		/* Account for another CRTC. */
172 		extra_lat += fill_lat + extra_lat + burst_lat;
173 
174 	/* FIFO burst */
175 
176 	/* Max burst not leading to overflows. */
177 	max_burst_o = (1 + fifo_len - extra_lat * drain_rate / (1000 * 1000))
178 		* (fill_rate / 1000) / ((fill_rate - drain_rate) / 1000);
179 	fifo->burst = min(max_burst_o, 1024);
180 
181 	/* Max burst value with an acceptable latency. */
182 	max_burst_l = burst_lat * fill_rate / (1000 * 1000);
183 	fifo->burst = min(max_burst_l, fifo->burst);
184 
185 	fifo->burst = rounddown_pow_of_two(fifo->burst);
186 
187 	/* FIFO low watermark */
188 
189 	min_lwm = (fill_lat + extra_lat) * drain_rate / (1000 * 1000) + 1;
190 	max_lwm = fifo_len - fifo->burst
191 		+ fill_lat * drain_rate / (1000 * 1000)
192 		+ fifo->burst * drain_rate / fill_rate;
193 
194 	fifo->lwm = min_lwm + 10 * (max_lwm - min_lwm) / 100; /* Empirical. */
195 }
196 
197 static void
nv04_update_arb(struct drm_device * dev,int VClk,int bpp,int * burst,int * lwm)198 nv04_update_arb(struct drm_device *dev, int VClk, int bpp,
199 		int *burst, int *lwm)
200 {
201 	struct nouveau_drm *drm = nouveau_drm(dev);
202 	struct nvif_object *device = &nouveau_drm(dev)->client.device.object;
203 	struct nv_fifo_info fifo_data;
204 	struct nv_sim_state sim_data;
205 	int MClk = nouveau_hw_get_clock(dev, PLL_MEMORY);
206 	int NVClk = nouveau_hw_get_clock(dev, PLL_CORE);
207 	uint32_t cfg1 = nvif_rd32(device, NV04_PFB_CFG1);
208 
209 	sim_data.pclk_khz = VClk;
210 	sim_data.mclk_khz = MClk;
211 	sim_data.nvclk_khz = NVClk;
212 	sim_data.bpp = bpp;
213 	sim_data.two_heads = nv_two_heads(dev);
214 	if ((dev->pdev->device & 0xffff) == 0x01a0 /*CHIPSET_NFORCE*/ ||
215 	    (dev->pdev->device & 0xffff) == 0x01f0 /*CHIPSET_NFORCE2*/) {
216 		uint32_t type;
217 		int domain = pci_domain_nr(dev->pdev->bus);
218 
219 		pci_read_config_dword(pci_get_domain_bus_and_slot(domain, 0, 1),
220 				      0x7c, &type);
221 
222 		sim_data.memory_type = (type >> 12) & 1;
223 		sim_data.memory_width = 64;
224 		sim_data.mem_latency = 3;
225 		sim_data.mem_page_miss = 10;
226 	} else {
227 		sim_data.memory_type = nvif_rd32(device, NV04_PFB_CFG0) & 0x1;
228 		sim_data.memory_width = (nvif_rd32(device, NV_PEXTDEV_BOOT_0) & 0x10) ? 128 : 64;
229 		sim_data.mem_latency = cfg1 & 0xf;
230 		sim_data.mem_page_miss = ((cfg1 >> 4) & 0xf) + ((cfg1 >> 31) & 0x1);
231 	}
232 
233 	if (drm->client.device.info.family == NV_DEVICE_INFO_V0_TNT)
234 		nv04_calc_arb(&fifo_data, &sim_data);
235 	else
236 		nv10_calc_arb(&fifo_data, &sim_data);
237 
238 	*burst = ilog2(fifo_data.burst >> 4);
239 	*lwm = fifo_data.lwm >> 3;
240 }
241 
242 static void
nv20_update_arb(int * burst,int * lwm)243 nv20_update_arb(int *burst, int *lwm)
244 {
245 	unsigned int fifo_size, burst_size, graphics_lwm;
246 
247 	fifo_size = 2048;
248 	burst_size = 512;
249 	graphics_lwm = fifo_size - burst_size;
250 
251 	*burst = ilog2(burst_size >> 5);
252 	*lwm = graphics_lwm >> 3;
253 }
254 
255 void
nouveau_calc_arb(struct drm_device * dev,int vclk,int bpp,int * burst,int * lwm)256 nouveau_calc_arb(struct drm_device *dev, int vclk, int bpp, int *burst, int *lwm)
257 {
258 	struct nouveau_drm *drm = nouveau_drm(dev);
259 
260 	if (drm->client.device.info.family < NV_DEVICE_INFO_V0_KELVIN)
261 		nv04_update_arb(dev, vclk, bpp, burst, lwm);
262 	else if ((dev->pdev->device & 0xfff0) == 0x0240 /*CHIPSET_C51*/ ||
263 		 (dev->pdev->device & 0xfff0) == 0x03d0 /*CHIPSET_C512*/) {
264 		*burst = 128;
265 		*lwm = 0x0480;
266 	} else
267 		nv20_update_arb(burst, lwm);
268 }
269