1 //===- ARMErrataFix.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // This file implements Section Patching for the purpose of working around the 9 // Cortex-a8 erratum 657417 "A 32bit branch instruction that spans 2 4K regions 10 // can result in an incorrect instruction fetch or processor deadlock." The 11 // erratum affects all but r1p7, r2p5, r2p6, r3p1 and r3p2 revisions of the 12 // Cortex-A8. A high level description of the patching technique is given in 13 // the opening comment of AArch64ErrataFix.cpp. 14 //===----------------------------------------------------------------------===// 15 16 #include "ARMErrataFix.h" 17 #include "InputFiles.h" 18 #include "LinkerScript.h" 19 #include "OutputSections.h" 20 #include "Relocations.h" 21 #include "Symbols.h" 22 #include "SyntheticSections.h" 23 #include "Target.h" 24 #include "lld/Common/CommonLinkerContext.h" 25 #include "lld/Common/Strings.h" 26 #include "llvm/Support/Endian.h" 27 #include <algorithm> 28 29 using namespace llvm; 30 using namespace llvm::ELF; 31 using namespace llvm::object; 32 using namespace llvm::support; 33 using namespace llvm::support::endian; 34 using namespace lld; 35 using namespace lld::elf; 36 37 // The documented title for Erratum 657417 is: 38 // "A 32bit branch instruction that spans two 4K regions can result in an 39 // incorrect instruction fetch or processor deadlock". Graphically using a 40 // 32-bit B.w instruction encoded as a pair of halfwords 0xf7fe 0xbfff 41 // xxxxxx000 // Memory region 1 start 42 // target: 43 // ... 44 // xxxxxxffe f7fe // First halfword of branch to target: 45 // xxxxxx000 // Memory region 2 start 46 // xxxxxx002 bfff // Second halfword of branch to target: 47 // 48 // The specific trigger conditions that can be detected at link time are: 49 // - There is a 32-bit Thumb-2 branch instruction with an address of the form 50 // xxxxxxFFE. The first 2 bytes of the instruction are in 4KiB region 1, the 51 // second 2 bytes are in region 2. 52 // - The branch instruction is one of BLX, BL, B.w BCC.w 53 // - The instruction preceding the branch is a 32-bit non-branch instruction. 54 // - The target of the branch is in region 1. 55 // 56 // The linker mitigation for the fix is to redirect any branch that meets the 57 // erratum conditions to a patch section containing a branch to the target. 58 // 59 // As adding patch sections may move branches onto region boundaries the patch 60 // must iterate until no more patches are added. 61 // 62 // Example, before: 63 // 00000FFA func: NOP.w // 32-bit Thumb function 64 // 00000FFE B.W func // 32-bit branch spanning 2 regions, dest in 1st. 65 // Example, after: 66 // 00000FFA func: NOP.w // 32-bit Thumb function 67 // 00000FFE B.w __CortexA8657417_00000FFE 68 // 00001002 2 - bytes padding 69 // 00001004 __CortexA8657417_00000FFE: B.w func 70 71 class elf::Patch657417Section final : public SyntheticSection { 72 public: 73 Patch657417Section(Ctx &, InputSection *p, uint64_t off, uint32_t instr, 74 bool isARM); 75 76 void writeTo(uint8_t *buf) override; 77 78 size_t getSize() const override { return 4; } 79 80 // Get the virtual address of the branch instruction at patcheeOffset. 81 uint64_t getBranchAddr() const; 82 83 static bool classof(const SectionBase *d) { 84 return d->kind() == InputSectionBase::Synthetic && d->name ==".text.patch"; 85 } 86 87 // The Section we are patching. 88 const InputSection *patchee; 89 // The offset of the instruction in the Patchee section we are patching. 90 uint64_t patcheeOffset; 91 // A label for the start of the Patch that we can use as a relocation target. 92 Symbol *patchSym; 93 // A decoding of the branch instruction at patcheeOffset. 94 uint32_t instr; 95 // True If the patch is to be written in ARM state, otherwise the patch will 96 // be written in Thumb state. 97 bool isARM; 98 }; 99 100 // Return true if the half-word, when taken as the first of a pair of halfwords 101 // is the first half of a 32-bit instruction. 102 // Reference from ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition 103 // section A6.3: 32-bit Thumb instruction encoding 104 // | HW1 | HW2 | 105 // | 1 1 1 | op1 (2) | op2 (7) | x (4) |op| x (15) | 106 // With op1 == 0b00, a 16-bit instruction is encoded. 107 // 108 // We test only the first halfword, looking for op != 0b00. 109 static bool is32bitInstruction(uint16_t hw) { 110 return (hw & 0xe000) == 0xe000 && (hw & 0x1800) != 0x0000; 111 } 112 113 // Reference from ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition 114 // section A6.3.4 Branches and miscellaneous control. 115 // | HW1 | HW2 | 116 // | 1 1 1 | 1 0 | op (7) | x (4) | 1 | op1 (3) | op2 (4) | imm8 (8) | 117 // op1 == 0x0 op != x111xxx | Conditional branch (Bcc.W) 118 // op1 == 0x1 | Branch (B.W) 119 // op1 == 1x0 | Branch with Link and Exchange (BLX.w) 120 // op1 == 1x1 | Branch with Link (BL.W) 121 122 static bool isBcc(uint32_t instr) { 123 return (instr & 0xf800d000) == 0xf0008000 && 124 (instr & 0x03800000) != 0x03800000; 125 } 126 127 static bool isB(uint32_t instr) { return (instr & 0xf800d000) == 0xf0009000; } 128 129 static bool isBLX(uint32_t instr) { return (instr & 0xf800d000) == 0xf000c000; } 130 131 static bool isBL(uint32_t instr) { return (instr & 0xf800d000) == 0xf000d000; } 132 133 static bool is32bitBranch(uint32_t instr) { 134 return isBcc(instr) || isB(instr) || isBL(instr) || isBLX(instr); 135 } 136 137 Patch657417Section::Patch657417Section(Ctx &ctx, InputSection *p, uint64_t off, 138 uint32_t instr, bool isARM) 139 : SyntheticSection(ctx, ".text.patch", SHT_PROGBITS, 140 SHF_ALLOC | SHF_EXECINSTR, 4), 141 patchee(p), patcheeOffset(off), instr(instr), isARM(isARM) { 142 parent = p->getParent(); 143 patchSym = addSyntheticLocal( 144 ctx, ctx.saver.save("__CortexA8657417_" + utohexstr(getBranchAddr())), 145 STT_FUNC, isARM ? 0 : 1, getSize(), *this); 146 addSyntheticLocal(ctx, ctx.saver.save(isARM ? "$a" : "$t"), STT_NOTYPE, 0, 0, 147 *this); 148 } 149 150 uint64_t Patch657417Section::getBranchAddr() const { 151 return patchee->getVA(patcheeOffset); 152 } 153 154 // Given a branch instruction instr at sourceAddr work out its destination 155 // address. This is only used when the branch instruction has no relocation. 156 static uint64_t getThumbDestAddr(Ctx &ctx, uint64_t sourceAddr, 157 uint32_t instr) { 158 uint8_t buf[4]; 159 write16le(buf, instr >> 16); 160 write16le(buf + 2, instr & 0x0000ffff); 161 int64_t offset; 162 if (isBcc(instr)) 163 offset = ctx.target->getImplicitAddend(buf, R_ARM_THM_JUMP19); 164 else if (isB(instr)) 165 offset = ctx.target->getImplicitAddend(buf, R_ARM_THM_JUMP24); 166 else 167 offset = ctx.target->getImplicitAddend(buf, R_ARM_THM_CALL); 168 // A BLX instruction from Thumb to Arm may have an address that is 169 // not 4-byte aligned. As Arm instructions are always 4-byte aligned 170 // the instruction is calculated (from Arm ARM): 171 // targetAddress = Align(PC, 4) + imm32 172 // where 173 // Align(x, y) = y * (x Div y) 174 // which corresponds to alignDown. 175 if (isBLX(instr)) 176 sourceAddr = alignDown(sourceAddr, 4); 177 return sourceAddr + offset + 4; 178 } 179 180 void Patch657417Section::writeTo(uint8_t *buf) { 181 // The base instruction of the patch is always a 32-bit unconditional branch. 182 if (isARM) 183 write32le(buf, 0xea000000); 184 else 185 write32le(buf, 0x9000f000); 186 // If we have a relocation then apply it. 187 if (!relocs().empty()) { 188 ctx.target->relocateAlloc(*this, buf); 189 return; 190 } 191 192 // If we don't have a relocation then we must calculate and write the offset 193 // ourselves. 194 // Get the destination offset from the addend in the branch instruction. 195 // We cannot use the instruction in the patchee section as this will have 196 // been altered to point to us! 197 uint64_t s = getThumbDestAddr(ctx, getBranchAddr(), instr); 198 // A BLX changes the state of the branch in the patch to Arm state, which 199 // has a PC Bias of 8, whereas in all other cases the branch is in Thumb 200 // state with a PC Bias of 4. 201 uint64_t pcBias = isBLX(instr) ? 8 : 4; 202 uint64_t p = getVA(pcBias); 203 ctx.target->relocateNoSym(buf, isARM ? R_ARM_JUMP24 : R_ARM_THM_JUMP24, 204 s - p); 205 } 206 207 // Given a branch instruction spanning two 4KiB regions, at offset off from the 208 // start of isec, return true if the destination of the branch is within the 209 // first of the two 4Kib regions. 210 static bool branchDestInFirstRegion(Ctx &ctx, const InputSection *isec, 211 uint64_t off, uint32_t instr, 212 const Relocation *r) { 213 uint64_t sourceAddr = isec->getVA(0) + off; 214 assert((sourceAddr & 0xfff) == 0xffe); 215 uint64_t destAddr; 216 // If there is a branch relocation at the same offset we must use this to 217 // find the destination address as the branch could be indirected via a thunk 218 // or the PLT. 219 if (r) { 220 uint64_t dst = 221 r->expr == R_PLT_PC ? r->sym->getPltVA(ctx) : r->sym->getVA(ctx); 222 // Account for Thumb PC bias, usually cancelled to 0 by addend of -4. 223 destAddr = dst + r->addend + 4; 224 } else { 225 // If there is no relocation, we must have an intra-section branch 226 // We must extract the offset from the addend manually. 227 destAddr = getThumbDestAddr(ctx, sourceAddr, instr); 228 } 229 230 return (destAddr & 0xfffff000) == (sourceAddr & 0xfffff000); 231 } 232 233 // Return true if a branch can reach a patch section placed after isec. 234 // The Bcc.w instruction has a range of 1 MiB, all others have 16 MiB. 235 static bool patchInRange(Ctx &ctx, const InputSection *isec, uint64_t off, 236 uint32_t instr) { 237 238 // We need the branch at source to reach a patch section placed immediately 239 // after isec. As there can be more than one patch in the patch section we 240 // add 0x100 as contingency to account for worst case of 1 branch every 4KiB 241 // for a 1 MiB range. 242 return ctx.target->inBranchRange( 243 isBcc(instr) ? R_ARM_THM_JUMP19 : R_ARM_THM_JUMP24, isec->getVA(off), 244 isec->getVA() + isec->getSize() + 0x100); 245 } 246 247 struct ScanResult { 248 // Offset of branch within its InputSection. 249 uint64_t off; 250 // Cached decoding of the branch instruction. 251 uint32_t instr; 252 // Branch relocation at off. Will be nullptr if no relocation exists. 253 Relocation *rel; 254 }; 255 256 // Detect the erratum sequence, returning the offset of the branch instruction 257 // and a decoding of the branch. If the erratum sequence is not found then 258 // return an offset of 0 for the branch. 0 is a safe value to use for no patch 259 // as there must be at least one 32-bit non-branch instruction before the 260 // branch so the minimum offset for a patch is 4. 261 static ScanResult scanCortexA8Errata657417(InputSection *isec, uint64_t &off, 262 uint64_t limit) { 263 Ctx &ctx = isec->getCtx(); 264 uint64_t isecAddr = isec->getVA(0); 265 // Advance Off so that (isecAddr + off) modulo 0x1000 is at least 0xffa. We 266 // need to check for a 32-bit instruction immediately before a 32-bit branch 267 // at 0xffe modulo 0x1000. 268 off = alignTo(isecAddr + off, 0x1000, 0xffa) - isecAddr; 269 if (off >= limit || limit - off < 8) { 270 // Need at least 2 4-byte sized instructions to trigger erratum. 271 off = limit; 272 return {0, 0, nullptr}; 273 } 274 275 ScanResult scanRes = {0, 0, nullptr}; 276 const uint8_t *buf = isec->content().begin(); 277 // ARMv7-A Thumb 32-bit instructions are encoded 2 consecutive 278 // little-endian halfwords. 279 const ulittle16_t *instBuf = reinterpret_cast<const ulittle16_t *>(buf + off); 280 uint16_t hw11 = *instBuf++; 281 uint16_t hw12 = *instBuf++; 282 uint16_t hw21 = *instBuf++; 283 uint16_t hw22 = *instBuf++; 284 if (is32bitInstruction(hw11) && is32bitInstruction(hw21)) { 285 uint32_t instr1 = (hw11 << 16) | hw12; 286 uint32_t instr2 = (hw21 << 16) | hw22; 287 if (!is32bitBranch(instr1) && is32bitBranch(instr2)) { 288 // Find a relocation for the branch if it exists. This will be used 289 // to determine the target. 290 uint64_t branchOff = off + 4; 291 auto relIt = llvm::find_if(isec->relocs(), [=](const Relocation &r) { 292 return r.offset == branchOff && 293 (r.type == R_ARM_THM_JUMP19 || r.type == R_ARM_THM_JUMP24 || 294 r.type == R_ARM_THM_CALL); 295 }); 296 if (relIt != isec->relocs().end()) 297 scanRes.rel = &(*relIt); 298 if (branchDestInFirstRegion(ctx, isec, branchOff, instr2, scanRes.rel)) { 299 if (patchInRange(ctx, isec, branchOff, instr2)) { 300 scanRes.off = branchOff; 301 scanRes.instr = instr2; 302 } else { 303 Warn(ctx) << isec->file 304 << ": skipping cortex-a8 657417 erratum sequence, section " 305 << isec->name << " is too large to patch"; 306 } 307 } 308 } 309 } 310 off += 0x1000; 311 return scanRes; 312 } 313 314 void ARMErr657417Patcher::init() { 315 // The Arm ABI permits a mix of ARM, Thumb and Data in the same 316 // InputSection. We must only scan Thumb instructions to avoid false 317 // matches. We use the mapping symbols in the InputObjects to identify this 318 // data, caching the results in sectionMap so we don't have to recalculate 319 // it each pass. 320 321 // The ABI Section 4.5.5 Mapping symbols; defines local symbols that describe 322 // half open intervals [Symbol Value, Next Symbol Value) of code and data 323 // within sections. If there is no next symbol then the half open interval is 324 // [Symbol Value, End of section). The type, code or data, is determined by 325 // the mapping symbol name, $a for Arm code, $t for Thumb code, $d for data. 326 auto isArmMapSymbol = [](const Symbol *s) { 327 return s->getName() == "$a" || s->getName().starts_with("$a."); 328 }; 329 auto isThumbMapSymbol = [](const Symbol *s) { 330 return s->getName() == "$t" || s->getName().starts_with("$t."); 331 }; 332 auto isDataMapSymbol = [](const Symbol *s) { 333 return s->getName() == "$d" || s->getName().starts_with("$d."); 334 }; 335 336 // Collect mapping symbols for every executable InputSection. 337 for (ELFFileBase *file : ctx.objectFiles) { 338 for (Symbol *s : file->getLocalSymbols()) { 339 auto *def = dyn_cast<Defined>(s); 340 if (!def) 341 continue; 342 if (!isArmMapSymbol(def) && !isThumbMapSymbol(def) && 343 !isDataMapSymbol(def)) 344 continue; 345 if (auto *sec = dyn_cast_or_null<InputSection>(def->section)) 346 if (sec->flags & SHF_EXECINSTR) 347 sectionMap[sec].push_back(def); 348 } 349 } 350 // For each InputSection make sure the mapping symbols are in sorted in 351 // ascending order and are in alternating Thumb, non-Thumb order. 352 for (auto &kv : sectionMap) { 353 std::vector<const Defined *> &mapSyms = kv.second; 354 llvm::stable_sort(mapSyms, [](const Defined *a, const Defined *b) { 355 return a->value < b->value; 356 }); 357 mapSyms.erase(std::unique(mapSyms.begin(), mapSyms.end(), 358 [=](const Defined *a, const Defined *b) { 359 return (isThumbMapSymbol(a) == 360 isThumbMapSymbol(b)); 361 }), 362 mapSyms.end()); 363 // Always start with a Thumb Mapping Symbol 364 if (!mapSyms.empty() && !isThumbMapSymbol(mapSyms.front())) 365 mapSyms.erase(mapSyms.begin()); 366 } 367 initialized = true; 368 } 369 370 void ARMErr657417Patcher::insertPatches( 371 InputSectionDescription &isd, std::vector<Patch657417Section *> &patches) { 372 uint64_t spacing = 0x100000 - 0x7500; 373 uint64_t isecLimit; 374 uint64_t prevIsecLimit = isd.sections.front()->outSecOff; 375 uint64_t patchUpperBound = prevIsecLimit + spacing; 376 uint64_t outSecAddr = isd.sections.front()->getParent()->addr; 377 378 // Set the outSecOff of patches to the place where we want to insert them. 379 // We use a similar strategy to initial thunk placement, using 1 MiB as the 380 // range of the Thumb-2 conditional branch with a contingency accounting for 381 // thunk generation. 382 auto patchIt = patches.begin(); 383 auto patchEnd = patches.end(); 384 for (const InputSection *isec : isd.sections) { 385 isecLimit = isec->outSecOff + isec->getSize(); 386 if (isecLimit > patchUpperBound) { 387 for (; patchIt != patchEnd; ++patchIt) { 388 if ((*patchIt)->getBranchAddr() - outSecAddr >= prevIsecLimit) 389 break; 390 (*patchIt)->outSecOff = prevIsecLimit; 391 } 392 patchUpperBound = prevIsecLimit + spacing; 393 } 394 prevIsecLimit = isecLimit; 395 } 396 for (; patchIt != patchEnd; ++patchIt) 397 (*patchIt)->outSecOff = isecLimit; 398 399 // Merge all patch sections. We use the outSecOff assigned above to 400 // determine the insertion point. This is ok as we only merge into an 401 // InputSectionDescription once per pass, and at the end of the pass 402 // assignAddresses() will recalculate all the outSecOff values. 403 SmallVector<InputSection *, 0> tmp; 404 tmp.reserve(isd.sections.size() + patches.size()); 405 auto mergeCmp = [](const InputSection *a, const InputSection *b) { 406 if (a->outSecOff != b->outSecOff) 407 return a->outSecOff < b->outSecOff; 408 return isa<Patch657417Section>(a) && !isa<Patch657417Section>(b); 409 }; 410 std::merge(isd.sections.begin(), isd.sections.end(), patches.begin(), 411 patches.end(), std::back_inserter(tmp), mergeCmp); 412 isd.sections = std::move(tmp); 413 } 414 415 // Given a branch instruction described by ScanRes redirect it to a patch 416 // section containing an unconditional branch instruction to the target. 417 // Ensure that this patch section is 4-byte aligned so that the branch cannot 418 // span two 4 KiB regions. Place the patch section so that it is always after 419 // isec so the branch we are patching always goes forwards. 420 static void implementPatch(ScanResult sr, InputSection *isec, 421 std::vector<Patch657417Section *> &patches) { 422 Ctx &ctx = isec->getCtx(); 423 Log(ctx) << "detected cortex-a8-657419 erratum sequence starting at " << 424 utohexstr(isec->getVA(sr.off)) << " in unpatched output"; 425 Patch657417Section *psec; 426 // We have two cases to deal with. 427 // Case 1. There is a relocation at patcheeOffset to a symbol. The 428 // unconditional branch in the patch must have a relocation so that any 429 // further redirection via the PLT or a Thunk happens as normal. At 430 // patcheeOffset we redirect the existing relocation to a Symbol defined at 431 // the start of the patch section. 432 // 433 // Case 2. There is no relocation at patcheeOffset. We are unlikely to have 434 // a symbol that we can use as a target for a relocation in the patch section. 435 // Luckily we know that the destination cannot be indirected via the PLT or 436 // a Thunk so we can just write the destination directly. 437 if (sr.rel) { 438 // Case 1. We have an existing relocation to redirect to patch and a 439 // Symbol target. 440 441 // Create a branch relocation for the unconditional branch in the patch. 442 // This can be redirected via the PLT or Thunks. 443 RelType patchRelType = R_ARM_THM_JUMP24; 444 int64_t patchRelAddend = sr.rel->addend; 445 bool destIsARM = false; 446 if (isBL(sr.instr) || isBLX(sr.instr)) { 447 // The final target of the branch may be ARM or Thumb, if the target 448 // is ARM then we write the patch in ARM state to avoid a state change 449 // Thunk from the patch to the target. 450 uint64_t dstSymAddr = (sr.rel->expr == R_PLT_PC) 451 ? sr.rel->sym->getPltVA(ctx) 452 : sr.rel->sym->getVA(ctx); 453 destIsARM = (dstSymAddr & 1) == 0; 454 } 455 psec = make<Patch657417Section>(ctx, isec, sr.off, sr.instr, destIsARM); 456 if (destIsARM) { 457 // The patch will be in ARM state. Use an ARM relocation and account for 458 // the larger ARM PC-bias of 8 rather than Thumb's 4. 459 patchRelType = R_ARM_JUMP24; 460 patchRelAddend -= 4; 461 } 462 psec->addReloc( 463 Relocation{sr.rel->expr, patchRelType, 0, patchRelAddend, sr.rel->sym}); 464 // Redirect the existing branch relocation to the patch. 465 sr.rel->expr = R_PC; 466 sr.rel->addend = -4; 467 sr.rel->sym = psec->patchSym; 468 } else { 469 // Case 2. We do not have a relocation to the patch. Add a relocation of the 470 // appropriate type to the patch at patcheeOffset. 471 472 // The destination is ARM if we have a BLX. 473 psec = 474 make<Patch657417Section>(ctx, isec, sr.off, sr.instr, isBLX(sr.instr)); 475 RelType type; 476 if (isBcc(sr.instr)) 477 type = R_ARM_THM_JUMP19; 478 else if (isB(sr.instr)) 479 type = R_ARM_THM_JUMP24; 480 else 481 type = R_ARM_THM_CALL; 482 isec->addReloc(Relocation{R_PC, type, sr.off, -4, psec->patchSym}); 483 } 484 patches.push_back(psec); 485 } 486 487 // Scan all the instructions in InputSectionDescription, for each instance of 488 // the erratum sequence create a Patch657417Section. We return the list of 489 // Patch657417Sections that need to be applied to the InputSectionDescription. 490 std::vector<Patch657417Section *> 491 ARMErr657417Patcher::patchInputSectionDescription( 492 InputSectionDescription &isd) { 493 std::vector<Patch657417Section *> patches; 494 for (InputSection *isec : isd.sections) { 495 // LLD doesn't use the erratum sequence in SyntheticSections. 496 if (isa<SyntheticSection>(isec)) 497 continue; 498 // Use sectionMap to make sure we only scan Thumb code and not Arm or inline 499 // data. We have already sorted mapSyms in ascending order and removed 500 // consecutive mapping symbols of the same type. Our range of executable 501 // instructions to scan is therefore [thumbSym->value, nonThumbSym->value) 502 // or [thumbSym->value, section size). 503 std::vector<const Defined *> &mapSyms = sectionMap[isec]; 504 505 auto thumbSym = mapSyms.begin(); 506 while (thumbSym != mapSyms.end()) { 507 auto nonThumbSym = std::next(thumbSym); 508 uint64_t off = (*thumbSym)->value; 509 uint64_t limit = nonThumbSym == mapSyms.end() ? isec->content().size() 510 : (*nonThumbSym)->value; 511 512 while (off < limit) { 513 ScanResult sr = scanCortexA8Errata657417(isec, off, limit); 514 if (sr.off) 515 implementPatch(sr, isec, patches); 516 } 517 if (nonThumbSym == mapSyms.end()) 518 break; 519 thumbSym = std::next(nonThumbSym); 520 } 521 } 522 return patches; 523 } 524 525 bool ARMErr657417Patcher::createFixes() { 526 if (!initialized) 527 init(); 528 529 bool addressesChanged = false; 530 for (OutputSection *os : ctx.outputSections) { 531 if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR)) 532 continue; 533 for (SectionCommand *cmd : os->commands) 534 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) { 535 std::vector<Patch657417Section *> patches = 536 patchInputSectionDescription(*isd); 537 if (!patches.empty()) { 538 insertPatches(*isd, patches); 539 addressesChanged = true; 540 } 541 } 542 } 543 return addressesChanged; 544 } 545