1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /*
27 * Copyright 1983,1984,1985,1986,1987,1988,1989 AT&T.
28 * All Rights Reserved
29 */
30
31 #include <sys/param.h>
32 #include <sys/types.h>
33 #include <sys/systm.h>
34 #include <sys/cred.h>
35 #include <sys/time.h>
36 #include <sys/vnode.h>
37 #include <sys/vfs.h>
38 #include <sys/vfs_opreg.h>
39 #include <sys/file.h>
40 #include <sys/filio.h>
41 #include <sys/uio.h>
42 #include <sys/buf.h>
43 #include <sys/mman.h>
44 #include <sys/pathname.h>
45 #include <sys/dirent.h>
46 #include <sys/debug.h>
47 #include <sys/vmsystm.h>
48 #include <sys/fcntl.h>
49 #include <sys/flock.h>
50 #include <sys/swap.h>
51 #include <sys/errno.h>
52 #include <sys/strsubr.h>
53 #include <sys/sysmacros.h>
54 #include <sys/kmem.h>
55 #include <sys/cmn_err.h>
56 #include <sys/pathconf.h>
57 #include <sys/utsname.h>
58 #include <sys/dnlc.h>
59 #include <sys/acl.h>
60 #include <sys/systeminfo.h>
61 #include <sys/policy.h>
62 #include <sys/sdt.h>
63 #include <sys/list.h>
64 #include <sys/stat.h>
65 #include <sys/zone.h>
66
67 #include <rpc/types.h>
68 #include <rpc/auth.h>
69 #include <rpc/clnt.h>
70
71 #include <nfs/nfs.h>
72 #include <nfs/nfs_clnt.h>
73 #include <nfs/nfs_acl.h>
74 #include <nfs/lm.h>
75 #include <nfs/nfs4.h>
76 #include <nfs/nfs4_kprot.h>
77 #include <nfs/rnode4.h>
78 #include <nfs/nfs4_clnt.h>
79
80 #include <vm/hat.h>
81 #include <vm/as.h>
82 #include <vm/page.h>
83 #include <vm/pvn.h>
84 #include <vm/seg.h>
85 #include <vm/seg_map.h>
86 #include <vm/seg_kpm.h>
87 #include <vm/seg_vn.h>
88
89 #include <fs/fs_subr.h>
90
91 #include <sys/ddi.h>
92 #include <sys/int_fmtio.h>
93 #include <sys/fs/autofs.h>
94
95 typedef struct {
96 nfs4_ga_res_t *di_garp;
97 cred_t *di_cred;
98 hrtime_t di_time_call;
99 } dirattr_info_t;
100
101 typedef enum nfs4_acl_op {
102 NFS4_ACL_GET,
103 NFS4_ACL_SET
104 } nfs4_acl_op_t;
105
106 static struct lm_sysid *nfs4_find_sysid(mntinfo4_t *mi);
107
108 static void nfs4_update_dircaches(change_info4 *, vnode_t *, vnode_t *,
109 char *, dirattr_info_t *);
110
111 static void nfs4close_otw(rnode4_t *, cred_t *, nfs4_open_owner_t *,
112 nfs4_open_stream_t *, int *, int *, nfs4_close_type_t,
113 nfs4_error_t *, int *);
114 static int nfs4_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int,
115 cred_t *);
116 static int nfs4write(vnode_t *, caddr_t, u_offset_t, int, cred_t *,
117 stable_how4 *);
118 static int nfs4read(vnode_t *, caddr_t, offset_t, int, size_t *,
119 cred_t *, bool_t, struct uio *);
120 static int nfs4setattr(vnode_t *, struct vattr *, int, cred_t *,
121 vsecattr_t *);
122 static int nfs4openattr(vnode_t *, vnode_t **, int, cred_t *);
123 static int nfs4lookup(vnode_t *, char *, vnode_t **, cred_t *, int);
124 static int nfs4lookup_xattr(vnode_t *, char *, vnode_t **, int, cred_t *);
125 static int nfs4lookupvalidate_otw(vnode_t *, char *, vnode_t **, cred_t *);
126 static int nfs4lookupnew_otw(vnode_t *, char *, vnode_t **, cred_t *);
127 static int nfs4mknod(vnode_t *, char *, struct vattr *, enum vcexcl,
128 int, vnode_t **, cred_t *);
129 static int nfs4open_otw(vnode_t *, char *, struct vattr *, vnode_t **,
130 cred_t *, int, int, enum createmode4, int);
131 static int nfs4rename(vnode_t *, char *, vnode_t *, char *, cred_t *,
132 caller_context_t *);
133 static int nfs4rename_persistent_fh(vnode_t *, char *, vnode_t *,
134 vnode_t *, char *, cred_t *, nfsstat4 *);
135 static int nfs4rename_volatile_fh(vnode_t *, char *, vnode_t *,
136 vnode_t *, char *, cred_t *, nfsstat4 *);
137 static int do_nfs4readdir(vnode_t *, rddir4_cache *, cred_t *);
138 static void nfs4readdir(vnode_t *, rddir4_cache *, cred_t *);
139 static int nfs4_bio(struct buf *, stable_how4 *, cred_t *, bool_t);
140 static int nfs4_getapage(vnode_t *, u_offset_t, size_t, uint_t *,
141 page_t *[], size_t, struct seg *, caddr_t,
142 enum seg_rw, cred_t *);
143 static void nfs4_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *,
144 cred_t *);
145 static int nfs4_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t,
146 int, cred_t *);
147 static int nfs4_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t,
148 int, cred_t *);
149 static int nfs4_commit(vnode_t *, offset4, count4, cred_t *);
150 static void nfs4_set_mod(vnode_t *);
151 static void nfs4_get_commit(vnode_t *);
152 static void nfs4_get_commit_range(vnode_t *, u_offset_t, size_t);
153 static int nfs4_putpage_commit(vnode_t *, offset_t, size_t, cred_t *);
154 static int nfs4_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *, int);
155 static int nfs4_sync_commit(vnode_t *, page_t *, offset3, count3,
156 cred_t *);
157 static void do_nfs4_async_commit(vnode_t *, page_t *, offset3, count3,
158 cred_t *);
159 static int nfs4_update_attrcache(nfsstat4, nfs4_ga_res_t *,
160 hrtime_t, vnode_t *, cred_t *);
161 static int nfs4_open_non_reg_file(vnode_t **, int, cred_t *);
162 static int nfs4_safelock(vnode_t *, const struct flock64 *, cred_t *);
163 static void nfs4_register_lock_locally(vnode_t *, struct flock64 *, int,
164 u_offset_t);
165 static int nfs4_lockrelease(vnode_t *, int, offset_t, cred_t *);
166 static int nfs4_block_and_wait(clock_t *, rnode4_t *);
167 static cred_t *state_to_cred(nfs4_open_stream_t *);
168 static void denied_to_flk(LOCK4denied *, flock64_t *, LOCKT4args *);
169 static pid_t lo_to_pid(lock_owner4 *);
170 static void nfs4_reinstitute_local_lock_state(vnode_t *, flock64_t *,
171 cred_t *, nfs4_lock_owner_t *);
172 static void push_reinstate(vnode_t *, int, flock64_t *, cred_t *,
173 nfs4_lock_owner_t *);
174 static int open_and_get_osp(vnode_t *, cred_t *, nfs4_open_stream_t **);
175 static void nfs4_delmap_callback(struct as *, void *, uint_t);
176 static void nfs4_free_delmapcall(nfs4_delmapcall_t *);
177 static nfs4_delmapcall_t *nfs4_init_delmapcall();
178 static int nfs4_find_and_delete_delmapcall(rnode4_t *, int *);
179 static int nfs4_is_acl_mask_valid(uint_t, nfs4_acl_op_t);
180 static int nfs4_create_getsecattr_return(vsecattr_t *, vsecattr_t *,
181 uid_t, gid_t, int);
182
183 /*
184 * Routines that implement the setting of v4 args for the misc. ops
185 */
186 static void nfs4args_lock_free(nfs_argop4 *);
187 static void nfs4args_lockt_free(nfs_argop4 *);
188 static void nfs4args_setattr(nfs_argop4 *, vattr_t *, vsecattr_t *,
189 int, rnode4_t *, cred_t *, bitmap4, int *,
190 nfs4_stateid_types_t *);
191 static void nfs4args_setattr_free(nfs_argop4 *);
192 static int nfs4args_verify(nfs_argop4 *, vattr_t *, enum nfs_opnum4,
193 bitmap4);
194 static void nfs4args_verify_free(nfs_argop4 *);
195 static void nfs4args_write(nfs_argop4 *, stable_how4, rnode4_t *, cred_t *,
196 WRITE4args **, nfs4_stateid_types_t *);
197
198 /*
199 * These are the vnode ops functions that implement the vnode interface to
200 * the networked file system. See more comments below at nfs4_vnodeops.
201 */
202 static int nfs4_open(vnode_t **, int, cred_t *, caller_context_t *);
203 static int nfs4_close(vnode_t *, int, int, offset_t, cred_t *,
204 caller_context_t *);
205 static int nfs4_read(vnode_t *, struct uio *, int, cred_t *,
206 caller_context_t *);
207 static int nfs4_write(vnode_t *, struct uio *, int, cred_t *,
208 caller_context_t *);
209 static int nfs4_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *,
210 caller_context_t *);
211 static int nfs4_setattr(vnode_t *, struct vattr *, int, cred_t *,
212 caller_context_t *);
213 static int nfs4_access(vnode_t *, int, int, cred_t *, caller_context_t *);
214 static int nfs4_readlink(vnode_t *, struct uio *, cred_t *,
215 caller_context_t *);
216 static int nfs4_fsync(vnode_t *, int, cred_t *, caller_context_t *);
217 static int nfs4_create(vnode_t *, char *, struct vattr *, enum vcexcl,
218 int, vnode_t **, cred_t *, int, caller_context_t *,
219 vsecattr_t *);
220 static int nfs4_remove(vnode_t *, char *, cred_t *, caller_context_t *,
221 int);
222 static int nfs4_link(vnode_t *, vnode_t *, char *, cred_t *,
223 caller_context_t *, int);
224 static int nfs4_rename(vnode_t *, char *, vnode_t *, char *, cred_t *,
225 caller_context_t *, int);
226 static int nfs4_mkdir(vnode_t *, char *, struct vattr *, vnode_t **,
227 cred_t *, caller_context_t *, int, vsecattr_t *);
228 static int nfs4_rmdir(vnode_t *, char *, vnode_t *, cred_t *,
229 caller_context_t *, int);
230 static int nfs4_symlink(vnode_t *, char *, struct vattr *, char *,
231 cred_t *, caller_context_t *, int);
232 static int nfs4_readdir(vnode_t *, struct uio *, cred_t *, int *,
233 caller_context_t *, int);
234 static int nfs4_seek(vnode_t *, offset_t, offset_t *, caller_context_t *);
235 static int nfs4_getpage(vnode_t *, offset_t, size_t, uint_t *,
236 page_t *[], size_t, struct seg *, caddr_t,
237 enum seg_rw, cred_t *, caller_context_t *);
238 static int nfs4_putpage(vnode_t *, offset_t, size_t, int, cred_t *,
239 caller_context_t *);
240 static int nfs4_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t,
241 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *);
242 static int nfs4_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t,
243 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *);
244 static int nfs4_cmp(vnode_t *, vnode_t *, caller_context_t *);
245 static int nfs4_frlock(vnode_t *, int, struct flock64 *, int, offset_t,
246 struct flk_callback *, cred_t *, caller_context_t *);
247 static int nfs4_space(vnode_t *, int, struct flock64 *, int, offset_t,
248 cred_t *, caller_context_t *);
249 static int nfs4_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t,
250 uint_t, uint_t, uint_t, cred_t *, caller_context_t *);
251 static int nfs4_pageio(vnode_t *, page_t *, u_offset_t, size_t, int,
252 cred_t *, caller_context_t *);
253 static void nfs4_dispose(vnode_t *, page_t *, int, int, cred_t *,
254 caller_context_t *);
255 static int nfs4_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
256 caller_context_t *);
257 /*
258 * These vnode ops are required to be called from outside this source file,
259 * e.g. by ephemeral mount stub vnode ops, and so may not be declared
260 * as static.
261 */
262 int nfs4_getattr(vnode_t *, struct vattr *, int, cred_t *,
263 caller_context_t *);
264 void nfs4_inactive(vnode_t *, cred_t *, caller_context_t *);
265 int nfs4_lookup(vnode_t *, char *, vnode_t **,
266 struct pathname *, int, vnode_t *, cred_t *,
267 caller_context_t *, int *, pathname_t *);
268 int nfs4_fid(vnode_t *, fid_t *, caller_context_t *);
269 int nfs4_rwlock(vnode_t *, int, caller_context_t *);
270 void nfs4_rwunlock(vnode_t *, int, caller_context_t *);
271 int nfs4_realvp(vnode_t *, vnode_t **, caller_context_t *);
272 int nfs4_pathconf(vnode_t *, int, ulong_t *, cred_t *,
273 caller_context_t *);
274 int nfs4_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
275 caller_context_t *);
276 int nfs4_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *,
277 caller_context_t *);
278
279 /*
280 * Used for nfs4_commit_vp() to indicate if we should
281 * wait on pending writes.
282 */
283 #define NFS4_WRITE_NOWAIT 0
284 #define NFS4_WRITE_WAIT 1
285
286 #define NFS4_BASE_WAIT_TIME 1 /* 1 second */
287
288 /*
289 * Error flags used to pass information about certain special errors
290 * which need to be handled specially.
291 */
292 #define NFS_EOF -98
293 #define NFS_VERF_MISMATCH -97
294
295 /*
296 * Flags used to differentiate between which operation drove the
297 * potential CLOSE OTW. (see nfs4_close_otw_if_necessary)
298 */
299 #define NFS4_CLOSE_OP 0x1
300 #define NFS4_DELMAP_OP 0x2
301 #define NFS4_INACTIVE_OP 0x3
302
303 #define ISVDEV(t) ((t == VBLK) || (t == VCHR) || (t == VFIFO))
304
305 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */
306 #define ALIGN64(x, ptr, sz) \
307 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \
308 if (x) { \
309 x = sizeof (uint64_t) - (x); \
310 sz -= (x); \
311 ptr += (x); \
312 }
313
314 #ifdef DEBUG
315 int nfs4_client_attr_debug = 0;
316 int nfs4_client_state_debug = 0;
317 int nfs4_client_shadow_debug = 0;
318 int nfs4_client_lock_debug = 0;
319 int nfs4_seqid_sync = 0;
320 int nfs4_client_map_debug = 0;
321 static int nfs4_pageio_debug = 0;
322 int nfs4_client_inactive_debug = 0;
323 int nfs4_client_recov_debug = 0;
324 int nfs4_client_failover_debug = 0;
325 int nfs4_client_call_debug = 0;
326 int nfs4_client_lookup_debug = 0;
327 int nfs4_client_zone_debug = 0;
328 int nfs4_lost_rqst_debug = 0;
329 int nfs4_rdattrerr_debug = 0;
330 int nfs4_open_stream_debug = 0;
331
332 int nfs4read_error_inject;
333
334 static int nfs4_create_misses = 0;
335
336 static int nfs4_readdir_cache_shorts = 0;
337 static int nfs4_readdir_readahead = 0;
338
339 static int nfs4_bio_do_stop = 0;
340
341 static int nfs4_lostpage = 0; /* number of times we lost original page */
342
343 int nfs4_mmap_debug = 0;
344
345 static int nfs4_pathconf_cache_hits = 0;
346 static int nfs4_pathconf_cache_misses = 0;
347
348 int nfs4close_all_cnt;
349 int nfs4close_one_debug = 0;
350 int nfs4close_notw_debug = 0;
351
352 int denied_to_flk_debug = 0;
353 void *lockt_denied_debug;
354
355 #endif
356
357 /*
358 * How long to wait before trying again if OPEN_CONFIRM gets ETIMEDOUT
359 * or NFS4ERR_RESOURCE.
360 */
361 static int confirm_retry_sec = 30;
362
363 static int nfs4_lookup_neg_cache = 1;
364
365 /*
366 * number of pages to read ahead
367 * optimized for 100 base-T.
368 */
369 static int nfs4_nra = 4;
370
371 static int nfs4_do_symlink_cache = 1;
372
373 static int nfs4_pathconf_disable_cache = 0;
374
375 /*
376 * These are the vnode ops routines which implement the vnode interface to
377 * the networked file system. These routines just take their parameters,
378 * make them look networkish by putting the right info into interface structs,
379 * and then calling the appropriate remote routine(s) to do the work.
380 *
381 * Note on directory name lookup cacheing: If we detect a stale fhandle,
382 * we purge the directory cache relative to that vnode. This way, the
383 * user won't get burned by the cache repeatedly. See <nfs/rnode4.h> for
384 * more details on rnode locking.
385 */
386
387 struct vnodeops *nfs4_vnodeops;
388
389 const fs_operation_def_t nfs4_vnodeops_template[] = {
390 VOPNAME_OPEN, { .vop_open = nfs4_open },
391 VOPNAME_CLOSE, { .vop_close = nfs4_close },
392 VOPNAME_READ, { .vop_read = nfs4_read },
393 VOPNAME_WRITE, { .vop_write = nfs4_write },
394 VOPNAME_IOCTL, { .vop_ioctl = nfs4_ioctl },
395 VOPNAME_GETATTR, { .vop_getattr = nfs4_getattr },
396 VOPNAME_SETATTR, { .vop_setattr = nfs4_setattr },
397 VOPNAME_ACCESS, { .vop_access = nfs4_access },
398 VOPNAME_LOOKUP, { .vop_lookup = nfs4_lookup },
399 VOPNAME_CREATE, { .vop_create = nfs4_create },
400 VOPNAME_REMOVE, { .vop_remove = nfs4_remove },
401 VOPNAME_LINK, { .vop_link = nfs4_link },
402 VOPNAME_RENAME, { .vop_rename = nfs4_rename },
403 VOPNAME_MKDIR, { .vop_mkdir = nfs4_mkdir },
404 VOPNAME_RMDIR, { .vop_rmdir = nfs4_rmdir },
405 VOPNAME_READDIR, { .vop_readdir = nfs4_readdir },
406 VOPNAME_SYMLINK, { .vop_symlink = nfs4_symlink },
407 VOPNAME_READLINK, { .vop_readlink = nfs4_readlink },
408 VOPNAME_FSYNC, { .vop_fsync = nfs4_fsync },
409 VOPNAME_INACTIVE, { .vop_inactive = nfs4_inactive },
410 VOPNAME_FID, { .vop_fid = nfs4_fid },
411 VOPNAME_RWLOCK, { .vop_rwlock = nfs4_rwlock },
412 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs4_rwunlock },
413 VOPNAME_SEEK, { .vop_seek = nfs4_seek },
414 VOPNAME_FRLOCK, { .vop_frlock = nfs4_frlock },
415 VOPNAME_SPACE, { .vop_space = nfs4_space },
416 VOPNAME_REALVP, { .vop_realvp = nfs4_realvp },
417 VOPNAME_GETPAGE, { .vop_getpage = nfs4_getpage },
418 VOPNAME_PUTPAGE, { .vop_putpage = nfs4_putpage },
419 VOPNAME_MAP, { .vop_map = nfs4_map },
420 VOPNAME_ADDMAP, { .vop_addmap = nfs4_addmap },
421 VOPNAME_DELMAP, { .vop_delmap = nfs4_delmap },
422 /* no separate nfs4_dump */
423 VOPNAME_DUMP, { .vop_dump = nfs_dump },
424 VOPNAME_PATHCONF, { .vop_pathconf = nfs4_pathconf },
425 VOPNAME_PAGEIO, { .vop_pageio = nfs4_pageio },
426 VOPNAME_DISPOSE, { .vop_dispose = nfs4_dispose },
427 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs4_setsecattr },
428 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs4_getsecattr },
429 VOPNAME_SHRLOCK, { .vop_shrlock = nfs4_shrlock },
430 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
431 NULL, NULL
432 };
433
434 /*
435 * The following are subroutines and definitions to set args or get res
436 * for the different nfsv4 ops
437 */
438
439 void
nfs4args_lookup_free(nfs_argop4 * argop,int arglen)440 nfs4args_lookup_free(nfs_argop4 *argop, int arglen)
441 {
442 int i;
443
444 for (i = 0; i < arglen; i++) {
445 if (argop[i].argop == OP_LOOKUP) {
446 kmem_free(
447 argop[i].nfs_argop4_u.oplookup.
448 objname.utf8string_val,
449 argop[i].nfs_argop4_u.oplookup.
450 objname.utf8string_len);
451 }
452 }
453 }
454
455 static void
nfs4args_lock_free(nfs_argop4 * argop)456 nfs4args_lock_free(nfs_argop4 *argop)
457 {
458 locker4 *locker = &argop->nfs_argop4_u.oplock.locker;
459
460 if (locker->new_lock_owner == TRUE) {
461 open_to_lock_owner4 *open_owner;
462
463 open_owner = &locker->locker4_u.open_owner;
464 if (open_owner->lock_owner.owner_val != NULL) {
465 kmem_free(open_owner->lock_owner.owner_val,
466 open_owner->lock_owner.owner_len);
467 }
468 }
469 }
470
471 static void
nfs4args_lockt_free(nfs_argop4 * argop)472 nfs4args_lockt_free(nfs_argop4 *argop)
473 {
474 lock_owner4 *lowner = &argop->nfs_argop4_u.oplockt.owner;
475
476 if (lowner->owner_val != NULL) {
477 kmem_free(lowner->owner_val, lowner->owner_len);
478 }
479 }
480
481 static void
nfs4args_setattr(nfs_argop4 * argop,vattr_t * vap,vsecattr_t * vsap,int flags,rnode4_t * rp,cred_t * cr,bitmap4 supp,int * error,nfs4_stateid_types_t * sid_types)482 nfs4args_setattr(nfs_argop4 *argop, vattr_t *vap, vsecattr_t *vsap, int flags,
483 rnode4_t *rp, cred_t *cr, bitmap4 supp, int *error,
484 nfs4_stateid_types_t *sid_types)
485 {
486 fattr4 *attr = &argop->nfs_argop4_u.opsetattr.obj_attributes;
487 mntinfo4_t *mi;
488
489 argop->argop = OP_SETATTR;
490 /*
491 * The stateid is set to 0 if client is not modifying the size
492 * and otherwise to whatever nfs4_get_stateid() returns.
493 *
494 * XXX Note: nfs4_get_stateid() returns 0 if no lockowner and/or no
495 * state struct could be found for the process/file pair. We may
496 * want to change this in the future (by OPENing the file). See
497 * bug # 4474852.
498 */
499 if (vap->va_mask & AT_SIZE) {
500
501 ASSERT(rp != NULL);
502 mi = VTOMI4(RTOV4(rp));
503
504 argop->nfs_argop4_u.opsetattr.stateid =
505 nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi,
506 OP_SETATTR, sid_types, FALSE);
507 } else {
508 bzero(&argop->nfs_argop4_u.opsetattr.stateid,
509 sizeof (stateid4));
510 }
511
512 *error = vattr_to_fattr4(vap, vsap, attr, flags, OP_SETATTR, supp);
513 if (*error)
514 bzero(attr, sizeof (*attr));
515 }
516
517 static void
nfs4args_setattr_free(nfs_argop4 * argop)518 nfs4args_setattr_free(nfs_argop4 *argop)
519 {
520 nfs4_fattr4_free(&argop->nfs_argop4_u.opsetattr.obj_attributes);
521 }
522
523 static int
nfs4args_verify(nfs_argop4 * argop,vattr_t * vap,enum nfs_opnum4 op,bitmap4 supp)524 nfs4args_verify(nfs_argop4 *argop, vattr_t *vap, enum nfs_opnum4 op,
525 bitmap4 supp)
526 {
527 fattr4 *attr;
528 int error = 0;
529
530 argop->argop = op;
531 switch (op) {
532 case OP_VERIFY:
533 attr = &argop->nfs_argop4_u.opverify.obj_attributes;
534 break;
535 case OP_NVERIFY:
536 attr = &argop->nfs_argop4_u.opnverify.obj_attributes;
537 break;
538 default:
539 return (EINVAL);
540 }
541 if (!error)
542 error = vattr_to_fattr4(vap, NULL, attr, 0, op, supp);
543 if (error)
544 bzero(attr, sizeof (*attr));
545 return (error);
546 }
547
548 static void
nfs4args_verify_free(nfs_argop4 * argop)549 nfs4args_verify_free(nfs_argop4 *argop)
550 {
551 switch (argop->argop) {
552 case OP_VERIFY:
553 nfs4_fattr4_free(&argop->nfs_argop4_u.opverify.obj_attributes);
554 break;
555 case OP_NVERIFY:
556 nfs4_fattr4_free(&argop->nfs_argop4_u.opnverify.obj_attributes);
557 break;
558 default:
559 break;
560 }
561 }
562
563 static void
nfs4args_write(nfs_argop4 * argop,stable_how4 stable,rnode4_t * rp,cred_t * cr,WRITE4args ** wargs_pp,nfs4_stateid_types_t * sid_tp)564 nfs4args_write(nfs_argop4 *argop, stable_how4 stable, rnode4_t *rp, cred_t *cr,
565 WRITE4args **wargs_pp, nfs4_stateid_types_t *sid_tp)
566 {
567 WRITE4args *wargs = &argop->nfs_argop4_u.opwrite;
568 mntinfo4_t *mi = VTOMI4(RTOV4(rp));
569
570 argop->argop = OP_WRITE;
571 wargs->stable = stable;
572 wargs->stateid = nfs4_get_w_stateid(cr, rp, curproc->p_pidp->pid_id,
573 mi, OP_WRITE, sid_tp);
574 wargs->mblk = NULL;
575 *wargs_pp = wargs;
576 }
577
578 void
nfs4args_copen_free(OPEN4cargs * open_args)579 nfs4args_copen_free(OPEN4cargs *open_args)
580 {
581 if (open_args->owner.owner_val) {
582 kmem_free(open_args->owner.owner_val,
583 open_args->owner.owner_len);
584 }
585 if ((open_args->opentype == OPEN4_CREATE) &&
586 (open_args->mode != EXCLUSIVE4)) {
587 nfs4_fattr4_free(&open_args->createhow4_u.createattrs);
588 }
589 }
590
591 /*
592 * XXX: This is referenced in modstubs.s
593 */
594 struct vnodeops *
nfs4_getvnodeops(void)595 nfs4_getvnodeops(void)
596 {
597 return (nfs4_vnodeops);
598 }
599
600 /*
601 * The OPEN operation opens a regular file.
602 */
603 /*ARGSUSED3*/
604 static int
nfs4_open(vnode_t ** vpp,int flag,cred_t * cr,caller_context_t * ct)605 nfs4_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
606 {
607 vnode_t *dvp = NULL;
608 rnode4_t *rp, *drp;
609 int error;
610 int just_been_created;
611 char fn[MAXNAMELEN];
612
613 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4_open: "));
614 if (nfs_zone() != VTOMI4(*vpp)->mi_zone)
615 return (EIO);
616 rp = VTOR4(*vpp);
617
618 /*
619 * Check to see if opening something besides a regular file;
620 * if so skip the OTW call
621 */
622 if ((*vpp)->v_type != VREG) {
623 error = nfs4_open_non_reg_file(vpp, flag, cr);
624 return (error);
625 }
626
627 /*
628 * XXX - would like a check right here to know if the file is
629 * executable or not, so as to skip OTW
630 */
631
632 if ((error = vtodv(*vpp, &dvp, cr, TRUE)) != 0)
633 return (error);
634
635 drp = VTOR4(dvp);
636 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp)))
637 return (EINTR);
638
639 if ((error = vtoname(*vpp, fn, MAXNAMELEN)) != 0) {
640 nfs_rw_exit(&drp->r_rwlock);
641 return (error);
642 }
643
644 /*
645 * See if this file has just been CREATEd.
646 * If so, clear the flag and update the dnlc, which was previously
647 * skipped in nfs4_create.
648 * XXX need better serilization on this.
649 * XXX move this into the nf4open_otw call, after we have
650 * XXX acquired the open owner seqid sync.
651 */
652 mutex_enter(&rp->r_statev4_lock);
653 if (rp->created_v4) {
654 rp->created_v4 = 0;
655 mutex_exit(&rp->r_statev4_lock);
656
657 dnlc_update(dvp, fn, *vpp);
658 /* This is needed so we don't bump the open ref count */
659 just_been_created = 1;
660 } else {
661 mutex_exit(&rp->r_statev4_lock);
662 just_been_created = 0;
663 }
664
665 /*
666 * If caller specified O_TRUNC/FTRUNC, then be sure to set
667 * FWRITE (to drive successful setattr(size=0) after open)
668 */
669 if (flag & FTRUNC)
670 flag |= FWRITE;
671
672 error = nfs4open_otw(dvp, fn, NULL, vpp, cr, 0, flag, 0,
673 just_been_created);
674
675 if (!error && !((*vpp)->v_flag & VROOT))
676 dnlc_update(dvp, fn, *vpp);
677
678 nfs_rw_exit(&drp->r_rwlock);
679
680 /* release the hold from vtodv */
681 VN_RELE(dvp);
682
683 /* exchange the shadow for the master vnode, if needed */
684
685 if (error == 0 && IS_SHADOW(*vpp, rp))
686 sv_exchange(vpp);
687
688 return (error);
689 }
690
691 /*
692 * See if there's a "lost open" request to be saved and recovered.
693 */
694 static void
nfs4open_save_lost_rqst(int error,nfs4_lost_rqst_t * lost_rqstp,nfs4_open_owner_t * oop,cred_t * cr,vnode_t * vp,vnode_t * dvp,OPEN4cargs * open_args)695 nfs4open_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp,
696 nfs4_open_owner_t *oop, cred_t *cr, vnode_t *vp,
697 vnode_t *dvp, OPEN4cargs *open_args)
698 {
699 vfs_t *vfsp;
700 char *srccfp;
701
702 vfsp = (dvp ? dvp->v_vfsp : vp->v_vfsp);
703
704 if (error != ETIMEDOUT && error != EINTR &&
705 !NFS4_FRC_UNMT_ERR(error, vfsp)) {
706 lost_rqstp->lr_op = 0;
707 return;
708 }
709
710 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
711 "nfs4open_save_lost_rqst: error %d", error));
712
713 lost_rqstp->lr_op = OP_OPEN;
714
715 /*
716 * The vp (if it is not NULL) and dvp are held and rele'd via
717 * the recovery code. See nfs4_save_lost_rqst.
718 */
719 lost_rqstp->lr_vp = vp;
720 lost_rqstp->lr_dvp = dvp;
721 lost_rqstp->lr_oop = oop;
722 lost_rqstp->lr_osp = NULL;
723 lost_rqstp->lr_lop = NULL;
724 lost_rqstp->lr_cr = cr;
725 lost_rqstp->lr_flk = NULL;
726 lost_rqstp->lr_oacc = open_args->share_access;
727 lost_rqstp->lr_odeny = open_args->share_deny;
728 lost_rqstp->lr_oclaim = open_args->claim;
729 if (open_args->claim == CLAIM_DELEGATE_CUR) {
730 lost_rqstp->lr_ostateid =
731 open_args->open_claim4_u.delegate_cur_info.delegate_stateid;
732 srccfp = open_args->open_claim4_u.delegate_cur_info.cfile;
733 } else {
734 srccfp = open_args->open_claim4_u.cfile;
735 }
736 lost_rqstp->lr_ofile.utf8string_len = 0;
737 lost_rqstp->lr_ofile.utf8string_val = NULL;
738 (void) str_to_utf8(srccfp, &lost_rqstp->lr_ofile);
739 lost_rqstp->lr_putfirst = FALSE;
740 }
741
742 struct nfs4_excl_time {
743 uint32 seconds;
744 uint32 nseconds;
745 };
746
747 /*
748 * The OPEN operation creates and/or opens a regular file
749 *
750 * ARGSUSED
751 */
752 static int
nfs4open_otw(vnode_t * dvp,char * file_name,struct vattr * in_va,vnode_t ** vpp,cred_t * cr,int create_flag,int open_flag,enum createmode4 createmode,int file_just_been_created)753 nfs4open_otw(vnode_t *dvp, char *file_name, struct vattr *in_va,
754 vnode_t **vpp, cred_t *cr, int create_flag, int open_flag,
755 enum createmode4 createmode, int file_just_been_created)
756 {
757 rnode4_t *rp;
758 rnode4_t *drp = VTOR4(dvp);
759 vnode_t *vp = NULL;
760 vnode_t *vpi = *vpp;
761 bool_t needrecov = FALSE;
762
763 int doqueue = 1;
764
765 COMPOUND4args_clnt args;
766 COMPOUND4res_clnt res;
767 nfs_argop4 *argop;
768 nfs_resop4 *resop;
769 int argoplist_size;
770 int idx_open, idx_fattr;
771
772 GETFH4res *gf_res = NULL;
773 OPEN4res *op_res = NULL;
774 nfs4_ga_res_t *garp;
775 fattr4 *attr = NULL;
776 struct nfs4_excl_time verf;
777 bool_t did_excl_setup = FALSE;
778 int created_osp;
779
780 OPEN4cargs *open_args;
781 nfs4_open_owner_t *oop = NULL;
782 nfs4_open_stream_t *osp = NULL;
783 seqid4 seqid = 0;
784 bool_t retry_open = FALSE;
785 nfs4_recov_state_t recov_state;
786 nfs4_lost_rqst_t lost_rqst;
787 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
788 hrtime_t t;
789 int acc = 0;
790 cred_t *cred_otw = NULL; /* cred used to do the RPC call */
791 cred_t *ncr = NULL;
792
793 nfs4_sharedfh_t *otw_sfh;
794 nfs4_sharedfh_t *orig_sfh;
795 int fh_differs = 0;
796 int numops, setgid_flag;
797 int num_bseqid_retry = NFS4_NUM_RETRY_BAD_SEQID + 1;
798
799 /*
800 * Make sure we properly deal with setting the right gid on
801 * a newly created file to reflect the parent's setgid bit
802 */
803 setgid_flag = 0;
804 if (create_flag && in_va) {
805
806 /*
807 * If there is grpid mount flag used or
808 * the parent's directory has the setgid bit set
809 * _and_ the client was able to get a valid mapping
810 * for the parent dir's owner_group, we want to
811 * append NVERIFY(owner_group == dva.va_gid) and
812 * SETATTR to the CREATE compound.
813 */
814 mutex_enter(&drp->r_statelock);
815 if ((VTOMI4(dvp)->mi_flags & MI4_GRPID ||
816 drp->r_attr.va_mode & VSGID) &&
817 drp->r_attr.va_gid != GID_NOBODY) {
818 in_va->va_mask |= AT_GID;
819 in_va->va_gid = drp->r_attr.va_gid;
820 setgid_flag = 1;
821 }
822 mutex_exit(&drp->r_statelock);
823 }
824
825 /*
826 * Normal/non-create compound:
827 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new)
828 *
829 * Open(create) compound no setgid:
830 * PUTFH(dfh) + SAVEFH + OPEN(create) + GETFH + GETATTR(new) +
831 * RESTOREFH + GETATTR
832 *
833 * Open(create) setgid:
834 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) +
835 * SAVEFH + PUTFH(dfh) + GETATTR(dvp) + RESTOREFH +
836 * NVERIFY(grp) + SETATTR
837 */
838 if (setgid_flag) {
839 numops = 10;
840 idx_open = 1;
841 idx_fattr = 3;
842 } else if (create_flag) {
843 numops = 7;
844 idx_open = 2;
845 idx_fattr = 4;
846 } else {
847 numops = 4;
848 idx_open = 1;
849 idx_fattr = 3;
850 }
851
852 args.array_len = numops;
853 argoplist_size = numops * sizeof (nfs_argop4);
854 argop = kmem_alloc(argoplist_size, KM_SLEEP);
855
856 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw: "
857 "open %s open flag 0x%x cred %p", file_name, open_flag,
858 (void *)cr));
859
860 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
861 if (create_flag) {
862 /*
863 * We are to create a file. Initialize the passed in vnode
864 * pointer.
865 */
866 vpi = NULL;
867 } else {
868 /*
869 * Check to see if the client owns a read delegation and is
870 * trying to open for write. If so, then return the delegation
871 * to avoid the server doing a cb_recall and returning DELAY.
872 * NB - we don't use the statev4_lock here because we'd have
873 * to drop the lock anyway and the result would be stale.
874 */
875 if ((open_flag & FWRITE) &&
876 VTOR4(vpi)->r_deleg_type == OPEN_DELEGATE_READ)
877 (void) nfs4delegreturn(VTOR4(vpi), NFS4_DR_REOPEN);
878
879 /*
880 * If the file has a delegation, then do an access check up
881 * front. This avoids having to an access check later after
882 * we've already done start_op, which could deadlock.
883 */
884 if (VTOR4(vpi)->r_deleg_type != OPEN_DELEGATE_NONE) {
885 if (open_flag & FREAD &&
886 nfs4_access(vpi, VREAD, 0, cr, NULL) == 0)
887 acc |= VREAD;
888 if (open_flag & FWRITE &&
889 nfs4_access(vpi, VWRITE, 0, cr, NULL) == 0)
890 acc |= VWRITE;
891 }
892 }
893
894 drp = VTOR4(dvp);
895
896 recov_state.rs_flags = 0;
897 recov_state.rs_num_retry_despite_err = 0;
898 cred_otw = cr;
899
900 recov_retry:
901 fh_differs = 0;
902 nfs4_error_zinit(&e);
903
904 e.error = nfs4_start_op(VTOMI4(dvp), dvp, vpi, &recov_state);
905 if (e.error) {
906 if (ncr != NULL)
907 crfree(ncr);
908 kmem_free(argop, argoplist_size);
909 return (e.error);
910 }
911
912 args.ctag = TAG_OPEN;
913 args.array_len = numops;
914 args.array = argop;
915
916 /* putfh directory fh */
917 argop[0].argop = OP_CPUTFH;
918 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
919
920 /* OPEN: either op 1 or op 2 depending upon create/setgid flags */
921 argop[idx_open].argop = OP_COPEN;
922 open_args = &argop[idx_open].nfs_argop4_u.opcopen;
923 open_args->claim = CLAIM_NULL;
924
925 /* name of file */
926 open_args->open_claim4_u.cfile = file_name;
927 open_args->owner.owner_len = 0;
928 open_args->owner.owner_val = NULL;
929
930 if (create_flag) {
931 /* CREATE a file */
932 open_args->opentype = OPEN4_CREATE;
933 open_args->mode = createmode;
934 if (createmode == EXCLUSIVE4) {
935 if (did_excl_setup == FALSE) {
936 verf.seconds = zone_get_hostid(NULL);
937 if (verf.seconds != 0)
938 verf.nseconds = newnum();
939 else {
940 timestruc_t now;
941
942 gethrestime(&now);
943 verf.seconds = now.tv_sec;
944 verf.nseconds = now.tv_nsec;
945 }
946 /*
947 * Since the server will use this value for the
948 * mtime, make sure that it can't overflow. Zero
949 * out the MSB. The actual value does not matter
950 * here, only its uniqeness.
951 */
952 verf.seconds &= INT32_MAX;
953 did_excl_setup = TRUE;
954 }
955
956 /* Now copy over verifier to OPEN4args. */
957 open_args->createhow4_u.createverf = *(uint64_t *)&verf;
958 } else {
959 int v_error;
960 bitmap4 supp_attrs;
961 servinfo4_t *svp;
962
963 attr = &open_args->createhow4_u.createattrs;
964
965 svp = drp->r_server;
966 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
967 supp_attrs = svp->sv_supp_attrs;
968 nfs_rw_exit(&svp->sv_lock);
969
970 /* GUARDED4 or UNCHECKED4 */
971 v_error = vattr_to_fattr4(in_va, NULL, attr, 0, OP_OPEN,
972 supp_attrs);
973 if (v_error) {
974 bzero(attr, sizeof (*attr));
975 nfs4args_copen_free(open_args);
976 nfs4_end_op(VTOMI4(dvp), dvp, vpi,
977 &recov_state, FALSE);
978 if (ncr != NULL)
979 crfree(ncr);
980 kmem_free(argop, argoplist_size);
981 return (v_error);
982 }
983 }
984 } else {
985 /* NO CREATE */
986 open_args->opentype = OPEN4_NOCREATE;
987 }
988
989 if (recov_state.rs_sp != NULL) {
990 mutex_enter(&recov_state.rs_sp->s_lock);
991 open_args->owner.clientid = recov_state.rs_sp->clientid;
992 mutex_exit(&recov_state.rs_sp->s_lock);
993 } else {
994 /* XXX should we just fail here? */
995 open_args->owner.clientid = 0;
996 }
997
998 /*
999 * This increments oop's ref count or creates a temporary 'just_created'
1000 * open owner that will become valid when this OPEN/OPEN_CONFIRM call
1001 * completes.
1002 */
1003 mutex_enter(&VTOMI4(dvp)->mi_lock);
1004
1005 /* See if a permanent or just created open owner exists */
1006 oop = find_open_owner_nolock(cr, NFS4_JUST_CREATED, VTOMI4(dvp));
1007 if (!oop) {
1008 /*
1009 * This open owner does not exist so create a temporary
1010 * just created one.
1011 */
1012 oop = create_open_owner(cr, VTOMI4(dvp));
1013 ASSERT(oop != NULL);
1014 }
1015 mutex_exit(&VTOMI4(dvp)->mi_lock);
1016
1017 /* this length never changes, do alloc before seqid sync */
1018 open_args->owner.owner_len = sizeof (oop->oo_name);
1019 open_args->owner.owner_val =
1020 kmem_alloc(open_args->owner.owner_len, KM_SLEEP);
1021
1022 e.error = nfs4_start_open_seqid_sync(oop, VTOMI4(dvp));
1023 if (e.error == EAGAIN) {
1024 open_owner_rele(oop);
1025 nfs4args_copen_free(open_args);
1026 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE);
1027 if (ncr != NULL) {
1028 crfree(ncr);
1029 ncr = NULL;
1030 }
1031 goto recov_retry;
1032 }
1033
1034 /* Check to see if we need to do the OTW call */
1035 if (!create_flag) {
1036 if (!nfs4_is_otw_open_necessary(oop, open_flag, vpi,
1037 file_just_been_created, &e.error, acc, &recov_state)) {
1038
1039 /*
1040 * The OTW open is not necessary. Either
1041 * the open can succeed without it (eg.
1042 * delegation, error == 0) or the open
1043 * must fail due to an access failure
1044 * (error != 0). In either case, tidy
1045 * up and return.
1046 */
1047
1048 nfs4_end_open_seqid_sync(oop);
1049 open_owner_rele(oop);
1050 nfs4args_copen_free(open_args);
1051 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, FALSE);
1052 if (ncr != NULL)
1053 crfree(ncr);
1054 kmem_free(argop, argoplist_size);
1055 return (e.error);
1056 }
1057 }
1058
1059 bcopy(&oop->oo_name, open_args->owner.owner_val,
1060 open_args->owner.owner_len);
1061
1062 seqid = nfs4_get_open_seqid(oop) + 1;
1063 open_args->seqid = seqid;
1064 open_args->share_access = 0;
1065 if (open_flag & FREAD)
1066 open_args->share_access |= OPEN4_SHARE_ACCESS_READ;
1067 if (open_flag & FWRITE)
1068 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE;
1069 open_args->share_deny = OPEN4_SHARE_DENY_NONE;
1070
1071
1072
1073 /*
1074 * getfh w/sanity check for idx_open/idx_fattr
1075 */
1076 ASSERT((idx_open + 1) == (idx_fattr - 1));
1077 argop[idx_open + 1].argop = OP_GETFH;
1078
1079 /* getattr */
1080 argop[idx_fattr].argop = OP_GETATTR;
1081 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
1082 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
1083
1084 if (setgid_flag) {
1085 vattr_t _v;
1086 servinfo4_t *svp;
1087 bitmap4 supp_attrs;
1088
1089 svp = drp->r_server;
1090 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
1091 supp_attrs = svp->sv_supp_attrs;
1092 nfs_rw_exit(&svp->sv_lock);
1093
1094 /*
1095 * For setgid case, we need to:
1096 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new)
1097 */
1098 argop[4].argop = OP_SAVEFH;
1099
1100 argop[5].argop = OP_CPUTFH;
1101 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
1102
1103 argop[6].argop = OP_GETATTR;
1104 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
1105 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
1106
1107 argop[7].argop = OP_RESTOREFH;
1108
1109 /*
1110 * nverify
1111 */
1112 _v.va_mask = AT_GID;
1113 _v.va_gid = in_va->va_gid;
1114 if (!(e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY,
1115 supp_attrs))) {
1116
1117 /*
1118 * setattr
1119 *
1120 * We _know_ we're not messing with AT_SIZE or
1121 * AT_XTIME, so no need for stateid or flags.
1122 * Also we specify NULL rp since we're only
1123 * interested in setting owner_group attributes.
1124 */
1125 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr,
1126 supp_attrs, &e.error, 0);
1127 if (e.error)
1128 nfs4args_verify_free(&argop[8]);
1129 }
1130
1131 if (e.error) {
1132 /*
1133 * XXX - Revisit the last argument to nfs4_end_op()
1134 * once 5020486 is fixed.
1135 */
1136 nfs4_end_open_seqid_sync(oop);
1137 open_owner_rele(oop);
1138 nfs4args_copen_free(open_args);
1139 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE);
1140 if (ncr != NULL)
1141 crfree(ncr);
1142 kmem_free(argop, argoplist_size);
1143 return (e.error);
1144 }
1145 } else if (create_flag) {
1146 argop[1].argop = OP_SAVEFH;
1147
1148 argop[5].argop = OP_RESTOREFH;
1149
1150 argop[6].argop = OP_GETATTR;
1151 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
1152 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
1153 }
1154
1155 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
1156 "nfs4open_otw: %s call, nm %s, rp %s",
1157 needrecov ? "recov" : "first", file_name,
1158 rnode4info(VTOR4(dvp))));
1159
1160 t = gethrtime();
1161
1162 rfs4call(VTOMI4(dvp), &args, &res, cred_otw, &doqueue, 0, &e);
1163
1164 if (!e.error && nfs4_need_to_bump_seqid(&res))
1165 nfs4_set_open_seqid(seqid, oop, args.ctag);
1166
1167 needrecov = nfs4_needs_recovery(&e, TRUE, dvp->v_vfsp);
1168
1169 if (e.error || needrecov) {
1170 bool_t abort = FALSE;
1171
1172 if (needrecov) {
1173 nfs4_bseqid_entry_t *bsep = NULL;
1174
1175 nfs4open_save_lost_rqst(e.error, &lost_rqst, oop,
1176 cred_otw, vpi, dvp, open_args);
1177
1178 if (!e.error && res.status == NFS4ERR_BAD_SEQID) {
1179 bsep = nfs4_create_bseqid_entry(oop, NULL,
1180 vpi, 0, args.ctag, open_args->seqid);
1181 num_bseqid_retry--;
1182 }
1183
1184 abort = nfs4_start_recovery(&e, VTOMI4(dvp), dvp, vpi,
1185 NULL, lost_rqst.lr_op == OP_OPEN ?
1186 &lost_rqst : NULL, OP_OPEN, bsep, NULL, NULL);
1187
1188 if (bsep)
1189 kmem_free(bsep, sizeof (*bsep));
1190 /* give up if we keep getting BAD_SEQID */
1191 if (num_bseqid_retry == 0)
1192 abort = TRUE;
1193 if (abort == TRUE && e.error == 0)
1194 e.error = geterrno4(res.status);
1195 }
1196 nfs4_end_open_seqid_sync(oop);
1197 open_owner_rele(oop);
1198 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov);
1199 nfs4args_copen_free(open_args);
1200 if (setgid_flag) {
1201 nfs4args_verify_free(&argop[8]);
1202 nfs4args_setattr_free(&argop[9]);
1203 }
1204 if (!e.error)
1205 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1206 if (ncr != NULL) {
1207 crfree(ncr);
1208 ncr = NULL;
1209 }
1210 if (!needrecov || abort == TRUE || e.error == EINTR ||
1211 NFS4_FRC_UNMT_ERR(e.error, dvp->v_vfsp)) {
1212 kmem_free(argop, argoplist_size);
1213 return (e.error);
1214 }
1215 goto recov_retry;
1216 }
1217
1218 /*
1219 * Will check and update lease after checking the rflag for
1220 * OPEN_CONFIRM in the successful OPEN call.
1221 */
1222 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) {
1223
1224 /*
1225 * XXX what if we're crossing mount points from server1:/drp
1226 * to server2:/drp/rp.
1227 */
1228
1229 /* Signal our end of use of the open seqid */
1230 nfs4_end_open_seqid_sync(oop);
1231
1232 /*
1233 * This will destroy the open owner if it was just created,
1234 * and no one else has put a reference on it.
1235 */
1236 open_owner_rele(oop);
1237 if (create_flag && (createmode != EXCLUSIVE4) &&
1238 res.status == NFS4ERR_BADOWNER)
1239 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN);
1240
1241 e.error = geterrno4(res.status);
1242 nfs4args_copen_free(open_args);
1243 if (setgid_flag) {
1244 nfs4args_verify_free(&argop[8]);
1245 nfs4args_setattr_free(&argop[9]);
1246 }
1247 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1248 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov);
1249 /*
1250 * If the reply is NFS4ERR_ACCESS, it may be because
1251 * we are root (no root net access). If the real uid
1252 * is not root, then retry with the real uid instead.
1253 */
1254 if (ncr != NULL) {
1255 crfree(ncr);
1256 ncr = NULL;
1257 }
1258 if (res.status == NFS4ERR_ACCESS &&
1259 (ncr = crnetadjust(cred_otw)) != NULL) {
1260 cred_otw = ncr;
1261 goto recov_retry;
1262 }
1263 kmem_free(argop, argoplist_size);
1264 return (e.error);
1265 }
1266
1267 resop = &res.array[idx_open]; /* open res */
1268 op_res = &resop->nfs_resop4_u.opopen;
1269
1270 #ifdef DEBUG
1271 /*
1272 * verify attrset bitmap
1273 */
1274 if (create_flag &&
1275 (createmode == UNCHECKED4 || createmode == GUARDED4)) {
1276 /* make sure attrset returned is what we asked for */
1277 /* XXX Ignore this 'error' for now */
1278 if (attr->attrmask != op_res->attrset)
1279 /* EMPTY */;
1280 }
1281 #endif
1282
1283 if (op_res->rflags & OPEN4_RESULT_LOCKTYPE_POSIX) {
1284 mutex_enter(&VTOMI4(dvp)->mi_lock);
1285 VTOMI4(dvp)->mi_flags |= MI4_POSIX_LOCK;
1286 mutex_exit(&VTOMI4(dvp)->mi_lock);
1287 }
1288
1289 resop = &res.array[idx_open + 1]; /* getfh res */
1290 gf_res = &resop->nfs_resop4_u.opgetfh;
1291
1292 otw_sfh = sfh4_get(&gf_res->object, VTOMI4(dvp));
1293
1294 /*
1295 * The open stateid has been updated on the server but not
1296 * on the client yet. There is a path: makenfs4node->nfs4_attr_cache->
1297 * flush_pages->VOP_PUTPAGE->...->nfs4write where we will issue an OTW
1298 * WRITE call. That, however, will use the old stateid, so go ahead
1299 * and upate the open stateid now, before any call to makenfs4node.
1300 */
1301 if (vpi) {
1302 nfs4_open_stream_t *tmp_osp;
1303 rnode4_t *tmp_rp = VTOR4(vpi);
1304
1305 tmp_osp = find_open_stream(oop, tmp_rp);
1306 if (tmp_osp) {
1307 tmp_osp->open_stateid = op_res->stateid;
1308 mutex_exit(&tmp_osp->os_sync_lock);
1309 open_stream_rele(tmp_osp, tmp_rp);
1310 }
1311
1312 /*
1313 * We must determine if the file handle given by the otw open
1314 * is the same as the file handle which was passed in with
1315 * *vpp. This case can be reached if the file we are trying
1316 * to open has been removed and another file has been created
1317 * having the same file name. The passed in vnode is released
1318 * later.
1319 */
1320 orig_sfh = VTOR4(vpi)->r_fh;
1321 fh_differs = nfs4cmpfh(&orig_sfh->sfh_fh, &otw_sfh->sfh_fh);
1322 }
1323
1324 garp = &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res;
1325
1326 if (create_flag || fh_differs) {
1327 int rnode_err = 0;
1328
1329 vp = makenfs4node(otw_sfh, garp, dvp->v_vfsp, t, cr,
1330 dvp, fn_get(VTOSV(dvp)->sv_name, file_name, otw_sfh));
1331
1332 if (e.error)
1333 PURGE_ATTRCACHE4(vp);
1334 /*
1335 * For the newly created vp case, make sure the rnode
1336 * isn't bad before using it.
1337 */
1338 mutex_enter(&(VTOR4(vp))->r_statelock);
1339 if (VTOR4(vp)->r_flags & R4RECOVERR)
1340 rnode_err = EIO;
1341 mutex_exit(&(VTOR4(vp))->r_statelock);
1342
1343 if (rnode_err) {
1344 nfs4_end_open_seqid_sync(oop);
1345 nfs4args_copen_free(open_args);
1346 if (setgid_flag) {
1347 nfs4args_verify_free(&argop[8]);
1348 nfs4args_setattr_free(&argop[9]);
1349 }
1350 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1351 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state,
1352 needrecov);
1353 open_owner_rele(oop);
1354 VN_RELE(vp);
1355 if (ncr != NULL)
1356 crfree(ncr);
1357 sfh4_rele(&otw_sfh);
1358 kmem_free(argop, argoplist_size);
1359 return (EIO);
1360 }
1361 } else {
1362 vp = vpi;
1363 }
1364 sfh4_rele(&otw_sfh);
1365
1366 /*
1367 * It seems odd to get a full set of attrs and then not update
1368 * the object's attrcache in the non-create case. Create case uses
1369 * the attrs since makenfs4node checks to see if the attrs need to
1370 * be updated (and then updates them). The non-create case should
1371 * update attrs also.
1372 */
1373 if (! create_flag && ! fh_differs && !e.error) {
1374 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL);
1375 }
1376
1377 nfs4_error_zinit(&e);
1378 if (op_res->rflags & OPEN4_RESULT_CONFIRM) {
1379 /* This does not do recovery for vp explicitly. */
1380 nfs4open_confirm(vp, &seqid, &op_res->stateid, cred_otw, FALSE,
1381 &retry_open, oop, FALSE, &e, &num_bseqid_retry);
1382
1383 if (e.error || e.stat) {
1384 nfs4_end_open_seqid_sync(oop);
1385 nfs4args_copen_free(open_args);
1386 if (setgid_flag) {
1387 nfs4args_verify_free(&argop[8]);
1388 nfs4args_setattr_free(&argop[9]);
1389 }
1390 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1391 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state,
1392 needrecov);
1393 open_owner_rele(oop);
1394 if (create_flag || fh_differs) {
1395 /* rele the makenfs4node */
1396 VN_RELE(vp);
1397 }
1398 if (ncr != NULL) {
1399 crfree(ncr);
1400 ncr = NULL;
1401 }
1402 if (retry_open == TRUE) {
1403 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
1404 "nfs4open_otw: retry the open since OPEN "
1405 "CONFIRM failed with error %d stat %d",
1406 e.error, e.stat));
1407 if (create_flag && createmode == GUARDED4) {
1408 NFS4_DEBUG(nfs4_client_recov_debug,
1409 (CE_NOTE, "nfs4open_otw: switch "
1410 "createmode from GUARDED4 to "
1411 "UNCHECKED4"));
1412 createmode = UNCHECKED4;
1413 }
1414 goto recov_retry;
1415 }
1416 if (!e.error) {
1417 if (create_flag && (createmode != EXCLUSIVE4) &&
1418 e.stat == NFS4ERR_BADOWNER)
1419 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN);
1420
1421 e.error = geterrno4(e.stat);
1422 }
1423 kmem_free(argop, argoplist_size);
1424 return (e.error);
1425 }
1426 }
1427
1428 rp = VTOR4(vp);
1429
1430 mutex_enter(&rp->r_statev4_lock);
1431 if (create_flag)
1432 rp->created_v4 = 1;
1433 mutex_exit(&rp->r_statev4_lock);
1434
1435 mutex_enter(&oop->oo_lock);
1436 /* Doesn't matter if 'oo_just_created' already was set as this */
1437 oop->oo_just_created = NFS4_PERM_CREATED;
1438 if (oop->oo_cred_otw)
1439 crfree(oop->oo_cred_otw);
1440 oop->oo_cred_otw = cred_otw;
1441 crhold(oop->oo_cred_otw);
1442 mutex_exit(&oop->oo_lock);
1443
1444 /* returns with 'os_sync_lock' held */
1445 osp = find_or_create_open_stream(oop, rp, &created_osp);
1446 if (!osp) {
1447 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE,
1448 "nfs4open_otw: failed to create an open stream"));
1449 NFS4_DEBUG(nfs4_seqid_sync, (CE_NOTE, "nfs4open_otw: "
1450 "signal our end of use of the open seqid"));
1451
1452 nfs4_end_open_seqid_sync(oop);
1453 open_owner_rele(oop);
1454 nfs4args_copen_free(open_args);
1455 if (setgid_flag) {
1456 nfs4args_verify_free(&argop[8]);
1457 nfs4args_setattr_free(&argop[9]);
1458 }
1459 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1460 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov);
1461 if (create_flag || fh_differs)
1462 VN_RELE(vp);
1463 if (ncr != NULL)
1464 crfree(ncr);
1465
1466 kmem_free(argop, argoplist_size);
1467 return (EINVAL);
1468
1469 }
1470
1471 osp->open_stateid = op_res->stateid;
1472
1473 if (open_flag & FREAD)
1474 osp->os_share_acc_read++;
1475 if (open_flag & FWRITE)
1476 osp->os_share_acc_write++;
1477 osp->os_share_deny_none++;
1478
1479 /*
1480 * Need to reset this bitfield for the possible case where we were
1481 * going to OTW CLOSE the file, got a non-recoverable error, and before
1482 * we could retry the CLOSE, OPENed the file again.
1483 */
1484 ASSERT(osp->os_open_owner->oo_seqid_inuse);
1485 osp->os_final_close = 0;
1486 osp->os_force_close = 0;
1487 #ifdef DEBUG
1488 if (osp->os_failed_reopen)
1489 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, "nfs4open_otw:"
1490 " clearing os_failed_reopen for osp %p, cr %p, rp %s",
1491 (void *)osp, (void *)cr, rnode4info(rp)));
1492 #endif
1493 osp->os_failed_reopen = 0;
1494
1495 mutex_exit(&osp->os_sync_lock);
1496
1497 nfs4_end_open_seqid_sync(oop);
1498
1499 if (created_osp && recov_state.rs_sp != NULL) {
1500 mutex_enter(&recov_state.rs_sp->s_lock);
1501 nfs4_inc_state_ref_count_nolock(recov_state.rs_sp, VTOMI4(dvp));
1502 mutex_exit(&recov_state.rs_sp->s_lock);
1503 }
1504
1505 /* get rid of our reference to find oop */
1506 open_owner_rele(oop);
1507
1508 open_stream_rele(osp, rp);
1509
1510 /* accept delegation, if any */
1511 nfs4_delegation_accept(rp, CLAIM_NULL, op_res, garp, cred_otw);
1512
1513 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov);
1514
1515 if (createmode == EXCLUSIVE4 &&
1516 (in_va->va_mask & ~(AT_GID | AT_SIZE))) {
1517 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw:"
1518 " EXCLUSIVE4: sending a SETATTR"));
1519 /*
1520 * If doing an exclusive create, then generate
1521 * a SETATTR to set the initial attributes.
1522 * Try to set the mtime and the atime to the
1523 * server's current time. It is somewhat
1524 * expected that these fields will be used to
1525 * store the exclusive create cookie. If not,
1526 * server implementors will need to know that
1527 * a SETATTR will follow an exclusive create
1528 * and the cookie should be destroyed if
1529 * appropriate.
1530 *
1531 * The AT_GID and AT_SIZE bits are turned off
1532 * so that the SETATTR request will not attempt
1533 * to process these. The gid will be set
1534 * separately if appropriate. The size is turned
1535 * off because it is assumed that a new file will
1536 * be created empty and if the file wasn't empty,
1537 * then the exclusive create will have failed
1538 * because the file must have existed already.
1539 * Therefore, no truncate operation is needed.
1540 */
1541 in_va->va_mask &= ~(AT_GID | AT_SIZE);
1542 in_va->va_mask |= (AT_MTIME | AT_ATIME);
1543
1544 e.error = nfs4setattr(vp, in_va, 0, cr, NULL);
1545 if (e.error) {
1546 /*
1547 * Couldn't correct the attributes of
1548 * the newly created file and the
1549 * attributes are wrong. Remove the
1550 * file and return an error to the
1551 * application.
1552 */
1553 /* XXX will this take care of client state ? */
1554 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE,
1555 "nfs4open_otw: EXCLUSIVE4: error %d on SETATTR:"
1556 " remove file", e.error));
1557 VN_RELE(vp);
1558 (void) nfs4_remove(dvp, file_name, cr, NULL, 0);
1559 /*
1560 * Since we've reled the vnode and removed
1561 * the file we now need to return the error.
1562 * At this point we don't want to update the
1563 * dircaches, call nfs4_waitfor_purge_complete
1564 * or set vpp to vp so we need to skip these
1565 * as well.
1566 */
1567 goto skip_update_dircaches;
1568 }
1569 }
1570
1571 /*
1572 * If we created or found the correct vnode, due to create_flag or
1573 * fh_differs being set, then update directory cache attribute, readdir
1574 * and dnlc caches.
1575 */
1576 if (create_flag || fh_differs) {
1577 dirattr_info_t dinfo, *dinfop;
1578
1579 /*
1580 * Make sure getattr succeeded before using results.
1581 * note: op 7 is getattr(dir) for both flavors of
1582 * open(create).
1583 */
1584 if (create_flag && res.status == NFS4_OK) {
1585 dinfo.di_time_call = t;
1586 dinfo.di_cred = cr;
1587 dinfo.di_garp =
1588 &res.array[6].nfs_resop4_u.opgetattr.ga_res;
1589 dinfop = &dinfo;
1590 } else {
1591 dinfop = NULL;
1592 }
1593
1594 nfs4_update_dircaches(&op_res->cinfo, dvp, vp, file_name,
1595 dinfop);
1596 }
1597
1598 /*
1599 * If the page cache for this file was flushed from actions
1600 * above, it was done asynchronously and if that is true,
1601 * there is a need to wait here for it to complete. This must
1602 * be done outside of start_fop/end_fop.
1603 */
1604 (void) nfs4_waitfor_purge_complete(vp);
1605
1606 /*
1607 * It is implicit that we are in the open case (create_flag == 0) since
1608 * fh_differs can only be set to a non-zero value in the open case.
1609 */
1610 if (fh_differs != 0 && vpi != NULL)
1611 VN_RELE(vpi);
1612
1613 /*
1614 * Be sure to set *vpp to the correct value before returning.
1615 */
1616 *vpp = vp;
1617
1618 skip_update_dircaches:
1619
1620 nfs4args_copen_free(open_args);
1621 if (setgid_flag) {
1622 nfs4args_verify_free(&argop[8]);
1623 nfs4args_setattr_free(&argop[9]);
1624 }
1625 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1626
1627 if (ncr)
1628 crfree(ncr);
1629 kmem_free(argop, argoplist_size);
1630 return (e.error);
1631 }
1632
1633 /*
1634 * Reopen an open instance. cf. nfs4open_otw().
1635 *
1636 * Errors are returned by the nfs4_error_t parameter.
1637 * - ep->error contains an errno value or zero.
1638 * - if it is zero, ep->stat is set to an NFS status code, if any.
1639 * If the file could not be reopened, but the caller should continue, the
1640 * file is marked dead and no error values are returned. If the caller
1641 * should stop recovering open files and start over, either the ep->error
1642 * value or ep->stat will indicate an error (either something that requires
1643 * recovery or EAGAIN). Note that some recovery (e.g., expired volatile
1644 * filehandles) may be handled silently by this routine.
1645 * - if it is EINTR, ETIMEDOUT, or NFS4_FRC_UNMT_ERR, recovery for lost state
1646 * will be started, so the caller should not do it.
1647 *
1648 * Gotos:
1649 * - kill_file : reopen failed in such a fashion to constitute marking the
1650 * file dead and setting the open stream's 'os_failed_reopen' as 1. This
1651 * is for cases where recovery is not possible.
1652 * - failed_reopen : same as above, except that the file has already been
1653 * marked dead, so no need to do it again.
1654 * - bailout : reopen failed but we are able to recover and retry the reopen -
1655 * either within this function immediately or via the calling function.
1656 */
1657
1658 void
nfs4_reopen(vnode_t * vp,nfs4_open_stream_t * osp,nfs4_error_t * ep,open_claim_type4 claim,bool_t frc_use_claim_previous,bool_t is_recov)1659 nfs4_reopen(vnode_t *vp, nfs4_open_stream_t *osp, nfs4_error_t *ep,
1660 open_claim_type4 claim, bool_t frc_use_claim_previous,
1661 bool_t is_recov)
1662 {
1663 COMPOUND4args_clnt args;
1664 COMPOUND4res_clnt res;
1665 nfs_argop4 argop[4];
1666 nfs_resop4 *resop;
1667 OPEN4res *op_res = NULL;
1668 OPEN4cargs *open_args;
1669 GETFH4res *gf_res;
1670 rnode4_t *rp = VTOR4(vp);
1671 int doqueue = 1;
1672 cred_t *cr = NULL, *cred_otw = NULL;
1673 nfs4_open_owner_t *oop = NULL;
1674 seqid4 seqid;
1675 nfs4_ga_res_t *garp;
1676 char fn[MAXNAMELEN];
1677 nfs4_recov_state_t recov = {NULL, 0};
1678 nfs4_lost_rqst_t lost_rqst;
1679 mntinfo4_t *mi = VTOMI4(vp);
1680 bool_t abort;
1681 char *failed_msg = "";
1682 int fh_different;
1683 hrtime_t t;
1684 nfs4_bseqid_entry_t *bsep = NULL;
1685
1686 ASSERT(nfs4_consistent_type(vp));
1687 ASSERT(nfs_zone() == mi->mi_zone);
1688
1689 nfs4_error_zinit(ep);
1690
1691 /* this is the cred used to find the open owner */
1692 cr = state_to_cred(osp);
1693 if (cr == NULL) {
1694 failed_msg = "Couldn't reopen: no cred";
1695 goto kill_file;
1696 }
1697 /* use this cred for OTW operations */
1698 cred_otw = nfs4_get_otw_cred(cr, mi, osp->os_open_owner);
1699
1700 top:
1701 nfs4_error_zinit(ep);
1702
1703 if (mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED) {
1704 /* File system has been unmounted, quit */
1705 ep->error = EIO;
1706 failed_msg = "Couldn't reopen: file system has been unmounted";
1707 goto kill_file;
1708 }
1709
1710 oop = osp->os_open_owner;
1711
1712 ASSERT(oop != NULL);
1713 if (oop == NULL) { /* be defensive in non-DEBUG */
1714 failed_msg = "can't reopen: no open owner";
1715 goto kill_file;
1716 }
1717 open_owner_hold(oop);
1718
1719 ep->error = nfs4_start_open_seqid_sync(oop, mi);
1720 if (ep->error) {
1721 open_owner_rele(oop);
1722 oop = NULL;
1723 goto bailout;
1724 }
1725
1726 /*
1727 * If the rnode has a delegation and the delegation has been
1728 * recovered and the server didn't request a recall and the caller
1729 * didn't specifically ask for CLAIM_PREVIOUS (nfs4frlock during
1730 * recovery) and the rnode hasn't been marked dead, then install
1731 * the delegation stateid in the open stream. Otherwise, proceed
1732 * with a CLAIM_PREVIOUS or CLAIM_NULL OPEN.
1733 */
1734 mutex_enter(&rp->r_statev4_lock);
1735 if (rp->r_deleg_type != OPEN_DELEGATE_NONE &&
1736 !rp->r_deleg_return_pending &&
1737 (rp->r_deleg_needs_recovery == OPEN_DELEGATE_NONE) &&
1738 !rp->r_deleg_needs_recall &&
1739 claim != CLAIM_DELEGATE_CUR && !frc_use_claim_previous &&
1740 !(rp->r_flags & R4RECOVERR)) {
1741 mutex_enter(&osp->os_sync_lock);
1742 osp->os_delegation = 1;
1743 osp->open_stateid = rp->r_deleg_stateid;
1744 mutex_exit(&osp->os_sync_lock);
1745 mutex_exit(&rp->r_statev4_lock);
1746 goto bailout;
1747 }
1748 mutex_exit(&rp->r_statev4_lock);
1749
1750 /*
1751 * If the file failed recovery, just quit. This failure need not
1752 * affect other reopens, so don't return an error.
1753 */
1754 mutex_enter(&rp->r_statelock);
1755 if (rp->r_flags & R4RECOVERR) {
1756 mutex_exit(&rp->r_statelock);
1757 ep->error = 0;
1758 goto failed_reopen;
1759 }
1760 mutex_exit(&rp->r_statelock);
1761
1762 /*
1763 * argop is empty here
1764 *
1765 * PUTFH, OPEN, GETATTR
1766 */
1767 args.ctag = TAG_REOPEN;
1768 args.array_len = 4;
1769 args.array = argop;
1770
1771 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
1772 "nfs4_reopen: file is type %d, id %s",
1773 vp->v_type, rnode4info(VTOR4(vp))));
1774
1775 argop[0].argop = OP_CPUTFH;
1776
1777 if (claim != CLAIM_PREVIOUS) {
1778 /*
1779 * if this is a file mount then
1780 * use the mntinfo parentfh
1781 */
1782 argop[0].nfs_argop4_u.opcputfh.sfh =
1783 (vp->v_flag & VROOT) ? mi->mi_srvparentfh :
1784 VTOSV(vp)->sv_dfh;
1785 } else {
1786 /* putfh fh to reopen */
1787 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
1788 }
1789
1790 argop[1].argop = OP_COPEN;
1791 open_args = &argop[1].nfs_argop4_u.opcopen;
1792 open_args->claim = claim;
1793
1794 if (claim == CLAIM_NULL) {
1795
1796 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) {
1797 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname "
1798 "failed for vp 0x%p for CLAIM_NULL with %m",
1799 (void *)vp);
1800 failed_msg = "Couldn't reopen: vtoname failed for "
1801 "CLAIM_NULL";
1802 /* nothing allocated yet */
1803 goto kill_file;
1804 }
1805
1806 open_args->open_claim4_u.cfile = fn;
1807 } else if (claim == CLAIM_PREVIOUS) {
1808
1809 /*
1810 * We have two cases to deal with here:
1811 * 1) We're being called to reopen files in order to satisfy
1812 * a lock operation request which requires us to explicitly
1813 * reopen files which were opened under a delegation. If
1814 * we're in recovery, we *must* use CLAIM_PREVIOUS. In
1815 * that case, frc_use_claim_previous is TRUE and we must
1816 * use the rnode's current delegation type (r_deleg_type).
1817 * 2) We're reopening files during some form of recovery.
1818 * In this case, frc_use_claim_previous is FALSE and we
1819 * use the delegation type appropriate for recovery
1820 * (r_deleg_needs_recovery).
1821 */
1822 mutex_enter(&rp->r_statev4_lock);
1823 open_args->open_claim4_u.delegate_type =
1824 frc_use_claim_previous ?
1825 rp->r_deleg_type :
1826 rp->r_deleg_needs_recovery;
1827 mutex_exit(&rp->r_statev4_lock);
1828
1829 } else if (claim == CLAIM_DELEGATE_CUR) {
1830
1831 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) {
1832 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname "
1833 "failed for vp 0x%p for CLAIM_DELEGATE_CUR "
1834 "with %m", (void *)vp);
1835 failed_msg = "Couldn't reopen: vtoname failed for "
1836 "CLAIM_DELEGATE_CUR";
1837 /* nothing allocated yet */
1838 goto kill_file;
1839 }
1840
1841 mutex_enter(&rp->r_statev4_lock);
1842 open_args->open_claim4_u.delegate_cur_info.delegate_stateid =
1843 rp->r_deleg_stateid;
1844 mutex_exit(&rp->r_statev4_lock);
1845
1846 open_args->open_claim4_u.delegate_cur_info.cfile = fn;
1847 }
1848 open_args->opentype = OPEN4_NOCREATE;
1849 open_args->owner.clientid = mi2clientid(mi);
1850 open_args->owner.owner_len = sizeof (oop->oo_name);
1851 open_args->owner.owner_val =
1852 kmem_alloc(open_args->owner.owner_len, KM_SLEEP);
1853 bcopy(&oop->oo_name, open_args->owner.owner_val,
1854 open_args->owner.owner_len);
1855 open_args->share_access = 0;
1856 open_args->share_deny = 0;
1857
1858 mutex_enter(&osp->os_sync_lock);
1859 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4_reopen: osp %p rp "
1860 "%p: read acc %"PRIu64" write acc %"PRIu64": open ref count %d: "
1861 "mmap read %"PRIu64" mmap write %"PRIu64" claim %d ",
1862 (void *)osp, (void *)rp, osp->os_share_acc_read,
1863 osp->os_share_acc_write, osp->os_open_ref_count,
1864 osp->os_mmap_read, osp->os_mmap_write, claim));
1865
1866 if (osp->os_share_acc_read || osp->os_mmap_read)
1867 open_args->share_access |= OPEN4_SHARE_ACCESS_READ;
1868 if (osp->os_share_acc_write || osp->os_mmap_write)
1869 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE;
1870 if (osp->os_share_deny_read)
1871 open_args->share_deny |= OPEN4_SHARE_DENY_READ;
1872 if (osp->os_share_deny_write)
1873 open_args->share_deny |= OPEN4_SHARE_DENY_WRITE;
1874 mutex_exit(&osp->os_sync_lock);
1875
1876 seqid = nfs4_get_open_seqid(oop) + 1;
1877 open_args->seqid = seqid;
1878
1879 /* Construct the getfh part of the compound */
1880 argop[2].argop = OP_GETFH;
1881
1882 /* Construct the getattr part of the compound */
1883 argop[3].argop = OP_GETATTR;
1884 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
1885 argop[3].nfs_argop4_u.opgetattr.mi = mi;
1886
1887 t = gethrtime();
1888
1889 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep);
1890
1891 if (ep->error) {
1892 if (!is_recov && !frc_use_claim_previous &&
1893 (ep->error == EINTR || ep->error == ETIMEDOUT ||
1894 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp))) {
1895 nfs4open_save_lost_rqst(ep->error, &lost_rqst, oop,
1896 cred_otw, vp, NULL, open_args);
1897 abort = nfs4_start_recovery(ep,
1898 VTOMI4(vp), vp, NULL, NULL,
1899 lost_rqst.lr_op == OP_OPEN ?
1900 &lost_rqst : NULL, OP_OPEN, NULL, NULL, NULL);
1901 nfs4args_copen_free(open_args);
1902 goto bailout;
1903 }
1904
1905 nfs4args_copen_free(open_args);
1906
1907 if (ep->error == EACCES && cred_otw != cr) {
1908 crfree(cred_otw);
1909 cred_otw = cr;
1910 crhold(cred_otw);
1911 nfs4_end_open_seqid_sync(oop);
1912 open_owner_rele(oop);
1913 oop = NULL;
1914 goto top;
1915 }
1916 if (ep->error == ETIMEDOUT)
1917 goto bailout;
1918 failed_msg = "Couldn't reopen: rpc error";
1919 goto kill_file;
1920 }
1921
1922 if (nfs4_need_to_bump_seqid(&res))
1923 nfs4_set_open_seqid(seqid, oop, args.ctag);
1924
1925 switch (res.status) {
1926 case NFS4_OK:
1927 if (recov.rs_flags & NFS4_RS_DELAY_MSG) {
1928 mutex_enter(&rp->r_statelock);
1929 rp->r_delay_interval = 0;
1930 mutex_exit(&rp->r_statelock);
1931 }
1932 break;
1933 case NFS4ERR_BAD_SEQID:
1934 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 0,
1935 args.ctag, open_args->seqid);
1936
1937 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL,
1938 NULL, lost_rqst.lr_op == OP_OPEN ? &lost_rqst :
1939 NULL, OP_OPEN, bsep, NULL, NULL);
1940
1941 nfs4args_copen_free(open_args);
1942 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1943 nfs4_end_open_seqid_sync(oop);
1944 open_owner_rele(oop);
1945 oop = NULL;
1946 kmem_free(bsep, sizeof (*bsep));
1947
1948 goto kill_file;
1949 case NFS4ERR_NO_GRACE:
1950 nfs4args_copen_free(open_args);
1951 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1952 nfs4_end_open_seqid_sync(oop);
1953 open_owner_rele(oop);
1954 oop = NULL;
1955 if (claim == CLAIM_PREVIOUS) {
1956 /*
1957 * Retry as a plain open. We don't need to worry about
1958 * checking the changeinfo: it is acceptable for a
1959 * client to re-open a file and continue processing
1960 * (in the absence of locks).
1961 */
1962 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
1963 "nfs4_reopen: CLAIM_PREVIOUS: NFS4ERR_NO_GRACE; "
1964 "will retry as CLAIM_NULL"));
1965 claim = CLAIM_NULL;
1966 nfs4_mi_kstat_inc_no_grace(mi);
1967 goto top;
1968 }
1969 failed_msg =
1970 "Couldn't reopen: tried reclaim outside grace period. ";
1971 goto kill_file;
1972 case NFS4ERR_GRACE:
1973 nfs4_set_grace_wait(mi);
1974 nfs4args_copen_free(open_args);
1975 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1976 nfs4_end_open_seqid_sync(oop);
1977 open_owner_rele(oop);
1978 oop = NULL;
1979 ep->error = nfs4_wait_for_grace(mi, &recov);
1980 if (ep->error != 0)
1981 goto bailout;
1982 goto top;
1983 case NFS4ERR_DELAY:
1984 nfs4_set_delay_wait(vp);
1985 nfs4args_copen_free(open_args);
1986 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1987 nfs4_end_open_seqid_sync(oop);
1988 open_owner_rele(oop);
1989 oop = NULL;
1990 ep->error = nfs4_wait_for_delay(vp, &recov);
1991 nfs4_mi_kstat_inc_delay(mi);
1992 if (ep->error != 0)
1993 goto bailout;
1994 goto top;
1995 case NFS4ERR_FHEXPIRED:
1996 /* recover filehandle and retry */
1997 abort = nfs4_start_recovery(ep,
1998 mi, vp, NULL, NULL, NULL, OP_OPEN, NULL, NULL, NULL);
1999 nfs4args_copen_free(open_args);
2000 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2001 nfs4_end_open_seqid_sync(oop);
2002 open_owner_rele(oop);
2003 oop = NULL;
2004 if (abort == FALSE)
2005 goto top;
2006 failed_msg = "Couldn't reopen: recovery aborted";
2007 goto kill_file;
2008 case NFS4ERR_RESOURCE:
2009 case NFS4ERR_STALE_CLIENTID:
2010 case NFS4ERR_WRONGSEC:
2011 case NFS4ERR_EXPIRED:
2012 /*
2013 * Do not mark the file dead and let the calling
2014 * function initiate recovery.
2015 */
2016 nfs4args_copen_free(open_args);
2017 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2018 nfs4_end_open_seqid_sync(oop);
2019 open_owner_rele(oop);
2020 oop = NULL;
2021 goto bailout;
2022 case NFS4ERR_ACCESS:
2023 if (cred_otw != cr) {
2024 crfree(cred_otw);
2025 cred_otw = cr;
2026 crhold(cred_otw);
2027 nfs4args_copen_free(open_args);
2028 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2029 nfs4_end_open_seqid_sync(oop);
2030 open_owner_rele(oop);
2031 oop = NULL;
2032 goto top;
2033 }
2034 /* fall through */
2035 default:
2036 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
2037 "nfs4_reopen: r_server 0x%p, mi_curr_serv 0x%p, rnode %s",
2038 (void*)VTOR4(vp)->r_server, (void*)mi->mi_curr_serv,
2039 rnode4info(VTOR4(vp))));
2040 failed_msg = "Couldn't reopen: NFSv4 error";
2041 nfs4args_copen_free(open_args);
2042 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2043 goto kill_file;
2044 }
2045
2046 resop = &res.array[1]; /* open res */
2047 op_res = &resop->nfs_resop4_u.opopen;
2048
2049 garp = &res.array[3].nfs_resop4_u.opgetattr.ga_res;
2050
2051 /*
2052 * Check if the path we reopened really is the same
2053 * file. We could end up in a situation where the file
2054 * was removed and a new file created with the same name.
2055 */
2056 resop = &res.array[2];
2057 gf_res = &resop->nfs_resop4_u.opgetfh;
2058 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0);
2059 fh_different = (nfs4cmpfh(&rp->r_fh->sfh_fh, &gf_res->object) != 0);
2060 if (fh_different) {
2061 if (mi->mi_fh_expire_type == FH4_PERSISTENT ||
2062 mi->mi_fh_expire_type & FH4_NOEXPIRE_WITH_OPEN) {
2063 /* Oops, we don't have the same file */
2064 if (mi->mi_fh_expire_type == FH4_PERSISTENT)
2065 failed_msg = "Couldn't reopen: Persistent "
2066 "file handle changed";
2067 else
2068 failed_msg = "Couldn't reopen: Volatile "
2069 "(no expire on open) file handle changed";
2070
2071 nfs4args_copen_free(open_args);
2072 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2073 nfs_rw_exit(&mi->mi_fh_lock);
2074 goto kill_file;
2075
2076 } else {
2077 /*
2078 * We have volatile file handles that don't compare.
2079 * If the fids are the same then we assume that the
2080 * file handle expired but the rnode still refers to
2081 * the same file object.
2082 *
2083 * First check that we have fids or not.
2084 * If we don't we have a dumb server so we will
2085 * just assume every thing is ok for now.
2086 */
2087 if (!ep->error && garp->n4g_va.va_mask & AT_NODEID &&
2088 rp->r_attr.va_mask & AT_NODEID &&
2089 rp->r_attr.va_nodeid != garp->n4g_va.va_nodeid) {
2090 /*
2091 * We have fids, but they don't
2092 * compare. So kill the file.
2093 */
2094 failed_msg =
2095 "Couldn't reopen: file handle changed"
2096 " due to mismatched fids";
2097 nfs4args_copen_free(open_args);
2098 (void) xdr_free(xdr_COMPOUND4res_clnt,
2099 (caddr_t)&res);
2100 nfs_rw_exit(&mi->mi_fh_lock);
2101 goto kill_file;
2102 } else {
2103 /*
2104 * We have volatile file handles that refers
2105 * to the same file (at least they have the
2106 * same fid) or we don't have fids so we
2107 * can't tell. :(. We'll be a kind and accepting
2108 * client so we'll update the rnode's file
2109 * handle with the otw handle.
2110 *
2111 * We need to drop mi->mi_fh_lock since
2112 * sh4_update acquires it. Since there is
2113 * only one recovery thread there is no
2114 * race.
2115 */
2116 nfs_rw_exit(&mi->mi_fh_lock);
2117 sfh4_update(rp->r_fh, &gf_res->object);
2118 }
2119 }
2120 } else {
2121 nfs_rw_exit(&mi->mi_fh_lock);
2122 }
2123
2124 ASSERT(nfs4_consistent_type(vp));
2125
2126 /*
2127 * If the server wanted an OPEN_CONFIRM but that fails, just start
2128 * over. Presumably if there is a persistent error it will show up
2129 * when we resend the OPEN.
2130 */
2131 if (op_res->rflags & OPEN4_RESULT_CONFIRM) {
2132 bool_t retry_open = FALSE;
2133
2134 nfs4open_confirm(vp, &seqid, &op_res->stateid,
2135 cred_otw, is_recov, &retry_open,
2136 oop, FALSE, ep, NULL);
2137 if (ep->error || ep->stat) {
2138 nfs4args_copen_free(open_args);
2139 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2140 nfs4_end_open_seqid_sync(oop);
2141 open_owner_rele(oop);
2142 oop = NULL;
2143 goto top;
2144 }
2145 }
2146
2147 mutex_enter(&osp->os_sync_lock);
2148 osp->open_stateid = op_res->stateid;
2149 osp->os_delegation = 0;
2150 /*
2151 * Need to reset this bitfield for the possible case where we were
2152 * going to OTW CLOSE the file, got a non-recoverable error, and before
2153 * we could retry the CLOSE, OPENed the file again.
2154 */
2155 ASSERT(osp->os_open_owner->oo_seqid_inuse);
2156 osp->os_final_close = 0;
2157 osp->os_force_close = 0;
2158 if (claim == CLAIM_DELEGATE_CUR || claim == CLAIM_PREVIOUS)
2159 osp->os_dc_openacc = open_args->share_access;
2160 mutex_exit(&osp->os_sync_lock);
2161
2162 nfs4_end_open_seqid_sync(oop);
2163
2164 /* accept delegation, if any */
2165 nfs4_delegation_accept(rp, claim, op_res, garp, cred_otw);
2166
2167 nfs4args_copen_free(open_args);
2168
2169 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL);
2170
2171 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2172
2173 ASSERT(nfs4_consistent_type(vp));
2174
2175 open_owner_rele(oop);
2176 crfree(cr);
2177 crfree(cred_otw);
2178 return;
2179
2180 kill_file:
2181 nfs4_fail_recov(vp, failed_msg, ep->error, ep->stat);
2182 failed_reopen:
2183 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE,
2184 "nfs4_reopen: setting os_failed_reopen for osp %p, cr %p, rp %s",
2185 (void *)osp, (void *)cr, rnode4info(rp)));
2186 mutex_enter(&osp->os_sync_lock);
2187 osp->os_failed_reopen = 1;
2188 mutex_exit(&osp->os_sync_lock);
2189 bailout:
2190 if (oop != NULL) {
2191 nfs4_end_open_seqid_sync(oop);
2192 open_owner_rele(oop);
2193 }
2194 if (cr != NULL)
2195 crfree(cr);
2196 if (cred_otw != NULL)
2197 crfree(cred_otw);
2198 }
2199
2200 /* for . and .. OPENs */
2201 /* ARGSUSED */
2202 static int
nfs4_open_non_reg_file(vnode_t ** vpp,int flag,cred_t * cr)2203 nfs4_open_non_reg_file(vnode_t **vpp, int flag, cred_t *cr)
2204 {
2205 rnode4_t *rp;
2206 nfs4_ga_res_t gar;
2207
2208 ASSERT(nfs_zone() == VTOMI4(*vpp)->mi_zone);
2209
2210 /*
2211 * If close-to-open consistency checking is turned off or
2212 * if there is no cached data, we can avoid
2213 * the over the wire getattr. Otherwise, force a
2214 * call to the server to get fresh attributes and to
2215 * check caches. This is required for close-to-open
2216 * consistency.
2217 */
2218 rp = VTOR4(*vpp);
2219 if (VTOMI4(*vpp)->mi_flags & MI4_NOCTO ||
2220 (rp->r_dir == NULL && !nfs4_has_pages(*vpp)))
2221 return (0);
2222
2223 gar.n4g_va.va_mask = AT_ALL;
2224 return (nfs4_getattr_otw(*vpp, &gar, cr, 0));
2225 }
2226
2227 /*
2228 * CLOSE a file
2229 */
2230 /* ARGSUSED */
2231 static int
nfs4_close(vnode_t * vp,int flag,int count,offset_t offset,cred_t * cr,caller_context_t * ct)2232 nfs4_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
2233 caller_context_t *ct)
2234 {
2235 rnode4_t *rp;
2236 int error = 0;
2237 int r_error = 0;
2238 int n4error = 0;
2239 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
2240
2241 /*
2242 * Remove client state for this (lockowner, file) pair.
2243 * Issue otw v4 call to have the server do the same.
2244 */
2245
2246 rp = VTOR4(vp);
2247
2248 /*
2249 * zone_enter(2) prevents processes from changing zones with NFS files
2250 * open; if we happen to get here from the wrong zone we can't do
2251 * anything over the wire.
2252 */
2253 if (VTOMI4(vp)->mi_zone != nfs_zone()) {
2254 /*
2255 * We could attempt to clean up locks, except we're sure
2256 * that the current process didn't acquire any locks on
2257 * the file: any attempt to lock a file belong to another zone
2258 * will fail, and one can't lock an NFS file and then change
2259 * zones, as that fails too.
2260 *
2261 * Returning an error here is the sane thing to do. A
2262 * subsequent call to VN_RELE() which translates to a
2263 * nfs4_inactive() will clean up state: if the zone of the
2264 * vnode's origin is still alive and kicking, the inactive
2265 * thread will handle the request (from the correct zone), and
2266 * everything (minus the OTW close call) should be OK. If the
2267 * zone is going away nfs4_async_inactive() will throw away
2268 * delegations, open streams and cached pages inline.
2269 */
2270 return (EIO);
2271 }
2272
2273 /*
2274 * If we are using local locking for this filesystem, then
2275 * release all of the SYSV style record locks. Otherwise,
2276 * we are doing network locking and we need to release all
2277 * of the network locks. All of the locks held by this
2278 * process on this file are released no matter what the
2279 * incoming reference count is.
2280 */
2281 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) {
2282 cleanlocks(vp, ttoproc(curthread)->p_pid, 0);
2283 cleanshares(vp, ttoproc(curthread)->p_pid);
2284 } else
2285 e.error = nfs4_lockrelease(vp, flag, offset, cr);
2286
2287 if (e.error) {
2288 struct lm_sysid *lmsid;
2289 lmsid = nfs4_find_sysid(VTOMI4(vp));
2290 if (lmsid == NULL) {
2291 DTRACE_PROBE2(unknown__sysid, int, e.error,
2292 vnode_t *, vp);
2293 } else {
2294 cleanlocks(vp, ttoproc(curthread)->p_pid,
2295 (lm_sysidt(lmsid) | LM_SYSID_CLIENT));
2296 }
2297 return (e.error);
2298 }
2299
2300 if (count > 1)
2301 return (0);
2302
2303 /*
2304 * If the file has been `unlinked', then purge the
2305 * DNLC so that this vnode will get reycled quicker
2306 * and the .nfs* file on the server will get removed.
2307 */
2308 if (rp->r_unldvp != NULL)
2309 dnlc_purge_vp(vp);
2310
2311 /*
2312 * If the file was open for write and there are pages,
2313 * do a synchronous flush and commit of all of the
2314 * dirty and uncommitted pages.
2315 */
2316 ASSERT(!e.error);
2317 if ((flag & FWRITE) && nfs4_has_pages(vp))
2318 error = nfs4_putpage_commit(vp, 0, 0, cr);
2319
2320 mutex_enter(&rp->r_statelock);
2321 r_error = rp->r_error;
2322 rp->r_error = 0;
2323 mutex_exit(&rp->r_statelock);
2324
2325 /*
2326 * If this file type is one for which no explicit 'open' was
2327 * done, then bail now (ie. no need for protocol 'close'). If
2328 * there was an error w/the vm subsystem, return _that_ error,
2329 * otherwise, return any errors that may've been reported via
2330 * the rnode.
2331 */
2332 if (vp->v_type != VREG)
2333 return (error ? error : r_error);
2334
2335 /*
2336 * The sync putpage commit may have failed above, but since
2337 * we're working w/a regular file, we need to do the protocol
2338 * 'close' (nfs4close_one will figure out if an otw close is
2339 * needed or not). Report any errors _after_ doing the protocol
2340 * 'close'.
2341 */
2342 nfs4close_one(vp, NULL, cr, flag, NULL, &e, CLOSE_NORM, 0, 0, 0);
2343 n4error = e.error ? e.error : geterrno4(e.stat);
2344
2345 /*
2346 * Error reporting prio (Hi -> Lo)
2347 *
2348 * i) nfs4_putpage_commit (error)
2349 * ii) rnode's (r_error)
2350 * iii) nfs4close_one (n4error)
2351 */
2352 return (error ? error : (r_error ? r_error : n4error));
2353 }
2354
2355 /*
2356 * Initialize *lost_rqstp.
2357 */
2358
2359 static void
nfs4close_save_lost_rqst(int error,nfs4_lost_rqst_t * lost_rqstp,nfs4_open_owner_t * oop,nfs4_open_stream_t * osp,cred_t * cr,vnode_t * vp)2360 nfs4close_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp,
2361 nfs4_open_owner_t *oop, nfs4_open_stream_t *osp, cred_t *cr,
2362 vnode_t *vp)
2363 {
2364 if (error != ETIMEDOUT && error != EINTR &&
2365 !NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) {
2366 lost_rqstp->lr_op = 0;
2367 return;
2368 }
2369
2370 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
2371 "nfs4close_save_lost_rqst: error %d", error));
2372
2373 lost_rqstp->lr_op = OP_CLOSE;
2374 /*
2375 * The vp is held and rele'd via the recovery code.
2376 * See nfs4_save_lost_rqst.
2377 */
2378 lost_rqstp->lr_vp = vp;
2379 lost_rqstp->lr_dvp = NULL;
2380 lost_rqstp->lr_oop = oop;
2381 lost_rqstp->lr_osp = osp;
2382 ASSERT(osp != NULL);
2383 ASSERT(mutex_owned(&osp->os_sync_lock));
2384 osp->os_pending_close = 1;
2385 lost_rqstp->lr_lop = NULL;
2386 lost_rqstp->lr_cr = cr;
2387 lost_rqstp->lr_flk = NULL;
2388 lost_rqstp->lr_putfirst = FALSE;
2389 }
2390
2391 /*
2392 * Assumes you already have the open seqid sync grabbed as well as the
2393 * 'os_sync_lock'. Note: this will release the open seqid sync and
2394 * 'os_sync_lock' if client recovery starts. Calling functions have to
2395 * be prepared to handle this.
2396 *
2397 * 'recov' is returned as 1 if the CLOSE operation detected client recovery
2398 * was needed and was started, and that the calling function should retry
2399 * this function; otherwise it is returned as 0.
2400 *
2401 * Errors are returned via the nfs4_error_t parameter.
2402 */
2403 static void
nfs4close_otw(rnode4_t * rp,cred_t * cred_otw,nfs4_open_owner_t * oop,nfs4_open_stream_t * osp,int * recov,int * did_start_seqid_syncp,nfs4_close_type_t close_type,nfs4_error_t * ep,int * have_sync_lockp)2404 nfs4close_otw(rnode4_t *rp, cred_t *cred_otw, nfs4_open_owner_t *oop,
2405 nfs4_open_stream_t *osp, int *recov, int *did_start_seqid_syncp,
2406 nfs4_close_type_t close_type, nfs4_error_t *ep, int *have_sync_lockp)
2407 {
2408 COMPOUND4args_clnt args;
2409 COMPOUND4res_clnt res;
2410 CLOSE4args *close_args;
2411 nfs_resop4 *resop;
2412 nfs_argop4 argop[3];
2413 int doqueue = 1;
2414 mntinfo4_t *mi;
2415 seqid4 seqid;
2416 vnode_t *vp;
2417 bool_t needrecov = FALSE;
2418 nfs4_lost_rqst_t lost_rqst;
2419 hrtime_t t;
2420
2421 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone);
2422
2423 ASSERT(MUTEX_HELD(&osp->os_sync_lock));
2424
2425 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw"));
2426
2427 /* Only set this to 1 if recovery is started */
2428 *recov = 0;
2429
2430 /* do the OTW call to close the file */
2431
2432 if (close_type == CLOSE_RESEND)
2433 args.ctag = TAG_CLOSE_LOST;
2434 else if (close_type == CLOSE_AFTER_RESEND)
2435 args.ctag = TAG_CLOSE_UNDO;
2436 else
2437 args.ctag = TAG_CLOSE;
2438
2439 args.array_len = 3;
2440 args.array = argop;
2441
2442 vp = RTOV4(rp);
2443
2444 mi = VTOMI4(vp);
2445
2446 /* putfh target fh */
2447 argop[0].argop = OP_CPUTFH;
2448 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
2449
2450 argop[1].argop = OP_GETATTR;
2451 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
2452 argop[1].nfs_argop4_u.opgetattr.mi = mi;
2453
2454 argop[2].argop = OP_CLOSE;
2455 close_args = &argop[2].nfs_argop4_u.opclose;
2456
2457 seqid = nfs4_get_open_seqid(oop) + 1;
2458
2459 close_args->seqid = seqid;
2460 close_args->open_stateid = osp->open_stateid;
2461
2462 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
2463 "nfs4close_otw: %s call, rp %s", needrecov ? "recov" : "first",
2464 rnode4info(rp)));
2465
2466 t = gethrtime();
2467
2468 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep);
2469
2470 if (!ep->error && nfs4_need_to_bump_seqid(&res)) {
2471 nfs4_set_open_seqid(seqid, oop, args.ctag);
2472 }
2473
2474 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp);
2475 if (ep->error && !needrecov) {
2476 /*
2477 * if there was an error and no recovery is to be done
2478 * then then set up the file to flush its cache if
2479 * needed for the next caller.
2480 */
2481 mutex_enter(&rp->r_statelock);
2482 PURGE_ATTRCACHE4_LOCKED(rp);
2483 rp->r_flags &= ~R4WRITEMODIFIED;
2484 mutex_exit(&rp->r_statelock);
2485 return;
2486 }
2487
2488 if (needrecov) {
2489 bool_t abort;
2490 nfs4_bseqid_entry_t *bsep = NULL;
2491
2492 if (close_type != CLOSE_RESEND)
2493 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop,
2494 osp, cred_otw, vp);
2495
2496 if (!ep->error && res.status == NFS4ERR_BAD_SEQID)
2497 bsep = nfs4_create_bseqid_entry(oop, NULL, vp,
2498 0, args.ctag, close_args->seqid);
2499
2500 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
2501 "nfs4close_otw: initiating recovery. error %d "
2502 "res.status %d", ep->error, res.status));
2503
2504 /*
2505 * Drop the 'os_sync_lock' here so we don't hit
2506 * a potential recursive mutex_enter via an
2507 * 'open_stream_hold()'.
2508 */
2509 mutex_exit(&osp->os_sync_lock);
2510 *have_sync_lockp = 0;
2511 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL,
2512 (close_type != CLOSE_RESEND &&
2513 lost_rqst.lr_op == OP_CLOSE) ? &lost_rqst : NULL,
2514 OP_CLOSE, bsep, NULL, NULL);
2515
2516 /* drop open seq sync, and let the calling function regrab it */
2517 nfs4_end_open_seqid_sync(oop);
2518 *did_start_seqid_syncp = 0;
2519
2520 if (bsep)
2521 kmem_free(bsep, sizeof (*bsep));
2522 /*
2523 * For signals, the caller wants to quit, so don't say to
2524 * retry. For forced unmount, if it's a user thread, it
2525 * wants to quit. If it's a recovery thread, the retry
2526 * will happen higher-up on the call stack. Either way,
2527 * don't say to retry.
2528 */
2529 if (abort == FALSE && ep->error != EINTR &&
2530 !NFS4_FRC_UNMT_ERR(ep->error, mi->mi_vfsp) &&
2531 close_type != CLOSE_RESEND &&
2532 close_type != CLOSE_AFTER_RESEND)
2533 *recov = 1;
2534 else
2535 *recov = 0;
2536
2537 if (!ep->error)
2538 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2539 return;
2540 }
2541
2542 if (res.status) {
2543 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2544 return;
2545 }
2546
2547 mutex_enter(&rp->r_statev4_lock);
2548 rp->created_v4 = 0;
2549 mutex_exit(&rp->r_statev4_lock);
2550
2551 resop = &res.array[2];
2552 osp->open_stateid = resop->nfs_resop4_u.opclose.open_stateid;
2553 osp->os_valid = 0;
2554
2555 /*
2556 * This removes the reference obtained at OPEN; ie, when the
2557 * open stream structure was created.
2558 *
2559 * We don't have to worry about calling 'open_stream_rele'
2560 * since we our currently holding a reference to the open
2561 * stream which means the count cannot go to 0 with this
2562 * decrement.
2563 */
2564 ASSERT(osp->os_ref_count >= 2);
2565 osp->os_ref_count--;
2566
2567 if (!ep->error)
2568 nfs4_attr_cache(vp,
2569 &res.array[1].nfs_resop4_u.opgetattr.ga_res,
2570 t, cred_otw, TRUE, NULL);
2571
2572 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw:"
2573 " returning %d", ep->error));
2574
2575 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2576 }
2577
2578 /* ARGSUSED */
2579 static int
nfs4_read(vnode_t * vp,struct uio * uiop,int ioflag,cred_t * cr,caller_context_t * ct)2580 nfs4_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
2581 caller_context_t *ct)
2582 {
2583 rnode4_t *rp;
2584 u_offset_t off;
2585 offset_t diff;
2586 uint_t on;
2587 uint_t n;
2588 caddr_t base;
2589 uint_t flags;
2590 int error;
2591 mntinfo4_t *mi;
2592
2593 rp = VTOR4(vp);
2594
2595 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER));
2596
2597 if (IS_SHADOW(vp, rp))
2598 vp = RTOV4(rp);
2599
2600 if (vp->v_type != VREG)
2601 return (EISDIR);
2602
2603 mi = VTOMI4(vp);
2604
2605 if (nfs_zone() != mi->mi_zone)
2606 return (EIO);
2607
2608 if (uiop->uio_resid == 0)
2609 return (0);
2610
2611 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0)
2612 return (EINVAL);
2613
2614 mutex_enter(&rp->r_statelock);
2615 if (rp->r_flags & R4RECOVERRP)
2616 error = (rp->r_error ? rp->r_error : EIO);
2617 else
2618 error = 0;
2619 mutex_exit(&rp->r_statelock);
2620 if (error)
2621 return (error);
2622
2623 /*
2624 * Bypass VM if caching has been disabled (e.g., locking) or if
2625 * using client-side direct I/O and the file is not mmap'd and
2626 * there are no cached pages.
2627 */
2628 if ((vp->v_flag & VNOCACHE) ||
2629 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) &&
2630 rp->r_mapcnt == 0 && rp->r_inmap == 0 && !nfs4_has_pages(vp))) {
2631 size_t resid = 0;
2632
2633 return (nfs4read(vp, NULL, uiop->uio_loffset,
2634 uiop->uio_resid, &resid, cr, FALSE, uiop));
2635 }
2636
2637 error = 0;
2638
2639 do {
2640 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */
2641 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */
2642 n = MIN(MAXBSIZE - on, uiop->uio_resid);
2643
2644 if (error = nfs4_validate_caches(vp, cr))
2645 break;
2646
2647 mutex_enter(&rp->r_statelock);
2648 while (rp->r_flags & R4INCACHEPURGE) {
2649 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
2650 mutex_exit(&rp->r_statelock);
2651 return (EINTR);
2652 }
2653 }
2654 diff = rp->r_size - uiop->uio_loffset;
2655 mutex_exit(&rp->r_statelock);
2656 if (diff <= 0)
2657 break;
2658 if (diff < n)
2659 n = (uint_t)diff;
2660
2661 if (vpm_enable) {
2662 /*
2663 * Copy data.
2664 */
2665 error = vpm_data_copy(vp, off + on, n, uiop,
2666 1, NULL, 0, S_READ);
2667 } else {
2668 base = segmap_getmapflt(segkmap, vp, off + on, n, 1,
2669 S_READ);
2670
2671 error = uiomove(base + on, n, UIO_READ, uiop);
2672 }
2673
2674 if (!error) {
2675 /*
2676 * If read a whole block or read to eof,
2677 * won't need this buffer again soon.
2678 */
2679 mutex_enter(&rp->r_statelock);
2680 if (n + on == MAXBSIZE ||
2681 uiop->uio_loffset == rp->r_size)
2682 flags = SM_DONTNEED;
2683 else
2684 flags = 0;
2685 mutex_exit(&rp->r_statelock);
2686 if (vpm_enable) {
2687 error = vpm_sync_pages(vp, off, n, flags);
2688 } else {
2689 error = segmap_release(segkmap, base, flags);
2690 }
2691 } else {
2692 if (vpm_enable) {
2693 (void) vpm_sync_pages(vp, off, n, 0);
2694 } else {
2695 (void) segmap_release(segkmap, base, 0);
2696 }
2697 }
2698 } while (!error && uiop->uio_resid > 0);
2699
2700 return (error);
2701 }
2702
2703 /* ARGSUSED */
2704 static int
nfs4_write(vnode_t * vp,struct uio * uiop,int ioflag,cred_t * cr,caller_context_t * ct)2705 nfs4_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
2706 caller_context_t *ct)
2707 {
2708 rlim64_t limit = uiop->uio_llimit;
2709 rnode4_t *rp;
2710 u_offset_t off;
2711 caddr_t base;
2712 uint_t flags;
2713 int remainder;
2714 size_t n;
2715 int on;
2716 int error;
2717 int resid;
2718 u_offset_t offset;
2719 mntinfo4_t *mi;
2720 uint_t bsize;
2721
2722 rp = VTOR4(vp);
2723
2724 if (IS_SHADOW(vp, rp))
2725 vp = RTOV4(rp);
2726
2727 if (vp->v_type != VREG)
2728 return (EISDIR);
2729
2730 mi = VTOMI4(vp);
2731
2732 if (nfs_zone() != mi->mi_zone)
2733 return (EIO);
2734
2735 if (uiop->uio_resid == 0)
2736 return (0);
2737
2738 mutex_enter(&rp->r_statelock);
2739 if (rp->r_flags & R4RECOVERRP)
2740 error = (rp->r_error ? rp->r_error : EIO);
2741 else
2742 error = 0;
2743 mutex_exit(&rp->r_statelock);
2744 if (error)
2745 return (error);
2746
2747 if (ioflag & FAPPEND) {
2748 struct vattr va;
2749
2750 /*
2751 * Must serialize if appending.
2752 */
2753 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) {
2754 nfs_rw_exit(&rp->r_rwlock);
2755 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER,
2756 INTR4(vp)))
2757 return (EINTR);
2758 }
2759
2760 va.va_mask = AT_SIZE;
2761 error = nfs4getattr(vp, &va, cr);
2762 if (error)
2763 return (error);
2764 uiop->uio_loffset = va.va_size;
2765 }
2766
2767 offset = uiop->uio_loffset + uiop->uio_resid;
2768
2769 if (uiop->uio_loffset < (offset_t)0 || offset < 0)
2770 return (EINVAL);
2771
2772 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
2773 limit = MAXOFFSET_T;
2774
2775 /*
2776 * Check to make sure that the process will not exceed
2777 * its limit on file size. It is okay to write up to
2778 * the limit, but not beyond. Thus, the write which
2779 * reaches the limit will be short and the next write
2780 * will return an error.
2781 */
2782 remainder = 0;
2783 if (offset > uiop->uio_llimit) {
2784 remainder = offset - uiop->uio_llimit;
2785 uiop->uio_resid = uiop->uio_llimit - uiop->uio_loffset;
2786 if (uiop->uio_resid <= 0) {
2787 proc_t *p = ttoproc(curthread);
2788
2789 uiop->uio_resid += remainder;
2790 mutex_enter(&p->p_lock);
2791 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE],
2792 p->p_rctls, p, RCA_UNSAFE_SIGINFO);
2793 mutex_exit(&p->p_lock);
2794 return (EFBIG);
2795 }
2796 }
2797
2798 /* update the change attribute, if we have a write delegation */
2799
2800 mutex_enter(&rp->r_statev4_lock);
2801 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE)
2802 rp->r_deleg_change++;
2803
2804 mutex_exit(&rp->r_statev4_lock);
2805
2806 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp)))
2807 return (EINTR);
2808
2809 /*
2810 * Bypass VM if caching has been disabled (e.g., locking) or if
2811 * using client-side direct I/O and the file is not mmap'd and
2812 * there are no cached pages.
2813 */
2814 if ((vp->v_flag & VNOCACHE) ||
2815 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) &&
2816 rp->r_mapcnt == 0 && rp->r_inmap == 0 && !nfs4_has_pages(vp))) {
2817 size_t bufsize;
2818 int count;
2819 u_offset_t org_offset;
2820 stable_how4 stab_comm;
2821 nfs4_fwrite:
2822 if (rp->r_flags & R4STALE) {
2823 resid = uiop->uio_resid;
2824 offset = uiop->uio_loffset;
2825 error = rp->r_error;
2826 /*
2827 * A close may have cleared r_error, if so,
2828 * propagate ESTALE error return properly
2829 */
2830 if (error == 0)
2831 error = ESTALE;
2832 goto bottom;
2833 }
2834
2835 bufsize = MIN(uiop->uio_resid, mi->mi_stsize);
2836 base = kmem_alloc(bufsize, KM_SLEEP);
2837 do {
2838 if (ioflag & FDSYNC)
2839 stab_comm = DATA_SYNC4;
2840 else
2841 stab_comm = FILE_SYNC4;
2842 resid = uiop->uio_resid;
2843 offset = uiop->uio_loffset;
2844 count = MIN(uiop->uio_resid, bufsize);
2845 org_offset = uiop->uio_loffset;
2846 error = uiomove(base, count, UIO_WRITE, uiop);
2847 if (!error) {
2848 error = nfs4write(vp, base, org_offset,
2849 count, cr, &stab_comm);
2850 if (!error) {
2851 mutex_enter(&rp->r_statelock);
2852 if (rp->r_size < uiop->uio_loffset)
2853 rp->r_size = uiop->uio_loffset;
2854 mutex_exit(&rp->r_statelock);
2855 }
2856 }
2857 } while (!error && uiop->uio_resid > 0);
2858 kmem_free(base, bufsize);
2859 goto bottom;
2860 }
2861
2862 bsize = vp->v_vfsp->vfs_bsize;
2863
2864 do {
2865 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */
2866 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */
2867 n = MIN(MAXBSIZE - on, uiop->uio_resid);
2868
2869 resid = uiop->uio_resid;
2870 offset = uiop->uio_loffset;
2871
2872 if (rp->r_flags & R4STALE) {
2873 error = rp->r_error;
2874 /*
2875 * A close may have cleared r_error, if so,
2876 * propagate ESTALE error return properly
2877 */
2878 if (error == 0)
2879 error = ESTALE;
2880 break;
2881 }
2882
2883 /*
2884 * Don't create dirty pages faster than they
2885 * can be cleaned so that the system doesn't
2886 * get imbalanced. If the async queue is
2887 * maxed out, then wait for it to drain before
2888 * creating more dirty pages. Also, wait for
2889 * any threads doing pagewalks in the vop_getattr
2890 * entry points so that they don't block for
2891 * long periods.
2892 */
2893 mutex_enter(&rp->r_statelock);
2894 while ((mi->mi_max_threads != 0 &&
2895 rp->r_awcount > 2 * mi->mi_max_threads) ||
2896 rp->r_gcount > 0) {
2897 if (INTR4(vp)) {
2898 klwp_t *lwp = ttolwp(curthread);
2899
2900 if (lwp != NULL)
2901 lwp->lwp_nostop++;
2902 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
2903 mutex_exit(&rp->r_statelock);
2904 if (lwp != NULL)
2905 lwp->lwp_nostop--;
2906 error = EINTR;
2907 goto bottom;
2908 }
2909 if (lwp != NULL)
2910 lwp->lwp_nostop--;
2911 } else
2912 cv_wait(&rp->r_cv, &rp->r_statelock);
2913 }
2914 mutex_exit(&rp->r_statelock);
2915
2916 /*
2917 * Touch the page and fault it in if it is not in core
2918 * before segmap_getmapflt or vpm_data_copy can lock it.
2919 * This is to avoid the deadlock if the buffer is mapped
2920 * to the same file through mmap which we want to write.
2921 */
2922 uio_prefaultpages((long)n, uiop);
2923
2924 if (vpm_enable) {
2925 /*
2926 * It will use kpm mappings, so no need to
2927 * pass an address.
2928 */
2929 error = writerp4(rp, NULL, n, uiop, 0);
2930 } else {
2931 if (segmap_kpm) {
2932 int pon = uiop->uio_loffset & PAGEOFFSET;
2933 size_t pn = MIN(PAGESIZE - pon,
2934 uiop->uio_resid);
2935 int pagecreate;
2936
2937 mutex_enter(&rp->r_statelock);
2938 pagecreate = (pon == 0) && (pn == PAGESIZE ||
2939 uiop->uio_loffset + pn >= rp->r_size);
2940 mutex_exit(&rp->r_statelock);
2941
2942 base = segmap_getmapflt(segkmap, vp, off + on,
2943 pn, !pagecreate, S_WRITE);
2944
2945 error = writerp4(rp, base + pon, n, uiop,
2946 pagecreate);
2947
2948 } else {
2949 base = segmap_getmapflt(segkmap, vp, off + on,
2950 n, 0, S_READ);
2951 error = writerp4(rp, base + on, n, uiop, 0);
2952 }
2953 }
2954
2955 if (!error) {
2956 if (mi->mi_flags & MI4_NOAC)
2957 flags = SM_WRITE;
2958 else if ((uiop->uio_loffset % bsize) == 0 ||
2959 IS_SWAPVP(vp)) {
2960 /*
2961 * Have written a whole block.
2962 * Start an asynchronous write
2963 * and mark the buffer to
2964 * indicate that it won't be
2965 * needed again soon.
2966 */
2967 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED;
2968 } else
2969 flags = 0;
2970 if ((ioflag & (FSYNC|FDSYNC)) ||
2971 (rp->r_flags & R4OUTOFSPACE)) {
2972 flags &= ~SM_ASYNC;
2973 flags |= SM_WRITE;
2974 }
2975 if (vpm_enable) {
2976 error = vpm_sync_pages(vp, off, n, flags);
2977 } else {
2978 error = segmap_release(segkmap, base, flags);
2979 }
2980 } else {
2981 if (vpm_enable) {
2982 (void) vpm_sync_pages(vp, off, n, 0);
2983 } else {
2984 (void) segmap_release(segkmap, base, 0);
2985 }
2986 /*
2987 * In the event that we got an access error while
2988 * faulting in a page for a write-only file just
2989 * force a write.
2990 */
2991 if (error == EACCES)
2992 goto nfs4_fwrite;
2993 }
2994 } while (!error && uiop->uio_resid > 0);
2995
2996 bottom:
2997 if (error) {
2998 uiop->uio_resid = resid + remainder;
2999 uiop->uio_loffset = offset;
3000 } else {
3001 uiop->uio_resid += remainder;
3002
3003 mutex_enter(&rp->r_statev4_lock);
3004 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) {
3005 gethrestime(&rp->r_attr.va_mtime);
3006 rp->r_attr.va_ctime = rp->r_attr.va_mtime;
3007 }
3008 mutex_exit(&rp->r_statev4_lock);
3009 }
3010
3011 nfs_rw_exit(&rp->r_lkserlock);
3012
3013 return (error);
3014 }
3015
3016 /*
3017 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED}
3018 */
3019 static int
nfs4_rdwrlbn(vnode_t * vp,page_t * pp,u_offset_t off,size_t len,int flags,cred_t * cr)3020 nfs4_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len,
3021 int flags, cred_t *cr)
3022 {
3023 struct buf *bp;
3024 int error;
3025 page_t *savepp;
3026 uchar_t fsdata;
3027 stable_how4 stab_comm;
3028
3029 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
3030 bp = pageio_setup(pp, len, vp, flags);
3031 ASSERT(bp != NULL);
3032
3033 /*
3034 * pageio_setup should have set b_addr to 0. This
3035 * is correct since we want to do I/O on a page
3036 * boundary. bp_mapin will use this addr to calculate
3037 * an offset, and then set b_addr to the kernel virtual
3038 * address it allocated for us.
3039 */
3040 ASSERT(bp->b_un.b_addr == 0);
3041
3042 bp->b_edev = 0;
3043 bp->b_dev = 0;
3044 bp->b_lblkno = lbtodb(off);
3045 bp->b_file = vp;
3046 bp->b_offset = (offset_t)off;
3047 bp_mapin(bp);
3048
3049 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) &&
3050 freemem > desfree)
3051 stab_comm = UNSTABLE4;
3052 else
3053 stab_comm = FILE_SYNC4;
3054
3055 error = nfs4_bio(bp, &stab_comm, cr, FALSE);
3056
3057 bp_mapout(bp);
3058 pageio_done(bp);
3059
3060 if (stab_comm == UNSTABLE4)
3061 fsdata = C_DELAYCOMMIT;
3062 else
3063 fsdata = C_NOCOMMIT;
3064
3065 savepp = pp;
3066 do {
3067 pp->p_fsdata = fsdata;
3068 } while ((pp = pp->p_next) != savepp);
3069
3070 return (error);
3071 }
3072
3073 /*
3074 */
3075 static int
nfs4rdwr_check_osid(vnode_t * vp,nfs4_error_t * ep,cred_t * cr)3076 nfs4rdwr_check_osid(vnode_t *vp, nfs4_error_t *ep, cred_t *cr)
3077 {
3078 nfs4_open_owner_t *oop;
3079 nfs4_open_stream_t *osp;
3080 rnode4_t *rp = VTOR4(vp);
3081 mntinfo4_t *mi = VTOMI4(vp);
3082 int reopen_needed;
3083
3084 ASSERT(nfs_zone() == mi->mi_zone);
3085
3086
3087 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi);
3088 if (!oop)
3089 return (EIO);
3090
3091 /* returns with 'os_sync_lock' held */
3092 osp = find_open_stream(oop, rp);
3093 if (!osp) {
3094 open_owner_rele(oop);
3095 return (EIO);
3096 }
3097
3098 if (osp->os_failed_reopen) {
3099 mutex_exit(&osp->os_sync_lock);
3100 open_stream_rele(osp, rp);
3101 open_owner_rele(oop);
3102 return (EIO);
3103 }
3104
3105 /*
3106 * Determine whether a reopen is needed. If this
3107 * is a delegation open stream, then the os_delegation bit
3108 * should be set.
3109 */
3110
3111 reopen_needed = osp->os_delegation;
3112
3113 mutex_exit(&osp->os_sync_lock);
3114 open_owner_rele(oop);
3115
3116 if (reopen_needed) {
3117 nfs4_error_zinit(ep);
3118 nfs4_reopen(vp, osp, ep, CLAIM_NULL, FALSE, FALSE);
3119 mutex_enter(&osp->os_sync_lock);
3120 if (ep->error || ep->stat || osp->os_failed_reopen) {
3121 mutex_exit(&osp->os_sync_lock);
3122 open_stream_rele(osp, rp);
3123 return (EIO);
3124 }
3125 mutex_exit(&osp->os_sync_lock);
3126 }
3127 open_stream_rele(osp, rp);
3128
3129 return (0);
3130 }
3131
3132 /*
3133 * Write to file. Writes to remote server in largest size
3134 * chunks that the server can handle. Write is synchronous.
3135 */
3136 static int
nfs4write(vnode_t * vp,caddr_t base,u_offset_t offset,int count,cred_t * cr,stable_how4 * stab_comm)3137 nfs4write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr,
3138 stable_how4 *stab_comm)
3139 {
3140 mntinfo4_t *mi;
3141 COMPOUND4args_clnt args;
3142 COMPOUND4res_clnt res;
3143 WRITE4args *wargs;
3144 WRITE4res *wres;
3145 nfs_argop4 argop[2];
3146 nfs_resop4 *resop;
3147 int tsize;
3148 stable_how4 stable;
3149 rnode4_t *rp;
3150 int doqueue = 1;
3151 bool_t needrecov;
3152 nfs4_recov_state_t recov_state;
3153 nfs4_stateid_types_t sid_types;
3154 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
3155 int recov;
3156
3157 rp = VTOR4(vp);
3158 mi = VTOMI4(vp);
3159
3160 ASSERT(nfs_zone() == mi->mi_zone);
3161
3162 stable = *stab_comm;
3163 *stab_comm = FILE_SYNC4;
3164
3165 needrecov = FALSE;
3166 recov_state.rs_flags = 0;
3167 recov_state.rs_num_retry_despite_err = 0;
3168 nfs4_init_stateid_types(&sid_types);
3169
3170 /* Is curthread the recovery thread? */
3171 mutex_enter(&mi->mi_lock);
3172 recov = (mi->mi_recovthread == curthread);
3173 mutex_exit(&mi->mi_lock);
3174
3175 recov_retry:
3176 args.ctag = TAG_WRITE;
3177 args.array_len = 2;
3178 args.array = argop;
3179
3180 if (!recov) {
3181 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
3182 &recov_state, NULL);
3183 if (e.error)
3184 return (e.error);
3185 }
3186
3187 /* 0. putfh target fh */
3188 argop[0].argop = OP_CPUTFH;
3189 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
3190
3191 /* 1. write */
3192 nfs4args_write(&argop[1], stable, rp, cr, &wargs, &sid_types);
3193
3194 do {
3195
3196 wargs->offset = (offset4)offset;
3197 wargs->data_val = base;
3198
3199 if (mi->mi_io_kstats) {
3200 mutex_enter(&mi->mi_lock);
3201 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
3202 mutex_exit(&mi->mi_lock);
3203 }
3204
3205 if ((vp->v_flag & VNOCACHE) ||
3206 (rp->r_flags & R4DIRECTIO) ||
3207 (mi->mi_flags & MI4_DIRECTIO))
3208 tsize = MIN(mi->mi_stsize, count);
3209 else
3210 tsize = MIN(mi->mi_curwrite, count);
3211 wargs->data_len = (uint_t)tsize;
3212 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
3213
3214 if (mi->mi_io_kstats) {
3215 mutex_enter(&mi->mi_lock);
3216 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
3217 mutex_exit(&mi->mi_lock);
3218 }
3219
3220 if (!recov) {
3221 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
3222 if (e.error && !needrecov) {
3223 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
3224 &recov_state, needrecov);
3225 return (e.error);
3226 }
3227 } else {
3228 if (e.error)
3229 return (e.error);
3230 }
3231
3232 /*
3233 * Do handling of OLD_STATEID outside
3234 * of the normal recovery framework.
3235 *
3236 * If write receives a BAD stateid error while using a
3237 * delegation stateid, retry using the open stateid (if it
3238 * exists). If it doesn't have an open stateid, reopen the
3239 * file first, then retry.
3240 */
3241 if (!e.error && res.status == NFS4ERR_OLD_STATEID &&
3242 sid_types.cur_sid_type != SPEC_SID) {
3243 nfs4_save_stateid(&wargs->stateid, &sid_types);
3244 if (!recov)
3245 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
3246 &recov_state, needrecov);
3247 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3248 goto recov_retry;
3249 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID &&
3250 sid_types.cur_sid_type == DEL_SID) {
3251 nfs4_save_stateid(&wargs->stateid, &sid_types);
3252 mutex_enter(&rp->r_statev4_lock);
3253 rp->r_deleg_return_pending = TRUE;
3254 mutex_exit(&rp->r_statev4_lock);
3255 if (nfs4rdwr_check_osid(vp, &e, cr)) {
3256 if (!recov)
3257 nfs4_end_fop(mi, vp, NULL, OH_WRITE,
3258 &recov_state, needrecov);
3259 (void) xdr_free(xdr_COMPOUND4res_clnt,
3260 (caddr_t)&res);
3261 return (EIO);
3262 }
3263 if (!recov)
3264 nfs4_end_fop(mi, vp, NULL, OH_WRITE,
3265 &recov_state, needrecov);
3266 /* hold needed for nfs4delegreturn_thread */
3267 VN_HOLD(vp);
3268 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN|
3269 NFS4_DR_DISCARD), FALSE);
3270 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3271 goto recov_retry;
3272 }
3273
3274 if (needrecov) {
3275 bool_t abort;
3276
3277 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
3278 "nfs4write: client got error %d, res.status %d"
3279 ", so start recovery", e.error, res.status));
3280
3281 abort = nfs4_start_recovery(&e,
3282 VTOMI4(vp), vp, NULL, &wargs->stateid,
3283 NULL, OP_WRITE, NULL, NULL, NULL);
3284 if (!e.error) {
3285 e.error = geterrno4(res.status);
3286 (void) xdr_free(xdr_COMPOUND4res_clnt,
3287 (caddr_t)&res);
3288 }
3289 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
3290 &recov_state, needrecov);
3291 if (abort == FALSE)
3292 goto recov_retry;
3293 return (e.error);
3294 }
3295
3296 if (res.status) {
3297 e.error = geterrno4(res.status);
3298 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3299 if (!recov)
3300 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
3301 &recov_state, needrecov);
3302 return (e.error);
3303 }
3304
3305 resop = &res.array[1]; /* write res */
3306 wres = &resop->nfs_resop4_u.opwrite;
3307
3308 if ((int)wres->count > tsize) {
3309 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3310
3311 zcmn_err(getzoneid(), CE_WARN,
3312 "nfs4write: server wrote %u, requested was %u",
3313 (int)wres->count, tsize);
3314 if (!recov)
3315 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
3316 &recov_state, needrecov);
3317 return (EIO);
3318 }
3319 if (wres->committed == UNSTABLE4) {
3320 *stab_comm = UNSTABLE4;
3321 if (wargs->stable == DATA_SYNC4 ||
3322 wargs->stable == FILE_SYNC4) {
3323 (void) xdr_free(xdr_COMPOUND4res_clnt,
3324 (caddr_t)&res);
3325 zcmn_err(getzoneid(), CE_WARN,
3326 "nfs4write: server %s did not commit "
3327 "to stable storage",
3328 rp->r_server->sv_hostname);
3329 if (!recov)
3330 nfs4_end_fop(VTOMI4(vp), vp, NULL,
3331 OH_WRITE, &recov_state, needrecov);
3332 return (EIO);
3333 }
3334 }
3335
3336 tsize = (int)wres->count;
3337 count -= tsize;
3338 base += tsize;
3339 offset += tsize;
3340 if (mi->mi_io_kstats) {
3341 mutex_enter(&mi->mi_lock);
3342 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++;
3343 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten +=
3344 tsize;
3345 mutex_exit(&mi->mi_lock);
3346 }
3347 lwp_stat_update(LWP_STAT_OUBLK, 1);
3348 mutex_enter(&rp->r_statelock);
3349 if (rp->r_flags & R4HAVEVERF) {
3350 if (rp->r_writeverf != wres->writeverf) {
3351 nfs4_set_mod(vp);
3352 rp->r_writeverf = wres->writeverf;
3353 }
3354 } else {
3355 rp->r_writeverf = wres->writeverf;
3356 rp->r_flags |= R4HAVEVERF;
3357 }
3358 PURGE_ATTRCACHE4_LOCKED(rp);
3359 rp->r_flags |= R4WRITEMODIFIED;
3360 gethrestime(&rp->r_attr.va_mtime);
3361 rp->r_attr.va_ctime = rp->r_attr.va_mtime;
3362 mutex_exit(&rp->r_statelock);
3363 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3364 } while (count);
3365
3366 if (!recov)
3367 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, &recov_state,
3368 needrecov);
3369
3370 return (e.error);
3371 }
3372
3373 /*
3374 * Read from a file. Reads data in largest chunks our interface can handle.
3375 */
3376 static int
nfs4read(vnode_t * vp,caddr_t base,offset_t offset,int count,size_t * residp,cred_t * cr,bool_t async,struct uio * uiop)3377 nfs4read(vnode_t *vp, caddr_t base, offset_t offset, int count,
3378 size_t *residp, cred_t *cr, bool_t async, struct uio *uiop)
3379 {
3380 mntinfo4_t *mi;
3381 COMPOUND4args_clnt args;
3382 COMPOUND4res_clnt res;
3383 READ4args *rargs;
3384 nfs_argop4 argop[2];
3385 int tsize;
3386 int doqueue;
3387 rnode4_t *rp;
3388 int data_len;
3389 bool_t is_eof;
3390 bool_t needrecov = FALSE;
3391 nfs4_recov_state_t recov_state;
3392 nfs4_stateid_types_t sid_types;
3393 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
3394
3395 rp = VTOR4(vp);
3396 mi = VTOMI4(vp);
3397 doqueue = 1;
3398
3399 ASSERT(nfs_zone() == mi->mi_zone);
3400
3401 args.ctag = async ? TAG_READAHEAD : TAG_READ;
3402
3403 args.array_len = 2;
3404 args.array = argop;
3405
3406 nfs4_init_stateid_types(&sid_types);
3407
3408 recov_state.rs_flags = 0;
3409 recov_state.rs_num_retry_despite_err = 0;
3410
3411 recov_retry:
3412 e.error = nfs4_start_fop(mi, vp, NULL, OH_READ,
3413 &recov_state, NULL);
3414 if (e.error)
3415 return (e.error);
3416
3417 /* putfh target fh */
3418 argop[0].argop = OP_CPUTFH;
3419 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
3420
3421 /* read */
3422 argop[1].argop = OP_READ;
3423 rargs = &argop[1].nfs_argop4_u.opread;
3424 rargs->stateid = nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi,
3425 OP_READ, &sid_types, async);
3426
3427 do {
3428 if (mi->mi_io_kstats) {
3429 mutex_enter(&mi->mi_lock);
3430 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
3431 mutex_exit(&mi->mi_lock);
3432 }
3433
3434 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
3435 "nfs4read: %s call, rp %s",
3436 needrecov ? "recov" : "first",
3437 rnode4info(rp)));
3438
3439 if ((vp->v_flag & VNOCACHE) ||
3440 (rp->r_flags & R4DIRECTIO) ||
3441 (mi->mi_flags & MI4_DIRECTIO))
3442 tsize = MIN(mi->mi_tsize, count);
3443 else
3444 tsize = MIN(mi->mi_curread, count);
3445
3446 rargs->offset = (offset4)offset;
3447 rargs->count = (count4)tsize;
3448 rargs->res_data_val_alt = NULL;
3449 rargs->res_mblk = NULL;
3450 rargs->res_uiop = NULL;
3451 rargs->res_maxsize = 0;
3452 rargs->wlist = NULL;
3453
3454 if (uiop)
3455 rargs->res_uiop = uiop;
3456 else
3457 rargs->res_data_val_alt = base;
3458 rargs->res_maxsize = tsize;
3459
3460 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
3461 #ifdef DEBUG
3462 if (nfs4read_error_inject) {
3463 res.status = nfs4read_error_inject;
3464 nfs4read_error_inject = 0;
3465 }
3466 #endif
3467
3468 if (mi->mi_io_kstats) {
3469 mutex_enter(&mi->mi_lock);
3470 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
3471 mutex_exit(&mi->mi_lock);
3472 }
3473
3474 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
3475 if (e.error != 0 && !needrecov) {
3476 nfs4_end_fop(mi, vp, NULL, OH_READ,
3477 &recov_state, needrecov);
3478 return (e.error);
3479 }
3480
3481 /*
3482 * Do proper retry for OLD and BAD stateid errors outside
3483 * of the normal recovery framework. There are two differences
3484 * between async and sync reads. The first is that we allow
3485 * retry on BAD_STATEID for async reads, but not sync reads.
3486 * The second is that we mark the file dead for a failed
3487 * attempt with a special stateid for sync reads, but just
3488 * return EIO for async reads.
3489 *
3490 * If a sync read receives a BAD stateid error while using a
3491 * delegation stateid, retry using the open stateid (if it
3492 * exists). If it doesn't have an open stateid, reopen the
3493 * file first, then retry.
3494 */
3495 if (e.error == 0 && (res.status == NFS4ERR_OLD_STATEID ||
3496 res.status == NFS4ERR_BAD_STATEID) && async) {
3497 nfs4_end_fop(mi, vp, NULL, OH_READ,
3498 &recov_state, needrecov);
3499 if (sid_types.cur_sid_type == SPEC_SID) {
3500 (void) xdr_free(xdr_COMPOUND4res_clnt,
3501 (caddr_t)&res);
3502 return (EIO);
3503 }
3504 nfs4_save_stateid(&rargs->stateid, &sid_types);
3505 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3506 goto recov_retry;
3507 } else if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID &&
3508 !async && sid_types.cur_sid_type != SPEC_SID) {
3509 nfs4_save_stateid(&rargs->stateid, &sid_types);
3510 nfs4_end_fop(mi, vp, NULL, OH_READ,
3511 &recov_state, needrecov);
3512 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3513 goto recov_retry;
3514 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID &&
3515 sid_types.cur_sid_type == DEL_SID) {
3516 nfs4_save_stateid(&rargs->stateid, &sid_types);
3517 mutex_enter(&rp->r_statev4_lock);
3518 rp->r_deleg_return_pending = TRUE;
3519 mutex_exit(&rp->r_statev4_lock);
3520 if (nfs4rdwr_check_osid(vp, &e, cr)) {
3521 nfs4_end_fop(mi, vp, NULL, OH_READ,
3522 &recov_state, needrecov);
3523 (void) xdr_free(xdr_COMPOUND4res_clnt,
3524 (caddr_t)&res);
3525 return (EIO);
3526 }
3527 nfs4_end_fop(mi, vp, NULL, OH_READ,
3528 &recov_state, needrecov);
3529 /* hold needed for nfs4delegreturn_thread */
3530 VN_HOLD(vp);
3531 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN|
3532 NFS4_DR_DISCARD), FALSE);
3533 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3534 goto recov_retry;
3535 }
3536 if (needrecov) {
3537 bool_t abort;
3538
3539 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
3540 "nfs4read: initiating recovery\n"));
3541 abort = nfs4_start_recovery(&e,
3542 mi, vp, NULL, &rargs->stateid,
3543 NULL, OP_READ, NULL, NULL, NULL);
3544 nfs4_end_fop(mi, vp, NULL, OH_READ,
3545 &recov_state, needrecov);
3546 /*
3547 * Do not retry if we got OLD_STATEID using a special
3548 * stateid. This avoids looping with a broken server.
3549 */
3550 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID &&
3551 sid_types.cur_sid_type == SPEC_SID)
3552 abort = TRUE;
3553
3554 if (abort == FALSE) {
3555 /*
3556 * Need to retry all possible stateids in
3557 * case the recovery error wasn't stateid
3558 * related or the stateids have become
3559 * stale (server reboot).
3560 */
3561 nfs4_init_stateid_types(&sid_types);
3562 (void) xdr_free(xdr_COMPOUND4res_clnt,
3563 (caddr_t)&res);
3564 goto recov_retry;
3565 }
3566
3567 if (!e.error) {
3568 e.error = geterrno4(res.status);
3569 (void) xdr_free(xdr_COMPOUND4res_clnt,
3570 (caddr_t)&res);
3571 }
3572 return (e.error);
3573 }
3574
3575 if (res.status) {
3576 e.error = geterrno4(res.status);
3577 nfs4_end_fop(mi, vp, NULL, OH_READ,
3578 &recov_state, needrecov);
3579 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3580 return (e.error);
3581 }
3582
3583 data_len = res.array[1].nfs_resop4_u.opread.data_len;
3584 count -= data_len;
3585 if (base)
3586 base += data_len;
3587 offset += data_len;
3588 if (mi->mi_io_kstats) {
3589 mutex_enter(&mi->mi_lock);
3590 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
3591 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += data_len;
3592 mutex_exit(&mi->mi_lock);
3593 }
3594 lwp_stat_update(LWP_STAT_INBLK, 1);
3595 is_eof = res.array[1].nfs_resop4_u.opread.eof;
3596 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3597
3598 } while (count && !is_eof);
3599
3600 *residp = count;
3601
3602 nfs4_end_fop(mi, vp, NULL, OH_READ, &recov_state, needrecov);
3603
3604 return (e.error);
3605 }
3606
3607 /* ARGSUSED */
3608 static int
nfs4_ioctl(vnode_t * vp,int cmd,intptr_t arg,int flag,cred_t * cr,int * rvalp,caller_context_t * ct)3609 nfs4_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp,
3610 caller_context_t *ct)
3611 {
3612 if (nfs_zone() != VTOMI4(vp)->mi_zone)
3613 return (EIO);
3614 switch (cmd) {
3615 case _FIODIRECTIO:
3616 return (nfs4_directio(vp, (int)arg, cr));
3617 default:
3618 return (ENOTTY);
3619 }
3620 }
3621
3622 /* ARGSUSED */
3623 int
nfs4_getattr(vnode_t * vp,struct vattr * vap,int flags,cred_t * cr,caller_context_t * ct)3624 nfs4_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
3625 caller_context_t *ct)
3626 {
3627 int error;
3628 rnode4_t *rp = VTOR4(vp);
3629
3630 if (nfs_zone() != VTOMI4(vp)->mi_zone)
3631 return (EIO);
3632 /*
3633 * If it has been specified that the return value will
3634 * just be used as a hint, and we are only being asked
3635 * for size, fsid or rdevid, then return the client's
3636 * notion of these values without checking to make sure
3637 * that the attribute cache is up to date.
3638 * The whole point is to avoid an over the wire GETATTR
3639 * call.
3640 */
3641 if (flags & ATTR_HINT) {
3642 if (vap->va_mask ==
3643 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) {
3644 mutex_enter(&rp->r_statelock);
3645 if (vap->va_mask | AT_SIZE)
3646 vap->va_size = rp->r_size;
3647 if (vap->va_mask | AT_FSID)
3648 vap->va_fsid = rp->r_attr.va_fsid;
3649 if (vap->va_mask | AT_RDEV)
3650 vap->va_rdev = rp->r_attr.va_rdev;
3651 mutex_exit(&rp->r_statelock);
3652 return (0);
3653 }
3654 }
3655
3656 /*
3657 * Only need to flush pages if asking for the mtime
3658 * and if there any dirty pages or any outstanding
3659 * asynchronous (write) requests for this file.
3660 */
3661 if (vap->va_mask & AT_MTIME) {
3662 rp = VTOR4(vp);
3663 if (nfs4_has_pages(vp)) {
3664 mutex_enter(&rp->r_statev4_lock);
3665 if (rp->r_deleg_type != OPEN_DELEGATE_WRITE) {
3666 mutex_exit(&rp->r_statev4_lock);
3667 if (rp->r_flags & R4DIRTY ||
3668 rp->r_awcount > 0) {
3669 mutex_enter(&rp->r_statelock);
3670 rp->r_gcount++;
3671 mutex_exit(&rp->r_statelock);
3672 error =
3673 nfs4_putpage(vp, (u_offset_t)0,
3674 0, 0, cr, NULL);
3675 mutex_enter(&rp->r_statelock);
3676 if (error && (error == ENOSPC ||
3677 error == EDQUOT)) {
3678 if (!rp->r_error)
3679 rp->r_error = error;
3680 }
3681 if (--rp->r_gcount == 0)
3682 cv_broadcast(&rp->r_cv);
3683 mutex_exit(&rp->r_statelock);
3684 }
3685 } else {
3686 mutex_exit(&rp->r_statev4_lock);
3687 }
3688 }
3689 }
3690 return (nfs4getattr(vp, vap, cr));
3691 }
3692
3693 int
nfs4_compare_modes(mode_t from_server,mode_t on_client)3694 nfs4_compare_modes(mode_t from_server, mode_t on_client)
3695 {
3696 /*
3697 * If these are the only two bits cleared
3698 * on the server then return 0 (OK) else
3699 * return 1 (BAD).
3700 */
3701 on_client &= ~(S_ISUID|S_ISGID);
3702 if (on_client == from_server)
3703 return (0);
3704 else
3705 return (1);
3706 }
3707
3708 /*ARGSUSED4*/
3709 static int
nfs4_setattr(vnode_t * vp,struct vattr * vap,int flags,cred_t * cr,caller_context_t * ct)3710 nfs4_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
3711 caller_context_t *ct)
3712 {
3713 if (vap->va_mask & AT_NOSET)
3714 return (EINVAL);
3715
3716 if (nfs_zone() != VTOMI4(vp)->mi_zone)
3717 return (EIO);
3718
3719 /*
3720 * Don't call secpolicy_vnode_setattr, the client cannot
3721 * use its cached attributes to make security decisions
3722 * as the server may be faking mode bits or mapping uid/gid.
3723 * Always just let the server to the checking.
3724 * If we provide the ability to remove basic priviledges
3725 * to setattr (e.g. basic without chmod) then we will
3726 * need to add a check here before calling the server.
3727 */
3728
3729 return (nfs4setattr(vp, vap, flags, cr, NULL));
3730 }
3731
3732 /*
3733 * To replace the "guarded" version 3 setattr, we use two types of compound
3734 * setattr requests:
3735 * 1. The "normal" setattr, used when the size of the file isn't being
3736 * changed - { Putfh <fh>; Setattr; Getattr }/
3737 * 2. If the size is changed, precede Setattr with: Getattr; Verify
3738 * with only ctime as the argument. If the server ctime differs from
3739 * what is cached on the client, the verify will fail, but we would
3740 * already have the ctime from the preceding getattr, so just set it
3741 * and retry. Thus the compound here is - { Putfh <fh>; Getattr; Verify;
3742 * Setattr; Getattr }.
3743 *
3744 * The vsecattr_t * input parameter will be non-NULL if ACLs are being set in
3745 * this setattr and NULL if they are not.
3746 */
3747 static int
nfs4setattr(vnode_t * vp,struct vattr * vap,int flags,cred_t * cr,vsecattr_t * vsap)3748 nfs4setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
3749 vsecattr_t *vsap)
3750 {
3751 COMPOUND4args_clnt args;
3752 COMPOUND4res_clnt res, *resp = NULL;
3753 nfs4_ga_res_t *garp = NULL;
3754 int numops = 3; /* { Putfh; Setattr; Getattr } */
3755 nfs_argop4 argop[5];
3756 int verify_argop = -1;
3757 int setattr_argop = 1;
3758 nfs_resop4 *resop;
3759 vattr_t va;
3760 rnode4_t *rp;
3761 int doqueue = 1;
3762 uint_t mask = vap->va_mask;
3763 mode_t omode;
3764 vsecattr_t *vsp;
3765 timestruc_t ctime;
3766 bool_t needrecov = FALSE;
3767 nfs4_recov_state_t recov_state;
3768 nfs4_stateid_types_t sid_types;
3769 stateid4 stateid;
3770 hrtime_t t;
3771 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
3772 servinfo4_t *svp;
3773 bitmap4 supp_attrs;
3774
3775 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
3776 rp = VTOR4(vp);
3777 nfs4_init_stateid_types(&sid_types);
3778
3779 /*
3780 * Only need to flush pages if there are any pages and
3781 * if the file is marked as dirty in some fashion. The
3782 * file must be flushed so that we can accurately
3783 * determine the size of the file and the cached data
3784 * after the SETATTR returns. A file is considered to
3785 * be dirty if it is either marked with R4DIRTY, has
3786 * outstanding i/o's active, or is mmap'd. In this
3787 * last case, we can't tell whether there are dirty
3788 * pages, so we flush just to be sure.
3789 */
3790 if (nfs4_has_pages(vp) &&
3791 ((rp->r_flags & R4DIRTY) ||
3792 rp->r_count > 0 ||
3793 rp->r_mapcnt > 0)) {
3794 ASSERT(vp->v_type != VCHR);
3795 e.error = nfs4_putpage(vp, (offset_t)0, 0, 0, cr, NULL);
3796 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) {
3797 mutex_enter(&rp->r_statelock);
3798 if (!rp->r_error)
3799 rp->r_error = e.error;
3800 mutex_exit(&rp->r_statelock);
3801 }
3802 }
3803
3804 if (mask & AT_SIZE) {
3805 /*
3806 * Verification setattr compound for non-deleg AT_SIZE:
3807 * { Putfh; Getattr; Verify; Setattr; Getattr }
3808 * Set ctime local here (outside the do_again label)
3809 * so that subsequent retries (after failed VERIFY)
3810 * will use ctime from GETATTR results (from failed
3811 * verify compound) as VERIFY arg.
3812 * If file has delegation, then VERIFY(time_metadata)
3813 * is of little added value, so don't bother.
3814 */
3815 mutex_enter(&rp->r_statev4_lock);
3816 if (rp->r_deleg_type == OPEN_DELEGATE_NONE ||
3817 rp->r_deleg_return_pending) {
3818 numops = 5;
3819 ctime = rp->r_attr.va_ctime;
3820 }
3821 mutex_exit(&rp->r_statev4_lock);
3822 }
3823
3824 recov_state.rs_flags = 0;
3825 recov_state.rs_num_retry_despite_err = 0;
3826
3827 args.ctag = TAG_SETATTR;
3828 do_again:
3829 recov_retry:
3830 setattr_argop = numops - 2;
3831
3832 args.array = argop;
3833 args.array_len = numops;
3834
3835 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state);
3836 if (e.error)
3837 return (e.error);
3838
3839
3840 /* putfh target fh */
3841 argop[0].argop = OP_CPUTFH;
3842 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
3843
3844 if (numops == 5) {
3845 /*
3846 * We only care about the ctime, but need to get mtime
3847 * and size for proper cache update.
3848 */
3849 /* getattr */
3850 argop[1].argop = OP_GETATTR;
3851 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
3852 argop[1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp);
3853
3854 /* verify - set later in loop */
3855 verify_argop = 2;
3856 }
3857
3858 /* setattr */
3859 svp = rp->r_server;
3860 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
3861 supp_attrs = svp->sv_supp_attrs;
3862 nfs_rw_exit(&svp->sv_lock);
3863
3864 nfs4args_setattr(&argop[setattr_argop], vap, vsap, flags, rp, cr,
3865 supp_attrs, &e.error, &sid_types);
3866 stateid = argop[setattr_argop].nfs_argop4_u.opsetattr.stateid;
3867 if (e.error) {
3868 /* req time field(s) overflow - return immediately */
3869 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov);
3870 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
3871 opsetattr.obj_attributes);
3872 return (e.error);
3873 }
3874 omode = rp->r_attr.va_mode;
3875
3876 /* getattr */
3877 argop[numops-1].argop = OP_GETATTR;
3878 argop[numops-1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
3879 /*
3880 * If we are setting the ACL (indicated only by vsap != NULL), request
3881 * the ACL in this getattr. The ACL returned from this getattr will be
3882 * used in updating the ACL cache.
3883 */
3884 if (vsap != NULL)
3885 argop[numops-1].nfs_argop4_u.opgetattr.attr_request |=
3886 FATTR4_ACL_MASK;
3887 argop[numops-1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp);
3888
3889 /*
3890 * setattr iterates if the object size is set and the cached ctime
3891 * does not match the file ctime. In that case, verify the ctime first.
3892 */
3893
3894 do {
3895 if (verify_argop != -1) {
3896 /*
3897 * Verify that the ctime match before doing setattr.
3898 */
3899 va.va_mask = AT_CTIME;
3900 va.va_ctime = ctime;
3901 svp = rp->r_server;
3902 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
3903 supp_attrs = svp->sv_supp_attrs;
3904 nfs_rw_exit(&svp->sv_lock);
3905 e.error = nfs4args_verify(&argop[verify_argop], &va,
3906 OP_VERIFY, supp_attrs);
3907 if (e.error) {
3908 /* req time field(s) overflow - return */
3909 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
3910 needrecov);
3911 break;
3912 }
3913 }
3914
3915 doqueue = 1;
3916
3917 t = gethrtime();
3918
3919 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e);
3920
3921 /*
3922 * Purge the access cache and ACL cache if changing either the
3923 * owner of the file, the group owner, or the mode. These may
3924 * change the access permissions of the file, so purge old
3925 * information and start over again.
3926 */
3927 if (mask & (AT_UID | AT_GID | AT_MODE)) {
3928 (void) nfs4_access_purge_rp(rp);
3929 if (rp->r_secattr != NULL) {
3930 mutex_enter(&rp->r_statelock);
3931 vsp = rp->r_secattr;
3932 rp->r_secattr = NULL;
3933 mutex_exit(&rp->r_statelock);
3934 if (vsp != NULL)
3935 nfs4_acl_free_cache(vsp);
3936 }
3937 }
3938
3939 /*
3940 * If res.array_len == numops, then everything succeeded,
3941 * except for possibly the final getattr. If only the
3942 * last getattr failed, give up, and don't try recovery.
3943 */
3944 if (res.array_len == numops) {
3945 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
3946 needrecov);
3947 if (! e.error)
3948 resp = &res;
3949 break;
3950 }
3951
3952 /*
3953 * if either rpc call failed or completely succeeded - done
3954 */
3955 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp);
3956 if (e.error) {
3957 PURGE_ATTRCACHE4(vp);
3958 if (!needrecov) {
3959 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
3960 needrecov);
3961 break;
3962 }
3963 }
3964
3965 /*
3966 * Do proper retry for OLD_STATEID outside of the normal
3967 * recovery framework.
3968 */
3969 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID &&
3970 sid_types.cur_sid_type != SPEC_SID &&
3971 sid_types.cur_sid_type != NO_SID) {
3972 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
3973 needrecov);
3974 nfs4_save_stateid(&stateid, &sid_types);
3975 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
3976 opsetattr.obj_attributes);
3977 if (verify_argop != -1) {
3978 nfs4args_verify_free(&argop[verify_argop]);
3979 verify_argop = -1;
3980 }
3981 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3982 goto recov_retry;
3983 }
3984
3985 if (needrecov) {
3986 bool_t abort;
3987
3988 abort = nfs4_start_recovery(&e,
3989 VTOMI4(vp), vp, NULL, NULL, NULL,
3990 OP_SETATTR, NULL, NULL, NULL);
3991 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
3992 needrecov);
3993 /*
3994 * Do not retry if we failed with OLD_STATEID using
3995 * a special stateid. This is done to avoid looping
3996 * with a broken server.
3997 */
3998 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID &&
3999 (sid_types.cur_sid_type == SPEC_SID ||
4000 sid_types.cur_sid_type == NO_SID))
4001 abort = TRUE;
4002 if (!e.error) {
4003 if (res.status == NFS4ERR_BADOWNER)
4004 nfs4_log_badowner(VTOMI4(vp),
4005 OP_SETATTR);
4006
4007 e.error = geterrno4(res.status);
4008 (void) xdr_free(xdr_COMPOUND4res_clnt,
4009 (caddr_t)&res);
4010 }
4011 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
4012 opsetattr.obj_attributes);
4013 if (verify_argop != -1) {
4014 nfs4args_verify_free(&argop[verify_argop]);
4015 verify_argop = -1;
4016 }
4017 if (abort == FALSE) {
4018 /*
4019 * Need to retry all possible stateids in
4020 * case the recovery error wasn't stateid
4021 * related or the stateids have become
4022 * stale (server reboot).
4023 */
4024 nfs4_init_stateid_types(&sid_types);
4025 goto recov_retry;
4026 }
4027 return (e.error);
4028 }
4029
4030 /*
4031 * Need to call nfs4_end_op before nfs4getattr to
4032 * avoid potential nfs4_start_op deadlock. See RFE
4033 * 4777612. Calls to nfs4_invalidate_pages() and
4034 * nfs4_purge_stale_fh() might also generate over the
4035 * wire calls which my cause nfs4_start_op() deadlock.
4036 */
4037 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov);
4038
4039 /*
4040 * Check to update lease.
4041 */
4042 resp = &res;
4043 if (res.status == NFS4_OK) {
4044 break;
4045 }
4046
4047 /*
4048 * Check if verify failed to see if try again
4049 */
4050 if ((verify_argop == -1) || (res.array_len != 3)) {
4051 /*
4052 * can't continue...
4053 */
4054 if (res.status == NFS4ERR_BADOWNER)
4055 nfs4_log_badowner(VTOMI4(vp), OP_SETATTR);
4056
4057 e.error = geterrno4(res.status);
4058 } else {
4059 /*
4060 * When the verify request fails, the client ctime is
4061 * not in sync with the server. This is the same as
4062 * the version 3 "not synchronized" error, and we
4063 * handle it in a similar manner (XXX do we need to???).
4064 * Use the ctime returned in the first getattr for
4065 * the input to the next verify.
4066 * If we couldn't get the attributes, then we give up
4067 * because we can't complete the operation as required.
4068 */
4069 garp = &res.array[1].nfs_resop4_u.opgetattr.ga_res;
4070 }
4071 if (e.error) {
4072 PURGE_ATTRCACHE4(vp);
4073 nfs4_purge_stale_fh(e.error, vp, cr);
4074 } else {
4075 /*
4076 * retry with a new verify value
4077 */
4078 ctime = garp->n4g_va.va_ctime;
4079 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
4080 resp = NULL;
4081 }
4082 if (!e.error) {
4083 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
4084 opsetattr.obj_attributes);
4085 if (verify_argop != -1) {
4086 nfs4args_verify_free(&argop[verify_argop]);
4087 verify_argop = -1;
4088 }
4089 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
4090 goto do_again;
4091 }
4092 } while (!e.error);
4093
4094 if (e.error) {
4095 /*
4096 * If we are here, rfs4call has an irrecoverable error - return
4097 */
4098 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
4099 opsetattr.obj_attributes);
4100 if (verify_argop != -1) {
4101 nfs4args_verify_free(&argop[verify_argop]);
4102 verify_argop = -1;
4103 }
4104 if (resp)
4105 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
4106 return (e.error);
4107 }
4108
4109
4110
4111 /*
4112 * If changing the size of the file, invalidate
4113 * any local cached data which is no longer part
4114 * of the file. We also possibly invalidate the
4115 * last page in the file. We could use
4116 * pvn_vpzero(), but this would mark the page as
4117 * modified and require it to be written back to
4118 * the server for no particularly good reason.
4119 * This way, if we access it, then we bring it
4120 * back in. A read should be cheaper than a
4121 * write.
4122 */
4123 if (mask & AT_SIZE) {
4124 nfs4_invalidate_pages(vp, (vap->va_size & PAGEMASK), cr);
4125 }
4126
4127 /* either no error or one of the postop getattr failed */
4128
4129 /*
4130 * XXX Perform a simplified version of wcc checking. Instead of
4131 * have another getattr to get pre-op, just purge cache if
4132 * any of the ops prior to and including the getattr failed.
4133 * If the getattr succeeded then update the attrcache accordingly.
4134 */
4135
4136 garp = NULL;
4137 if (res.status == NFS4_OK) {
4138 /*
4139 * Last getattr
4140 */
4141 resop = &res.array[numops - 1];
4142 garp = &resop->nfs_resop4_u.opgetattr.ga_res;
4143 }
4144 /*
4145 * In certain cases, nfs4_update_attrcache() will purge the attrcache,
4146 * rather than filling it. See the function itself for details.
4147 */
4148 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr);
4149 if (garp != NULL) {
4150 if (garp->n4g_resbmap & FATTR4_ACL_MASK) {
4151 nfs4_acl_fill_cache(rp, &garp->n4g_vsa);
4152 vs_ace4_destroy(&garp->n4g_vsa);
4153 } else {
4154 if (vsap != NULL) {
4155 /*
4156 * The ACL was supposed to be set and to be
4157 * returned in the last getattr of this
4158 * compound, but for some reason the getattr
4159 * result doesn't contain the ACL. In this
4160 * case, purge the ACL cache.
4161 */
4162 if (rp->r_secattr != NULL) {
4163 mutex_enter(&rp->r_statelock);
4164 vsp = rp->r_secattr;
4165 rp->r_secattr = NULL;
4166 mutex_exit(&rp->r_statelock);
4167 if (vsp != NULL)
4168 nfs4_acl_free_cache(vsp);
4169 }
4170 }
4171 }
4172 }
4173
4174 if (res.status == NFS4_OK && (mask & AT_SIZE)) {
4175 /*
4176 * Set the size, rather than relying on getting it updated
4177 * via a GETATTR. With delegations the client tries to
4178 * suppress GETATTR calls.
4179 */
4180 mutex_enter(&rp->r_statelock);
4181 rp->r_size = vap->va_size;
4182 mutex_exit(&rp->r_statelock);
4183 }
4184
4185 /*
4186 * Can free up request args and res
4187 */
4188 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
4189 opsetattr.obj_attributes);
4190 if (verify_argop != -1) {
4191 nfs4args_verify_free(&argop[verify_argop]);
4192 verify_argop = -1;
4193 }
4194 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
4195
4196 /*
4197 * Some servers will change the mode to clear the setuid
4198 * and setgid bits when changing the uid or gid. The
4199 * client needs to compensate appropriately.
4200 */
4201 if (mask & (AT_UID | AT_GID)) {
4202 int terror, do_setattr;
4203
4204 do_setattr = 0;
4205 va.va_mask = AT_MODE;
4206 terror = nfs4getattr(vp, &va, cr);
4207 if (!terror &&
4208 (((mask & AT_MODE) && va.va_mode != vap->va_mode) ||
4209 (!(mask & AT_MODE) && va.va_mode != omode))) {
4210 va.va_mask = AT_MODE;
4211 if (mask & AT_MODE) {
4212 /*
4213 * We asked the mode to be changed and what
4214 * we just got from the server in getattr is
4215 * not what we wanted it to be, so set it now.
4216 */
4217 va.va_mode = vap->va_mode;
4218 do_setattr = 1;
4219 } else {
4220 /*
4221 * We did not ask the mode to be changed,
4222 * Check to see that the server just cleared
4223 * I_SUID and I_GUID from it. If not then
4224 * set mode to omode with UID/GID cleared.
4225 */
4226 if (nfs4_compare_modes(va.va_mode, omode)) {
4227 omode &= ~(S_ISUID|S_ISGID);
4228 va.va_mode = omode;
4229 do_setattr = 1;
4230 }
4231 }
4232
4233 if (do_setattr)
4234 (void) nfs4setattr(vp, &va, 0, cr, NULL);
4235 }
4236 }
4237
4238 return (e.error);
4239 }
4240
4241 /* ARGSUSED */
4242 static int
nfs4_access(vnode_t * vp,int mode,int flags,cred_t * cr,caller_context_t * ct)4243 nfs4_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct)
4244 {
4245 COMPOUND4args_clnt args;
4246 COMPOUND4res_clnt res;
4247 int doqueue;
4248 uint32_t acc, resacc, argacc;
4249 rnode4_t *rp;
4250 cred_t *cred, *ncr, *ncrfree = NULL;
4251 nfs4_access_type_t cacc;
4252 int num_ops;
4253 nfs_argop4 argop[3];
4254 nfs_resop4 *resop;
4255 bool_t needrecov = FALSE, do_getattr;
4256 nfs4_recov_state_t recov_state;
4257 int rpc_error;
4258 hrtime_t t;
4259 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
4260 mntinfo4_t *mi = VTOMI4(vp);
4261
4262 if (nfs_zone() != mi->mi_zone)
4263 return (EIO);
4264
4265 acc = 0;
4266 if (mode & VREAD)
4267 acc |= ACCESS4_READ;
4268 if (mode & VWRITE) {
4269 if ((vp->v_vfsp->vfs_flag & VFS_RDONLY) && !ISVDEV(vp->v_type))
4270 return (EROFS);
4271 if (vp->v_type == VDIR)
4272 acc |= ACCESS4_DELETE;
4273 acc |= ACCESS4_MODIFY | ACCESS4_EXTEND;
4274 }
4275 if (mode & VEXEC) {
4276 if (vp->v_type == VDIR)
4277 acc |= ACCESS4_LOOKUP;
4278 else
4279 acc |= ACCESS4_EXECUTE;
4280 }
4281
4282 if (VTOR4(vp)->r_acache != NULL) {
4283 e.error = nfs4_validate_caches(vp, cr);
4284 if (e.error)
4285 return (e.error);
4286 }
4287
4288 rp = VTOR4(vp);
4289 if (vp->v_type == VDIR)
4290 argacc = ACCESS4_READ | ACCESS4_DELETE | ACCESS4_MODIFY |
4291 ACCESS4_EXTEND | ACCESS4_LOOKUP;
4292 else
4293 argacc = ACCESS4_READ | ACCESS4_MODIFY | ACCESS4_EXTEND |
4294 ACCESS4_EXECUTE;
4295 recov_state.rs_flags = 0;
4296 recov_state.rs_num_retry_despite_err = 0;
4297
4298 cred = cr;
4299 /*
4300 * ncr and ncrfree both initially
4301 * point to the memory area returned
4302 * by crnetadjust();
4303 * ncrfree not NULL when exiting means
4304 * that we need to release it
4305 */
4306 ncr = crnetadjust(cred);
4307 ncrfree = ncr;
4308
4309 tryagain:
4310 cacc = nfs4_access_check(rp, acc, cred);
4311 if (cacc == NFS4_ACCESS_ALLOWED) {
4312 if (ncrfree != NULL)
4313 crfree(ncrfree);
4314 return (0);
4315 }
4316 if (cacc == NFS4_ACCESS_DENIED) {
4317 /*
4318 * If the cred can be adjusted, try again
4319 * with the new cred.
4320 */
4321 if (ncr != NULL) {
4322 cred = ncr;
4323 ncr = NULL;
4324 goto tryagain;
4325 }
4326 if (ncrfree != NULL)
4327 crfree(ncrfree);
4328 return (EACCES);
4329 }
4330
4331 recov_retry:
4332 /*
4333 * Don't take with r_statev4_lock here. r_deleg_type could
4334 * change as soon as lock is released. Since it is an int,
4335 * there is no atomicity issue.
4336 */
4337 do_getattr = (rp->r_deleg_type == OPEN_DELEGATE_NONE);
4338 num_ops = do_getattr ? 3 : 2;
4339
4340 args.ctag = TAG_ACCESS;
4341
4342 args.array_len = num_ops;
4343 args.array = argop;
4344
4345 if (e.error = nfs4_start_fop(mi, vp, NULL, OH_ACCESS,
4346 &recov_state, NULL)) {
4347 if (ncrfree != NULL)
4348 crfree(ncrfree);
4349 return (e.error);
4350 }
4351
4352 /* putfh target fh */
4353 argop[0].argop = OP_CPUTFH;
4354 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh;
4355
4356 /* access */
4357 argop[1].argop = OP_ACCESS;
4358 argop[1].nfs_argop4_u.opaccess.access = argacc;
4359
4360 /* getattr */
4361 if (do_getattr) {
4362 argop[2].argop = OP_GETATTR;
4363 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
4364 argop[2].nfs_argop4_u.opgetattr.mi = mi;
4365 }
4366
4367 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
4368 "nfs4_access: %s call, rp %s", needrecov ? "recov" : "first",
4369 rnode4info(VTOR4(vp))));
4370
4371 doqueue = 1;
4372 t = gethrtime();
4373 rfs4call(VTOMI4(vp), &args, &res, cred, &doqueue, 0, &e);
4374 rpc_error = e.error;
4375
4376 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp);
4377 if (needrecov) {
4378 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
4379 "nfs4_access: initiating recovery\n"));
4380
4381 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
4382 NULL, OP_ACCESS, NULL, NULL, NULL) == FALSE) {
4383 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_ACCESS,
4384 &recov_state, needrecov);
4385 if (!e.error)
4386 (void) xdr_free(xdr_COMPOUND4res_clnt,
4387 (caddr_t)&res);
4388 goto recov_retry;
4389 }
4390 }
4391 nfs4_end_fop(mi, vp, NULL, OH_ACCESS, &recov_state, needrecov);
4392
4393 if (e.error)
4394 goto out;
4395
4396 if (res.status) {
4397 e.error = geterrno4(res.status);
4398 /*
4399 * This might generate over the wire calls throught
4400 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op()
4401 * here to avoid a deadlock.
4402 */
4403 nfs4_purge_stale_fh(e.error, vp, cr);
4404 goto out;
4405 }
4406 resop = &res.array[1]; /* access res */
4407
4408 resacc = resop->nfs_resop4_u.opaccess.access;
4409
4410 if (do_getattr) {
4411 resop++; /* getattr res */
4412 nfs4_attr_cache(vp, &resop->nfs_resop4_u.opgetattr.ga_res,
4413 t, cr, FALSE, NULL);
4414 }
4415
4416 if (!e.error) {
4417 nfs4_access_cache(rp, argacc, resacc, cred);
4418 /*
4419 * we just cached results with cred; if cred is the
4420 * adjusted credentials from crnetadjust, we do not want
4421 * to release them before exiting: hence setting ncrfree
4422 * to NULL
4423 */
4424 if (cred != cr)
4425 ncrfree = NULL;
4426 /* XXX check the supported bits too? */
4427 if ((acc & resacc) != acc) {
4428 /*
4429 * The following code implements the semantic
4430 * that a setuid root program has *at least* the
4431 * permissions of the user that is running the
4432 * program. See rfs3call() for more portions
4433 * of the implementation of this functionality.
4434 */
4435 /* XXX-LP */
4436 if (ncr != NULL) {
4437 (void) xdr_free(xdr_COMPOUND4res_clnt,
4438 (caddr_t)&res);
4439 cred = ncr;
4440 ncr = NULL;
4441 goto tryagain;
4442 }
4443 e.error = EACCES;
4444 }
4445 }
4446
4447 out:
4448 if (!rpc_error)
4449 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
4450
4451 if (ncrfree != NULL)
4452 crfree(ncrfree);
4453
4454 return (e.error);
4455 }
4456
4457 /* ARGSUSED */
4458 static int
nfs4_readlink(vnode_t * vp,struct uio * uiop,cred_t * cr,caller_context_t * ct)4459 nfs4_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct)
4460 {
4461 COMPOUND4args_clnt args;
4462 COMPOUND4res_clnt res;
4463 int doqueue;
4464 rnode4_t *rp;
4465 nfs_argop4 argop[3];
4466 nfs_resop4 *resop;
4467 READLINK4res *lr_res;
4468 nfs4_ga_res_t *garp;
4469 uint_t len;
4470 char *linkdata;
4471 bool_t needrecov = FALSE;
4472 nfs4_recov_state_t recov_state;
4473 hrtime_t t;
4474 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
4475
4476 if (nfs_zone() != VTOMI4(vp)->mi_zone)
4477 return (EIO);
4478 /*
4479 * Can't readlink anything other than a symbolic link.
4480 */
4481 if (vp->v_type != VLNK)
4482 return (EINVAL);
4483
4484 rp = VTOR4(vp);
4485 if (nfs4_do_symlink_cache && rp->r_symlink.contents != NULL) {
4486 e.error = nfs4_validate_caches(vp, cr);
4487 if (e.error)
4488 return (e.error);
4489 mutex_enter(&rp->r_statelock);
4490 if (rp->r_symlink.contents != NULL) {
4491 e.error = uiomove(rp->r_symlink.contents,
4492 rp->r_symlink.len, UIO_READ, uiop);
4493 mutex_exit(&rp->r_statelock);
4494 return (e.error);
4495 }
4496 mutex_exit(&rp->r_statelock);
4497 }
4498 recov_state.rs_flags = 0;
4499 recov_state.rs_num_retry_despite_err = 0;
4500
4501 recov_retry:
4502 args.array_len = 3;
4503 args.array = argop;
4504 args.ctag = TAG_READLINK;
4505
4506 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state);
4507 if (e.error) {
4508 return (e.error);
4509 }
4510
4511 /* 0. putfh symlink fh */
4512 argop[0].argop = OP_CPUTFH;
4513 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh;
4514
4515 /* 1. readlink */
4516 argop[1].argop = OP_READLINK;
4517
4518 /* 2. getattr */
4519 argop[2].argop = OP_GETATTR;
4520 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
4521 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(vp);
4522
4523 doqueue = 1;
4524
4525 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
4526 "nfs4_readlink: %s call, rp %s", needrecov ? "recov" : "first",
4527 rnode4info(VTOR4(vp))));
4528
4529 t = gethrtime();
4530
4531 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e);
4532
4533 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp);
4534 if (needrecov) {
4535 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
4536 "nfs4_readlink: initiating recovery\n"));
4537
4538 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
4539 NULL, OP_READLINK, NULL, NULL, NULL) == FALSE) {
4540 if (!e.error)
4541 (void) xdr_free(xdr_COMPOUND4res_clnt,
4542 (caddr_t)&res);
4543
4544 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
4545 needrecov);
4546 goto recov_retry;
4547 }
4548 }
4549
4550 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov);
4551
4552 if (e.error)
4553 return (e.error);
4554
4555 /*
4556 * There is an path in the code below which calls
4557 * nfs4_purge_stale_fh(), which may generate otw calls through
4558 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op()
4559 * here to avoid nfs4_start_op() deadlock.
4560 */
4561
4562 if (res.status && (res.array_len < args.array_len)) {
4563 /*
4564 * either Putfh or Link failed
4565 */
4566 e.error = geterrno4(res.status);
4567 nfs4_purge_stale_fh(e.error, vp, cr);
4568 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
4569 return (e.error);
4570 }
4571
4572 resop = &res.array[1]; /* readlink res */
4573 lr_res = &resop->nfs_resop4_u.opreadlink;
4574
4575 /*
4576 * treat symlink names as data
4577 */
4578 linkdata = utf8_to_str(&lr_res->link, &len, NULL);
4579 if (linkdata != NULL) {
4580 int uio_len = len - 1;
4581 /* len includes null byte, which we won't uiomove */
4582 e.error = uiomove(linkdata, uio_len, UIO_READ, uiop);
4583 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) {
4584 mutex_enter(&rp->r_statelock);
4585 if (rp->r_symlink.contents == NULL) {
4586 rp->r_symlink.contents = linkdata;
4587 rp->r_symlink.len = uio_len;
4588 rp->r_symlink.size = len;
4589 mutex_exit(&rp->r_statelock);
4590 } else {
4591 mutex_exit(&rp->r_statelock);
4592 kmem_free(linkdata, len);
4593 }
4594 } else {
4595 kmem_free(linkdata, len);
4596 }
4597 }
4598 if (res.status == NFS4_OK) {
4599 resop++; /* getattr res */
4600 garp = &resop->nfs_resop4_u.opgetattr.ga_res;
4601 }
4602 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr);
4603
4604 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
4605
4606 /*
4607 * The over the wire error for attempting to readlink something
4608 * other than a symbolic link is ENXIO. However, we need to
4609 * return EINVAL instead of ENXIO, so we map it here.
4610 */
4611 return (e.error == ENXIO ? EINVAL : e.error);
4612 }
4613
4614 /*
4615 * Flush local dirty pages to stable storage on the server.
4616 *
4617 * If FNODSYNC is specified, then there is nothing to do because
4618 * metadata changes are not cached on the client before being
4619 * sent to the server.
4620 */
4621 /* ARGSUSED */
4622 static int
nfs4_fsync(vnode_t * vp,int syncflag,cred_t * cr,caller_context_t * ct)4623 nfs4_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
4624 {
4625 int error;
4626
4627 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp))
4628 return (0);
4629 if (nfs_zone() != VTOMI4(vp)->mi_zone)
4630 return (EIO);
4631 error = nfs4_putpage_commit(vp, (offset_t)0, 0, cr);
4632 if (!error)
4633 error = VTOR4(vp)->r_error;
4634 return (error);
4635 }
4636
4637 /*
4638 * Weirdness: if the file was removed or the target of a rename
4639 * operation while it was open, it got renamed instead. Here we
4640 * remove the renamed file.
4641 */
4642 /* ARGSUSED */
4643 void
nfs4_inactive(vnode_t * vp,cred_t * cr,caller_context_t * ct)4644 nfs4_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4645 {
4646 rnode4_t *rp;
4647
4648 ASSERT(vp != DNLC_NO_VNODE);
4649
4650 rp = VTOR4(vp);
4651
4652 if (IS_SHADOW(vp, rp)) {
4653 sv_inactive(vp);
4654 return;
4655 }
4656
4657 /*
4658 * If this is coming from the wrong zone, we let someone in the right
4659 * zone take care of it asynchronously. We can get here due to
4660 * VN_RELE() being called from pageout() or fsflush(). This call may
4661 * potentially turn into an expensive no-op if, for instance, v_count
4662 * gets incremented in the meantime, but it's still correct.
4663 */
4664 if (nfs_zone() != VTOMI4(vp)->mi_zone) {
4665 nfs4_async_inactive(vp, cr);
4666 return;
4667 }
4668
4669 /*
4670 * Some of the cleanup steps might require over-the-wire
4671 * operations. Since VOP_INACTIVE can get called as a result of
4672 * other over-the-wire operations (e.g., an attribute cache update
4673 * can lead to a DNLC purge), doing those steps now would lead to a
4674 * nested call to the recovery framework, which can deadlock. So
4675 * do any over-the-wire cleanups asynchronously, in a separate
4676 * thread.
4677 */
4678
4679 mutex_enter(&rp->r_os_lock);
4680 mutex_enter(&rp->r_statelock);
4681 mutex_enter(&rp->r_statev4_lock);
4682
4683 if (vp->v_type == VREG && list_head(&rp->r_open_streams) != NULL) {
4684 mutex_exit(&rp->r_statev4_lock);
4685 mutex_exit(&rp->r_statelock);
4686 mutex_exit(&rp->r_os_lock);
4687 nfs4_async_inactive(vp, cr);
4688 return;
4689 }
4690
4691 if (rp->r_deleg_type == OPEN_DELEGATE_READ ||
4692 rp->r_deleg_type == OPEN_DELEGATE_WRITE) {
4693 mutex_exit(&rp->r_statev4_lock);
4694 mutex_exit(&rp->r_statelock);
4695 mutex_exit(&rp->r_os_lock);
4696 nfs4_async_inactive(vp, cr);
4697 return;
4698 }
4699
4700 if (rp->r_unldvp != NULL) {
4701 mutex_exit(&rp->r_statev4_lock);
4702 mutex_exit(&rp->r_statelock);
4703 mutex_exit(&rp->r_os_lock);
4704 nfs4_async_inactive(vp, cr);
4705 return;
4706 }
4707 mutex_exit(&rp->r_statev4_lock);
4708 mutex_exit(&rp->r_statelock);
4709 mutex_exit(&rp->r_os_lock);
4710
4711 rp4_addfree(rp, cr);
4712 }
4713
4714 /*
4715 * nfs4_inactive_otw - nfs4_inactive, plus over-the-wire calls to free up
4716 * various bits of state. The caller must not refer to vp after this call.
4717 */
4718
4719 void
nfs4_inactive_otw(vnode_t * vp,cred_t * cr)4720 nfs4_inactive_otw(vnode_t *vp, cred_t *cr)
4721 {
4722 rnode4_t *rp = VTOR4(vp);
4723 nfs4_recov_state_t recov_state;
4724 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
4725 vnode_t *unldvp;
4726 char *unlname;
4727 cred_t *unlcred;
4728 COMPOUND4args_clnt args;
4729 COMPOUND4res_clnt res, *resp;
4730 nfs_argop4 argop[2];
4731 int doqueue;
4732 #ifdef DEBUG
4733 char *name;
4734 #endif
4735
4736 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
4737 ASSERT(!IS_SHADOW(vp, rp));
4738
4739 #ifdef DEBUG
4740 name = fn_name(VTOSV(vp)->sv_name);
4741 NFS4_DEBUG(nfs4_client_inactive_debug, (CE_NOTE, "nfs4_inactive_otw: "
4742 "release vnode %s", name));
4743 kmem_free(name, MAXNAMELEN);
4744 #endif
4745
4746 if (vp->v_type == VREG) {
4747 bool_t recov_failed = FALSE;
4748
4749 e.error = nfs4close_all(vp, cr);
4750 if (e.error) {
4751 /* Check to see if recovery failed */
4752 mutex_enter(&(VTOMI4(vp)->mi_lock));
4753 if (VTOMI4(vp)->mi_flags & MI4_RECOV_FAIL)
4754 recov_failed = TRUE;
4755 mutex_exit(&(VTOMI4(vp)->mi_lock));
4756 if (!recov_failed) {
4757 mutex_enter(&rp->r_statelock);
4758 if (rp->r_flags & R4RECOVERR)
4759 recov_failed = TRUE;
4760 mutex_exit(&rp->r_statelock);
4761 }
4762 if (recov_failed) {
4763 NFS4_DEBUG(nfs4_client_recov_debug,
4764 (CE_NOTE, "nfs4_inactive_otw: "
4765 "close failed (recovery failure)"));
4766 }
4767 }
4768 }
4769
4770 redo:
4771 if (rp->r_unldvp == NULL) {
4772 rp4_addfree(rp, cr);
4773 return;
4774 }
4775
4776 /*
4777 * Save the vnode pointer for the directory where the
4778 * unlinked-open file got renamed, then set it to NULL
4779 * to prevent another thread from getting here before
4780 * we're done with the remove. While we have the
4781 * statelock, make local copies of the pertinent rnode
4782 * fields. If we weren't to do this in an atomic way, the
4783 * the unl* fields could become inconsistent with respect
4784 * to each other due to a race condition between this
4785 * code and nfs_remove(). See bug report 1034328.
4786 */
4787 mutex_enter(&rp->r_statelock);
4788 if (rp->r_unldvp == NULL) {
4789 mutex_exit(&rp->r_statelock);
4790 rp4_addfree(rp, cr);
4791 return;
4792 }
4793
4794 unldvp = rp->r_unldvp;
4795 rp->r_unldvp = NULL;
4796 unlname = rp->r_unlname;
4797 rp->r_unlname = NULL;
4798 unlcred = rp->r_unlcred;
4799 rp->r_unlcred = NULL;
4800 mutex_exit(&rp->r_statelock);
4801
4802 /*
4803 * If there are any dirty pages left, then flush
4804 * them. This is unfortunate because they just
4805 * may get thrown away during the remove operation,
4806 * but we have to do this for correctness.
4807 */
4808 if (nfs4_has_pages(vp) &&
4809 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) {
4810 ASSERT(vp->v_type != VCHR);
4811 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, NULL);
4812 if (e.error) {
4813 mutex_enter(&rp->r_statelock);
4814 if (!rp->r_error)
4815 rp->r_error = e.error;
4816 mutex_exit(&rp->r_statelock);
4817 }
4818 }
4819
4820 recov_state.rs_flags = 0;
4821 recov_state.rs_num_retry_despite_err = 0;
4822 recov_retry_remove:
4823 /*
4824 * Do the remove operation on the renamed file
4825 */
4826 args.ctag = TAG_INACTIVE;
4827
4828 /*
4829 * Remove ops: putfh dir; remove
4830 */
4831 args.array_len = 2;
4832 args.array = argop;
4833
4834 e.error = nfs4_start_op(VTOMI4(unldvp), unldvp, NULL, &recov_state);
4835 if (e.error) {
4836 kmem_free(unlname, MAXNAMELEN);
4837 crfree(unlcred);
4838 VN_RELE(unldvp);
4839 /*
4840 * Try again; this time around r_unldvp will be NULL, so we'll
4841 * just call rp4_addfree() and return.
4842 */
4843 goto redo;
4844 }
4845
4846 /* putfh directory */
4847 argop[0].argop = OP_CPUTFH;
4848 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(unldvp)->r_fh;
4849
4850 /* remove */
4851 argop[1].argop = OP_CREMOVE;
4852 argop[1].nfs_argop4_u.opcremove.ctarget = unlname;
4853
4854 doqueue = 1;
4855 resp = &res;
4856
4857 #if 0 /* notyet */
4858 /*
4859 * Can't do this yet. We may be being called from
4860 * dnlc_purge_XXX while that routine is holding a
4861 * mutex lock to the nc_rele list. The calls to
4862 * nfs3_cache_wcc_data may result in calls to
4863 * dnlc_purge_XXX. This will result in a deadlock.
4864 */
4865 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e);
4866 if (e.error) {
4867 PURGE_ATTRCACHE4(unldvp);
4868 resp = NULL;
4869 } else if (res.status) {
4870 e.error = geterrno4(res.status);
4871 PURGE_ATTRCACHE4(unldvp);
4872 /*
4873 * This code is inactive right now
4874 * but if made active there should
4875 * be a nfs4_end_op() call before
4876 * nfs4_purge_stale_fh to avoid start_op()
4877 * deadlock. See BugId: 4948726
4878 */
4879 nfs4_purge_stale_fh(error, unldvp, cr);
4880 } else {
4881 nfs_resop4 *resop;
4882 REMOVE4res *rm_res;
4883
4884 resop = &res.array[1];
4885 rm_res = &resop->nfs_resop4_u.opremove;
4886 /*
4887 * Update directory cache attribute,
4888 * readdir and dnlc caches.
4889 */
4890 nfs4_update_dircaches(&rm_res->cinfo, unldvp, NULL, NULL, NULL);
4891 }
4892 #else
4893 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e);
4894
4895 PURGE_ATTRCACHE4(unldvp);
4896 #endif
4897
4898 if (nfs4_needs_recovery(&e, FALSE, unldvp->v_vfsp)) {
4899 if (nfs4_start_recovery(&e, VTOMI4(unldvp), unldvp, NULL,
4900 NULL, NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) {
4901 if (!e.error)
4902 (void) xdr_free(xdr_COMPOUND4res_clnt,
4903 (caddr_t)&res);
4904 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL,
4905 &recov_state, TRUE);
4906 goto recov_retry_remove;
4907 }
4908 }
4909 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, &recov_state, FALSE);
4910
4911 /*
4912 * Release stuff held for the remove
4913 */
4914 VN_RELE(unldvp);
4915 if (!e.error && resp)
4916 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
4917
4918 kmem_free(unlname, MAXNAMELEN);
4919 crfree(unlcred);
4920 goto redo;
4921 }
4922
4923 /*
4924 * Remote file system operations having to do with directory manipulation.
4925 */
4926 /* ARGSUSED3 */
4927 int
nfs4_lookup(vnode_t * dvp,char * nm,vnode_t ** vpp,struct pathname * pnp,int flags,vnode_t * rdir,cred_t * cr,caller_context_t * ct,int * direntflags,pathname_t * realpnp)4928 nfs4_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
4929 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
4930 int *direntflags, pathname_t *realpnp)
4931 {
4932 int error;
4933 vnode_t *vp, *avp = NULL;
4934 rnode4_t *drp;
4935
4936 *vpp = NULL;
4937 if (nfs_zone() != VTOMI4(dvp)->mi_zone)
4938 return (EPERM);
4939 /*
4940 * if LOOKUP_XATTR, must replace dvp (object) with
4941 * object's attrdir before continuing with lookup
4942 */
4943 if (flags & LOOKUP_XATTR) {
4944 error = nfs4lookup_xattr(dvp, nm, &avp, flags, cr);
4945 if (error)
4946 return (error);
4947
4948 dvp = avp;
4949
4950 /*
4951 * If lookup is for "", just return dvp now. The attrdir
4952 * has already been activated (from nfs4lookup_xattr), and
4953 * the caller will RELE the original dvp -- not
4954 * the attrdir. So, set vpp and return.
4955 * Currently, when the LOOKUP_XATTR flag is
4956 * passed to VOP_LOOKUP, the name is always empty, and
4957 * shortcircuiting here avoids 3 unneeded lock/unlock
4958 * pairs.
4959 *
4960 * If a non-empty name was provided, then it is the
4961 * attribute name, and it will be looked up below.
4962 */
4963 if (*nm == '\0') {
4964 *vpp = dvp;
4965 return (0);
4966 }
4967
4968 /*
4969 * The vfs layer never sends a name when asking for the
4970 * attrdir, so we should never get here (unless of course
4971 * name is passed at some time in future -- at which time
4972 * we'll blow up here).
4973 */
4974 ASSERT(0);
4975 }
4976
4977 drp = VTOR4(dvp);
4978 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp)))
4979 return (EINTR);
4980
4981 error = nfs4lookup(dvp, nm, vpp, cr, 0);
4982 nfs_rw_exit(&drp->r_rwlock);
4983
4984 /*
4985 * If vnode is a device, create special vnode.
4986 */
4987 if (!error && ISVDEV((*vpp)->v_type)) {
4988 vp = *vpp;
4989 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
4990 VN_RELE(vp);
4991 }
4992
4993 return (error);
4994 }
4995
4996 /* ARGSUSED */
4997 static int
nfs4lookup_xattr(vnode_t * dvp,char * nm,vnode_t ** vpp,int flags,cred_t * cr)4998 nfs4lookup_xattr(vnode_t *dvp, char *nm, vnode_t **vpp, int flags, cred_t *cr)
4999 {
5000 int error;
5001 rnode4_t *drp;
5002 int cflag = ((flags & CREATE_XATTR_DIR) != 0);
5003 mntinfo4_t *mi;
5004
5005 mi = VTOMI4(dvp);
5006 if (!(mi->mi_vfsp->vfs_flag & VFS_XATTR) &&
5007 !vfs_has_feature(mi->mi_vfsp, VFSFT_SYSATTR_VIEWS))
5008 return (EINVAL);
5009
5010 drp = VTOR4(dvp);
5011 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp)))
5012 return (EINTR);
5013
5014 mutex_enter(&drp->r_statelock);
5015 /*
5016 * If the server doesn't support xattrs just return EINVAL
5017 */
5018 if (drp->r_xattr_dir == NFS4_XATTR_DIR_NOTSUPP) {
5019 mutex_exit(&drp->r_statelock);
5020 nfs_rw_exit(&drp->r_rwlock);
5021 return (EINVAL);
5022 }
5023
5024 /*
5025 * If there is a cached xattr directory entry,
5026 * use it as long as the attributes are valid. If the
5027 * attributes are not valid, take the simple approach and
5028 * free the cached value and re-fetch a new value.
5029 *
5030 * We don't negative entry cache for now, if we did we
5031 * would need to check if the file has changed on every
5032 * lookup. But xattrs don't exist very often and failing
5033 * an openattr is not much more expensive than and NVERIFY or GETATTR
5034 * so do an openattr over the wire for now.
5035 */
5036 if (drp->r_xattr_dir != NULL) {
5037 if (ATTRCACHE4_VALID(dvp)) {
5038 VN_HOLD(drp->r_xattr_dir);
5039 *vpp = drp->r_xattr_dir;
5040 mutex_exit(&drp->r_statelock);
5041 nfs_rw_exit(&drp->r_rwlock);
5042 return (0);
5043 }
5044 VN_RELE(drp->r_xattr_dir);
5045 drp->r_xattr_dir = NULL;
5046 }
5047 mutex_exit(&drp->r_statelock);
5048
5049 error = nfs4openattr(dvp, vpp, cflag, cr);
5050
5051 nfs_rw_exit(&drp->r_rwlock);
5052
5053 return (error);
5054 }
5055
5056 static int
nfs4lookup(vnode_t * dvp,char * nm,vnode_t ** vpp,cred_t * cr,int skipdnlc)5057 nfs4lookup(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, int skipdnlc)
5058 {
5059 int error;
5060 rnode4_t *drp;
5061
5062 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
5063
5064 /*
5065 * If lookup is for "", just return dvp. Don't need
5066 * to send it over the wire, look it up in the dnlc,
5067 * or perform any access checks.
5068 */
5069 if (*nm == '\0') {
5070 VN_HOLD(dvp);
5071 *vpp = dvp;
5072 return (0);
5073 }
5074
5075 /*
5076 * Can't do lookups in non-directories.
5077 */
5078 if (dvp->v_type != VDIR)
5079 return (ENOTDIR);
5080
5081 /*
5082 * If lookup is for ".", just return dvp. Don't need
5083 * to send it over the wire or look it up in the dnlc,
5084 * just need to check access.
5085 */
5086 if (nm[0] == '.' && nm[1] == '\0') {
5087 error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
5088 if (error)
5089 return (error);
5090 VN_HOLD(dvp);
5091 *vpp = dvp;
5092 return (0);
5093 }
5094
5095 drp = VTOR4(dvp);
5096 if (!(drp->r_flags & R4LOOKUP)) {
5097 mutex_enter(&drp->r_statelock);
5098 drp->r_flags |= R4LOOKUP;
5099 mutex_exit(&drp->r_statelock);
5100 }
5101
5102 *vpp = NULL;
5103 /*
5104 * Lookup this name in the DNLC. If there is no entry
5105 * lookup over the wire.
5106 */
5107 if (!skipdnlc)
5108 *vpp = dnlc_lookup(dvp, nm);
5109 if (*vpp == NULL) {
5110 /*
5111 * We need to go over the wire to lookup the name.
5112 */
5113 return (nfs4lookupnew_otw(dvp, nm, vpp, cr));
5114 }
5115
5116 /*
5117 * We hit on the dnlc
5118 */
5119 if (*vpp != DNLC_NO_VNODE ||
5120 (dvp->v_vfsp->vfs_flag & VFS_RDONLY)) {
5121 /*
5122 * But our attrs may not be valid.
5123 */
5124 if (ATTRCACHE4_VALID(dvp)) {
5125 error = nfs4_waitfor_purge_complete(dvp);
5126 if (error) {
5127 VN_RELE(*vpp);
5128 *vpp = NULL;
5129 return (error);
5130 }
5131
5132 /*
5133 * If after the purge completes, check to make sure
5134 * our attrs are still valid.
5135 */
5136 if (ATTRCACHE4_VALID(dvp)) {
5137 /*
5138 * If we waited for a purge we may have
5139 * lost our vnode so look it up again.
5140 */
5141 VN_RELE(*vpp);
5142 *vpp = dnlc_lookup(dvp, nm);
5143 if (*vpp == NULL)
5144 return (nfs4lookupnew_otw(dvp,
5145 nm, vpp, cr));
5146
5147 /*
5148 * The access cache should almost always hit
5149 */
5150 error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
5151
5152 if (error) {
5153 VN_RELE(*vpp);
5154 *vpp = NULL;
5155 return (error);
5156 }
5157 if (*vpp == DNLC_NO_VNODE) {
5158 VN_RELE(*vpp);
5159 *vpp = NULL;
5160 return (ENOENT);
5161 }
5162 return (0);
5163 }
5164 }
5165 }
5166
5167 ASSERT(*vpp != NULL);
5168
5169 /*
5170 * We may have gotten here we have one of the following cases:
5171 * 1) vpp != DNLC_NO_VNODE, our attrs have timed out so we
5172 * need to validate them.
5173 * 2) vpp == DNLC_NO_VNODE, a negative entry that we always
5174 * must validate.
5175 *
5176 * Go to the server and check if the directory has changed, if
5177 * it hasn't we are done and can use the dnlc entry.
5178 */
5179 return (nfs4lookupvalidate_otw(dvp, nm, vpp, cr));
5180 }
5181
5182 /*
5183 * Go to the server and check if the directory has changed, if
5184 * it hasn't we are done and can use the dnlc entry. If it
5185 * has changed we get a new copy of its attributes and check
5186 * the access for VEXEC, then relookup the filename and
5187 * get its filehandle and attributes.
5188 *
5189 * PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR
5190 * if the NVERIFY failed we must
5191 * purge the caches
5192 * cache new attributes (will set r_time_attr_inval)
5193 * cache new access
5194 * recheck VEXEC access
5195 * add name to dnlc, possibly negative
5196 * if LOOKUP succeeded
5197 * cache new attributes
5198 * else
5199 * set a new r_time_attr_inval for dvp
5200 * check to make sure we have access
5201 *
5202 * The vpp returned is the vnode passed in if the directory is valid,
5203 * a new vnode if successful lookup, or NULL on error.
5204 */
5205 static int
nfs4lookupvalidate_otw(vnode_t * dvp,char * nm,vnode_t ** vpp,cred_t * cr)5206 nfs4lookupvalidate_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr)
5207 {
5208 COMPOUND4args_clnt args;
5209 COMPOUND4res_clnt res;
5210 fattr4 *ver_fattr;
5211 fattr4_change dchange;
5212 int32_t *ptr;
5213 int argoplist_size = 7 * sizeof (nfs_argop4);
5214 nfs_argop4 *argop;
5215 int doqueue;
5216 mntinfo4_t *mi;
5217 nfs4_recov_state_t recov_state;
5218 hrtime_t t;
5219 int isdotdot;
5220 vnode_t *nvp;
5221 nfs_fh4 *fhp;
5222 nfs4_sharedfh_t *sfhp;
5223 nfs4_access_type_t cacc;
5224 rnode4_t *nrp;
5225 rnode4_t *drp = VTOR4(dvp);
5226 nfs4_ga_res_t *garp = NULL;
5227 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
5228
5229 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
5230 ASSERT(nm != NULL);
5231 ASSERT(nm[0] != '\0');
5232 ASSERT(dvp->v_type == VDIR);
5233 ASSERT(nm[0] != '.' || nm[1] != '\0');
5234 ASSERT(*vpp != NULL);
5235
5236 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') {
5237 isdotdot = 1;
5238 args.ctag = TAG_LOOKUP_VPARENT;
5239 } else {
5240 /*
5241 * If dvp were a stub, it should have triggered and caused
5242 * a mount for us to get this far.
5243 */
5244 ASSERT(!RP_ISSTUB(VTOR4(dvp)));
5245
5246 isdotdot = 0;
5247 args.ctag = TAG_LOOKUP_VALID;
5248 }
5249
5250 mi = VTOMI4(dvp);
5251 recov_state.rs_flags = 0;
5252 recov_state.rs_num_retry_despite_err = 0;
5253
5254 nvp = NULL;
5255
5256 /* Save the original mount point security information */
5257 (void) save_mnt_secinfo(mi->mi_curr_serv);
5258
5259 recov_retry:
5260 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP,
5261 &recov_state, NULL);
5262 if (e.error) {
5263 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5264 VN_RELE(*vpp);
5265 *vpp = NULL;
5266 return (e.error);
5267 }
5268
5269 argop = kmem_alloc(argoplist_size, KM_SLEEP);
5270
5271 /* PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR */
5272 args.array_len = 7;
5273 args.array = argop;
5274
5275 /* 0. putfh file */
5276 argop[0].argop = OP_CPUTFH;
5277 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh;
5278
5279 /* 1. nverify the change info */
5280 argop[1].argop = OP_NVERIFY;
5281 ver_fattr = &argop[1].nfs_argop4_u.opnverify.obj_attributes;
5282 ver_fattr->attrmask = FATTR4_CHANGE_MASK;
5283 ver_fattr->attrlist4 = (char *)&dchange;
5284 ptr = (int32_t *)&dchange;
5285 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change);
5286 ver_fattr->attrlist4_len = sizeof (fattr4_change);
5287
5288 /* 2. getattr directory */
5289 argop[2].argop = OP_GETATTR;
5290 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
5291 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
5292
5293 /* 3. access directory */
5294 argop[3].argop = OP_ACCESS;
5295 argop[3].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE |
5296 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP;
5297
5298 /* 4. lookup name */
5299 if (isdotdot) {
5300 argop[4].argop = OP_LOOKUPP;
5301 } else {
5302 argop[4].argop = OP_CLOOKUP;
5303 argop[4].nfs_argop4_u.opclookup.cname = nm;
5304 }
5305
5306 /* 5. resulting file handle */
5307 argop[5].argop = OP_GETFH;
5308
5309 /* 6. resulting file attributes */
5310 argop[6].argop = OP_GETATTR;
5311 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
5312 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
5313
5314 doqueue = 1;
5315 t = gethrtime();
5316
5317 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e);
5318
5319 if (!isdotdot && res.status == NFS4ERR_MOVED) {
5320 e.error = nfs4_setup_referral(dvp, nm, vpp, cr);
5321 if (e.error != 0 && *vpp != NULL)
5322 VN_RELE(*vpp);
5323 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5324 &recov_state, FALSE);
5325 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5326 kmem_free(argop, argoplist_size);
5327 return (e.error);
5328 }
5329
5330 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) {
5331 /*
5332 * For WRONGSEC of a non-dotdot case, send secinfo directly
5333 * from this thread, do not go thru the recovery thread since
5334 * we need the nm information.
5335 *
5336 * Not doing dotdot case because there is no specification
5337 * for (PUTFH, SECINFO "..") yet.
5338 */
5339 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) {
5340 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr)))
5341 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5342 &recov_state, FALSE);
5343 else
5344 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5345 &recov_state, TRUE);
5346 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5347 kmem_free(argop, argoplist_size);
5348 if (!e.error)
5349 goto recov_retry;
5350 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5351 VN_RELE(*vpp);
5352 *vpp = NULL;
5353 return (e.error);
5354 }
5355
5356 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL,
5357 OP_LOOKUP, NULL, NULL, NULL) == FALSE) {
5358 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5359 &recov_state, TRUE);
5360
5361 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5362 kmem_free(argop, argoplist_size);
5363 goto recov_retry;
5364 }
5365 }
5366
5367 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE);
5368
5369 if (e.error || res.array_len == 0) {
5370 /*
5371 * If e.error isn't set, then reply has no ops (or we couldn't
5372 * be here). The only legal way to reply without an op array
5373 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should
5374 * be in the reply for all other status values.
5375 *
5376 * For valid replies without an ops array, return ENOTSUP
5377 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies,
5378 * return EIO -- don't trust status.
5379 */
5380 if (e.error == 0)
5381 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ?
5382 ENOTSUP : EIO;
5383 VN_RELE(*vpp);
5384 *vpp = NULL;
5385 kmem_free(argop, argoplist_size);
5386 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5387 return (e.error);
5388 }
5389
5390 if (res.status != NFS4ERR_SAME) {
5391 e.error = geterrno4(res.status);
5392
5393 /*
5394 * The NVERIFY "failed" so the directory has changed
5395 * First make sure PUTFH succeeded and NVERIFY "failed"
5396 * cleanly.
5397 */
5398 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) ||
5399 (res.array[1].nfs_resop4_u.opnverify.status != NFS4_OK)) {
5400 nfs4_purge_stale_fh(e.error, dvp, cr);
5401 VN_RELE(*vpp);
5402 *vpp = NULL;
5403 goto exit;
5404 }
5405
5406 /*
5407 * We know the NVERIFY "failed" so we must:
5408 * purge the caches (access and indirectly dnlc if needed)
5409 */
5410 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE);
5411
5412 if (res.array[2].nfs_resop4_u.opgetattr.status != NFS4_OK) {
5413 nfs4_purge_stale_fh(e.error, dvp, cr);
5414 VN_RELE(*vpp);
5415 *vpp = NULL;
5416 goto exit;
5417 }
5418
5419 /*
5420 * Install new cached attributes for the directory
5421 */
5422 nfs4_attr_cache(dvp,
5423 &res.array[2].nfs_resop4_u.opgetattr.ga_res,
5424 t, cr, FALSE, NULL);
5425
5426 if (res.array[3].nfs_resop4_u.opaccess.status != NFS4_OK) {
5427 nfs4_purge_stale_fh(e.error, dvp, cr);
5428 VN_RELE(*vpp);
5429 *vpp = NULL;
5430 e.error = geterrno4(res.status);
5431 goto exit;
5432 }
5433
5434 /*
5435 * Now we know the directory is valid,
5436 * cache new directory access
5437 */
5438 nfs4_access_cache(drp,
5439 args.array[3].nfs_argop4_u.opaccess.access,
5440 res.array[3].nfs_resop4_u.opaccess.access, cr);
5441
5442 /*
5443 * recheck VEXEC access
5444 */
5445 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr);
5446 if (cacc != NFS4_ACCESS_ALLOWED) {
5447 /*
5448 * Directory permissions might have been revoked
5449 */
5450 if (cacc == NFS4_ACCESS_DENIED) {
5451 e.error = EACCES;
5452 VN_RELE(*vpp);
5453 *vpp = NULL;
5454 goto exit;
5455 }
5456
5457 /*
5458 * Somehow we must not have asked for enough
5459 * so try a singleton ACCESS, should never happen.
5460 */
5461 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
5462 if (e.error) {
5463 VN_RELE(*vpp);
5464 *vpp = NULL;
5465 goto exit;
5466 }
5467 }
5468
5469 e.error = geterrno4(res.status);
5470 if (res.array[4].nfs_resop4_u.oplookup.status != NFS4_OK) {
5471 /*
5472 * The lookup failed, probably no entry
5473 */
5474 if (e.error == ENOENT && nfs4_lookup_neg_cache) {
5475 dnlc_update(dvp, nm, DNLC_NO_VNODE);
5476 } else {
5477 /*
5478 * Might be some other error, so remove
5479 * the dnlc entry to make sure we start all
5480 * over again, next time.
5481 */
5482 dnlc_remove(dvp, nm);
5483 }
5484 VN_RELE(*vpp);
5485 *vpp = NULL;
5486 goto exit;
5487 }
5488
5489 if (res.array[5].nfs_resop4_u.opgetfh.status != NFS4_OK) {
5490 /*
5491 * The file exists but we can't get its fh for
5492 * some unknown reason. Remove it from the dnlc
5493 * and error out to be safe.
5494 */
5495 dnlc_remove(dvp, nm);
5496 VN_RELE(*vpp);
5497 *vpp = NULL;
5498 goto exit;
5499 }
5500 fhp = &res.array[5].nfs_resop4_u.opgetfh.object;
5501 if (fhp->nfs_fh4_len == 0) {
5502 /*
5503 * The file exists but a bogus fh
5504 * some unknown reason. Remove it from the dnlc
5505 * and error out to be safe.
5506 */
5507 e.error = ENOENT;
5508 dnlc_remove(dvp, nm);
5509 VN_RELE(*vpp);
5510 *vpp = NULL;
5511 goto exit;
5512 }
5513 sfhp = sfh4_get(fhp, mi);
5514
5515 if (res.array[6].nfs_resop4_u.opgetattr.status == NFS4_OK)
5516 garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res;
5517
5518 /*
5519 * Make the new rnode
5520 */
5521 if (isdotdot) {
5522 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1);
5523 if (e.error) {
5524 sfh4_rele(&sfhp);
5525 VN_RELE(*vpp);
5526 *vpp = NULL;
5527 goto exit;
5528 }
5529 /*
5530 * XXX if nfs4_make_dotdot uses an existing rnode
5531 * XXX it doesn't update the attributes.
5532 * XXX for now just save them again to save an OTW
5533 */
5534 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL);
5535 } else {
5536 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr,
5537 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp));
5538 /*
5539 * If v_type == VNON, then garp was NULL because
5540 * the last op in the compound failed and makenfs4node
5541 * could not find the vnode for sfhp. It created
5542 * a new vnode, so we have nothing to purge here.
5543 */
5544 if (nvp->v_type == VNON) {
5545 vattr_t vattr;
5546
5547 vattr.va_mask = AT_TYPE;
5548 /*
5549 * N.B. We've already called nfs4_end_fop above.
5550 */
5551 e.error = nfs4getattr(nvp, &vattr, cr);
5552 if (e.error) {
5553 sfh4_rele(&sfhp);
5554 VN_RELE(*vpp);
5555 *vpp = NULL;
5556 VN_RELE(nvp);
5557 goto exit;
5558 }
5559 nvp->v_type = vattr.va_type;
5560 }
5561 }
5562 sfh4_rele(&sfhp);
5563
5564 nrp = VTOR4(nvp);
5565 mutex_enter(&nrp->r_statev4_lock);
5566 if (!nrp->created_v4) {
5567 mutex_exit(&nrp->r_statev4_lock);
5568 dnlc_update(dvp, nm, nvp);
5569 } else
5570 mutex_exit(&nrp->r_statev4_lock);
5571
5572 VN_RELE(*vpp);
5573 *vpp = nvp;
5574 } else {
5575 hrtime_t now;
5576 hrtime_t delta = 0;
5577
5578 e.error = 0;
5579
5580 /*
5581 * Because the NVERIFY "succeeded" we know that the
5582 * directory attributes are still valid
5583 * so update r_time_attr_inval
5584 */
5585 now = gethrtime();
5586 mutex_enter(&drp->r_statelock);
5587 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) {
5588 delta = now - drp->r_time_attr_saved;
5589 if (delta < mi->mi_acdirmin)
5590 delta = mi->mi_acdirmin;
5591 else if (delta > mi->mi_acdirmax)
5592 delta = mi->mi_acdirmax;
5593 }
5594 drp->r_time_attr_inval = now + delta;
5595 mutex_exit(&drp->r_statelock);
5596 dnlc_update(dvp, nm, *vpp);
5597
5598 /*
5599 * Even though we have a valid directory attr cache
5600 * and dnlc entry, we may not have access.
5601 * This should almost always hit the cache.
5602 */
5603 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
5604 if (e.error) {
5605 VN_RELE(*vpp);
5606 *vpp = NULL;
5607 }
5608
5609 if (*vpp == DNLC_NO_VNODE) {
5610 VN_RELE(*vpp);
5611 *vpp = NULL;
5612 e.error = ENOENT;
5613 }
5614 }
5615
5616 exit:
5617 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5618 kmem_free(argop, argoplist_size);
5619 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5620 return (e.error);
5621 }
5622
5623 /*
5624 * We need to go over the wire to lookup the name, but
5625 * while we are there verify the directory has not
5626 * changed but if it has, get new attributes and check access
5627 *
5628 * PUTFH dfh SAVEFH LOOKUP nm GETFH GETATTR RESTOREFH
5629 * NVERIFY GETATTR ACCESS
5630 *
5631 * With the results:
5632 * if the NVERIFY failed we must purge the caches, add new attributes,
5633 * and cache new access.
5634 * set a new r_time_attr_inval
5635 * add name to dnlc, possibly negative
5636 * if LOOKUP succeeded
5637 * cache new attributes
5638 */
5639 static int
nfs4lookupnew_otw(vnode_t * dvp,char * nm,vnode_t ** vpp,cred_t * cr)5640 nfs4lookupnew_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr)
5641 {
5642 COMPOUND4args_clnt args;
5643 COMPOUND4res_clnt res;
5644 fattr4 *ver_fattr;
5645 fattr4_change dchange;
5646 int32_t *ptr;
5647 nfs4_ga_res_t *garp = NULL;
5648 int argoplist_size = 9 * sizeof (nfs_argop4);
5649 nfs_argop4 *argop;
5650 int doqueue;
5651 mntinfo4_t *mi;
5652 nfs4_recov_state_t recov_state;
5653 hrtime_t t;
5654 int isdotdot;
5655 vnode_t *nvp;
5656 nfs_fh4 *fhp;
5657 nfs4_sharedfh_t *sfhp;
5658 nfs4_access_type_t cacc;
5659 rnode4_t *nrp;
5660 rnode4_t *drp = VTOR4(dvp);
5661 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
5662
5663 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
5664 ASSERT(nm != NULL);
5665 ASSERT(nm[0] != '\0');
5666 ASSERT(dvp->v_type == VDIR);
5667 ASSERT(nm[0] != '.' || nm[1] != '\0');
5668 ASSERT(*vpp == NULL);
5669
5670 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') {
5671 isdotdot = 1;
5672 args.ctag = TAG_LOOKUP_PARENT;
5673 } else {
5674 /*
5675 * If dvp were a stub, it should have triggered and caused
5676 * a mount for us to get this far.
5677 */
5678 ASSERT(!RP_ISSTUB(VTOR4(dvp)));
5679
5680 isdotdot = 0;
5681 args.ctag = TAG_LOOKUP;
5682 }
5683
5684 mi = VTOMI4(dvp);
5685 recov_state.rs_flags = 0;
5686 recov_state.rs_num_retry_despite_err = 0;
5687
5688 nvp = NULL;
5689
5690 /* Save the original mount point security information */
5691 (void) save_mnt_secinfo(mi->mi_curr_serv);
5692
5693 recov_retry:
5694 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP,
5695 &recov_state, NULL);
5696 if (e.error) {
5697 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5698 return (e.error);
5699 }
5700
5701 argop = kmem_alloc(argoplist_size, KM_SLEEP);
5702
5703 /* PUTFH SAVEFH LOOKUP GETFH GETATTR RESTOREFH NVERIFY GETATTR ACCESS */
5704 args.array_len = 9;
5705 args.array = argop;
5706
5707 /* 0. putfh file */
5708 argop[0].argop = OP_CPUTFH;
5709 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh;
5710
5711 /* 1. savefh for the nverify */
5712 argop[1].argop = OP_SAVEFH;
5713
5714 /* 2. lookup name */
5715 if (isdotdot) {
5716 argop[2].argop = OP_LOOKUPP;
5717 } else {
5718 argop[2].argop = OP_CLOOKUP;
5719 argop[2].nfs_argop4_u.opclookup.cname = nm;
5720 }
5721
5722 /* 3. resulting file handle */
5723 argop[3].argop = OP_GETFH;
5724
5725 /* 4. resulting file attributes */
5726 argop[4].argop = OP_GETATTR;
5727 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
5728 argop[4].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
5729
5730 /* 5. restorefh back the directory for the nverify */
5731 argop[5].argop = OP_RESTOREFH;
5732
5733 /* 6. nverify the change info */
5734 argop[6].argop = OP_NVERIFY;
5735 ver_fattr = &argop[6].nfs_argop4_u.opnverify.obj_attributes;
5736 ver_fattr->attrmask = FATTR4_CHANGE_MASK;
5737 ver_fattr->attrlist4 = (char *)&dchange;
5738 ptr = (int32_t *)&dchange;
5739 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change);
5740 ver_fattr->attrlist4_len = sizeof (fattr4_change);
5741
5742 /* 7. getattr directory */
5743 argop[7].argop = OP_GETATTR;
5744 argop[7].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
5745 argop[7].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
5746
5747 /* 8. access directory */
5748 argop[8].argop = OP_ACCESS;
5749 argop[8].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE |
5750 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP;
5751
5752 doqueue = 1;
5753 t = gethrtime();
5754
5755 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e);
5756
5757 if (!isdotdot && res.status == NFS4ERR_MOVED) {
5758 e.error = nfs4_setup_referral(dvp, nm, vpp, cr);
5759 if (e.error != 0 && *vpp != NULL)
5760 VN_RELE(*vpp);
5761 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5762 &recov_state, FALSE);
5763 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5764 kmem_free(argop, argoplist_size);
5765 return (e.error);
5766 }
5767
5768 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) {
5769 /*
5770 * For WRONGSEC of a non-dotdot case, send secinfo directly
5771 * from this thread, do not go thru the recovery thread since
5772 * we need the nm information.
5773 *
5774 * Not doing dotdot case because there is no specification
5775 * for (PUTFH, SECINFO "..") yet.
5776 */
5777 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) {
5778 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr)))
5779 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5780 &recov_state, FALSE);
5781 else
5782 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5783 &recov_state, TRUE);
5784 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5785 kmem_free(argop, argoplist_size);
5786 if (!e.error)
5787 goto recov_retry;
5788 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5789 return (e.error);
5790 }
5791
5792 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL,
5793 OP_LOOKUP, NULL, NULL, NULL) == FALSE) {
5794 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5795 &recov_state, TRUE);
5796
5797 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5798 kmem_free(argop, argoplist_size);
5799 goto recov_retry;
5800 }
5801 }
5802
5803 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE);
5804
5805 if (e.error || res.array_len == 0) {
5806 /*
5807 * If e.error isn't set, then reply has no ops (or we couldn't
5808 * be here). The only legal way to reply without an op array
5809 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should
5810 * be in the reply for all other status values.
5811 *
5812 * For valid replies without an ops array, return ENOTSUP
5813 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies,
5814 * return EIO -- don't trust status.
5815 */
5816 if (e.error == 0)
5817 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ?
5818 ENOTSUP : EIO;
5819
5820 kmem_free(argop, argoplist_size);
5821 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5822 return (e.error);
5823 }
5824
5825 e.error = geterrno4(res.status);
5826
5827 /*
5828 * The PUTFH and SAVEFH may have failed.
5829 */
5830 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) ||
5831 (res.array[1].nfs_resop4_u.opsavefh.status != NFS4_OK)) {
5832 nfs4_purge_stale_fh(e.error, dvp, cr);
5833 goto exit;
5834 }
5835
5836 /*
5837 * Check if the file exists, if it does delay entering
5838 * into the dnlc until after we update the directory
5839 * attributes so we don't cause it to get purged immediately.
5840 */
5841 if (res.array[2].nfs_resop4_u.oplookup.status != NFS4_OK) {
5842 /*
5843 * The lookup failed, probably no entry
5844 */
5845 if (e.error == ENOENT && nfs4_lookup_neg_cache)
5846 dnlc_update(dvp, nm, DNLC_NO_VNODE);
5847 goto exit;
5848 }
5849
5850 if (res.array[3].nfs_resop4_u.opgetfh.status != NFS4_OK) {
5851 /*
5852 * The file exists but we can't get its fh for
5853 * some unknown reason. Error out to be safe.
5854 */
5855 goto exit;
5856 }
5857
5858 fhp = &res.array[3].nfs_resop4_u.opgetfh.object;
5859 if (fhp->nfs_fh4_len == 0) {
5860 /*
5861 * The file exists but a bogus fh
5862 * some unknown reason. Error out to be safe.
5863 */
5864 e.error = EIO;
5865 goto exit;
5866 }
5867 sfhp = sfh4_get(fhp, mi);
5868
5869 if (res.array[4].nfs_resop4_u.opgetattr.status != NFS4_OK) {
5870 sfh4_rele(&sfhp);
5871 goto exit;
5872 }
5873 garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res;
5874
5875 /*
5876 * The RESTOREFH may have failed
5877 */
5878 if (res.array[5].nfs_resop4_u.oprestorefh.status != NFS4_OK) {
5879 sfh4_rele(&sfhp);
5880 e.error = EIO;
5881 goto exit;
5882 }
5883
5884 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4ERR_SAME) {
5885 /*
5886 * First make sure the NVERIFY failed as we expected,
5887 * if it didn't then be conservative and error out
5888 * as we can't trust the directory.
5889 */
5890 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4_OK) {
5891 sfh4_rele(&sfhp);
5892 e.error = EIO;
5893 goto exit;
5894 }
5895
5896 /*
5897 * We know the NVERIFY "failed" so the directory has changed,
5898 * so we must:
5899 * purge the caches (access and indirectly dnlc if needed)
5900 */
5901 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE);
5902
5903 if (res.array[7].nfs_resop4_u.opgetattr.status != NFS4_OK) {
5904 sfh4_rele(&sfhp);
5905 goto exit;
5906 }
5907 nfs4_attr_cache(dvp,
5908 &res.array[7].nfs_resop4_u.opgetattr.ga_res,
5909 t, cr, FALSE, NULL);
5910
5911 if (res.array[8].nfs_resop4_u.opaccess.status != NFS4_OK) {
5912 nfs4_purge_stale_fh(e.error, dvp, cr);
5913 sfh4_rele(&sfhp);
5914 e.error = geterrno4(res.status);
5915 goto exit;
5916 }
5917
5918 /*
5919 * Now we know the directory is valid,
5920 * cache new directory access
5921 */
5922 nfs4_access_cache(drp,
5923 args.array[8].nfs_argop4_u.opaccess.access,
5924 res.array[8].nfs_resop4_u.opaccess.access, cr);
5925
5926 /*
5927 * recheck VEXEC access
5928 */
5929 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr);
5930 if (cacc != NFS4_ACCESS_ALLOWED) {
5931 /*
5932 * Directory permissions might have been revoked
5933 */
5934 if (cacc == NFS4_ACCESS_DENIED) {
5935 sfh4_rele(&sfhp);
5936 e.error = EACCES;
5937 goto exit;
5938 }
5939
5940 /*
5941 * Somehow we must not have asked for enough
5942 * so try a singleton ACCESS should never happen
5943 */
5944 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
5945 if (e.error) {
5946 sfh4_rele(&sfhp);
5947 goto exit;
5948 }
5949 }
5950
5951 e.error = geterrno4(res.status);
5952 } else {
5953 hrtime_t now;
5954 hrtime_t delta = 0;
5955
5956 e.error = 0;
5957
5958 /*
5959 * Because the NVERIFY "succeeded" we know that the
5960 * directory attributes are still valid
5961 * so update r_time_attr_inval
5962 */
5963 now = gethrtime();
5964 mutex_enter(&drp->r_statelock);
5965 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) {
5966 delta = now - drp->r_time_attr_saved;
5967 if (delta < mi->mi_acdirmin)
5968 delta = mi->mi_acdirmin;
5969 else if (delta > mi->mi_acdirmax)
5970 delta = mi->mi_acdirmax;
5971 }
5972 drp->r_time_attr_inval = now + delta;
5973 mutex_exit(&drp->r_statelock);
5974
5975 /*
5976 * Even though we have a valid directory attr cache,
5977 * we may not have access.
5978 * This should almost always hit the cache.
5979 */
5980 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
5981 if (e.error) {
5982 sfh4_rele(&sfhp);
5983 goto exit;
5984 }
5985 }
5986
5987 /*
5988 * Now we have successfully completed the lookup, if the
5989 * directory has changed we now have the valid attributes.
5990 * We also know we have directory access.
5991 * Create the new rnode and insert it in the dnlc.
5992 */
5993 if (isdotdot) {
5994 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1);
5995 if (e.error) {
5996 sfh4_rele(&sfhp);
5997 goto exit;
5998 }
5999 /*
6000 * XXX if nfs4_make_dotdot uses an existing rnode
6001 * XXX it doesn't update the attributes.
6002 * XXX for now just save them again to save an OTW
6003 */
6004 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL);
6005 } else {
6006 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr,
6007 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp));
6008 }
6009 sfh4_rele(&sfhp);
6010
6011 nrp = VTOR4(nvp);
6012 mutex_enter(&nrp->r_statev4_lock);
6013 if (!nrp->created_v4) {
6014 mutex_exit(&nrp->r_statev4_lock);
6015 dnlc_update(dvp, nm, nvp);
6016 } else
6017 mutex_exit(&nrp->r_statev4_lock);
6018
6019 *vpp = nvp;
6020
6021 exit:
6022 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
6023 kmem_free(argop, argoplist_size);
6024 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
6025 return (e.error);
6026 }
6027
6028 #ifdef DEBUG
6029 void
nfs4lookup_dump_compound(char * where,nfs_argop4 * argbase,int argcnt)6030 nfs4lookup_dump_compound(char *where, nfs_argop4 *argbase, int argcnt)
6031 {
6032 uint_t i, len;
6033 zoneid_t zoneid = getzoneid();
6034 char *s;
6035
6036 zcmn_err(zoneid, CE_NOTE, "%s: dumping cmpd", where);
6037 for (i = 0; i < argcnt; i++) {
6038 nfs_argop4 *op = &argbase[i];
6039 switch (op->argop) {
6040 case OP_CPUTFH:
6041 case OP_PUTFH:
6042 zcmn_err(zoneid, CE_NOTE, "\t op %d, putfh", i);
6043 break;
6044 case OP_PUTROOTFH:
6045 zcmn_err(zoneid, CE_NOTE, "\t op %d, putrootfh", i);
6046 break;
6047 case OP_CLOOKUP:
6048 s = op->nfs_argop4_u.opclookup.cname;
6049 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s);
6050 break;
6051 case OP_LOOKUP:
6052 s = utf8_to_str(&op->nfs_argop4_u.oplookup.objname,
6053 &len, NULL);
6054 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s);
6055 kmem_free(s, len);
6056 break;
6057 case OP_LOOKUPP:
6058 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookupp ..", i);
6059 break;
6060 case OP_GETFH:
6061 zcmn_err(zoneid, CE_NOTE, "\t op %d, getfh", i);
6062 break;
6063 case OP_GETATTR:
6064 zcmn_err(zoneid, CE_NOTE, "\t op %d, getattr", i);
6065 break;
6066 case OP_OPENATTR:
6067 zcmn_err(zoneid, CE_NOTE, "\t op %d, openattr", i);
6068 break;
6069 default:
6070 zcmn_err(zoneid, CE_NOTE, "\t op %d, opcode %d", i,
6071 op->argop);
6072 break;
6073 }
6074 }
6075 }
6076 #endif
6077
6078 /*
6079 * nfs4lookup_setup - constructs a multi-lookup compound request.
6080 *
6081 * Given the path "nm1/nm2/.../nmn", the following compound requests
6082 * may be created:
6083 *
6084 * Note: Getfh is not be needed because filehandle attr is mandatory, but it
6085 * is faster, for now.
6086 *
6087 * l4_getattrs indicates the type of compound requested.
6088 *
6089 * LKP4_NO_ATTRIBUTE - no attributes (used by secinfo):
6090 *
6091 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn} }
6092 *
6093 * total number of ops is n + 1.
6094 *
6095 * LKP4_LAST_NAMED_ATTR - multi-component path for a named
6096 * attribute: create lookups plus one OPENATTR/GETFH/GETATTR
6097 * before the last component, and only get attributes
6098 * for the last component. Note that the second-to-last
6099 * pathname component is XATTR_RPATH, which does NOT go
6100 * over-the-wire as a lookup.
6101 *
6102 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn-2};
6103 * Openattr; Getfh; Getattr; Lookup {nmn}; Getfh; Getattr }
6104 *
6105 * and total number of ops is n + 5.
6106 *
6107 * LKP4_LAST_ATTRDIR - multi-component path for the hidden named
6108 * attribute directory: create lookups plus an OPENATTR
6109 * replacing the last lookup. Note that the last pathname
6110 * component is XATTR_RPATH, which does NOT go over-the-wire
6111 * as a lookup.
6112 *
6113 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Getfh; Getattr;
6114 * Openattr; Getfh; Getattr }
6115 *
6116 * and total number of ops is n + 5.
6117 *
6118 * LKP4_ALL_ATTRIBUTES - create lookups and get attributes for intermediate
6119 * nodes too.
6120 *
6121 * compound { Put*fh; Lookup {nm1}; Getfh; Getattr;
6122 * Lookup {nm2}; ... Lookup {nmn}; Getfh; Getattr }
6123 *
6124 * and total number of ops is 3*n + 1.
6125 *
6126 * All cases: returns the index in the arg array of the final LOOKUP op, or
6127 * -1 if no LOOKUPs were used.
6128 */
6129 int
nfs4lookup_setup(char * nm,lookup4_param_t * lookupargp,int needgetfh)6130 nfs4lookup_setup(char *nm, lookup4_param_t *lookupargp, int needgetfh)
6131 {
6132 enum lkp4_attr_setup l4_getattrs = lookupargp->l4_getattrs;
6133 nfs_argop4 *argbase, *argop;
6134 int arglen, argcnt;
6135 int n = 1; /* number of components */
6136 int nga = 1; /* number of Getattr's in request */
6137 char c = '\0', *s, *p;
6138 int lookup_idx = -1;
6139 int argoplist_size;
6140
6141 /* set lookuparg response result to 0 */
6142 lookupargp->resp->status = NFS4_OK;
6143
6144 /* skip leading "/" or "." e.g. ".//./" if there is */
6145 for (; ; nm++) {
6146 if (*nm != '/' && *nm != '.')
6147 break;
6148
6149 /* ".." is counted as 1 component */
6150 if (*nm == '.' && *(nm + 1) != '/')
6151 break;
6152 }
6153
6154 /*
6155 * Find n = number of components - nm must be null terminated
6156 * Skip "." components.
6157 */
6158 if (*nm != '\0')
6159 for (n = 1, s = nm; *s != '\0'; s++) {
6160 if ((*s == '/') && (*(s + 1) != '/') &&
6161 (*(s + 1) != '\0') &&
6162 !(*(s + 1) == '.' && (*(s + 2) == '/' ||
6163 *(s + 2) == '\0')))
6164 n++;
6165 }
6166 else
6167 n = 0;
6168
6169 /*
6170 * nga is number of components that need Getfh+Getattr
6171 */
6172 switch (l4_getattrs) {
6173 case LKP4_NO_ATTRIBUTES:
6174 nga = 0;
6175 break;
6176 case LKP4_ALL_ATTRIBUTES:
6177 nga = n;
6178 /*
6179 * Always have at least 1 getfh, getattr pair
6180 */
6181 if (nga == 0)
6182 nga++;
6183 break;
6184 case LKP4_LAST_ATTRDIR:
6185 case LKP4_LAST_NAMED_ATTR:
6186 nga = n+1;
6187 break;
6188 }
6189
6190 /*
6191 * If change to use the filehandle attr instead of getfh
6192 * the following line can be deleted.
6193 */
6194 nga *= 2;
6195
6196 /*
6197 * calculate number of ops in request as
6198 * header + trailer + lookups + getattrs
6199 */
6200 arglen = lookupargp->header_len + lookupargp->trailer_len + n + nga;
6201
6202 argoplist_size = arglen * sizeof (nfs_argop4);
6203 argop = argbase = kmem_alloc(argoplist_size, KM_SLEEP);
6204 lookupargp->argsp->array = argop;
6205
6206 argcnt = lookupargp->header_len;
6207 argop += argcnt;
6208
6209 /*
6210 * loop and create a lookup op and possibly getattr/getfh for
6211 * each component. Skip "." components.
6212 */
6213 for (s = nm; *s != '\0'; s = p) {
6214 /*
6215 * Set up a pathname struct for each component if needed
6216 */
6217 while (*s == '/')
6218 s++;
6219 if (*s == '\0')
6220 break;
6221
6222 for (p = s; (*p != '/') && (*p != '\0'); p++)
6223 ;
6224 c = *p;
6225 *p = '\0';
6226
6227 if (s[0] == '.' && s[1] == '\0') {
6228 *p = c;
6229 continue;
6230 }
6231 if (l4_getattrs == LKP4_LAST_ATTRDIR &&
6232 strcmp(s, XATTR_RPATH) == 0) {
6233 /* getfh XXX may not be needed in future */
6234 argop->argop = OP_GETFH;
6235 argop++;
6236 argcnt++;
6237
6238 /* getattr */
6239 argop->argop = OP_GETATTR;
6240 argop->nfs_argop4_u.opgetattr.attr_request =
6241 lookupargp->ga_bits;
6242 argop->nfs_argop4_u.opgetattr.mi =
6243 lookupargp->mi;
6244 argop++;
6245 argcnt++;
6246
6247 /* openattr */
6248 argop->argop = OP_OPENATTR;
6249 } else if (l4_getattrs == LKP4_LAST_NAMED_ATTR &&
6250 strcmp(s, XATTR_RPATH) == 0) {
6251 /* openattr */
6252 argop->argop = OP_OPENATTR;
6253 argop++;
6254 argcnt++;
6255
6256 /* getfh XXX may not be needed in future */
6257 argop->argop = OP_GETFH;
6258 argop++;
6259 argcnt++;
6260
6261 /* getattr */
6262 argop->argop = OP_GETATTR;
6263 argop->nfs_argop4_u.opgetattr.attr_request =
6264 lookupargp->ga_bits;
6265 argop->nfs_argop4_u.opgetattr.mi =
6266 lookupargp->mi;
6267 argop++;
6268 argcnt++;
6269 *p = c;
6270 continue;
6271 } else if (s[0] == '.' && s[1] == '.' && s[2] == '\0') {
6272 /* lookupp */
6273 argop->argop = OP_LOOKUPP;
6274 } else {
6275 /* lookup */
6276 argop->argop = OP_LOOKUP;
6277 (void) str_to_utf8(s,
6278 &argop->nfs_argop4_u.oplookup.objname);
6279 }
6280 lookup_idx = argcnt;
6281 argop++;
6282 argcnt++;
6283
6284 *p = c;
6285
6286 if (l4_getattrs == LKP4_ALL_ATTRIBUTES) {
6287 /* getfh XXX may not be needed in future */
6288 argop->argop = OP_GETFH;
6289 argop++;
6290 argcnt++;
6291
6292 /* getattr */
6293 argop->argop = OP_GETATTR;
6294 argop->nfs_argop4_u.opgetattr.attr_request =
6295 lookupargp->ga_bits;
6296 argop->nfs_argop4_u.opgetattr.mi =
6297 lookupargp->mi;
6298 argop++;
6299 argcnt++;
6300 }
6301 }
6302
6303 if ((l4_getattrs != LKP4_NO_ATTRIBUTES) &&
6304 ((l4_getattrs != LKP4_ALL_ATTRIBUTES) || (lookup_idx < 0))) {
6305 if (needgetfh) {
6306 /* stick in a post-lookup getfh */
6307 argop->argop = OP_GETFH;
6308 argcnt++;
6309 argop++;
6310 }
6311 /* post-lookup getattr */
6312 argop->argop = OP_GETATTR;
6313 argop->nfs_argop4_u.opgetattr.attr_request =
6314 lookupargp->ga_bits;
6315 argop->nfs_argop4_u.opgetattr.mi = lookupargp->mi;
6316 argcnt++;
6317 }
6318 argcnt += lookupargp->trailer_len; /* actual op count */
6319 lookupargp->argsp->array_len = argcnt;
6320 lookupargp->arglen = arglen;
6321
6322 #ifdef DEBUG
6323 if (nfs4_client_lookup_debug)
6324 nfs4lookup_dump_compound("nfs4lookup_setup", argbase, argcnt);
6325 #endif
6326
6327 return (lookup_idx);
6328 }
6329
6330 static int
nfs4openattr(vnode_t * dvp,vnode_t ** avp,int cflag,cred_t * cr)6331 nfs4openattr(vnode_t *dvp, vnode_t **avp, int cflag, cred_t *cr)
6332 {
6333 COMPOUND4args_clnt args;
6334 COMPOUND4res_clnt res;
6335 GETFH4res *gf_res = NULL;
6336 nfs_argop4 argop[4];
6337 nfs_resop4 *resop = NULL;
6338 nfs4_sharedfh_t *sfhp;
6339 hrtime_t t;
6340 nfs4_error_t e;
6341
6342 rnode4_t *drp;
6343 int doqueue = 1;
6344 vnode_t *vp;
6345 int needrecov = 0;
6346 nfs4_recov_state_t recov_state;
6347
6348 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
6349
6350 *avp = NULL;
6351 recov_state.rs_flags = 0;
6352 recov_state.rs_num_retry_despite_err = 0;
6353
6354 recov_retry:
6355 /* COMPOUND: putfh, openattr, getfh, getattr */
6356 args.array_len = 4;
6357 args.array = argop;
6358 args.ctag = TAG_OPENATTR;
6359
6360 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state);
6361 if (e.error)
6362 return (e.error);
6363
6364 drp = VTOR4(dvp);
6365
6366 /* putfh */
6367 argop[0].argop = OP_CPUTFH;
6368 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
6369
6370 /* openattr */
6371 argop[1].argop = OP_OPENATTR;
6372 argop[1].nfs_argop4_u.opopenattr.createdir = (cflag ? TRUE : FALSE);
6373
6374 /* getfh */
6375 argop[2].argop = OP_GETFH;
6376
6377 /* getattr */
6378 argop[3].argop = OP_GETATTR;
6379 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
6380 argop[3].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
6381
6382 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
6383 "nfs4openattr: %s call, drp %s", needrecov ? "recov" : "first",
6384 rnode4info(drp)));
6385
6386 t = gethrtime();
6387
6388 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e);
6389
6390 needrecov = nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp);
6391 if (needrecov) {
6392 bool_t abort;
6393
6394 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
6395 "nfs4openattr: initiating recovery\n"));
6396
6397 abort = nfs4_start_recovery(&e,
6398 VTOMI4(dvp), dvp, NULL, NULL, NULL,
6399 OP_OPENATTR, NULL, NULL, NULL);
6400 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
6401 if (!e.error) {
6402 e.error = geterrno4(res.status);
6403 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
6404 }
6405 if (abort == FALSE)
6406 goto recov_retry;
6407 return (e.error);
6408 }
6409
6410 if (e.error) {
6411 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
6412 return (e.error);
6413 }
6414
6415 if (res.status) {
6416 /*
6417 * If OTW errro is NOTSUPP, then it should be
6418 * translated to EINVAL. All Solaris file system
6419 * implementations return EINVAL to the syscall layer
6420 * when the attrdir cannot be created due to an
6421 * implementation restriction or noxattr mount option.
6422 */
6423 if (res.status == NFS4ERR_NOTSUPP) {
6424 mutex_enter(&drp->r_statelock);
6425 if (drp->r_xattr_dir)
6426 VN_RELE(drp->r_xattr_dir);
6427 VN_HOLD(NFS4_XATTR_DIR_NOTSUPP);
6428 drp->r_xattr_dir = NFS4_XATTR_DIR_NOTSUPP;
6429 mutex_exit(&drp->r_statelock);
6430
6431 e.error = EINVAL;
6432 } else {
6433 e.error = geterrno4(res.status);
6434 }
6435
6436 if (e.error) {
6437 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
6438 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state,
6439 needrecov);
6440 return (e.error);
6441 }
6442 }
6443
6444 resop = &res.array[0]; /* putfh res */
6445 ASSERT(resop->nfs_resop4_u.opgetfh.status == NFS4_OK);
6446
6447 resop = &res.array[1]; /* openattr res */
6448 ASSERT(resop->nfs_resop4_u.opopenattr.status == NFS4_OK);
6449
6450 resop = &res.array[2]; /* getfh res */
6451 gf_res = &resop->nfs_resop4_u.opgetfh;
6452 if (gf_res->object.nfs_fh4_len == 0) {
6453 *avp = NULL;
6454 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
6455 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
6456 return (ENOENT);
6457 }
6458
6459 sfhp = sfh4_get(&gf_res->object, VTOMI4(dvp));
6460 vp = makenfs4node(sfhp, &res.array[3].nfs_resop4_u.opgetattr.ga_res,
6461 dvp->v_vfsp, t, cr, dvp,
6462 fn_get(VTOSV(dvp)->sv_name, XATTR_RPATH, sfhp));
6463 sfh4_rele(&sfhp);
6464
6465 if (e.error)
6466 PURGE_ATTRCACHE4(vp);
6467
6468 mutex_enter(&vp->v_lock);
6469 vp->v_flag |= V_XATTRDIR;
6470 mutex_exit(&vp->v_lock);
6471
6472 *avp = vp;
6473
6474 mutex_enter(&drp->r_statelock);
6475 if (drp->r_xattr_dir)
6476 VN_RELE(drp->r_xattr_dir);
6477 VN_HOLD(vp);
6478 drp->r_xattr_dir = vp;
6479
6480 /*
6481 * Invalidate pathconf4 cache because r_xattr_dir is no longer
6482 * NULL. xattrs could be created at any time, and we have no
6483 * way to update pc4_xattr_exists in the base object if/when
6484 * it happens.
6485 */
6486 drp->r_pathconf.pc4_xattr_valid = 0;
6487
6488 mutex_exit(&drp->r_statelock);
6489
6490 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
6491
6492 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
6493
6494 return (0);
6495 }
6496
6497 /* ARGSUSED */
6498 static int
nfs4_create(vnode_t * dvp,char * nm,struct vattr * va,enum vcexcl exclusive,int mode,vnode_t ** vpp,cred_t * cr,int flags,caller_context_t * ct,vsecattr_t * vsecp)6499 nfs4_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
6500 int mode, vnode_t **vpp, cred_t *cr, int flags, caller_context_t *ct,
6501 vsecattr_t *vsecp)
6502 {
6503 int error;
6504 vnode_t *vp = NULL;
6505 rnode4_t *rp;
6506 struct vattr vattr;
6507 rnode4_t *drp;
6508 vnode_t *tempvp;
6509 enum createmode4 createmode;
6510 bool_t must_trunc = FALSE;
6511 int truncating = 0;
6512
6513 if (nfs_zone() != VTOMI4(dvp)->mi_zone)
6514 return (EPERM);
6515 if (exclusive == EXCL && (dvp->v_flag & V_XATTRDIR)) {
6516 return (EINVAL);
6517 }
6518
6519 /* . and .. have special meaning in the protocol, reject them. */
6520
6521 if (nm[0] == '.' && (nm[1] == '\0' || (nm[1] == '.' && nm[2] == '\0')))
6522 return (EISDIR);
6523
6524 drp = VTOR4(dvp);
6525
6526 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp)))
6527 return (EINTR);
6528
6529 top:
6530 /*
6531 * We make a copy of the attributes because the caller does not
6532 * expect us to change what va points to.
6533 */
6534 vattr = *va;
6535
6536 /*
6537 * If the pathname is "", then dvp is the root vnode of
6538 * a remote file mounted over a local directory.
6539 * All that needs to be done is access
6540 * checking and truncation. Note that we avoid doing
6541 * open w/ create because the parent directory might
6542 * be in pseudo-fs and the open would fail.
6543 */
6544 if (*nm == '\0') {
6545 error = 0;
6546 VN_HOLD(dvp);
6547 vp = dvp;
6548 must_trunc = TRUE;
6549 } else {
6550 /*
6551 * We need to go over the wire, just to be sure whether the
6552 * file exists or not. Using the DNLC can be dangerous in
6553 * this case when making a decision regarding existence.
6554 */
6555 error = nfs4lookup(dvp, nm, &vp, cr, 1);
6556 }
6557
6558 if (exclusive)
6559 createmode = EXCLUSIVE4;
6560 else
6561 createmode = GUARDED4;
6562
6563 /*
6564 * error would be set if the file does not exist on the
6565 * server, so lets go create it.
6566 */
6567 if (error) {
6568 goto create_otw;
6569 }
6570
6571 /*
6572 * File does exist on the server
6573 */
6574 if (exclusive == EXCL)
6575 error = EEXIST;
6576 else if (vp->v_type == VDIR && (mode & VWRITE))
6577 error = EISDIR;
6578 else {
6579 /*
6580 * If vnode is a device, create special vnode.
6581 */
6582 if (ISVDEV(vp->v_type)) {
6583 tempvp = vp;
6584 vp = specvp(vp, vp->v_rdev, vp->v_type, cr);
6585 VN_RELE(tempvp);
6586 }
6587 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) {
6588 if ((vattr.va_mask & AT_SIZE) &&
6589 vp->v_type == VREG) {
6590 rp = VTOR4(vp);
6591 /*
6592 * Check here for large file handled
6593 * by LF-unaware process (as
6594 * ufs_create() does)
6595 */
6596 if (!(flags & FOFFMAX)) {
6597 mutex_enter(&rp->r_statelock);
6598 if (rp->r_size > MAXOFF32_T)
6599 error = EOVERFLOW;
6600 mutex_exit(&rp->r_statelock);
6601 }
6602
6603 /* if error is set then we need to return */
6604 if (error) {
6605 nfs_rw_exit(&drp->r_rwlock);
6606 VN_RELE(vp);
6607 return (error);
6608 }
6609
6610 if (must_trunc) {
6611 vattr.va_mask = AT_SIZE;
6612 error = nfs4setattr(vp, &vattr, 0, cr,
6613 NULL);
6614 } else {
6615 /*
6616 * we know we have a regular file that already
6617 * exists and we may end up truncating the file
6618 * as a result of the open_otw, so flush out
6619 * any dirty pages for this file first.
6620 */
6621 if (nfs4_has_pages(vp) &&
6622 ((rp->r_flags & R4DIRTY) ||
6623 rp->r_count > 0 ||
6624 rp->r_mapcnt > 0)) {
6625 error = nfs4_putpage(vp,
6626 (offset_t)0, 0, 0, cr, ct);
6627 if (error && (error == ENOSPC ||
6628 error == EDQUOT)) {
6629 mutex_enter(
6630 &rp->r_statelock);
6631 if (!rp->r_error)
6632 rp->r_error =
6633 error;
6634 mutex_exit(
6635 &rp->r_statelock);
6636 }
6637 }
6638 vattr.va_mask = (AT_SIZE |
6639 AT_TYPE | AT_MODE);
6640 vattr.va_type = VREG;
6641 createmode = UNCHECKED4;
6642 truncating = 1;
6643 goto create_otw;
6644 }
6645 }
6646 }
6647 }
6648 nfs_rw_exit(&drp->r_rwlock);
6649 if (error) {
6650 VN_RELE(vp);
6651 } else {
6652 vnode_t *tvp;
6653 rnode4_t *trp;
6654 /*
6655 * existing file got truncated, notify.
6656 */
6657 tvp = vp;
6658 if (vp->v_type == VREG) {
6659 trp = VTOR4(vp);
6660 if (IS_SHADOW(vp, trp))
6661 tvp = RTOV4(trp);
6662 }
6663 vnevent_create(tvp, ct);
6664 *vpp = vp;
6665 }
6666 return (error);
6667
6668 create_otw:
6669 dnlc_remove(dvp, nm);
6670
6671 ASSERT(vattr.va_mask & AT_TYPE);
6672
6673 /*
6674 * If not a regular file let nfs4mknod() handle it.
6675 */
6676 if (vattr.va_type != VREG) {
6677 error = nfs4mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr);
6678 nfs_rw_exit(&drp->r_rwlock);
6679 return (error);
6680 }
6681
6682 /*
6683 * It _is_ a regular file.
6684 */
6685 ASSERT(vattr.va_mask & AT_MODE);
6686 if (MANDMODE(vattr.va_mode)) {
6687 nfs_rw_exit(&drp->r_rwlock);
6688 return (EACCES);
6689 }
6690
6691 /*
6692 * If this happens to be a mknod of a regular file, then flags will
6693 * have neither FREAD or FWRITE. However, we must set at least one
6694 * for the call to nfs4open_otw. If it's open(O_CREAT) driving
6695 * nfs4_create, then either FREAD, FWRITE, or FRDWR has already been
6696 * set (based on openmode specified by app).
6697 */
6698 if ((flags & (FREAD|FWRITE)) == 0)
6699 flags |= (FREAD|FWRITE);
6700
6701 error = nfs4open_otw(dvp, nm, &vattr, vpp, cr, 1, flags, createmode, 0);
6702
6703 if (vp != NULL) {
6704 /* if create was successful, throw away the file's pages */
6705 if (!error && (vattr.va_mask & AT_SIZE))
6706 nfs4_invalidate_pages(vp, (vattr.va_size & PAGEMASK),
6707 cr);
6708 /* release the lookup hold */
6709 VN_RELE(vp);
6710 vp = NULL;
6711 }
6712
6713 /*
6714 * validate that we opened a regular file. This handles a misbehaving
6715 * server that returns an incorrect FH.
6716 */
6717 if ((error == 0) && *vpp && (*vpp)->v_type != VREG) {
6718 error = EISDIR;
6719 VN_RELE(*vpp);
6720 }
6721
6722 /*
6723 * If this is not an exclusive create, then the CREATE
6724 * request will be made with the GUARDED mode set. This
6725 * means that the server will return EEXIST if the file
6726 * exists. The file could exist because of a retransmitted
6727 * request. In this case, we recover by starting over and
6728 * checking to see whether the file exists. This second
6729 * time through it should and a CREATE request will not be
6730 * sent.
6731 *
6732 * This handles the problem of a dangling CREATE request
6733 * which contains attributes which indicate that the file
6734 * should be truncated. This retransmitted request could
6735 * possibly truncate valid data in the file if not caught
6736 * by the duplicate request mechanism on the server or if
6737 * not caught by other means. The scenario is:
6738 *
6739 * Client transmits CREATE request with size = 0
6740 * Client times out, retransmits request.
6741 * Response to the first request arrives from the server
6742 * and the client proceeds on.
6743 * Client writes data to the file.
6744 * The server now processes retransmitted CREATE request
6745 * and truncates file.
6746 *
6747 * The use of the GUARDED CREATE request prevents this from
6748 * happening because the retransmitted CREATE would fail
6749 * with EEXIST and would not truncate the file.
6750 */
6751 if (error == EEXIST && exclusive == NONEXCL) {
6752 #ifdef DEBUG
6753 nfs4_create_misses++;
6754 #endif
6755 goto top;
6756 }
6757 nfs_rw_exit(&drp->r_rwlock);
6758 if (truncating && !error && *vpp) {
6759 vnode_t *tvp;
6760 rnode4_t *trp;
6761 /*
6762 * existing file got truncated, notify.
6763 */
6764 tvp = *vpp;
6765 trp = VTOR4(tvp);
6766 if (IS_SHADOW(tvp, trp))
6767 tvp = RTOV4(trp);
6768 vnevent_create(tvp, ct);
6769 }
6770 return (error);
6771 }
6772
6773 /*
6774 * Create compound (for mkdir, mknod, symlink):
6775 * { Putfh <dfh>; Create; Getfh; Getattr }
6776 * It's okay if setattr failed to set gid - this is not considered
6777 * an error, but purge attrs in that case.
6778 */
6779 static int
call_nfs4_create_req(vnode_t * dvp,char * nm,void * data,struct vattr * va,vnode_t ** vpp,cred_t * cr,nfs_ftype4 type)6780 call_nfs4_create_req(vnode_t *dvp, char *nm, void *data, struct vattr *va,
6781 vnode_t **vpp, cred_t *cr, nfs_ftype4 type)
6782 {
6783 int need_end_op = FALSE;
6784 COMPOUND4args_clnt args;
6785 COMPOUND4res_clnt res, *resp = NULL;
6786 nfs_argop4 *argop;
6787 nfs_resop4 *resop;
6788 int doqueue;
6789 mntinfo4_t *mi;
6790 rnode4_t *drp = VTOR4(dvp);
6791 change_info4 *cinfo;
6792 GETFH4res *gf_res;
6793 struct vattr vattr;
6794 vnode_t *vp;
6795 fattr4 *crattr;
6796 bool_t needrecov = FALSE;
6797 nfs4_recov_state_t recov_state;
6798 nfs4_sharedfh_t *sfhp = NULL;
6799 hrtime_t t;
6800 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
6801 int numops, argoplist_size, setgid_flag, idx_create, idx_fattr;
6802 dirattr_info_t dinfo, *dinfop;
6803 servinfo4_t *svp;
6804 bitmap4 supp_attrs;
6805
6806 ASSERT(type == NF4DIR || type == NF4LNK || type == NF4BLK ||
6807 type == NF4CHR || type == NF4SOCK || type == NF4FIFO);
6808
6809 mi = VTOMI4(dvp);
6810
6811 /*
6812 * Make sure we properly deal with setting the right gid
6813 * on a new directory to reflect the parent's setgid bit
6814 */
6815 setgid_flag = 0;
6816 if (type == NF4DIR) {
6817 struct vattr dva;
6818
6819 va->va_mode &= ~VSGID;
6820 dva.va_mask = AT_MODE | AT_GID;
6821 if (VOP_GETATTR(dvp, &dva, 0, cr, NULL) == 0) {
6822
6823 /*
6824 * If the parent's directory has the setgid bit set
6825 * _and_ the client was able to get a valid mapping
6826 * for the parent dir's owner_group, we want to
6827 * append NVERIFY(owner_group == dva.va_gid) and
6828 * SETTATTR to the CREATE compound.
6829 */
6830 if (mi->mi_flags & MI4_GRPID || dva.va_mode & VSGID) {
6831 setgid_flag = 1;
6832 va->va_mode |= VSGID;
6833 if (dva.va_gid != GID_NOBODY) {
6834 va->va_mask |= AT_GID;
6835 va->va_gid = dva.va_gid;
6836 }
6837 }
6838 }
6839 }
6840
6841 /*
6842 * Create ops:
6843 * 0:putfh(dir) 1:savefh(dir) 2:create 3:getfh(new) 4:getattr(new)
6844 * 5:restorefh(dir) 6:getattr(dir)
6845 *
6846 * if (setgid)
6847 * 0:putfh(dir) 1:create 2:getfh(new) 3:getattr(new)
6848 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new)
6849 * 8:nverify 9:setattr
6850 */
6851 if (setgid_flag) {
6852 numops = 10;
6853 idx_create = 1;
6854 idx_fattr = 3;
6855 } else {
6856 numops = 7;
6857 idx_create = 2;
6858 idx_fattr = 4;
6859 }
6860
6861 ASSERT(nfs_zone() == mi->mi_zone);
6862 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) {
6863 return (EINTR);
6864 }
6865 recov_state.rs_flags = 0;
6866 recov_state.rs_num_retry_despite_err = 0;
6867
6868 argoplist_size = numops * sizeof (nfs_argop4);
6869 argop = kmem_alloc(argoplist_size, KM_SLEEP);
6870
6871 recov_retry:
6872 if (type == NF4LNK)
6873 args.ctag = TAG_SYMLINK;
6874 else if (type == NF4DIR)
6875 args.ctag = TAG_MKDIR;
6876 else
6877 args.ctag = TAG_MKNOD;
6878
6879 args.array_len = numops;
6880 args.array = argop;
6881
6882 if (e.error = nfs4_start_op(mi, dvp, NULL, &recov_state)) {
6883 nfs_rw_exit(&drp->r_rwlock);
6884 kmem_free(argop, argoplist_size);
6885 return (e.error);
6886 }
6887 need_end_op = TRUE;
6888
6889
6890 /* 0: putfh directory */
6891 argop[0].argop = OP_CPUTFH;
6892 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
6893
6894 /* 1/2: Create object */
6895 argop[idx_create].argop = OP_CCREATE;
6896 argop[idx_create].nfs_argop4_u.opccreate.cname = nm;
6897 argop[idx_create].nfs_argop4_u.opccreate.type = type;
6898 if (type == NF4LNK) {
6899 /*
6900 * symlink, treat name as data
6901 */
6902 ASSERT(data != NULL);
6903 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.clinkdata =
6904 (char *)data;
6905 }
6906 if (type == NF4BLK || type == NF4CHR) {
6907 ASSERT(data != NULL);
6908 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.devdata =
6909 *((specdata4 *)data);
6910 }
6911
6912 crattr = &argop[idx_create].nfs_argop4_u.opccreate.createattrs;
6913
6914 svp = drp->r_server;
6915 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
6916 supp_attrs = svp->sv_supp_attrs;
6917 nfs_rw_exit(&svp->sv_lock);
6918
6919 if (vattr_to_fattr4(va, NULL, crattr, 0, OP_CREATE, supp_attrs)) {
6920 nfs_rw_exit(&drp->r_rwlock);
6921 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov);
6922 e.error = EINVAL;
6923 kmem_free(argop, argoplist_size);
6924 return (e.error);
6925 }
6926
6927 /* 2/3: getfh fh of created object */
6928 ASSERT(idx_create + 1 == idx_fattr - 1);
6929 argop[idx_create + 1].argop = OP_GETFH;
6930
6931 /* 3/4: getattr of new object */
6932 argop[idx_fattr].argop = OP_GETATTR;
6933 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
6934 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = mi;
6935
6936 if (setgid_flag) {
6937 vattr_t _v;
6938
6939 argop[4].argop = OP_SAVEFH;
6940
6941 argop[5].argop = OP_CPUTFH;
6942 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
6943
6944 argop[6].argop = OP_GETATTR;
6945 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
6946 argop[6].nfs_argop4_u.opgetattr.mi = mi;
6947
6948 argop[7].argop = OP_RESTOREFH;
6949
6950 /*
6951 * nverify
6952 *
6953 * XXX - Revisit the last argument to nfs4_end_op()
6954 * once 5020486 is fixed.
6955 */
6956 _v.va_mask = AT_GID;
6957 _v.va_gid = va->va_gid;
6958 if (e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY,
6959 supp_attrs)) {
6960 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE);
6961 nfs_rw_exit(&drp->r_rwlock);
6962 nfs4_fattr4_free(crattr);
6963 kmem_free(argop, argoplist_size);
6964 return (e.error);
6965 }
6966
6967 /*
6968 * setattr
6969 *
6970 * We _know_ we're not messing with AT_SIZE or AT_XTIME,
6971 * so no need for stateid or flags. Also we specify NULL
6972 * rp since we're only interested in setting owner_group
6973 * attributes.
6974 */
6975 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, supp_attrs,
6976 &e.error, 0);
6977
6978 if (e.error) {
6979 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE);
6980 nfs_rw_exit(&drp->r_rwlock);
6981 nfs4_fattr4_free(crattr);
6982 nfs4args_verify_free(&argop[8]);
6983 kmem_free(argop, argoplist_size);
6984 return (e.error);
6985 }
6986 } else {
6987 argop[1].argop = OP_SAVEFH;
6988
6989 argop[5].argop = OP_RESTOREFH;
6990
6991 argop[6].argop = OP_GETATTR;
6992 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
6993 argop[6].nfs_argop4_u.opgetattr.mi = mi;
6994 }
6995
6996 dnlc_remove(dvp, nm);
6997
6998 doqueue = 1;
6999 t = gethrtime();
7000 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
7001
7002 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
7003 if (e.error) {
7004 PURGE_ATTRCACHE4(dvp);
7005 if (!needrecov)
7006 goto out;
7007 }
7008
7009 if (needrecov) {
7010 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL,
7011 OP_CREATE, NULL, NULL, NULL) == FALSE) {
7012 nfs4_end_op(mi, dvp, NULL, &recov_state,
7013 needrecov);
7014 need_end_op = FALSE;
7015 nfs4_fattr4_free(crattr);
7016 if (setgid_flag) {
7017 nfs4args_verify_free(&argop[8]);
7018 nfs4args_setattr_free(&argop[9]);
7019 }
7020 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
7021 goto recov_retry;
7022 }
7023 }
7024
7025 resp = &res;
7026
7027 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) {
7028
7029 if (res.status == NFS4ERR_BADOWNER)
7030 nfs4_log_badowner(mi, OP_CREATE);
7031
7032 e.error = geterrno4(res.status);
7033
7034 /*
7035 * This check is left over from when create was implemented
7036 * using a setattr op (instead of createattrs). If the
7037 * putfh/create/getfh failed, the error was returned. If
7038 * setattr/getattr failed, we keep going.
7039 *
7040 * It might be better to get rid of the GETFH also, and just
7041 * do PUTFH/CREATE/GETATTR since the FH attr is mandatory.
7042 * Then if any of the operations failed, we could return the
7043 * error now, and remove much of the error code below.
7044 */
7045 if (res.array_len <= idx_fattr) {
7046 /*
7047 * Either Putfh, Create or Getfh failed.
7048 */
7049 PURGE_ATTRCACHE4(dvp);
7050 /*
7051 * nfs4_purge_stale_fh() may generate otw calls through
7052 * nfs4_invalidate_pages. Hence the need to call
7053 * nfs4_end_op() here to avoid nfs4_start_op() deadlock.
7054 */
7055 nfs4_end_op(mi, dvp, NULL, &recov_state,
7056 needrecov);
7057 need_end_op = FALSE;
7058 nfs4_purge_stale_fh(e.error, dvp, cr);
7059 goto out;
7060 }
7061 }
7062
7063 resop = &res.array[idx_create]; /* create res */
7064 cinfo = &resop->nfs_resop4_u.opcreate.cinfo;
7065
7066 resop = &res.array[idx_create + 1]; /* getfh res */
7067 gf_res = &resop->nfs_resop4_u.opgetfh;
7068
7069 sfhp = sfh4_get(&gf_res->object, mi);
7070 if (e.error) {
7071 *vpp = vp = makenfs4node(sfhp, NULL, dvp->v_vfsp, t, cr, dvp,
7072 fn_get(VTOSV(dvp)->sv_name, nm, sfhp));
7073 if (vp->v_type == VNON) {
7074 vattr.va_mask = AT_TYPE;
7075 /*
7076 * Need to call nfs4_end_op before nfs4getattr to avoid
7077 * potential nfs4_start_op deadlock. See RFE 4777612.
7078 */
7079 nfs4_end_op(mi, dvp, NULL, &recov_state,
7080 needrecov);
7081 need_end_op = FALSE;
7082 e.error = nfs4getattr(vp, &vattr, cr);
7083 if (e.error) {
7084 VN_RELE(vp);
7085 *vpp = NULL;
7086 goto out;
7087 }
7088 vp->v_type = vattr.va_type;
7089 }
7090 e.error = 0;
7091 } else {
7092 *vpp = vp = makenfs4node(sfhp,
7093 &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res,
7094 dvp->v_vfsp, t, cr,
7095 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp));
7096 }
7097
7098 /*
7099 * If compound succeeded, then update dir attrs
7100 */
7101 if (res.status == NFS4_OK) {
7102 dinfo.di_garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res;
7103 dinfo.di_cred = cr;
7104 dinfo.di_time_call = t;
7105 dinfop = &dinfo;
7106 } else
7107 dinfop = NULL;
7108
7109 /* Update directory cache attribute, readdir and dnlc caches */
7110 nfs4_update_dircaches(cinfo, dvp, vp, nm, dinfop);
7111
7112 out:
7113 if (sfhp != NULL)
7114 sfh4_rele(&sfhp);
7115 nfs_rw_exit(&drp->r_rwlock);
7116 nfs4_fattr4_free(crattr);
7117 if (setgid_flag) {
7118 nfs4args_verify_free(&argop[8]);
7119 nfs4args_setattr_free(&argop[9]);
7120 }
7121 if (resp)
7122 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
7123 if (need_end_op)
7124 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov);
7125
7126 kmem_free(argop, argoplist_size);
7127 return (e.error);
7128 }
7129
7130 /* ARGSUSED */
7131 static int
nfs4mknod(vnode_t * dvp,char * nm,struct vattr * va,enum vcexcl exclusive,int mode,vnode_t ** vpp,cred_t * cr)7132 nfs4mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
7133 int mode, vnode_t **vpp, cred_t *cr)
7134 {
7135 int error;
7136 vnode_t *vp;
7137 nfs_ftype4 type;
7138 specdata4 spec, *specp = NULL;
7139
7140 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
7141
7142 switch (va->va_type) {
7143 case VCHR:
7144 case VBLK:
7145 type = (va->va_type == VCHR) ? NF4CHR : NF4BLK;
7146 spec.specdata1 = getmajor(va->va_rdev);
7147 spec.specdata2 = getminor(va->va_rdev);
7148 specp = &spec;
7149 break;
7150
7151 case VFIFO:
7152 type = NF4FIFO;
7153 break;
7154 case VSOCK:
7155 type = NF4SOCK;
7156 break;
7157
7158 default:
7159 return (EINVAL);
7160 }
7161
7162 error = call_nfs4_create_req(dvp, nm, specp, va, &vp, cr, type);
7163 if (error) {
7164 return (error);
7165 }
7166
7167 /*
7168 * This might not be needed any more; special case to deal
7169 * with problematic v2/v3 servers. Since create was unable
7170 * to set group correctly, not sure what hope setattr has.
7171 */
7172 if (va->va_gid != VTOR4(vp)->r_attr.va_gid) {
7173 va->va_mask = AT_GID;
7174 (void) nfs4setattr(vp, va, 0, cr, NULL);
7175 }
7176
7177 /*
7178 * If vnode is a device create special vnode
7179 */
7180 if (ISVDEV(vp->v_type)) {
7181 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
7182 VN_RELE(vp);
7183 } else {
7184 *vpp = vp;
7185 }
7186 return (error);
7187 }
7188
7189 /*
7190 * Remove requires that the current fh be the target directory.
7191 * After the operation, the current fh is unchanged.
7192 * The compound op structure is:
7193 * PUTFH(targetdir), REMOVE
7194 *
7195 * Weirdness: if the vnode to be removed is open
7196 * we rename it instead of removing it and nfs_inactive
7197 * will remove the new name.
7198 */
7199 /* ARGSUSED */
7200 static int
nfs4_remove(vnode_t * dvp,char * nm,cred_t * cr,caller_context_t * ct,int flags)7201 nfs4_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags)
7202 {
7203 COMPOUND4args_clnt args;
7204 COMPOUND4res_clnt res, *resp = NULL;
7205 REMOVE4res *rm_res;
7206 nfs_argop4 argop[3];
7207 nfs_resop4 *resop;
7208 vnode_t *vp;
7209 char *tmpname;
7210 int doqueue;
7211 mntinfo4_t *mi;
7212 rnode4_t *rp;
7213 rnode4_t *drp;
7214 int needrecov = 0;
7215 nfs4_recov_state_t recov_state;
7216 int isopen;
7217 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
7218 dirattr_info_t dinfo;
7219
7220 if (nfs_zone() != VTOMI4(dvp)->mi_zone)
7221 return (EPERM);
7222 drp = VTOR4(dvp);
7223 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp)))
7224 return (EINTR);
7225
7226 e.error = nfs4lookup(dvp, nm, &vp, cr, 0);
7227 if (e.error) {
7228 nfs_rw_exit(&drp->r_rwlock);
7229 return (e.error);
7230 }
7231
7232 if (vp->v_type == VDIR) {
7233 VN_RELE(vp);
7234 nfs_rw_exit(&drp->r_rwlock);
7235 return (EISDIR);
7236 }
7237
7238 /*
7239 * First just remove the entry from the name cache, as it
7240 * is most likely the only entry for this vp.
7241 */
7242 dnlc_remove(dvp, nm);
7243
7244 rp = VTOR4(vp);
7245
7246 /*
7247 * For regular file types, check to see if the file is open by looking
7248 * at the open streams.
7249 * For all other types, check the reference count on the vnode. Since
7250 * they are not opened OTW they never have an open stream.
7251 *
7252 * If the file is open, rename it to .nfsXXXX.
7253 */
7254 if (vp->v_type != VREG) {
7255 /*
7256 * If the file has a v_count > 1 then there may be more than one
7257 * entry in the name cache due multiple links or an open file,
7258 * but we don't have the real reference count so flush all
7259 * possible entries.
7260 */
7261 if (vp->v_count > 1)
7262 dnlc_purge_vp(vp);
7263
7264 /*
7265 * Now we have the real reference count.
7266 */
7267 isopen = vp->v_count > 1;
7268 } else {
7269 mutex_enter(&rp->r_os_lock);
7270 isopen = list_head(&rp->r_open_streams) != NULL;
7271 mutex_exit(&rp->r_os_lock);
7272 }
7273
7274 mutex_enter(&rp->r_statelock);
7275 if (isopen &&
7276 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) {
7277 mutex_exit(&rp->r_statelock);
7278 tmpname = newname();
7279 e.error = nfs4rename(dvp, nm, dvp, tmpname, cr, ct);
7280 if (e.error)
7281 kmem_free(tmpname, MAXNAMELEN);
7282 else {
7283 mutex_enter(&rp->r_statelock);
7284 if (rp->r_unldvp == NULL) {
7285 VN_HOLD(dvp);
7286 rp->r_unldvp = dvp;
7287 if (rp->r_unlcred != NULL)
7288 crfree(rp->r_unlcred);
7289 crhold(cr);
7290 rp->r_unlcred = cr;
7291 rp->r_unlname = tmpname;
7292 } else {
7293 kmem_free(rp->r_unlname, MAXNAMELEN);
7294 rp->r_unlname = tmpname;
7295 }
7296 mutex_exit(&rp->r_statelock);
7297 }
7298 VN_RELE(vp);
7299 nfs_rw_exit(&drp->r_rwlock);
7300 return (e.error);
7301 }
7302 /*
7303 * Actually remove the file/dir
7304 */
7305 mutex_exit(&rp->r_statelock);
7306
7307 /*
7308 * We need to flush any dirty pages which happen to
7309 * be hanging around before removing the file.
7310 * This shouldn't happen very often since in NFSv4
7311 * we should be close to open consistent.
7312 */
7313 if (nfs4_has_pages(vp) &&
7314 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) {
7315 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, ct);
7316 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) {
7317 mutex_enter(&rp->r_statelock);
7318 if (!rp->r_error)
7319 rp->r_error = e.error;
7320 mutex_exit(&rp->r_statelock);
7321 }
7322 }
7323
7324 mi = VTOMI4(dvp);
7325
7326 (void) nfs4delegreturn(rp, NFS4_DR_REOPEN);
7327 recov_state.rs_flags = 0;
7328 recov_state.rs_num_retry_despite_err = 0;
7329
7330 recov_retry:
7331 /*
7332 * Remove ops: putfh dir; remove
7333 */
7334 args.ctag = TAG_REMOVE;
7335 args.array_len = 3;
7336 args.array = argop;
7337
7338 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state);
7339 if (e.error) {
7340 nfs_rw_exit(&drp->r_rwlock);
7341 VN_RELE(vp);
7342 return (e.error);
7343 }
7344
7345 /* putfh directory */
7346 argop[0].argop = OP_CPUTFH;
7347 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
7348
7349 /* remove */
7350 argop[1].argop = OP_CREMOVE;
7351 argop[1].nfs_argop4_u.opcremove.ctarget = nm;
7352
7353 /* getattr dir */
7354 argop[2].argop = OP_GETATTR;
7355 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
7356 argop[2].nfs_argop4_u.opgetattr.mi = mi;
7357
7358 doqueue = 1;
7359 dinfo.di_time_call = gethrtime();
7360 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
7361
7362 PURGE_ATTRCACHE4(vp);
7363
7364 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
7365 if (e.error)
7366 PURGE_ATTRCACHE4(dvp);
7367
7368 if (needrecov) {
7369 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp,
7370 NULL, NULL, NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) {
7371 if (!e.error)
7372 (void) xdr_free(xdr_COMPOUND4res_clnt,
7373 (caddr_t)&res);
7374 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state,
7375 needrecov);
7376 goto recov_retry;
7377 }
7378 }
7379
7380 /*
7381 * Matching nfs4_end_op() for start_op() above.
7382 * There is a path in the code below which calls
7383 * nfs4_purge_stale_fh(), which may generate otw calls through
7384 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op()
7385 * here to avoid nfs4_start_op() deadlock.
7386 */
7387 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
7388
7389 if (!e.error) {
7390 resp = &res;
7391
7392 if (res.status) {
7393 e.error = geterrno4(res.status);
7394 PURGE_ATTRCACHE4(dvp);
7395 nfs4_purge_stale_fh(e.error, dvp, cr);
7396 } else {
7397 resop = &res.array[1]; /* remove res */
7398 rm_res = &resop->nfs_resop4_u.opremove;
7399
7400 dinfo.di_garp =
7401 &res.array[2].nfs_resop4_u.opgetattr.ga_res;
7402 dinfo.di_cred = cr;
7403
7404 /* Update directory attr, readdir and dnlc caches */
7405 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL,
7406 &dinfo);
7407 }
7408 }
7409 nfs_rw_exit(&drp->r_rwlock);
7410 if (resp)
7411 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
7412
7413 if (e.error == 0) {
7414 vnode_t *tvp;
7415 rnode4_t *trp;
7416 trp = VTOR4(vp);
7417 tvp = vp;
7418 if (IS_SHADOW(vp, trp))
7419 tvp = RTOV4(trp);
7420 vnevent_remove(tvp, dvp, nm, ct);
7421 }
7422 VN_RELE(vp);
7423 return (e.error);
7424 }
7425
7426 /*
7427 * Link requires that the current fh be the target directory and the
7428 * saved fh be the source fh. After the operation, the current fh is unchanged.
7429 * Thus the compound op structure is:
7430 * PUTFH(file), SAVEFH, PUTFH(targetdir), LINK, RESTOREFH,
7431 * GETATTR(file)
7432 */
7433 /* ARGSUSED */
7434 static int
nfs4_link(vnode_t * tdvp,vnode_t * svp,char * tnm,cred_t * cr,caller_context_t * ct,int flags)7435 nfs4_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr,
7436 caller_context_t *ct, int flags)
7437 {
7438 COMPOUND4args_clnt args;
7439 COMPOUND4res_clnt res, *resp = NULL;
7440 LINK4res *ln_res;
7441 int argoplist_size = 7 * sizeof (nfs_argop4);
7442 nfs_argop4 *argop;
7443 nfs_resop4 *resop;
7444 vnode_t *realvp, *nvp;
7445 int doqueue;
7446 mntinfo4_t *mi;
7447 rnode4_t *tdrp;
7448 bool_t needrecov = FALSE;
7449 nfs4_recov_state_t recov_state;
7450 hrtime_t t;
7451 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
7452 dirattr_info_t dinfo;
7453
7454 ASSERT(*tnm != '\0');
7455 ASSERT(tdvp->v_type == VDIR);
7456 ASSERT(nfs4_consistent_type(tdvp));
7457 ASSERT(nfs4_consistent_type(svp));
7458
7459 if (nfs_zone() != VTOMI4(tdvp)->mi_zone)
7460 return (EPERM);
7461 if (VOP_REALVP(svp, &realvp, ct) == 0) {
7462 svp = realvp;
7463 ASSERT(nfs4_consistent_type(svp));
7464 }
7465
7466 tdrp = VTOR4(tdvp);
7467 mi = VTOMI4(svp);
7468
7469 if (!(mi->mi_flags & MI4_LINK)) {
7470 return (EOPNOTSUPP);
7471 }
7472 recov_state.rs_flags = 0;
7473 recov_state.rs_num_retry_despite_err = 0;
7474
7475 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR4(tdvp)))
7476 return (EINTR);
7477
7478 recov_retry:
7479 argop = kmem_alloc(argoplist_size, KM_SLEEP);
7480
7481 args.ctag = TAG_LINK;
7482
7483 /*
7484 * Link ops: putfh fl; savefh; putfh tdir; link; getattr(dir);
7485 * restorefh; getattr(fl)
7486 */
7487 args.array_len = 7;
7488 args.array = argop;
7489
7490 e.error = nfs4_start_op(VTOMI4(svp), svp, tdvp, &recov_state);
7491 if (e.error) {
7492 kmem_free(argop, argoplist_size);
7493 nfs_rw_exit(&tdrp->r_rwlock);
7494 return (e.error);
7495 }
7496
7497 /* 0. putfh file */
7498 argop[0].argop = OP_CPUTFH;
7499 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(svp)->r_fh;
7500
7501 /* 1. save current fh to free up the space for the dir */
7502 argop[1].argop = OP_SAVEFH;
7503
7504 /* 2. putfh targetdir */
7505 argop[2].argop = OP_CPUTFH;
7506 argop[2].nfs_argop4_u.opcputfh.sfh = tdrp->r_fh;
7507
7508 /* 3. link: current_fh is targetdir, saved_fh is source */
7509 argop[3].argop = OP_CLINK;
7510 argop[3].nfs_argop4_u.opclink.cnewname = tnm;
7511
7512 /* 4. Get attributes of dir */
7513 argop[4].argop = OP_GETATTR;
7514 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
7515 argop[4].nfs_argop4_u.opgetattr.mi = mi;
7516
7517 /* 5. If link was successful, restore current vp to file */
7518 argop[5].argop = OP_RESTOREFH;
7519
7520 /* 6. Get attributes of linked object */
7521 argop[6].argop = OP_GETATTR;
7522 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
7523 argop[6].nfs_argop4_u.opgetattr.mi = mi;
7524
7525 dnlc_remove(tdvp, tnm);
7526
7527 doqueue = 1;
7528 t = gethrtime();
7529
7530 rfs4call(VTOMI4(svp), &args, &res, cr, &doqueue, 0, &e);
7531
7532 needrecov = nfs4_needs_recovery(&e, FALSE, svp->v_vfsp);
7533 if (e.error != 0 && !needrecov) {
7534 PURGE_ATTRCACHE4(tdvp);
7535 PURGE_ATTRCACHE4(svp);
7536 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov);
7537 goto out;
7538 }
7539
7540 if (needrecov) {
7541 bool_t abort;
7542
7543 abort = nfs4_start_recovery(&e, VTOMI4(svp), svp, tdvp,
7544 NULL, NULL, OP_LINK, NULL, NULL, NULL);
7545 if (abort == FALSE) {
7546 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state,
7547 needrecov);
7548 kmem_free(argop, argoplist_size);
7549 if (!e.error)
7550 (void) xdr_free(xdr_COMPOUND4res_clnt,
7551 (caddr_t)&res);
7552 goto recov_retry;
7553 } else {
7554 if (e.error != 0) {
7555 PURGE_ATTRCACHE4(tdvp);
7556 PURGE_ATTRCACHE4(svp);
7557 nfs4_end_op(VTOMI4(svp), svp, tdvp,
7558 &recov_state, needrecov);
7559 goto out;
7560 }
7561 /* fall through for res.status case */
7562 }
7563 }
7564
7565 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov);
7566
7567 resp = &res;
7568 if (res.status) {
7569 /* If link succeeded, then don't return error */
7570 e.error = geterrno4(res.status);
7571 if (res.array_len <= 4) {
7572 /*
7573 * Either Putfh, Savefh, Putfh dir, or Link failed
7574 */
7575 PURGE_ATTRCACHE4(svp);
7576 PURGE_ATTRCACHE4(tdvp);
7577 if (e.error == EOPNOTSUPP) {
7578 mutex_enter(&mi->mi_lock);
7579 mi->mi_flags &= ~MI4_LINK;
7580 mutex_exit(&mi->mi_lock);
7581 }
7582 /* Remap EISDIR to EPERM for non-root user for SVVS */
7583 /* XXX-LP */
7584 if (e.error == EISDIR && crgetuid(cr) != 0)
7585 e.error = EPERM;
7586 goto out;
7587 }
7588 }
7589
7590 /* either no error or one of the postop getattr failed */
7591
7592 /*
7593 * XXX - if LINK succeeded, but no attrs were returned for link
7594 * file, purge its cache.
7595 *
7596 * XXX Perform a simplified version of wcc checking. Instead of
7597 * have another getattr to get pre-op, just purge cache if
7598 * any of the ops prior to and including the getattr failed.
7599 * If the getattr succeeded then update the attrcache accordingly.
7600 */
7601
7602 /*
7603 * update cache with link file postattrs.
7604 * Note: at this point resop points to link res.
7605 */
7606 resop = &res.array[3]; /* link res */
7607 ln_res = &resop->nfs_resop4_u.oplink;
7608 if (res.status == NFS4_OK)
7609 e.error = nfs4_update_attrcache(res.status,
7610 &res.array[6].nfs_resop4_u.opgetattr.ga_res,
7611 t, svp, cr);
7612
7613 /*
7614 * Call makenfs4node to create the new shadow vp for tnm.
7615 * We pass NULL attrs because we just cached attrs for
7616 * the src object. All we're trying to accomplish is to
7617 * to create the new shadow vnode.
7618 */
7619 nvp = makenfs4node(VTOR4(svp)->r_fh, NULL, tdvp->v_vfsp, t, cr,
7620 tdvp, fn_get(VTOSV(tdvp)->sv_name, tnm, VTOR4(svp)->r_fh));
7621
7622 /* Update target cache attribute, readdir and dnlc caches */
7623 dinfo.di_garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res;
7624 dinfo.di_time_call = t;
7625 dinfo.di_cred = cr;
7626
7627 nfs4_update_dircaches(&ln_res->cinfo, tdvp, nvp, tnm, &dinfo);
7628 ASSERT(nfs4_consistent_type(tdvp));
7629 ASSERT(nfs4_consistent_type(svp));
7630 ASSERT(nfs4_consistent_type(nvp));
7631 VN_RELE(nvp);
7632
7633 if (!e.error) {
7634 vnode_t *tvp;
7635 rnode4_t *trp;
7636 /*
7637 * Notify the source file of this link operation.
7638 */
7639 trp = VTOR4(svp);
7640 tvp = svp;
7641 if (IS_SHADOW(svp, trp))
7642 tvp = RTOV4(trp);
7643 vnevent_link(tvp, ct);
7644 }
7645 out:
7646 kmem_free(argop, argoplist_size);
7647 if (resp)
7648 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
7649
7650 nfs_rw_exit(&tdrp->r_rwlock);
7651
7652 return (e.error);
7653 }
7654
7655 /* ARGSUSED */
7656 static int
nfs4_rename(vnode_t * odvp,char * onm,vnode_t * ndvp,char * nnm,cred_t * cr,caller_context_t * ct,int flags)7657 nfs4_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr,
7658 caller_context_t *ct, int flags)
7659 {
7660 vnode_t *realvp;
7661
7662 if (nfs_zone() != VTOMI4(odvp)->mi_zone)
7663 return (EPERM);
7664 if (VOP_REALVP(ndvp, &realvp, ct) == 0)
7665 ndvp = realvp;
7666
7667 return (nfs4rename(odvp, onm, ndvp, nnm, cr, ct));
7668 }
7669
7670 /*
7671 * nfs4rename does the real work of renaming in NFS Version 4.
7672 *
7673 * A file handle is considered volatile for renaming purposes if either
7674 * of the volatile bits are turned on. However, the compound may differ
7675 * based on the likelihood of the filehandle to change during rename.
7676 */
7677 static int
nfs4rename(vnode_t * odvp,char * onm,vnode_t * ndvp,char * nnm,cred_t * cr,caller_context_t * ct)7678 nfs4rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr,
7679 caller_context_t *ct)
7680 {
7681 int error;
7682 mntinfo4_t *mi;
7683 vnode_t *nvp = NULL;
7684 vnode_t *ovp = NULL;
7685 char *tmpname = NULL;
7686 rnode4_t *rp;
7687 rnode4_t *odrp;
7688 rnode4_t *ndrp;
7689 int did_link = 0;
7690 int do_link = 1;
7691 nfsstat4 stat = NFS4_OK;
7692
7693 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone);
7694 ASSERT(nfs4_consistent_type(odvp));
7695 ASSERT(nfs4_consistent_type(ndvp));
7696
7697 if (onm[0] == '.' && (onm[1] == '\0' ||
7698 (onm[1] == '.' && onm[2] == '\0')))
7699 return (EINVAL);
7700
7701 if (nnm[0] == '.' && (nnm[1] == '\0' ||
7702 (nnm[1] == '.' && nnm[2] == '\0')))
7703 return (EINVAL);
7704
7705 odrp = VTOR4(odvp);
7706 ndrp = VTOR4(ndvp);
7707 if ((intptr_t)odrp < (intptr_t)ndrp) {
7708 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp)))
7709 return (EINTR);
7710 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) {
7711 nfs_rw_exit(&odrp->r_rwlock);
7712 return (EINTR);
7713 }
7714 } else {
7715 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp)))
7716 return (EINTR);
7717 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) {
7718 nfs_rw_exit(&ndrp->r_rwlock);
7719 return (EINTR);
7720 }
7721 }
7722
7723 /*
7724 * Lookup the target file. If it exists, it needs to be
7725 * checked to see whether it is a mount point and whether
7726 * it is active (open).
7727 */
7728 error = nfs4lookup(ndvp, nnm, &nvp, cr, 0);
7729 if (!error) {
7730 int isactive;
7731
7732 ASSERT(nfs4_consistent_type(nvp));
7733 /*
7734 * If this file has been mounted on, then just
7735 * return busy because renaming to it would remove
7736 * the mounted file system from the name space.
7737 */
7738 if (vn_ismntpt(nvp)) {
7739 VN_RELE(nvp);
7740 nfs_rw_exit(&odrp->r_rwlock);
7741 nfs_rw_exit(&ndrp->r_rwlock);
7742 return (EBUSY);
7743 }
7744
7745 /*
7746 * First just remove the entry from the name cache, as it
7747 * is most likely the only entry for this vp.
7748 */
7749 dnlc_remove(ndvp, nnm);
7750
7751 rp = VTOR4(nvp);
7752
7753 if (nvp->v_type != VREG) {
7754 /*
7755 * Purge the name cache of all references to this vnode
7756 * so that we can check the reference count to infer
7757 * whether it is active or not.
7758 */
7759 if (nvp->v_count > 1)
7760 dnlc_purge_vp(nvp);
7761
7762 isactive = nvp->v_count > 1;
7763 } else {
7764 mutex_enter(&rp->r_os_lock);
7765 isactive = list_head(&rp->r_open_streams) != NULL;
7766 mutex_exit(&rp->r_os_lock);
7767 }
7768
7769 /*
7770 * If the vnode is active and is not a directory,
7771 * arrange to rename it to a
7772 * temporary file so that it will continue to be
7773 * accessible. This implements the "unlink-open-file"
7774 * semantics for the target of a rename operation.
7775 * Before doing this though, make sure that the
7776 * source and target files are not already the same.
7777 */
7778 if (isactive && nvp->v_type != VDIR) {
7779 /*
7780 * Lookup the source name.
7781 */
7782 error = nfs4lookup(odvp, onm, &ovp, cr, 0);
7783
7784 /*
7785 * The source name *should* already exist.
7786 */
7787 if (error) {
7788 VN_RELE(nvp);
7789 nfs_rw_exit(&odrp->r_rwlock);
7790 nfs_rw_exit(&ndrp->r_rwlock);
7791 return (error);
7792 }
7793
7794 ASSERT(nfs4_consistent_type(ovp));
7795
7796 /*
7797 * Compare the two vnodes. If they are the same,
7798 * just release all held vnodes and return success.
7799 */
7800 if (VN_CMP(ovp, nvp)) {
7801 VN_RELE(ovp);
7802 VN_RELE(nvp);
7803 nfs_rw_exit(&odrp->r_rwlock);
7804 nfs_rw_exit(&ndrp->r_rwlock);
7805 return (0);
7806 }
7807
7808 /*
7809 * Can't mix and match directories and non-
7810 * directories in rename operations. We already
7811 * know that the target is not a directory. If
7812 * the source is a directory, return an error.
7813 */
7814 if (ovp->v_type == VDIR) {
7815 VN_RELE(ovp);
7816 VN_RELE(nvp);
7817 nfs_rw_exit(&odrp->r_rwlock);
7818 nfs_rw_exit(&ndrp->r_rwlock);
7819 return (ENOTDIR);
7820 }
7821 link_call:
7822 /*
7823 * The target file exists, is not the same as
7824 * the source file, and is active. We first
7825 * try to Link it to a temporary filename to
7826 * avoid having the server removing the file
7827 * completely (which could cause data loss to
7828 * the user's POV in the event the Rename fails
7829 * -- see bug 1165874).
7830 */
7831 /*
7832 * The do_link and did_link booleans are
7833 * introduced in the event we get NFS4ERR_FILE_OPEN
7834 * returned for the Rename. Some servers can
7835 * not Rename over an Open file, so they return
7836 * this error. The client needs to Remove the
7837 * newly created Link and do two Renames, just
7838 * as if the server didn't support LINK.
7839 */
7840 tmpname = newname();
7841 error = 0;
7842
7843 if (do_link) {
7844 error = nfs4_link(ndvp, nvp, tmpname, cr,
7845 NULL, 0);
7846 }
7847 if (error == EOPNOTSUPP || !do_link) {
7848 error = nfs4_rename(ndvp, nnm, ndvp, tmpname,
7849 cr, NULL, 0);
7850 did_link = 0;
7851 } else {
7852 did_link = 1;
7853 }
7854 if (error) {
7855 kmem_free(tmpname, MAXNAMELEN);
7856 VN_RELE(ovp);
7857 VN_RELE(nvp);
7858 nfs_rw_exit(&odrp->r_rwlock);
7859 nfs_rw_exit(&ndrp->r_rwlock);
7860 return (error);
7861 }
7862
7863 mutex_enter(&rp->r_statelock);
7864 if (rp->r_unldvp == NULL) {
7865 VN_HOLD(ndvp);
7866 rp->r_unldvp = ndvp;
7867 if (rp->r_unlcred != NULL)
7868 crfree(rp->r_unlcred);
7869 crhold(cr);
7870 rp->r_unlcred = cr;
7871 rp->r_unlname = tmpname;
7872 } else {
7873 if (rp->r_unlname)
7874 kmem_free(rp->r_unlname, MAXNAMELEN);
7875 rp->r_unlname = tmpname;
7876 }
7877 mutex_exit(&rp->r_statelock);
7878 }
7879
7880 (void) nfs4delegreturn(VTOR4(nvp), NFS4_DR_PUSH|NFS4_DR_REOPEN);
7881
7882 ASSERT(nfs4_consistent_type(nvp));
7883 }
7884
7885 if (ovp == NULL) {
7886 /*
7887 * When renaming directories to be a subdirectory of a
7888 * different parent, the dnlc entry for ".." will no
7889 * longer be valid, so it must be removed.
7890 *
7891 * We do a lookup here to determine whether we are renaming
7892 * a directory and we need to check if we are renaming
7893 * an unlinked file. This might have already been done
7894 * in previous code, so we check ovp == NULL to avoid
7895 * doing it twice.
7896 */
7897 error = nfs4lookup(odvp, onm, &ovp, cr, 0);
7898 /*
7899 * The source name *should* already exist.
7900 */
7901 if (error) {
7902 nfs_rw_exit(&odrp->r_rwlock);
7903 nfs_rw_exit(&ndrp->r_rwlock);
7904 if (nvp) {
7905 VN_RELE(nvp);
7906 }
7907 return (error);
7908 }
7909 ASSERT(ovp != NULL);
7910 ASSERT(nfs4_consistent_type(ovp));
7911 }
7912
7913 /*
7914 * Is the object being renamed a dir, and if so, is
7915 * it being renamed to a child of itself? The underlying
7916 * fs should ultimately return EINVAL for this case;
7917 * however, buggy beta non-Solaris NFSv4 servers at
7918 * interop testing events have allowed this behavior,
7919 * and it caused our client to panic due to a recursive
7920 * mutex_enter in fn_move.
7921 *
7922 * The tedious locking in fn_move could be changed to
7923 * deal with this case, and the client could avoid the
7924 * panic; however, the client would just confuse itself
7925 * later and misbehave. A better way to handle the broken
7926 * server is to detect this condition and return EINVAL
7927 * without ever sending the the bogus rename to the server.
7928 * We know the rename is invalid -- just fail it now.
7929 */
7930 if (ovp->v_type == VDIR && VN_CMP(ndvp, ovp)) {
7931 VN_RELE(ovp);
7932 nfs_rw_exit(&odrp->r_rwlock);
7933 nfs_rw_exit(&ndrp->r_rwlock);
7934 if (nvp) {
7935 VN_RELE(nvp);
7936 }
7937 return (EINVAL);
7938 }
7939
7940 (void) nfs4delegreturn(VTOR4(ovp), NFS4_DR_PUSH|NFS4_DR_REOPEN);
7941
7942 /*
7943 * If FH4_VOL_RENAME or FH4_VOLATILE_ANY bits are set, it is
7944 * possible for the filehandle to change due to the rename.
7945 * If neither of these bits is set, but FH4_VOL_MIGRATION is set,
7946 * the fh will not change because of the rename, but we still need
7947 * to update its rnode entry with the new name for
7948 * an eventual fh change due to migration. The FH4_NOEXPIRE_ON_OPEN
7949 * has no effect on these for now, but for future improvements,
7950 * we might want to use it too to simplify handling of files
7951 * that are open with that flag on. (XXX)
7952 */
7953 mi = VTOMI4(odvp);
7954 if (NFS4_VOLATILE_FH(mi))
7955 error = nfs4rename_volatile_fh(odvp, onm, ovp, ndvp, nnm, cr,
7956 &stat);
7957 else
7958 error = nfs4rename_persistent_fh(odvp, onm, ovp, ndvp, nnm, cr,
7959 &stat);
7960
7961 ASSERT(nfs4_consistent_type(odvp));
7962 ASSERT(nfs4_consistent_type(ndvp));
7963 ASSERT(nfs4_consistent_type(ovp));
7964
7965 if (stat == NFS4ERR_FILE_OPEN && did_link) {
7966 do_link = 0;
7967 /*
7968 * Before the 'link_call' code, we did a nfs4_lookup
7969 * that puts a VN_HOLD on nvp. After the nfs4_link
7970 * call we call VN_RELE to match that hold. We need
7971 * to place an additional VN_HOLD here since we will
7972 * be hitting that VN_RELE again.
7973 */
7974 VN_HOLD(nvp);
7975
7976 (void) nfs4_remove(ndvp, tmpname, cr, NULL, 0);
7977
7978 /* Undo the unlinked file naming stuff we just did */
7979 mutex_enter(&rp->r_statelock);
7980 if (rp->r_unldvp) {
7981 VN_RELE(ndvp);
7982 rp->r_unldvp = NULL;
7983 if (rp->r_unlcred != NULL)
7984 crfree(rp->r_unlcred);
7985 rp->r_unlcred = NULL;
7986 /* rp->r_unlanme points to tmpname */
7987 if (rp->r_unlname)
7988 kmem_free(rp->r_unlname, MAXNAMELEN);
7989 rp->r_unlname = NULL;
7990 }
7991 mutex_exit(&rp->r_statelock);
7992
7993 if (nvp) {
7994 VN_RELE(nvp);
7995 }
7996 goto link_call;
7997 }
7998
7999 if (error) {
8000 VN_RELE(ovp);
8001 nfs_rw_exit(&odrp->r_rwlock);
8002 nfs_rw_exit(&ndrp->r_rwlock);
8003 if (nvp) {
8004 VN_RELE(nvp);
8005 }
8006 return (error);
8007 }
8008
8009 /*
8010 * when renaming directories to be a subdirectory of a
8011 * different parent, the dnlc entry for ".." will no
8012 * longer be valid, so it must be removed
8013 */
8014 rp = VTOR4(ovp);
8015 if (ndvp != odvp) {
8016 if (ovp->v_type == VDIR) {
8017 dnlc_remove(ovp, "..");
8018 if (rp->r_dir != NULL)
8019 nfs4_purge_rddir_cache(ovp);
8020 }
8021 }
8022
8023 /*
8024 * If we are renaming the unlinked file, update the
8025 * r_unldvp and r_unlname as needed.
8026 */
8027 mutex_enter(&rp->r_statelock);
8028 if (rp->r_unldvp != NULL) {
8029 if (strcmp(rp->r_unlname, onm) == 0) {
8030 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN);
8031 rp->r_unlname[MAXNAMELEN - 1] = '\0';
8032 if (ndvp != rp->r_unldvp) {
8033 VN_RELE(rp->r_unldvp);
8034 rp->r_unldvp = ndvp;
8035 VN_HOLD(ndvp);
8036 }
8037 }
8038 }
8039 mutex_exit(&rp->r_statelock);
8040
8041 /*
8042 * Notify the rename vnevents to source vnode, and to the target
8043 * vnode if it already existed.
8044 */
8045 if (error == 0) {
8046 vnode_t *tvp;
8047 rnode4_t *trp;
8048 /*
8049 * Notify the vnode. Each links is represented by
8050 * a different vnode, in nfsv4.
8051 */
8052 if (nvp) {
8053 trp = VTOR4(nvp);
8054 tvp = nvp;
8055 if (IS_SHADOW(nvp, trp))
8056 tvp = RTOV4(trp);
8057 vnevent_rename_dest(tvp, ndvp, nnm, ct);
8058 }
8059
8060 /*
8061 * if the source and destination directory are not the
8062 * same notify the destination directory.
8063 */
8064 if (VTOR4(odvp) != VTOR4(ndvp)) {
8065 trp = VTOR4(ndvp);
8066 tvp = ndvp;
8067 if (IS_SHADOW(ndvp, trp))
8068 tvp = RTOV4(trp);
8069 vnevent_rename_dest_dir(tvp, ct);
8070 }
8071
8072 trp = VTOR4(ovp);
8073 tvp = ovp;
8074 if (IS_SHADOW(ovp, trp))
8075 tvp = RTOV4(trp);
8076 vnevent_rename_src(tvp, odvp, onm, ct);
8077 }
8078
8079 if (nvp) {
8080 VN_RELE(nvp);
8081 }
8082 VN_RELE(ovp);
8083
8084 nfs_rw_exit(&odrp->r_rwlock);
8085 nfs_rw_exit(&ndrp->r_rwlock);
8086
8087 return (error);
8088 }
8089
8090 /*
8091 * When the parent directory has changed, sv_dfh must be updated
8092 */
8093 static void
update_parentdir_sfh(vnode_t * vp,vnode_t * ndvp)8094 update_parentdir_sfh(vnode_t *vp, vnode_t *ndvp)
8095 {
8096 svnode_t *sv = VTOSV(vp);
8097 nfs4_sharedfh_t *old_dfh = sv->sv_dfh;
8098 nfs4_sharedfh_t *new_dfh = VTOR4(ndvp)->r_fh;
8099
8100 sfh4_hold(new_dfh);
8101 sv->sv_dfh = new_dfh;
8102 sfh4_rele(&old_dfh);
8103 }
8104
8105 /*
8106 * nfs4rename_persistent does the otw portion of renaming in NFS Version 4,
8107 * when it is known that the filehandle is persistent through rename.
8108 *
8109 * Rename requires that the current fh be the target directory and the
8110 * saved fh be the source directory. After the operation, the current fh
8111 * is unchanged.
8112 * The compound op structure for persistent fh rename is:
8113 * PUTFH(sourcdir), SAVEFH, PUTFH(targetdir), RENAME
8114 * Rather than bother with the directory postop args, we'll simply
8115 * update that a change occurred in the cache, so no post-op getattrs.
8116 */
8117 static int
nfs4rename_persistent_fh(vnode_t * odvp,char * onm,vnode_t * renvp,vnode_t * ndvp,char * nnm,cred_t * cr,nfsstat4 * statp)8118 nfs4rename_persistent_fh(vnode_t *odvp, char *onm, vnode_t *renvp,
8119 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp)
8120 {
8121 COMPOUND4args_clnt args;
8122 COMPOUND4res_clnt res, *resp = NULL;
8123 nfs_argop4 *argop;
8124 nfs_resop4 *resop;
8125 int doqueue, argoplist_size;
8126 mntinfo4_t *mi;
8127 rnode4_t *odrp = VTOR4(odvp);
8128 rnode4_t *ndrp = VTOR4(ndvp);
8129 RENAME4res *rn_res;
8130 bool_t needrecov;
8131 nfs4_recov_state_t recov_state;
8132 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
8133 dirattr_info_t dinfo, *dinfop;
8134
8135 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone);
8136
8137 recov_state.rs_flags = 0;
8138 recov_state.rs_num_retry_despite_err = 0;
8139
8140 /*
8141 * Rename ops: putfh sdir; savefh; putfh tdir; rename; getattr tdir
8142 *
8143 * If source/target are different dirs, then append putfh(src); getattr
8144 */
8145 args.array_len = (odvp == ndvp) ? 5 : 7;
8146 argoplist_size = args.array_len * sizeof (nfs_argop4);
8147 args.array = argop = kmem_alloc(argoplist_size, KM_SLEEP);
8148
8149 recov_retry:
8150 *statp = NFS4_OK;
8151
8152 /* No need to Lookup the file, persistent fh */
8153 args.ctag = TAG_RENAME;
8154
8155 mi = VTOMI4(odvp);
8156 e.error = nfs4_start_op(mi, odvp, ndvp, &recov_state);
8157 if (e.error) {
8158 kmem_free(argop, argoplist_size);
8159 return (e.error);
8160 }
8161
8162 /* 0: putfh source directory */
8163 argop[0].argop = OP_CPUTFH;
8164 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh;
8165
8166 /* 1: Save source fh to free up current for target */
8167 argop[1].argop = OP_SAVEFH;
8168
8169 /* 2: putfh targetdir */
8170 argop[2].argop = OP_CPUTFH;
8171 argop[2].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh;
8172
8173 /* 3: current_fh is targetdir, saved_fh is sourcedir */
8174 argop[3].argop = OP_CRENAME;
8175 argop[3].nfs_argop4_u.opcrename.coldname = onm;
8176 argop[3].nfs_argop4_u.opcrename.cnewname = nnm;
8177
8178 /* 4: getattr (targetdir) */
8179 argop[4].argop = OP_GETATTR;
8180 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
8181 argop[4].nfs_argop4_u.opgetattr.mi = mi;
8182
8183 if (ndvp != odvp) {
8184
8185 /* 5: putfh (sourcedir) */
8186 argop[5].argop = OP_CPUTFH;
8187 argop[5].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh;
8188
8189 /* 6: getattr (sourcedir) */
8190 argop[6].argop = OP_GETATTR;
8191 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
8192 argop[6].nfs_argop4_u.opgetattr.mi = mi;
8193 }
8194
8195 dnlc_remove(odvp, onm);
8196 dnlc_remove(ndvp, nnm);
8197
8198 doqueue = 1;
8199 dinfo.di_time_call = gethrtime();
8200 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
8201
8202 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
8203 if (e.error) {
8204 PURGE_ATTRCACHE4(odvp);
8205 PURGE_ATTRCACHE4(ndvp);
8206 } else {
8207 *statp = res.status;
8208 }
8209
8210 if (needrecov) {
8211 if (nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL,
8212 OP_RENAME, NULL, NULL, NULL) == FALSE) {
8213 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov);
8214 if (!e.error)
8215 (void) xdr_free(xdr_COMPOUND4res_clnt,
8216 (caddr_t)&res);
8217 goto recov_retry;
8218 }
8219 }
8220
8221 if (!e.error) {
8222 resp = &res;
8223 /*
8224 * as long as OP_RENAME
8225 */
8226 if (res.status != NFS4_OK && res.array_len <= 4) {
8227 e.error = geterrno4(res.status);
8228 PURGE_ATTRCACHE4(odvp);
8229 PURGE_ATTRCACHE4(ndvp);
8230 /*
8231 * System V defines rename to return EEXIST, not
8232 * ENOTEMPTY if the target directory is not empty.
8233 * Over the wire, the error is NFSERR_ENOTEMPTY
8234 * which geterrno4 maps to ENOTEMPTY.
8235 */
8236 if (e.error == ENOTEMPTY)
8237 e.error = EEXIST;
8238 } else {
8239
8240 resop = &res.array[3]; /* rename res */
8241 rn_res = &resop->nfs_resop4_u.oprename;
8242
8243 if (res.status == NFS4_OK) {
8244 /*
8245 * Update target attribute, readdir and dnlc
8246 * caches.
8247 */
8248 dinfo.di_garp =
8249 &res.array[4].nfs_resop4_u.opgetattr.ga_res;
8250 dinfo.di_cred = cr;
8251 dinfop = &dinfo;
8252 } else
8253 dinfop = NULL;
8254
8255 nfs4_update_dircaches(&rn_res->target_cinfo,
8256 ndvp, NULL, NULL, dinfop);
8257
8258 /*
8259 * Update source attribute, readdir and dnlc caches
8260 *
8261 */
8262 if (ndvp != odvp) {
8263 update_parentdir_sfh(renvp, ndvp);
8264
8265 if (dinfop)
8266 dinfo.di_garp =
8267 &(res.array[6].nfs_resop4_u.
8268 opgetattr.ga_res);
8269
8270 nfs4_update_dircaches(&rn_res->source_cinfo,
8271 odvp, NULL, NULL, dinfop);
8272 }
8273
8274 fn_move(VTOSV(renvp)->sv_name, VTOSV(ndvp)->sv_name,
8275 nnm);
8276 }
8277 }
8278
8279 if (resp)
8280 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
8281 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov);
8282 kmem_free(argop, argoplist_size);
8283
8284 return (e.error);
8285 }
8286
8287 /*
8288 * nfs4rename_volatile_fh does the otw part of renaming in NFS Version 4, when
8289 * it is possible for the filehandle to change due to the rename.
8290 *
8291 * The compound req in this case includes a post-rename lookup and getattr
8292 * to ensure that we have the correct fh and attributes for the object.
8293 *
8294 * Rename requires that the current fh be the target directory and the
8295 * saved fh be the source directory. After the operation, the current fh
8296 * is unchanged.
8297 *
8298 * We need the new filehandle (hence a LOOKUP and GETFH) so that we can
8299 * update the filehandle for the renamed object. We also get the old
8300 * filehandle for historical reasons; this should be taken out sometime.
8301 * This results in a rather cumbersome compound...
8302 *
8303 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old),
8304 * PUTFH(targetdir), RENAME, LOOKUP(trgt), GETFH(new), GETATTR
8305 *
8306 */
8307 static int
nfs4rename_volatile_fh(vnode_t * odvp,char * onm,vnode_t * ovp,vnode_t * ndvp,char * nnm,cred_t * cr,nfsstat4 * statp)8308 nfs4rename_volatile_fh(vnode_t *odvp, char *onm, vnode_t *ovp,
8309 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp)
8310 {
8311 COMPOUND4args_clnt args;
8312 COMPOUND4res_clnt res, *resp = NULL;
8313 int argoplist_size;
8314 nfs_argop4 *argop;
8315 nfs_resop4 *resop;
8316 int doqueue;
8317 mntinfo4_t *mi;
8318 rnode4_t *odrp = VTOR4(odvp); /* old directory */
8319 rnode4_t *ndrp = VTOR4(ndvp); /* new directory */
8320 rnode4_t *orp = VTOR4(ovp); /* object being renamed */
8321 RENAME4res *rn_res;
8322 GETFH4res *ngf_res;
8323 bool_t needrecov;
8324 nfs4_recov_state_t recov_state;
8325 hrtime_t t;
8326 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
8327 dirattr_info_t dinfo, *dinfop = &dinfo;
8328
8329 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone);
8330
8331 recov_state.rs_flags = 0;
8332 recov_state.rs_num_retry_despite_err = 0;
8333
8334 recov_retry:
8335 *statp = NFS4_OK;
8336
8337 /*
8338 * There is a window between the RPC and updating the path and
8339 * filehandle stored in the rnode. Lock out the FHEXPIRED recovery
8340 * code, so that it doesn't try to use the old path during that
8341 * window.
8342 */
8343 mutex_enter(&orp->r_statelock);
8344 while (orp->r_flags & R4RECEXPFH) {
8345 klwp_t *lwp = ttolwp(curthread);
8346
8347 if (lwp != NULL)
8348 lwp->lwp_nostop++;
8349 if (cv_wait_sig(&orp->r_cv, &orp->r_statelock) == 0) {
8350 mutex_exit(&orp->r_statelock);
8351 if (lwp != NULL)
8352 lwp->lwp_nostop--;
8353 return (EINTR);
8354 }
8355 if (lwp != NULL)
8356 lwp->lwp_nostop--;
8357 }
8358 orp->r_flags |= R4RECEXPFH;
8359 mutex_exit(&orp->r_statelock);
8360
8361 mi = VTOMI4(odvp);
8362
8363 args.ctag = TAG_RENAME_VFH;
8364 args.array_len = (odvp == ndvp) ? 10 : 12;
8365 argoplist_size = args.array_len * sizeof (nfs_argop4);
8366 argop = kmem_alloc(argoplist_size, KM_SLEEP);
8367
8368 /*
8369 * Rename ops:
8370 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old),
8371 * PUTFH(targetdir), RENAME, GETATTR(targetdir)
8372 * LOOKUP(trgt), GETFH(new), GETATTR,
8373 *
8374 * if (odvp != ndvp)
8375 * add putfh(sourcedir), getattr(sourcedir) }
8376 */
8377 args.array = argop;
8378
8379 e.error = nfs4_start_fop(mi, odvp, ndvp, OH_VFH_RENAME,
8380 &recov_state, NULL);
8381 if (e.error) {
8382 kmem_free(argop, argoplist_size);
8383 mutex_enter(&orp->r_statelock);
8384 orp->r_flags &= ~R4RECEXPFH;
8385 cv_broadcast(&orp->r_cv);
8386 mutex_exit(&orp->r_statelock);
8387 return (e.error);
8388 }
8389
8390 /* 0: putfh source directory */
8391 argop[0].argop = OP_CPUTFH;
8392 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh;
8393
8394 /* 1: Save source fh to free up current for target */
8395 argop[1].argop = OP_SAVEFH;
8396
8397 /* 2: Lookup pre-rename fh of renamed object */
8398 argop[2].argop = OP_CLOOKUP;
8399 argop[2].nfs_argop4_u.opclookup.cname = onm;
8400
8401 /* 3: getfh fh of renamed object (before rename) */
8402 argop[3].argop = OP_GETFH;
8403
8404 /* 4: putfh targetdir */
8405 argop[4].argop = OP_CPUTFH;
8406 argop[4].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh;
8407
8408 /* 5: current_fh is targetdir, saved_fh is sourcedir */
8409 argop[5].argop = OP_CRENAME;
8410 argop[5].nfs_argop4_u.opcrename.coldname = onm;
8411 argop[5].nfs_argop4_u.opcrename.cnewname = nnm;
8412
8413 /* 6: getattr of target dir (post op attrs) */
8414 argop[6].argop = OP_GETATTR;
8415 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
8416 argop[6].nfs_argop4_u.opgetattr.mi = mi;
8417
8418 /* 7: Lookup post-rename fh of renamed object */
8419 argop[7].argop = OP_CLOOKUP;
8420 argop[7].nfs_argop4_u.opclookup.cname = nnm;
8421
8422 /* 8: getfh fh of renamed object (after rename) */
8423 argop[8].argop = OP_GETFH;
8424
8425 /* 9: getattr of renamed object */
8426 argop[9].argop = OP_GETATTR;
8427 argop[9].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
8428 argop[9].nfs_argop4_u.opgetattr.mi = mi;
8429
8430 /*
8431 * If source/target dirs are different, then get new post-op
8432 * attrs for source dir also.
8433 */
8434 if (ndvp != odvp) {
8435 /* 10: putfh (sourcedir) */
8436 argop[10].argop = OP_CPUTFH;
8437 argop[10].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh;
8438
8439 /* 11: getattr (sourcedir) */
8440 argop[11].argop = OP_GETATTR;
8441 argop[11].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
8442 argop[11].nfs_argop4_u.opgetattr.mi = mi;
8443 }
8444
8445 dnlc_remove(odvp, onm);
8446 dnlc_remove(ndvp, nnm);
8447
8448 doqueue = 1;
8449 t = gethrtime();
8450 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
8451
8452 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
8453 if (e.error) {
8454 PURGE_ATTRCACHE4(odvp);
8455 PURGE_ATTRCACHE4(ndvp);
8456 if (!needrecov) {
8457 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME,
8458 &recov_state, needrecov);
8459 goto out;
8460 }
8461 } else {
8462 *statp = res.status;
8463 }
8464
8465 if (needrecov) {
8466 bool_t abort;
8467
8468 abort = nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL,
8469 OP_RENAME, NULL, NULL, NULL);
8470 if (abort == FALSE) {
8471 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME,
8472 &recov_state, needrecov);
8473 kmem_free(argop, argoplist_size);
8474 if (!e.error)
8475 (void) xdr_free(xdr_COMPOUND4res_clnt,
8476 (caddr_t)&res);
8477 mutex_enter(&orp->r_statelock);
8478 orp->r_flags &= ~R4RECEXPFH;
8479 cv_broadcast(&orp->r_cv);
8480 mutex_exit(&orp->r_statelock);
8481 goto recov_retry;
8482 } else {
8483 if (e.error != 0) {
8484 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME,
8485 &recov_state, needrecov);
8486 goto out;
8487 }
8488 /* fall through for res.status case */
8489 }
8490 }
8491
8492 resp = &res;
8493 /*
8494 * If OP_RENAME (or any prev op) failed, then return an error.
8495 * OP_RENAME is index 5, so if array len <= 6 we return an error.
8496 */
8497 if ((res.status != NFS4_OK) && (res.array_len <= 6)) {
8498 /*
8499 * Error in an op other than last Getattr
8500 */
8501 e.error = geterrno4(res.status);
8502 PURGE_ATTRCACHE4(odvp);
8503 PURGE_ATTRCACHE4(ndvp);
8504 /*
8505 * System V defines rename to return EEXIST, not
8506 * ENOTEMPTY if the target directory is not empty.
8507 * Over the wire, the error is NFSERR_ENOTEMPTY
8508 * which geterrno4 maps to ENOTEMPTY.
8509 */
8510 if (e.error == ENOTEMPTY)
8511 e.error = EEXIST;
8512 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state,
8513 needrecov);
8514 goto out;
8515 }
8516
8517 /* rename results */
8518 rn_res = &res.array[5].nfs_resop4_u.oprename;
8519
8520 if (res.status == NFS4_OK) {
8521 /* Update target attribute, readdir and dnlc caches */
8522 dinfo.di_garp =
8523 &res.array[6].nfs_resop4_u.opgetattr.ga_res;
8524 dinfo.di_cred = cr;
8525 dinfo.di_time_call = t;
8526 } else
8527 dinfop = NULL;
8528
8529 /* Update source cache attribute, readdir and dnlc caches */
8530 nfs4_update_dircaches(&rn_res->target_cinfo, ndvp, NULL, NULL, dinfop);
8531
8532 /* Update source cache attribute, readdir and dnlc caches */
8533 if (ndvp != odvp) {
8534 update_parentdir_sfh(ovp, ndvp);
8535
8536 /*
8537 * If dinfop is non-NULL, then compound succeded, so
8538 * set di_garp to attrs for source dir. dinfop is only
8539 * set to NULL when compound fails.
8540 */
8541 if (dinfop)
8542 dinfo.di_garp =
8543 &res.array[11].nfs_resop4_u.opgetattr.ga_res;
8544 nfs4_update_dircaches(&rn_res->source_cinfo, odvp, NULL, NULL,
8545 dinfop);
8546 }
8547
8548 /*
8549 * Update the rnode with the new component name and args,
8550 * and if the file handle changed, also update it with the new fh.
8551 * This is only necessary if the target object has an rnode
8552 * entry and there is no need to create one for it.
8553 */
8554 resop = &res.array[8]; /* getfh new res */
8555 ngf_res = &resop->nfs_resop4_u.opgetfh;
8556
8557 /*
8558 * Update the path and filehandle for the renamed object.
8559 */
8560 nfs4rename_update(ovp, ndvp, &ngf_res->object, nnm);
8561
8562 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, needrecov);
8563
8564 if (res.status == NFS4_OK) {
8565 resop++; /* getattr res */
8566 e.error = nfs4_update_attrcache(res.status,
8567 &resop->nfs_resop4_u.opgetattr.ga_res,
8568 t, ovp, cr);
8569 }
8570
8571 out:
8572 kmem_free(argop, argoplist_size);
8573 if (resp)
8574 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
8575 mutex_enter(&orp->r_statelock);
8576 orp->r_flags &= ~R4RECEXPFH;
8577 cv_broadcast(&orp->r_cv);
8578 mutex_exit(&orp->r_statelock);
8579
8580 return (e.error);
8581 }
8582
8583 /* ARGSUSED */
8584 static int
nfs4_mkdir(vnode_t * dvp,char * nm,struct vattr * va,vnode_t ** vpp,cred_t * cr,caller_context_t * ct,int flags,vsecattr_t * vsecp)8585 nfs4_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr,
8586 caller_context_t *ct, int flags, vsecattr_t *vsecp)
8587 {
8588 int error;
8589 vnode_t *vp;
8590
8591 if (nfs_zone() != VTOMI4(dvp)->mi_zone)
8592 return (EPERM);
8593 /*
8594 * As ".." has special meaning and rather than send a mkdir
8595 * over the wire to just let the server freak out, we just
8596 * short circuit it here and return EEXIST
8597 */
8598 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0')
8599 return (EEXIST);
8600
8601 /*
8602 * Decision to get the right gid and setgid bit of the
8603 * new directory is now made in call_nfs4_create_req.
8604 */
8605 va->va_mask |= AT_MODE;
8606 error = call_nfs4_create_req(dvp, nm, NULL, va, &vp, cr, NF4DIR);
8607 if (error)
8608 return (error);
8609
8610 *vpp = vp;
8611 return (0);
8612 }
8613
8614
8615 /*
8616 * rmdir is using the same remove v4 op as does remove.
8617 * Remove requires that the current fh be the target directory.
8618 * After the operation, the current fh is unchanged.
8619 * The compound op structure is:
8620 * PUTFH(targetdir), REMOVE
8621 */
8622 /*ARGSUSED4*/
8623 static int
nfs4_rmdir(vnode_t * dvp,char * nm,vnode_t * cdir,cred_t * cr,caller_context_t * ct,int flags)8624 nfs4_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr,
8625 caller_context_t *ct, int flags)
8626 {
8627 int need_end_op = FALSE;
8628 COMPOUND4args_clnt args;
8629 COMPOUND4res_clnt res, *resp = NULL;
8630 REMOVE4res *rm_res;
8631 nfs_argop4 argop[3];
8632 nfs_resop4 *resop;
8633 vnode_t *vp;
8634 int doqueue;
8635 mntinfo4_t *mi;
8636 rnode4_t *drp;
8637 bool_t needrecov = FALSE;
8638 nfs4_recov_state_t recov_state;
8639 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
8640 dirattr_info_t dinfo, *dinfop;
8641
8642 if (nfs_zone() != VTOMI4(dvp)->mi_zone)
8643 return (EPERM);
8644 /*
8645 * As ".." has special meaning and rather than send a rmdir
8646 * over the wire to just let the server freak out, we just
8647 * short circuit it here and return EEXIST
8648 */
8649 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0')
8650 return (EEXIST);
8651
8652 drp = VTOR4(dvp);
8653 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp)))
8654 return (EINTR);
8655
8656 /*
8657 * Attempt to prevent a rmdir(".") from succeeding.
8658 */
8659 e.error = nfs4lookup(dvp, nm, &vp, cr, 0);
8660 if (e.error) {
8661 nfs_rw_exit(&drp->r_rwlock);
8662 return (e.error);
8663 }
8664 if (vp == cdir) {
8665 VN_RELE(vp);
8666 nfs_rw_exit(&drp->r_rwlock);
8667 return (EINVAL);
8668 }
8669
8670 /*
8671 * Since nfsv4 remove op works on both files and directories,
8672 * check that the removed object is indeed a directory.
8673 */
8674 if (vp->v_type != VDIR) {
8675 VN_RELE(vp);
8676 nfs_rw_exit(&drp->r_rwlock);
8677 return (ENOTDIR);
8678 }
8679
8680 /*
8681 * First just remove the entry from the name cache, as it
8682 * is most likely an entry for this vp.
8683 */
8684 dnlc_remove(dvp, nm);
8685
8686 /*
8687 * If there vnode reference count is greater than one, then
8688 * there may be additional references in the DNLC which will
8689 * need to be purged. First, trying removing the entry for
8690 * the parent directory and see if that removes the additional
8691 * reference(s). If that doesn't do it, then use dnlc_purge_vp
8692 * to completely remove any references to the directory which
8693 * might still exist in the DNLC.
8694 */
8695 if (vp->v_count > 1) {
8696 dnlc_remove(vp, "..");
8697 if (vp->v_count > 1)
8698 dnlc_purge_vp(vp);
8699 }
8700
8701 mi = VTOMI4(dvp);
8702 recov_state.rs_flags = 0;
8703 recov_state.rs_num_retry_despite_err = 0;
8704
8705 recov_retry:
8706 args.ctag = TAG_RMDIR;
8707
8708 /*
8709 * Rmdir ops: putfh dir; remove
8710 */
8711 args.array_len = 3;
8712 args.array = argop;
8713
8714 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state);
8715 if (e.error) {
8716 nfs_rw_exit(&drp->r_rwlock);
8717 return (e.error);
8718 }
8719 need_end_op = TRUE;
8720
8721 /* putfh directory */
8722 argop[0].argop = OP_CPUTFH;
8723 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
8724
8725 /* remove */
8726 argop[1].argop = OP_CREMOVE;
8727 argop[1].nfs_argop4_u.opcremove.ctarget = nm;
8728
8729 /* getattr (postop attrs for dir that contained removed dir) */
8730 argop[2].argop = OP_GETATTR;
8731 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
8732 argop[2].nfs_argop4_u.opgetattr.mi = mi;
8733
8734 dinfo.di_time_call = gethrtime();
8735 doqueue = 1;
8736 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
8737
8738 PURGE_ATTRCACHE4(vp);
8739
8740 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
8741 if (e.error) {
8742 PURGE_ATTRCACHE4(dvp);
8743 }
8744
8745 if (needrecov) {
8746 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, NULL, NULL,
8747 NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) {
8748 if (!e.error)
8749 (void) xdr_free(xdr_COMPOUND4res_clnt,
8750 (caddr_t)&res);
8751
8752 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state,
8753 needrecov);
8754 need_end_op = FALSE;
8755 goto recov_retry;
8756 }
8757 }
8758
8759 if (!e.error) {
8760 resp = &res;
8761
8762 /*
8763 * Only return error if first 2 ops (OP_REMOVE or earlier)
8764 * failed.
8765 */
8766 if (res.status != NFS4_OK && res.array_len <= 2) {
8767 e.error = geterrno4(res.status);
8768 PURGE_ATTRCACHE4(dvp);
8769 nfs4_end_op(VTOMI4(dvp), dvp, NULL,
8770 &recov_state, needrecov);
8771 need_end_op = FALSE;
8772 nfs4_purge_stale_fh(e.error, dvp, cr);
8773 /*
8774 * System V defines rmdir to return EEXIST, not
8775 * ENOTEMPTY if the directory is not empty. Over
8776 * the wire, the error is NFSERR_ENOTEMPTY which
8777 * geterrno4 maps to ENOTEMPTY.
8778 */
8779 if (e.error == ENOTEMPTY)
8780 e.error = EEXIST;
8781 } else {
8782 resop = &res.array[1]; /* remove res */
8783 rm_res = &resop->nfs_resop4_u.opremove;
8784
8785 if (res.status == NFS4_OK) {
8786 resop = &res.array[2]; /* dir attrs */
8787 dinfo.di_garp =
8788 &resop->nfs_resop4_u.opgetattr.ga_res;
8789 dinfo.di_cred = cr;
8790 dinfop = &dinfo;
8791 } else
8792 dinfop = NULL;
8793
8794 /* Update dir attribute, readdir and dnlc caches */
8795 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL,
8796 dinfop);
8797
8798 /* destroy rddir cache for dir that was removed */
8799 if (VTOR4(vp)->r_dir != NULL)
8800 nfs4_purge_rddir_cache(vp);
8801 }
8802 }
8803
8804 if (need_end_op)
8805 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
8806
8807 nfs_rw_exit(&drp->r_rwlock);
8808
8809 if (resp)
8810 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
8811
8812 if (e.error == 0) {
8813 vnode_t *tvp;
8814 rnode4_t *trp;
8815 trp = VTOR4(vp);
8816 tvp = vp;
8817 if (IS_SHADOW(vp, trp))
8818 tvp = RTOV4(trp);
8819 vnevent_rmdir(tvp, dvp, nm, ct);
8820 }
8821
8822 VN_RELE(vp);
8823
8824 return (e.error);
8825 }
8826
8827 /* ARGSUSED */
8828 static int
nfs4_symlink(vnode_t * dvp,char * lnm,struct vattr * tva,char * tnm,cred_t * cr,caller_context_t * ct,int flags)8829 nfs4_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr,
8830 caller_context_t *ct, int flags)
8831 {
8832 int error;
8833 vnode_t *vp;
8834 rnode4_t *rp;
8835 char *contents;
8836 mntinfo4_t *mi = VTOMI4(dvp);
8837
8838 if (nfs_zone() != mi->mi_zone)
8839 return (EPERM);
8840 if (!(mi->mi_flags & MI4_SYMLINK))
8841 return (EOPNOTSUPP);
8842
8843 error = call_nfs4_create_req(dvp, lnm, tnm, tva, &vp, cr, NF4LNK);
8844 if (error)
8845 return (error);
8846
8847 ASSERT(nfs4_consistent_type(vp));
8848 rp = VTOR4(vp);
8849 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) {
8850
8851 contents = kmem_alloc(MAXPATHLEN, KM_SLEEP);
8852
8853 if (contents != NULL) {
8854 mutex_enter(&rp->r_statelock);
8855 if (rp->r_symlink.contents == NULL) {
8856 rp->r_symlink.len = strlen(tnm);
8857 bcopy(tnm, contents, rp->r_symlink.len);
8858 rp->r_symlink.contents = contents;
8859 rp->r_symlink.size = MAXPATHLEN;
8860 mutex_exit(&rp->r_statelock);
8861 } else {
8862 mutex_exit(&rp->r_statelock);
8863 kmem_free((void *)contents, MAXPATHLEN);
8864 }
8865 }
8866 }
8867 VN_RELE(vp);
8868
8869 return (error);
8870 }
8871
8872
8873 /*
8874 * Read directory entries.
8875 * There are some weird things to look out for here. The uio_loffset
8876 * field is either 0 or it is the offset returned from a previous
8877 * readdir. It is an opaque value used by the server to find the
8878 * correct directory block to read. The count field is the number
8879 * of blocks to read on the server. This is advisory only, the server
8880 * may return only one block's worth of entries. Entries may be compressed
8881 * on the server.
8882 */
8883 /* ARGSUSED */
8884 static int
nfs4_readdir(vnode_t * vp,struct uio * uiop,cred_t * cr,int * eofp,caller_context_t * ct,int flags)8885 nfs4_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp,
8886 caller_context_t *ct, int flags)
8887 {
8888 int error;
8889 uint_t count;
8890 rnode4_t *rp;
8891 rddir4_cache *rdc;
8892 rddir4_cache *rrdc;
8893
8894 if (nfs_zone() != VTOMI4(vp)->mi_zone)
8895 return (EIO);
8896 rp = VTOR4(vp);
8897
8898 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER));
8899
8900 /*
8901 * Make sure that the directory cache is valid.
8902 */
8903 if (rp->r_dir != NULL) {
8904 if (nfs_disable_rddir_cache != 0) {
8905 /*
8906 * Setting nfs_disable_rddir_cache in /etc/system
8907 * allows interoperability with servers that do not
8908 * properly update the attributes of directories.
8909 * Any cached information gets purged before an
8910 * access is made to it.
8911 */
8912 nfs4_purge_rddir_cache(vp);
8913 }
8914
8915 error = nfs4_validate_caches(vp, cr);
8916 if (error)
8917 return (error);
8918 }
8919
8920 count = MIN(uiop->uio_iov->iov_len, MAXBSIZE);
8921
8922 /*
8923 * Short circuit last readdir which always returns 0 bytes.
8924 * This can be done after the directory has been read through
8925 * completely at least once. This will set r_direof which
8926 * can be used to find the value of the last cookie.
8927 */
8928 mutex_enter(&rp->r_statelock);
8929 if (rp->r_direof != NULL &&
8930 uiop->uio_loffset == rp->r_direof->nfs4_ncookie) {
8931 mutex_exit(&rp->r_statelock);
8932 #ifdef DEBUG
8933 nfs4_readdir_cache_shorts++;
8934 #endif
8935 if (eofp)
8936 *eofp = 1;
8937 return (0);
8938 }
8939
8940 /*
8941 * Look for a cache entry. Cache entries are identified
8942 * by the NFS cookie value and the byte count requested.
8943 */
8944 rdc = rddir4_cache_lookup(rp, uiop->uio_loffset, count);
8945
8946 /*
8947 * If rdc is NULL then the lookup resulted in an unrecoverable error.
8948 */
8949 if (rdc == NULL) {
8950 mutex_exit(&rp->r_statelock);
8951 return (EINTR);
8952 }
8953
8954 /*
8955 * Check to see if we need to fill this entry in.
8956 */
8957 if (rdc->flags & RDDIRREQ) {
8958 rdc->flags &= ~RDDIRREQ;
8959 rdc->flags |= RDDIR;
8960 mutex_exit(&rp->r_statelock);
8961
8962 /*
8963 * Do the readdir.
8964 */
8965 nfs4readdir(vp, rdc, cr);
8966
8967 /*
8968 * Reacquire the lock, so that we can continue
8969 */
8970 mutex_enter(&rp->r_statelock);
8971 /*
8972 * The entry is now complete
8973 */
8974 rdc->flags &= ~RDDIR;
8975 }
8976
8977 ASSERT(!(rdc->flags & RDDIR));
8978
8979 /*
8980 * If an error occurred while attempting
8981 * to fill the cache entry, mark the entry invalid and
8982 * just return the error.
8983 */
8984 if (rdc->error) {
8985 error = rdc->error;
8986 rdc->flags |= RDDIRREQ;
8987 rddir4_cache_rele(rp, rdc);
8988 mutex_exit(&rp->r_statelock);
8989 return (error);
8990 }
8991
8992 /*
8993 * The cache entry is complete and good,
8994 * copyout the dirent structs to the calling
8995 * thread.
8996 */
8997 error = uiomove(rdc->entries, rdc->actlen, UIO_READ, uiop);
8998
8999 /*
9000 * If no error occurred during the copyout,
9001 * update the offset in the uio struct to
9002 * contain the value of the next NFS 4 cookie
9003 * and set the eof value appropriately.
9004 */
9005 if (!error) {
9006 uiop->uio_loffset = rdc->nfs4_ncookie;
9007 if (eofp)
9008 *eofp = rdc->eof;
9009 }
9010
9011 /*
9012 * Decide whether to do readahead. Don't if we
9013 * have already read to the end of directory.
9014 */
9015 if (rdc->eof) {
9016 /*
9017 * Make the entry the direof only if it is cached
9018 */
9019 if (rdc->flags & RDDIRCACHED)
9020 rp->r_direof = rdc;
9021 rddir4_cache_rele(rp, rdc);
9022 mutex_exit(&rp->r_statelock);
9023 return (error);
9024 }
9025
9026 /* Determine if a readdir readahead should be done */
9027 if (!(rp->r_flags & R4LOOKUP)) {
9028 rddir4_cache_rele(rp, rdc);
9029 mutex_exit(&rp->r_statelock);
9030 return (error);
9031 }
9032
9033 /*
9034 * Now look for a readahead entry.
9035 *
9036 * Check to see whether we found an entry for the readahead.
9037 * If so, we don't need to do anything further, so free the new
9038 * entry if one was allocated. Otherwise, allocate a new entry, add
9039 * it to the cache, and then initiate an asynchronous readdir
9040 * operation to fill it.
9041 */
9042 rrdc = rddir4_cache_lookup(rp, rdc->nfs4_ncookie, count);
9043
9044 /*
9045 * A readdir cache entry could not be obtained for the readahead. In
9046 * this case we skip the readahead and return.
9047 */
9048 if (rrdc == NULL) {
9049 rddir4_cache_rele(rp, rdc);
9050 mutex_exit(&rp->r_statelock);
9051 return (error);
9052 }
9053
9054 /*
9055 * Check to see if we need to fill this entry in.
9056 */
9057 if (rrdc->flags & RDDIRREQ) {
9058 rrdc->flags &= ~RDDIRREQ;
9059 rrdc->flags |= RDDIR;
9060 rddir4_cache_rele(rp, rdc);
9061 mutex_exit(&rp->r_statelock);
9062 #ifdef DEBUG
9063 nfs4_readdir_readahead++;
9064 #endif
9065 /*
9066 * Do the readdir.
9067 */
9068 nfs4_async_readdir(vp, rrdc, cr, do_nfs4readdir);
9069 return (error);
9070 }
9071
9072 rddir4_cache_rele(rp, rrdc);
9073 rddir4_cache_rele(rp, rdc);
9074 mutex_exit(&rp->r_statelock);
9075 return (error);
9076 }
9077
9078 static int
do_nfs4readdir(vnode_t * vp,rddir4_cache * rdc,cred_t * cr)9079 do_nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr)
9080 {
9081 int error;
9082 rnode4_t *rp;
9083
9084 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
9085
9086 rp = VTOR4(vp);
9087
9088 /*
9089 * Obtain the readdir results for the caller.
9090 */
9091 nfs4readdir(vp, rdc, cr);
9092
9093 mutex_enter(&rp->r_statelock);
9094 /*
9095 * The entry is now complete
9096 */
9097 rdc->flags &= ~RDDIR;
9098
9099 error = rdc->error;
9100 if (error)
9101 rdc->flags |= RDDIRREQ;
9102 rddir4_cache_rele(rp, rdc);
9103 mutex_exit(&rp->r_statelock);
9104
9105 return (error);
9106 }
9107
9108 /*
9109 * Read directory entries.
9110 * There are some weird things to look out for here. The uio_loffset
9111 * field is either 0 or it is the offset returned from a previous
9112 * readdir. It is an opaque value used by the server to find the
9113 * correct directory block to read. The count field is the number
9114 * of blocks to read on the server. This is advisory only, the server
9115 * may return only one block's worth of entries. Entries may be compressed
9116 * on the server.
9117 *
9118 * Generates the following compound request:
9119 * 1. If readdir offset is zero and no dnlc entry for parent exists,
9120 * must include a Lookupp as well. In this case, send:
9121 * { Putfh <fh>; Readdir; Lookupp; Getfh; Getattr }
9122 * 2. Otherwise just do: { Putfh <fh>; Readdir }
9123 *
9124 * Get complete attributes and filehandles for entries if this is the
9125 * first read of the directory. Otherwise, just get fileid's.
9126 */
9127 static void
nfs4readdir(vnode_t * vp,rddir4_cache * rdc,cred_t * cr)9128 nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr)
9129 {
9130 COMPOUND4args_clnt args;
9131 COMPOUND4res_clnt res;
9132 READDIR4args *rargs;
9133 READDIR4res_clnt *rd_res;
9134 bitmap4 rd_bitsval;
9135 nfs_argop4 argop[5];
9136 nfs_resop4 *resop;
9137 rnode4_t *rp = VTOR4(vp);
9138 mntinfo4_t *mi = VTOMI4(vp);
9139 int doqueue;
9140 u_longlong_t nodeid, pnodeid; /* id's of dir and its parents */
9141 vnode_t *dvp;
9142 nfs_cookie4 cookie = (nfs_cookie4)rdc->nfs4_cookie;
9143 int num_ops, res_opcnt;
9144 bool_t needrecov = FALSE;
9145 nfs4_recov_state_t recov_state;
9146 hrtime_t t;
9147 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
9148
9149 ASSERT(nfs_zone() == mi->mi_zone);
9150 ASSERT(rdc->flags & RDDIR);
9151 ASSERT(rdc->entries == NULL);
9152
9153 /*
9154 * If rp were a stub, it should have triggered and caused
9155 * a mount for us to get this far.
9156 */
9157 ASSERT(!RP_ISSTUB(rp));
9158
9159 num_ops = 2;
9160 if (cookie == (nfs_cookie4)0 || cookie == (nfs_cookie4)1) {
9161 /*
9162 * Since nfsv4 readdir may not return entries for "." and "..",
9163 * the client must recreate them:
9164 * To find the correct nodeid, do the following:
9165 * For current node, get nodeid from dnlc.
9166 * - if current node is rootvp, set pnodeid to nodeid.
9167 * - else if parent is in the dnlc, get its nodeid from there.
9168 * - else add LOOKUPP+GETATTR to compound.
9169 */
9170 nodeid = rp->r_attr.va_nodeid;
9171 if (vp->v_flag & VROOT) {
9172 pnodeid = nodeid; /* root of mount point */
9173 } else {
9174 dvp = dnlc_lookup(vp, "..");
9175 if (dvp != NULL && dvp != DNLC_NO_VNODE) {
9176 /* parent in dnlc cache - no need for otw */
9177 pnodeid = VTOR4(dvp)->r_attr.va_nodeid;
9178 } else {
9179 /*
9180 * parent not in dnlc cache,
9181 * do lookupp to get its id
9182 */
9183 num_ops = 5;
9184 pnodeid = 0; /* set later by getattr parent */
9185 }
9186 if (dvp)
9187 VN_RELE(dvp);
9188 }
9189 }
9190 recov_state.rs_flags = 0;
9191 recov_state.rs_num_retry_despite_err = 0;
9192
9193 /* Save the original mount point security flavor */
9194 (void) save_mnt_secinfo(mi->mi_curr_serv);
9195
9196 recov_retry:
9197 args.ctag = TAG_READDIR;
9198
9199 args.array = argop;
9200 args.array_len = num_ops;
9201
9202 if (e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_READDIR,
9203 &recov_state, NULL)) {
9204 /*
9205 * If readdir a node that is a stub for a crossed mount point,
9206 * keep the original secinfo flavor for the current file
9207 * system, not the crossed one.
9208 */
9209 (void) check_mnt_secinfo(mi->mi_curr_serv, vp);
9210 rdc->error = e.error;
9211 return;
9212 }
9213
9214 /*
9215 * Determine which attrs to request for dirents. This code
9216 * must be protected by nfs4_start/end_fop because of r_server
9217 * (which will change during failover recovery).
9218 *
9219 */
9220 if (rp->r_flags & (R4LOOKUP | R4READDIRWATTR)) {
9221 /*
9222 * Get all vattr attrs plus filehandle and rdattr_error
9223 */
9224 rd_bitsval = NFS4_VATTR_MASK |
9225 FATTR4_RDATTR_ERROR_MASK |
9226 FATTR4_FILEHANDLE_MASK;
9227
9228 if (rp->r_flags & R4READDIRWATTR) {
9229 mutex_enter(&rp->r_statelock);
9230 rp->r_flags &= ~R4READDIRWATTR;
9231 mutex_exit(&rp->r_statelock);
9232 }
9233 } else {
9234 servinfo4_t *svp = rp->r_server;
9235
9236 /*
9237 * Already read directory. Use readdir with
9238 * no attrs (except for mounted_on_fileid) for updates.
9239 */
9240 rd_bitsval = FATTR4_RDATTR_ERROR_MASK;
9241
9242 /*
9243 * request mounted on fileid if supported, else request
9244 * fileid. maybe we should verify that fileid is supported
9245 * and request something else if not.
9246 */
9247 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
9248 if (svp->sv_supp_attrs & FATTR4_MOUNTED_ON_FILEID_MASK)
9249 rd_bitsval |= FATTR4_MOUNTED_ON_FILEID_MASK;
9250 nfs_rw_exit(&svp->sv_lock);
9251 }
9252
9253 /* putfh directory fh */
9254 argop[0].argop = OP_CPUTFH;
9255 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
9256
9257 argop[1].argop = OP_READDIR;
9258 rargs = &argop[1].nfs_argop4_u.opreaddir;
9259 /*
9260 * 1 and 2 are reserved for client "." and ".." entry offset.
9261 * cookie 0 should be used over-the-wire to start reading at
9262 * the beginning of the directory excluding "." and "..".
9263 */
9264 if (rdc->nfs4_cookie == 0 ||
9265 rdc->nfs4_cookie == 1 ||
9266 rdc->nfs4_cookie == 2) {
9267 rargs->cookie = (nfs_cookie4)0;
9268 rargs->cookieverf = 0;
9269 } else {
9270 rargs->cookie = (nfs_cookie4)rdc->nfs4_cookie;
9271 mutex_enter(&rp->r_statelock);
9272 rargs->cookieverf = rp->r_cookieverf4;
9273 mutex_exit(&rp->r_statelock);
9274 }
9275 rargs->dircount = MIN(rdc->buflen, mi->mi_tsize);
9276 rargs->maxcount = mi->mi_tsize;
9277 rargs->attr_request = rd_bitsval;
9278 rargs->rdc = rdc;
9279 rargs->dvp = vp;
9280 rargs->mi = mi;
9281 rargs->cr = cr;
9282
9283
9284 /*
9285 * If count < than the minimum required, we return no entries
9286 * and fail with EINVAL
9287 */
9288 if (rargs->dircount < (DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2))) {
9289 rdc->error = EINVAL;
9290 goto out;
9291 }
9292
9293 if (args.array_len == 5) {
9294 /*
9295 * Add lookupp and getattr for parent nodeid.
9296 */
9297 argop[2].argop = OP_LOOKUPP;
9298
9299 argop[3].argop = OP_GETFH;
9300
9301 /* getattr parent */
9302 argop[4].argop = OP_GETATTR;
9303 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
9304 argop[4].nfs_argop4_u.opgetattr.mi = mi;
9305 }
9306
9307 doqueue = 1;
9308
9309 if (mi->mi_io_kstats) {
9310 mutex_enter(&mi->mi_lock);
9311 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
9312 mutex_exit(&mi->mi_lock);
9313 }
9314
9315 /* capture the time of this call */
9316 rargs->t = t = gethrtime();
9317
9318 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
9319
9320 if (mi->mi_io_kstats) {
9321 mutex_enter(&mi->mi_lock);
9322 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
9323 mutex_exit(&mi->mi_lock);
9324 }
9325
9326 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
9327
9328 /*
9329 * If RPC error occurred and it isn't an error that
9330 * triggers recovery, then go ahead and fail now.
9331 */
9332 if (e.error != 0 && !needrecov) {
9333 rdc->error = e.error;
9334 goto out;
9335 }
9336
9337 if (needrecov) {
9338 bool_t abort;
9339
9340 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
9341 "nfs4readdir: initiating recovery.\n"));
9342
9343 abort = nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
9344 NULL, OP_READDIR, NULL, NULL, NULL);
9345 if (abort == FALSE) {
9346 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR,
9347 &recov_state, needrecov);
9348 if (!e.error)
9349 (void) xdr_free(xdr_COMPOUND4res_clnt,
9350 (caddr_t)&res);
9351 if (rdc->entries != NULL) {
9352 kmem_free(rdc->entries, rdc->entlen);
9353 rdc->entries = NULL;
9354 }
9355 goto recov_retry;
9356 }
9357
9358 if (e.error != 0) {
9359 rdc->error = e.error;
9360 goto out;
9361 }
9362
9363 /* fall through for res.status case */
9364 }
9365
9366 res_opcnt = res.array_len;
9367
9368 /*
9369 * If compound failed first 2 ops (PUTFH+READDIR), then return
9370 * failure here. Subsequent ops are for filling out dot-dot
9371 * dirent, and if they fail, we still want to give the caller
9372 * the dirents returned by (the successful) READDIR op, so we need
9373 * to silently ignore failure for subsequent ops (LOOKUPP+GETATTR).
9374 *
9375 * One example where PUTFH+READDIR ops would succeed but
9376 * LOOKUPP+GETATTR would fail would be a dir that has r perm
9377 * but lacks x. In this case, a POSIX server's VOP_READDIR
9378 * would succeed; however, VOP_LOOKUP(..) would fail since no
9379 * x perm. We need to come up with a non-vendor-specific way
9380 * for a POSIX server to return d_ino from dotdot's dirent if
9381 * client only requests mounted_on_fileid, and just say the
9382 * LOOKUPP succeeded and fill out the GETATTR. However, if
9383 * client requested any mandatory attrs, server would be required
9384 * to fail the GETATTR op because it can't call VOP_LOOKUP+VOP_GETATTR
9385 * for dotdot.
9386 */
9387
9388 if (res.status) {
9389 if (res_opcnt <= 2) {
9390 e.error = geterrno4(res.status);
9391 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR,
9392 &recov_state, needrecov);
9393 nfs4_purge_stale_fh(e.error, vp, cr);
9394 rdc->error = e.error;
9395 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
9396 if (rdc->entries != NULL) {
9397 kmem_free(rdc->entries, rdc->entlen);
9398 rdc->entries = NULL;
9399 }
9400 /*
9401 * If readdir a node that is a stub for a
9402 * crossed mount point, keep the original
9403 * secinfo flavor for the current file system,
9404 * not the crossed one.
9405 */
9406 (void) check_mnt_secinfo(mi->mi_curr_serv, vp);
9407 return;
9408 }
9409 }
9410
9411 resop = &res.array[1]; /* readdir res */
9412 rd_res = &resop->nfs_resop4_u.opreaddirclnt;
9413
9414 mutex_enter(&rp->r_statelock);
9415 rp->r_cookieverf4 = rd_res->cookieverf;
9416 mutex_exit(&rp->r_statelock);
9417
9418 /*
9419 * For "." and ".." entries
9420 * e.g.
9421 * seek(cookie=0) -> "." entry with d_off = 1
9422 * seek(cookie=1) -> ".." entry with d_off = 2
9423 */
9424 if (cookie == (nfs_cookie4) 0) {
9425 if (rd_res->dotp)
9426 rd_res->dotp->d_ino = nodeid;
9427 if (rd_res->dotdotp)
9428 rd_res->dotdotp->d_ino = pnodeid;
9429 }
9430 if (cookie == (nfs_cookie4) 1) {
9431 if (rd_res->dotdotp)
9432 rd_res->dotdotp->d_ino = pnodeid;
9433 }
9434
9435
9436 /* LOOKUPP+GETATTR attemped */
9437 if (args.array_len == 5 && rd_res->dotdotp) {
9438 if (res.status == NFS4_OK && res_opcnt == 5) {
9439 nfs_fh4 *fhp;
9440 nfs4_sharedfh_t *sfhp;
9441 vnode_t *pvp;
9442 nfs4_ga_res_t *garp;
9443
9444 resop++; /* lookupp */
9445 resop++; /* getfh */
9446 fhp = &resop->nfs_resop4_u.opgetfh.object;
9447
9448 resop++; /* getattr of parent */
9449
9450 /*
9451 * First, take care of finishing the
9452 * readdir results.
9453 */
9454 garp = &resop->nfs_resop4_u.opgetattr.ga_res;
9455 /*
9456 * The d_ino of .. must be the inode number
9457 * of the mounted filesystem.
9458 */
9459 if (garp->n4g_va.va_mask & AT_NODEID)
9460 rd_res->dotdotp->d_ino =
9461 garp->n4g_va.va_nodeid;
9462
9463
9464 /*
9465 * Next, create the ".." dnlc entry
9466 */
9467 sfhp = sfh4_get(fhp, mi);
9468 if (!nfs4_make_dotdot(sfhp, t, vp, cr, &pvp, 0)) {
9469 dnlc_update(vp, "..", pvp);
9470 VN_RELE(pvp);
9471 }
9472 sfh4_rele(&sfhp);
9473 }
9474 }
9475
9476 if (mi->mi_io_kstats) {
9477 mutex_enter(&mi->mi_lock);
9478 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
9479 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += rdc->actlen;
9480 mutex_exit(&mi->mi_lock);
9481 }
9482
9483 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
9484
9485 out:
9486 /*
9487 * If readdir a node that is a stub for a crossed mount point,
9488 * keep the original secinfo flavor for the current file system,
9489 * not the crossed one.
9490 */
9491 (void) check_mnt_secinfo(mi->mi_curr_serv, vp);
9492
9493 nfs4_end_fop(mi, vp, NULL, OH_READDIR, &recov_state, needrecov);
9494 }
9495
9496
9497 static int
nfs4_bio(struct buf * bp,stable_how4 * stab_comm,cred_t * cr,bool_t readahead)9498 nfs4_bio(struct buf *bp, stable_how4 *stab_comm, cred_t *cr, bool_t readahead)
9499 {
9500 rnode4_t *rp = VTOR4(bp->b_vp);
9501 int count;
9502 int error;
9503 cred_t *cred_otw = NULL;
9504 offset_t offset;
9505 nfs4_open_stream_t *osp = NULL;
9506 bool_t first_time = TRUE; /* first time getting otw cred */
9507 bool_t last_time = FALSE; /* last time getting otw cred */
9508
9509 ASSERT(nfs_zone() == VTOMI4(bp->b_vp)->mi_zone);
9510
9511 DTRACE_IO1(start, struct buf *, bp);
9512 offset = ldbtob(bp->b_lblkno);
9513
9514 if (bp->b_flags & B_READ) {
9515 read_again:
9516 /*
9517 * Releases the osp, if it is provided.
9518 * Puts a hold on the cred_otw and the new osp (if found).
9519 */
9520 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp,
9521 &first_time, &last_time);
9522 error = bp->b_error = nfs4read(bp->b_vp, bp->b_un.b_addr,
9523 offset, bp->b_bcount, &bp->b_resid, cred_otw,
9524 readahead, NULL);
9525 crfree(cred_otw);
9526 if (!error) {
9527 if (bp->b_resid) {
9528 /*
9529 * Didn't get it all because we hit EOF,
9530 * zero all the memory beyond the EOF.
9531 */
9532 /* bzero(rdaddr + */
9533 bzero(bp->b_un.b_addr +
9534 bp->b_bcount - bp->b_resid, bp->b_resid);
9535 }
9536 mutex_enter(&rp->r_statelock);
9537 if (bp->b_resid == bp->b_bcount &&
9538 offset >= rp->r_size) {
9539 /*
9540 * We didn't read anything at all as we are
9541 * past EOF. Return an error indicator back
9542 * but don't destroy the pages (yet).
9543 */
9544 error = NFS_EOF;
9545 }
9546 mutex_exit(&rp->r_statelock);
9547 } else if (error == EACCES && last_time == FALSE) {
9548 goto read_again;
9549 }
9550 } else {
9551 if (!(rp->r_flags & R4STALE)) {
9552 write_again:
9553 /*
9554 * Releases the osp, if it is provided.
9555 * Puts a hold on the cred_otw and the new
9556 * osp (if found).
9557 */
9558 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp,
9559 &first_time, &last_time);
9560 mutex_enter(&rp->r_statelock);
9561 count = MIN(bp->b_bcount, rp->r_size - offset);
9562 mutex_exit(&rp->r_statelock);
9563 if (count < 0)
9564 cmn_err(CE_PANIC, "nfs4_bio: write count < 0");
9565 #ifdef DEBUG
9566 if (count == 0) {
9567 zoneid_t zoneid = getzoneid();
9568
9569 zcmn_err(zoneid, CE_WARN,
9570 "nfs4_bio: zero length write at %lld",
9571 offset);
9572 zcmn_err(zoneid, CE_CONT, "flags=0x%x, "
9573 "b_bcount=%ld, file size=%lld",
9574 rp->r_flags, (long)bp->b_bcount,
9575 rp->r_size);
9576 sfh4_printfhandle(VTOR4(bp->b_vp)->r_fh);
9577 if (nfs4_bio_do_stop)
9578 debug_enter("nfs4_bio");
9579 }
9580 #endif
9581 error = nfs4write(bp->b_vp, bp->b_un.b_addr, offset,
9582 count, cred_otw, stab_comm);
9583 if (error == EACCES && last_time == FALSE) {
9584 crfree(cred_otw);
9585 goto write_again;
9586 }
9587 bp->b_error = error;
9588 if (error && error != EINTR &&
9589 !(bp->b_vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)) {
9590 /*
9591 * Don't print EDQUOT errors on the console.
9592 * Don't print asynchronous EACCES errors.
9593 * Don't print EFBIG errors.
9594 * Print all other write errors.
9595 */
9596 if (error != EDQUOT && error != EFBIG &&
9597 (error != EACCES ||
9598 !(bp->b_flags & B_ASYNC)))
9599 nfs4_write_error(bp->b_vp,
9600 error, cred_otw);
9601 /*
9602 * Update r_error and r_flags as appropriate.
9603 * If the error was ESTALE, then mark the
9604 * rnode as not being writeable and save
9605 * the error status. Otherwise, save any
9606 * errors which occur from asynchronous
9607 * page invalidations. Any errors occurring
9608 * from other operations should be saved
9609 * by the caller.
9610 */
9611 mutex_enter(&rp->r_statelock);
9612 if (error == ESTALE) {
9613 rp->r_flags |= R4STALE;
9614 if (!rp->r_error)
9615 rp->r_error = error;
9616 } else if (!rp->r_error &&
9617 (bp->b_flags &
9618 (B_INVAL|B_FORCE|B_ASYNC)) ==
9619 (B_INVAL|B_FORCE|B_ASYNC)) {
9620 rp->r_error = error;
9621 }
9622 mutex_exit(&rp->r_statelock);
9623 }
9624 crfree(cred_otw);
9625 } else {
9626 error = rp->r_error;
9627 /*
9628 * A close may have cleared r_error, if so,
9629 * propagate ESTALE error return properly
9630 */
9631 if (error == 0)
9632 error = ESTALE;
9633 }
9634 }
9635
9636 if (error != 0 && error != NFS_EOF)
9637 bp->b_flags |= B_ERROR;
9638
9639 if (osp)
9640 open_stream_rele(osp, rp);
9641
9642 DTRACE_IO1(done, struct buf *, bp);
9643
9644 return (error);
9645 }
9646
9647 /* ARGSUSED */
9648 int
nfs4_fid(vnode_t * vp,fid_t * fidp,caller_context_t * ct)9649 nfs4_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
9650 {
9651 return (EREMOTE);
9652 }
9653
9654 /* ARGSUSED2 */
9655 int
nfs4_rwlock(vnode_t * vp,int write_lock,caller_context_t * ctp)9656 nfs4_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp)
9657 {
9658 rnode4_t *rp = VTOR4(vp);
9659
9660 if (!write_lock) {
9661 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE);
9662 return (V_WRITELOCK_FALSE);
9663 }
9664
9665 if ((rp->r_flags & R4DIRECTIO) ||
9666 (VTOMI4(vp)->mi_flags & MI4_DIRECTIO)) {
9667 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE);
9668 if (rp->r_mapcnt == 0 && !nfs4_has_pages(vp))
9669 return (V_WRITELOCK_FALSE);
9670 nfs_rw_exit(&rp->r_rwlock);
9671 }
9672
9673 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE);
9674 return (V_WRITELOCK_TRUE);
9675 }
9676
9677 /* ARGSUSED */
9678 void
nfs4_rwunlock(vnode_t * vp,int write_lock,caller_context_t * ctp)9679 nfs4_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp)
9680 {
9681 rnode4_t *rp = VTOR4(vp);
9682
9683 nfs_rw_exit(&rp->r_rwlock);
9684 }
9685
9686 /* ARGSUSED */
9687 static int
nfs4_seek(vnode_t * vp,offset_t ooff,offset_t * noffp,caller_context_t * ct)9688 nfs4_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct)
9689 {
9690 if (nfs_zone() != VTOMI4(vp)->mi_zone)
9691 return (EIO);
9692
9693 /*
9694 * Because we stuff the readdir cookie into the offset field
9695 * someone may attempt to do an lseek with the cookie which
9696 * we want to succeed.
9697 */
9698 if (vp->v_type == VDIR)
9699 return (0);
9700 if (*noffp < 0)
9701 return (EINVAL);
9702 return (0);
9703 }
9704
9705
9706 /*
9707 * Return all the pages from [off..off+len) in file
9708 */
9709 /* ARGSUSED */
9710 static int
nfs4_getpage(vnode_t * vp,offset_t off,size_t len,uint_t * protp,page_t * pl[],size_t plsz,struct seg * seg,caddr_t addr,enum seg_rw rw,cred_t * cr,caller_context_t * ct)9711 nfs4_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
9712 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
9713 enum seg_rw rw, cred_t *cr, caller_context_t *ct)
9714 {
9715 rnode4_t *rp;
9716 int error;
9717 mntinfo4_t *mi;
9718
9719 if (nfs_zone() != VTOMI4(vp)->mi_zone)
9720 return (EIO);
9721 rp = VTOR4(vp);
9722 if (IS_SHADOW(vp, rp))
9723 vp = RTOV4(rp);
9724
9725 if (vp->v_flag & VNOMAP)
9726 return (ENOSYS);
9727
9728 if (protp != NULL)
9729 *protp = PROT_ALL;
9730
9731 /*
9732 * Now validate that the caches are up to date.
9733 */
9734 if (error = nfs4_validate_caches(vp, cr))
9735 return (error);
9736
9737 mi = VTOMI4(vp);
9738 retry:
9739 mutex_enter(&rp->r_statelock);
9740
9741 /*
9742 * Don't create dirty pages faster than they
9743 * can be cleaned so that the system doesn't
9744 * get imbalanced. If the async queue is
9745 * maxed out, then wait for it to drain before
9746 * creating more dirty pages. Also, wait for
9747 * any threads doing pagewalks in the vop_getattr
9748 * entry points so that they don't block for
9749 * long periods.
9750 */
9751 if (rw == S_CREATE) {
9752 while ((mi->mi_max_threads != 0 &&
9753 rp->r_awcount > 2 * mi->mi_max_threads) ||
9754 rp->r_gcount > 0)
9755 cv_wait(&rp->r_cv, &rp->r_statelock);
9756 }
9757
9758 /*
9759 * If we are getting called as a side effect of an nfs_write()
9760 * operation the local file size might not be extended yet.
9761 * In this case we want to be able to return pages of zeroes.
9762 */
9763 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) {
9764 NFS4_DEBUG(nfs4_pageio_debug,
9765 (CE_NOTE, "getpage beyond EOF: off=%lld, "
9766 "len=%llu, size=%llu, attrsize =%llu", off,
9767 (u_longlong_t)len, rp->r_size, rp->r_attr.va_size));
9768 mutex_exit(&rp->r_statelock);
9769 return (EFAULT); /* beyond EOF */
9770 }
9771
9772 mutex_exit(&rp->r_statelock);
9773
9774 if (len <= PAGESIZE) {
9775 error = nfs4_getapage(vp, off, len, protp, pl, plsz,
9776 seg, addr, rw, cr);
9777 NFS4_DEBUG(nfs4_pageio_debug && error,
9778 (CE_NOTE, "getpage error %d; off=%lld, "
9779 "len=%lld", error, off, (u_longlong_t)len));
9780 } else {
9781 error = pvn_getpages(nfs4_getapage, vp, off, len, protp,
9782 pl, plsz, seg, addr, rw, cr);
9783 NFS4_DEBUG(nfs4_pageio_debug && error,
9784 (CE_NOTE, "getpages error %d; off=%lld, "
9785 "len=%lld", error, off, (u_longlong_t)len));
9786 }
9787
9788 switch (error) {
9789 case NFS_EOF:
9790 nfs4_purge_caches(vp, NFS4_NOPURGE_DNLC, cr, FALSE);
9791 goto retry;
9792 case ESTALE:
9793 nfs4_purge_stale_fh(error, vp, cr);
9794 }
9795
9796 return (error);
9797 }
9798
9799 /*
9800 * Called from pvn_getpages or nfs4_getpage to get a particular page.
9801 */
9802 /* ARGSUSED */
9803 static int
nfs4_getapage(vnode_t * vp,u_offset_t off,size_t len,uint_t * protp,page_t * pl[],size_t plsz,struct seg * seg,caddr_t addr,enum seg_rw rw,cred_t * cr)9804 nfs4_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp,
9805 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
9806 enum seg_rw rw, cred_t *cr)
9807 {
9808 rnode4_t *rp;
9809 uint_t bsize;
9810 struct buf *bp;
9811 page_t *pp;
9812 u_offset_t lbn;
9813 u_offset_t io_off;
9814 u_offset_t blkoff;
9815 u_offset_t rablkoff;
9816 size_t io_len;
9817 uint_t blksize;
9818 int error;
9819 int readahead;
9820 int readahead_issued = 0;
9821 int ra_window; /* readahead window */
9822 page_t *pagefound;
9823 page_t *savepp;
9824
9825 if (nfs_zone() != VTOMI4(vp)->mi_zone)
9826 return (EIO);
9827
9828 rp = VTOR4(vp);
9829 ASSERT(!IS_SHADOW(vp, rp));
9830 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
9831
9832 reread:
9833 bp = NULL;
9834 pp = NULL;
9835 pagefound = NULL;
9836
9837 if (pl != NULL)
9838 pl[0] = NULL;
9839
9840 error = 0;
9841 lbn = off / bsize;
9842 blkoff = lbn * bsize;
9843
9844 /*
9845 * Queueing up the readahead before doing the synchronous read
9846 * results in a significant increase in read throughput because
9847 * of the increased parallelism between the async threads and
9848 * the process context.
9849 */
9850 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 &&
9851 rw != S_CREATE &&
9852 !(vp->v_flag & VNOCACHE)) {
9853 mutex_enter(&rp->r_statelock);
9854
9855 /*
9856 * Calculate the number of readaheads to do.
9857 * a) No readaheads at offset = 0.
9858 * b) Do maximum(nfs4_nra) readaheads when the readahead
9859 * window is closed.
9860 * c) Do readaheads between 1 to (nfs4_nra - 1) depending
9861 * upon how far the readahead window is open or close.
9862 * d) No readaheads if rp->r_nextr is not within the scope
9863 * of the readahead window (random i/o).
9864 */
9865
9866 if (off == 0)
9867 readahead = 0;
9868 else if (blkoff == rp->r_nextr)
9869 readahead = nfs4_nra;
9870 else if (rp->r_nextr > blkoff &&
9871 ((ra_window = (rp->r_nextr - blkoff) / bsize)
9872 <= (nfs4_nra - 1)))
9873 readahead = nfs4_nra - ra_window;
9874 else
9875 readahead = 0;
9876
9877 rablkoff = rp->r_nextr;
9878 while (readahead > 0 && rablkoff + bsize < rp->r_size) {
9879 mutex_exit(&rp->r_statelock);
9880 if (nfs4_async_readahead(vp, rablkoff + bsize,
9881 addr + (rablkoff + bsize - off),
9882 seg, cr, nfs4_readahead) < 0) {
9883 mutex_enter(&rp->r_statelock);
9884 break;
9885 }
9886 readahead--;
9887 rablkoff += bsize;
9888 /*
9889 * Indicate that we did a readahead so
9890 * readahead offset is not updated
9891 * by the synchronous read below.
9892 */
9893 readahead_issued = 1;
9894 mutex_enter(&rp->r_statelock);
9895 /*
9896 * set readahead offset to
9897 * offset of last async readahead
9898 * request.
9899 */
9900 rp->r_nextr = rablkoff;
9901 }
9902 mutex_exit(&rp->r_statelock);
9903 }
9904
9905 again:
9906 if ((pagefound = page_exists(vp, off)) == NULL) {
9907 if (pl == NULL) {
9908 (void) nfs4_async_readahead(vp, blkoff, addr, seg, cr,
9909 nfs4_readahead);
9910 } else if (rw == S_CREATE) {
9911 /*
9912 * Block for this page is not allocated, or the offset
9913 * is beyond the current allocation size, or we're
9914 * allocating a swap slot and the page was not found,
9915 * so allocate it and return a zero page.
9916 */
9917 if ((pp = page_create_va(vp, off,
9918 PAGESIZE, PG_WAIT, seg, addr)) == NULL)
9919 cmn_err(CE_PANIC, "nfs4_getapage: page_create");
9920 io_len = PAGESIZE;
9921 mutex_enter(&rp->r_statelock);
9922 rp->r_nextr = off + PAGESIZE;
9923 mutex_exit(&rp->r_statelock);
9924 } else {
9925 /*
9926 * Need to go to server to get a block
9927 */
9928 mutex_enter(&rp->r_statelock);
9929 if (blkoff < rp->r_size &&
9930 blkoff + bsize > rp->r_size) {
9931 /*
9932 * If less than a block left in
9933 * file read less than a block.
9934 */
9935 if (rp->r_size <= off) {
9936 /*
9937 * Trying to access beyond EOF,
9938 * set up to get at least one page.
9939 */
9940 blksize = off + PAGESIZE - blkoff;
9941 } else
9942 blksize = rp->r_size - blkoff;
9943 } else if ((off == 0) ||
9944 (off != rp->r_nextr && !readahead_issued)) {
9945 blksize = PAGESIZE;
9946 blkoff = off; /* block = page here */
9947 } else
9948 blksize = bsize;
9949 mutex_exit(&rp->r_statelock);
9950
9951 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
9952 &io_len, blkoff, blksize, 0);
9953
9954 /*
9955 * Some other thread has entered the page,
9956 * so just use it.
9957 */
9958 if (pp == NULL)
9959 goto again;
9960
9961 /*
9962 * Now round the request size up to page boundaries.
9963 * This ensures that the entire page will be
9964 * initialized to zeroes if EOF is encountered.
9965 */
9966 io_len = ptob(btopr(io_len));
9967
9968 bp = pageio_setup(pp, io_len, vp, B_READ);
9969 ASSERT(bp != NULL);
9970
9971 /*
9972 * pageio_setup should have set b_addr to 0. This
9973 * is correct since we want to do I/O on a page
9974 * boundary. bp_mapin will use this addr to calculate
9975 * an offset, and then set b_addr to the kernel virtual
9976 * address it allocated for us.
9977 */
9978 ASSERT(bp->b_un.b_addr == 0);
9979
9980 bp->b_edev = 0;
9981 bp->b_dev = 0;
9982 bp->b_lblkno = lbtodb(io_off);
9983 bp->b_file = vp;
9984 bp->b_offset = (offset_t)off;
9985 bp_mapin(bp);
9986
9987 /*
9988 * If doing a write beyond what we believe is EOF,
9989 * don't bother trying to read the pages from the
9990 * server, we'll just zero the pages here. We
9991 * don't check that the rw flag is S_WRITE here
9992 * because some implementations may attempt a
9993 * read access to the buffer before copying data.
9994 */
9995 mutex_enter(&rp->r_statelock);
9996 if (io_off >= rp->r_size && seg == segkmap) {
9997 mutex_exit(&rp->r_statelock);
9998 bzero(bp->b_un.b_addr, io_len);
9999 } else {
10000 mutex_exit(&rp->r_statelock);
10001 error = nfs4_bio(bp, NULL, cr, FALSE);
10002 }
10003
10004 /*
10005 * Unmap the buffer before freeing it.
10006 */
10007 bp_mapout(bp);
10008 pageio_done(bp);
10009
10010 savepp = pp;
10011 do {
10012 pp->p_fsdata = C_NOCOMMIT;
10013 } while ((pp = pp->p_next) != savepp);
10014
10015 if (error == NFS_EOF) {
10016 /*
10017 * If doing a write system call just return
10018 * zeroed pages, else user tried to get pages
10019 * beyond EOF, return error. We don't check
10020 * that the rw flag is S_WRITE here because
10021 * some implementations may attempt a read
10022 * access to the buffer before copying data.
10023 */
10024 if (seg == segkmap)
10025 error = 0;
10026 else
10027 error = EFAULT;
10028 }
10029
10030 if (!readahead_issued && !error) {
10031 mutex_enter(&rp->r_statelock);
10032 rp->r_nextr = io_off + io_len;
10033 mutex_exit(&rp->r_statelock);
10034 }
10035 }
10036 }
10037
10038 out:
10039 if (pl == NULL)
10040 return (error);
10041
10042 if (error) {
10043 if (pp != NULL)
10044 pvn_read_done(pp, B_ERROR);
10045 return (error);
10046 }
10047
10048 if (pagefound) {
10049 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED);
10050
10051 /*
10052 * Page exists in the cache, acquire the appropriate lock.
10053 * If this fails, start all over again.
10054 */
10055 if ((pp = page_lookup(vp, off, se)) == NULL) {
10056 #ifdef DEBUG
10057 nfs4_lostpage++;
10058 #endif
10059 goto reread;
10060 }
10061 pl[0] = pp;
10062 pl[1] = NULL;
10063 return (0);
10064 }
10065
10066 if (pp != NULL)
10067 pvn_plist_init(pp, pl, plsz, off, io_len, rw);
10068
10069 return (error);
10070 }
10071
10072 static void
nfs4_readahead(vnode_t * vp,u_offset_t blkoff,caddr_t addr,struct seg * seg,cred_t * cr)10073 nfs4_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg,
10074 cred_t *cr)
10075 {
10076 int error;
10077 page_t *pp;
10078 u_offset_t io_off;
10079 size_t io_len;
10080 struct buf *bp;
10081 uint_t bsize, blksize;
10082 rnode4_t *rp = VTOR4(vp);
10083 page_t *savepp;
10084
10085 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
10086
10087 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
10088
10089 mutex_enter(&rp->r_statelock);
10090 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) {
10091 /*
10092 * If less than a block left in file read less
10093 * than a block.
10094 */
10095 blksize = rp->r_size - blkoff;
10096 } else
10097 blksize = bsize;
10098 mutex_exit(&rp->r_statelock);
10099
10100 pp = pvn_read_kluster(vp, blkoff, segkmap, addr,
10101 &io_off, &io_len, blkoff, blksize, 1);
10102 /*
10103 * The isra flag passed to the kluster function is 1, we may have
10104 * gotten a return value of NULL for a variety of reasons (# of free
10105 * pages < minfree, someone entered the page on the vnode etc). In all
10106 * cases, we want to punt on the readahead.
10107 */
10108 if (pp == NULL)
10109 return;
10110
10111 /*
10112 * Now round the request size up to page boundaries.
10113 * This ensures that the entire page will be
10114 * initialized to zeroes if EOF is encountered.
10115 */
10116 io_len = ptob(btopr(io_len));
10117
10118 bp = pageio_setup(pp, io_len, vp, B_READ);
10119 ASSERT(bp != NULL);
10120
10121 /*
10122 * pageio_setup should have set b_addr to 0. This is correct since
10123 * we want to do I/O on a page boundary. bp_mapin() will use this addr
10124 * to calculate an offset, and then set b_addr to the kernel virtual
10125 * address it allocated for us.
10126 */
10127 ASSERT(bp->b_un.b_addr == 0);
10128
10129 bp->b_edev = 0;
10130 bp->b_dev = 0;
10131 bp->b_lblkno = lbtodb(io_off);
10132 bp->b_file = vp;
10133 bp->b_offset = (offset_t)blkoff;
10134 bp_mapin(bp);
10135
10136 /*
10137 * If doing a write beyond what we believe is EOF, don't bother trying
10138 * to read the pages from the server, we'll just zero the pages here.
10139 * We don't check that the rw flag is S_WRITE here because some
10140 * implementations may attempt a read access to the buffer before
10141 * copying data.
10142 */
10143 mutex_enter(&rp->r_statelock);
10144 if (io_off >= rp->r_size && seg == segkmap) {
10145 mutex_exit(&rp->r_statelock);
10146 bzero(bp->b_un.b_addr, io_len);
10147 error = 0;
10148 } else {
10149 mutex_exit(&rp->r_statelock);
10150 error = nfs4_bio(bp, NULL, cr, TRUE);
10151 if (error == NFS_EOF)
10152 error = 0;
10153 }
10154
10155 /*
10156 * Unmap the buffer before freeing it.
10157 */
10158 bp_mapout(bp);
10159 pageio_done(bp);
10160
10161 savepp = pp;
10162 do {
10163 pp->p_fsdata = C_NOCOMMIT;
10164 } while ((pp = pp->p_next) != savepp);
10165
10166 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ);
10167
10168 /*
10169 * In case of error set readahead offset
10170 * to the lowest offset.
10171 * pvn_read_done() calls VN_DISPOSE to destroy the pages
10172 */
10173 if (error && rp->r_nextr > io_off) {
10174 mutex_enter(&rp->r_statelock);
10175 if (rp->r_nextr > io_off)
10176 rp->r_nextr = io_off;
10177 mutex_exit(&rp->r_statelock);
10178 }
10179 }
10180
10181 /*
10182 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE}
10183 * If len == 0, do from off to EOF.
10184 *
10185 * The normal cases should be len == 0 && off == 0 (entire vp list) or
10186 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE
10187 * (from pageout).
10188 */
10189 /* ARGSUSED */
10190 static int
nfs4_putpage(vnode_t * vp,offset_t off,size_t len,int flags,cred_t * cr,caller_context_t * ct)10191 nfs4_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
10192 caller_context_t *ct)
10193 {
10194 int error;
10195 rnode4_t *rp;
10196
10197 ASSERT(cr != NULL);
10198
10199 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone)
10200 return (EIO);
10201
10202 rp = VTOR4(vp);
10203 if (IS_SHADOW(vp, rp))
10204 vp = RTOV4(rp);
10205
10206 /*
10207 * XXX - Why should this check be made here?
10208 */
10209 if (vp->v_flag & VNOMAP)
10210 return (ENOSYS);
10211
10212 if (len == 0 && !(flags & B_INVAL) &&
10213 (vp->v_vfsp->vfs_flag & VFS_RDONLY))
10214 return (0);
10215
10216 mutex_enter(&rp->r_statelock);
10217 rp->r_count++;
10218 mutex_exit(&rp->r_statelock);
10219 error = nfs4_putpages(vp, off, len, flags, cr);
10220 mutex_enter(&rp->r_statelock);
10221 rp->r_count--;
10222 cv_broadcast(&rp->r_cv);
10223 mutex_exit(&rp->r_statelock);
10224
10225 return (error);
10226 }
10227
10228 /*
10229 * Write out a single page, possibly klustering adjacent dirty pages.
10230 */
10231 int
nfs4_putapage(vnode_t * vp,page_t * pp,u_offset_t * offp,size_t * lenp,int flags,cred_t * cr)10232 nfs4_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
10233 int flags, cred_t *cr)
10234 {
10235 u_offset_t io_off;
10236 u_offset_t lbn_off;
10237 u_offset_t lbn;
10238 size_t io_len;
10239 uint_t bsize;
10240 int error;
10241 rnode4_t *rp;
10242
10243 ASSERT(!(vp->v_vfsp->vfs_flag & VFS_RDONLY));
10244 ASSERT(pp != NULL);
10245 ASSERT(cr != NULL);
10246 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI4(vp)->mi_zone);
10247
10248 rp = VTOR4(vp);
10249 ASSERT(rp->r_count > 0);
10250 ASSERT(!IS_SHADOW(vp, rp));
10251
10252 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
10253 lbn = pp->p_offset / bsize;
10254 lbn_off = lbn * bsize;
10255
10256 /*
10257 * Find a kluster that fits in one block, or in
10258 * one page if pages are bigger than blocks. If
10259 * there is less file space allocated than a whole
10260 * page, we'll shorten the i/o request below.
10261 */
10262 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off,
10263 roundup(bsize, PAGESIZE), flags);
10264
10265 /*
10266 * pvn_write_kluster shouldn't have returned a page with offset
10267 * behind the original page we were given. Verify that.
10268 */
10269 ASSERT((pp->p_offset / bsize) >= lbn);
10270
10271 /*
10272 * Now pp will have the list of kept dirty pages marked for
10273 * write back. It will also handle invalidation and freeing
10274 * of pages that are not dirty. Check for page length rounding
10275 * problems.
10276 */
10277 if (io_off + io_len > lbn_off + bsize) {
10278 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE);
10279 io_len = lbn_off + bsize - io_off;
10280 }
10281 /*
10282 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a
10283 * consistent value of r_size. R4MODINPROGRESS is set in writerp4().
10284 * When R4MODINPROGRESS is set it indicates that a uiomove() is in
10285 * progress and the r_size has not been made consistent with the
10286 * new size of the file. When the uiomove() completes the r_size is
10287 * updated and the R4MODINPROGRESS flag is cleared.
10288 *
10289 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a
10290 * consistent value of r_size. Without this handshaking, it is
10291 * possible that nfs4_bio() picks up the old value of r_size
10292 * before the uiomove() in writerp4() completes. This will result
10293 * in the write through nfs4_bio() being dropped.
10294 *
10295 * More precisely, there is a window between the time the uiomove()
10296 * completes and the time the r_size is updated. If a VOP_PUTPAGE()
10297 * operation intervenes in this window, the page will be picked up,
10298 * because it is dirty (it will be unlocked, unless it was
10299 * pagecreate'd). When the page is picked up as dirty, the dirty
10300 * bit is reset (pvn_getdirty()). In nfs4write(), r_size is
10301 * checked. This will still be the old size. Therefore the page will
10302 * not be written out. When segmap_release() calls VOP_PUTPAGE(),
10303 * the page will be found to be clean and the write will be dropped.
10304 */
10305 if (rp->r_flags & R4MODINPROGRESS) {
10306 mutex_enter(&rp->r_statelock);
10307 if ((rp->r_flags & R4MODINPROGRESS) &&
10308 rp->r_modaddr + MAXBSIZE > io_off &&
10309 rp->r_modaddr < io_off + io_len) {
10310 page_t *plist;
10311 /*
10312 * A write is in progress for this region of the file.
10313 * If we did not detect R4MODINPROGRESS here then this
10314 * path through nfs_putapage() would eventually go to
10315 * nfs4_bio() and may not write out all of the data
10316 * in the pages. We end up losing data. So we decide
10317 * to set the modified bit on each page in the page
10318 * list and mark the rnode with R4DIRTY. This write
10319 * will be restarted at some later time.
10320 */
10321 plist = pp;
10322 while (plist != NULL) {
10323 pp = plist;
10324 page_sub(&plist, pp);
10325 hat_setmod(pp);
10326 page_io_unlock(pp);
10327 page_unlock(pp);
10328 }
10329 rp->r_flags |= R4DIRTY;
10330 mutex_exit(&rp->r_statelock);
10331 if (offp)
10332 *offp = io_off;
10333 if (lenp)
10334 *lenp = io_len;
10335 return (0);
10336 }
10337 mutex_exit(&rp->r_statelock);
10338 }
10339
10340 if (flags & B_ASYNC) {
10341 error = nfs4_async_putapage(vp, pp, io_off, io_len, flags, cr,
10342 nfs4_sync_putapage);
10343 } else
10344 error = nfs4_sync_putapage(vp, pp, io_off, io_len, flags, cr);
10345
10346 if (offp)
10347 *offp = io_off;
10348 if (lenp)
10349 *lenp = io_len;
10350 return (error);
10351 }
10352
10353 static int
nfs4_sync_putapage(vnode_t * vp,page_t * pp,u_offset_t io_off,size_t io_len,int flags,cred_t * cr)10354 nfs4_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
10355 int flags, cred_t *cr)
10356 {
10357 int error;
10358 rnode4_t *rp;
10359
10360 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
10361
10362 flags |= B_WRITE;
10363
10364 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
10365
10366 rp = VTOR4(vp);
10367
10368 if ((error == ENOSPC || error == EDQUOT || error == EFBIG ||
10369 error == EACCES) &&
10370 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) {
10371 if (!(rp->r_flags & R4OUTOFSPACE)) {
10372 mutex_enter(&rp->r_statelock);
10373 rp->r_flags |= R4OUTOFSPACE;
10374 mutex_exit(&rp->r_statelock);
10375 }
10376 flags |= B_ERROR;
10377 pvn_write_done(pp, flags);
10378 /*
10379 * If this was not an async thread, then try again to
10380 * write out the pages, but this time, also destroy
10381 * them whether or not the write is successful. This
10382 * will prevent memory from filling up with these
10383 * pages and destroying them is the only alternative
10384 * if they can't be written out.
10385 *
10386 * Don't do this if this is an async thread because
10387 * when the pages are unlocked in pvn_write_done,
10388 * some other thread could have come along, locked
10389 * them, and queued for an async thread. It would be
10390 * possible for all of the async threads to be tied
10391 * up waiting to lock the pages again and they would
10392 * all already be locked and waiting for an async
10393 * thread to handle them. Deadlock.
10394 */
10395 if (!(flags & B_ASYNC)) {
10396 error = nfs4_putpage(vp, io_off, io_len,
10397 B_INVAL | B_FORCE, cr, NULL);
10398 }
10399 } else {
10400 if (error)
10401 flags |= B_ERROR;
10402 else if (rp->r_flags & R4OUTOFSPACE) {
10403 mutex_enter(&rp->r_statelock);
10404 rp->r_flags &= ~R4OUTOFSPACE;
10405 mutex_exit(&rp->r_statelock);
10406 }
10407 pvn_write_done(pp, flags);
10408 if (freemem < desfree)
10409 (void) nfs4_commit_vp(vp, (u_offset_t)0, 0, cr,
10410 NFS4_WRITE_NOWAIT);
10411 }
10412
10413 return (error);
10414 }
10415
10416 #ifdef DEBUG
10417 int nfs4_force_open_before_mmap = 0;
10418 #endif
10419
10420 /* ARGSUSED */
10421 static int
nfs4_map(vnode_t * vp,offset_t off,struct as * as,caddr_t * addrp,size_t len,uchar_t prot,uchar_t maxprot,uint_t flags,cred_t * cr,caller_context_t * ct)10422 nfs4_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
10423 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
10424 caller_context_t *ct)
10425 {
10426 struct segvn_crargs vn_a;
10427 int error = 0;
10428 rnode4_t *rp = VTOR4(vp);
10429 mntinfo4_t *mi = VTOMI4(vp);
10430
10431 if (nfs_zone() != VTOMI4(vp)->mi_zone)
10432 return (EIO);
10433
10434 if (vp->v_flag & VNOMAP)
10435 return (ENOSYS);
10436
10437 if (off < 0 || (off + len) < 0)
10438 return (ENXIO);
10439
10440 if (vp->v_type != VREG)
10441 return (ENODEV);
10442
10443 /*
10444 * If the file is delegated to the client don't do anything.
10445 * If the file is not delegated, then validate the data cache.
10446 */
10447 mutex_enter(&rp->r_statev4_lock);
10448 if (rp->r_deleg_type == OPEN_DELEGATE_NONE) {
10449 mutex_exit(&rp->r_statev4_lock);
10450 error = nfs4_validate_caches(vp, cr);
10451 if (error)
10452 return (error);
10453 } else {
10454 mutex_exit(&rp->r_statev4_lock);
10455 }
10456
10457 /*
10458 * Check to see if the vnode is currently marked as not cachable.
10459 * This means portions of the file are locked (through VOP_FRLOCK).
10460 * In this case the map request must be refused. We use
10461 * rp->r_lkserlock to avoid a race with concurrent lock requests.
10462 *
10463 * Atomically increment r_inmap after acquiring r_rwlock. The
10464 * idea here is to acquire r_rwlock to block read/write and
10465 * not to protect r_inmap. r_inmap will inform nfs4_read/write()
10466 * that we are in nfs4_map(). Now, r_rwlock is acquired in order
10467 * and we can prevent the deadlock that would have occurred
10468 * when nfs4_addmap() would have acquired it out of order.
10469 *
10470 * Since we are not protecting r_inmap by any lock, we do not
10471 * hold any lock when we decrement it. We atomically decrement
10472 * r_inmap after we release r_lkserlock.
10473 */
10474
10475 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR4(vp)))
10476 return (EINTR);
10477 atomic_add_int(&rp->r_inmap, 1);
10478 nfs_rw_exit(&rp->r_rwlock);
10479
10480 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) {
10481 atomic_add_int(&rp->r_inmap, -1);
10482 return (EINTR);
10483 }
10484
10485
10486 if (vp->v_flag & VNOCACHE) {
10487 error = EAGAIN;
10488 goto done;
10489 }
10490
10491 /*
10492 * Don't allow concurrent locks and mapping if mandatory locking is
10493 * enabled.
10494 */
10495 if (flk_has_remote_locks(vp)) {
10496 struct vattr va;
10497 va.va_mask = AT_MODE;
10498 error = nfs4getattr(vp, &va, cr);
10499 if (error != 0)
10500 goto done;
10501 if (MANDLOCK(vp, va.va_mode)) {
10502 error = EAGAIN;
10503 goto done;
10504 }
10505 }
10506
10507 /*
10508 * It is possible that the rnode has a lost lock request that we
10509 * are still trying to recover, and that the request conflicts with
10510 * this map request.
10511 *
10512 * An alternative approach would be for nfs4_safemap() to consider
10513 * queued lock requests when deciding whether to set or clear
10514 * VNOCACHE. This would require the frlock code path to call
10515 * nfs4_safemap() after enqueing a lost request.
10516 */
10517 if (nfs4_map_lost_lock_conflict(vp)) {
10518 error = EAGAIN;
10519 goto done;
10520 }
10521
10522 as_rangelock(as);
10523 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
10524 if (error != 0) {
10525 as_rangeunlock(as);
10526 goto done;
10527 }
10528
10529 if (vp->v_type == VREG) {
10530 /*
10531 * We need to retrieve the open stream
10532 */
10533 nfs4_open_stream_t *osp = NULL;
10534 nfs4_open_owner_t *oop = NULL;
10535
10536 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi);
10537 if (oop != NULL) {
10538 /* returns with 'os_sync_lock' held */
10539 osp = find_open_stream(oop, rp);
10540 open_owner_rele(oop);
10541 }
10542 if (osp == NULL) {
10543 #ifdef DEBUG
10544 if (nfs4_force_open_before_mmap) {
10545 error = EIO;
10546 goto done;
10547 }
10548 #endif
10549 /* returns with 'os_sync_lock' held */
10550 error = open_and_get_osp(vp, cr, &osp);
10551 if (osp == NULL) {
10552 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE,
10553 "nfs4_map: we tried to OPEN the file "
10554 "but again no osp, so fail with EIO"));
10555 goto done;
10556 }
10557 }
10558
10559 if (osp->os_failed_reopen) {
10560 mutex_exit(&osp->os_sync_lock);
10561 open_stream_rele(osp, rp);
10562 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE,
10563 "nfs4_map: os_failed_reopen set on "
10564 "osp %p, cr %p, rp %s", (void *)osp,
10565 (void *)cr, rnode4info(rp)));
10566 error = EIO;
10567 goto done;
10568 }
10569 mutex_exit(&osp->os_sync_lock);
10570 open_stream_rele(osp, rp);
10571 }
10572
10573 vn_a.vp = vp;
10574 vn_a.offset = off;
10575 vn_a.type = (flags & MAP_TYPE);
10576 vn_a.prot = (uchar_t)prot;
10577 vn_a.maxprot = (uchar_t)maxprot;
10578 vn_a.flags = (flags & ~MAP_TYPE);
10579 vn_a.cred = cr;
10580 vn_a.amp = NULL;
10581 vn_a.szc = 0;
10582 vn_a.lgrp_mem_policy_flags = 0;
10583
10584 error = as_map(as, *addrp, len, segvn_create, &vn_a);
10585 as_rangeunlock(as);
10586
10587 done:
10588 nfs_rw_exit(&rp->r_lkserlock);
10589 atomic_add_int(&rp->r_inmap, -1);
10590 return (error);
10591 }
10592
10593 /*
10594 * We're most likely dealing with a kernel module that likes to READ
10595 * and mmap without OPENing the file (ie: lookup/read/mmap), so lets
10596 * officially OPEN the file to create the necessary client state
10597 * for bookkeeping of os_mmap_read/write counts.
10598 *
10599 * Since VOP_MAP only passes in a pointer to the vnode rather than
10600 * a double pointer, we can't handle the case where nfs4open_otw()
10601 * returns a different vnode than the one passed into VOP_MAP (since
10602 * VOP_DELMAP will not see the vnode nfs4open_otw used). In this case,
10603 * we return NULL and let nfs4_map() fail. Note: the only case where
10604 * this should happen is if the file got removed and replaced with the
10605 * same name on the server (in addition to the fact that we're trying
10606 * to VOP_MAP withouth VOP_OPENing the file in the first place).
10607 */
10608 static int
open_and_get_osp(vnode_t * map_vp,cred_t * cr,nfs4_open_stream_t ** ospp)10609 open_and_get_osp(vnode_t *map_vp, cred_t *cr, nfs4_open_stream_t **ospp)
10610 {
10611 rnode4_t *rp, *drp;
10612 vnode_t *dvp, *open_vp;
10613 char file_name[MAXNAMELEN];
10614 int just_created;
10615 nfs4_open_stream_t *osp;
10616 nfs4_open_owner_t *oop;
10617 int error;
10618
10619 *ospp = NULL;
10620 open_vp = map_vp;
10621
10622 rp = VTOR4(open_vp);
10623 if ((error = vtodv(open_vp, &dvp, cr, TRUE)) != 0)
10624 return (error);
10625 drp = VTOR4(dvp);
10626
10627 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) {
10628 VN_RELE(dvp);
10629 return (EINTR);
10630 }
10631
10632 if ((error = vtoname(open_vp, file_name, MAXNAMELEN)) != 0) {
10633 nfs_rw_exit(&drp->r_rwlock);
10634 VN_RELE(dvp);
10635 return (error);
10636 }
10637
10638 mutex_enter(&rp->r_statev4_lock);
10639 if (rp->created_v4) {
10640 rp->created_v4 = 0;
10641 mutex_exit(&rp->r_statev4_lock);
10642
10643 dnlc_update(dvp, file_name, open_vp);
10644 /* This is needed so we don't bump the open ref count */
10645 just_created = 1;
10646 } else {
10647 mutex_exit(&rp->r_statev4_lock);
10648 just_created = 0;
10649 }
10650
10651 VN_HOLD(map_vp);
10652
10653 error = nfs4open_otw(dvp, file_name, NULL, &open_vp, cr, 0, FREAD, 0,
10654 just_created);
10655 if (error) {
10656 nfs_rw_exit(&drp->r_rwlock);
10657 VN_RELE(dvp);
10658 VN_RELE(map_vp);
10659 return (error);
10660 }
10661
10662 nfs_rw_exit(&drp->r_rwlock);
10663 VN_RELE(dvp);
10664
10665 /*
10666 * If nfs4open_otw() returned a different vnode then "undo"
10667 * the open and return failure to the caller.
10668 */
10669 if (!VN_CMP(open_vp, map_vp)) {
10670 nfs4_error_t e;
10671
10672 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: "
10673 "open returned a different vnode"));
10674 /*
10675 * If there's an error, ignore it,
10676 * and let VOP_INACTIVE handle it.
10677 */
10678 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e,
10679 CLOSE_NORM, 0, 0, 0);
10680 VN_RELE(map_vp);
10681 return (EIO);
10682 }
10683
10684 VN_RELE(map_vp);
10685
10686 oop = find_open_owner(cr, NFS4_PERM_CREATED, VTOMI4(open_vp));
10687 if (!oop) {
10688 nfs4_error_t e;
10689
10690 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: "
10691 "no open owner"));
10692 /*
10693 * If there's an error, ignore it,
10694 * and let VOP_INACTIVE handle it.
10695 */
10696 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e,
10697 CLOSE_NORM, 0, 0, 0);
10698 return (EIO);
10699 }
10700 osp = find_open_stream(oop, rp);
10701 open_owner_rele(oop);
10702 *ospp = osp;
10703 return (0);
10704 }
10705
10706 /*
10707 * Please be aware that when this function is called, the address space write
10708 * a_lock is held. Do not put over the wire calls in this function.
10709 */
10710 /* ARGSUSED */
10711 static int
nfs4_addmap(vnode_t * vp,offset_t off,struct as * as,caddr_t addr,size_t len,uchar_t prot,uchar_t maxprot,uint_t flags,cred_t * cr,caller_context_t * ct)10712 nfs4_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
10713 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
10714 caller_context_t *ct)
10715 {
10716 rnode4_t *rp;
10717 int error = 0;
10718 mntinfo4_t *mi;
10719
10720 mi = VTOMI4(vp);
10721 rp = VTOR4(vp);
10722
10723 if (nfs_zone() != mi->mi_zone)
10724 return (EIO);
10725 if (vp->v_flag & VNOMAP)
10726 return (ENOSYS);
10727
10728 /*
10729 * Don't need to update the open stream first, since this
10730 * mmap can't add any additional share access that isn't
10731 * already contained in the open stream (for the case where we
10732 * open/mmap/only update rp->r_mapcnt/server reboots/reopen doesn't
10733 * take into account os_mmap_read[write] counts).
10734 */
10735 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len));
10736
10737 if (vp->v_type == VREG) {
10738 /*
10739 * We need to retrieve the open stream and update the counts.
10740 * If there is no open stream here, something is wrong.
10741 */
10742 nfs4_open_stream_t *osp = NULL;
10743 nfs4_open_owner_t *oop = NULL;
10744
10745 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi);
10746 if (oop != NULL) {
10747 /* returns with 'os_sync_lock' held */
10748 osp = find_open_stream(oop, rp);
10749 open_owner_rele(oop);
10750 }
10751 if (osp == NULL) {
10752 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE,
10753 "nfs4_addmap: we should have an osp"
10754 "but we don't, so fail with EIO"));
10755 error = EIO;
10756 goto out;
10757 }
10758
10759 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "nfs4_addmap: osp %p,"
10760 " pages %ld, prot 0x%x", (void *)osp, btopr(len), prot));
10761
10762 /*
10763 * Update the map count in the open stream.
10764 * This is necessary in the case where we
10765 * open/mmap/close/, then the server reboots, and we
10766 * attempt to reopen. If the mmap doesn't add share
10767 * access then we send an invalid reopen with
10768 * access = NONE.
10769 *
10770 * We need to specifically check each PROT_* so a mmap
10771 * call of (PROT_WRITE | PROT_EXEC) will ensure us both
10772 * read and write access. A simple comparison of prot
10773 * to ~PROT_WRITE to determine read access is insufficient
10774 * since prot can be |= with PROT_USER, etc.
10775 */
10776
10777 /*
10778 * Unless we're MAP_SHARED, no sense in adding os_mmap_write
10779 */
10780 if ((flags & MAP_SHARED) && (maxprot & PROT_WRITE))
10781 osp->os_mmap_write += btopr(len);
10782 if (maxprot & PROT_READ)
10783 osp->os_mmap_read += btopr(len);
10784 if (maxprot & PROT_EXEC)
10785 osp->os_mmap_read += btopr(len);
10786 /*
10787 * Ensure that os_mmap_read gets incremented, even if
10788 * maxprot were to look like PROT_NONE.
10789 */
10790 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) &&
10791 !(maxprot & PROT_EXEC))
10792 osp->os_mmap_read += btopr(len);
10793 osp->os_mapcnt += btopr(len);
10794 mutex_exit(&osp->os_sync_lock);
10795 open_stream_rele(osp, rp);
10796 }
10797
10798 out:
10799 /*
10800 * If we got an error, then undo our
10801 * incrementing of 'r_mapcnt'.
10802 */
10803
10804 if (error) {
10805 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(len));
10806 ASSERT(rp->r_mapcnt >= 0);
10807 }
10808 return (error);
10809 }
10810
10811 /* ARGSUSED */
10812 static int
nfs4_cmp(vnode_t * vp1,vnode_t * vp2,caller_context_t * ct)10813 nfs4_cmp(vnode_t *vp1, vnode_t *vp2, caller_context_t *ct)
10814 {
10815
10816 return (VTOR4(vp1) == VTOR4(vp2));
10817 }
10818
10819 /* ARGSUSED */
10820 static int
nfs4_frlock(vnode_t * vp,int cmd,struct flock64 * bfp,int flag,offset_t offset,struct flk_callback * flk_cbp,cred_t * cr,caller_context_t * ct)10821 nfs4_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag,
10822 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr,
10823 caller_context_t *ct)
10824 {
10825 int rc;
10826 u_offset_t start, end;
10827 rnode4_t *rp;
10828 int error = 0, intr = INTR4(vp);
10829 nfs4_error_t e;
10830
10831 if (nfs_zone() != VTOMI4(vp)->mi_zone)
10832 return (EIO);
10833
10834 /* check for valid cmd parameter */
10835 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW)
10836 return (EINVAL);
10837
10838 /* Verify l_type. */
10839 switch (bfp->l_type) {
10840 case F_RDLCK:
10841 if (cmd != F_GETLK && !(flag & FREAD))
10842 return (EBADF);
10843 break;
10844 case F_WRLCK:
10845 if (cmd != F_GETLK && !(flag & FWRITE))
10846 return (EBADF);
10847 break;
10848 case F_UNLCK:
10849 intr = 0;
10850 break;
10851
10852 default:
10853 return (EINVAL);
10854 }
10855
10856 /* check the validity of the lock range */
10857 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset))
10858 return (rc);
10859 if (rc = flk_check_lock_data(start, end, MAXEND))
10860 return (rc);
10861
10862 /*
10863 * If the filesystem is mounted using local locking, pass the
10864 * request off to the local locking code.
10865 */
10866 if (VTOMI4(vp)->mi_flags & MI4_LLOCK || vp->v_type != VREG) {
10867 if (cmd == F_SETLK || cmd == F_SETLKW) {
10868 /*
10869 * For complete safety, we should be holding
10870 * r_lkserlock. However, we can't call
10871 * nfs4_safelock and then fs_frlock while
10872 * holding r_lkserlock, so just invoke
10873 * nfs4_safelock and expect that this will
10874 * catch enough of the cases.
10875 */
10876 if (!nfs4_safelock(vp, bfp, cr))
10877 return (EAGAIN);
10878 }
10879 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
10880 }
10881
10882 rp = VTOR4(vp);
10883
10884 /*
10885 * Check whether the given lock request can proceed, given the
10886 * current file mappings.
10887 */
10888 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr))
10889 return (EINTR);
10890 if (cmd == F_SETLK || cmd == F_SETLKW) {
10891 if (!nfs4_safelock(vp, bfp, cr)) {
10892 rc = EAGAIN;
10893 goto done;
10894 }
10895 }
10896
10897 /*
10898 * Flush the cache after waiting for async I/O to finish. For new
10899 * locks, this is so that the process gets the latest bits from the
10900 * server. For unlocks, this is so that other clients see the
10901 * latest bits once the file has been unlocked. If currently dirty
10902 * pages can't be flushed, then don't allow a lock to be set. But
10903 * allow unlocks to succeed, to avoid having orphan locks on the
10904 * server.
10905 */
10906 if (cmd != F_GETLK) {
10907 mutex_enter(&rp->r_statelock);
10908 while (rp->r_count > 0) {
10909 if (intr) {
10910 klwp_t *lwp = ttolwp(curthread);
10911
10912 if (lwp != NULL)
10913 lwp->lwp_nostop++;
10914 if (cv_wait_sig(&rp->r_cv,
10915 &rp->r_statelock) == 0) {
10916 if (lwp != NULL)
10917 lwp->lwp_nostop--;
10918 rc = EINTR;
10919 break;
10920 }
10921 if (lwp != NULL)
10922 lwp->lwp_nostop--;
10923 } else
10924 cv_wait(&rp->r_cv, &rp->r_statelock);
10925 }
10926 mutex_exit(&rp->r_statelock);
10927 if (rc != 0)
10928 goto done;
10929 error = nfs4_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct);
10930 if (error) {
10931 if (error == ENOSPC || error == EDQUOT) {
10932 mutex_enter(&rp->r_statelock);
10933 if (!rp->r_error)
10934 rp->r_error = error;
10935 mutex_exit(&rp->r_statelock);
10936 }
10937 if (bfp->l_type != F_UNLCK) {
10938 rc = ENOLCK;
10939 goto done;
10940 }
10941 }
10942 }
10943
10944 /*
10945 * Call the lock manager to do the real work of contacting
10946 * the server and obtaining the lock.
10947 */
10948 nfs4frlock(NFS4_LCK_CTYPE_NORM, vp, cmd, bfp, flag, offset,
10949 cr, &e, NULL, NULL);
10950 rc = e.error;
10951
10952 if (rc == 0)
10953 nfs4_lockcompletion(vp, cmd);
10954
10955 done:
10956 nfs_rw_exit(&rp->r_lkserlock);
10957
10958 return (rc);
10959 }
10960
10961 /*
10962 * Free storage space associated with the specified vnode. The portion
10963 * to be freed is specified by bfp->l_start and bfp->l_len (already
10964 * normalized to a "whence" of 0).
10965 *
10966 * This is an experimental facility whose continued existence is not
10967 * guaranteed. Currently, we only support the special case
10968 * of l_len == 0, meaning free to end of file.
10969 */
10970 /* ARGSUSED */
10971 static int
nfs4_space(vnode_t * vp,int cmd,struct flock64 * bfp,int flag,offset_t offset,cred_t * cr,caller_context_t * ct)10972 nfs4_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag,
10973 offset_t offset, cred_t *cr, caller_context_t *ct)
10974 {
10975 int error;
10976
10977 if (nfs_zone() != VTOMI4(vp)->mi_zone)
10978 return (EIO);
10979 ASSERT(vp->v_type == VREG);
10980 if (cmd != F_FREESP)
10981 return (EINVAL);
10982
10983 error = convoff(vp, bfp, 0, offset);
10984 if (!error) {
10985 ASSERT(bfp->l_start >= 0);
10986 if (bfp->l_len == 0) {
10987 struct vattr va;
10988
10989 va.va_mask = AT_SIZE;
10990 va.va_size = bfp->l_start;
10991 error = nfs4setattr(vp, &va, 0, cr, NULL);
10992 } else
10993 error = EINVAL;
10994 }
10995
10996 return (error);
10997 }
10998
10999 /* ARGSUSED */
11000 int
nfs4_realvp(vnode_t * vp,vnode_t ** vpp,caller_context_t * ct)11001 nfs4_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct)
11002 {
11003 rnode4_t *rp;
11004 rp = VTOR4(vp);
11005
11006 if (vp->v_type == VREG && IS_SHADOW(vp, rp)) {
11007 vp = RTOV4(rp);
11008 }
11009 *vpp = vp;
11010 return (0);
11011 }
11012
11013 /*
11014 * Setup and add an address space callback to do the work of the delmap call.
11015 * The callback will (and must be) deleted in the actual callback function.
11016 *
11017 * This is done in order to take care of the problem that we have with holding
11018 * the address space's a_lock for a long period of time (e.g. if the NFS server
11019 * is down). Callbacks will be executed in the address space code while the
11020 * a_lock is not held. Holding the address space's a_lock causes things such
11021 * as ps and fork to hang because they are trying to acquire this lock as well.
11022 */
11023 /* ARGSUSED */
11024 static int
nfs4_delmap(vnode_t * vp,offset_t off,struct as * as,caddr_t addr,size_t len,uint_t prot,uint_t maxprot,uint_t flags,cred_t * cr,caller_context_t * ct)11025 nfs4_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
11026 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
11027 caller_context_t *ct)
11028 {
11029 int caller_found;
11030 int error;
11031 rnode4_t *rp;
11032 nfs4_delmap_args_t *dmapp;
11033 nfs4_delmapcall_t *delmap_call;
11034
11035 if (vp->v_flag & VNOMAP)
11036 return (ENOSYS);
11037
11038 /*
11039 * A process may not change zones if it has NFS pages mmap'ed
11040 * in, so we can't legitimately get here from the wrong zone.
11041 */
11042 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
11043
11044 rp = VTOR4(vp);
11045
11046 /*
11047 * The way that the address space of this process deletes its mapping
11048 * of this file is via the following call chains:
11049 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap()
11050 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap()
11051 *
11052 * With the use of address space callbacks we are allowed to drop the
11053 * address space lock, a_lock, while executing the NFS operations that
11054 * need to go over the wire. Returning EAGAIN to the caller of this
11055 * function is what drives the execution of the callback that we add
11056 * below. The callback will be executed by the address space code
11057 * after dropping the a_lock. When the callback is finished, since
11058 * we dropped the a_lock, it must be re-acquired and segvn_unmap()
11059 * is called again on the same segment to finish the rest of the work
11060 * that needs to happen during unmapping.
11061 *
11062 * This action of calling back into the segment driver causes
11063 * nfs4_delmap() to get called again, but since the callback was
11064 * already executed at this point, it already did the work and there
11065 * is nothing left for us to do.
11066 *
11067 * To Summarize:
11068 * - The first time nfs4_delmap is called by the current thread is when
11069 * we add the caller associated with this delmap to the delmap caller
11070 * list, add the callback, and return EAGAIN.
11071 * - The second time in this call chain when nfs4_delmap is called we
11072 * will find this caller in the delmap caller list and realize there
11073 * is no more work to do thus removing this caller from the list and
11074 * returning the error that was set in the callback execution.
11075 */
11076 caller_found = nfs4_find_and_delete_delmapcall(rp, &error);
11077 if (caller_found) {
11078 /*
11079 * 'error' is from the actual delmap operations. To avoid
11080 * hangs, we need to handle the return of EAGAIN differently
11081 * since this is what drives the callback execution.
11082 * In this case, we don't want to return EAGAIN and do the
11083 * callback execution because there are none to execute.
11084 */
11085 if (error == EAGAIN)
11086 return (0);
11087 else
11088 return (error);
11089 }
11090
11091 /* current caller was not in the list */
11092 delmap_call = nfs4_init_delmapcall();
11093
11094 mutex_enter(&rp->r_statelock);
11095 list_insert_tail(&rp->r_indelmap, delmap_call);
11096 mutex_exit(&rp->r_statelock);
11097
11098 dmapp = kmem_alloc(sizeof (nfs4_delmap_args_t), KM_SLEEP);
11099
11100 dmapp->vp = vp;
11101 dmapp->off = off;
11102 dmapp->addr = addr;
11103 dmapp->len = len;
11104 dmapp->prot = prot;
11105 dmapp->maxprot = maxprot;
11106 dmapp->flags = flags;
11107 dmapp->cr = cr;
11108 dmapp->caller = delmap_call;
11109
11110 error = as_add_callback(as, nfs4_delmap_callback, dmapp,
11111 AS_UNMAP_EVENT, addr, len, KM_SLEEP);
11112
11113 return (error ? error : EAGAIN);
11114 }
11115
11116 static nfs4_delmapcall_t *
nfs4_init_delmapcall()11117 nfs4_init_delmapcall()
11118 {
11119 nfs4_delmapcall_t *delmap_call;
11120
11121 delmap_call = kmem_alloc(sizeof (nfs4_delmapcall_t), KM_SLEEP);
11122 delmap_call->call_id = curthread;
11123 delmap_call->error = 0;
11124
11125 return (delmap_call);
11126 }
11127
11128 static void
nfs4_free_delmapcall(nfs4_delmapcall_t * delmap_call)11129 nfs4_free_delmapcall(nfs4_delmapcall_t *delmap_call)
11130 {
11131 kmem_free(delmap_call, sizeof (nfs4_delmapcall_t));
11132 }
11133
11134 /*
11135 * Searches for the current delmap caller (based on curthread) in the list of
11136 * callers. If it is found, we remove it and free the delmap caller.
11137 * Returns:
11138 * 0 if the caller wasn't found
11139 * 1 if the caller was found, removed and freed. *errp will be set
11140 * to what the result of the delmap was.
11141 */
11142 static int
nfs4_find_and_delete_delmapcall(rnode4_t * rp,int * errp)11143 nfs4_find_and_delete_delmapcall(rnode4_t *rp, int *errp)
11144 {
11145 nfs4_delmapcall_t *delmap_call;
11146
11147 /*
11148 * If the list doesn't exist yet, we create it and return
11149 * that the caller wasn't found. No list = no callers.
11150 */
11151 mutex_enter(&rp->r_statelock);
11152 if (!(rp->r_flags & R4DELMAPLIST)) {
11153 /* The list does not exist */
11154 list_create(&rp->r_indelmap, sizeof (nfs4_delmapcall_t),
11155 offsetof(nfs4_delmapcall_t, call_node));
11156 rp->r_flags |= R4DELMAPLIST;
11157 mutex_exit(&rp->r_statelock);
11158 return (0);
11159 } else {
11160 /* The list exists so search it */
11161 for (delmap_call = list_head(&rp->r_indelmap);
11162 delmap_call != NULL;
11163 delmap_call = list_next(&rp->r_indelmap, delmap_call)) {
11164 if (delmap_call->call_id == curthread) {
11165 /* current caller is in the list */
11166 *errp = delmap_call->error;
11167 list_remove(&rp->r_indelmap, delmap_call);
11168 mutex_exit(&rp->r_statelock);
11169 nfs4_free_delmapcall(delmap_call);
11170 return (1);
11171 }
11172 }
11173 }
11174 mutex_exit(&rp->r_statelock);
11175 return (0);
11176 }
11177
11178 /*
11179 * Remove some pages from an mmap'd vnode. Just update the
11180 * count of pages. If doing close-to-open, then flush and
11181 * commit all of the pages associated with this file.
11182 * Otherwise, start an asynchronous page flush to write out
11183 * any dirty pages. This will also associate a credential
11184 * with the rnode which can be used to write the pages.
11185 */
11186 /* ARGSUSED */
11187 static void
nfs4_delmap_callback(struct as * as,void * arg,uint_t event)11188 nfs4_delmap_callback(struct as *as, void *arg, uint_t event)
11189 {
11190 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
11191 rnode4_t *rp;
11192 mntinfo4_t *mi;
11193 nfs4_delmap_args_t *dmapp = (nfs4_delmap_args_t *)arg;
11194
11195 rp = VTOR4(dmapp->vp);
11196 mi = VTOMI4(dmapp->vp);
11197
11198 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len));
11199 ASSERT(rp->r_mapcnt >= 0);
11200
11201 /*
11202 * Initiate a page flush and potential commit if there are
11203 * pages, the file system was not mounted readonly, the segment
11204 * was mapped shared, and the pages themselves were writeable.
11205 */
11206 if (nfs4_has_pages(dmapp->vp) &&
11207 !(dmapp->vp->v_vfsp->vfs_flag & VFS_RDONLY) &&
11208 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) {
11209 mutex_enter(&rp->r_statelock);
11210 rp->r_flags |= R4DIRTY;
11211 mutex_exit(&rp->r_statelock);
11212 e.error = nfs4_putpage_commit(dmapp->vp, dmapp->off,
11213 dmapp->len, dmapp->cr);
11214 if (!e.error) {
11215 mutex_enter(&rp->r_statelock);
11216 e.error = rp->r_error;
11217 rp->r_error = 0;
11218 mutex_exit(&rp->r_statelock);
11219 }
11220 } else
11221 e.error = 0;
11222
11223 if ((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO))
11224 (void) nfs4_putpage(dmapp->vp, dmapp->off, dmapp->len,
11225 B_INVAL, dmapp->cr, NULL);
11226
11227 if (e.error) {
11228 e.stat = puterrno4(e.error);
11229 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0,
11230 OP_COMMIT, FALSE, NULL, 0, dmapp->vp);
11231 dmapp->caller->error = e.error;
11232 }
11233
11234 /* Check to see if we need to close the file */
11235
11236 if (dmapp->vp->v_type == VREG) {
11237 nfs4close_one(dmapp->vp, NULL, dmapp->cr, 0, NULL, &e,
11238 CLOSE_DELMAP, dmapp->len, dmapp->maxprot, dmapp->flags);
11239
11240 if (e.error != 0 || e.stat != NFS4_OK) {
11241 /*
11242 * Since it is possible that e.error == 0 and
11243 * e.stat != NFS4_OK (and vice versa),
11244 * we do the proper checking in order to get both
11245 * e.error and e.stat reporting the correct info.
11246 */
11247 if (e.stat == NFS4_OK)
11248 e.stat = puterrno4(e.error);
11249 if (e.error == 0)
11250 e.error = geterrno4(e.stat);
11251
11252 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0,
11253 OP_CLOSE, FALSE, NULL, 0, dmapp->vp);
11254 dmapp->caller->error = e.error;
11255 }
11256 }
11257
11258 (void) as_delete_callback(as, arg);
11259 kmem_free(dmapp, sizeof (nfs4_delmap_args_t));
11260 }
11261
11262
11263 static uint_t
fattr4_maxfilesize_to_bits(uint64_t ll)11264 fattr4_maxfilesize_to_bits(uint64_t ll)
11265 {
11266 uint_t l = 1;
11267
11268 if (ll == 0) {
11269 return (0);
11270 }
11271
11272 if (ll & 0xffffffff00000000) {
11273 l += 32; ll >>= 32;
11274 }
11275 if (ll & 0xffff0000) {
11276 l += 16; ll >>= 16;
11277 }
11278 if (ll & 0xff00) {
11279 l += 8; ll >>= 8;
11280 }
11281 if (ll & 0xf0) {
11282 l += 4; ll >>= 4;
11283 }
11284 if (ll & 0xc) {
11285 l += 2; ll >>= 2;
11286 }
11287 if (ll & 0x2) {
11288 l += 1;
11289 }
11290 return (l);
11291 }
11292
11293 static int
nfs4_have_xattrs(vnode_t * vp,ulong_t * valp,cred_t * cr)11294 nfs4_have_xattrs(vnode_t *vp, ulong_t *valp, cred_t *cr)
11295 {
11296 vnode_t *avp = NULL;
11297 int error;
11298
11299 if ((error = nfs4lookup_xattr(vp, "", &avp,
11300 LOOKUP_XATTR, cr)) == 0)
11301 error = do_xattr_exists_check(avp, valp, cr);
11302 if (avp)
11303 VN_RELE(avp);
11304
11305 return (error);
11306 }
11307
11308 /* ARGSUSED */
11309 int
nfs4_pathconf(vnode_t * vp,int cmd,ulong_t * valp,cred_t * cr,caller_context_t * ct)11310 nfs4_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
11311 caller_context_t *ct)
11312 {
11313 int error;
11314 hrtime_t t;
11315 rnode4_t *rp;
11316 nfs4_ga_res_t gar;
11317 nfs4_ga_ext_res_t ger;
11318
11319 gar.n4g_ext_res = &ger;
11320
11321 if (nfs_zone() != VTOMI4(vp)->mi_zone)
11322 return (EIO);
11323 if (cmd == _PC_PATH_MAX || cmd == _PC_SYMLINK_MAX) {
11324 *valp = MAXPATHLEN;
11325 return (0);
11326 }
11327 if (cmd == _PC_ACL_ENABLED) {
11328 *valp = _ACL_ACE_ENABLED;
11329 return (0);
11330 }
11331
11332 rp = VTOR4(vp);
11333 if (cmd == _PC_XATTR_EXISTS) {
11334 /*
11335 * The existence of the xattr directory is not sufficient
11336 * for determining whether generic user attributes exists.
11337 * The attribute directory could only be a transient directory
11338 * used for Solaris sysattr support. Do a small readdir
11339 * to verify if the only entries are sysattrs or not.
11340 *
11341 * pc4_xattr_valid can be only be trusted when r_xattr_dir
11342 * is NULL. Once the xadir vp exists, we can create xattrs,
11343 * and we don't have any way to update the "base" object's
11344 * pc4_xattr_exists from the xattr or xadir. Maybe FEM
11345 * could help out.
11346 */
11347 if (ATTRCACHE4_VALID(vp) && rp->r_pathconf.pc4_xattr_valid &&
11348 rp->r_xattr_dir == NULL) {
11349 return (nfs4_have_xattrs(vp, valp, cr));
11350 }
11351 } else { /* OLD CODE */
11352 if (ATTRCACHE4_VALID(vp)) {
11353 mutex_enter(&rp->r_statelock);
11354 if (rp->r_pathconf.pc4_cache_valid) {
11355 error = 0;
11356 switch (cmd) {
11357 case _PC_FILESIZEBITS:
11358 *valp =
11359 rp->r_pathconf.pc4_filesizebits;
11360 break;
11361 case _PC_LINK_MAX:
11362 *valp =
11363 rp->r_pathconf.pc4_link_max;
11364 break;
11365 case _PC_NAME_MAX:
11366 *valp =
11367 rp->r_pathconf.pc4_name_max;
11368 break;
11369 case _PC_CHOWN_RESTRICTED:
11370 *valp =
11371 rp->r_pathconf.pc4_chown_restricted;
11372 break;
11373 case _PC_NO_TRUNC:
11374 *valp =
11375 rp->r_pathconf.pc4_no_trunc;
11376 break;
11377 default:
11378 error = EINVAL;
11379 break;
11380 }
11381 mutex_exit(&rp->r_statelock);
11382 #ifdef DEBUG
11383 nfs4_pathconf_cache_hits++;
11384 #endif
11385 return (error);
11386 }
11387 mutex_exit(&rp->r_statelock);
11388 }
11389 }
11390 #ifdef DEBUG
11391 nfs4_pathconf_cache_misses++;
11392 #endif
11393
11394 t = gethrtime();
11395
11396 error = nfs4_attr_otw(vp, TAG_PATHCONF, &gar, NFS4_PATHCONF_MASK, cr);
11397
11398 if (error) {
11399 mutex_enter(&rp->r_statelock);
11400 rp->r_pathconf.pc4_cache_valid = FALSE;
11401 rp->r_pathconf.pc4_xattr_valid = FALSE;
11402 mutex_exit(&rp->r_statelock);
11403 return (error);
11404 }
11405
11406 /* interpret the max filesize */
11407 gar.n4g_ext_res->n4g_pc4.pc4_filesizebits =
11408 fattr4_maxfilesize_to_bits(gar.n4g_ext_res->n4g_maxfilesize);
11409
11410 /* Store the attributes we just received */
11411 nfs4_attr_cache(vp, &gar, t, cr, TRUE, NULL);
11412
11413 switch (cmd) {
11414 case _PC_FILESIZEBITS:
11415 *valp = gar.n4g_ext_res->n4g_pc4.pc4_filesizebits;
11416 break;
11417 case _PC_LINK_MAX:
11418 *valp = gar.n4g_ext_res->n4g_pc4.pc4_link_max;
11419 break;
11420 case _PC_NAME_MAX:
11421 *valp = gar.n4g_ext_res->n4g_pc4.pc4_name_max;
11422 break;
11423 case _PC_CHOWN_RESTRICTED:
11424 *valp = gar.n4g_ext_res->n4g_pc4.pc4_chown_restricted;
11425 break;
11426 case _PC_NO_TRUNC:
11427 *valp = gar.n4g_ext_res->n4g_pc4.pc4_no_trunc;
11428 break;
11429 case _PC_XATTR_EXISTS:
11430 if (gar.n4g_ext_res->n4g_pc4.pc4_xattr_exists) {
11431 if (error = nfs4_have_xattrs(vp, valp, cr))
11432 return (error);
11433 }
11434 break;
11435 default:
11436 return (EINVAL);
11437 }
11438
11439 return (0);
11440 }
11441
11442 /*
11443 * Called by async thread to do synchronous pageio. Do the i/o, wait
11444 * for it to complete, and cleanup the page list when done.
11445 */
11446 static int
nfs4_sync_pageio(vnode_t * vp,page_t * pp,u_offset_t io_off,size_t io_len,int flags,cred_t * cr)11447 nfs4_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
11448 int flags, cred_t *cr)
11449 {
11450 int error;
11451
11452 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
11453
11454 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
11455 if (flags & B_READ)
11456 pvn_read_done(pp, (error ? B_ERROR : 0) | flags);
11457 else
11458 pvn_write_done(pp, (error ? B_ERROR : 0) | flags);
11459 return (error);
11460 }
11461
11462 /* ARGSUSED */
11463 static int
nfs4_pageio(vnode_t * vp,page_t * pp,u_offset_t io_off,size_t io_len,int flags,cred_t * cr,caller_context_t * ct)11464 nfs4_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
11465 int flags, cred_t *cr, caller_context_t *ct)
11466 {
11467 int error;
11468 rnode4_t *rp;
11469
11470 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone)
11471 return (EIO);
11472
11473 if (pp == NULL)
11474 return (EINVAL);
11475
11476 rp = VTOR4(vp);
11477 mutex_enter(&rp->r_statelock);
11478 rp->r_count++;
11479 mutex_exit(&rp->r_statelock);
11480
11481 if (flags & B_ASYNC) {
11482 error = nfs4_async_pageio(vp, pp, io_off, io_len, flags, cr,
11483 nfs4_sync_pageio);
11484 } else
11485 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
11486 mutex_enter(&rp->r_statelock);
11487 rp->r_count--;
11488 cv_broadcast(&rp->r_cv);
11489 mutex_exit(&rp->r_statelock);
11490 return (error);
11491 }
11492
11493 /* ARGSUSED */
11494 static void
nfs4_dispose(vnode_t * vp,page_t * pp,int fl,int dn,cred_t * cr,caller_context_t * ct)11495 nfs4_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr,
11496 caller_context_t *ct)
11497 {
11498 int error;
11499 rnode4_t *rp;
11500 page_t *plist;
11501 page_t *pptr;
11502 offset3 offset;
11503 count3 len;
11504 k_sigset_t smask;
11505
11506 /*
11507 * We should get called with fl equal to either B_FREE or
11508 * B_INVAL. Any other value is illegal.
11509 *
11510 * The page that we are either supposed to free or destroy
11511 * should be exclusive locked and its io lock should not
11512 * be held.
11513 */
11514 ASSERT(fl == B_FREE || fl == B_INVAL);
11515 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr);
11516
11517 rp = VTOR4(vp);
11518
11519 /*
11520 * If the page doesn't need to be committed or we shouldn't
11521 * even bother attempting to commit it, then just make sure
11522 * that the p_fsdata byte is clear and then either free or
11523 * destroy the page as appropriate.
11524 */
11525 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & R4STALE)) {
11526 pp->p_fsdata = C_NOCOMMIT;
11527 if (fl == B_FREE)
11528 page_free(pp, dn);
11529 else
11530 page_destroy(pp, dn);
11531 return;
11532 }
11533
11534 /*
11535 * If there is a page invalidation operation going on, then
11536 * if this is one of the pages being destroyed, then just
11537 * clear the p_fsdata byte and then either free or destroy
11538 * the page as appropriate.
11539 */
11540 mutex_enter(&rp->r_statelock);
11541 if ((rp->r_flags & R4TRUNCATE) && pp->p_offset >= rp->r_truncaddr) {
11542 mutex_exit(&rp->r_statelock);
11543 pp->p_fsdata = C_NOCOMMIT;
11544 if (fl == B_FREE)
11545 page_free(pp, dn);
11546 else
11547 page_destroy(pp, dn);
11548 return;
11549 }
11550
11551 /*
11552 * If we are freeing this page and someone else is already
11553 * waiting to do a commit, then just unlock the page and
11554 * return. That other thread will take care of commiting
11555 * this page. The page can be freed sometime after the
11556 * commit has finished. Otherwise, if the page is marked
11557 * as delay commit, then we may be getting called from
11558 * pvn_write_done, one page at a time. This could result
11559 * in one commit per page, so we end up doing lots of small
11560 * commits instead of fewer larger commits. This is bad,
11561 * we want do as few commits as possible.
11562 */
11563 if (fl == B_FREE) {
11564 if (rp->r_flags & R4COMMITWAIT) {
11565 page_unlock(pp);
11566 mutex_exit(&rp->r_statelock);
11567 return;
11568 }
11569 if (pp->p_fsdata == C_DELAYCOMMIT) {
11570 pp->p_fsdata = C_COMMIT;
11571 page_unlock(pp);
11572 mutex_exit(&rp->r_statelock);
11573 return;
11574 }
11575 }
11576
11577 /*
11578 * Check to see if there is a signal which would prevent an
11579 * attempt to commit the pages from being successful. If so,
11580 * then don't bother with all of the work to gather pages and
11581 * generate the unsuccessful RPC. Just return from here and
11582 * let the page be committed at some later time.
11583 */
11584 sigintr(&smask, VTOMI4(vp)->mi_flags & MI4_INT);
11585 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) {
11586 sigunintr(&smask);
11587 page_unlock(pp);
11588 mutex_exit(&rp->r_statelock);
11589 return;
11590 }
11591 sigunintr(&smask);
11592
11593 /*
11594 * We are starting to need to commit pages, so let's try
11595 * to commit as many as possible at once to reduce the
11596 * overhead.
11597 *
11598 * Set the `commit inprogress' state bit. We must
11599 * first wait until any current one finishes. Then
11600 * we initialize the c_pages list with this page.
11601 */
11602 while (rp->r_flags & R4COMMIT) {
11603 rp->r_flags |= R4COMMITWAIT;
11604 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock);
11605 rp->r_flags &= ~R4COMMITWAIT;
11606 }
11607 rp->r_flags |= R4COMMIT;
11608 mutex_exit(&rp->r_statelock);
11609 ASSERT(rp->r_commit.c_pages == NULL);
11610 rp->r_commit.c_pages = pp;
11611 rp->r_commit.c_commbase = (offset3)pp->p_offset;
11612 rp->r_commit.c_commlen = PAGESIZE;
11613
11614 /*
11615 * Gather together all other pages which can be committed.
11616 * They will all be chained off r_commit.c_pages.
11617 */
11618 nfs4_get_commit(vp);
11619
11620 /*
11621 * Clear the `commit inprogress' status and disconnect
11622 * the list of pages to be committed from the rnode.
11623 * At this same time, we also save the starting offset
11624 * and length of data to be committed on the server.
11625 */
11626 plist = rp->r_commit.c_pages;
11627 rp->r_commit.c_pages = NULL;
11628 offset = rp->r_commit.c_commbase;
11629 len = rp->r_commit.c_commlen;
11630 mutex_enter(&rp->r_statelock);
11631 rp->r_flags &= ~R4COMMIT;
11632 cv_broadcast(&rp->r_commit.c_cv);
11633 mutex_exit(&rp->r_statelock);
11634
11635 if (curproc == proc_pageout || curproc == proc_fsflush ||
11636 nfs_zone() != VTOMI4(vp)->mi_zone) {
11637 nfs4_async_commit(vp, plist, offset, len,
11638 cr, do_nfs4_async_commit);
11639 return;
11640 }
11641
11642 /*
11643 * Actually generate the COMMIT op over the wire operation.
11644 */
11645 error = nfs4_commit(vp, (offset4)offset, (count4)len, cr);
11646
11647 /*
11648 * If we got an error during the commit, just unlock all
11649 * of the pages. The pages will get retransmitted to the
11650 * server during a putpage operation.
11651 */
11652 if (error) {
11653 while (plist != NULL) {
11654 pptr = plist;
11655 page_sub(&plist, pptr);
11656 page_unlock(pptr);
11657 }
11658 return;
11659 }
11660
11661 /*
11662 * We've tried as hard as we can to commit the data to stable
11663 * storage on the server. We just unlock the rest of the pages
11664 * and clear the commit required state. They will be put
11665 * onto the tail of the cachelist if they are nolonger
11666 * mapped.
11667 */
11668 while (plist != pp) {
11669 pptr = plist;
11670 page_sub(&plist, pptr);
11671 pptr->p_fsdata = C_NOCOMMIT;
11672 page_unlock(pptr);
11673 }
11674
11675 /*
11676 * It is possible that nfs4_commit didn't return error but
11677 * some other thread has modified the page we are going
11678 * to free/destroy.
11679 * In this case we need to rewrite the page. Do an explicit check
11680 * before attempting to free/destroy the page. If modified, needs to
11681 * be rewritten so unlock the page and return.
11682 */
11683 if (hat_ismod(pp)) {
11684 pp->p_fsdata = C_NOCOMMIT;
11685 page_unlock(pp);
11686 return;
11687 }
11688
11689 /*
11690 * Now, as appropriate, either free or destroy the page
11691 * that we were called with.
11692 */
11693 pp->p_fsdata = C_NOCOMMIT;
11694 if (fl == B_FREE)
11695 page_free(pp, dn);
11696 else
11697 page_destroy(pp, dn);
11698 }
11699
11700 /*
11701 * Commit requires that the current fh be the file written to.
11702 * The compound op structure is:
11703 * PUTFH(file), COMMIT
11704 */
11705 static int
nfs4_commit(vnode_t * vp,offset4 offset,count4 count,cred_t * cr)11706 nfs4_commit(vnode_t *vp, offset4 offset, count4 count, cred_t *cr)
11707 {
11708 COMPOUND4args_clnt args;
11709 COMPOUND4res_clnt res;
11710 COMMIT4res *cm_res;
11711 nfs_argop4 argop[2];
11712 nfs_resop4 *resop;
11713 int doqueue;
11714 mntinfo4_t *mi;
11715 rnode4_t *rp;
11716 cred_t *cred_otw = NULL;
11717 bool_t needrecov = FALSE;
11718 nfs4_recov_state_t recov_state;
11719 nfs4_open_stream_t *osp = NULL;
11720 bool_t first_time = TRUE; /* first time getting OTW cred */
11721 bool_t last_time = FALSE; /* last time getting OTW cred */
11722 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
11723
11724 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
11725
11726 rp = VTOR4(vp);
11727
11728 mi = VTOMI4(vp);
11729 recov_state.rs_flags = 0;
11730 recov_state.rs_num_retry_despite_err = 0;
11731 get_commit_cred:
11732 /*
11733 * Releases the osp, if a valid open stream is provided.
11734 * Puts a hold on the cred_otw and the new osp (if found).
11735 */
11736 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp,
11737 &first_time, &last_time);
11738 args.ctag = TAG_COMMIT;
11739 recov_retry:
11740 /*
11741 * Commit ops: putfh file; commit
11742 */
11743 args.array_len = 2;
11744 args.array = argop;
11745
11746 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_COMMIT,
11747 &recov_state, NULL);
11748 if (e.error) {
11749 crfree(cred_otw);
11750 if (osp != NULL)
11751 open_stream_rele(osp, rp);
11752 return (e.error);
11753 }
11754
11755 /* putfh directory */
11756 argop[0].argop = OP_CPUTFH;
11757 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
11758
11759 /* commit */
11760 argop[1].argop = OP_COMMIT;
11761 argop[1].nfs_argop4_u.opcommit.offset = offset;
11762 argop[1].nfs_argop4_u.opcommit.count = count;
11763
11764 doqueue = 1;
11765 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, &e);
11766
11767 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
11768 if (!needrecov && e.error) {
11769 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state,
11770 needrecov);
11771 crfree(cred_otw);
11772 if (e.error == EACCES && last_time == FALSE)
11773 goto get_commit_cred;
11774 if (osp != NULL)
11775 open_stream_rele(osp, rp);
11776 return (e.error);
11777 }
11778
11779 if (needrecov) {
11780 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
11781 NULL, OP_COMMIT, NULL, NULL, NULL) == FALSE) {
11782 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT,
11783 &recov_state, needrecov);
11784 if (!e.error)
11785 (void) xdr_free(xdr_COMPOUND4res_clnt,
11786 (caddr_t)&res);
11787 goto recov_retry;
11788 }
11789 if (e.error) {
11790 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT,
11791 &recov_state, needrecov);
11792 crfree(cred_otw);
11793 if (osp != NULL)
11794 open_stream_rele(osp, rp);
11795 return (e.error);
11796 }
11797 /* fall through for res.status case */
11798 }
11799
11800 if (res.status) {
11801 e.error = geterrno4(res.status);
11802 if (e.error == EACCES && last_time == FALSE) {
11803 crfree(cred_otw);
11804 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT,
11805 &recov_state, needrecov);
11806 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
11807 goto get_commit_cred;
11808 }
11809 /*
11810 * Can't do a nfs4_purge_stale_fh here because this
11811 * can cause a deadlock. nfs4_commit can
11812 * be called from nfs4_dispose which can be called
11813 * indirectly via pvn_vplist_dirty. nfs4_purge_stale_fh
11814 * can call back to pvn_vplist_dirty.
11815 */
11816 if (e.error == ESTALE) {
11817 mutex_enter(&rp->r_statelock);
11818 rp->r_flags |= R4STALE;
11819 if (!rp->r_error)
11820 rp->r_error = e.error;
11821 mutex_exit(&rp->r_statelock);
11822 PURGE_ATTRCACHE4(vp);
11823 } else {
11824 mutex_enter(&rp->r_statelock);
11825 if (!rp->r_error)
11826 rp->r_error = e.error;
11827 mutex_exit(&rp->r_statelock);
11828 }
11829 } else {
11830 ASSERT(rp->r_flags & R4HAVEVERF);
11831 resop = &res.array[1]; /* commit res */
11832 cm_res = &resop->nfs_resop4_u.opcommit;
11833 mutex_enter(&rp->r_statelock);
11834 if (cm_res->writeverf == rp->r_writeverf) {
11835 mutex_exit(&rp->r_statelock);
11836 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
11837 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT,
11838 &recov_state, needrecov);
11839 crfree(cred_otw);
11840 if (osp != NULL)
11841 open_stream_rele(osp, rp);
11842 return (0);
11843 }
11844 nfs4_set_mod(vp);
11845 rp->r_writeverf = cm_res->writeverf;
11846 mutex_exit(&rp->r_statelock);
11847 e.error = NFS_VERF_MISMATCH;
11848 }
11849
11850 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
11851 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, needrecov);
11852 crfree(cred_otw);
11853 if (osp != NULL)
11854 open_stream_rele(osp, rp);
11855
11856 return (e.error);
11857 }
11858
11859 static void
nfs4_set_mod(vnode_t * vp)11860 nfs4_set_mod(vnode_t *vp)
11861 {
11862 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
11863
11864 /* make sure we're looking at the master vnode, not a shadow */
11865 pvn_vplist_setdirty(RTOV4(VTOR4(vp)), nfs_setmod_check);
11866 }
11867
11868 /*
11869 * This function is used to gather a page list of the pages which
11870 * can be committed on the server.
11871 *
11872 * The calling thread must have set R4COMMIT. This bit is used to
11873 * serialize access to the commit structure in the rnode. As long
11874 * as the thread has set R4COMMIT, then it can manipulate the commit
11875 * structure without requiring any other locks.
11876 *
11877 * When this function is called from nfs4_dispose() the page passed
11878 * into nfs4_dispose() will be SE_EXCL locked, and so this function
11879 * will skip it. This is not a problem since we initially add the
11880 * page to the r_commit page list.
11881 *
11882 */
11883 static void
nfs4_get_commit(vnode_t * vp)11884 nfs4_get_commit(vnode_t *vp)
11885 {
11886 rnode4_t *rp;
11887 page_t *pp;
11888 kmutex_t *vphm;
11889
11890 rp = VTOR4(vp);
11891
11892 ASSERT(rp->r_flags & R4COMMIT);
11893
11894 /* make sure we're looking at the master vnode, not a shadow */
11895
11896 if (IS_SHADOW(vp, rp))
11897 vp = RTOV4(rp);
11898
11899 vphm = page_vnode_mutex(vp);
11900 mutex_enter(vphm);
11901
11902 /*
11903 * If there are no pages associated with this vnode, then
11904 * just return.
11905 */
11906 if ((pp = vp->v_pages) == NULL) {
11907 mutex_exit(vphm);
11908 return;
11909 }
11910
11911 /*
11912 * Step through all of the pages associated with this vnode
11913 * looking for pages which need to be committed.
11914 */
11915 do {
11916 /* Skip marker pages. */
11917 if (pp->p_hash == PVN_VPLIST_HASH_TAG)
11918 continue;
11919
11920 /*
11921 * First short-cut everything (without the page_lock)
11922 * and see if this page does not need to be committed
11923 * or is modified if so then we'll just skip it.
11924 */
11925 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp))
11926 continue;
11927
11928 /*
11929 * Attempt to lock the page. If we can't, then
11930 * someone else is messing with it or we have been
11931 * called from nfs4_dispose and this is the page that
11932 * nfs4_dispose was called with.. anyway just skip it.
11933 */
11934 if (!page_trylock(pp, SE_EXCL))
11935 continue;
11936
11937 /*
11938 * Lets check again now that we have the page lock.
11939 */
11940 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) {
11941 page_unlock(pp);
11942 continue;
11943 }
11944
11945 /* this had better not be a free page */
11946 ASSERT(PP_ISFREE(pp) == 0);
11947
11948 /*
11949 * The page needs to be committed and we locked it.
11950 * Update the base and length parameters and add it
11951 * to r_pages.
11952 */
11953 if (rp->r_commit.c_pages == NULL) {
11954 rp->r_commit.c_commbase = (offset3)pp->p_offset;
11955 rp->r_commit.c_commlen = PAGESIZE;
11956 } else if (pp->p_offset < rp->r_commit.c_commbase) {
11957 rp->r_commit.c_commlen = rp->r_commit.c_commbase -
11958 (offset3)pp->p_offset + rp->r_commit.c_commlen;
11959 rp->r_commit.c_commbase = (offset3)pp->p_offset;
11960 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen)
11961 <= pp->p_offset) {
11962 rp->r_commit.c_commlen = (offset3)pp->p_offset -
11963 rp->r_commit.c_commbase + PAGESIZE;
11964 }
11965 page_add(&rp->r_commit.c_pages, pp);
11966 } while ((pp = pp->p_vpnext) != vp->v_pages);
11967
11968 mutex_exit(vphm);
11969 }
11970
11971 /*
11972 * This routine is used to gather together a page list of the pages
11973 * which are to be committed on the server. This routine must not
11974 * be called if the calling thread holds any locked pages.
11975 *
11976 * The calling thread must have set R4COMMIT. This bit is used to
11977 * serialize access to the commit structure in the rnode. As long
11978 * as the thread has set R4COMMIT, then it can manipulate the commit
11979 * structure without requiring any other locks.
11980 */
11981 static void
nfs4_get_commit_range(vnode_t * vp,u_offset_t soff,size_t len)11982 nfs4_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len)
11983 {
11984
11985 rnode4_t *rp;
11986 page_t *pp;
11987 u_offset_t end;
11988 u_offset_t off;
11989 ASSERT(len != 0);
11990 rp = VTOR4(vp);
11991 ASSERT(rp->r_flags & R4COMMIT);
11992
11993 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
11994
11995 /* make sure we're looking at the master vnode, not a shadow */
11996
11997 if (IS_SHADOW(vp, rp))
11998 vp = RTOV4(rp);
11999
12000 /*
12001 * If there are no pages associated with this vnode, then
12002 * just return.
12003 */
12004 if ((pp = vp->v_pages) == NULL)
12005 return;
12006 /*
12007 * Calculate the ending offset.
12008 */
12009 end = soff + len;
12010 for (off = soff; off < end; off += PAGESIZE) {
12011 /*
12012 * Lookup each page by vp, offset.
12013 */
12014 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL)
12015 continue;
12016 /*
12017 * If this page does not need to be committed or is
12018 * modified, then just skip it.
12019 */
12020 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) {
12021 page_unlock(pp);
12022 continue;
12023 }
12024
12025 ASSERT(PP_ISFREE(pp) == 0);
12026 /*
12027 * The page needs to be committed and we locked it.
12028 * Update the base and length parameters and add it
12029 * to r_pages.
12030 */
12031 if (rp->r_commit.c_pages == NULL) {
12032 rp->r_commit.c_commbase = (offset3)pp->p_offset;
12033 rp->r_commit.c_commlen = PAGESIZE;
12034 } else {
12035 rp->r_commit.c_commlen = (offset3)pp->p_offset -
12036 rp->r_commit.c_commbase + PAGESIZE;
12037 }
12038 page_add(&rp->r_commit.c_pages, pp);
12039 }
12040 }
12041
12042 /*
12043 * Called from nfs4_close(), nfs4_fsync() and nfs4_delmap().
12044 * Flushes and commits data to the server.
12045 */
12046 static int
nfs4_putpage_commit(vnode_t * vp,offset_t poff,size_t plen,cred_t * cr)12047 nfs4_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr)
12048 {
12049 int error;
12050 verifier4 write_verf;
12051 rnode4_t *rp = VTOR4(vp);
12052
12053 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
12054
12055 /*
12056 * Flush the data portion of the file and then commit any
12057 * portions which need to be committed. This may need to
12058 * be done twice if the server has changed state since
12059 * data was last written. The data will need to be
12060 * rewritten to the server and then a new commit done.
12061 *
12062 * In fact, this may need to be done several times if the
12063 * server is having problems and crashing while we are
12064 * attempting to do this.
12065 */
12066
12067 top:
12068 /*
12069 * Do a flush based on the poff and plen arguments. This
12070 * will synchronously write out any modified pages in the
12071 * range specified by (poff, plen). This starts all of the
12072 * i/o operations which will be waited for in the next
12073 * call to nfs4_putpage
12074 */
12075
12076 mutex_enter(&rp->r_statelock);
12077 write_verf = rp->r_writeverf;
12078 mutex_exit(&rp->r_statelock);
12079
12080 error = nfs4_putpage(vp, poff, plen, B_ASYNC, cr, NULL);
12081 if (error == EAGAIN)
12082 error = 0;
12083
12084 /*
12085 * Do a flush based on the poff and plen arguments. This
12086 * will synchronously write out any modified pages in the
12087 * range specified by (poff, plen) and wait until all of
12088 * the asynchronous i/o's in that range are done as well.
12089 */
12090 if (!error)
12091 error = nfs4_putpage(vp, poff, plen, 0, cr, NULL);
12092
12093 if (error)
12094 return (error);
12095
12096 mutex_enter(&rp->r_statelock);
12097 if (rp->r_writeverf != write_verf) {
12098 mutex_exit(&rp->r_statelock);
12099 goto top;
12100 }
12101 mutex_exit(&rp->r_statelock);
12102
12103 /*
12104 * Now commit any pages which might need to be committed.
12105 * If the error, NFS_VERF_MISMATCH, is returned, then
12106 * start over with the flush operation.
12107 */
12108 error = nfs4_commit_vp(vp, poff, plen, cr, NFS4_WRITE_WAIT);
12109
12110 if (error == NFS_VERF_MISMATCH)
12111 goto top;
12112
12113 return (error);
12114 }
12115
12116 /*
12117 * nfs4_commit_vp() will wait for other pending commits and
12118 * will either commit the whole file or a range, plen dictates
12119 * if we commit whole file. a value of zero indicates the whole
12120 * file. Called from nfs4_putpage_commit() or nfs4_sync_putapage()
12121 */
12122 static int
nfs4_commit_vp(vnode_t * vp,u_offset_t poff,size_t plen,cred_t * cr,int wait_on_writes)12123 nfs4_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen,
12124 cred_t *cr, int wait_on_writes)
12125 {
12126 rnode4_t *rp;
12127 page_t *plist;
12128 offset3 offset;
12129 count3 len;
12130
12131 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
12132
12133 rp = VTOR4(vp);
12134
12135 /*
12136 * before we gather commitable pages make
12137 * sure there are no outstanding async writes
12138 */
12139 if (rp->r_count && wait_on_writes == NFS4_WRITE_WAIT) {
12140 mutex_enter(&rp->r_statelock);
12141 while (rp->r_count > 0) {
12142 cv_wait(&rp->r_cv, &rp->r_statelock);
12143 }
12144 mutex_exit(&rp->r_statelock);
12145 }
12146
12147 /*
12148 * Set the `commit inprogress' state bit. We must
12149 * first wait until any current one finishes.
12150 */
12151 mutex_enter(&rp->r_statelock);
12152 while (rp->r_flags & R4COMMIT) {
12153 rp->r_flags |= R4COMMITWAIT;
12154 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock);
12155 rp->r_flags &= ~R4COMMITWAIT;
12156 }
12157 rp->r_flags |= R4COMMIT;
12158 mutex_exit(&rp->r_statelock);
12159
12160 /*
12161 * Gather all of the pages which need to be
12162 * committed.
12163 */
12164 if (plen == 0)
12165 nfs4_get_commit(vp);
12166 else
12167 nfs4_get_commit_range(vp, poff, plen);
12168
12169 /*
12170 * Clear the `commit inprogress' bit and disconnect the
12171 * page list which was gathered by nfs4_get_commit.
12172 */
12173 plist = rp->r_commit.c_pages;
12174 rp->r_commit.c_pages = NULL;
12175 offset = rp->r_commit.c_commbase;
12176 len = rp->r_commit.c_commlen;
12177 mutex_enter(&rp->r_statelock);
12178 rp->r_flags &= ~R4COMMIT;
12179 cv_broadcast(&rp->r_commit.c_cv);
12180 mutex_exit(&rp->r_statelock);
12181
12182 /*
12183 * If any pages need to be committed, commit them and
12184 * then unlock them so that they can be freed some
12185 * time later.
12186 */
12187 if (plist == NULL)
12188 return (0);
12189
12190 /*
12191 * No error occurred during the flush portion
12192 * of this operation, so now attempt to commit
12193 * the data to stable storage on the server.
12194 *
12195 * This will unlock all of the pages on the list.
12196 */
12197 return (nfs4_sync_commit(vp, plist, offset, len, cr));
12198 }
12199
12200 static int
nfs4_sync_commit(vnode_t * vp,page_t * plist,offset3 offset,count3 count,cred_t * cr)12201 nfs4_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
12202 cred_t *cr)
12203 {
12204 int error;
12205 page_t *pp;
12206
12207 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
12208
12209 error = nfs4_commit(vp, (offset4)offset, (count3)count, cr);
12210
12211 /*
12212 * If we got an error, then just unlock all of the pages
12213 * on the list.
12214 */
12215 if (error) {
12216 while (plist != NULL) {
12217 pp = plist;
12218 page_sub(&plist, pp);
12219 page_unlock(pp);
12220 }
12221 return (error);
12222 }
12223 /*
12224 * We've tried as hard as we can to commit the data to stable
12225 * storage on the server. We just unlock the pages and clear
12226 * the commit required state. They will get freed later.
12227 */
12228 while (plist != NULL) {
12229 pp = plist;
12230 page_sub(&plist, pp);
12231 pp->p_fsdata = C_NOCOMMIT;
12232 page_unlock(pp);
12233 }
12234
12235 return (error);
12236 }
12237
12238 static void
do_nfs4_async_commit(vnode_t * vp,page_t * plist,offset3 offset,count3 count,cred_t * cr)12239 do_nfs4_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
12240 cred_t *cr)
12241 {
12242
12243 (void) nfs4_sync_commit(vp, plist, offset, count, cr);
12244 }
12245
12246 /*ARGSUSED*/
12247 static int
nfs4_setsecattr(vnode_t * vp,vsecattr_t * vsecattr,int flag,cred_t * cr,caller_context_t * ct)12248 nfs4_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr,
12249 caller_context_t *ct)
12250 {
12251 int error = 0;
12252 mntinfo4_t *mi;
12253 vattr_t va;
12254 vsecattr_t nfsace4_vsap;
12255
12256 mi = VTOMI4(vp);
12257 if (nfs_zone() != mi->mi_zone)
12258 return (EIO);
12259 if (mi->mi_flags & MI4_ACL) {
12260 /* if we have a delegation, return it */
12261 if (VTOR4(vp)->r_deleg_type != OPEN_DELEGATE_NONE)
12262 (void) nfs4delegreturn(VTOR4(vp),
12263 NFS4_DR_REOPEN|NFS4_DR_PUSH);
12264
12265 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask,
12266 NFS4_ACL_SET);
12267 if (error) /* EINVAL */
12268 return (error);
12269
12270 if (vsecattr->vsa_mask & (VSA_ACL | VSA_DFACL)) {
12271 /*
12272 * These are aclent_t type entries.
12273 */
12274 error = vs_aent_to_ace4(vsecattr, &nfsace4_vsap,
12275 vp->v_type == VDIR, FALSE);
12276 if (error)
12277 return (error);
12278 } else {
12279 /*
12280 * These are ace_t type entries.
12281 */
12282 error = vs_acet_to_ace4(vsecattr, &nfsace4_vsap,
12283 FALSE);
12284 if (error)
12285 return (error);
12286 }
12287 bzero(&va, sizeof (va));
12288 error = nfs4setattr(vp, &va, flag, cr, &nfsace4_vsap);
12289 vs_ace4_destroy(&nfsace4_vsap);
12290 return (error);
12291 }
12292 return (ENOSYS);
12293 }
12294
12295 /* ARGSUSED */
12296 int
nfs4_getsecattr(vnode_t * vp,vsecattr_t * vsecattr,int flag,cred_t * cr,caller_context_t * ct)12297 nfs4_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr,
12298 caller_context_t *ct)
12299 {
12300 int error;
12301 mntinfo4_t *mi;
12302 nfs4_ga_res_t gar;
12303 rnode4_t *rp = VTOR4(vp);
12304
12305 mi = VTOMI4(vp);
12306 if (nfs_zone() != mi->mi_zone)
12307 return (EIO);
12308
12309 bzero(&gar, sizeof (gar));
12310 gar.n4g_vsa.vsa_mask = vsecattr->vsa_mask;
12311
12312 /*
12313 * vsecattr->vsa_mask holds the original acl request mask.
12314 * This is needed when determining what to return.
12315 * (See: nfs4_create_getsecattr_return())
12316 */
12317 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, NFS4_ACL_GET);
12318 if (error) /* EINVAL */
12319 return (error);
12320
12321 /*
12322 * If this is a referral stub, don't try to go OTW for an ACL
12323 */
12324 if (RP_ISSTUB_REFERRAL(VTOR4(vp)))
12325 return (fs_fab_acl(vp, vsecattr, flag, cr, ct));
12326
12327 if (mi->mi_flags & MI4_ACL) {
12328 /*
12329 * Check if the data is cached and the cache is valid. If it
12330 * is we don't go over the wire.
12331 */
12332 if (rp->r_secattr != NULL && ATTRCACHE4_VALID(vp)) {
12333 mutex_enter(&rp->r_statelock);
12334 if (rp->r_secattr != NULL) {
12335 error = nfs4_create_getsecattr_return(
12336 rp->r_secattr, vsecattr, rp->r_attr.va_uid,
12337 rp->r_attr.va_gid,
12338 vp->v_type == VDIR);
12339 if (!error) { /* error == 0 - Success! */
12340 mutex_exit(&rp->r_statelock);
12341 return (error);
12342 }
12343 }
12344 mutex_exit(&rp->r_statelock);
12345 }
12346
12347 /*
12348 * The getattr otw call will always get both the acl, in
12349 * the form of a list of nfsace4's, and the number of acl
12350 * entries; independent of the value of gar.n4g_vsa.vsa_mask.
12351 */
12352 gar.n4g_va.va_mask = AT_ALL;
12353 error = nfs4_getattr_otw(vp, &gar, cr, 1);
12354 if (error) {
12355 vs_ace4_destroy(&gar.n4g_vsa);
12356 if (error == ENOTSUP || error == EOPNOTSUPP)
12357 error = fs_fab_acl(vp, vsecattr, flag, cr, ct);
12358 return (error);
12359 }
12360
12361 if (!(gar.n4g_resbmap & FATTR4_ACL_MASK)) {
12362 /*
12363 * No error was returned, but according to the response
12364 * bitmap, neither was an acl.
12365 */
12366 vs_ace4_destroy(&gar.n4g_vsa);
12367 error = fs_fab_acl(vp, vsecattr, flag, cr, ct);
12368 return (error);
12369 }
12370
12371 /*
12372 * Update the cache with the ACL.
12373 */
12374 nfs4_acl_fill_cache(rp, &gar.n4g_vsa);
12375
12376 error = nfs4_create_getsecattr_return(&gar.n4g_vsa,
12377 vsecattr, gar.n4g_va.va_uid, gar.n4g_va.va_gid,
12378 vp->v_type == VDIR);
12379 vs_ace4_destroy(&gar.n4g_vsa);
12380 if ((error) && (vsecattr->vsa_mask &
12381 (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) &&
12382 (error != EACCES)) {
12383 error = fs_fab_acl(vp, vsecattr, flag, cr, ct);
12384 }
12385 return (error);
12386 }
12387 error = fs_fab_acl(vp, vsecattr, flag, cr, ct);
12388 return (error);
12389 }
12390
12391 /*
12392 * The function returns:
12393 * - 0 (zero) if the passed in "acl_mask" is a valid request.
12394 * - EINVAL if the passed in "acl_mask" is an invalid request.
12395 *
12396 * In the case of getting an acl (op == NFS4_ACL_GET) the mask is invalid if:
12397 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE)
12398 *
12399 * In the case of setting an acl (op == NFS4_ACL_SET) the mask is invalid if:
12400 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE)
12401 * - We have a count field set without the corresponding acl field set. (e.g. -
12402 * VSA_ACECNT is set, but VSA_ACE is not)
12403 */
12404 static int
nfs4_is_acl_mask_valid(uint_t acl_mask,nfs4_acl_op_t op)12405 nfs4_is_acl_mask_valid(uint_t acl_mask, nfs4_acl_op_t op)
12406 {
12407 /* Shortcut the masks that are always valid. */
12408 if (acl_mask == (VSA_ACE | VSA_ACECNT))
12409 return (0);
12410 if (acl_mask == (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT))
12411 return (0);
12412
12413 if (acl_mask & (VSA_ACE | VSA_ACECNT)) {
12414 /*
12415 * We can't have any VSA_ACL type stuff in the mask now.
12416 */
12417 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL |
12418 VSA_DFACLCNT))
12419 return (EINVAL);
12420
12421 if (op == NFS4_ACL_SET) {
12422 if ((acl_mask & VSA_ACECNT) && !(acl_mask & VSA_ACE))
12423 return (EINVAL);
12424 }
12425 }
12426
12427 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) {
12428 /*
12429 * We can't have any VSA_ACE type stuff in the mask now.
12430 */
12431 if (acl_mask & (VSA_ACE | VSA_ACECNT))
12432 return (EINVAL);
12433
12434 if (op == NFS4_ACL_SET) {
12435 if ((acl_mask & VSA_ACLCNT) && !(acl_mask & VSA_ACL))
12436 return (EINVAL);
12437
12438 if ((acl_mask & VSA_DFACLCNT) &&
12439 !(acl_mask & VSA_DFACL))
12440 return (EINVAL);
12441 }
12442 }
12443 return (0);
12444 }
12445
12446 /*
12447 * The theory behind creating the correct getsecattr return is simply this:
12448 * "Don't return anything that the caller is not expecting to have to free."
12449 */
12450 static int
nfs4_create_getsecattr_return(vsecattr_t * filled_vsap,vsecattr_t * vsap,uid_t uid,gid_t gid,int isdir)12451 nfs4_create_getsecattr_return(vsecattr_t *filled_vsap, vsecattr_t *vsap,
12452 uid_t uid, gid_t gid, int isdir)
12453 {
12454 int error = 0;
12455 /* Save the mask since the translators modify it. */
12456 uint_t orig_mask = vsap->vsa_mask;
12457
12458 if (orig_mask & (VSA_ACE | VSA_ACECNT)) {
12459 error = vs_ace4_to_acet(filled_vsap, vsap, uid, gid, FALSE);
12460
12461 if (error)
12462 return (error);
12463
12464 /*
12465 * If the caller only asked for the ace count (VSA_ACECNT)
12466 * don't give them the full acl (VSA_ACE), free it.
12467 */
12468 if (!orig_mask & VSA_ACE) {
12469 if (vsap->vsa_aclentp != NULL) {
12470 kmem_free(vsap->vsa_aclentp,
12471 vsap->vsa_aclcnt * sizeof (ace_t));
12472 vsap->vsa_aclentp = NULL;
12473 }
12474 }
12475 vsap->vsa_mask = orig_mask;
12476
12477 } else if (orig_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL |
12478 VSA_DFACLCNT)) {
12479 error = vs_ace4_to_aent(filled_vsap, vsap, uid, gid,
12480 isdir, FALSE);
12481
12482 if (error)
12483 return (error);
12484
12485 /*
12486 * If the caller only asked for the acl count (VSA_ACLCNT)
12487 * and/or the default acl count (VSA_DFACLCNT) don't give them
12488 * the acl (VSA_ACL) or default acl (VSA_DFACL), free it.
12489 */
12490 if (!orig_mask & VSA_ACL) {
12491 if (vsap->vsa_aclentp != NULL) {
12492 kmem_free(vsap->vsa_aclentp,
12493 vsap->vsa_aclcnt * sizeof (aclent_t));
12494 vsap->vsa_aclentp = NULL;
12495 }
12496 }
12497
12498 if (!orig_mask & VSA_DFACL) {
12499 if (vsap->vsa_dfaclentp != NULL) {
12500 kmem_free(vsap->vsa_dfaclentp,
12501 vsap->vsa_dfaclcnt * sizeof (aclent_t));
12502 vsap->vsa_dfaclentp = NULL;
12503 }
12504 }
12505 vsap->vsa_mask = orig_mask;
12506 }
12507 return (0);
12508 }
12509
12510 /* ARGSUSED */
12511 int
nfs4_shrlock(vnode_t * vp,int cmd,struct shrlock * shr,int flag,cred_t * cr,caller_context_t * ct)12512 nfs4_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr,
12513 caller_context_t *ct)
12514 {
12515 int error;
12516
12517 if (nfs_zone() != VTOMI4(vp)->mi_zone)
12518 return (EIO);
12519 /*
12520 * check for valid cmd parameter
12521 */
12522 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS)
12523 return (EINVAL);
12524
12525 /*
12526 * Check access permissions
12527 */
12528 if ((cmd & F_SHARE) &&
12529 (((shr->s_access & F_RDACC) && (flag & FREAD) == 0) ||
12530 (shr->s_access == F_WRACC && (flag & FWRITE) == 0)))
12531 return (EBADF);
12532
12533 /*
12534 * If the filesystem is mounted using local locking, pass the
12535 * request off to the local share code.
12536 */
12537 if (VTOMI4(vp)->mi_flags & MI4_LLOCK)
12538 return (fs_shrlock(vp, cmd, shr, flag, cr, ct));
12539
12540 switch (cmd) {
12541 case F_SHARE:
12542 case F_UNSHARE:
12543 /*
12544 * This will be properly implemented later,
12545 * see RFE: 4823948 .
12546 */
12547 error = EAGAIN;
12548 break;
12549
12550 case F_HASREMOTELOCKS:
12551 /*
12552 * NFS client can't store remote locks itself
12553 */
12554 shr->s_access = 0;
12555 error = 0;
12556 break;
12557
12558 default:
12559 error = EINVAL;
12560 break;
12561 }
12562
12563 return (error);
12564 }
12565
12566 /*
12567 * Common code called by directory ops to update the attrcache
12568 */
12569 static int
nfs4_update_attrcache(nfsstat4 status,nfs4_ga_res_t * garp,hrtime_t t,vnode_t * vp,cred_t * cr)12570 nfs4_update_attrcache(nfsstat4 status, nfs4_ga_res_t *garp,
12571 hrtime_t t, vnode_t *vp, cred_t *cr)
12572 {
12573 int error = 0;
12574
12575 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
12576
12577 if (status != NFS4_OK) {
12578 /* getattr not done or failed */
12579 PURGE_ATTRCACHE4(vp);
12580 return (error);
12581 }
12582
12583 if (garp) {
12584 nfs4_attr_cache(vp, garp, t, cr, FALSE, NULL);
12585 } else {
12586 PURGE_ATTRCACHE4(vp);
12587 }
12588 return (error);
12589 }
12590
12591 /*
12592 * Update directory caches for directory modification ops (link, rename, etc.)
12593 * When dinfo is NULL, manage dircaches in the old way.
12594 */
12595 static void
nfs4_update_dircaches(change_info4 * cinfo,vnode_t * dvp,vnode_t * vp,char * nm,dirattr_info_t * dinfo)12596 nfs4_update_dircaches(change_info4 *cinfo, vnode_t *dvp, vnode_t *vp, char *nm,
12597 dirattr_info_t *dinfo)
12598 {
12599 rnode4_t *drp = VTOR4(dvp);
12600
12601 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
12602
12603 /* Purge rddir cache for dir since it changed */
12604 if (drp->r_dir != NULL)
12605 nfs4_purge_rddir_cache(dvp);
12606
12607 /*
12608 * If caller provided dinfo, then use it to manage dir caches.
12609 */
12610 if (dinfo != NULL) {
12611 if (vp != NULL) {
12612 mutex_enter(&VTOR4(vp)->r_statev4_lock);
12613 if (!VTOR4(vp)->created_v4) {
12614 mutex_exit(&VTOR4(vp)->r_statev4_lock);
12615 dnlc_update(dvp, nm, vp);
12616 } else {
12617 /*
12618 * XXX don't update if the created_v4 flag is
12619 * set
12620 */
12621 mutex_exit(&VTOR4(vp)->r_statev4_lock);
12622 NFS4_DEBUG(nfs4_client_state_debug,
12623 (CE_NOTE, "nfs4_update_dircaches: "
12624 "don't update dnlc: created_v4 flag"));
12625 }
12626 }
12627
12628 nfs4_attr_cache(dvp, dinfo->di_garp, dinfo->di_time_call,
12629 dinfo->di_cred, FALSE, cinfo);
12630
12631 return;
12632 }
12633
12634 /*
12635 * Caller didn't provide dinfo, then check change_info4 to update DNLC.
12636 * Since caller modified dir but didn't receive post-dirmod-op dir
12637 * attrs, the dir's attrs must be purged.
12638 *
12639 * XXX this check and dnlc update/purge should really be atomic,
12640 * XXX but can't use rnode statelock because it'll deadlock in
12641 * XXX dnlc_purge_vp, however, the risk is minimal even if a race
12642 * XXX does occur.
12643 *
12644 * XXX We also may want to check that atomic is true in the
12645 * XXX change_info struct. If it is not, the change_info may
12646 * XXX reflect changes by more than one clients which means that
12647 * XXX our cache may not be valid.
12648 */
12649 PURGE_ATTRCACHE4(dvp);
12650 if (drp->r_change == cinfo->before) {
12651 /* no changes took place in the directory prior to our link */
12652 if (vp != NULL) {
12653 mutex_enter(&VTOR4(vp)->r_statev4_lock);
12654 if (!VTOR4(vp)->created_v4) {
12655 mutex_exit(&VTOR4(vp)->r_statev4_lock);
12656 dnlc_update(dvp, nm, vp);
12657 } else {
12658 /*
12659 * XXX dont' update if the created_v4 flag
12660 * is set
12661 */
12662 mutex_exit(&VTOR4(vp)->r_statev4_lock);
12663 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE,
12664 "nfs4_update_dircaches: don't"
12665 " update dnlc: created_v4 flag"));
12666 }
12667 }
12668 } else {
12669 /* Another client modified directory - purge its dnlc cache */
12670 dnlc_purge_vp(dvp);
12671 }
12672 }
12673
12674 /*
12675 * The OPEN_CONFIRM operation confirms the sequence number used in OPENing a
12676 * file.
12677 *
12678 * The 'reopening_file' boolean should be set to TRUE if we are reopening this
12679 * file (ie: client recovery) and otherwise set to FALSE.
12680 *
12681 * 'nfs4_start/end_op' should have been called by the proper (ie: not recovery
12682 * initiated) calling functions.
12683 *
12684 * 'resend' is set to TRUE if this is a OPEN_CONFIRM issued as a result
12685 * of resending a 'lost' open request.
12686 *
12687 * 'num_bseqid_retryp' makes sure we don't loop forever on a broken
12688 * server that hands out BAD_SEQID on open confirm.
12689 *
12690 * Errors are returned via the nfs4_error_t parameter.
12691 */
12692 void
nfs4open_confirm(vnode_t * vp,seqid4 * seqid,stateid4 * stateid,cred_t * cr,bool_t reopening_file,bool_t * retry_open,nfs4_open_owner_t * oop,bool_t resend,nfs4_error_t * ep,int * num_bseqid_retryp)12693 nfs4open_confirm(vnode_t *vp, seqid4 *seqid, stateid4 *stateid, cred_t *cr,
12694 bool_t reopening_file, bool_t *retry_open, nfs4_open_owner_t *oop,
12695 bool_t resend, nfs4_error_t *ep, int *num_bseqid_retryp)
12696 {
12697 COMPOUND4args_clnt args;
12698 COMPOUND4res_clnt res;
12699 nfs_argop4 argop[2];
12700 nfs_resop4 *resop;
12701 int doqueue = 1;
12702 mntinfo4_t *mi;
12703 OPEN_CONFIRM4args *open_confirm_args;
12704 int needrecov;
12705
12706 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
12707 #if DEBUG
12708 mutex_enter(&oop->oo_lock);
12709 ASSERT(oop->oo_seqid_inuse);
12710 mutex_exit(&oop->oo_lock);
12711 #endif
12712
12713 recov_retry_confirm:
12714 nfs4_error_zinit(ep);
12715 *retry_open = FALSE;
12716
12717 if (resend)
12718 args.ctag = TAG_OPEN_CONFIRM_LOST;
12719 else
12720 args.ctag = TAG_OPEN_CONFIRM;
12721
12722 args.array_len = 2;
12723 args.array = argop;
12724
12725 /* putfh target fh */
12726 argop[0].argop = OP_CPUTFH;
12727 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh;
12728
12729 argop[1].argop = OP_OPEN_CONFIRM;
12730 open_confirm_args = &argop[1].nfs_argop4_u.opopen_confirm;
12731
12732 (*seqid) += 1;
12733 open_confirm_args->seqid = *seqid;
12734 open_confirm_args->open_stateid = *stateid;
12735
12736 mi = VTOMI4(vp);
12737
12738 rfs4call(mi, &args, &res, cr, &doqueue, 0, ep);
12739
12740 if (!ep->error && nfs4_need_to_bump_seqid(&res)) {
12741 nfs4_set_open_seqid((*seqid), oop, args.ctag);
12742 }
12743
12744 needrecov = nfs4_needs_recovery(ep, FALSE, mi->mi_vfsp);
12745 if (!needrecov && ep->error)
12746 return;
12747
12748 if (needrecov) {
12749 bool_t abort = FALSE;
12750
12751 if (reopening_file == FALSE) {
12752 nfs4_bseqid_entry_t *bsep = NULL;
12753
12754 if (!ep->error && res.status == NFS4ERR_BAD_SEQID)
12755 bsep = nfs4_create_bseqid_entry(oop, NULL,
12756 vp, 0, args.ctag,
12757 open_confirm_args->seqid);
12758
12759 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL,
12760 NULL, NULL, OP_OPEN_CONFIRM, bsep, NULL, NULL);
12761 if (bsep) {
12762 kmem_free(bsep, sizeof (*bsep));
12763 if (num_bseqid_retryp &&
12764 --(*num_bseqid_retryp) == 0)
12765 abort = TRUE;
12766 }
12767 }
12768 if ((ep->error == ETIMEDOUT ||
12769 res.status == NFS4ERR_RESOURCE) &&
12770 abort == FALSE && resend == FALSE) {
12771 if (!ep->error)
12772 (void) xdr_free(xdr_COMPOUND4res_clnt,
12773 (caddr_t)&res);
12774
12775 delay(SEC_TO_TICK(confirm_retry_sec));
12776 goto recov_retry_confirm;
12777 }
12778 /* State may have changed so retry the entire OPEN op */
12779 if (abort == FALSE)
12780 *retry_open = TRUE;
12781 else
12782 *retry_open = FALSE;
12783 if (!ep->error)
12784 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
12785 return;
12786 }
12787
12788 if (res.status) {
12789 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
12790 return;
12791 }
12792
12793 resop = &res.array[1]; /* open confirm res */
12794 bcopy(&resop->nfs_resop4_u.opopen_confirm.open_stateid,
12795 stateid, sizeof (*stateid));
12796
12797 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
12798 }
12799
12800 /*
12801 * Return the credentials associated with a client state object. The
12802 * caller is responsible for freeing the credentials.
12803 */
12804
12805 static cred_t *
state_to_cred(nfs4_open_stream_t * osp)12806 state_to_cred(nfs4_open_stream_t *osp)
12807 {
12808 cred_t *cr;
12809
12810 /*
12811 * It's ok to not lock the open stream and open owner to get
12812 * the oo_cred since this is only written once (upon creation)
12813 * and will not change.
12814 */
12815 cr = osp->os_open_owner->oo_cred;
12816 crhold(cr);
12817
12818 return (cr);
12819 }
12820
12821 /*
12822 * nfs4_find_sysid
12823 *
12824 * Find the sysid for the knetconfig associated with the given mi.
12825 */
12826 static struct lm_sysid *
nfs4_find_sysid(mntinfo4_t * mi)12827 nfs4_find_sysid(mntinfo4_t *mi)
12828 {
12829 ASSERT(nfs_zone() == mi->mi_zone);
12830
12831 /*
12832 * Switch from RDMA knconf to original mount knconf
12833 */
12834 return (lm_get_sysid(ORIG_KNCONF(mi), &mi->mi_curr_serv->sv_addr,
12835 mi->mi_curr_serv->sv_hostname, NULL));
12836 }
12837
12838 #ifdef DEBUG
12839 /*
12840 * Return a string version of the call type for easy reading.
12841 */
12842 static char *
nfs4frlock_get_call_type(nfs4_lock_call_type_t ctype)12843 nfs4frlock_get_call_type(nfs4_lock_call_type_t ctype)
12844 {
12845 switch (ctype) {
12846 case NFS4_LCK_CTYPE_NORM:
12847 return ("NORMAL");
12848 case NFS4_LCK_CTYPE_RECLAIM:
12849 return ("RECLAIM");
12850 case NFS4_LCK_CTYPE_RESEND:
12851 return ("RESEND");
12852 case NFS4_LCK_CTYPE_REINSTATE:
12853 return ("REINSTATE");
12854 default:
12855 cmn_err(CE_PANIC, "nfs4frlock_get_call_type: got illegal "
12856 "type %d", ctype);
12857 return ("");
12858 }
12859 }
12860 #endif
12861
12862 /*
12863 * Map the frlock cmd and lock type to the NFSv4 over-the-wire lock type
12864 * Unlock requests don't have an over-the-wire locktype, so we just return
12865 * something non-threatening.
12866 */
12867
12868 static nfs_lock_type4
flk_to_locktype(int cmd,int l_type)12869 flk_to_locktype(int cmd, int l_type)
12870 {
12871 ASSERT(l_type == F_RDLCK || l_type == F_WRLCK || l_type == F_UNLCK);
12872
12873 switch (l_type) {
12874 case F_UNLCK:
12875 return (READ_LT);
12876 case F_RDLCK:
12877 if (cmd == F_SETLK)
12878 return (READ_LT);
12879 else
12880 return (READW_LT);
12881 case F_WRLCK:
12882 if (cmd == F_SETLK)
12883 return (WRITE_LT);
12884 else
12885 return (WRITEW_LT);
12886 }
12887 panic("flk_to_locktype");
12888 /*NOTREACHED*/
12889 }
12890
12891 /*
12892 * Do some preliminary checks for nfs4frlock.
12893 */
12894 static int
nfs4frlock_validate_args(int cmd,flock64_t * flk,int flag,vnode_t * vp,u_offset_t offset)12895 nfs4frlock_validate_args(int cmd, flock64_t *flk, int flag, vnode_t *vp,
12896 u_offset_t offset)
12897 {
12898 int error = 0;
12899
12900 /*
12901 * If we are setting a lock, check that the file is opened
12902 * with the correct mode.
12903 */
12904 if (cmd == F_SETLK || cmd == F_SETLKW) {
12905 if ((flk->l_type == F_RDLCK && (flag & FREAD) == 0) ||
12906 (flk->l_type == F_WRLCK && (flag & FWRITE) == 0)) {
12907 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
12908 "nfs4frlock_validate_args: file was opened with "
12909 "incorrect mode"));
12910 return (EBADF);
12911 }
12912 }
12913
12914 /* Convert the offset. It may need to be restored before returning. */
12915 if (error = convoff(vp, flk, 0, offset)) {
12916 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
12917 "nfs4frlock_validate_args: convoff => error= %d\n",
12918 error));
12919 return (error);
12920 }
12921
12922 return (error);
12923 }
12924
12925 /*
12926 * Set the flock64's lm_sysid for nfs4frlock.
12927 */
12928 static int
nfs4frlock_get_sysid(struct lm_sysid ** lspp,vnode_t * vp,flock64_t * flk)12929 nfs4frlock_get_sysid(struct lm_sysid **lspp, vnode_t *vp, flock64_t *flk)
12930 {
12931 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
12932
12933 /* Find the lm_sysid */
12934 *lspp = nfs4_find_sysid(VTOMI4(vp));
12935
12936 if (*lspp == NULL) {
12937 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
12938 "nfs4frlock_get_sysid: no sysid, return ENOLCK"));
12939 return (ENOLCK);
12940 }
12941
12942 flk->l_sysid = lm_sysidt(*lspp);
12943
12944 return (0);
12945 }
12946
12947 /*
12948 * Do the remaining preliminary setup for nfs4frlock.
12949 */
12950 static void
nfs4frlock_pre_setup(clock_t * tick_delayp,nfs4_recov_state_t * recov_statep,flock64_t * flk,short * whencep,vnode_t * vp,cred_t * search_cr,cred_t ** cred_otw)12951 nfs4frlock_pre_setup(clock_t *tick_delayp, nfs4_recov_state_t *recov_statep,
12952 flock64_t *flk, short *whencep, vnode_t *vp, cred_t *search_cr,
12953 cred_t **cred_otw)
12954 {
12955 /*
12956 * set tick_delay to the base delay time.
12957 * (NFS4_BASE_WAIT_TIME is in secs)
12958 */
12959
12960 *tick_delayp = drv_usectohz(NFS4_BASE_WAIT_TIME * 1000 * 1000);
12961
12962 /*
12963 * If lock is relative to EOF, we need the newest length of the
12964 * file. Therefore invalidate the ATTR_CACHE.
12965 */
12966
12967 *whencep = flk->l_whence;
12968
12969 if (*whencep == 2) /* SEEK_END */
12970 PURGE_ATTRCACHE4(vp);
12971
12972 recov_statep->rs_flags = 0;
12973 recov_statep->rs_num_retry_despite_err = 0;
12974 *cred_otw = nfs4_get_otw_cred(search_cr, VTOMI4(vp), NULL);
12975 }
12976
12977 /*
12978 * Initialize and allocate the data structures necessary for
12979 * the nfs4frlock call.
12980 * Allocates argsp's op array, frees up the saved_rqstpp if there is one.
12981 */
12982 static void
nfs4frlock_call_init(COMPOUND4args_clnt * argsp,COMPOUND4args_clnt ** argspp,nfs_argop4 ** argopp,nfs4_op_hint_t * op_hintp,flock64_t * flk,int cmd,bool_t * retry,bool_t * did_start_fop,COMPOUND4res_clnt ** respp,bool_t * skip_get_err,nfs4_lost_rqst_t * lost_rqstp)12983 nfs4frlock_call_init(COMPOUND4args_clnt *argsp, COMPOUND4args_clnt **argspp,
12984 nfs_argop4 **argopp, nfs4_op_hint_t *op_hintp, flock64_t *flk, int cmd,
12985 bool_t *retry, bool_t *did_start_fop, COMPOUND4res_clnt **respp,
12986 bool_t *skip_get_err, nfs4_lost_rqst_t *lost_rqstp)
12987 {
12988 int argoplist_size;
12989 int num_ops = 2;
12990
12991 *retry = FALSE;
12992 *did_start_fop = FALSE;
12993 *skip_get_err = FALSE;
12994 lost_rqstp->lr_op = 0;
12995 argoplist_size = num_ops * sizeof (nfs_argop4);
12996 /* fill array with zero */
12997 *argopp = kmem_zalloc(argoplist_size, KM_SLEEP);
12998
12999 *argspp = argsp;
13000 *respp = NULL;
13001
13002 argsp->array_len = num_ops;
13003 argsp->array = *argopp;
13004
13005 /* initialize in case of error; will get real value down below */
13006 argsp->ctag = TAG_NONE;
13007
13008 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK)
13009 *op_hintp = OH_LOCKU;
13010 else
13011 *op_hintp = OH_OTHER;
13012 }
13013
13014 /*
13015 * Call the nfs4_start_fop() for nfs4frlock, if necessary. Assign
13016 * the proper nfs4_server_t for this instance of nfs4frlock.
13017 * Returns 0 (success) or an errno value.
13018 */
13019 static int
nfs4frlock_start_call(nfs4_lock_call_type_t ctype,vnode_t * vp,nfs4_op_hint_t op_hint,nfs4_recov_state_t * recov_statep,bool_t * did_start_fop,bool_t * startrecovp)13020 nfs4frlock_start_call(nfs4_lock_call_type_t ctype, vnode_t *vp,
13021 nfs4_op_hint_t op_hint, nfs4_recov_state_t *recov_statep,
13022 bool_t *did_start_fop, bool_t *startrecovp)
13023 {
13024 int error = 0;
13025 rnode4_t *rp;
13026
13027 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13028
13029 if (ctype == NFS4_LCK_CTYPE_NORM) {
13030 error = nfs4_start_fop(VTOMI4(vp), vp, NULL, op_hint,
13031 recov_statep, startrecovp);
13032 if (error)
13033 return (error);
13034 *did_start_fop = TRUE;
13035 } else {
13036 *did_start_fop = FALSE;
13037 *startrecovp = FALSE;
13038 }
13039
13040 if (!error) {
13041 rp = VTOR4(vp);
13042
13043 /* If the file failed recovery, just quit. */
13044 mutex_enter(&rp->r_statelock);
13045 if (rp->r_flags & R4RECOVERR) {
13046 error = EIO;
13047 }
13048 mutex_exit(&rp->r_statelock);
13049 }
13050
13051 return (error);
13052 }
13053
13054 /*
13055 * Setup the LOCK4/LOCKU4 arguments for resending a lost lock request. A
13056 * resend nfs4frlock call is initiated by the recovery framework.
13057 * Acquires the lop and oop seqid synchronization.
13058 */
13059 static void
nfs4frlock_setup_resend_lock_args(nfs4_lost_rqst_t * resend_rqstp,COMPOUND4args_clnt * argsp,nfs_argop4 * argop,nfs4_lock_owner_t ** lopp,nfs4_open_owner_t ** oopp,nfs4_open_stream_t ** ospp,LOCK4args ** lock_argsp,LOCKU4args ** locku_argsp)13060 nfs4frlock_setup_resend_lock_args(nfs4_lost_rqst_t *resend_rqstp,
13061 COMPOUND4args_clnt *argsp, nfs_argop4 *argop, nfs4_lock_owner_t **lopp,
13062 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp,
13063 LOCK4args **lock_argsp, LOCKU4args **locku_argsp)
13064 {
13065 mntinfo4_t *mi = VTOMI4(resend_rqstp->lr_vp);
13066 int error;
13067
13068 NFS4_DEBUG((nfs4_lost_rqst_debug || nfs4_client_lock_debug),
13069 (CE_NOTE,
13070 "nfs4frlock_setup_resend_lock_args: have lost lock to resend"));
13071 ASSERT(resend_rqstp != NULL);
13072 ASSERT(resend_rqstp->lr_op == OP_LOCK ||
13073 resend_rqstp->lr_op == OP_LOCKU);
13074
13075 *oopp = resend_rqstp->lr_oop;
13076 if (resend_rqstp->lr_oop) {
13077 open_owner_hold(resend_rqstp->lr_oop);
13078 error = nfs4_start_open_seqid_sync(resend_rqstp->lr_oop, mi);
13079 ASSERT(error == 0); /* recov thread always succeeds */
13080 }
13081
13082 /* Must resend this lost lock/locku request. */
13083 ASSERT(resend_rqstp->lr_lop != NULL);
13084 *lopp = resend_rqstp->lr_lop;
13085 lock_owner_hold(resend_rqstp->lr_lop);
13086 error = nfs4_start_lock_seqid_sync(resend_rqstp->lr_lop, mi);
13087 ASSERT(error == 0); /* recov thread always succeeds */
13088
13089 *ospp = resend_rqstp->lr_osp;
13090 if (*ospp)
13091 open_stream_hold(resend_rqstp->lr_osp);
13092
13093 if (resend_rqstp->lr_op == OP_LOCK) {
13094 LOCK4args *lock_args;
13095
13096 argop->argop = OP_LOCK;
13097 *lock_argsp = lock_args = &argop->nfs_argop4_u.oplock;
13098 lock_args->locktype = resend_rqstp->lr_locktype;
13099 lock_args->reclaim =
13100 (resend_rqstp->lr_ctype == NFS4_LCK_CTYPE_RECLAIM);
13101 lock_args->offset = resend_rqstp->lr_flk->l_start;
13102 lock_args->length = resend_rqstp->lr_flk->l_len;
13103 if (lock_args->length == 0)
13104 lock_args->length = ~lock_args->length;
13105 nfs4_setup_lock_args(*lopp, *oopp, *ospp,
13106 mi2clientid(mi), &lock_args->locker);
13107
13108 switch (resend_rqstp->lr_ctype) {
13109 case NFS4_LCK_CTYPE_RESEND:
13110 argsp->ctag = TAG_LOCK_RESEND;
13111 break;
13112 case NFS4_LCK_CTYPE_REINSTATE:
13113 argsp->ctag = TAG_LOCK_REINSTATE;
13114 break;
13115 case NFS4_LCK_CTYPE_RECLAIM:
13116 argsp->ctag = TAG_LOCK_RECLAIM;
13117 break;
13118 default:
13119 argsp->ctag = TAG_LOCK_UNKNOWN;
13120 break;
13121 }
13122 } else {
13123 LOCKU4args *locku_args;
13124 nfs4_lock_owner_t *lop = resend_rqstp->lr_lop;
13125
13126 argop->argop = OP_LOCKU;
13127 *locku_argsp = locku_args = &argop->nfs_argop4_u.oplocku;
13128 locku_args->locktype = READ_LT;
13129 locku_args->seqid = lop->lock_seqid + 1;
13130 mutex_enter(&lop->lo_lock);
13131 locku_args->lock_stateid = lop->lock_stateid;
13132 mutex_exit(&lop->lo_lock);
13133 locku_args->offset = resend_rqstp->lr_flk->l_start;
13134 locku_args->length = resend_rqstp->lr_flk->l_len;
13135 if (locku_args->length == 0)
13136 locku_args->length = ~locku_args->length;
13137
13138 switch (resend_rqstp->lr_ctype) {
13139 case NFS4_LCK_CTYPE_RESEND:
13140 argsp->ctag = TAG_LOCKU_RESEND;
13141 break;
13142 case NFS4_LCK_CTYPE_REINSTATE:
13143 argsp->ctag = TAG_LOCKU_REINSTATE;
13144 break;
13145 default:
13146 argsp->ctag = TAG_LOCK_UNKNOWN;
13147 break;
13148 }
13149 }
13150 }
13151
13152 /*
13153 * Setup the LOCKT4 arguments.
13154 */
13155 static void
nfs4frlock_setup_lockt_args(nfs4_lock_call_type_t ctype,nfs_argop4 * argop,LOCKT4args ** lockt_argsp,COMPOUND4args_clnt * argsp,flock64_t * flk,rnode4_t * rp)13156 nfs4frlock_setup_lockt_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop,
13157 LOCKT4args **lockt_argsp, COMPOUND4args_clnt *argsp, flock64_t *flk,
13158 rnode4_t *rp)
13159 {
13160 LOCKT4args *lockt_args;
13161
13162 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone);
13163 ASSERT(ctype == NFS4_LCK_CTYPE_NORM);
13164 argop->argop = OP_LOCKT;
13165 argsp->ctag = TAG_LOCKT;
13166 lockt_args = &argop->nfs_argop4_u.oplockt;
13167
13168 /*
13169 * The locktype will be READ_LT unless it's
13170 * a write lock. We do this because the Solaris
13171 * system call allows the combination of
13172 * F_UNLCK and F_GETLK* and so in that case the
13173 * unlock is mapped to a read.
13174 */
13175 if (flk->l_type == F_WRLCK)
13176 lockt_args->locktype = WRITE_LT;
13177 else
13178 lockt_args->locktype = READ_LT;
13179
13180 lockt_args->owner.clientid = mi2clientid(VTOMI4(RTOV4(rp)));
13181 /* set the lock owner4 args */
13182 nfs4_setlockowner_args(&lockt_args->owner, rp,
13183 ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id :
13184 flk->l_pid);
13185 lockt_args->offset = flk->l_start;
13186 lockt_args->length = flk->l_len;
13187 if (flk->l_len == 0)
13188 lockt_args->length = ~lockt_args->length;
13189
13190 *lockt_argsp = lockt_args;
13191 }
13192
13193 /*
13194 * If the client is holding a delegation, and the open stream to be used
13195 * with this lock request is a delegation open stream, then re-open the stream.
13196 * Sets the nfs4_error_t to all zeros unless the open stream has already
13197 * failed a reopen or we couldn't find the open stream. NFS4ERR_DELAY
13198 * means the caller should retry (like a recovery retry).
13199 */
13200 static void
nfs4frlock_check_deleg(vnode_t * vp,nfs4_error_t * ep,cred_t * cr,int lt)13201 nfs4frlock_check_deleg(vnode_t *vp, nfs4_error_t *ep, cred_t *cr, int lt)
13202 {
13203 open_delegation_type4 dt;
13204 bool_t reopen_needed, force;
13205 nfs4_open_stream_t *osp;
13206 open_claim_type4 oclaim;
13207 rnode4_t *rp = VTOR4(vp);
13208 mntinfo4_t *mi = VTOMI4(vp);
13209
13210 ASSERT(nfs_zone() == mi->mi_zone);
13211
13212 nfs4_error_zinit(ep);
13213
13214 mutex_enter(&rp->r_statev4_lock);
13215 dt = rp->r_deleg_type;
13216 mutex_exit(&rp->r_statev4_lock);
13217
13218 if (dt != OPEN_DELEGATE_NONE) {
13219 nfs4_open_owner_t *oop;
13220
13221 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi);
13222 if (!oop) {
13223 ep->stat = NFS4ERR_IO;
13224 return;
13225 }
13226 /* returns with 'os_sync_lock' held */
13227 osp = find_open_stream(oop, rp);
13228 if (!osp) {
13229 open_owner_rele(oop);
13230 ep->stat = NFS4ERR_IO;
13231 return;
13232 }
13233
13234 if (osp->os_failed_reopen) {
13235 NFS4_DEBUG((nfs4_open_stream_debug ||
13236 nfs4_client_lock_debug), (CE_NOTE,
13237 "nfs4frlock_check_deleg: os_failed_reopen set "
13238 "for osp %p, cr %p, rp %s", (void *)osp,
13239 (void *)cr, rnode4info(rp)));
13240 mutex_exit(&osp->os_sync_lock);
13241 open_stream_rele(osp, rp);
13242 open_owner_rele(oop);
13243 ep->stat = NFS4ERR_IO;
13244 return;
13245 }
13246
13247 /*
13248 * Determine whether a reopen is needed. If this
13249 * is a delegation open stream, then send the open
13250 * to the server to give visibility to the open owner.
13251 * Even if it isn't a delegation open stream, we need
13252 * to check if the previous open CLAIM_DELEGATE_CUR
13253 * was sufficient.
13254 */
13255
13256 reopen_needed = osp->os_delegation ||
13257 ((lt == F_RDLCK &&
13258 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_READ)) ||
13259 (lt == F_WRLCK &&
13260 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_WRITE)));
13261
13262 mutex_exit(&osp->os_sync_lock);
13263 open_owner_rele(oop);
13264
13265 if (reopen_needed) {
13266 /*
13267 * Always use CLAIM_PREVIOUS after server reboot.
13268 * The server will reject CLAIM_DELEGATE_CUR if
13269 * it is used during the grace period.
13270 */
13271 mutex_enter(&mi->mi_lock);
13272 if (mi->mi_recovflags & MI4R_SRV_REBOOT) {
13273 oclaim = CLAIM_PREVIOUS;
13274 force = TRUE;
13275 } else {
13276 oclaim = CLAIM_DELEGATE_CUR;
13277 force = FALSE;
13278 }
13279 mutex_exit(&mi->mi_lock);
13280
13281 nfs4_reopen(vp, osp, ep, oclaim, force, FALSE);
13282 if (ep->error == EAGAIN) {
13283 nfs4_error_zinit(ep);
13284 ep->stat = NFS4ERR_DELAY;
13285 }
13286 }
13287 open_stream_rele(osp, rp);
13288 osp = NULL;
13289 }
13290 }
13291
13292 /*
13293 * Setup the LOCKU4 arguments.
13294 * Returns errors via the nfs4_error_t.
13295 * NFS4_OK no problems. *go_otwp is TRUE if call should go
13296 * over-the-wire. The caller must release the
13297 * reference on *lopp.
13298 * NFS4ERR_DELAY caller should retry (like recovery retry)
13299 * (other) unrecoverable error.
13300 */
13301 static void
nfs4frlock_setup_locku_args(nfs4_lock_call_type_t ctype,nfs_argop4 * argop,LOCKU4args ** locku_argsp,flock64_t * flk,nfs4_lock_owner_t ** lopp,nfs4_error_t * ep,COMPOUND4args_clnt * argsp,vnode_t * vp,int flag,u_offset_t offset,cred_t * cr,bool_t * skip_get_err,bool_t * go_otwp)13302 nfs4frlock_setup_locku_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop,
13303 LOCKU4args **locku_argsp, flock64_t *flk,
13304 nfs4_lock_owner_t **lopp, nfs4_error_t *ep, COMPOUND4args_clnt *argsp,
13305 vnode_t *vp, int flag, u_offset_t offset, cred_t *cr,
13306 bool_t *skip_get_err, bool_t *go_otwp)
13307 {
13308 nfs4_lock_owner_t *lop = NULL;
13309 LOCKU4args *locku_args;
13310 pid_t pid;
13311 bool_t is_spec = FALSE;
13312 rnode4_t *rp = VTOR4(vp);
13313
13314 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13315 ASSERT(ctype == NFS4_LCK_CTYPE_NORM);
13316
13317 nfs4frlock_check_deleg(vp, ep, cr, F_UNLCK);
13318 if (ep->error || ep->stat)
13319 return;
13320
13321 argop->argop = OP_LOCKU;
13322 if (ctype == NFS4_LCK_CTYPE_REINSTATE)
13323 argsp->ctag = TAG_LOCKU_REINSTATE;
13324 else
13325 argsp->ctag = TAG_LOCKU;
13326 locku_args = &argop->nfs_argop4_u.oplocku;
13327 *locku_argsp = locku_args;
13328
13329 /*
13330 * XXX what should locku_args->locktype be?
13331 * setting to ALWAYS be READ_LT so at least
13332 * it is a valid locktype.
13333 */
13334
13335 locku_args->locktype = READ_LT;
13336
13337 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id :
13338 flk->l_pid;
13339
13340 /*
13341 * Get the lock owner stateid. If no lock owner
13342 * exists, return success.
13343 */
13344 lop = find_lock_owner(rp, pid, LOWN_ANY);
13345 *lopp = lop;
13346 if (lop && CLNT_ISSPECIAL(&lop->lock_stateid))
13347 is_spec = TRUE;
13348 if (!lop || is_spec) {
13349 /*
13350 * No lock owner so no locks to unlock.
13351 * Return success. If there was a failed
13352 * reclaim earlier, the lock might still be
13353 * registered with the local locking code,
13354 * so notify it of the unlock.
13355 *
13356 * If the lockowner is using a special stateid,
13357 * then the original lock request (that created
13358 * this lockowner) was never successful, so we
13359 * have no lock to undo OTW.
13360 */
13361 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
13362 "nfs4frlock_setup_locku_args: LOCKU: no lock owner "
13363 "(%ld) so return success", (long)pid));
13364
13365 if (ctype == NFS4_LCK_CTYPE_NORM)
13366 flk->l_pid = curproc->p_pid;
13367 nfs4_register_lock_locally(vp, flk, flag, offset);
13368 /*
13369 * Release our hold and NULL out so final_cleanup
13370 * doesn't try to end a lock seqid sync we
13371 * never started.
13372 */
13373 if (is_spec) {
13374 lock_owner_rele(lop);
13375 *lopp = NULL;
13376 }
13377 *skip_get_err = TRUE;
13378 *go_otwp = FALSE;
13379 return;
13380 }
13381
13382 ep->error = nfs4_start_lock_seqid_sync(lop, VTOMI4(vp));
13383 if (ep->error == EAGAIN) {
13384 lock_owner_rele(lop);
13385 *lopp = NULL;
13386 return;
13387 }
13388
13389 mutex_enter(&lop->lo_lock);
13390 locku_args->lock_stateid = lop->lock_stateid;
13391 mutex_exit(&lop->lo_lock);
13392 locku_args->seqid = lop->lock_seqid + 1;
13393
13394 /* leave the ref count on lop, rele after RPC call */
13395
13396 locku_args->offset = flk->l_start;
13397 locku_args->length = flk->l_len;
13398 if (flk->l_len == 0)
13399 locku_args->length = ~locku_args->length;
13400
13401 *go_otwp = TRUE;
13402 }
13403
13404 /*
13405 * Setup the LOCK4 arguments.
13406 *
13407 * Returns errors via the nfs4_error_t.
13408 * NFS4_OK no problems
13409 * NFS4ERR_DELAY caller should retry (like recovery retry)
13410 * (other) unrecoverable error
13411 */
13412 static void
nfs4frlock_setup_lock_args(nfs4_lock_call_type_t ctype,LOCK4args ** lock_argsp,nfs4_open_owner_t ** oopp,nfs4_open_stream_t ** ospp,nfs4_lock_owner_t ** lopp,nfs_argop4 * argop,COMPOUND4args_clnt * argsp,flock64_t * flk,int cmd,vnode_t * vp,cred_t * cr,nfs4_error_t * ep)13413 nfs4frlock_setup_lock_args(nfs4_lock_call_type_t ctype, LOCK4args **lock_argsp,
13414 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp,
13415 nfs4_lock_owner_t **lopp, nfs_argop4 *argop, COMPOUND4args_clnt *argsp,
13416 flock64_t *flk, int cmd, vnode_t *vp, cred_t *cr, nfs4_error_t *ep)
13417 {
13418 LOCK4args *lock_args;
13419 nfs4_open_owner_t *oop = NULL;
13420 nfs4_open_stream_t *osp = NULL;
13421 nfs4_lock_owner_t *lop = NULL;
13422 pid_t pid;
13423 rnode4_t *rp = VTOR4(vp);
13424
13425 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13426
13427 nfs4frlock_check_deleg(vp, ep, cr, flk->l_type);
13428 if (ep->error || ep->stat != NFS4_OK)
13429 return;
13430
13431 argop->argop = OP_LOCK;
13432 if (ctype == NFS4_LCK_CTYPE_NORM)
13433 argsp->ctag = TAG_LOCK;
13434 else if (ctype == NFS4_LCK_CTYPE_RECLAIM)
13435 argsp->ctag = TAG_RELOCK;
13436 else
13437 argsp->ctag = TAG_LOCK_REINSTATE;
13438 lock_args = &argop->nfs_argop4_u.oplock;
13439 lock_args->locktype = flk_to_locktype(cmd, flk->l_type);
13440 lock_args->reclaim = ctype == NFS4_LCK_CTYPE_RECLAIM ? 1 : 0;
13441 /*
13442 * Get the lock owner. If no lock owner exists,
13443 * create a 'temporary' one and grab the open seqid
13444 * synchronization (which puts a hold on the open
13445 * owner and open stream).
13446 * This also grabs the lock seqid synchronization.
13447 */
13448 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : flk->l_pid;
13449 ep->stat =
13450 nfs4_find_or_create_lock_owner(pid, rp, cr, &oop, &osp, &lop);
13451
13452 if (ep->stat != NFS4_OK)
13453 goto out;
13454
13455 nfs4_setup_lock_args(lop, oop, osp, mi2clientid(VTOMI4(vp)),
13456 &lock_args->locker);
13457
13458 lock_args->offset = flk->l_start;
13459 lock_args->length = flk->l_len;
13460 if (flk->l_len == 0)
13461 lock_args->length = ~lock_args->length;
13462 *lock_argsp = lock_args;
13463 out:
13464 *oopp = oop;
13465 *ospp = osp;
13466 *lopp = lop;
13467 }
13468
13469 /*
13470 * After we get the reply from the server, record the proper information
13471 * for possible resend lock requests.
13472 *
13473 * Allocates memory for the saved_rqstp if we have a lost lock to save.
13474 */
13475 static void
nfs4frlock_save_lost_rqst(nfs4_lock_call_type_t ctype,int error,nfs_lock_type4 locktype,nfs4_open_owner_t * oop,nfs4_open_stream_t * osp,nfs4_lock_owner_t * lop,flock64_t * flk,nfs4_lost_rqst_t * lost_rqstp,cred_t * cr,vnode_t * vp)13476 nfs4frlock_save_lost_rqst(nfs4_lock_call_type_t ctype, int error,
13477 nfs_lock_type4 locktype, nfs4_open_owner_t *oop,
13478 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk,
13479 nfs4_lost_rqst_t *lost_rqstp, cred_t *cr, vnode_t *vp)
13480 {
13481 bool_t unlock = (flk->l_type == F_UNLCK);
13482
13483 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13484 ASSERT(ctype == NFS4_LCK_CTYPE_NORM ||
13485 ctype == NFS4_LCK_CTYPE_REINSTATE);
13486
13487 if (error != 0 && !unlock) {
13488 NFS4_DEBUG((nfs4_lost_rqst_debug ||
13489 nfs4_client_lock_debug), (CE_NOTE,
13490 "nfs4frlock_save_lost_rqst: set lo_pending_rqsts to 1 "
13491 " for lop %p", (void *)lop));
13492 ASSERT(lop != NULL);
13493 mutex_enter(&lop->lo_lock);
13494 lop->lo_pending_rqsts = 1;
13495 mutex_exit(&lop->lo_lock);
13496 }
13497
13498 lost_rqstp->lr_putfirst = FALSE;
13499 lost_rqstp->lr_op = 0;
13500
13501 /*
13502 * For lock/locku requests, we treat EINTR as ETIMEDOUT for
13503 * recovery purposes so that the lock request that was sent
13504 * can be saved and re-issued later. Ditto for EIO from a forced
13505 * unmount. This is done to have the client's local locking state
13506 * match the v4 server's state; that is, the request was
13507 * potentially received and accepted by the server but the client
13508 * thinks it was not.
13509 */
13510 if (error == ETIMEDOUT || error == EINTR ||
13511 NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) {
13512 NFS4_DEBUG((nfs4_lost_rqst_debug ||
13513 nfs4_client_lock_debug), (CE_NOTE,
13514 "nfs4frlock_save_lost_rqst: got a lost %s lock for "
13515 "lop %p oop %p osp %p", unlock ? "LOCKU" : "LOCK",
13516 (void *)lop, (void *)oop, (void *)osp));
13517 if (unlock)
13518 lost_rqstp->lr_op = OP_LOCKU;
13519 else {
13520 lost_rqstp->lr_op = OP_LOCK;
13521 lost_rqstp->lr_locktype = locktype;
13522 }
13523 /*
13524 * Objects are held and rele'd via the recovery code.
13525 * See nfs4_save_lost_rqst.
13526 */
13527 lost_rqstp->lr_vp = vp;
13528 lost_rqstp->lr_dvp = NULL;
13529 lost_rqstp->lr_oop = oop;
13530 lost_rqstp->lr_osp = osp;
13531 lost_rqstp->lr_lop = lop;
13532 lost_rqstp->lr_cr = cr;
13533 switch (ctype) {
13534 case NFS4_LCK_CTYPE_NORM:
13535 flk->l_pid = ttoproc(curthread)->p_pid;
13536 lost_rqstp->lr_ctype = NFS4_LCK_CTYPE_RESEND;
13537 break;
13538 case NFS4_LCK_CTYPE_REINSTATE:
13539 lost_rqstp->lr_putfirst = TRUE;
13540 lost_rqstp->lr_ctype = ctype;
13541 break;
13542 default:
13543 break;
13544 }
13545 lost_rqstp->lr_flk = flk;
13546 }
13547 }
13548
13549 /*
13550 * Update lop's seqid. Also update the seqid stored in a resend request,
13551 * if any. (Some recovery errors increment the seqid, and we may have to
13552 * send the resend request again.)
13553 */
13554
13555 static void
nfs4frlock_bump_seqid(LOCK4args * lock_args,LOCKU4args * locku_args,nfs4_open_owner_t * oop,nfs4_lock_owner_t * lop,nfs4_tag_type_t tag_type)13556 nfs4frlock_bump_seqid(LOCK4args *lock_args, LOCKU4args *locku_args,
13557 nfs4_open_owner_t *oop, nfs4_lock_owner_t *lop, nfs4_tag_type_t tag_type)
13558 {
13559 if (lock_args) {
13560 if (lock_args->locker.new_lock_owner == TRUE)
13561 nfs4_get_and_set_next_open_seqid(oop, tag_type);
13562 else {
13563 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE);
13564 nfs4_set_lock_seqid(lop->lock_seqid + 1, lop);
13565 }
13566 } else if (locku_args) {
13567 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE);
13568 nfs4_set_lock_seqid(lop->lock_seqid +1, lop);
13569 }
13570 }
13571
13572 /*
13573 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the
13574 * COMPOUND4 args/res for calls that need to retry.
13575 * Switches the *cred_otwp to base_cr.
13576 */
13577 static void
nfs4frlock_check_access(vnode_t * vp,nfs4_op_hint_t op_hint,nfs4_recov_state_t * recov_statep,int needrecov,bool_t * did_start_fop,COMPOUND4args_clnt ** argspp,COMPOUND4res_clnt ** respp,int error,nfs4_lock_owner_t ** lopp,nfs4_open_owner_t ** oopp,nfs4_open_stream_t ** ospp,cred_t * base_cr,cred_t ** cred_otwp)13578 nfs4frlock_check_access(vnode_t *vp, nfs4_op_hint_t op_hint,
13579 nfs4_recov_state_t *recov_statep, int needrecov, bool_t *did_start_fop,
13580 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, int error,
13581 nfs4_lock_owner_t **lopp, nfs4_open_owner_t **oopp,
13582 nfs4_open_stream_t **ospp, cred_t *base_cr, cred_t **cred_otwp)
13583 {
13584 nfs4_open_owner_t *oop = *oopp;
13585 nfs4_open_stream_t *osp = *ospp;
13586 nfs4_lock_owner_t *lop = *lopp;
13587 nfs_argop4 *argop = (*argspp)->array;
13588
13589 if (*did_start_fop) {
13590 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep,
13591 needrecov);
13592 *did_start_fop = FALSE;
13593 }
13594 ASSERT((*argspp)->array_len == 2);
13595 if (argop[1].argop == OP_LOCK)
13596 nfs4args_lock_free(&argop[1]);
13597 else if (argop[1].argop == OP_LOCKT)
13598 nfs4args_lockt_free(&argop[1]);
13599 kmem_free(argop, 2 * sizeof (nfs_argop4));
13600 if (!error)
13601 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp);
13602 *argspp = NULL;
13603 *respp = NULL;
13604
13605 if (lop) {
13606 nfs4_end_lock_seqid_sync(lop);
13607 lock_owner_rele(lop);
13608 *lopp = NULL;
13609 }
13610
13611 /* need to free up the reference on osp for lock args */
13612 if (osp != NULL) {
13613 open_stream_rele(osp, VTOR4(vp));
13614 *ospp = NULL;
13615 }
13616
13617 /* need to free up the reference on oop for lock args */
13618 if (oop != NULL) {
13619 nfs4_end_open_seqid_sync(oop);
13620 open_owner_rele(oop);
13621 *oopp = NULL;
13622 }
13623
13624 crfree(*cred_otwp);
13625 *cred_otwp = base_cr;
13626 crhold(*cred_otwp);
13627 }
13628
13629 /*
13630 * Function to process the client's recovery for nfs4frlock.
13631 * Returns TRUE if we should retry the lock request; FALSE otherwise.
13632 *
13633 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the
13634 * COMPOUND4 args/res for calls that need to retry.
13635 *
13636 * Note: the rp's r_lkserlock is *not* dropped during this path.
13637 */
13638 static bool_t
nfs4frlock_recovery(int needrecov,nfs4_error_t * ep,COMPOUND4args_clnt ** argspp,COMPOUND4res_clnt ** respp,LOCK4args * lock_args,LOCKU4args * locku_args,nfs4_open_owner_t ** oopp,nfs4_open_stream_t ** ospp,nfs4_lock_owner_t ** lopp,rnode4_t * rp,vnode_t * vp,nfs4_recov_state_t * recov_statep,nfs4_op_hint_t op_hint,bool_t * did_start_fop,nfs4_lost_rqst_t * lost_rqstp,flock64_t * flk)13639 nfs4frlock_recovery(int needrecov, nfs4_error_t *ep,
13640 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp,
13641 LOCK4args *lock_args, LOCKU4args *locku_args,
13642 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp,
13643 nfs4_lock_owner_t **lopp, rnode4_t *rp, vnode_t *vp,
13644 nfs4_recov_state_t *recov_statep, nfs4_op_hint_t op_hint,
13645 bool_t *did_start_fop, nfs4_lost_rqst_t *lost_rqstp, flock64_t *flk)
13646 {
13647 nfs4_open_owner_t *oop = *oopp;
13648 nfs4_open_stream_t *osp = *ospp;
13649 nfs4_lock_owner_t *lop = *lopp;
13650
13651 bool_t abort, retry;
13652
13653 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13654 ASSERT((*argspp) != NULL);
13655 ASSERT((*respp) != NULL);
13656 if (lock_args || locku_args)
13657 ASSERT(lop != NULL);
13658
13659 NFS4_DEBUG((nfs4_client_lock_debug || nfs4_client_recov_debug),
13660 (CE_NOTE, "nfs4frlock_recovery: initiating recovery\n"));
13661
13662 retry = TRUE;
13663 abort = FALSE;
13664 if (needrecov) {
13665 nfs4_bseqid_entry_t *bsep = NULL;
13666 nfs_opnum4 op;
13667
13668 op = lock_args ? OP_LOCK : locku_args ? OP_LOCKU : OP_LOCKT;
13669
13670 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) {
13671 seqid4 seqid;
13672
13673 if (lock_args) {
13674 if (lock_args->locker.new_lock_owner == TRUE)
13675 seqid = lock_args->locker.locker4_u.
13676 open_owner.open_seqid;
13677 else
13678 seqid = lock_args->locker.locker4_u.
13679 lock_owner.lock_seqid;
13680 } else if (locku_args) {
13681 seqid = locku_args->seqid;
13682 } else {
13683 seqid = 0;
13684 }
13685
13686 bsep = nfs4_create_bseqid_entry(oop, lop, vp,
13687 flk->l_pid, (*argspp)->ctag, seqid);
13688 }
13689
13690 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL,
13691 (lost_rqstp && (lost_rqstp->lr_op == OP_LOCK ||
13692 lost_rqstp->lr_op == OP_LOCKU)) ? lost_rqstp :
13693 NULL, op, bsep, NULL, NULL);
13694
13695 if (bsep)
13696 kmem_free(bsep, sizeof (*bsep));
13697 }
13698
13699 /*
13700 * Return that we do not want to retry the request for 3 cases:
13701 * 1. If we received EINTR or are bailing out because of a forced
13702 * unmount, we came into this code path just for the sake of
13703 * initiating recovery, we now need to return the error.
13704 * 2. If we have aborted recovery.
13705 * 3. We received NFS4ERR_BAD_SEQID.
13706 */
13707 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp) ||
13708 abort == TRUE || (ep->error == 0 && ep->stat == NFS4ERR_BAD_SEQID))
13709 retry = FALSE;
13710
13711 if (*did_start_fop == TRUE) {
13712 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep,
13713 needrecov);
13714 *did_start_fop = FALSE;
13715 }
13716
13717 if (retry == TRUE) {
13718 nfs_argop4 *argop;
13719
13720 argop = (*argspp)->array;
13721 ASSERT((*argspp)->array_len == 2);
13722
13723 if (argop[1].argop == OP_LOCK)
13724 nfs4args_lock_free(&argop[1]);
13725 else if (argop[1].argop == OP_LOCKT)
13726 nfs4args_lockt_free(&argop[1]);
13727 kmem_free(argop, 2 * sizeof (nfs_argop4));
13728 if (!ep->error)
13729 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp);
13730 *respp = NULL;
13731 *argspp = NULL;
13732 }
13733
13734 if (lop != NULL) {
13735 nfs4_end_lock_seqid_sync(lop);
13736 lock_owner_rele(lop);
13737 }
13738
13739 *lopp = NULL;
13740
13741 /* need to free up the reference on osp for lock args */
13742 if (osp != NULL) {
13743 open_stream_rele(osp, rp);
13744 *ospp = NULL;
13745 }
13746
13747 /* need to free up the reference on oop for lock args */
13748 if (oop != NULL) {
13749 nfs4_end_open_seqid_sync(oop);
13750 open_owner_rele(oop);
13751 *oopp = NULL;
13752 }
13753
13754 return (retry);
13755 }
13756
13757 /*
13758 * Handles the successful reply from the server for nfs4frlock.
13759 */
13760 static void
nfs4frlock_results_ok(nfs4_lock_call_type_t ctype,int cmd,flock64_t * flk,vnode_t * vp,int flag,u_offset_t offset,nfs4_lost_rqst_t * resend_rqstp)13761 nfs4frlock_results_ok(nfs4_lock_call_type_t ctype, int cmd, flock64_t *flk,
13762 vnode_t *vp, int flag, u_offset_t offset,
13763 nfs4_lost_rqst_t *resend_rqstp)
13764 {
13765 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13766 if ((cmd == F_SETLK || cmd == F_SETLKW) &&
13767 (flk->l_type == F_RDLCK || flk->l_type == F_WRLCK)) {
13768 if (ctype == NFS4_LCK_CTYPE_NORM) {
13769 flk->l_pid = ttoproc(curthread)->p_pid;
13770 /*
13771 * We do not register lost locks locally in
13772 * the 'resend' case since the user/application
13773 * doesn't think we have the lock.
13774 */
13775 ASSERT(!resend_rqstp);
13776 nfs4_register_lock_locally(vp, flk, flag, offset);
13777 }
13778 }
13779 }
13780
13781 /*
13782 * Handle the DENIED reply from the server for nfs4frlock.
13783 * Returns TRUE if we should retry the request; FALSE otherwise.
13784 *
13785 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the
13786 * COMPOUND4 args/res for calls that need to retry. Can also
13787 * drop and regrab the r_lkserlock.
13788 */
13789 static bool_t
nfs4frlock_results_denied(nfs4_lock_call_type_t ctype,LOCK4args * lock_args,LOCKT4args * lockt_args,nfs4_open_owner_t ** oopp,nfs4_open_stream_t ** ospp,nfs4_lock_owner_t ** lopp,int cmd,vnode_t * vp,flock64_t * flk,nfs4_op_hint_t op_hint,nfs4_recov_state_t * recov_statep,int needrecov,COMPOUND4args_clnt ** argspp,COMPOUND4res_clnt ** respp,clock_t * tick_delayp,short * whencep,int * errorp,nfs_resop4 * resop,cred_t * cr,bool_t * did_start_fop,bool_t * skip_get_err)13790 nfs4frlock_results_denied(nfs4_lock_call_type_t ctype, LOCK4args *lock_args,
13791 LOCKT4args *lockt_args, nfs4_open_owner_t **oopp,
13792 nfs4_open_stream_t **ospp, nfs4_lock_owner_t **lopp, int cmd,
13793 vnode_t *vp, flock64_t *flk, nfs4_op_hint_t op_hint,
13794 nfs4_recov_state_t *recov_statep, int needrecov,
13795 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp,
13796 clock_t *tick_delayp, short *whencep, int *errorp,
13797 nfs_resop4 *resop, cred_t *cr, bool_t *did_start_fop,
13798 bool_t *skip_get_err)
13799 {
13800 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13801
13802 if (lock_args) {
13803 nfs4_open_owner_t *oop = *oopp;
13804 nfs4_open_stream_t *osp = *ospp;
13805 nfs4_lock_owner_t *lop = *lopp;
13806 int intr;
13807
13808 /*
13809 * Blocking lock needs to sleep and retry from the request.
13810 *
13811 * Do not block and wait for 'resend' or 'reinstate'
13812 * lock requests, just return the error.
13813 *
13814 * Note: reclaim requests have cmd == F_SETLK, not F_SETLKW.
13815 */
13816 if (cmd == F_SETLKW) {
13817 rnode4_t *rp = VTOR4(vp);
13818 nfs_argop4 *argop = (*argspp)->array;
13819
13820 ASSERT(ctype == NFS4_LCK_CTYPE_NORM);
13821
13822 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint,
13823 recov_statep, needrecov);
13824 *did_start_fop = FALSE;
13825 ASSERT((*argspp)->array_len == 2);
13826 if (argop[1].argop == OP_LOCK)
13827 nfs4args_lock_free(&argop[1]);
13828 else if (argop[1].argop == OP_LOCKT)
13829 nfs4args_lockt_free(&argop[1]);
13830 kmem_free(argop, 2 * sizeof (nfs_argop4));
13831 if (*respp)
13832 (void) xdr_free(xdr_COMPOUND4res_clnt,
13833 (caddr_t)*respp);
13834 *argspp = NULL;
13835 *respp = NULL;
13836 nfs4_end_lock_seqid_sync(lop);
13837 lock_owner_rele(lop);
13838 *lopp = NULL;
13839 if (osp != NULL) {
13840 open_stream_rele(osp, rp);
13841 *ospp = NULL;
13842 }
13843 if (oop != NULL) {
13844 nfs4_end_open_seqid_sync(oop);
13845 open_owner_rele(oop);
13846 *oopp = NULL;
13847 }
13848
13849 nfs_rw_exit(&rp->r_lkserlock);
13850
13851 intr = nfs4_block_and_wait(tick_delayp, rp);
13852
13853 if (intr) {
13854 (void) nfs_rw_enter_sig(&rp->r_lkserlock,
13855 RW_WRITER, FALSE);
13856 *errorp = EINTR;
13857 return (FALSE);
13858 }
13859
13860 (void) nfs_rw_enter_sig(&rp->r_lkserlock,
13861 RW_WRITER, FALSE);
13862
13863 /*
13864 * Make sure we are still safe to lock with
13865 * regards to mmapping.
13866 */
13867 if (!nfs4_safelock(vp, flk, cr)) {
13868 *errorp = EAGAIN;
13869 return (FALSE);
13870 }
13871
13872 return (TRUE);
13873 }
13874 if (ctype == NFS4_LCK_CTYPE_NORM)
13875 *errorp = EAGAIN;
13876 *skip_get_err = TRUE;
13877 flk->l_whence = 0;
13878 *whencep = 0;
13879 return (FALSE);
13880 } else if (lockt_args) {
13881 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
13882 "nfs4frlock_results_denied: OP_LOCKT DENIED"));
13883
13884 denied_to_flk(&resop->nfs_resop4_u.oplockt.denied,
13885 flk, lockt_args);
13886
13887 /* according to NLM code */
13888 *errorp = 0;
13889 *whencep = 0;
13890 *skip_get_err = TRUE;
13891 return (FALSE);
13892 }
13893 return (FALSE);
13894 }
13895
13896 /*
13897 * Handles all NFS4 errors besides NFS4_OK and NFS4ERR_DENIED for nfs4frlock.
13898 */
13899 static void
nfs4frlock_results_default(COMPOUND4res_clnt * resp,int * errorp)13900 nfs4frlock_results_default(COMPOUND4res_clnt *resp, int *errorp)
13901 {
13902 switch (resp->status) {
13903 case NFS4ERR_ACCESS:
13904 case NFS4ERR_ADMIN_REVOKED:
13905 case NFS4ERR_BADHANDLE:
13906 case NFS4ERR_BAD_RANGE:
13907 case NFS4ERR_BAD_SEQID:
13908 case NFS4ERR_BAD_STATEID:
13909 case NFS4ERR_BADXDR:
13910 case NFS4ERR_DEADLOCK:
13911 case NFS4ERR_DELAY:
13912 case NFS4ERR_EXPIRED:
13913 case NFS4ERR_FHEXPIRED:
13914 case NFS4ERR_GRACE:
13915 case NFS4ERR_INVAL:
13916 case NFS4ERR_ISDIR:
13917 case NFS4ERR_LEASE_MOVED:
13918 case NFS4ERR_LOCK_NOTSUPP:
13919 case NFS4ERR_LOCK_RANGE:
13920 case NFS4ERR_MOVED:
13921 case NFS4ERR_NOFILEHANDLE:
13922 case NFS4ERR_NO_GRACE:
13923 case NFS4ERR_OLD_STATEID:
13924 case NFS4ERR_OPENMODE:
13925 case NFS4ERR_RECLAIM_BAD:
13926 case NFS4ERR_RECLAIM_CONFLICT:
13927 case NFS4ERR_RESOURCE:
13928 case NFS4ERR_SERVERFAULT:
13929 case NFS4ERR_STALE:
13930 case NFS4ERR_STALE_CLIENTID:
13931 case NFS4ERR_STALE_STATEID:
13932 return;
13933 default:
13934 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
13935 "nfs4frlock_results_default: got unrecognizable "
13936 "res.status %d", resp->status));
13937 *errorp = NFS4ERR_INVAL;
13938 }
13939 }
13940
13941 /*
13942 * The lock request was successful, so update the client's state.
13943 */
13944 static void
nfs4frlock_update_state(LOCK4args * lock_args,LOCKU4args * locku_args,LOCKT4args * lockt_args,nfs_resop4 * resop,nfs4_lock_owner_t * lop,vnode_t * vp,flock64_t * flk,cred_t * cr,nfs4_lost_rqst_t * resend_rqstp)13945 nfs4frlock_update_state(LOCK4args *lock_args, LOCKU4args *locku_args,
13946 LOCKT4args *lockt_args, nfs_resop4 *resop, nfs4_lock_owner_t *lop,
13947 vnode_t *vp, flock64_t *flk, cred_t *cr,
13948 nfs4_lost_rqst_t *resend_rqstp)
13949 {
13950 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13951
13952 if (lock_args) {
13953 LOCK4res *lock_res;
13954
13955 lock_res = &resop->nfs_resop4_u.oplock;
13956 /* update the stateid with server's response */
13957
13958 if (lock_args->locker.new_lock_owner == TRUE) {
13959 mutex_enter(&lop->lo_lock);
13960 lop->lo_just_created = NFS4_PERM_CREATED;
13961 mutex_exit(&lop->lo_lock);
13962 }
13963
13964 nfs4_set_lock_stateid(lop, lock_res->LOCK4res_u.lock_stateid);
13965
13966 /*
13967 * If the lock was the result of a resending a lost
13968 * request, we've synched up the stateid and seqid
13969 * with the server, but now the server might be out of sync
13970 * with what the application thinks it has for locks.
13971 * Clean that up here. It's unclear whether we should do
13972 * this even if the filesystem has been forcibly unmounted.
13973 * For most servers, it's probably wasted effort, but
13974 * RFC3530 lets servers require that unlocks exactly match
13975 * the locks that are held.
13976 */
13977 if (resend_rqstp != NULL &&
13978 resend_rqstp->lr_ctype != NFS4_LCK_CTYPE_REINSTATE) {
13979 nfs4_reinstitute_local_lock_state(vp, flk, cr, lop);
13980 } else {
13981 flk->l_whence = 0;
13982 }
13983 } else if (locku_args) {
13984 LOCKU4res *locku_res;
13985
13986 locku_res = &resop->nfs_resop4_u.oplocku;
13987
13988 /* Update the stateid with the server's response */
13989 nfs4_set_lock_stateid(lop, locku_res->lock_stateid);
13990 } else if (lockt_args) {
13991 /* Switch the lock type to express success, see fcntl */
13992 flk->l_type = F_UNLCK;
13993 flk->l_whence = 0;
13994 }
13995 }
13996
13997 /*
13998 * Do final cleanup before exiting nfs4frlock.
13999 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the
14000 * COMPOUND4 args/res for calls that haven't already.
14001 */
14002 static void
nfs4frlock_final_cleanup(nfs4_lock_call_type_t ctype,COMPOUND4args_clnt * argsp,COMPOUND4res_clnt * resp,vnode_t * vp,nfs4_op_hint_t op_hint,nfs4_recov_state_t * recov_statep,int needrecov,nfs4_open_owner_t * oop,nfs4_open_stream_t * osp,nfs4_lock_owner_t * lop,flock64_t * flk,short whence,u_offset_t offset,struct lm_sysid * ls,int * errorp,LOCK4args * lock_args,LOCKU4args * locku_args,bool_t did_start_fop,bool_t skip_get_err,cred_t * cred_otw,cred_t * cred)14003 nfs4frlock_final_cleanup(nfs4_lock_call_type_t ctype, COMPOUND4args_clnt *argsp,
14004 COMPOUND4res_clnt *resp, vnode_t *vp, nfs4_op_hint_t op_hint,
14005 nfs4_recov_state_t *recov_statep, int needrecov, nfs4_open_owner_t *oop,
14006 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk,
14007 short whence, u_offset_t offset, struct lm_sysid *ls,
14008 int *errorp, LOCK4args *lock_args, LOCKU4args *locku_args,
14009 bool_t did_start_fop, bool_t skip_get_err,
14010 cred_t *cred_otw, cred_t *cred)
14011 {
14012 mntinfo4_t *mi = VTOMI4(vp);
14013 rnode4_t *rp = VTOR4(vp);
14014 int error = *errorp;
14015 nfs_argop4 *argop;
14016 int do_flush_pages = 0;
14017
14018 ASSERT(nfs_zone() == mi->mi_zone);
14019 /*
14020 * The client recovery code wants the raw status information,
14021 * so don't map the NFS status code to an errno value for
14022 * non-normal call types.
14023 */
14024 if (ctype == NFS4_LCK_CTYPE_NORM) {
14025 if (*errorp == 0 && resp != NULL && skip_get_err == FALSE)
14026 *errorp = geterrno4(resp->status);
14027 if (did_start_fop == TRUE)
14028 nfs4_end_fop(mi, vp, NULL, op_hint, recov_statep,
14029 needrecov);
14030
14031 /*
14032 * We've established a new lock on the server, so invalidate
14033 * the pages associated with the vnode to get the most up to
14034 * date pages from the server after acquiring the lock. We
14035 * want to be sure that the read operation gets the newest data.
14036 * N.B.
14037 * We used to do this in nfs4frlock_results_ok but that doesn't
14038 * work since VOP_PUTPAGE can call nfs4_commit which calls
14039 * nfs4_start_fop. We flush the pages below after calling
14040 * nfs4_end_fop above
14041 * The flush of the page cache must be done after
14042 * nfs4_end_open_seqid_sync() to avoid a 4-way hang.
14043 */
14044 if (!error && resp && resp->status == NFS4_OK)
14045 do_flush_pages = 1;
14046 }
14047 if (argsp) {
14048 ASSERT(argsp->array_len == 2);
14049 argop = argsp->array;
14050 if (argop[1].argop == OP_LOCK)
14051 nfs4args_lock_free(&argop[1]);
14052 else if (argop[1].argop == OP_LOCKT)
14053 nfs4args_lockt_free(&argop[1]);
14054 kmem_free(argop, 2 * sizeof (nfs_argop4));
14055 if (resp)
14056 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
14057 }
14058
14059 /* free the reference on the lock owner */
14060 if (lop != NULL) {
14061 nfs4_end_lock_seqid_sync(lop);
14062 lock_owner_rele(lop);
14063 }
14064
14065 /* need to free up the reference on osp for lock args */
14066 if (osp != NULL)
14067 open_stream_rele(osp, rp);
14068
14069 /* need to free up the reference on oop for lock args */
14070 if (oop != NULL) {
14071 nfs4_end_open_seqid_sync(oop);
14072 open_owner_rele(oop);
14073 }
14074
14075 if (do_flush_pages)
14076 nfs4_flush_pages(vp, cred);
14077
14078 (void) convoff(vp, flk, whence, offset);
14079
14080 lm_rel_sysid(ls);
14081
14082 /*
14083 * Record debug information in the event we get EINVAL.
14084 */
14085 mutex_enter(&mi->mi_lock);
14086 if (*errorp == EINVAL && (lock_args || locku_args) &&
14087 (!(mi->mi_flags & MI4_POSIX_LOCK))) {
14088 if (!(mi->mi_flags & MI4_LOCK_DEBUG)) {
14089 zcmn_err(getzoneid(), CE_NOTE,
14090 "%s operation failed with "
14091 "EINVAL probably since the server, %s,"
14092 " doesn't support POSIX style locking",
14093 lock_args ? "LOCK" : "LOCKU",
14094 mi->mi_curr_serv->sv_hostname);
14095 mi->mi_flags |= MI4_LOCK_DEBUG;
14096 }
14097 }
14098 mutex_exit(&mi->mi_lock);
14099
14100 if (cred_otw)
14101 crfree(cred_otw);
14102 }
14103
14104 /*
14105 * This calls the server and the local locking code.
14106 *
14107 * Client locks are registerred locally by oring the sysid with
14108 * LM_SYSID_CLIENT. The server registers locks locally using just the sysid.
14109 * We need to distinguish between the two to avoid collision in case one
14110 * machine is used as both client and server.
14111 *
14112 * Blocking lock requests will continually retry to acquire the lock
14113 * forever.
14114 *
14115 * The ctype is defined as follows:
14116 * NFS4_LCK_CTYPE_NORM: normal lock request.
14117 *
14118 * NFS4_LCK_CTYPE_RECLAIM: bypass the usual calls for synchronizing with client
14119 * recovery, get the pid from flk instead of curproc, and don't reregister
14120 * the lock locally.
14121 *
14122 * NFS4_LCK_CTYPE_RESEND: same as NFS4_LCK_CTYPE_RECLAIM, with the addition
14123 * that we will use the information passed in via resend_rqstp to setup the
14124 * lock/locku request. This resend is the exact same request as the 'lost
14125 * lock', and is initiated by the recovery framework. A successful resend
14126 * request can initiate one or more reinstate requests.
14127 *
14128 * NFS4_LCK_CTYPE_REINSTATE: same as NFS4_LCK_CTYPE_RESEND, except that it
14129 * does not trigger additional reinstate requests. This lock call type is
14130 * set for setting the v4 server's locking state back to match what the
14131 * client's local locking state is in the event of a received 'lost lock'.
14132 *
14133 * Errors are returned via the nfs4_error_t parameter.
14134 */
14135 void
nfs4frlock(nfs4_lock_call_type_t ctype,vnode_t * vp,int cmd,flock64_t * flk,int flag,u_offset_t offset,cred_t * cr,nfs4_error_t * ep,nfs4_lost_rqst_t * resend_rqstp,int * did_reclaimp)14136 nfs4frlock(nfs4_lock_call_type_t ctype, vnode_t *vp, int cmd, flock64_t *flk,
14137 int flag, u_offset_t offset, cred_t *cr, nfs4_error_t *ep,
14138 nfs4_lost_rqst_t *resend_rqstp, int *did_reclaimp)
14139 {
14140 COMPOUND4args_clnt args, *argsp = NULL;
14141 COMPOUND4res_clnt res, *resp = NULL;
14142 nfs_argop4 *argop;
14143 nfs_resop4 *resop;
14144 rnode4_t *rp;
14145 int doqueue = 1;
14146 clock_t tick_delay; /* delay in clock ticks */
14147 struct lm_sysid *ls;
14148 LOCK4args *lock_args = NULL;
14149 LOCKU4args *locku_args = NULL;
14150 LOCKT4args *lockt_args = NULL;
14151 nfs4_open_owner_t *oop = NULL;
14152 nfs4_open_stream_t *osp = NULL;
14153 nfs4_lock_owner_t *lop = NULL;
14154 bool_t needrecov = FALSE;
14155 nfs4_recov_state_t recov_state;
14156 short whence;
14157 nfs4_op_hint_t op_hint;
14158 nfs4_lost_rqst_t lost_rqst;
14159 bool_t retry = FALSE;
14160 bool_t did_start_fop = FALSE;
14161 bool_t skip_get_err = FALSE;
14162 cred_t *cred_otw = NULL;
14163 bool_t recovonly; /* just queue request */
14164 int frc_no_reclaim = 0;
14165 #ifdef DEBUG
14166 char *name;
14167 #endif
14168
14169 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
14170
14171 #ifdef DEBUG
14172 name = fn_name(VTOSV(vp)->sv_name);
14173 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4frlock: "
14174 "%s: cmd %d, type %d, offset %llu, start %"PRIx64", "
14175 "length %"PRIu64", pid %d, sysid %d, call type %s, "
14176 "resend request %s", name, cmd, flk->l_type, offset, flk->l_start,
14177 flk->l_len, ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid :
14178 flk->l_pid, flk->l_sysid, nfs4frlock_get_call_type(ctype),
14179 resend_rqstp ? "TRUE" : "FALSE"));
14180 kmem_free(name, MAXNAMELEN);
14181 #endif
14182
14183 nfs4_error_zinit(ep);
14184 ep->error = nfs4frlock_validate_args(cmd, flk, flag, vp, offset);
14185 if (ep->error)
14186 return;
14187 ep->error = nfs4frlock_get_sysid(&ls, vp, flk);
14188 if (ep->error)
14189 return;
14190 nfs4frlock_pre_setup(&tick_delay, &recov_state, flk, &whence,
14191 vp, cr, &cred_otw);
14192
14193 recov_retry:
14194 nfs4frlock_call_init(&args, &argsp, &argop, &op_hint, flk, cmd,
14195 &retry, &did_start_fop, &resp, &skip_get_err, &lost_rqst);
14196 rp = VTOR4(vp);
14197
14198 ep->error = nfs4frlock_start_call(ctype, vp, op_hint, &recov_state,
14199 &did_start_fop, &recovonly);
14200
14201 if (ep->error)
14202 goto out;
14203
14204 if (recovonly) {
14205 /*
14206 * Leave the request for the recovery system to deal with.
14207 */
14208 ASSERT(ctype == NFS4_LCK_CTYPE_NORM);
14209 ASSERT(cmd != F_GETLK);
14210 ASSERT(flk->l_type == F_UNLCK);
14211
14212 nfs4_error_init(ep, EINTR);
14213 needrecov = TRUE;
14214 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY);
14215 if (lop != NULL) {
14216 nfs4frlock_save_lost_rqst(ctype, ep->error, READ_LT,
14217 NULL, NULL, lop, flk, &lost_rqst, cr, vp);
14218 (void) nfs4_start_recovery(ep,
14219 VTOMI4(vp), vp, NULL, NULL,
14220 (lost_rqst.lr_op == OP_LOCK ||
14221 lost_rqst.lr_op == OP_LOCKU) ?
14222 &lost_rqst : NULL, OP_LOCKU, NULL, NULL, NULL);
14223 lock_owner_rele(lop);
14224 lop = NULL;
14225 }
14226 flk->l_pid = curproc->p_pid;
14227 nfs4_register_lock_locally(vp, flk, flag, offset);
14228 goto out;
14229 }
14230
14231 /* putfh directory fh */
14232 argop[0].argop = OP_CPUTFH;
14233 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
14234
14235 /*
14236 * Set up the over-the-wire arguments and get references to the
14237 * open owner, etc.
14238 */
14239
14240 if (ctype == NFS4_LCK_CTYPE_RESEND ||
14241 ctype == NFS4_LCK_CTYPE_REINSTATE) {
14242 nfs4frlock_setup_resend_lock_args(resend_rqstp, argsp,
14243 &argop[1], &lop, &oop, &osp, &lock_args, &locku_args);
14244 } else {
14245 bool_t go_otw = TRUE;
14246
14247 ASSERT(resend_rqstp == NULL);
14248
14249 switch (cmd) {
14250 case F_GETLK:
14251 case F_O_GETLK:
14252 nfs4frlock_setup_lockt_args(ctype, &argop[1],
14253 &lockt_args, argsp, flk, rp);
14254 break;
14255 case F_SETLKW:
14256 case F_SETLK:
14257 if (flk->l_type == F_UNLCK)
14258 nfs4frlock_setup_locku_args(ctype,
14259 &argop[1], &locku_args, flk,
14260 &lop, ep, argsp,
14261 vp, flag, offset, cr,
14262 &skip_get_err, &go_otw);
14263 else
14264 nfs4frlock_setup_lock_args(ctype,
14265 &lock_args, &oop, &osp, &lop, &argop[1],
14266 argsp, flk, cmd, vp, cr, ep);
14267
14268 if (ep->error)
14269 goto out;
14270
14271 switch (ep->stat) {
14272 case NFS4_OK:
14273 break;
14274 case NFS4ERR_DELAY:
14275 /* recov thread never gets this error */
14276 ASSERT(resend_rqstp == NULL);
14277 ASSERT(did_start_fop);
14278
14279 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint,
14280 &recov_state, TRUE);
14281 did_start_fop = FALSE;
14282 if (argop[1].argop == OP_LOCK)
14283 nfs4args_lock_free(&argop[1]);
14284 else if (argop[1].argop == OP_LOCKT)
14285 nfs4args_lockt_free(&argop[1]);
14286 kmem_free(argop, 2 * sizeof (nfs_argop4));
14287 argsp = NULL;
14288 goto recov_retry;
14289 default:
14290 ep->error = EIO;
14291 goto out;
14292 }
14293 break;
14294 default:
14295 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14296 "nfs4_frlock: invalid cmd %d", cmd));
14297 ep->error = EINVAL;
14298 goto out;
14299 }
14300
14301 if (!go_otw)
14302 goto out;
14303 }
14304
14305 /* XXX should we use the local reclock as a cache ? */
14306 /*
14307 * Unregister the lock with the local locking code before
14308 * contacting the server. This avoids a potential race where
14309 * another process gets notified that it has been granted a lock
14310 * before we can unregister ourselves locally.
14311 */
14312 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) {
14313 if (ctype == NFS4_LCK_CTYPE_NORM)
14314 flk->l_pid = ttoproc(curthread)->p_pid;
14315 nfs4_register_lock_locally(vp, flk, flag, offset);
14316 }
14317
14318 /*
14319 * Send the server the lock request. Continually loop with a delay
14320 * if get error NFS4ERR_DENIED (for blocking locks) or NFS4ERR_GRACE.
14321 */
14322 resp = &res;
14323
14324 NFS4_DEBUG((nfs4_client_call_debug || nfs4_client_lock_debug),
14325 (CE_NOTE,
14326 "nfs4frlock: %s call, rp %s", needrecov ? "recov" : "first",
14327 rnode4info(rp)));
14328
14329 if (lock_args && frc_no_reclaim) {
14330 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM);
14331 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14332 "nfs4frlock: frc_no_reclaim: clearing reclaim"));
14333 lock_args->reclaim = FALSE;
14334 if (did_reclaimp)
14335 *did_reclaimp = 0;
14336 }
14337
14338 /*
14339 * Do the OTW call.
14340 */
14341 rfs4call(VTOMI4(vp), argsp, resp, cred_otw, &doqueue, 0, ep);
14342
14343 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14344 "nfs4frlock: error %d, status %d", ep->error, resp->status));
14345
14346 needrecov = nfs4_needs_recovery(ep, TRUE, vp->v_vfsp);
14347 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14348 "nfs4frlock: needrecov %d", needrecov));
14349
14350 if (ep->error == 0 && nfs4_need_to_bump_seqid(resp))
14351 nfs4frlock_bump_seqid(lock_args, locku_args, oop, lop,
14352 args.ctag);
14353
14354 /*
14355 * Check if one of these mutually exclusive error cases has
14356 * happened:
14357 * need to swap credentials due to access error
14358 * recovery is needed
14359 * different error (only known case is missing Kerberos ticket)
14360 */
14361
14362 if ((ep->error == EACCES ||
14363 (ep->error == 0 && resp->status == NFS4ERR_ACCESS)) &&
14364 cred_otw != cr) {
14365 nfs4frlock_check_access(vp, op_hint, &recov_state, needrecov,
14366 &did_start_fop, &argsp, &resp, ep->error, &lop, &oop, &osp,
14367 cr, &cred_otw);
14368 goto recov_retry;
14369 }
14370
14371 if (needrecov) {
14372 /*
14373 * LOCKT requests don't need to recover from lost
14374 * requests since they don't create/modify state.
14375 */
14376 if ((ep->error == EINTR ||
14377 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) &&
14378 lockt_args)
14379 goto out;
14380 /*
14381 * Do not attempt recovery for requests initiated by
14382 * the recovery framework. Let the framework redrive them.
14383 */
14384 if (ctype != NFS4_LCK_CTYPE_NORM)
14385 goto out;
14386 else {
14387 ASSERT(resend_rqstp == NULL);
14388 }
14389
14390 nfs4frlock_save_lost_rqst(ctype, ep->error,
14391 flk_to_locktype(cmd, flk->l_type),
14392 oop, osp, lop, flk, &lost_rqst, cred_otw, vp);
14393
14394 retry = nfs4frlock_recovery(needrecov, ep, &argsp,
14395 &resp, lock_args, locku_args, &oop, &osp, &lop,
14396 rp, vp, &recov_state, op_hint, &did_start_fop,
14397 cmd != F_GETLK ? &lost_rqst : NULL, flk);
14398
14399 if (retry) {
14400 ASSERT(oop == NULL);
14401 ASSERT(osp == NULL);
14402 ASSERT(lop == NULL);
14403 goto recov_retry;
14404 }
14405 goto out;
14406 }
14407
14408 /*
14409 * Bail out if have reached this point with ep->error set. Can
14410 * happen if (ep->error == EACCES && !needrecov && cred_otw == cr).
14411 * This happens if Kerberos ticket has expired or has been
14412 * destroyed.
14413 */
14414 if (ep->error != 0)
14415 goto out;
14416
14417 /*
14418 * Process the reply.
14419 */
14420 switch (resp->status) {
14421 case NFS4_OK:
14422 resop = &resp->array[1];
14423 nfs4frlock_results_ok(ctype, cmd, flk, vp, flag, offset,
14424 resend_rqstp);
14425 /*
14426 * Have a successful lock operation, now update state.
14427 */
14428 nfs4frlock_update_state(lock_args, locku_args, lockt_args,
14429 resop, lop, vp, flk, cr, resend_rqstp);
14430 break;
14431
14432 case NFS4ERR_DENIED:
14433 resop = &resp->array[1];
14434 retry = nfs4frlock_results_denied(ctype, lock_args, lockt_args,
14435 &oop, &osp, &lop, cmd, vp, flk, op_hint,
14436 &recov_state, needrecov, &argsp, &resp,
14437 &tick_delay, &whence, &ep->error, resop, cr,
14438 &did_start_fop, &skip_get_err);
14439
14440 if (retry) {
14441 ASSERT(oop == NULL);
14442 ASSERT(osp == NULL);
14443 ASSERT(lop == NULL);
14444 goto recov_retry;
14445 }
14446 break;
14447 /*
14448 * If the server won't let us reclaim, fall-back to trying to lock
14449 * the file from scratch. Code elsewhere will check the changeinfo
14450 * to ensure the file hasn't been changed.
14451 */
14452 case NFS4ERR_NO_GRACE:
14453 if (lock_args && lock_args->reclaim == TRUE) {
14454 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM);
14455 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14456 "nfs4frlock: reclaim: NFS4ERR_NO_GRACE"));
14457 frc_no_reclaim = 1;
14458 /* clean up before retrying */
14459 needrecov = 0;
14460 (void) nfs4frlock_recovery(needrecov, ep, &argsp, &resp,
14461 lock_args, locku_args, &oop, &osp, &lop, rp, vp,
14462 &recov_state, op_hint, &did_start_fop, NULL, flk);
14463 goto recov_retry;
14464 }
14465 /* FALLTHROUGH */
14466
14467 default:
14468 nfs4frlock_results_default(resp, &ep->error);
14469 break;
14470 }
14471 out:
14472 /*
14473 * Process and cleanup from error. Make interrupted unlock
14474 * requests look successful, since they will be handled by the
14475 * client recovery code.
14476 */
14477 nfs4frlock_final_cleanup(ctype, argsp, resp, vp, op_hint, &recov_state,
14478 needrecov, oop, osp, lop, flk, whence, offset, ls, &ep->error,
14479 lock_args, locku_args, did_start_fop,
14480 skip_get_err, cred_otw, cr);
14481
14482 if (ep->error == EINTR && flk->l_type == F_UNLCK &&
14483 (cmd == F_SETLK || cmd == F_SETLKW))
14484 ep->error = 0;
14485 }
14486
14487 /*
14488 * nfs4_safelock:
14489 *
14490 * Return non-zero if the given lock request can be handled without
14491 * violating the constraints on concurrent mapping and locking.
14492 */
14493
14494 static int
nfs4_safelock(vnode_t * vp,const struct flock64 * bfp,cred_t * cr)14495 nfs4_safelock(vnode_t *vp, const struct flock64 *bfp, cred_t *cr)
14496 {
14497 rnode4_t *rp = VTOR4(vp);
14498 struct vattr va;
14499 int error;
14500
14501 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
14502 ASSERT(rp->r_mapcnt >= 0);
14503 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock %s: "
14504 "(%"PRIx64", %"PRIx64"); mapcnt = %ld", bfp->l_type == F_WRLCK ?
14505 "write" : bfp->l_type == F_RDLCK ? "read" : "unlock",
14506 bfp->l_start, bfp->l_len, rp->r_mapcnt));
14507
14508 if (rp->r_mapcnt == 0)
14509 return (1); /* always safe if not mapped */
14510
14511 /*
14512 * If the file is already mapped and there are locks, then they
14513 * should be all safe locks. So adding or removing a lock is safe
14514 * as long as the new request is safe (i.e., whole-file, meaning
14515 * length and starting offset are both zero).
14516 */
14517
14518 if (bfp->l_start != 0 || bfp->l_len != 0) {
14519 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: "
14520 "cannot lock a memory mapped file unless locking the "
14521 "entire file: start %"PRIx64", len %"PRIx64,
14522 bfp->l_start, bfp->l_len));
14523 return (0);
14524 }
14525
14526 /* mandatory locking and mapping don't mix */
14527 va.va_mask = AT_MODE;
14528 error = VOP_GETATTR(vp, &va, 0, cr, NULL);
14529 if (error != 0) {
14530 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: "
14531 "getattr error %d", error));
14532 return (0); /* treat errors conservatively */
14533 }
14534 if (MANDLOCK(vp, va.va_mode)) {
14535 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: "
14536 "cannot mandatory lock and mmap a file"));
14537 return (0);
14538 }
14539
14540 return (1);
14541 }
14542
14543
14544 /*
14545 * Register the lock locally within Solaris.
14546 * As the client, we "or" the sysid with LM_SYSID_CLIENT when
14547 * recording locks locally.
14548 *
14549 * This should handle conflicts/cooperation with NFS v2/v3 since all locks
14550 * are registered locally.
14551 */
14552 void
nfs4_register_lock_locally(vnode_t * vp,struct flock64 * flk,int flag,u_offset_t offset)14553 nfs4_register_lock_locally(vnode_t *vp, struct flock64 *flk, int flag,
14554 u_offset_t offset)
14555 {
14556 int oldsysid;
14557 int error;
14558 #ifdef DEBUG
14559 char *name;
14560 #endif
14561
14562 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
14563
14564 #ifdef DEBUG
14565 name = fn_name(VTOSV(vp)->sv_name);
14566 NFS4_DEBUG(nfs4_client_lock_debug,
14567 (CE_NOTE, "nfs4_register_lock_locally: %s: type %d, "
14568 "start %"PRIx64", length %"PRIx64", pid %ld, sysid %d",
14569 name, flk->l_type, flk->l_start, flk->l_len, (long)flk->l_pid,
14570 flk->l_sysid));
14571 kmem_free(name, MAXNAMELEN);
14572 #endif
14573
14574 /* register the lock with local locking */
14575 oldsysid = flk->l_sysid;
14576 flk->l_sysid |= LM_SYSID_CLIENT;
14577 error = reclock(vp, flk, SETFLCK, flag, offset, NULL);
14578 #ifdef DEBUG
14579 if (error != 0) {
14580 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14581 "nfs4_register_lock_locally: could not register with"
14582 " local locking"));
14583 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT,
14584 "error %d, vp 0x%p, pid %d, sysid 0x%x",
14585 error, (void *)vp, flk->l_pid, flk->l_sysid));
14586 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT,
14587 "type %d off 0x%" PRIx64 " len 0x%" PRIx64,
14588 flk->l_type, flk->l_start, flk->l_len));
14589 (void) reclock(vp, flk, 0, flag, offset, NULL);
14590 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT,
14591 "blocked by pid %d sysid 0x%x type %d "
14592 "off 0x%" PRIx64 " len 0x%" PRIx64,
14593 flk->l_pid, flk->l_sysid, flk->l_type, flk->l_start,
14594 flk->l_len));
14595 }
14596 #endif
14597 flk->l_sysid = oldsysid;
14598 }
14599
14600 /*
14601 * nfs4_lockrelease:
14602 *
14603 * Release any locks on the given vnode that are held by the current
14604 * process. Also removes the lock owner (if one exists) from the rnode's
14605 * list.
14606 */
14607 static int
nfs4_lockrelease(vnode_t * vp,int flag,offset_t offset,cred_t * cr)14608 nfs4_lockrelease(vnode_t *vp, int flag, offset_t offset, cred_t *cr)
14609 {
14610 flock64_t ld;
14611 int ret, error;
14612 rnode4_t *rp;
14613 nfs4_lock_owner_t *lop;
14614 nfs4_recov_state_t recov_state;
14615 mntinfo4_t *mi;
14616 bool_t possible_orphan = FALSE;
14617 bool_t recovonly;
14618
14619 ASSERT((uintptr_t)vp > KERNELBASE);
14620 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
14621
14622 rp = VTOR4(vp);
14623 mi = VTOMI4(vp);
14624
14625 /*
14626 * If we have not locked anything then we can
14627 * just return since we have no work to do.
14628 */
14629 if (rp->r_lo_head.lo_next_rnode == &rp->r_lo_head) {
14630 return (0);
14631 }
14632
14633 /*
14634 * We need to comprehend that another thread may
14635 * kick off recovery and the lock_owner we have stashed
14636 * in lop might be invalid so we should NOT cache it
14637 * locally!
14638 */
14639 recov_state.rs_flags = 0;
14640 recov_state.rs_num_retry_despite_err = 0;
14641 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state,
14642 &recovonly);
14643 if (error) {
14644 mutex_enter(&rp->r_statelock);
14645 rp->r_flags |= R4LODANGLERS;
14646 mutex_exit(&rp->r_statelock);
14647 return (error);
14648 }
14649
14650 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY);
14651
14652 /*
14653 * Check if the lock owner might have a lock (request was sent but
14654 * no response was received). Also check if there are any remote
14655 * locks on the file. (In theory we shouldn't have to make this
14656 * second check if there's no lock owner, but for now we'll be
14657 * conservative and do it anyway.) If either condition is true,
14658 * send an unlock for the entire file to the server.
14659 *
14660 * Note that no explicit synchronization is needed here. At worst,
14661 * flk_has_remote_locks() will return a false positive, in which case
14662 * the unlock call wastes time but doesn't harm correctness.
14663 */
14664
14665 if (lop) {
14666 mutex_enter(&lop->lo_lock);
14667 possible_orphan = lop->lo_pending_rqsts;
14668 mutex_exit(&lop->lo_lock);
14669 lock_owner_rele(lop);
14670 }
14671
14672 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0);
14673
14674 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14675 "nfs4_lockrelease: possible orphan %d, remote locks %d, for "
14676 "lop %p.", possible_orphan, flk_has_remote_locks(vp),
14677 (void *)lop));
14678
14679 if (possible_orphan || flk_has_remote_locks(vp)) {
14680 ld.l_type = F_UNLCK; /* set to unlock entire file */
14681 ld.l_whence = 0; /* unlock from start of file */
14682 ld.l_start = 0;
14683 ld.l_len = 0; /* do entire file */
14684
14685 ret = VOP_FRLOCK(vp, F_SETLK, &ld, flag, offset, NULL,
14686 cr, NULL);
14687
14688 if (ret != 0) {
14689 /*
14690 * If VOP_FRLOCK fails, make sure we unregister
14691 * local locks before we continue.
14692 */
14693 ld.l_pid = ttoproc(curthread)->p_pid;
14694 nfs4_register_lock_locally(vp, &ld, flag, offset);
14695 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14696 "nfs4_lockrelease: lock release error on vp"
14697 " %p: error %d.\n", (void *)vp, ret));
14698 }
14699 }
14700
14701 recov_state.rs_flags = 0;
14702 recov_state.rs_num_retry_despite_err = 0;
14703 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state,
14704 &recovonly);
14705 if (error) {
14706 mutex_enter(&rp->r_statelock);
14707 rp->r_flags |= R4LODANGLERS;
14708 mutex_exit(&rp->r_statelock);
14709 return (error);
14710 }
14711
14712 /*
14713 * So, here we're going to need to retrieve the lock-owner
14714 * again (in case recovery has done a switch-a-roo) and
14715 * remove it because we can.
14716 */
14717 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY);
14718
14719 if (lop) {
14720 nfs4_rnode_remove_lock_owner(rp, lop);
14721 lock_owner_rele(lop);
14722 }
14723
14724 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0);
14725 return (0);
14726 }
14727
14728 /*
14729 * Wait for 'tick_delay' clock ticks.
14730 * Implement exponential backoff until hit the lease_time of this nfs4_server.
14731 * NOTE: lock_lease_time is in seconds.
14732 *
14733 * XXX For future improvements, should implement a waiting queue scheme.
14734 */
14735 static int
nfs4_block_and_wait(clock_t * tick_delay,rnode4_t * rp)14736 nfs4_block_and_wait(clock_t *tick_delay, rnode4_t *rp)
14737 {
14738 long milliseconds_delay;
14739 time_t lock_lease_time;
14740
14741 /* wait tick_delay clock ticks or siginteruptus */
14742 if (delay_sig(*tick_delay)) {
14743 return (EINTR);
14744 }
14745 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_block_and_wait: "
14746 "reissue the lock request: blocked for %ld clock ticks: %ld "
14747 "milliseconds", *tick_delay, drv_hztousec(*tick_delay) / 1000));
14748
14749 /* get the lease time */
14750 lock_lease_time = r2lease_time(rp);
14751
14752 /* drv_hztousec converts ticks to microseconds */
14753 milliseconds_delay = drv_hztousec(*tick_delay) / 1000;
14754 if (milliseconds_delay < lock_lease_time * 1000) {
14755 *tick_delay = 2 * *tick_delay;
14756 if (drv_hztousec(*tick_delay) > lock_lease_time * 1000 * 1000)
14757 *tick_delay = drv_usectohz(lock_lease_time*1000*1000);
14758 }
14759 return (0);
14760 }
14761
14762
14763 void
nfs4_vnops_init(void)14764 nfs4_vnops_init(void)
14765 {
14766 }
14767
14768 void
nfs4_vnops_fini(void)14769 nfs4_vnops_fini(void)
14770 {
14771 }
14772
14773 /*
14774 * Return a reference to the directory (parent) vnode for a given vnode,
14775 * using the saved pathname information and the directory file handle. The
14776 * caller is responsible for disposing of the reference.
14777 * Returns zero or an errno value.
14778 *
14779 * Caller should set need_start_op to FALSE if it is the recovery
14780 * thread, or if a start_fop has already been done. Otherwise, TRUE.
14781 */
14782 int
vtodv(vnode_t * vp,vnode_t ** dvpp,cred_t * cr,bool_t need_start_op)14783 vtodv(vnode_t *vp, vnode_t **dvpp, cred_t *cr, bool_t need_start_op)
14784 {
14785 svnode_t *svnp;
14786 vnode_t *dvp = NULL;
14787 servinfo4_t *svp;
14788 nfs4_fname_t *mfname;
14789 int error;
14790
14791 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
14792
14793 if (vp->v_flag & VROOT) {
14794 nfs4_sharedfh_t *sfh;
14795 nfs_fh4 fh;
14796 mntinfo4_t *mi;
14797
14798 ASSERT(vp->v_type == VREG);
14799
14800 mi = VTOMI4(vp);
14801 svp = mi->mi_curr_serv;
14802 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
14803 fh.nfs_fh4_len = svp->sv_pfhandle.fh_len;
14804 fh.nfs_fh4_val = svp->sv_pfhandle.fh_buf;
14805 sfh = sfh4_get(&fh, VTOMI4(vp));
14806 nfs_rw_exit(&svp->sv_lock);
14807 mfname = mi->mi_fname;
14808 fn_hold(mfname);
14809 dvp = makenfs4node_by_fh(sfh, NULL, &mfname, NULL, mi, cr, 0);
14810 sfh4_rele(&sfh);
14811
14812 if (dvp->v_type == VNON)
14813 dvp->v_type = VDIR;
14814 *dvpp = dvp;
14815 return (0);
14816 }
14817
14818 svnp = VTOSV(vp);
14819
14820 if (svnp == NULL) {
14821 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: "
14822 "shadow node is NULL"));
14823 return (EINVAL);
14824 }
14825
14826 if (svnp->sv_name == NULL || svnp->sv_dfh == NULL) {
14827 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: "
14828 "shadow node name or dfh val == NULL"));
14829 return (EINVAL);
14830 }
14831
14832 error = nfs4_make_dotdot(svnp->sv_dfh, 0, vp, cr, &dvp,
14833 (int)need_start_op);
14834 if (error != 0) {
14835 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: "
14836 "nfs4_make_dotdot returned %d", error));
14837 return (error);
14838 }
14839 if (!dvp) {
14840 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: "
14841 "nfs4_make_dotdot returned a NULL dvp"));
14842 return (EIO);
14843 }
14844 if (dvp->v_type == VNON)
14845 dvp->v_type = VDIR;
14846 ASSERT(dvp->v_type == VDIR);
14847 if (VTOR4(vp)->r_flags & R4ISXATTR) {
14848 mutex_enter(&dvp->v_lock);
14849 dvp->v_flag |= V_XATTRDIR;
14850 mutex_exit(&dvp->v_lock);
14851 }
14852 *dvpp = dvp;
14853 return (0);
14854 }
14855
14856 /*
14857 * Copy the (final) component name of vp to fnamep. maxlen is the maximum
14858 * length that fnamep can accept, including the trailing null.
14859 * Returns 0 if okay, returns an errno value if there was a problem.
14860 */
14861
14862 int
vtoname(vnode_t * vp,char * fnamep,ssize_t maxlen)14863 vtoname(vnode_t *vp, char *fnamep, ssize_t maxlen)
14864 {
14865 char *fn;
14866 int err = 0;
14867 servinfo4_t *svp;
14868 svnode_t *shvp;
14869
14870 /*
14871 * If the file being opened has VROOT set, then this is
14872 * a "file" mount. sv_name will not be interesting, so
14873 * go back to the servinfo4 to get the original mount
14874 * path and strip off all but the final edge. Otherwise
14875 * just return the name from the shadow vnode.
14876 */
14877
14878 if (vp->v_flag & VROOT) {
14879
14880 svp = VTOMI4(vp)->mi_curr_serv;
14881 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
14882
14883 fn = strrchr(svp->sv_path, '/');
14884 if (fn == NULL)
14885 err = EINVAL;
14886 else
14887 fn++;
14888 } else {
14889 shvp = VTOSV(vp);
14890 fn = fn_name(shvp->sv_name);
14891 }
14892
14893 if (err == 0)
14894 if (strlen(fn) < maxlen)
14895 (void) strcpy(fnamep, fn);
14896 else
14897 err = ENAMETOOLONG;
14898
14899 if (vp->v_flag & VROOT)
14900 nfs_rw_exit(&svp->sv_lock);
14901 else
14902 kmem_free(fn, MAXNAMELEN);
14903
14904 return (err);
14905 }
14906
14907 /*
14908 * Bookkeeping for a close that doesn't need to go over the wire.
14909 * *have_lockp is set to 0 if 'os_sync_lock' is released; otherwise
14910 * it is left at 1.
14911 */
14912 void
nfs4close_notw(vnode_t * vp,nfs4_open_stream_t * osp,int * have_lockp)14913 nfs4close_notw(vnode_t *vp, nfs4_open_stream_t *osp, int *have_lockp)
14914 {
14915 rnode4_t *rp;
14916 mntinfo4_t *mi;
14917
14918 mi = VTOMI4(vp);
14919 rp = VTOR4(vp);
14920
14921 NFS4_DEBUG(nfs4close_notw_debug, (CE_NOTE, "nfs4close_notw: "
14922 "rp=%p osp=%p", (void *)rp, (void *)osp));
14923 ASSERT(nfs_zone() == mi->mi_zone);
14924 ASSERT(mutex_owned(&osp->os_sync_lock));
14925 ASSERT(*have_lockp);
14926
14927 if (!osp->os_valid ||
14928 osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) {
14929 return;
14930 }
14931
14932 /*
14933 * This removes the reference obtained at OPEN; ie,
14934 * when the open stream structure was created.
14935 *
14936 * We don't have to worry about calling 'open_stream_rele'
14937 * since we our currently holding a reference to this
14938 * open stream which means the count can not go to 0 with
14939 * this decrement.
14940 */
14941 ASSERT(osp->os_ref_count >= 2);
14942 osp->os_ref_count--;
14943 osp->os_valid = 0;
14944 mutex_exit(&osp->os_sync_lock);
14945 *have_lockp = 0;
14946
14947 nfs4_dec_state_ref_count(mi);
14948 }
14949
14950 /*
14951 * Close all remaining open streams on the rnode. These open streams
14952 * could be here because:
14953 * - The close attempted at either close or delmap failed
14954 * - Some kernel entity did VOP_OPEN but never did VOP_CLOSE
14955 * - Someone did mknod on a regular file but never opened it
14956 */
14957 int
nfs4close_all(vnode_t * vp,cred_t * cr)14958 nfs4close_all(vnode_t *vp, cred_t *cr)
14959 {
14960 nfs4_open_stream_t *osp;
14961 int error;
14962 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
14963 rnode4_t *rp;
14964
14965 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
14966
14967 error = 0;
14968 rp = VTOR4(vp);
14969
14970 /*
14971 * At this point, all we know is that the last time
14972 * someone called vn_rele, the count was 1. Since then,
14973 * the vnode could have been re-activated. We want to
14974 * loop through the open streams and close each one, but
14975 * we have to be careful since once we release the rnode
14976 * hash bucket lock, someone else is free to come in and
14977 * re-activate the rnode and add new open streams. The
14978 * strategy is take the rnode hash bucket lock, verify that
14979 * the count is still 1, grab the open stream off the
14980 * head of the list and mark it invalid, then release the
14981 * rnode hash bucket lock and proceed with that open stream.
14982 * This is ok because nfs4close_one() will acquire the proper
14983 * open/create to close/destroy synchronization for open
14984 * streams, and will ensure that if someone has reopened
14985 * the open stream after we've dropped the hash bucket lock
14986 * then we'll just simply return without destroying the
14987 * open stream.
14988 * Repeat until the list is empty.
14989 */
14990
14991 for (;;) {
14992
14993 /* make sure vnode hasn't been reactivated */
14994 rw_enter(&rp->r_hashq->r_lock, RW_READER);
14995 mutex_enter(&vp->v_lock);
14996 if (vp->v_count > 1) {
14997 mutex_exit(&vp->v_lock);
14998 rw_exit(&rp->r_hashq->r_lock);
14999 break;
15000 }
15001 /*
15002 * Grabbing r_os_lock before releasing v_lock prevents
15003 * a window where the rnode/open stream could get
15004 * reactivated (and os_force_close set to 0) before we
15005 * had a chance to set os_force_close to 1.
15006 */
15007 mutex_enter(&rp->r_os_lock);
15008 mutex_exit(&vp->v_lock);
15009
15010 osp = list_head(&rp->r_open_streams);
15011 if (!osp) {
15012 /* nothing left to CLOSE OTW, so return */
15013 mutex_exit(&rp->r_os_lock);
15014 rw_exit(&rp->r_hashq->r_lock);
15015 break;
15016 }
15017
15018 mutex_enter(&rp->r_statev4_lock);
15019 /* the file can't still be mem mapped */
15020 ASSERT(rp->r_mapcnt == 0);
15021 if (rp->created_v4)
15022 rp->created_v4 = 0;
15023 mutex_exit(&rp->r_statev4_lock);
15024
15025 /*
15026 * Grab a ref on this open stream; nfs4close_one
15027 * will mark it as invalid
15028 */
15029 mutex_enter(&osp->os_sync_lock);
15030 osp->os_ref_count++;
15031 osp->os_force_close = 1;
15032 mutex_exit(&osp->os_sync_lock);
15033 mutex_exit(&rp->r_os_lock);
15034 rw_exit(&rp->r_hashq->r_lock);
15035
15036 nfs4close_one(vp, osp, cr, 0, NULL, &e, CLOSE_FORCE, 0, 0, 0);
15037
15038 /* Update error if it isn't already non-zero */
15039 if (error == 0) {
15040 if (e.error)
15041 error = e.error;
15042 else if (e.stat)
15043 error = geterrno4(e.stat);
15044 }
15045
15046 #ifdef DEBUG
15047 nfs4close_all_cnt++;
15048 #endif
15049 /* Release the ref on osp acquired above. */
15050 open_stream_rele(osp, rp);
15051
15052 /* Proceed to the next open stream, if any */
15053 }
15054 return (error);
15055 }
15056
15057 /*
15058 * nfs4close_one - close one open stream for a file if needed.
15059 *
15060 * "close_type" indicates which close path this is:
15061 * CLOSE_NORM: close initiated via VOP_CLOSE.
15062 * CLOSE_DELMAP: close initiated via VOP_DELMAP.
15063 * CLOSE_FORCE: close initiated via VOP_INACTIVE. This path forces
15064 * the close and release of client state for this open stream
15065 * (unless someone else has the open stream open).
15066 * CLOSE_RESEND: indicates the request is a replay of an earlier request
15067 * (e.g., due to abort because of a signal).
15068 * CLOSE_AFTER_RESEND: close initiated to "undo" a successful resent OPEN.
15069 *
15070 * CLOSE_RESEND and CLOSE_AFTER_RESEND will not attempt to retry after client
15071 * recovery. Instead, the caller is expected to deal with retries.
15072 *
15073 * The caller can either pass in the osp ('provided_osp') or not.
15074 *
15075 * 'access_bits' represents the access we are closing/downgrading.
15076 *
15077 * 'len', 'prot', and 'mmap_flags' are used for CLOSE_DELMAP. 'len' is the
15078 * number of bytes we are unmapping, 'maxprot' is the mmap protection, and
15079 * 'mmap_flags' tells us the type of sharing (MAP_PRIVATE or MAP_SHARED).
15080 *
15081 * Errors are returned via the nfs4_error_t.
15082 */
15083 void
nfs4close_one(vnode_t * vp,nfs4_open_stream_t * provided_osp,cred_t * cr,int access_bits,nfs4_lost_rqst_t * lrp,nfs4_error_t * ep,nfs4_close_type_t close_type,size_t len,uint_t maxprot,uint_t mmap_flags)15084 nfs4close_one(vnode_t *vp, nfs4_open_stream_t *provided_osp, cred_t *cr,
15085 int access_bits, nfs4_lost_rqst_t *lrp, nfs4_error_t *ep,
15086 nfs4_close_type_t close_type, size_t len, uint_t maxprot,
15087 uint_t mmap_flags)
15088 {
15089 nfs4_open_owner_t *oop;
15090 nfs4_open_stream_t *osp = NULL;
15091 int retry = 0;
15092 int num_retries = NFS4_NUM_RECOV_RETRIES;
15093 rnode4_t *rp;
15094 mntinfo4_t *mi;
15095 nfs4_recov_state_t recov_state;
15096 cred_t *cred_otw = NULL;
15097 bool_t recovonly = FALSE;
15098 int isrecov;
15099 int force_close;
15100 int close_failed = 0;
15101 int did_dec_count = 0;
15102 int did_start_op = 0;
15103 int did_force_recovlock = 0;
15104 int did_start_seqid_sync = 0;
15105 int have_sync_lock = 0;
15106
15107 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
15108
15109 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, "closing vp %p osp %p, "
15110 "lrp %p, close type %d len %ld prot %x mmap flags %x bits %x",
15111 (void *)vp, (void *)provided_osp, (void *)lrp, close_type,
15112 len, maxprot, mmap_flags, access_bits));
15113
15114 nfs4_error_zinit(ep);
15115 rp = VTOR4(vp);
15116 mi = VTOMI4(vp);
15117 isrecov = (close_type == CLOSE_RESEND ||
15118 close_type == CLOSE_AFTER_RESEND);
15119
15120 /*
15121 * First get the open owner.
15122 */
15123 if (!provided_osp) {
15124 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi);
15125 } else {
15126 oop = provided_osp->os_open_owner;
15127 ASSERT(oop != NULL);
15128 open_owner_hold(oop);
15129 }
15130
15131 if (!oop) {
15132 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
15133 "nfs4close_one: no oop, rp %p, mi %p, cr %p, osp %p, "
15134 "close type %d", (void *)rp, (void *)mi, (void *)cr,
15135 (void *)provided_osp, close_type));
15136 ep->error = EIO;
15137 goto out;
15138 }
15139
15140 cred_otw = nfs4_get_otw_cred(cr, mi, oop);
15141 recov_retry:
15142 osp = NULL;
15143 close_failed = 0;
15144 force_close = (close_type == CLOSE_FORCE);
15145 retry = 0;
15146 did_start_op = 0;
15147 did_force_recovlock = 0;
15148 did_start_seqid_sync = 0;
15149 have_sync_lock = 0;
15150 recovonly = FALSE;
15151 recov_state.rs_flags = 0;
15152 recov_state.rs_num_retry_despite_err = 0;
15153
15154 /*
15155 * Second synchronize with recovery.
15156 */
15157 if (!isrecov) {
15158 ep->error = nfs4_start_fop(mi, vp, NULL, OH_CLOSE,
15159 &recov_state, &recovonly);
15160 if (!ep->error) {
15161 did_start_op = 1;
15162 } else {
15163 close_failed = 1;
15164 /*
15165 * If we couldn't get start_fop, but have to
15166 * cleanup state, then at least acquire the
15167 * mi_recovlock so we can synchronize with
15168 * recovery.
15169 */
15170 if (close_type == CLOSE_FORCE) {
15171 (void) nfs_rw_enter_sig(&mi->mi_recovlock,
15172 RW_READER, FALSE);
15173 did_force_recovlock = 1;
15174 } else
15175 goto out;
15176 }
15177 }
15178
15179 /*
15180 * We cannot attempt to get the open seqid sync if nfs4_start_fop
15181 * set 'recovonly' to TRUE since most likely this is due to
15182 * reovery being active (MI4_RECOV_ACTIV). If recovery is active,
15183 * nfs4_start_open_seqid_sync() will fail with EAGAIN asking us
15184 * to retry, causing us to loop until recovery finishes. Plus we
15185 * don't need protection over the open seqid since we're not going
15186 * OTW, hence don't need to use the seqid.
15187 */
15188 if (recovonly == FALSE) {
15189 /* need to grab the open owner sync before 'os_sync_lock' */
15190 ep->error = nfs4_start_open_seqid_sync(oop, mi);
15191 if (ep->error == EAGAIN) {
15192 ASSERT(!isrecov);
15193 if (did_start_op)
15194 nfs4_end_fop(mi, vp, NULL, OH_CLOSE,
15195 &recov_state, TRUE);
15196 if (did_force_recovlock)
15197 nfs_rw_exit(&mi->mi_recovlock);
15198 goto recov_retry;
15199 }
15200 did_start_seqid_sync = 1;
15201 }
15202
15203 /*
15204 * Third get an open stream and acquire 'os_sync_lock' to
15205 * sychronize the opening/creating of an open stream with the
15206 * closing/destroying of an open stream.
15207 */
15208 if (!provided_osp) {
15209 /* returns with 'os_sync_lock' held */
15210 osp = find_open_stream(oop, rp);
15211 if (!osp) {
15212 ep->error = EIO;
15213 goto out;
15214 }
15215 } else {
15216 osp = provided_osp;
15217 open_stream_hold(osp);
15218 mutex_enter(&osp->os_sync_lock);
15219 }
15220 have_sync_lock = 1;
15221
15222 ASSERT(oop == osp->os_open_owner);
15223
15224 /*
15225 * Fourth, do any special pre-OTW CLOSE processing
15226 * based on the specific close type.
15227 */
15228 if ((close_type == CLOSE_NORM || close_type == CLOSE_AFTER_RESEND) &&
15229 !did_dec_count) {
15230 ASSERT(osp->os_open_ref_count > 0);
15231 osp->os_open_ref_count--;
15232 did_dec_count = 1;
15233 if (osp->os_open_ref_count == 0)
15234 osp->os_final_close = 1;
15235 }
15236
15237 if (close_type == CLOSE_FORCE) {
15238 /* see if somebody reopened the open stream. */
15239 if (!osp->os_force_close) {
15240 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE,
15241 "nfs4close_one: skip CLOSE_FORCE as osp %p "
15242 "was reopened, vp %p", (void *)osp, (void *)vp));
15243 ep->error = 0;
15244 ep->stat = NFS4_OK;
15245 goto out;
15246 }
15247
15248 if (!osp->os_final_close && !did_dec_count) {
15249 osp->os_open_ref_count--;
15250 did_dec_count = 1;
15251 }
15252
15253 /*
15254 * We can't depend on os_open_ref_count being 0 due to the
15255 * way executables are opened (VN_RELE to match a VOP_OPEN).
15256 */
15257 #ifdef NOTYET
15258 ASSERT(osp->os_open_ref_count == 0);
15259 #endif
15260 if (osp->os_open_ref_count != 0) {
15261 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE,
15262 "nfs4close_one: should panic here on an "
15263 "ASSERT(osp->os_open_ref_count == 0). Ignoring "
15264 "since this is probably the exec problem."));
15265
15266 osp->os_open_ref_count = 0;
15267 }
15268
15269 /*
15270 * There is the possibility that nfs4close_one()
15271 * for close_type == CLOSE_DELMAP couldn't find the
15272 * open stream, thus couldn't decrement its os_mapcnt;
15273 * therefore we can't use this ASSERT yet.
15274 */
15275 #ifdef NOTYET
15276 ASSERT(osp->os_mapcnt == 0);
15277 #endif
15278 osp->os_mapcnt = 0;
15279 }
15280
15281 if (close_type == CLOSE_DELMAP && !did_dec_count) {
15282 ASSERT(osp->os_mapcnt >= btopr(len));
15283
15284 if ((mmap_flags & MAP_SHARED) && (maxprot & PROT_WRITE))
15285 osp->os_mmap_write -= btopr(len);
15286 if (maxprot & PROT_READ)
15287 osp->os_mmap_read -= btopr(len);
15288 if (maxprot & PROT_EXEC)
15289 osp->os_mmap_read -= btopr(len);
15290 /* mirror the PROT_NONE check in nfs4_addmap() */
15291 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) &&
15292 !(maxprot & PROT_EXEC))
15293 osp->os_mmap_read -= btopr(len);
15294 osp->os_mapcnt -= btopr(len);
15295 did_dec_count = 1;
15296 }
15297
15298 if (recovonly) {
15299 nfs4_lost_rqst_t lost_rqst;
15300
15301 /* request should not already be in recovery queue */
15302 ASSERT(lrp == NULL);
15303 nfs4_error_init(ep, EINTR);
15304 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop,
15305 osp, cred_otw, vp);
15306 mutex_exit(&osp->os_sync_lock);
15307 have_sync_lock = 0;
15308 (void) nfs4_start_recovery(ep, mi, vp, NULL, NULL,
15309 lost_rqst.lr_op == OP_CLOSE ?
15310 &lost_rqst : NULL, OP_CLOSE, NULL, NULL, NULL);
15311 close_failed = 1;
15312 force_close = 0;
15313 goto close_cleanup;
15314 }
15315
15316 /*
15317 * If a previous OTW call got NFS4ERR_BAD_SEQID, then
15318 * we stopped operating on the open owner's <old oo_name, old seqid>
15319 * space, which means we stopped operating on the open stream
15320 * too. So don't go OTW (as the seqid is likely bad, and the
15321 * stateid could be stale, potentially triggering a false
15322 * setclientid), and just clean up the client's internal state.
15323 */
15324 if (osp->os_orig_oo_name != oop->oo_name) {
15325 NFS4_DEBUG(nfs4close_one_debug || nfs4_client_recov_debug,
15326 (CE_NOTE, "nfs4close_one: skip OTW close for osp %p "
15327 "oop %p due to bad seqid (orig oo_name %" PRIx64 " current "
15328 "oo_name %" PRIx64")",
15329 (void *)osp, (void *)oop, osp->os_orig_oo_name,
15330 oop->oo_name));
15331 close_failed = 1;
15332 }
15333
15334 /* If the file failed recovery, just quit. */
15335 mutex_enter(&rp->r_statelock);
15336 if (rp->r_flags & R4RECOVERR) {
15337 close_failed = 1;
15338 }
15339 mutex_exit(&rp->r_statelock);
15340
15341 /*
15342 * If the force close path failed to obtain start_fop
15343 * then skip the OTW close and just remove the state.
15344 */
15345 if (close_failed)
15346 goto close_cleanup;
15347
15348 /*
15349 * Fifth, check to see if there are still mapped pages or other
15350 * opens using this open stream. If there are then we can't
15351 * close yet but we can see if an OPEN_DOWNGRADE is necessary.
15352 */
15353 if (osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) {
15354 nfs4_lost_rqst_t new_lost_rqst;
15355 bool_t needrecov = FALSE;
15356 cred_t *odg_cred_otw = NULL;
15357 seqid4 open_dg_seqid = 0;
15358
15359 if (osp->os_delegation) {
15360 /*
15361 * If this open stream was never OPENed OTW then we
15362 * surely can't DOWNGRADE it (especially since the
15363 * osp->open_stateid is really a delegation stateid
15364 * when os_delegation is 1).
15365 */
15366 if (access_bits & FREAD)
15367 osp->os_share_acc_read--;
15368 if (access_bits & FWRITE)
15369 osp->os_share_acc_write--;
15370 osp->os_share_deny_none--;
15371 nfs4_error_zinit(ep);
15372 goto out;
15373 }
15374 nfs4_open_downgrade(access_bits, 0, oop, osp, vp, cr,
15375 lrp, ep, &odg_cred_otw, &open_dg_seqid);
15376 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp);
15377 if (needrecov && !isrecov) {
15378 bool_t abort;
15379 nfs4_bseqid_entry_t *bsep = NULL;
15380
15381 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID)
15382 bsep = nfs4_create_bseqid_entry(oop, NULL,
15383 vp, 0,
15384 lrp ? TAG_OPEN_DG_LOST : TAG_OPEN_DG,
15385 open_dg_seqid);
15386
15387 nfs4open_dg_save_lost_rqst(ep->error, &new_lost_rqst,
15388 oop, osp, odg_cred_otw, vp, access_bits, 0);
15389 mutex_exit(&osp->os_sync_lock);
15390 have_sync_lock = 0;
15391 abort = nfs4_start_recovery(ep, mi, vp, NULL, NULL,
15392 new_lost_rqst.lr_op == OP_OPEN_DOWNGRADE ?
15393 &new_lost_rqst : NULL, OP_OPEN_DOWNGRADE,
15394 bsep, NULL, NULL);
15395 if (odg_cred_otw)
15396 crfree(odg_cred_otw);
15397 if (bsep)
15398 kmem_free(bsep, sizeof (*bsep));
15399
15400 if (abort == TRUE)
15401 goto out;
15402
15403 if (did_start_seqid_sync) {
15404 nfs4_end_open_seqid_sync(oop);
15405 did_start_seqid_sync = 0;
15406 }
15407 open_stream_rele(osp, rp);
15408
15409 if (did_start_op)
15410 nfs4_end_fop(mi, vp, NULL, OH_CLOSE,
15411 &recov_state, FALSE);
15412 if (did_force_recovlock)
15413 nfs_rw_exit(&mi->mi_recovlock);
15414
15415 goto recov_retry;
15416 } else {
15417 if (odg_cred_otw)
15418 crfree(odg_cred_otw);
15419 }
15420 goto out;
15421 }
15422
15423 /*
15424 * If this open stream was created as the results of an open
15425 * while holding a delegation, then just release it; no need
15426 * to do an OTW close. Otherwise do a "normal" OTW close.
15427 */
15428 if (osp->os_delegation) {
15429 nfs4close_notw(vp, osp, &have_sync_lock);
15430 nfs4_error_zinit(ep);
15431 goto out;
15432 }
15433
15434 /*
15435 * If this stream is not valid, we're done.
15436 */
15437 if (!osp->os_valid) {
15438 nfs4_error_zinit(ep);
15439 goto out;
15440 }
15441
15442 /*
15443 * Last open or mmap ref has vanished, need to do an OTW close.
15444 * First check to see if a close is still necessary.
15445 */
15446 if (osp->os_failed_reopen) {
15447 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
15448 "don't close OTW osp %p since reopen failed.",
15449 (void *)osp));
15450 /*
15451 * Reopen of the open stream failed, hence the
15452 * stateid of the open stream is invalid/stale, and
15453 * sending this OTW would incorrectly cause another
15454 * round of recovery. In this case, we need to set
15455 * the 'os_valid' bit to 0 so another thread doesn't
15456 * come in and re-open this open stream before
15457 * this "closing" thread cleans up state (decrementing
15458 * the nfs4_server_t's state_ref_count and decrementing
15459 * the os_ref_count).
15460 */
15461 osp->os_valid = 0;
15462 /*
15463 * This removes the reference obtained at OPEN; ie,
15464 * when the open stream structure was created.
15465 *
15466 * We don't have to worry about calling 'open_stream_rele'
15467 * since we our currently holding a reference to this
15468 * open stream which means the count can not go to 0 with
15469 * this decrement.
15470 */
15471 ASSERT(osp->os_ref_count >= 2);
15472 osp->os_ref_count--;
15473 nfs4_error_zinit(ep);
15474 close_failed = 0;
15475 goto close_cleanup;
15476 }
15477
15478 ASSERT(osp->os_ref_count > 1);
15479
15480 /*
15481 * Sixth, try the CLOSE OTW.
15482 */
15483 nfs4close_otw(rp, cred_otw, oop, osp, &retry, &did_start_seqid_sync,
15484 close_type, ep, &have_sync_lock);
15485
15486 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) {
15487 /*
15488 * Let the recovery thread be responsible for
15489 * removing the state for CLOSE.
15490 */
15491 close_failed = 1;
15492 force_close = 0;
15493 retry = 0;
15494 }
15495
15496 /* See if we need to retry with a different cred */
15497 if ((ep->error == EACCES ||
15498 (ep->error == 0 && ep->stat == NFS4ERR_ACCESS)) &&
15499 cred_otw != cr) {
15500 crfree(cred_otw);
15501 cred_otw = cr;
15502 crhold(cred_otw);
15503 retry = 1;
15504 }
15505
15506 if (ep->error || ep->stat)
15507 close_failed = 1;
15508
15509 if (retry && !isrecov && num_retries-- > 0) {
15510 if (have_sync_lock) {
15511 mutex_exit(&osp->os_sync_lock);
15512 have_sync_lock = 0;
15513 }
15514 if (did_start_seqid_sync) {
15515 nfs4_end_open_seqid_sync(oop);
15516 did_start_seqid_sync = 0;
15517 }
15518 open_stream_rele(osp, rp);
15519
15520 if (did_start_op)
15521 nfs4_end_fop(mi, vp, NULL, OH_CLOSE,
15522 &recov_state, FALSE);
15523 if (did_force_recovlock)
15524 nfs_rw_exit(&mi->mi_recovlock);
15525 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
15526 "nfs4close_one: need to retry the close "
15527 "operation"));
15528 goto recov_retry;
15529 }
15530 close_cleanup:
15531 /*
15532 * Seventh and lastly, process our results.
15533 */
15534 if (close_failed && force_close) {
15535 /*
15536 * It's ok to drop and regrab the 'os_sync_lock' since
15537 * nfs4close_notw() will recheck to make sure the
15538 * "close"/removal of state should happen.
15539 */
15540 if (!have_sync_lock) {
15541 mutex_enter(&osp->os_sync_lock);
15542 have_sync_lock = 1;
15543 }
15544 /*
15545 * This is last call, remove the ref on the open
15546 * stream created by open and clean everything up.
15547 */
15548 osp->os_pending_close = 0;
15549 nfs4close_notw(vp, osp, &have_sync_lock);
15550 nfs4_error_zinit(ep);
15551 }
15552
15553 if (!close_failed) {
15554 if (have_sync_lock) {
15555 osp->os_pending_close = 0;
15556 mutex_exit(&osp->os_sync_lock);
15557 have_sync_lock = 0;
15558 } else {
15559 mutex_enter(&osp->os_sync_lock);
15560 osp->os_pending_close = 0;
15561 mutex_exit(&osp->os_sync_lock);
15562 }
15563 if (did_start_op && recov_state.rs_sp != NULL) {
15564 mutex_enter(&recov_state.rs_sp->s_lock);
15565 nfs4_dec_state_ref_count_nolock(recov_state.rs_sp, mi);
15566 mutex_exit(&recov_state.rs_sp->s_lock);
15567 } else {
15568 nfs4_dec_state_ref_count(mi);
15569 }
15570 nfs4_error_zinit(ep);
15571 }
15572
15573 out:
15574 if (have_sync_lock)
15575 mutex_exit(&osp->os_sync_lock);
15576 if (did_start_op)
15577 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, &recov_state,
15578 recovonly ? TRUE : FALSE);
15579 if (did_force_recovlock)
15580 nfs_rw_exit(&mi->mi_recovlock);
15581 if (cred_otw)
15582 crfree(cred_otw);
15583 if (osp)
15584 open_stream_rele(osp, rp);
15585 if (oop) {
15586 if (did_start_seqid_sync)
15587 nfs4_end_open_seqid_sync(oop);
15588 open_owner_rele(oop);
15589 }
15590 }
15591
15592 /*
15593 * Convert information returned by the server in the LOCK4denied
15594 * structure to the form required by fcntl.
15595 */
15596 static void
denied_to_flk(LOCK4denied * lockt_denied,flock64_t * flk,LOCKT4args * lockt_args)15597 denied_to_flk(LOCK4denied *lockt_denied, flock64_t *flk, LOCKT4args *lockt_args)
15598 {
15599 nfs4_lo_name_t *lo;
15600
15601 #ifdef DEBUG
15602 if (denied_to_flk_debug) {
15603 lockt_denied_debug = lockt_denied;
15604 debug_enter("lockt_denied");
15605 }
15606 #endif
15607
15608 flk->l_type = lockt_denied->locktype == READ_LT ? F_RDLCK : F_WRLCK;
15609 flk->l_whence = 0; /* aka SEEK_SET */
15610 flk->l_start = lockt_denied->offset;
15611 flk->l_len = lockt_denied->length;
15612
15613 /*
15614 * If the blocking clientid matches our client id, then we can
15615 * interpret the lockowner (since we built it). If not, then
15616 * fabricate a sysid and pid. Note that the l_sysid field
15617 * in *flk already has the local sysid.
15618 */
15619
15620 if (lockt_denied->owner.clientid == lockt_args->owner.clientid) {
15621
15622 if (lockt_denied->owner.owner_len == sizeof (*lo)) {
15623 lo = (nfs4_lo_name_t *)
15624 lockt_denied->owner.owner_val;
15625
15626 flk->l_pid = lo->ln_pid;
15627 } else {
15628 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
15629 "denied_to_flk: bad lock owner length\n"));
15630
15631 flk->l_pid = lo_to_pid(&lockt_denied->owner);
15632 }
15633 } else {
15634 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
15635 "denied_to_flk: foreign clientid\n"));
15636
15637 /*
15638 * Construct a new sysid which should be different from
15639 * sysids of other systems.
15640 */
15641
15642 flk->l_sysid++;
15643 flk->l_pid = lo_to_pid(&lockt_denied->owner);
15644 }
15645 }
15646
15647 static pid_t
lo_to_pid(lock_owner4 * lop)15648 lo_to_pid(lock_owner4 *lop)
15649 {
15650 pid_t pid = 0;
15651 uchar_t *cp;
15652 int i;
15653
15654 cp = (uchar_t *)&lop->clientid;
15655
15656 for (i = 0; i < sizeof (lop->clientid); i++)
15657 pid += (pid_t)*cp++;
15658
15659 cp = (uchar_t *)lop->owner_val;
15660
15661 for (i = 0; i < lop->owner_len; i++)
15662 pid += (pid_t)*cp++;
15663
15664 return (pid);
15665 }
15666
15667 /*
15668 * Given a lock pointer, returns the length of that lock.
15669 * "end" is the last locked offset the "l_len" covers from
15670 * the start of the lock.
15671 */
15672 static off64_t
lock_to_end(flock64_t * lock)15673 lock_to_end(flock64_t *lock)
15674 {
15675 off64_t lock_end;
15676
15677 if (lock->l_len == 0)
15678 lock_end = (off64_t)MAXEND;
15679 else
15680 lock_end = lock->l_start + lock->l_len - 1;
15681
15682 return (lock_end);
15683 }
15684
15685 /*
15686 * Given the end of a lock, it will return you the length "l_len" for that lock.
15687 */
15688 static off64_t
end_to_len(off64_t start,off64_t end)15689 end_to_len(off64_t start, off64_t end)
15690 {
15691 off64_t lock_len;
15692
15693 ASSERT(end >= start);
15694 if (end == MAXEND)
15695 lock_len = 0;
15696 else
15697 lock_len = end - start + 1;
15698
15699 return (lock_len);
15700 }
15701
15702 /*
15703 * On given end for a lock it determines if it is the last locked offset
15704 * or not, if so keeps it as is, else adds one to return the length for
15705 * valid start.
15706 */
15707 static off64_t
start_check(off64_t x)15708 start_check(off64_t x)
15709 {
15710 if (x == MAXEND)
15711 return (x);
15712 else
15713 return (x + 1);
15714 }
15715
15716 /*
15717 * See if these two locks overlap, and if so return 1;
15718 * otherwise, return 0.
15719 */
15720 static int
locks_intersect(flock64_t * llfp,flock64_t * curfp)15721 locks_intersect(flock64_t *llfp, flock64_t *curfp)
15722 {
15723 off64_t llfp_end, curfp_end;
15724
15725 llfp_end = lock_to_end(llfp);
15726 curfp_end = lock_to_end(curfp);
15727
15728 if (((llfp_end >= curfp->l_start) &&
15729 (llfp->l_start <= curfp->l_start)) ||
15730 ((curfp->l_start <= llfp->l_start) && (curfp_end >= llfp->l_start)))
15731 return (1);
15732 return (0);
15733 }
15734
15735 /*
15736 * Determine what the intersecting lock region is, and add that to the
15737 * 'nl_llpp' locklist in increasing order (by l_start).
15738 */
15739 static void
nfs4_add_lock_range(flock64_t * lost_flp,flock64_t * local_flp,locklist_t ** nl_llpp,vnode_t * vp)15740 nfs4_add_lock_range(flock64_t *lost_flp, flock64_t *local_flp,
15741 locklist_t **nl_llpp, vnode_t *vp)
15742 {
15743 locklist_t *intersect_llp, *tmp_fllp, *cur_fllp;
15744 off64_t lost_flp_end, local_flp_end, len, start;
15745
15746 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range:"));
15747
15748 if (!locks_intersect(lost_flp, local_flp))
15749 return;
15750
15751 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: "
15752 "locks intersect"));
15753
15754 lost_flp_end = lock_to_end(lost_flp);
15755 local_flp_end = lock_to_end(local_flp);
15756
15757 /* Find the starting point of the intersecting region */
15758 if (local_flp->l_start > lost_flp->l_start)
15759 start = local_flp->l_start;
15760 else
15761 start = lost_flp->l_start;
15762
15763 /* Find the lenght of the intersecting region */
15764 if (lost_flp_end < local_flp_end)
15765 len = end_to_len(start, lost_flp_end);
15766 else
15767 len = end_to_len(start, local_flp_end);
15768
15769 /*
15770 * Prepare the flock structure for the intersection found and insert
15771 * it into the new list in increasing l_start order. This list contains
15772 * intersections of locks registered by the client with the local host
15773 * and the lost lock.
15774 * The lock type of this lock is the same as that of the local_flp.
15775 */
15776 intersect_llp = (locklist_t *)kmem_alloc(sizeof (locklist_t), KM_SLEEP);
15777 intersect_llp->ll_flock.l_start = start;
15778 intersect_llp->ll_flock.l_len = len;
15779 intersect_llp->ll_flock.l_type = local_flp->l_type;
15780 intersect_llp->ll_flock.l_pid = local_flp->l_pid;
15781 intersect_llp->ll_flock.l_sysid = local_flp->l_sysid;
15782 intersect_llp->ll_flock.l_whence = 0; /* aka SEEK_SET */
15783 intersect_llp->ll_vp = vp;
15784
15785 tmp_fllp = *nl_llpp;
15786 cur_fllp = NULL;
15787 while (tmp_fllp != NULL && tmp_fllp->ll_flock.l_start <
15788 intersect_llp->ll_flock.l_start) {
15789 cur_fllp = tmp_fllp;
15790 tmp_fllp = tmp_fllp->ll_next;
15791 }
15792 if (cur_fllp == NULL) {
15793 /* first on the list */
15794 intersect_llp->ll_next = *nl_llpp;
15795 *nl_llpp = intersect_llp;
15796 } else {
15797 intersect_llp->ll_next = cur_fllp->ll_next;
15798 cur_fllp->ll_next = intersect_llp;
15799 }
15800
15801 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: "
15802 "created lock region: start %"PRIx64" end %"PRIx64" : %s\n",
15803 intersect_llp->ll_flock.l_start,
15804 intersect_llp->ll_flock.l_start + intersect_llp->ll_flock.l_len,
15805 intersect_llp->ll_flock.l_type == F_RDLCK ? "READ" : "WRITE"));
15806 }
15807
15808 /*
15809 * Our local locking current state is potentially different than
15810 * what the NFSv4 server thinks we have due to a lost lock that was
15811 * resent and then received. We need to reset our "NFSv4" locking
15812 * state to match the current local locking state for this pid since
15813 * that is what the user/application sees as what the world is.
15814 *
15815 * We cannot afford to drop the open/lock seqid sync since then we can
15816 * get confused about what the current local locking state "is" versus
15817 * "was".
15818 *
15819 * If we are unable to fix up the locks, we send SIGLOST to the affected
15820 * process. This is not done if the filesystem has been forcibly
15821 * unmounted, in case the process has already exited and a new process
15822 * exists with the same pid.
15823 */
15824 static void
nfs4_reinstitute_local_lock_state(vnode_t * vp,flock64_t * lost_flp,cred_t * cr,nfs4_lock_owner_t * lop)15825 nfs4_reinstitute_local_lock_state(vnode_t *vp, flock64_t *lost_flp, cred_t *cr,
15826 nfs4_lock_owner_t *lop)
15827 {
15828 locklist_t *locks, *llp, *ri_llp, *tmp_llp;
15829 mntinfo4_t *mi = VTOMI4(vp);
15830 const int cmd = F_SETLK;
15831 off64_t cur_start, llp_ll_flock_end, lost_flp_end;
15832 flock64_t ul_fl;
15833
15834 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
15835 "nfs4_reinstitute_local_lock_state"));
15836
15837 /*
15838 * Find active locks for this vp from the local locking code.
15839 * Scan through this list and find out the locks that intersect with
15840 * the lost lock. Once we find the lock that intersects, add the
15841 * intersection area as a new lock to a new list "ri_llp". The lock
15842 * type of the intersection region lock added to ri_llp is the same
15843 * as that found in the active lock list, "list". The intersecting
15844 * region locks are added to ri_llp in increasing l_start order.
15845 */
15846 ASSERT(nfs_zone() == mi->mi_zone);
15847
15848 locks = flk_active_locks_for_vp(vp);
15849 ri_llp = NULL;
15850
15851 for (llp = locks; llp != NULL; llp = llp->ll_next) {
15852 ASSERT(llp->ll_vp == vp);
15853 /*
15854 * Pick locks that belong to this pid/lockowner
15855 */
15856 if (llp->ll_flock.l_pid != lost_flp->l_pid)
15857 continue;
15858
15859 nfs4_add_lock_range(lost_flp, &llp->ll_flock, &ri_llp, vp);
15860 }
15861
15862 /*
15863 * Now we have the list of intersections with the lost lock. These are
15864 * the locks that were/are active before the server replied to the
15865 * last/lost lock. Issue these locks to the server here. Playing these
15866 * locks to the server will re-establish aur current local locking state
15867 * with the v4 server.
15868 * If we get an error, send SIGLOST to the application for that lock.
15869 */
15870
15871 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) {
15872 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
15873 "nfs4_reinstitute_local_lock_state: need to issue "
15874 "flock: [%"PRIx64" - %"PRIx64"] : %s",
15875 llp->ll_flock.l_start,
15876 llp->ll_flock.l_start + llp->ll_flock.l_len,
15877 llp->ll_flock.l_type == F_RDLCK ? "READ" :
15878 llp->ll_flock.l_type == F_WRLCK ? "WRITE" : "INVALID"));
15879 /*
15880 * No need to relock what we already have
15881 */
15882 if (llp->ll_flock.l_type == lost_flp->l_type)
15883 continue;
15884
15885 push_reinstate(vp, cmd, &llp->ll_flock, cr, lop);
15886 }
15887
15888 /*
15889 * Now keeping the start of the lost lock as our reference parse the
15890 * newly created ri_llp locklist to find the ranges that we have locked
15891 * with the v4 server but not in the current local locking. We need
15892 * to unlock these ranges.
15893 * These ranges can also be reffered to as those ranges, where the lost
15894 * lock does not overlap with the locks in the ri_llp but are locked
15895 * since the server replied to the lost lock.
15896 */
15897 cur_start = lost_flp->l_start;
15898 lost_flp_end = lock_to_end(lost_flp);
15899
15900 ul_fl.l_type = F_UNLCK;
15901 ul_fl.l_whence = 0; /* aka SEEK_SET */
15902 ul_fl.l_sysid = lost_flp->l_sysid;
15903 ul_fl.l_pid = lost_flp->l_pid;
15904
15905 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) {
15906 llp_ll_flock_end = lock_to_end(&llp->ll_flock);
15907
15908 if (llp->ll_flock.l_start <= cur_start) {
15909 cur_start = start_check(llp_ll_flock_end);
15910 continue;
15911 }
15912 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
15913 "nfs4_reinstitute_local_lock_state: "
15914 "UNLOCK [%"PRIx64" - %"PRIx64"]",
15915 cur_start, llp->ll_flock.l_start));
15916
15917 ul_fl.l_start = cur_start;
15918 ul_fl.l_len = end_to_len(cur_start,
15919 (llp->ll_flock.l_start - 1));
15920
15921 push_reinstate(vp, cmd, &ul_fl, cr, lop);
15922 cur_start = start_check(llp_ll_flock_end);
15923 }
15924
15925 /*
15926 * In the case where the lost lock ends after all intersecting locks,
15927 * unlock the last part of the lost lock range.
15928 */
15929 if (cur_start != start_check(lost_flp_end)) {
15930 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
15931 "nfs4_reinstitute_local_lock_state: UNLOCK end of the "
15932 "lost lock region [%"PRIx64" - %"PRIx64"]",
15933 cur_start, lost_flp->l_start + lost_flp->l_len));
15934
15935 ul_fl.l_start = cur_start;
15936 /*
15937 * Is it an to-EOF lock? if so unlock till the end
15938 */
15939 if (lost_flp->l_len == 0)
15940 ul_fl.l_len = 0;
15941 else
15942 ul_fl.l_len = start_check(lost_flp_end) - cur_start;
15943
15944 push_reinstate(vp, cmd, &ul_fl, cr, lop);
15945 }
15946
15947 if (locks != NULL)
15948 flk_free_locklist(locks);
15949
15950 /* Free up our newly created locklist */
15951 for (llp = ri_llp; llp != NULL; ) {
15952 tmp_llp = llp->ll_next;
15953 kmem_free(llp, sizeof (locklist_t));
15954 llp = tmp_llp;
15955 }
15956
15957 /*
15958 * Now return back to the original calling nfs4frlock()
15959 * and let us naturally drop our seqid syncs.
15960 */
15961 }
15962
15963 /*
15964 * Create a lost state record for the given lock reinstantiation request
15965 * and push it onto the lost state queue.
15966 */
15967 static void
push_reinstate(vnode_t * vp,int cmd,flock64_t * flk,cred_t * cr,nfs4_lock_owner_t * lop)15968 push_reinstate(vnode_t *vp, int cmd, flock64_t *flk, cred_t *cr,
15969 nfs4_lock_owner_t *lop)
15970 {
15971 nfs4_lost_rqst_t req;
15972 nfs_lock_type4 locktype;
15973 nfs4_error_t e = { EINTR, NFS4_OK, RPC_SUCCESS };
15974
15975 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
15976
15977 locktype = flk_to_locktype(cmd, flk->l_type);
15978 nfs4frlock_save_lost_rqst(NFS4_LCK_CTYPE_REINSTATE, EINTR, locktype,
15979 NULL, NULL, lop, flk, &req, cr, vp);
15980 (void) nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
15981 (req.lr_op == OP_LOCK || req.lr_op == OP_LOCKU) ?
15982 &req : NULL, flk->l_type == F_UNLCK ? OP_LOCKU : OP_LOCK,
15983 NULL, NULL, NULL);
15984 }
15985