xref: /netbsd-src/external/lgpl3/mpfr/dist/src/urandom.c (revision ba125506a622fe649968631a56eba5d42ff57863)
1 /* mpfr_urandom (rop, state, rnd_mode) -- Generate a uniform pseudorandom
2    real number between 0 and 1 (exclusive) and round it to the precision of rop
3    according to the given rounding mode.
4 
5 Copyright 2000-2004, 2006-2023 Free Software Foundation, Inc.
6 Contributed by the AriC and Caramba projects, INRIA.
7 
8 This file is part of the GNU MPFR Library.
9 
10 The GNU MPFR Library is free software; you can redistribute it and/or modify
11 it under the terms of the GNU Lesser General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or (at your
13 option) any later version.
14 
15 The GNU MPFR Library is distributed in the hope that it will be useful, but
16 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
18 License for more details.
19 
20 You should have received a copy of the GNU Lesser General Public License
21 along with the GNU MPFR Library; see the file COPYING.LESSER.  If not, see
22 https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
23 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
24 
25 
26 #define MPFR_NEED_LONGLONG_H
27 #include "mpfr-impl.h"
28 
29 
30 /* The mpfr_urandom() function is implemented in the following way,
31    so that the exact number (the random value to be rounded) and the
32    final status of the random generator do not depend on the current
33    exponent range and on the rounding mode. However, they depend on
34    the target precision: from the same state of the random generator,
35    if the precision of the destination is changed, then the value may
36    be completely different (and the state of the random generator is
37    different too).
38    1. One determines the exponent exp: 0 with probability 1/2, -1 with
39       probability 1/4, -2 with probability 1/8, etc.
40    2. One draws a 1-ulp interval ]a,b[ containing the exact result (the
41       interval can be regarded as open since it has the same measure as
42       the closed interval).
43       One also draws the rounding bit. This is currently done with a
44       separate call to mpfr_rand_raw(), but it should be better to draw
45       the rounding bit as part of the significand; there is space for it
46       since the MSB is always 1.
47    3. Rounding is done. For the directed rounding modes, the rounded value
48       is uniquely determined. For rounding to nearest, ]a,m[ and ]m,b[,
49       where m = (a+b)/2, have the same measure, so that one gets a or b
50       with equal probabilities.
51 */
52 
53 int
mpfr_urandom(mpfr_ptr rop,gmp_randstate_t rstate,mpfr_rnd_t rnd_mode)54 mpfr_urandom (mpfr_ptr rop, gmp_randstate_t rstate, mpfr_rnd_t rnd_mode)
55 {
56   mpfr_limb_ptr rp;
57   mpfr_prec_t nbits;
58   mp_size_t nlimbs;
59   mp_size_t n;
60   mpfr_exp_t exp;
61   mp_limb_t rbit;
62   int cnt;
63   int inex;
64   MPFR_SAVE_EXPO_DECL (expo);
65 
66   /* We need to extend the exponent range in order to simplify
67      the case where one rounds upward (we would not be able to
68      use mpfr_nextabove() in the case emin = max). It could be
69      partly reimplemented under a simpler form here, but it is
70      better to make the code shorter and more readable. */
71   MPFR_SAVE_EXPO_MARK (expo);
72 
73   rp = MPFR_MANT (rop);
74   nbits = MPFR_PREC (rop);
75   MPFR_SET_EXP (rop, 0);
76   MPFR_SET_POS (rop);
77   exp = 0;
78 
79   /* Step 1 (exponent). */
80 #define DRAW_BITS 8 /* we draw DRAW_BITS at a time */
81   MPFR_STAT_STATIC_ASSERT (DRAW_BITS <= GMP_NUMB_BITS);
82   do
83     {
84       /* generate DRAW_BITS in rp[0] */
85       mpfr_rand_raw (rp, rstate, DRAW_BITS);
86       if (MPFR_UNLIKELY (rp[0] == 0))
87         cnt = DRAW_BITS;
88       else
89         {
90           count_leading_zeros (cnt, rp[0]);
91           cnt -= GMP_NUMB_BITS - DRAW_BITS;
92         }
93       /* Any value of exp < MPFR_EMIN_MIN - 1 are equivalent. So, we can
94          avoid a theoretical integer overflow in the following way. */
95       if (MPFR_LIKELY (exp >= MPFR_EMIN_MIN - 1))
96         exp -= cnt;  /* no integer overflow */
97     }
98   while (cnt == DRAW_BITS);
99   /* We do not want the random generator to depend on the ABI or on the
100      exponent range. Therefore we do not use MPFR_EMIN_MIN or __gmpfr_emin
101      in the stop condition. */
102 
103   /* Step 2 (significand): we need generate only nbits-1 bits, since the
104      most significant bit is 1. */
105   if (MPFR_UNLIKELY (nbits == 1))
106     {
107       rp[0] = MPFR_LIMB_HIGHBIT;
108     }
109   else
110     {
111       mpfr_rand_raw (rp, rstate, nbits - 1);
112       nlimbs = MPFR_LIMB_SIZE (rop);
113       n = nlimbs * GMP_NUMB_BITS - nbits;
114       if (MPFR_LIKELY (n != 0)) /* this will put the low bits to zero */
115         mpn_lshift (rp, rp, nlimbs, n);
116       rp[nlimbs - 1] |= MPFR_LIMB_HIGHBIT;
117     }
118 
119   /* Rounding bit */
120   mpfr_rand_raw (&rbit, rstate, 1);
121   MPFR_ASSERTD (rbit == 0 || rbit == 1);
122 
123   /* Step 3 (rounding). */
124   if (rnd_mode == MPFR_RNDU || rnd_mode == MPFR_RNDA
125       || (rnd_mode == MPFR_RNDN && rbit != 0))
126     {
127       mpfr_nextabove (rop);
128       inex = +1;
129     }
130   else
131     {
132       inex = -1;
133     }
134 
135   MPFR_EXP (rop) += exp; /* may be smaller than emin */
136   MPFR_SAVE_EXPO_FREE (expo);
137   return mpfr_check_range (rop, inex, rnd_mode);
138 }
139