xref: /netbsd-src/external/gpl3/gcc/dist/gcc/config/i386/i386.h (revision 4fe0f936ff464bca8e6277bde90f477ef5a4d004)
1 /* Definitions of target machine for GCC for IA-32.
2    Copyright (C) 1988-2022 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10 
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 GNU General Public License for more details.
15 
16 Under Section 7 of GPL version 3, you are granted additional
17 permissions described in the GCC Runtime Library Exception, version
18 3.1, as published by the Free Software Foundation.
19 
20 You should have received a copy of the GNU General Public License and
21 a copy of the GCC Runtime Library Exception along with this program;
22 see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 <http://www.gnu.org/licenses/>.  */
24 
25 /* The purpose of this file is to define the characteristics of the i386,
26    independent of assembler syntax or operating system.
27 
28    Three other files build on this one to describe a specific assembler syntax:
29    bsd386.h, att386.h, and sun386.h.
30 
31    The actual tm.h file for a particular system should include
32    this file, and then the file for the appropriate assembler syntax.
33 
34    Many macros that specify assembler syntax are omitted entirely from
35    this file because they really belong in the files for particular
36    assemblers.  These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37    ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38    that start with ASM_ or end in ASM_OP.  */
39 
40 /* Redefines for option macros.  */
41 
42 #define TARGET_CMPXCHG16B	TARGET_CX16
43 #define TARGET_CMPXCHG16B_P(x)	TARGET_CX16_P(x)
44 
45 #define TARGET_LP64		TARGET_ABI_64
46 #define TARGET_LP64_P(x)	TARGET_ABI_64_P(x)
47 #define TARGET_X32		TARGET_ABI_X32
48 #define TARGET_X32_P(x)		TARGET_ABI_X32_P(x)
49 #define TARGET_16BIT		TARGET_CODE16
50 #define TARGET_16BIT_P(x)	TARGET_CODE16_P(x)
51 
52 #define TARGET_MMX_WITH_SSE	(TARGET_64BIT && TARGET_SSE2)
53 
54 #include "config/vxworks-dummy.h"
55 
56 #include "config/i386/i386-opts.h"
57 
58 #define MAX_STRINGOP_ALGS 4
59 
60 /* Specify what algorithm to use for stringops on known size.
61    When size is unknown, the UNKNOWN_SIZE alg is used.  When size is
62    known at compile time or estimated via feedback, the SIZE array
63    is walked in order until MAX is greater then the estimate (or -1
64    means infinity).  Corresponding ALG is used then.
65    When NOALIGN is true the code guaranting the alignment of the memory
66    block is skipped.
67 
68    For example initializer:
69     {{256, loop}, {-1, rep_prefix_4_byte}}
70    will use loop for blocks smaller or equal to 256 bytes, rep prefix will
71    be used otherwise.  */
72 struct stringop_algs
73 {
74   const enum stringop_alg unknown_size;
75   const struct stringop_strategy {
76     /* Several older compilers delete the default constructor because of the
77        const entries (see PR100246).  Manually specifying a CTOR works around
78        this issue.  Since this header is used by code compiled with the C
79        compiler we must guard the addition.  */
80 #ifdef __cplusplus
81     constexpr
82     stringop_strategy (int _max = -1, enum stringop_alg _alg = libcall,
83 		       int _noalign = false)
maxstringop_algs::stringop_strategy84       : max (_max), alg (_alg), noalign (_noalign) {}
85 #endif
86     const int max;
87     const enum stringop_alg alg;
88     int noalign;
89   } size [MAX_STRINGOP_ALGS];
90 };
91 
92 /* Analog of COSTS_N_INSNS when optimizing for size.  */
93 #ifndef COSTS_N_BYTES
94 #define COSTS_N_BYTES(N) ((N) * 2)
95 #endif
96 
97 /* Define the specific costs for a given cpu.  NB: hard_register is used
98    by TARGET_REGISTER_MOVE_COST and TARGET_MEMORY_MOVE_COST to compute
99    hard register move costs by register allocator.  Relative costs of
100    pseudo register load and store versus pseudo register moves in RTL
101    expressions for TARGET_RTX_COSTS can be different from relative
102    costs of hard registers to get the most efficient operations with
103    pseudo registers.  */
104 
105 struct processor_costs {
106   /* Costs used by register allocator.  integer->integer register move
107      cost is 2.  */
108   struct
109     {
110       const int movzbl_load;	/* cost of loading using movzbl */
111       const int int_load[3];	/* cost of loading integer registers
112 				   in QImode, HImode and SImode relative
113 				   to reg-reg move (2).  */
114       const int int_store[3];	/* cost of storing integer register
115 				   in QImode, HImode and SImode */
116       const int fp_move;	/* cost of reg,reg fld/fst */
117       const int fp_load[3];	/* cost of loading FP register
118 				   in SFmode, DFmode and XFmode */
119       const int fp_store[3];	/* cost of storing FP register
120 				   in SFmode, DFmode and XFmode */
121       const int mmx_move;	/* cost of moving MMX register.  */
122       const int mmx_load[2];	/* cost of loading MMX register
123 				   in SImode and DImode */
124       const int mmx_store[2];	/* cost of storing MMX register
125 				   in SImode and DImode */
126       const int xmm_move;	/* cost of moving XMM register.  */
127       const int ymm_move;	/* cost of moving XMM register.  */
128       const int zmm_move;	/* cost of moving XMM register.  */
129       const int sse_load[5];	/* cost of loading SSE register
130 				   in 32bit, 64bit, 128bit, 256bit and 512bit */
131       const int sse_store[5];	/* cost of storing SSE register
132 				   in SImode, DImode and TImode.  */
133       const int sse_to_integer;	/* cost of moving SSE register to integer.  */
134       const int integer_to_sse;	/* cost of moving integer register to SSE. */
135       const int mask_to_integer; /* cost of moving mask register to integer.  */
136       const int integer_to_mask; /* cost of moving integer register to mask.  */
137       const int mask_load[3]; /* cost of loading mask registers
138 				 in QImode, HImode and SImode.  */
139       const int mask_store[3]; /* cost of storing mask register
140 				  in QImode, HImode and SImode.  */
141       const int mask_move; /* cost of moving mask register.  */
142     } hard_register;
143 
144   const int add;		/* cost of an add instruction */
145   const int lea;		/* cost of a lea instruction */
146   const int shift_var;		/* variable shift costs */
147   const int shift_const;	/* constant shift costs */
148   const int mult_init[5];	/* cost of starting a multiply
149 				   in QImode, HImode, SImode, DImode, TImode*/
150   const int mult_bit;		/* cost of multiply per each bit set */
151   const int divide[5];		/* cost of a divide/mod
152 				   in QImode, HImode, SImode, DImode, TImode*/
153   int movsx;			/* The cost of movsx operation.  */
154   int movzx;			/* The cost of movzx operation.  */
155   const int large_insn;		/* insns larger than this cost more */
156   const int move_ratio;		/* The threshold of number of scalar
157 				   memory-to-memory move insns.  */
158   const int clear_ratio;	/* The threshold of number of scalar
159 				   memory clearing insns.  */
160   const int int_load[3];	/* cost of loading integer registers
161 				   in QImode, HImode and SImode relative
162 				   to reg-reg move (2).  */
163   const int int_store[3];	/* cost of storing integer register
164 				   in QImode, HImode and SImode */
165   const int sse_load[5];	/* cost of loading SSE register
166 				   in 32bit, 64bit, 128bit, 256bit and 512bit */
167   const int sse_store[5];	/* cost of storing SSE register
168 				   in 32bit, 64bit, 128bit, 256bit and 512bit */
169   const int sse_unaligned_load[5];/* cost of unaligned load.  */
170   const int sse_unaligned_store[5];/* cost of unaligned store.  */
171   const int xmm_move, ymm_move, /* cost of moving XMM and YMM register.  */
172 	    zmm_move;
173   const int sse_to_integer;	/* cost of moving SSE register to integer.  */
174   const int gather_static, gather_per_elt; /* Cost of gather load is computed
175 				   as static + per_item * nelts. */
176   const int scatter_static, scatter_per_elt; /* Cost of gather store is
177 				   computed as static + per_item * nelts.  */
178   const int l1_cache_size;	/* size of l1 cache, in kilobytes.  */
179   const int l2_cache_size;	/* size of l2 cache, in kilobytes.  */
180   const int prefetch_block;	/* bytes moved to cache for prefetch.  */
181   const int simultaneous_prefetches; /* number of parallel prefetch
182 				   operations.  */
183   const int branch_cost;	/* Default value for BRANCH_COST.  */
184   const int fadd;		/* cost of FADD and FSUB instructions.  */
185   const int fmul;		/* cost of FMUL instruction.  */
186   const int fdiv;		/* cost of FDIV instruction.  */
187   const int fabs;		/* cost of FABS instruction.  */
188   const int fchs;		/* cost of FCHS instruction.  */
189   const int fsqrt;		/* cost of FSQRT instruction.  */
190 				/* Specify what algorithm
191 				   to use for stringops on unknown size.  */
192   const int sse_op;		/* cost of cheap SSE instruction.  */
193   const int addss;		/* cost of ADDSS/SD SUBSS/SD instructions.  */
194   const int mulss;		/* cost of MULSS instructions.  */
195   const int mulsd;		/* cost of MULSD instructions.  */
196   const int fmass;		/* cost of FMASS instructions.  */
197   const int fmasd;		/* cost of FMASD instructions.  */
198   const int divss;		/* cost of DIVSS instructions.  */
199   const int divsd;		/* cost of DIVSD instructions.  */
200   const int sqrtss;		/* cost of SQRTSS instructions.  */
201   const int sqrtsd;		/* cost of SQRTSD instructions.  */
202   const int reassoc_int, reassoc_fp, reassoc_vec_int, reassoc_vec_fp;
203 				/* Specify reassociation width for integer,
204 				   fp, vector integer and vector fp
205 				   operations.  Generally should correspond
206 				   to number of instructions executed in
207 				   parallel.  See also
208 				   ix86_reassociation_width.  */
209   struct stringop_algs *memcpy, *memset;
210   const int cond_taken_branch_cost;    /* Cost of taken branch for vectorizer
211 					  cost model.  */
212   const int cond_not_taken_branch_cost;/* Cost of not taken branch for
213 					  vectorizer cost model.  */
214 
215   /* The "0:0:8" label alignment specified for some processors generates
216      secondary 8-byte alignment only for those label/jump/loop targets
217      which have primary alignment.  */
218   const char *const align_loop;		/* Loop alignment.  */
219   const char *const align_jump;		/* Jump alignment.  */
220   const char *const align_label;	/* Label alignment.  */
221   const char *const align_func;		/* Function alignment.  */
222 };
223 
224 extern const struct processor_costs *ix86_cost;
225 extern const struct processor_costs ix86_size_cost;
226 
227 #define ix86_cur_cost() \
228   (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
229 
230 /* Macros used in the machine description to test the flags.  */
231 
232 /* configure can arrange to change it.  */
233 
234 #ifndef TARGET_CPU_DEFAULT
235 #define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
236 #endif
237 
238 #ifndef TARGET_FPMATH_DEFAULT
239 #define TARGET_FPMATH_DEFAULT \
240   (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
241 #endif
242 
243 #ifndef TARGET_FPMATH_DEFAULT_P
244 #define TARGET_FPMATH_DEFAULT_P(x) \
245   (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
246 #endif
247 
248 /* If the i387 is disabled or -miamcu is used , then do not return
249    values in it. */
250 #define TARGET_FLOAT_RETURNS_IN_80387 \
251   (TARGET_FLOAT_RETURNS && TARGET_80387 && !TARGET_IAMCU)
252 #define TARGET_FLOAT_RETURNS_IN_80387_P(x) \
253   (TARGET_FLOAT_RETURNS_P(x) && TARGET_80387_P(x) && !TARGET_IAMCU_P(x))
254 
255 /* 64bit Sledgehammer mode.  For libgcc2 we make sure this is a
256    compile-time constant.  */
257 #ifdef IN_LIBGCC2
258 #undef TARGET_64BIT
259 #ifdef __x86_64__
260 #define TARGET_64BIT 1
261 #else
262 #define TARGET_64BIT 0
263 #endif
264 #else
265 #ifndef TARGET_BI_ARCH
266 #undef TARGET_64BIT
267 #undef TARGET_64BIT_P
268 #if TARGET_64BIT_DEFAULT
269 #define TARGET_64BIT 1
270 #define TARGET_64BIT_P(x) 1
271 #else
272 #define TARGET_64BIT 0
273 #define TARGET_64BIT_P(x) 0
274 #endif
275 #endif
276 #endif
277 
278 #define HAS_LONG_COND_BRANCH 1
279 #define HAS_LONG_UNCOND_BRANCH 1
280 
281 #define TARGET_CPU_P(CPU) (ix86_tune == PROCESSOR_ ## CPU)
282 
283 /* Feature tests against the various tunings.  */
284 enum ix86_tune_indices {
285 #undef DEF_TUNE
286 #define DEF_TUNE(tune, name, selector) tune,
287 #include "x86-tune.def"
288 #undef DEF_TUNE
289 X86_TUNE_LAST
290 };
291 
292 extern unsigned char ix86_tune_features[X86_TUNE_LAST];
293 
294 #define TARGET_USE_LEAVE	ix86_tune_features[X86_TUNE_USE_LEAVE]
295 #define TARGET_PUSH_MEMORY	ix86_tune_features[X86_TUNE_PUSH_MEMORY]
296 #define TARGET_ZERO_EXTEND_WITH_AND \
297 	ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
298 #define TARGET_UNROLL_STRLEN	ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
299 #define TARGET_BRANCH_PREDICTION_HINTS \
300 	ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
301 #define TARGET_DOUBLE_WITH_ADD	ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
302 #define TARGET_USE_SAHF		ix86_tune_features[X86_TUNE_USE_SAHF]
303 #define TARGET_MOVX		ix86_tune_features[X86_TUNE_MOVX]
304 #define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
305 #define TARGET_PARTIAL_FLAG_REG_STALL \
306 	ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
307 #define TARGET_LCP_STALL \
308 	ix86_tune_features[X86_TUNE_LCP_STALL]
309 #define TARGET_USE_HIMODE_FIOP	ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
310 #define TARGET_USE_SIMODE_FIOP	ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
311 #define TARGET_USE_MOV0		ix86_tune_features[X86_TUNE_USE_MOV0]
312 #define TARGET_USE_CLTD		ix86_tune_features[X86_TUNE_USE_CLTD]
313 #define TARGET_USE_XCHGB	ix86_tune_features[X86_TUNE_USE_XCHGB]
314 #define TARGET_SPLIT_LONG_MOVES	ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
315 #define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
316 #define TARGET_READ_MODIFY	ix86_tune_features[X86_TUNE_READ_MODIFY]
317 #define TARGET_PROMOTE_QImode	ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
318 #define TARGET_FAST_PREFIX	ix86_tune_features[X86_TUNE_FAST_PREFIX]
319 #define TARGET_SINGLE_STRINGOP	ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
320 #define TARGET_PREFER_KNOWN_REP_MOVSB_STOSB \
321   ix86_tune_features[X86_TUNE_PREFER_KNOWN_REP_MOVSB_STOSB]
322 #define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
323 	ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
324 #define TARGET_QIMODE_MATH	ix86_tune_features[X86_TUNE_QIMODE_MATH]
325 #define TARGET_HIMODE_MATH	ix86_tune_features[X86_TUNE_HIMODE_MATH]
326 #define TARGET_PROMOTE_QI_REGS	ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
327 #define TARGET_PROMOTE_HI_REGS	ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
328 #define TARGET_SINGLE_POP	ix86_tune_features[X86_TUNE_SINGLE_POP]
329 #define TARGET_DOUBLE_POP	ix86_tune_features[X86_TUNE_DOUBLE_POP]
330 #define TARGET_SINGLE_PUSH	ix86_tune_features[X86_TUNE_SINGLE_PUSH]
331 #define TARGET_DOUBLE_PUSH	ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
332 #define TARGET_INTEGER_DFMODE_MOVES \
333 	ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
334 #define TARGET_PARTIAL_REG_DEPENDENCY \
335 	ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
336 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
337 	ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
338 #define TARGET_SSE_PARTIAL_REG_FP_CONVERTS_DEPENDENCY \
339 	ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_FP_CONVERTS_DEPENDENCY]
340 #define TARGET_SSE_PARTIAL_REG_CONVERTS_DEPENDENCY \
341 	ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_CONVERTS_DEPENDENCY]
342 #define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
343 	ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
344 #define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
345 	ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
346 #define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
347 	ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
348 #define TARGET_SSE_SPLIT_REGS	ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
349 #define TARGET_SSE_TYPELESS_STORES \
350 	ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
351 #define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
352 #define TARGET_MEMORY_MISMATCH_STALL \
353 	ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
354 #define TARGET_PROLOGUE_USING_MOVE \
355 	ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
356 #define TARGET_EPILOGUE_USING_MOVE \
357 	ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
358 #define TARGET_SHIFT1		ix86_tune_features[X86_TUNE_SHIFT1]
359 #define TARGET_USE_FFREEP	ix86_tune_features[X86_TUNE_USE_FFREEP]
360 #define TARGET_INTER_UNIT_MOVES_TO_VEC \
361 	ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
362 #define TARGET_INTER_UNIT_MOVES_FROM_VEC \
363 	ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
364 #define TARGET_INTER_UNIT_CONVERSIONS \
365 	ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
366 #define TARGET_FOUR_JUMP_LIMIT	ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
367 #define TARGET_SCHEDULE		ix86_tune_features[X86_TUNE_SCHEDULE]
368 #define TARGET_USE_BT		ix86_tune_features[X86_TUNE_USE_BT]
369 #define TARGET_USE_INCDEC	ix86_tune_features[X86_TUNE_USE_INCDEC]
370 #define TARGET_PAD_RETURNS	ix86_tune_features[X86_TUNE_PAD_RETURNS]
371 #define TARGET_PAD_SHORT_FUNCTION \
372 	ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
373 #define TARGET_EXT_80387_CONSTANTS \
374 	ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
375 #define TARGET_AVOID_VECTOR_DECODE \
376 	ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
377 #define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
378 	ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
379 #define TARGET_SLOW_IMUL_IMM32_MEM \
380 	ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
381 #define TARGET_SLOW_IMUL_IMM8	ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
382 #define	TARGET_MOVE_M1_VIA_OR	ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
383 #define TARGET_NOT_UNPAIRABLE	ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
384 #define TARGET_NOT_VECTORMODE	ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
385 #define TARGET_USE_VECTOR_FP_CONVERTS \
386 	ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
387 #define TARGET_USE_VECTOR_CONVERTS \
388 	ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
389 #define TARGET_SLOW_PSHUFB \
390 	ix86_tune_features[X86_TUNE_SLOW_PSHUFB]
391 #define TARGET_AVOID_4BYTE_PREFIXES \
392 	ix86_tune_features[X86_TUNE_AVOID_4BYTE_PREFIXES]
393 #define TARGET_USE_GATHER_2PARTS \
394 	ix86_tune_features[X86_TUNE_USE_GATHER_2PARTS]
395 #define TARGET_USE_SCATTER_2PARTS \
396 	ix86_tune_features[X86_TUNE_USE_SCATTER_2PARTS]
397 #define TARGET_USE_GATHER_4PARTS \
398 	ix86_tune_features[X86_TUNE_USE_GATHER_4PARTS]
399 #define TARGET_USE_SCATTER_4PARTS \
400 	ix86_tune_features[X86_TUNE_USE_SCATTER_4PARTS]
401 #define TARGET_USE_GATHER_8PARTS \
402 	ix86_tune_features[X86_TUNE_USE_GATHER_8PARTS]
403 #define TARGET_USE_SCATTER_8PARTS \
404 	ix86_tune_features[X86_TUNE_USE_SCATTER_8PARTS]
405 #define TARGET_FUSE_CMP_AND_BRANCH_32 \
406 	ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
407 #define TARGET_FUSE_CMP_AND_BRANCH_64 \
408 	ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
409 #define TARGET_FUSE_CMP_AND_BRANCH \
410 	(TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
411 	 : TARGET_FUSE_CMP_AND_BRANCH_32)
412 #define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
413 	ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
414 #define TARGET_FUSE_ALU_AND_BRANCH \
415 	ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
416 #define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
417 #define TARGET_AVOID_LEA_FOR_ADDR \
418 	ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR]
419 #define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
420 	ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
421 #define TARGET_AVX256_SPLIT_REGS \
422 	ix86_tune_features[X86_TUNE_AVX256_SPLIT_REGS]
423 #define TARGET_AVX512_SPLIT_REGS \
424 	ix86_tune_features[X86_TUNE_AVX512_SPLIT_REGS]
425 #define TARGET_GENERAL_REGS_SSE_SPILL \
426 	ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
427 #define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
428 	ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
429 #define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
430 	ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
431 #define TARGET_ADJUST_UNROLL \
432     ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
433 #define TARGET_AVOID_FALSE_DEP_FOR_BMI \
434 	ix86_tune_features[X86_TUNE_AVOID_FALSE_DEP_FOR_BMI]
435 #define TARGET_ONE_IF_CONV_INSN \
436 	ix86_tune_features[X86_TUNE_ONE_IF_CONV_INSN]
437 #define TARGET_AVOID_MFENCE ix86_tune_features[X86_TUNE_AVOID_MFENCE]
438 #define TARGET_EMIT_VZEROUPPER \
439 	ix86_tune_features[X86_TUNE_EMIT_VZEROUPPER]
440 #define TARGET_EXPAND_ABS \
441 	ix86_tune_features[X86_TUNE_EXPAND_ABS]
442 #define TARGET_V2DF_REDUCTION_PREFER_HADDPD \
443 	ix86_tune_features[X86_TUNE_V2DF_REDUCTION_PREFER_HADDPD]
444 #define TARGET_DEST_FALSE_DEP_FOR_GLC \
445 	ix86_tune_features[X86_TUNE_DEST_FALSE_DEP_FOR_GLC]
446 
447 /* Feature tests against the various architecture variations.  */
448 enum ix86_arch_indices {
449   X86_ARCH_CMOV,
450   X86_ARCH_CMPXCHG,
451   X86_ARCH_CMPXCHG8B,
452   X86_ARCH_XADD,
453   X86_ARCH_BSWAP,
454 
455   X86_ARCH_LAST
456 };
457 
458 extern unsigned char ix86_arch_features[X86_ARCH_LAST];
459 
460 #define TARGET_CMOV		ix86_arch_features[X86_ARCH_CMOV]
461 #define TARGET_CMPXCHG		ix86_arch_features[X86_ARCH_CMPXCHG]
462 #define TARGET_CMPXCHG8B	ix86_arch_features[X86_ARCH_CMPXCHG8B]
463 #define TARGET_XADD		ix86_arch_features[X86_ARCH_XADD]
464 #define TARGET_BSWAP		ix86_arch_features[X86_ARCH_BSWAP]
465 
466 /* For sane SSE instruction set generation we need fcomi instruction.
467    It is safe to enable all CMOVE instructions.  Also, RDRAND intrinsic
468    expands to a sequence that includes conditional move. */
469 #define TARGET_CMOVE		(TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
470 
471 #define TARGET_FISTTP		(TARGET_SSE3 && TARGET_80387)
472 
473 extern unsigned char ix86_prefetch_sse;
474 #define TARGET_PREFETCH_SSE	ix86_prefetch_sse
475 
476 #define ASSEMBLER_DIALECT	(ix86_asm_dialect)
477 
478 #define TARGET_SSE_MATH		((ix86_fpmath & FPMATH_SSE) != 0)
479 #define TARGET_MIX_SSE_I387 \
480  ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
481 
482 #define TARGET_HARD_SF_REGS	(TARGET_80387 || TARGET_MMX || TARGET_SSE)
483 #define TARGET_HARD_DF_REGS	(TARGET_80387 || TARGET_SSE)
484 #define TARGET_HARD_XF_REGS	(TARGET_80387)
485 
486 #define TARGET_GNU_TLS		(ix86_tls_dialect == TLS_DIALECT_GNU)
487 #define TARGET_GNU2_TLS		(ix86_tls_dialect == TLS_DIALECT_GNU2)
488 #define TARGET_ANY_GNU_TLS	(TARGET_GNU_TLS || TARGET_GNU2_TLS)
489 #define TARGET_SUN_TLS		0
490 
491 #ifndef TARGET_64BIT_DEFAULT
492 #define TARGET_64BIT_DEFAULT 0
493 #endif
494 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
495 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
496 #endif
497 
498 #define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
499 #define TARGET_SSP_TLS_GUARD    (ix86_stack_protector_guard == SSP_TLS)
500 
501 /* Fence to use after loop using storent.  */
502 
503 extern GTY(()) tree x86_mfence;
504 #define FENCE_FOLLOWING_MOVNT x86_mfence
505 
506 /* Once GDB has been enhanced to deal with functions without frame
507    pointers, we can change this to allow for elimination of
508    the frame pointer in leaf functions.  */
509 #define TARGET_DEFAULT 0
510 
511 /* Extra bits to force.  */
512 #define TARGET_SUBTARGET_DEFAULT 0
513 #define TARGET_SUBTARGET_ISA_DEFAULT 0
514 
515 /* Extra bits to force on w/ 32-bit mode.  */
516 #define TARGET_SUBTARGET32_DEFAULT 0
517 #define TARGET_SUBTARGET32_ISA_DEFAULT 0
518 
519 /* Extra bits to force on w/ 64-bit mode.  */
520 #define TARGET_SUBTARGET64_DEFAULT 0
521 /* Enable MMX, SSE and SSE2 by default.  */
522 #define TARGET_SUBTARGET64_ISA_DEFAULT \
523   (OPTION_MASK_ISA_MMX | OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_SSE2)
524 
525 /* Replace MACH-O, ifdefs by in-line tests, where possible.
526    (a) Macros defined in config/i386/darwin.h  */
527 #define TARGET_MACHO 0
528 #define TARGET_MACHO_SYMBOL_STUBS 0
529 #define MACHOPIC_ATT_STUB 0
530 /* (b) Macros defined in config/darwin.h  */
531 #define MACHO_DYNAMIC_NO_PIC_P 0
532 #define MACHOPIC_INDIRECT 0
533 #define MACHOPIC_PURE 0
534 
535 /* For the RDOS  */
536 #define TARGET_RDOS 0
537 
538 /* For the Windows 64-bit ABI.  */
539 #define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
540 
541 /* For the Windows 32-bit ABI.  */
542 #define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
543 
544 /* This is re-defined by cygming.h.  */
545 #define TARGET_SEH 0
546 
547 /* The default abi used by target.  */
548 #define DEFAULT_ABI SYSV_ABI
549 
550 /* The default TLS segment register used by target.  */
551 #define DEFAULT_TLS_SEG_REG \
552   (TARGET_64BIT ? ADDR_SPACE_SEG_FS : ADDR_SPACE_SEG_GS)
553 
554 /* Subtargets may reset this to 1 in order to enable 96-bit long double
555    with the rounding mode forced to 53 bits.  */
556 #define TARGET_96_ROUND_53_LONG_DOUBLE 0
557 
558 #ifndef SUBTARGET_DRIVER_SELF_SPECS
559 # define SUBTARGET_DRIVER_SELF_SPECS ""
560 #endif
561 
562 #define DRIVER_SELF_SPECS SUBTARGET_DRIVER_SELF_SPECS
563 
564 /* -march=native handling only makes sense with compiler running on
565    an x86 or x86_64 chip.  If changing this condition, also change
566    the condition in driver-i386.cc.  */
567 #if defined(__i386__) || defined(__x86_64__)
568 /* In driver-i386.cc.  */
569 extern const char *host_detect_local_cpu (int argc, const char **argv);
570 #define EXTRA_SPEC_FUNCTIONS \
571   { "local_cpu_detect", host_detect_local_cpu },
572 #define HAVE_LOCAL_CPU_DETECT
573 #endif
574 
575 #if TARGET_64BIT_DEFAULT
576 #define OPT_ARCH64 "!m32"
577 #define OPT_ARCH32 "m32"
578 #else
579 #define OPT_ARCH64 "m64|mx32"
580 #define OPT_ARCH32 "m64|mx32:;"
581 #endif
582 
583 /* Support for configure-time defaults of some command line options.
584    The order here is important so that -march doesn't squash the
585    tune or cpu values.  */
586 #define OPTION_DEFAULT_SPECS					   \
587   {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
588   {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
589   {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
590   {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" },  \
591   {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
592   {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
593   {"arch", "%{!march=*:-march=%(VALUE)}"},			   \
594   {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"},	   \
595   {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
596 
597 /* Specs for the compiler proper */
598 
599 #ifndef CC1_CPU_SPEC
600 #define CC1_CPU_SPEC_1 ""
601 
602 #ifndef HAVE_LOCAL_CPU_DETECT
603 #define CC1_CPU_SPEC CC1_CPU_SPEC_1
604 #else
605 #define ARCH_ARG "%{" OPT_ARCH64 ":64;:32}"
606 #define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
607 "%{march=native:%>march=native %:local_cpu_detect(arch " ARCH_ARG ") \
608   %{!mtune=*:%>mtune=native %:local_cpu_detect(tune " ARCH_ARG ")}} \
609 %{mtune=native:%>mtune=native %:local_cpu_detect(tune " ARCH_ARG ")}"
610 #endif
611 #endif
612 
613 /* Target CPU builtins.  */
614 #define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
615 
616 /* Target Pragmas.  */
617 #define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
618 
619 #ifndef CC1_SPEC
620 #define CC1_SPEC "%(cc1_cpu) "
621 #endif
622 
623 /* This macro defines names of additional specifications to put in the
624    specs that can be used in various specifications like CC1_SPEC.  Its
625    definition is an initializer with a subgrouping for each command option.
626 
627    Each subgrouping contains a string constant, that defines the
628    specification name, and a string constant that used by the GCC driver
629    program.
630 
631    Do not define this macro if it does not need to do anything.  */
632 
633 #ifndef SUBTARGET_EXTRA_SPECS
634 #define SUBTARGET_EXTRA_SPECS
635 #endif
636 
637 #define EXTRA_SPECS							\
638   { "cc1_cpu",  CC1_CPU_SPEC },						\
639   SUBTARGET_EXTRA_SPECS
640 
641 
642 /* Whether to allow x87 floating-point arithmetic on MODE (one of
643    SFmode, DFmode and XFmode) in the current excess precision
644    configuration.  */
645 #define X87_ENABLE_ARITH(MODE)				\
646   (ix86_unsafe_math_optimizations			\
647    || ix86_excess_precision == EXCESS_PRECISION_FAST	\
648    || (MODE) == XFmode)
649 
650 /* Likewise, whether to allow direct conversions from integer mode
651    IMODE (HImode, SImode or DImode) to MODE.  */
652 #define X87_ENABLE_FLOAT(MODE, IMODE)			\
653   (ix86_unsafe_math_optimizations			\
654    || ix86_excess_precision == EXCESS_PRECISION_FAST	\
655    || (MODE) == XFmode					\
656    || ((MODE) == DFmode && (IMODE) == SImode)		\
657    || (IMODE) == HImode)
658 
659 /* target machine storage layout */
660 
661 #define SHORT_TYPE_SIZE 16
662 #define INT_TYPE_SIZE 32
663 #define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
664 #define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
665 #define LONG_LONG_TYPE_SIZE 64
666 #define FLOAT_TYPE_SIZE 32
667 #define DOUBLE_TYPE_SIZE 64
668 #define LONG_DOUBLE_TYPE_SIZE \
669   (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
670 
671 #define WIDEST_HARDWARE_FP_SIZE 80
672 
673 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
674 #define MAX_BITS_PER_WORD 64
675 #else
676 #define MAX_BITS_PER_WORD 32
677 #endif
678 
679 /* Define this if most significant byte of a word is the lowest numbered.  */
680 /* That is true on the 80386.  */
681 
682 #define BITS_BIG_ENDIAN 0
683 
684 /* Define this if most significant byte of a word is the lowest numbered.  */
685 /* That is not true on the 80386.  */
686 #define BYTES_BIG_ENDIAN 0
687 
688 /* Define this if most significant word of a multiword number is the lowest
689    numbered.  */
690 /* Not true for 80386 */
691 #define WORDS_BIG_ENDIAN 0
692 
693 /* Width of a word, in units (bytes).  */
694 #define UNITS_PER_WORD		(TARGET_64BIT ? 8 : 4)
695 
696 #ifndef IN_LIBGCC2
697 #define MIN_UNITS_PER_WORD	4
698 #endif
699 
700 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
701 #define PARM_BOUNDARY BITS_PER_WORD
702 
703 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
704 #define STACK_BOUNDARY (TARGET_64BIT_MS_ABI ? 128 : BITS_PER_WORD)
705 
706 /* Stack boundary of the main function guaranteed by OS.  */
707 #define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
708 
709 /* Minimum stack boundary.  */
710 #define MIN_STACK_BOUNDARY BITS_PER_WORD
711 
712 /* Boundary (in *bits*) on which the stack pointer prefers to be
713    aligned; the compiler cannot rely on having this alignment.  */
714 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
715 
716 /* It should be MIN_STACK_BOUNDARY.  But we set it to 128 bits for
717    both 32bit and 64bit, to support codes that need 128 bit stack
718    alignment for SSE instructions, but can't realign the stack.  */
719 #define PREFERRED_STACK_BOUNDARY_DEFAULT \
720   (TARGET_IAMCU ? MIN_STACK_BOUNDARY : 128)
721 
722 /* 1 if -mstackrealign should be turned on by default.  It will
723    generate an alternate prologue and epilogue that realigns the
724    runtime stack if nessary.  This supports mixing codes that keep a
725    4-byte aligned stack, as specified by i386 psABI, with codes that
726    need a 16-byte aligned stack, as required by SSE instructions.  */
727 #define STACK_REALIGN_DEFAULT 0
728 
729 /* Boundary (in *bits*) on which the incoming stack is aligned.  */
730 #define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
731 
732 /* According to Windows x64 software convention, the maximum stack allocatable
733    in the prologue is 4G - 8 bytes.  Furthermore, there is a limited set of
734    instructions allowed to adjust the stack pointer in the epilog, forcing the
735    use of frame pointer for frames larger than 2 GB.  This theorical limit
736    is reduced by 256, an over-estimated upper bound for the stack use by the
737    prologue.
738    We define only one threshold for both the prolog and the epilog.  When the
739    frame size is larger than this threshold, we allocate the area to save SSE
740    regs, then save them, and then allocate the remaining.  There is no SEH
741    unwind info for this later allocation.  */
742 #define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
743 
744 /* Target OS keeps a vector-aligned (128-bit, 16-byte) stack.  This is
745    mandatory for the 64-bit ABI, and may or may not be true for other
746    operating systems.  */
747 #define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
748 
749 /* Minimum allocation boundary for the code of a function.  */
750 #define FUNCTION_BOUNDARY 8
751 
752 /* C++ stores the virtual bit in the lowest bit of function pointers.  */
753 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
754 
755 /* Minimum size in bits of the largest boundary to which any
756    and all fundamental data types supported by the hardware
757    might need to be aligned. No data type wants to be aligned
758    rounder than this.
759 
760    Pentium+ prefers DFmode values to be aligned to 64 bit boundary
761    and Pentium Pro XFmode values at 128 bit boundaries.
762 
763    When increasing the maximum, also update
764    TARGET_ABSOLUTE_BIGGEST_ALIGNMENT.  */
765 
766 #define BIGGEST_ALIGNMENT \
767   (TARGET_IAMCU ? 32 : (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128)))
768 
769 /* Maximum stack alignment.  */
770 #define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
771 
772 /* Alignment value for attribute ((aligned)).  It is a constant since
773    it is the part of the ABI.  We shouldn't change it with -mavx.  */
774 #define ATTRIBUTE_ALIGNED_VALUE (TARGET_IAMCU ? 32 : 128)
775 
776 /* Decide whether a variable of mode MODE should be 128 bit aligned.  */
777 #define ALIGN_MODE_128(MODE) \
778  ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
779 
780 /* The published ABIs say that doubles should be aligned on word
781    boundaries, so lower the alignment for structure fields unless
782    -malign-double is set.  */
783 
784 /* ??? Blah -- this macro is used directly by libobjc.  Since it
785    supports no vector modes, cut out the complexity and fall back
786    on BIGGEST_FIELD_ALIGNMENT.  */
787 #ifdef IN_TARGET_LIBS
788 #ifdef __x86_64__
789 #define BIGGEST_FIELD_ALIGNMENT 128
790 #else
791 #define BIGGEST_FIELD_ALIGNMENT 32
792 #endif
793 #else
794 #define ADJUST_FIELD_ALIGN(FIELD, TYPE, COMPUTED) \
795   x86_field_alignment ((TYPE), (COMPUTED))
796 #endif
797 
798 /* If defined, a C expression to compute the alignment for a static
799    variable.  TYPE is the data type, and ALIGN is the alignment that
800    the object would ordinarily have.  The value of this macro is used
801    instead of that alignment to align the object.
802 
803    If this macro is not defined, then ALIGN is used.
804 
805    One use of this macro is to increase alignment of medium-size
806    data to make it all fit in fewer cache lines.  Another is to
807    cause character arrays to be word-aligned so that `strcpy' calls
808    that copy constants to character arrays can be done inline.  */
809 
810 #define DATA_ALIGNMENT(TYPE, ALIGN) \
811   ix86_data_alignment ((TYPE), (ALIGN), true)
812 
813 /* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
814    some alignment increase, instead of optimization only purposes.  E.g.
815    AMD x86-64 psABI says that variables with array type larger than 15 bytes
816    must be aligned to 16 byte boundaries.
817 
818    If this macro is not defined, then ALIGN is used.  */
819 
820 #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
821   ix86_data_alignment ((TYPE), (ALIGN), false)
822 
823 /* If defined, a C expression to compute the alignment for a local
824    variable.  TYPE is the data type, and ALIGN is the alignment that
825    the object would ordinarily have.  The value of this macro is used
826    instead of that alignment to align the object.
827 
828    If this macro is not defined, then ALIGN is used.
829 
830    One use of this macro is to increase alignment of medium-size
831    data to make it all fit in fewer cache lines.  */
832 
833 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
834   ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
835 
836 /* If defined, a C expression to compute the alignment for stack slot.
837    TYPE is the data type, MODE is the widest mode available, and ALIGN
838    is the alignment that the slot would ordinarily have.  The value of
839    this macro is used instead of that alignment to align the slot.
840 
841    If this macro is not defined, then ALIGN is used when TYPE is NULL,
842    Otherwise, LOCAL_ALIGNMENT will be used.
843 
844    One use of this macro is to set alignment of stack slot to the
845    maximum alignment of all possible modes which the slot may have.  */
846 
847 #define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
848   ix86_local_alignment ((TYPE), (MODE), (ALIGN))
849 
850 /* If defined, a C expression to compute the alignment for a local
851    variable DECL.
852 
853    If this macro is not defined, then
854    LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
855 
856    One use of this macro is to increase alignment of medium-size
857    data to make it all fit in fewer cache lines.  */
858 
859 #define LOCAL_DECL_ALIGNMENT(DECL) \
860   ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
861 
862 /* If defined, a C expression to compute the minimum required alignment
863    for dynamic stack realignment purposes for EXP (a TYPE or DECL),
864    MODE, assuming normal alignment ALIGN.
865 
866    If this macro is not defined, then (ALIGN) will be used.  */
867 
868 #define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
869   ix86_minimum_alignment ((EXP), (MODE), (ALIGN))
870 
871 
872 /* Set this nonzero if move instructions will actually fail to work
873    when given unaligned data.  */
874 #define STRICT_ALIGNMENT 0
875 
876 /* If bit field type is int, don't let it cross an int,
877    and give entire struct the alignment of an int.  */
878 /* Required on the 386 since it doesn't have bit-field insns.  */
879 #define PCC_BITFIELD_TYPE_MATTERS 1
880 
881 /* Standard register usage.  */
882 
883 /* This processor has special stack-like registers.  See reg-stack.cc
884    for details.  */
885 
886 #define STACK_REGS
887 
888 #define IS_STACK_MODE(MODE)				\
889   (X87_FLOAT_MODE_P (MODE)				\
890    && (!(SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH)	\
891        || TARGET_MIX_SSE_I387))
892 
893 /* Number of actual hardware registers.
894    The hardware registers are assigned numbers for the compiler
895    from 0 to just below FIRST_PSEUDO_REGISTER.
896    All registers that the compiler knows about must be given numbers,
897    even those that are not normally considered general registers.
898 
899    In the 80386 we give the 8 general purpose registers the numbers 0-7.
900    We number the floating point registers 8-15.
901    Note that registers 0-7 can be accessed as a  short or int,
902    while only 0-3 may be used with byte `mov' instructions.
903 
904    Reg 16 does not correspond to any hardware register, but instead
905    appears in the RTL as an argument pointer prior to reload, and is
906    eliminated during reloading in favor of either the stack or frame
907    pointer.  */
908 
909 #define FIRST_PSEUDO_REGISTER FIRST_PSEUDO_REG
910 
911 /* Number of hardware registers that go into the DWARF-2 unwind info.
912    If not defined, equals FIRST_PSEUDO_REGISTER.  */
913 
914 #define DWARF_FRAME_REGISTERS 17
915 
916 /* 1 for registers that have pervasive standard uses
917    and are not available for the register allocator.
918    On the 80386, the stack pointer is such, as is the arg pointer.
919 
920    REX registers are disabled for 32bit targets in
921    TARGET_CONDITIONAL_REGISTER_USAGE.  */
922 
923 #define FIXED_REGISTERS						\
924 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
925 {  0, 0, 0, 0, 0, 0, 0, 1, 0,  0,  0,  0,  0,  0,  0,  0,	\
926 /*arg,flags,fpsr,frame*/					\
927     1,    1,   1,    1,						\
928 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
929      0,   0,   0,   0,   0,   0,   0,   0,			\
930 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/			\
931      0,   0,   0,   0,   0,   0,   0,   0,			\
932 /*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
933      0,   0,   0,   0,   0,   0,   0,   0,			\
934 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
935      0,   0,    0,    0,    0,    0,    0,    0,		\
936 /*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/		\
937      0,   0,    0,    0,    0,    0,    0,    0,		\
938 /*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/		\
939      0,   0,    0,    0,    0,    0,    0,    0,		\
940 /*  k0,  k1, k2, k3, k4, k5, k6, k7*/				\
941      0,  0,   0,  0,  0,  0,  0,  0 }
942 
943 /* 1 for registers not available across function calls.
944    These must include the FIXED_REGISTERS and also any
945    registers that can be used without being saved.
946    The latter must include the registers where values are returned
947    and the register where structure-value addresses are passed.
948    Aside from that, you can include as many other registers as you like.
949 
950    Value is set to 1 if the register is call used unconditionally.
951    Bit one is set if the register is call used on TARGET_32BIT ABI.
952    Bit two is set if the register is call used on TARGET_64BIT ABI.
953    Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
954 
955    Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE.  */
956 
957 #define CALL_USED_REGISTERS_MASK(IS_64BIT_MS_ABI) \
958   ((IS_64BIT_MS_ABI) ? (1 << 3) : TARGET_64BIT ? (1 << 2) : (1 << 1))
959 
960 #define CALL_USED_REGISTERS					\
961 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
962 {  1, 1, 1, 0, 4, 4, 0, 1, 1,  1,  1,  1,  1,  1,  1,  1,	\
963 /*arg,flags,fpsr,frame*/					\
964     1,   1,    1,    1,						\
965 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
966      1,   1,   1,   1,   1,   1,   6,   6,			\
967 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/			\
968      1,   1,   1,   1,   1,   1,   1,   1,			\
969 /*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
970      1,   1,   1,   1,   2,   2,   2,   2,			\
971 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
972      6,   6,    6,    6,    6,    6,    6,    6,		\
973 /*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/		\
974      1,    1,     1,    1,    1,    1,    1,    1,		\
975 /*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/		\
976      1,    1,     1,    1,    1,    1,    1,    1,		\
977  /* k0,  k1,  k2,  k3,  k4,  k5,  k6,  k7*/			\
978      1,   1,   1,   1,   1,   1,   1,   1 }
979 
980 /* Order in which to allocate registers.  Each register must be
981    listed once, even those in FIXED_REGISTERS.  List frame pointer
982    late and fixed registers last.  Note that, in general, we prefer
983    registers listed in CALL_USED_REGISTERS, keeping the others
984    available for storage of persistent values.
985 
986    The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
987    so this is just empty initializer for array.  */
988 
989 #define REG_ALLOC_ORDER							\
990 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,			\
991   16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,	\
992   32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,	\
993   48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,	\
994   64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75 }
995 
996 /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
997    to be rearranged based on a particular function.  When using sse math,
998    we want to allocate SSE before x87 registers and vice versa.  */
999 
1000 #define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
1001 
1002 
1003 #define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1004 
1005 #define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE)			\
1006   (TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT				\
1007    && GENERAL_REGNO_P (REGNO)						\
1008    && ((MODE) == XFmode || (MODE) == XCmode))
1009 
1010 #define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1011 
1012 #define REGMODE_NATURAL_SIZE(MODE) ix86_regmode_natural_size (MODE)
1013 
1014 #define VALID_AVX256_REG_MODE(MODE)					\
1015   ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode	\
1016    || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode	\
1017    || (MODE) == V4DFmode || (MODE) == V16HFmode)
1018 
1019 #define VALID_AVX256_REG_OR_OI_MODE(MODE)		\
1020   (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1021 
1022 #define VALID_AVX512F_SCALAR_MODE(MODE)					\
1023   ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode		\
1024    || (MODE) == SFmode)
1025 
1026 #define VALID_AVX512FP16_SCALAR_MODE(MODE)	\
1027   ((MODE) == HImode || (MODE) == HFmode)
1028 
1029 #define VALID_AVX512F_REG_MODE(MODE)					\
1030   ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode	\
1031    || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode \
1032    || (MODE) == V4TImode || (MODE) == V32HFmode)
1033 
1034 #define VALID_AVX512F_REG_OR_XI_MODE(MODE)				\
1035   (VALID_AVX512F_REG_MODE (MODE) || (MODE) == XImode)
1036 
1037 #define VALID_AVX512VL_128_REG_MODE(MODE)				\
1038   ((MODE) == V2DImode || (MODE) == V2DFmode || (MODE) == V16QImode	\
1039    || (MODE) == V4SImode || (MODE) == V4SFmode || (MODE) == V8HImode	\
1040    || (MODE) == TFmode || (MODE) == V1TImode || (MODE) == V8HFmode	\
1041    || (MODE) == TImode)
1042 
1043 #define VALID_AVX512FP16_REG_MODE(MODE)					\
1044   ((MODE) == V8HFmode || (MODE) == V16HFmode || (MODE) == V32HFmode	\
1045    || (MODE) == V2HFmode)
1046 
1047 #define VALID_SSE2_REG_MODE(MODE)					\
1048   ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode	\
1049    || (MODE) == V8HFmode || (MODE) == V4HFmode || (MODE) == V2HFmode	\
1050    || (MODE) == V4QImode || (MODE) == V2HImode || (MODE) == V1SImode	\
1051    || (MODE) == V2DImode || (MODE) == V2QImode || (MODE) == DFmode	\
1052    || (MODE) == HFmode)
1053 
1054 #define VALID_SSE_REG_MODE(MODE)					\
1055   ((MODE) == V1TImode || (MODE) == TImode				\
1056    || (MODE) == V4SFmode || (MODE) == V4SImode				\
1057    || (MODE) == SFmode || (MODE) == TFmode || (MODE) == TDmode)
1058 
1059 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1060   ((MODE) == V2SFmode || (MODE) == SFmode)
1061 
1062 /* To match ia32 psABI, V4HFmode should be added here.  */
1063 #define VALID_MMX_REG_MODE(MODE)					\
1064   ((MODE) == V1DImode || (MODE) == DImode				\
1065    || (MODE) == V2SImode || (MODE) == SImode				\
1066    || (MODE) == V4HImode || (MODE) == V8QImode				\
1067    || (MODE) == V4HFmode)
1068 
1069 #define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
1070 
1071 #define VALID_MASK_AVX512BW_MODE(MODE) ((MODE) == SImode || (MODE) == DImode)
1072 
1073 #define VALID_FP_MODE_P(MODE)						\
1074   ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode		\
1075    || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode)
1076 
1077 #define VALID_INT_MODE_P(MODE)						\
1078   ((MODE) == QImode || (MODE) == HImode					\
1079    || (MODE) == SImode || (MODE) == DImode				\
1080    || (MODE) == CQImode || (MODE) == CHImode				\
1081    || (MODE) == CSImode || (MODE) == CDImode				\
1082    || (MODE) == SDmode || (MODE) == DDmode				\
1083    || (MODE) == HFmode || (MODE) == HCmode				\
1084    || (MODE) == V2HImode || (MODE) == V2HFmode				\
1085    || (MODE) == V1SImode || (MODE) == V4QImode || (MODE) == V2QImode	\
1086    || (TARGET_64BIT							\
1087        && ((MODE) == TImode || (MODE) == CTImode			\
1088 	   || (MODE) == TFmode || (MODE) == TCmode			\
1089 	   || (MODE) == V8QImode || (MODE) == V4HImode			\
1090 	   || (MODE) == V2SImode || (MODE) == TDmode)))
1091 
1092 /* Return true for modes passed in SSE registers.  */
1093 #define SSE_REG_MODE_P(MODE)						\
1094   ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode	\
1095    || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode	\
1096    || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode	\
1097    || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode	\
1098    || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode	\
1099    || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode	\
1100    || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode	\
1101    || (MODE) == V16SFmode || (MODE) == V32HFmode || (MODE) == V16HFmode \
1102    || (MODE) == V8HFmode)
1103 
1104 #define X87_FLOAT_MODE_P(MODE)	\
1105   (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
1106 
1107 #define SSE_FLOAT_MODE_P(MODE) \
1108   ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1109 
1110 #define SSE_FLOAT_MODE_SSEMATH_OR_HF_P(MODE)				\
1111   ((SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH)				\
1112    || (TARGET_AVX512FP16 && (MODE) == HFmode))
1113 
1114 #define FMA4_VEC_FLOAT_MODE_P(MODE) \
1115   (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1116 		  || (MODE) == V8SFmode || (MODE) == V4DFmode))
1117 
1118 #define VALID_BCST_MODE_P(MODE)			\
1119   ((MODE) == SFmode || (MODE) == DFmode		\
1120    || (MODE) == SImode || (MODE) == DImode	\
1121    || (MODE) == HFmode)
1122 
1123 /* It is possible to write patterns to move flags; but until someone
1124    does it,  */
1125 #define AVOID_CCMODE_COPIES
1126 
1127 /* Specify the modes required to caller save a given hard regno.
1128    We do this on i386 to prevent flags from being saved at all.
1129 
1130    Kill any attempts to combine saving of modes.  */
1131 
1132 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE)			\
1133   (CC_REGNO_P (REGNO) ? VOIDmode					\
1134    : MMX_REGNO_P (REGNO) ? V8QImode					\
1135    : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode			\
1136    : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), NULL)	\
1137    : (MODE) == HImode && !((GENERAL_REGNO_P (REGNO)			\
1138 			    && TARGET_PARTIAL_REG_STALL)		\
1139 			   || MASK_REGNO_P (REGNO)) ? SImode		\
1140    : (MODE) == QImode && !(ANY_QI_REGNO_P (REGNO)			\
1141 			   || MASK_REGNO_P (REGNO)) ? SImode		\
1142    : (MODE))
1143 
1144 /* Specify the registers used for certain standard purposes.
1145    The values of these macros are register numbers.  */
1146 
1147 /* on the 386 the pc register is %eip, and is not usable as a general
1148    register.  The ordinary mov instructions won't work */
1149 /* #define PC_REGNUM  */
1150 
1151 /* Base register for access to arguments of the function.  */
1152 #define ARG_POINTER_REGNUM ARGP_REG
1153 
1154 /* Register to use for pushing function arguments.  */
1155 #define STACK_POINTER_REGNUM SP_REG
1156 
1157 /* Base register for access to local variables of the function.  */
1158 #define FRAME_POINTER_REGNUM FRAME_REG
1159 #define HARD_FRAME_POINTER_REGNUM BP_REG
1160 
1161 #define FIRST_INT_REG AX_REG
1162 #define LAST_INT_REG  SP_REG
1163 
1164 #define FIRST_QI_REG AX_REG
1165 #define LAST_QI_REG  BX_REG
1166 
1167 /* First & last stack-like regs */
1168 #define FIRST_STACK_REG ST0_REG
1169 #define LAST_STACK_REG  ST7_REG
1170 
1171 #define FIRST_SSE_REG XMM0_REG
1172 #define LAST_SSE_REG  XMM7_REG
1173 
1174 #define FIRST_MMX_REG  MM0_REG
1175 #define LAST_MMX_REG   MM7_REG
1176 
1177 #define FIRST_REX_INT_REG  R8_REG
1178 #define LAST_REX_INT_REG   R15_REG
1179 
1180 #define FIRST_REX_SSE_REG  XMM8_REG
1181 #define LAST_REX_SSE_REG   XMM15_REG
1182 
1183 #define FIRST_EXT_REX_SSE_REG  XMM16_REG
1184 #define LAST_EXT_REX_SSE_REG   XMM31_REG
1185 
1186 #define FIRST_MASK_REG  MASK0_REG
1187 #define LAST_MASK_REG   MASK7_REG
1188 
1189 /* Override this in other tm.h files to cope with various OS lossage
1190    requiring a frame pointer.  */
1191 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1192 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1193 #endif
1194 
1195 /* Define the shadow offset for asan. Other OS's can override in the
1196    respective tm.h files.  */
1197 #ifndef SUBTARGET_SHADOW_OFFSET
1198 #define SUBTARGET_SHADOW_OFFSET	    \
1199   (TARGET_LP64 ? HOST_WIDE_INT_C (0x7fff8000) : HOST_WIDE_INT_1 << 29)
1200 #endif
1201 
1202 /* Make sure we can access arbitrary call frames.  */
1203 #define SETUP_FRAME_ADDRESSES()  ix86_setup_frame_addresses ()
1204 
1205 /* Register to hold the addressing base for position independent
1206    code access to data items.  We don't use PIC pointer for 64bit
1207    mode.  Define the regnum to dummy value to prevent gcc from
1208    pessimizing code dealing with EBX.
1209 
1210    To avoid clobbering a call-saved register unnecessarily, we renumber
1211    the pic register when possible.  The change is visible after the
1212    prologue has been emitted.  */
1213 
1214 #define REAL_PIC_OFFSET_TABLE_REGNUM  (TARGET_64BIT ? R15_REG : BX_REG)
1215 
1216 #define PIC_OFFSET_TABLE_REGNUM						\
1217   (ix86_use_pseudo_pic_reg ()						\
1218    ? (pic_offset_table_rtx						\
1219       ? INVALID_REGNUM							\
1220       : REAL_PIC_OFFSET_TABLE_REGNUM)					\
1221    : INVALID_REGNUM)
1222 
1223 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1224 
1225 /* This is overridden by <cygwin.h>.  */
1226 #define MS_AGGREGATE_RETURN 0
1227 
1228 #define KEEP_AGGREGATE_RETURN_POINTER 0
1229 
1230 /* Define the classes of registers for register constraints in the
1231    machine description.  Also define ranges of constants.
1232 
1233    One of the classes must always be named ALL_REGS and include all hard regs.
1234    If there is more than one class, another class must be named NO_REGS
1235    and contain no registers.
1236 
1237    The name GENERAL_REGS must be the name of a class (or an alias for
1238    another name such as ALL_REGS).  This is the class of registers
1239    that is allowed by "g" or "r" in a register constraint.
1240    Also, registers outside this class are allocated only when
1241    instructions express preferences for them.
1242 
1243    The classes must be numbered in nondecreasing order; that is,
1244    a larger-numbered class must never be contained completely
1245    in a smaller-numbered class.  This is why CLOBBERED_REGS class
1246    is listed early, even though in 64-bit mode it contains more
1247    registers than just %eax, %ecx, %edx.
1248 
1249    For any two classes, it is very desirable that there be another
1250    class that represents their union.
1251 
1252    The flags and fpsr registers are in no class.  */
1253 
1254 enum reg_class
1255 {
1256   NO_REGS,
1257   AREG, DREG, CREG, BREG, SIREG, DIREG,
1258   AD_REGS,			/* %eax/%edx for DImode */
1259   CLOBBERED_REGS,		/* call-clobbered integer registers */
1260   Q_REGS,			/* %eax %ebx %ecx %edx */
1261   NON_Q_REGS,			/* %esi %edi %ebp %esp */
1262   TLS_GOTBASE_REGS,		/* %ebx %ecx %edx %esi %edi %ebp */
1263   INDEX_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp */
1264   LEGACY_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1265   GENERAL_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1266 				   %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
1267   FP_TOP_REG, FP_SECOND_REG,	/* %st(0) %st(1) */
1268   FLOAT_REGS,
1269   SSE_FIRST_REG,
1270   NO_REX_SSE_REGS,
1271   SSE_REGS,
1272   ALL_SSE_REGS,
1273   MMX_REGS,
1274   FLOAT_SSE_REGS,
1275   FLOAT_INT_REGS,
1276   INT_SSE_REGS,
1277   FLOAT_INT_SSE_REGS,
1278   MASK_REGS,
1279   ALL_MASK_REGS,
1280   INT_MASK_REGS,
1281   ALL_REGS,
1282   LIM_REG_CLASSES
1283 };
1284 
1285 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1286 
1287 #define INTEGER_CLASS_P(CLASS) \
1288   reg_class_subset_p ((CLASS), GENERAL_REGS)
1289 #define FLOAT_CLASS_P(CLASS) \
1290   reg_class_subset_p ((CLASS), FLOAT_REGS)
1291 #define SSE_CLASS_P(CLASS) \
1292   reg_class_subset_p ((CLASS), ALL_SSE_REGS)
1293 #define INT_SSE_CLASS_P(CLASS) \
1294   reg_class_subset_p ((CLASS), INT_SSE_REGS)
1295 #define MMX_CLASS_P(CLASS) \
1296   ((CLASS) == MMX_REGS)
1297 #define MASK_CLASS_P(CLASS) \
1298   reg_class_subset_p ((CLASS), ALL_MASK_REGS)
1299 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1300   reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1301 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1302   reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1303 #define MAYBE_SSE_CLASS_P(CLASS) \
1304   reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
1305 #define MAYBE_MMX_CLASS_P(CLASS) \
1306   reg_classes_intersect_p ((CLASS), MMX_REGS)
1307 #define MAYBE_MASK_CLASS_P(CLASS) \
1308   reg_classes_intersect_p ((CLASS), ALL_MASK_REGS)
1309 
1310 #define Q_CLASS_P(CLASS) \
1311   reg_class_subset_p ((CLASS), Q_REGS)
1312 
1313 #define MAYBE_NON_Q_CLASS_P(CLASS) \
1314   reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1315 
1316 /* Give names of register classes as strings for dump file.  */
1317 
1318 #define REG_CLASS_NAMES \
1319 {  "NO_REGS",				\
1320    "AREG", "DREG", "CREG", "BREG",	\
1321    "SIREG", "DIREG",			\
1322    "AD_REGS",				\
1323    "CLOBBERED_REGS",			\
1324    "Q_REGS", "NON_Q_REGS",		\
1325    "TLS_GOTBASE_REGS",			\
1326    "INDEX_REGS",			\
1327    "LEGACY_REGS",			\
1328    "GENERAL_REGS",			\
1329    "FP_TOP_REG", "FP_SECOND_REG",	\
1330    "FLOAT_REGS",			\
1331    "SSE_FIRST_REG",			\
1332    "NO_REX_SSE_REGS",			\
1333    "SSE_REGS",				\
1334    "ALL_SSE_REGS",			\
1335    "MMX_REGS",				\
1336    "FLOAT_SSE_REGS",			\
1337    "FLOAT_INT_REGS",			\
1338    "INT_SSE_REGS",			\
1339    "FLOAT_INT_SSE_REGS",		\
1340    "MASK_REGS",				\
1341    "ALL_MASK_REGS",			\
1342    "INT_MASK_REGS",			\
1343    "ALL_REGS" }
1344 
1345 /* Define which registers fit in which classes.  This is an initializer
1346    for a vector of HARD_REG_SET of length N_REG_CLASSES.
1347 
1348    Note that CLOBBERED_REGS are calculated by
1349    TARGET_CONDITIONAL_REGISTER_USAGE.  */
1350 
1351 #define REG_CLASS_CONTENTS						\
1352 {      { 0x0,        0x0,   0x0 },	/* NO_REGS */			\
1353       { 0x01,        0x0,   0x0 },	/* AREG */			\
1354       { 0x02,        0x0,   0x0 },	/* DREG */			\
1355       { 0x04,        0x0,   0x0 },	/* CREG */			\
1356       { 0x08,        0x0,   0x0 },	/* BREG */			\
1357       { 0x10,        0x0,   0x0 },	/* SIREG */			\
1358       { 0x20,        0x0,   0x0 },	/* DIREG */			\
1359       { 0x03,        0x0,   0x0 },	/* AD_REGS */			\
1360       { 0x07,        0x0,   0x0 },	/* CLOBBERED_REGS */		\
1361       { 0x0f,        0x0,   0x0 },	/* Q_REGS */			\
1362    { 0x900f0,        0x0,   0x0 },	/* NON_Q_REGS */		\
1363       { 0x7e,      0xff0,   0x0 },	/* TLS_GOTBASE_REGS */		\
1364       { 0x7f,      0xff0,   0x0 },	/* INDEX_REGS */		\
1365    { 0x900ff,        0x0,   0x0 },	/* LEGACY_REGS */		\
1366    { 0x900ff,      0xff0,   0x0 },	/* GENERAL_REGS */		\
1367      { 0x100,        0x0,   0x0 },	/* FP_TOP_REG */		\
1368      { 0x200,        0x0,   0x0 },	/* FP_SECOND_REG */		\
1369     { 0xff00,        0x0,   0x0 },	/* FLOAT_REGS */		\
1370   { 0x100000,        0x0,   0x0 },	/* SSE_FIRST_REG */		\
1371  { 0xff00000,        0x0,   0x0 },	/* NO_REX_SSE_REGS */		\
1372  { 0xff00000,    0xff000,   0x0 },	/* SSE_REGS */			\
1373  { 0xff00000, 0xfffff000,   0xf },	/* ALL_SSE_REGS */		\
1374 { 0xf0000000,        0xf,   0x0 },	/* MMX_REGS */			\
1375  { 0xff0ff00, 0xfffff000,   0xf },	/* FLOAT_SSE_REGS */		\
1376  {   0x9ffff,      0xff0,   0x0 },	/* FLOAT_INT_REGS */		\
1377  { 0xff900ff, 0xfffffff0,   0xf },	/* INT_SSE_REGS */		\
1378  { 0xff9ffff, 0xfffffff0,   0xf },	/* FLOAT_INT_SSE_REGS */	\
1379        { 0x0,        0x0, 0xfe0 },	/* MASK_REGS */			\
1380        { 0x0,        0x0, 0xff0 },	/* ALL_MASK_REGS */		\
1381    { 0x900ff,      0xff0, 0xff0 },	/* INT_MASK_REGS */	\
1382 { 0xffffffff, 0xffffffff, 0xfff }	/* ALL_REGS  */			\
1383 }
1384 
1385 /* The same information, inverted:
1386    Return the class number of the smallest class containing
1387    reg number REGNO.  This could be a conditional expression
1388    or could index an array.  */
1389 
1390 #define REGNO_REG_CLASS(REGNO) (regclass_map[(REGNO)])
1391 
1392 /* When this hook returns true for MODE, the compiler allows
1393    registers explicitly used in the rtl to be used as spill registers
1394    but prevents the compiler from extending the lifetime of these
1395    registers.  */
1396 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
1397 
1398 #define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
1399 #define QI_REGNO_P(N) IN_RANGE ((N), FIRST_QI_REG, LAST_QI_REG)
1400 
1401 #define LEGACY_INT_REG_P(X) (REG_P (X) && LEGACY_INT_REGNO_P (REGNO (X)))
1402 #define LEGACY_INT_REGNO_P(N) (IN_RANGE ((N), FIRST_INT_REG, LAST_INT_REG))
1403 
1404 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1405 #define REX_INT_REGNO_P(N) \
1406   IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
1407 
1408 #define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1409 #define GENERAL_REGNO_P(N) \
1410   (LEGACY_INT_REGNO_P (N) || REX_INT_REGNO_P (N))
1411 
1412 #define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1413 #define ANY_QI_REGNO_P(N) \
1414   (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
1415 
1416 #define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1417 #define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1418 
1419 #define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
1420 #define SSE_REGNO_P(N)						\
1421   (LEGACY_SSE_REGNO_P (N)					\
1422    || REX_SSE_REGNO_P (N)					\
1423    || EXT_REX_SSE_REGNO_P (N))
1424 
1425 #define LEGACY_SSE_REGNO_P(N) \
1426   IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG)
1427 
1428 #define REX_SSE_REGNO_P(N) \
1429   IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
1430 
1431 #define EXT_REX_SSE_REG_P(X) (REG_P (X) && EXT_REX_SSE_REGNO_P (REGNO (X)))
1432 
1433 #define EXT_REX_SSE_REGNO_P(N) \
1434   IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1435 
1436 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1437 #define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
1438 
1439 #define MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
1440 #define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
1441 #define MASK_PAIR_REGNO_P(N) ((((N) - FIRST_MASK_REG) & 1) == 0)
1442 
1443 #define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
1444 #define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
1445 
1446 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1447 #define CC_REGNO_P(X) ((X) == FLAGS_REG)
1448 
1449 #define MOD4_SSE_REG_P(X) (REG_P (X) && MOD4_SSE_REGNO_P (REGNO (X)))
1450 #define MOD4_SSE_REGNO_P(N) ((N) == XMM0_REG  \
1451 			     || (N) == XMM4_REG  \
1452 			     || (N) == XMM8_REG  \
1453 			     || (N) == XMM12_REG \
1454 			     || (N) == XMM16_REG \
1455 			     || (N) == XMM20_REG \
1456 			     || (N) == XMM24_REG \
1457 			     || (N) == XMM28_REG)
1458 
1459 /* First floating point reg */
1460 #define FIRST_FLOAT_REG FIRST_STACK_REG
1461 #define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_FLOAT_REG)
1462 
1463 #define GET_SSE_REGNO(N)			\
1464   ((N) < 8 ? FIRST_SSE_REG + (N)		\
1465    : (N) < 16 ? FIRST_REX_SSE_REG + (N) - 8	\
1466    : FIRST_EXT_REX_SSE_REG + (N) - 16)
1467 
1468 /* The class value for index registers, and the one for base regs.  */
1469 
1470 #define INDEX_REG_CLASS INDEX_REGS
1471 #define BASE_REG_CLASS GENERAL_REGS
1472 
1473 /* Stack layout; function entry, exit and calling.  */
1474 
1475 /* Define this if pushing a word on the stack
1476    makes the stack pointer a smaller address.  */
1477 #define STACK_GROWS_DOWNWARD 1
1478 
1479 /* Define this to nonzero if the nominal address of the stack frame
1480    is at the high-address end of the local variables;
1481    that is, each additional local variable allocated
1482    goes at a more negative offset in the frame.  */
1483 #define FRAME_GROWS_DOWNWARD 1
1484 
1485 #define PUSH_ROUNDING(BYTES) ix86_push_rounding (BYTES)
1486 
1487 /* If defined, the maximum amount of space required for outgoing arguments
1488    will be computed and placed into the variable `crtl->outgoing_args_size'.
1489    No space will be pushed onto the stack for each call; instead, the
1490    function prologue should increase the stack frame size by this amount.
1491 
1492    In 32bit mode enabling argument accumulation results in about 5% code size
1493    growth because move instructions are less compact than push.  In 64bit
1494    mode the difference is less drastic but visible.
1495 
1496    FIXME: Unlike earlier implementations, the size of unwind info seems to
1497    actually grow with accumulation.  Is that because accumulated args
1498    unwind info became unnecesarily bloated?
1499 
1500    With the 64-bit MS ABI, we can generate correct code with or without
1501    accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
1502    generated without accumulated args is terrible.
1503 
1504    If stack probes are required, the space used for large function
1505    arguments on the stack must also be probed, so enable
1506    -maccumulate-outgoing-args so this happens in the prologue.
1507 
1508    We must use argument accumulation in interrupt function if stack
1509    may be realigned to avoid DRAP.  */
1510 
1511 #define ACCUMULATE_OUTGOING_ARGS \
1512   ((TARGET_ACCUMULATE_OUTGOING_ARGS \
1513     && optimize_function_for_speed_p (cfun)) \
1514    || (cfun->machine->func_type != TYPE_NORMAL \
1515        && crtl->stack_realign_needed) \
1516    || TARGET_STACK_PROBE \
1517    || TARGET_64BIT_MS_ABI \
1518    || (TARGET_MACHO && crtl->profile))
1519 
1520 /* We want the stack and args grow in opposite directions, even if
1521    targetm.calls.push_argument returns false.  */
1522 #define PUSH_ARGS_REVERSED 1
1523 
1524 /* Offset of first parameter from the argument pointer register value.  */
1525 #define FIRST_PARM_OFFSET(FNDECL) 0
1526 
1527 /* Define this macro if functions should assume that stack space has been
1528    allocated for arguments even when their values are passed in registers.
1529 
1530    The value of this macro is the size, in bytes, of the area reserved for
1531    arguments passed in registers for the function represented by FNDECL.
1532 
1533    This space can be allocated by the caller, or be a part of the
1534    machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1535    which.  */
1536 #define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1537 
1538 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
1539   (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
1540 
1541 /* Define how to find the value returned by a library function
1542    assuming the value has mode MODE.  */
1543 
1544 #define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
1545 
1546 /* Define the size of the result block used for communication between
1547    untyped_call and untyped_return.  The block contains a DImode value
1548    followed by the block used by fnsave and frstor.  */
1549 
1550 #define APPLY_RESULT_SIZE (8+108)
1551 
1552 /* 1 if N is a possible register number for function argument passing.  */
1553 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1554 
1555 /* Define a data type for recording info about an argument list
1556    during the scan of that argument list.  This data type should
1557    hold all necessary information about the function itself
1558    and about the args processed so far, enough to enable macros
1559    such as FUNCTION_ARG to determine where the next arg should go.  */
1560 
1561 typedef struct ix86_args {
1562   int words;			/* # words passed so far */
1563   int nregs;			/* # registers available for passing */
1564   int regno;			/* next available register number */
1565   int fastcall;			/* fastcall or thiscall calling convention
1566 				   is used */
1567   int sse_words;		/* # sse words passed so far */
1568   int sse_nregs;		/* # sse registers available for passing */
1569   int warn_avx512f;		/* True when we want to warn
1570 				   about AVX512F ABI.  */
1571   int warn_avx;			/* True when we want to warn about AVX ABI.  */
1572   int warn_sse;			/* True when we want to warn about SSE ABI.  */
1573   int warn_mmx;			/* True when we want to warn about MMX ABI.  */
1574   int warn_empty;		/* True when we want to warn about empty classes
1575 				   passing ABI change.  */
1576   int sse_regno;		/* next available sse register number */
1577   int mmx_words;		/* # mmx words passed so far */
1578   int mmx_nregs;		/* # mmx registers available for passing */
1579   int mmx_regno;		/* next available mmx register number */
1580   int maybe_vaarg;		/* true for calls to possibly vardic fncts.  */
1581   int caller;			/* true if it is caller.  */
1582   int float_in_sse;		/* Set to 1 or 2 for 32bit targets if
1583 				   SFmode/DFmode arguments should be passed
1584 				   in SSE registers.  Otherwise 0.  */
1585   int stdarg;                   /* Set to 1 if function is stdarg.  */
1586   enum calling_abi call_abi;	/* Set to SYSV_ABI for sysv abi. Otherwise
1587  				   MS_ABI for ms abi.  */
1588   tree decl;			/* Callee decl.  */
1589 } CUMULATIVE_ARGS;
1590 
1591 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1592    for a call to a function whose data type is FNTYPE.
1593    For a library call, FNTYPE is 0.  */
1594 
1595 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1596   init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1597 			(N_NAMED_ARGS) != -1)
1598 
1599 /* Output assembler code to FILE to increment profiler label # LABELNO
1600    for profiling a function entry.  */
1601 
1602 #define FUNCTION_PROFILER(FILE, LABELNO) \
1603   x86_function_profiler ((FILE), (LABELNO))
1604 
1605 #define MCOUNT_NAME "_mcount"
1606 
1607 #define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1608 
1609 #define PROFILE_COUNT_REGISTER "edx"
1610 
1611 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1612    the stack pointer does not matter.  The value is tested only in
1613    functions that have frame pointers.
1614    No definition is equivalent to always zero.  */
1615 /* Note on the 386 it might be more efficient not to define this since
1616    we have to restore it ourselves from the frame pointer, in order to
1617    use pop */
1618 
1619 #define EXIT_IGNORE_STACK 1
1620 
1621 /* Define this macro as a C expression that is nonzero for registers
1622    used by the epilogue or the `return' pattern.  */
1623 
1624 #define EPILOGUE_USES(REGNO) ix86_epilogue_uses (REGNO)
1625 
1626 /* Output assembler code for a block containing the constant parts
1627    of a trampoline, leaving space for the variable parts.  */
1628 
1629 /* On the 386, the trampoline contains two instructions:
1630      mov #STATIC,ecx
1631      jmp FUNCTION
1632    The trampoline is generated entirely at runtime.  The operand of JMP
1633    is the address of FUNCTION relative to the instruction following the
1634    JMP (which is 5 bytes long).  */
1635 
1636 /* Length in units of the trampoline for entering a nested function.  */
1637 
1638 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 28 : 14)
1639 
1640 /* Definitions for register eliminations.
1641 
1642    This is an array of structures.  Each structure initializes one pair
1643    of eliminable registers.  The "from" register number is given first,
1644    followed by "to".  Eliminations of the same "from" register are listed
1645    in order of preference.
1646 
1647    There are two registers that can always be eliminated on the i386.
1648    The frame pointer and the arg pointer can be replaced by either the
1649    hard frame pointer or to the stack pointer, depending upon the
1650    circumstances.  The hard frame pointer is not used before reload and
1651    so it is not eligible for elimination.  */
1652 
1653 #define ELIMINABLE_REGS					\
1654 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1655  { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
1656  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1657  { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}	\
1658 
1659 /* Define the offset between two registers, one to be eliminated, and the other
1660    its replacement, at the start of a routine.  */
1661 
1662 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1663   ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1664 
1665 /* Addressing modes, and classification of registers for them.  */
1666 
1667 /* Macros to check register numbers against specific register classes.  */
1668 
1669 /* These assume that REGNO is a hard or pseudo reg number.
1670    They give nonzero only if REGNO is a hard reg of the suitable class
1671    or a pseudo reg currently allocated to a suitable hard reg.
1672    Since they use reg_renumber, they are safe only once reg_renumber
1673    has been allocated, which happens in reginfo.cc during register
1674    allocation.  */
1675 
1676 #define REGNO_OK_FOR_INDEX_P(REGNO) 					\
1677   ((REGNO) < STACK_POINTER_REGNUM 					\
1678    || REX_INT_REGNO_P (REGNO)						\
1679    || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM		\
1680    || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1681 
1682 #define REGNO_OK_FOR_BASE_P(REGNO) 					\
1683   (GENERAL_REGNO_P (REGNO)						\
1684    || (REGNO) == ARG_POINTER_REGNUM 					\
1685    || (REGNO) == FRAME_POINTER_REGNUM 					\
1686    || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1687 
1688 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1689    and check its validity for a certain class.
1690    We have two alternate definitions for each of them.
1691    The usual definition accepts all pseudo regs; the other rejects
1692    them unless they have been allocated suitable hard regs.
1693    The symbol REG_OK_STRICT causes the latter definition to be used.
1694 
1695    Most source files want to accept pseudo regs in the hope that
1696    they will get allocated to the class that the insn wants them to be in.
1697    Source files for reload pass need to be strict.
1698    After reload, it makes no difference, since pseudo regs have
1699    been eliminated by then.  */
1700 
1701 
1702 /* Non strict versions, pseudos are ok.  */
1703 #define REG_OK_FOR_INDEX_NONSTRICT_P(X)					\
1704   (REGNO (X) < STACK_POINTER_REGNUM					\
1705    || REX_INT_REGNO_P (REGNO (X))					\
1706    || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1707 
1708 #define REG_OK_FOR_BASE_NONSTRICT_P(X)					\
1709   (GENERAL_REGNO_P (REGNO (X))						\
1710    || REGNO (X) == ARG_POINTER_REGNUM					\
1711    || REGNO (X) == FRAME_POINTER_REGNUM 				\
1712    || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1713 
1714 /* Strict versions, hard registers only */
1715 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1716 #define REG_OK_FOR_BASE_STRICT_P(X)  REGNO_OK_FOR_BASE_P (REGNO (X))
1717 
1718 #ifndef REG_OK_STRICT
1719 #define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_NONSTRICT_P (X)
1720 #define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_NONSTRICT_P (X)
1721 
1722 #else
1723 #define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_STRICT_P (X)
1724 #define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_STRICT_P (X)
1725 #endif
1726 
1727 /* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
1728    that is a valid memory address for an instruction.
1729    The MODE argument is the machine mode for the MEM expression
1730    that wants to use this address.
1731 
1732    The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
1733    except for CONSTANT_ADDRESS_P which is usually machine-independent.
1734 
1735    See legitimize_pic_address in i386.cc for details as to what
1736    constitutes a legitimate address when -fpic is used.  */
1737 
1738 #define MAX_REGS_PER_ADDRESS 2
1739 
1740 #define CONSTANT_ADDRESS_P(X)  constant_address_p (X)
1741 
1742 /* If defined, a C expression to determine the base term of address X.
1743    This macro is used in only one place: `find_base_term' in alias.cc.
1744 
1745    It is always safe for this macro to not be defined.  It exists so
1746    that alias analysis can understand machine-dependent addresses.
1747 
1748    The typical use of this macro is to handle addresses containing
1749    a label_ref or symbol_ref within an UNSPEC.  */
1750 
1751 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
1752 
1753 /* Nonzero if the constant value X is a legitimate general operand
1754    when generating PIC code.  It is given that flag_pic is on and
1755    that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
1756 
1757 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1758 
1759 #define STRIP_UNARY(X) (UNARY_P (X) ? XEXP (X, 0) : X)
1760 
1761 #define SYMBOLIC_CONST(X)	\
1762   (GET_CODE (X) == SYMBOL_REF						\
1763    || GET_CODE (X) == LABEL_REF						\
1764    || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1765 
1766 /* Max number of args passed in registers.  If this is more than 3, we will
1767    have problems with ebx (register #4), since it is a caller save register and
1768    is also used as the pic register in ELF.  So for now, don't allow more than
1769    3 registers to be passed in registers.  */
1770 
1771 /* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1772 #define X86_64_REGPARM_MAX 6
1773 #define X86_64_MS_REGPARM_MAX 4
1774 
1775 #define X86_32_REGPARM_MAX 3
1776 
1777 #define REGPARM_MAX							\
1778   (TARGET_64BIT								\
1779    ? (TARGET_64BIT_MS_ABI						\
1780       ? X86_64_MS_REGPARM_MAX						\
1781       : X86_64_REGPARM_MAX)						\
1782    : X86_32_REGPARM_MAX)
1783 
1784 #define X86_64_SSE_REGPARM_MAX 8
1785 #define X86_64_MS_SSE_REGPARM_MAX 4
1786 
1787 #define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
1788 
1789 #define SSE_REGPARM_MAX							\
1790   (TARGET_64BIT								\
1791    ? (TARGET_64BIT_MS_ABI						\
1792       ? X86_64_MS_SSE_REGPARM_MAX					\
1793       : X86_64_SSE_REGPARM_MAX)						\
1794    : X86_32_SSE_REGPARM_MAX)
1795 
1796 #define X86_32_MMX_REGPARM_MAX (TARGET_MMX ? (TARGET_MACHO ? 0 : 3) : 0)
1797 
1798 #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : X86_32_MMX_REGPARM_MAX)
1799 
1800 /* Specify the machine mode that this machine uses
1801    for the index in the tablejump instruction.  */
1802 #define CASE_VECTOR_MODE \
1803  (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
1804 
1805 /* Define this as 1 if `char' should by default be signed; else as 0.  */
1806 #define DEFAULT_SIGNED_CHAR 1
1807 
1808 /* The constant maximum number of bytes that a single instruction can
1809    move quickly between memory and registers or between two memory
1810    locations.  */
1811 #define MAX_MOVE_MAX 64
1812 
1813 /* Max number of bytes we can move from memory to memory in one
1814    reasonably fast instruction, as opposed to MOVE_MAX_PIECES which
1815    is the number of bytes at a time which we can move efficiently.
1816    MOVE_MAX_PIECES defaults to MOVE_MAX.  */
1817 
1818 #define MOVE_MAX \
1819   ((TARGET_AVX512F \
1820     && (ix86_move_max == PVW_AVX512 \
1821 	|| ix86_store_max == PVW_AVX512)) \
1822    ? 64 \
1823    : ((TARGET_AVX \
1824        && (ix86_move_max >= PVW_AVX256 \
1825 	   || ix86_store_max >= PVW_AVX256)) \
1826       ? 32 \
1827       : ((TARGET_SSE2 \
1828 	  && TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
1829 	  && TARGET_SSE_UNALIGNED_STORE_OPTIMAL) \
1830 	 ? 16 : UNITS_PER_WORD)))
1831 
1832 /* STORE_MAX_PIECES is the number of bytes at a time that we can store
1833    efficiently.  Allow 16/32/64 bytes only if inter-unit move is enabled
1834    since vec_duplicate enabled by inter-unit move is used to implement
1835    store_by_pieces of 16/32/64 bytes.  */
1836 #define STORE_MAX_PIECES \
1837   (TARGET_INTER_UNIT_MOVES_TO_VEC \
1838    ? ((TARGET_AVX512F && ix86_store_max == PVW_AVX512) \
1839       ? 64 \
1840       : ((TARGET_AVX \
1841 	  && ix86_store_max >= PVW_AVX256) \
1842 	  ? 32 \
1843 	  : ((TARGET_SSE2 \
1844 	      && TARGET_SSE_UNALIGNED_STORE_OPTIMAL) \
1845 	      ? 16 : UNITS_PER_WORD))) \
1846    : UNITS_PER_WORD)
1847 
1848 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1849    move-instruction pairs, we will do a cpymem or libcall instead.
1850    Increasing the value will always make code faster, but eventually
1851    incurs high cost in increased code size.
1852 
1853    If you don't define this, a reasonable default is used.  */
1854 
1855 #define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
1856 
1857 /* If a clear memory operation would take CLEAR_RATIO or more simple
1858    move-instruction sequences, we will do a clrmem or libcall instead.  */
1859 
1860 #define CLEAR_RATIO(speed) ((speed) ? ix86_cost->clear_ratio : 2)
1861 
1862 /* Define if shifts truncate the shift count which implies one can
1863    omit a sign-extension or zero-extension of a shift count.
1864 
1865    On i386, shifts do truncate the count.  But bit test instructions
1866    take the modulo of the bit offset operand.  */
1867 
1868 /* #define SHIFT_COUNT_TRUNCATED */
1869 
1870 /* A macro to update M and UNSIGNEDP when an object whose type is
1871    TYPE and which has the specified mode and signedness is to be
1872    stored in a register.  This macro is only called when TYPE is a
1873    scalar type.
1874 
1875    On i386 it is sometimes useful to promote HImode and QImode
1876    quantities to SImode.  The choice depends on target type.  */
1877 
1878 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) 		\
1879 do {							\
1880   if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS)	\
1881       || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS))	\
1882     (MODE) = SImode;					\
1883 } while (0)
1884 
1885 /* Specify the machine mode that pointers have.
1886    After generation of rtl, the compiler makes no further distinction
1887    between pointers and any other objects of this machine mode.  */
1888 #define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
1889 
1890 /* Supply a definition of STACK_SAVEAREA_MODE for emit_stack_save.
1891    NONLOCAL needs space to save both shadow stack and stack pointers.
1892 
1893    FIXME: We only need to save and restore stack pointer in ptr_mode.
1894    But expand_builtin_setjmp_setup and expand_builtin_longjmp use Pmode
1895    to save and restore stack pointer.  See
1896    https://gcc.gnu.org/bugzilla/show_bug.cgi?id=84150
1897  */
1898 #define STACK_SAVEAREA_MODE(LEVEL)			\
1899   ((LEVEL) == SAVE_NONLOCAL ? (TARGET_64BIT ? TImode : DImode) : Pmode)
1900 
1901 /* Specify the machine_mode of the size increment
1902    operand of an 'allocate_stack' named pattern.  */
1903 #define STACK_SIZE_MODE Pmode
1904 
1905 /* A C expression whose value is zero if pointers that need to be extended
1906    from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1907    greater then zero if they are zero-extended and less then zero if the
1908    ptr_extend instruction should be used.  */
1909 
1910 #define POINTERS_EXTEND_UNSIGNED 1
1911 
1912 /* A function address in a call instruction
1913    is a byte address (for indexing purposes)
1914    so give the MEM rtx a byte's mode.  */
1915 #define FUNCTION_MODE QImode
1916 
1917 
1918 /* A C expression for the cost of a branch instruction.  A value of 1
1919    is the default; other values are interpreted relative to that.  */
1920 
1921 #define BRANCH_COST(speed_p, predictable_p) \
1922   (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
1923 
1924 /* An integer expression for the size in bits of the largest integer machine
1925    mode that should actually be used.  We allow pairs of registers.  */
1926 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1927 
1928 /* Define this macro as a C expression which is nonzero if accessing
1929    less than a word of memory (i.e. a `char' or a `short') is no
1930    faster than accessing a word of memory, i.e., if such access
1931    require more than one instruction or if there is no difference in
1932    cost between byte and (aligned) word loads.
1933 
1934    When this macro is not defined, the compiler will access a field by
1935    finding the smallest containing object; when it is defined, a
1936    fullword load will be used if alignment permits.  Unless bytes
1937    accesses are faster than word accesses, using word accesses is
1938    preferable since it may eliminate subsequent memory access if
1939    subsequent accesses occur to other fields in the same word of the
1940    structure, but to different bytes.  */
1941 
1942 #define SLOW_BYTE_ACCESS 0
1943 
1944 /* Nonzero if access to memory by shorts is slow and undesirable.  */
1945 #define SLOW_SHORT_ACCESS 0
1946 
1947 /* Define this macro if it is as good or better to call a constant
1948    function address than to call an address kept in a register.
1949 
1950    Desirable on the 386 because a CALL with a constant address is
1951    faster than one with a register address.  */
1952 
1953 #define NO_FUNCTION_CSE 1
1954 
1955 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1956    return the mode to be used for the comparison.
1957 
1958    For floating-point equality comparisons, CCFPEQmode should be used.
1959    VOIDmode should be used in all other cases.
1960 
1961    For integer comparisons against zero, reduce to CCNOmode or CCZmode if
1962    possible, to allow for more combinations.  */
1963 
1964 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
1965 
1966 /* Return nonzero if MODE implies a floating point inequality can be
1967    reversed.  */
1968 
1969 #define REVERSIBLE_CC_MODE(MODE) 1
1970 
1971 /* A C expression whose value is reversed condition code of the CODE for
1972    comparison done in CC_MODE mode.  */
1973 #define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
1974 
1975 
1976 /* Control the assembler format that we output, to the extent
1977    this does not vary between assemblers.  */
1978 
1979 /* How to refer to registers in assembler output.
1980    This sequence is indexed by compiler's hard-register-number (see above).  */
1981 
1982 /* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
1983    For non floating point regs, the following are the HImode names.
1984 
1985    For float regs, the stack top is sometimes referred to as "%st(0)"
1986    instead of just "%st".  TARGET_PRINT_OPERAND handles this with the
1987    "y" code.  */
1988 
1989 #define HI_REGISTER_NAMES						\
1990 {"ax","dx","cx","bx","si","di","bp","sp",				\
1991  "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)",		\
1992  "argp", "flags", "fpsr", "frame",					\
1993  "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7",		\
1994  "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7",		\
1995  "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",			\
1996  "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",	\
1997  "xmm16", "xmm17", "xmm18", "xmm19",					\
1998  "xmm20", "xmm21", "xmm22", "xmm23",					\
1999  "xmm24", "xmm25", "xmm26", "xmm27",					\
2000  "xmm28", "xmm29", "xmm30", "xmm31",					\
2001  "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7" }
2002 
2003 #define REGISTER_NAMES HI_REGISTER_NAMES
2004 
2005 #define QI_REGISTER_NAMES \
2006 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl"}
2007 
2008 #define QI_HIGH_REGISTER_NAMES \
2009 {"ah", "dh", "ch", "bh"}
2010 
2011 /* Table of additional register names to use in user input.  */
2012 
2013 #define ADDITIONAL_REGISTER_NAMES						\
2014 {										\
2015   { "eax", AX_REG }, { "edx", DX_REG }, { "ecx", CX_REG }, { "ebx", BX_REG },	\
2016   { "esi", SI_REG }, { "edi", DI_REG }, { "ebp", BP_REG }, { "esp", SP_REG },	\
2017   { "rax", AX_REG }, { "rdx", DX_REG }, { "rcx", CX_REG }, { "rbx", BX_REG },	\
2018   { "rsi", SI_REG }, { "rdi", DI_REG }, { "rbp", BP_REG }, { "rsp", SP_REG },	\
2019   { "al", AX_REG }, { "dl", DX_REG }, { "cl", CX_REG }, { "bl", BX_REG },	\
2020   { "sil", SI_REG }, { "dil", DI_REG }, { "bpl", BP_REG }, { "spl", SP_REG },	\
2021   { "ah", AX_REG }, { "dh", DX_REG }, { "ch", CX_REG }, { "bh", BX_REG },	\
2022   { "ymm0", XMM0_REG }, { "ymm1", XMM1_REG }, { "ymm2", XMM2_REG }, { "ymm3", XMM3_REG }, \
2023   { "ymm4", XMM4_REG }, { "ymm5", XMM5_REG }, { "ymm6", XMM6_REG }, { "ymm7", XMM7_REG }, \
2024   { "ymm8", XMM8_REG }, { "ymm9", XMM9_REG }, { "ymm10", XMM10_REG }, { "ymm11", XMM11_REG }, \
2025   { "ymm12", XMM12_REG }, { "ymm13", XMM13_REG }, { "ymm14", XMM14_REG }, { "ymm15", XMM15_REG }, \
2026   { "ymm16", XMM16_REG }, { "ymm17", XMM17_REG }, { "ymm18", XMM18_REG }, { "ymm19", XMM19_REG }, \
2027   { "ymm20", XMM20_REG }, { "ymm21", XMM21_REG }, { "ymm22", XMM22_REG }, { "ymm23", XMM23_REG }, \
2028   { "ymm24", XMM24_REG }, { "ymm25", XMM25_REG }, { "ymm26", XMM26_REG }, { "ymm27", XMM27_REG }, \
2029   { "ymm28", XMM28_REG }, { "ymm29", XMM29_REG }, { "ymm30", XMM30_REG }, { "ymm31", XMM31_REG }, \
2030   { "zmm0", XMM0_REG }, { "zmm1", XMM1_REG }, { "zmm2", XMM2_REG }, { "zmm3", XMM3_REG }, \
2031   { "zmm4", XMM4_REG }, { "zmm5", XMM5_REG }, { "zmm6", XMM6_REG }, { "zmm7", XMM7_REG }, \
2032   { "zmm8", XMM8_REG }, { "zmm9", XMM9_REG }, { "zmm10", XMM10_REG }, { "zmm11", XMM11_REG }, \
2033   { "zmm12", XMM12_REG }, { "zmm13", XMM13_REG }, { "zmm14", XMM14_REG }, { "zmm15", XMM15_REG }, \
2034   { "zmm16", XMM16_REG }, { "zmm17", XMM17_REG }, { "zmm18", XMM18_REG }, { "zmm19", XMM19_REG }, \
2035   { "zmm20", XMM20_REG }, { "zmm21", XMM21_REG }, { "zmm22", XMM22_REG }, { "zmm23", XMM23_REG }, \
2036   { "zmm24", XMM24_REG }, { "zmm25", XMM25_REG }, { "zmm26", XMM26_REG }, { "zmm27", XMM27_REG }, \
2037   { "zmm28", XMM28_REG }, { "zmm29", XMM29_REG }, { "zmm30", XMM30_REG }, { "zmm31", XMM31_REG }  \
2038 }
2039 
2040 /* How to renumber registers for dbx and gdb.  */
2041 
2042 #define DBX_REGISTER_NUMBER(N) \
2043   (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2044 
2045 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2046 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2047 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2048 
2049 /* Before the prologue, RA is at 0(%esp).  */
2050 #define INCOMING_RETURN_ADDR_RTX \
2051   gen_rtx_MEM (Pmode, stack_pointer_rtx)
2052 
2053 /* After the prologue, RA is at -4(AP) in the current frame.  */
2054 #define RETURN_ADDR_RTX(COUNT, FRAME)					\
2055   ((COUNT) == 0								\
2056    ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx,		\
2057 					-UNITS_PER_WORD))		\
2058    : gen_rtx_MEM (Pmode, plus_constant (Pmode, (FRAME), UNITS_PER_WORD)))
2059 
2060 /* PC is dbx register 8; let's use that column for RA.  */
2061 #define DWARF_FRAME_RETURN_COLUMN 	(TARGET_64BIT ? 16 : 8)
2062 
2063 /* Before the prologue, there are return address and error code for
2064    exception handler on the top of the frame.  */
2065 #define INCOMING_FRAME_SP_OFFSET \
2066   (cfun->machine->func_type == TYPE_EXCEPTION \
2067    ? 2 * UNITS_PER_WORD : UNITS_PER_WORD)
2068 
2069 /* The value of INCOMING_FRAME_SP_OFFSET the assembler assumes in
2070    .cfi_startproc.  */
2071 #define DEFAULT_INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2072 
2073 /* Describe how we implement __builtin_eh_return.  */
2074 #define EH_RETURN_DATA_REGNO(N)	((N) <= DX_REG ? (N) : INVALID_REGNUM)
2075 #define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, CX_REG)
2076 
2077 
2078 /* Select a format to encode pointers in exception handling data.  CODE
2079    is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
2080    true if the symbol may be affected by dynamic relocations.
2081 
2082    ??? All x86 object file formats are capable of representing this.
2083    After all, the relocation needed is the same as for the call insn.
2084    Whether or not a particular assembler allows us to enter such, I
2085    guess we'll have to see.  */
2086 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL)       		\
2087   asm_preferred_eh_data_format ((CODE), (GLOBAL))
2088 
2089 /* These are a couple of extensions to the formats accepted
2090    by asm_fprintf:
2091      %z prints out opcode suffix for word-mode instruction
2092      %r prints out word-mode name for reg_names[arg]  */
2093 #define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P)		\
2094   case 'z':						\
2095     fputc (TARGET_64BIT ? 'q' : 'l', (FILE));		\
2096     break;						\
2097 							\
2098   case 'r':						\
2099     {							\
2100       unsigned int regno = va_arg ((ARGS), int);	\
2101       if (LEGACY_INT_REGNO_P (regno))			\
2102 	fputc (TARGET_64BIT ? 'r' : 'e', (FILE));	\
2103       fputs (reg_names[regno], (FILE));			\
2104       break;						\
2105     }
2106 
2107 /* This is how to output an insn to push a register on the stack.  */
2108 
2109 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO)		\
2110   asm_fprintf ((FILE), "\tpush%z\t%%%r\n", (REGNO))
2111 
2112 /* This is how to output an insn to pop a register from the stack.  */
2113 
2114 #define ASM_OUTPUT_REG_POP(FILE, REGNO)  \
2115   asm_fprintf ((FILE), "\tpop%z\t%%%r\n", (REGNO))
2116 
2117 /* This is how to output an element of a case-vector that is absolute.  */
2118 
2119 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
2120   ix86_output_addr_vec_elt ((FILE), (VALUE))
2121 
2122 /* This is how to output an element of a case-vector that is relative.  */
2123 
2124 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2125   ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2126 
2127 /* When we see %v, we will print the 'v' prefix if TARGET_AVX is true.  */
2128 
2129 #define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR)	\
2130 {						\
2131   if ((PTR)[0] == '%' && (PTR)[1] == 'v')	\
2132     (PTR) += TARGET_AVX ? 1 : 2;		\
2133 }
2134 
2135 /* A C statement or statements which output an assembler instruction
2136    opcode to the stdio stream STREAM.  The macro-operand PTR is a
2137    variable of type `char *' which points to the opcode name in
2138    its "internal" form--the form that is written in the machine
2139    description.  */
2140 
2141 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2142   ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2143 
2144 /* A C statement to output to the stdio stream FILE an assembler
2145    command to pad the location counter to a multiple of 1<<LOG
2146    bytes if it is within MAX_SKIP bytes.  */
2147 
2148 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2149 # define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE,LOG,MAX_SKIP)			\
2150   do {									\
2151     if ((LOG) != 0) {							\
2152       if ((MAX_SKIP) == 0 || (MAX_SKIP) >= (1 << (LOG)) - 1)		\
2153 	fprintf ((FILE), "\t.p2align %d\n", (LOG));			\
2154       else								\
2155 	fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP));	\
2156     }									\
2157   } while (0)
2158 #endif
2159 
2160 /* Write the extra assembler code needed to declare a function
2161    properly.  */
2162 
2163 #undef ASM_OUTPUT_FUNCTION_LABEL
2164 #define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2165   ix86_asm_output_function_label ((FILE), (NAME), (DECL))
2166 
2167 /* A C statement (sans semicolon) to output a reference to SYMBOL_REF SYM.
2168    If not defined, assemble_name will be used to output the name of the
2169    symbol.  This macro may be used to modify the way a symbol is referenced
2170    depending on information encoded by TARGET_ENCODE_SECTION_INFO.  */
2171 
2172 #ifndef ASM_OUTPUT_SYMBOL_REF
2173 #define ASM_OUTPUT_SYMBOL_REF(FILE, SYM) \
2174   do {							\
2175     const char *name					\
2176       = assemble_name_resolve (XSTR (x, 0));		\
2177     /* In -masm=att wrap identifiers that start with $	\
2178        into parens.  */					\
2179     if (ASSEMBLER_DIALECT == ASM_ATT			\
2180 	&& name[0] == '$'				\
2181 	&& user_label_prefix[0] == '\0')		\
2182       {							\
2183 	fputc ('(', (FILE));				\
2184 	assemble_name_raw ((FILE), name);		\
2185 	fputc (')', (FILE));				\
2186       }							\
2187     else						\
2188       assemble_name_raw ((FILE), name);			\
2189   } while (0)
2190 #endif
2191 
2192 /* Under some conditions we need jump tables in the text section,
2193    because the assembler cannot handle label differences between
2194    sections.  */
2195 
2196 #define JUMP_TABLES_IN_TEXT_SECTION \
2197   (flag_pic && !(TARGET_64BIT || HAVE_AS_GOTOFF_IN_DATA))
2198 
2199 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2200    and switch back.  For x86 we do this only to save a few bytes that
2201    would otherwise be unused in the text section.  */
2202 #define CRT_MKSTR2(VAL) #VAL
2203 #define CRT_MKSTR(x) CRT_MKSTR2(x)
2204 
2205 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)		\
2206    asm (SECTION_OP "\n\t"					\
2207 	"call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n"	\
2208 	TEXT_SECTION_ASM_OP);
2209 
2210 /* Default threshold for putting data in large sections
2211    with x86-64 medium memory model */
2212 #define DEFAULT_LARGE_SECTION_THRESHOLD 65536
2213 
2214 /* Which processor to tune code generation for.  These must be in sync
2215    with processor_target_table in i386.cc.  */
2216 
2217 enum processor_type
2218 {
2219   PROCESSOR_GENERIC = 0,
2220   PROCESSOR_I386,			/* 80386 */
2221   PROCESSOR_I486,			/* 80486DX, 80486SX, 80486DX[24] */
2222   PROCESSOR_PENTIUM,
2223   PROCESSOR_LAKEMONT,
2224   PROCESSOR_PENTIUMPRO,
2225   PROCESSOR_PENTIUM4,
2226   PROCESSOR_NOCONA,
2227   PROCESSOR_CORE2,
2228   PROCESSOR_NEHALEM,
2229   PROCESSOR_SANDYBRIDGE,
2230   PROCESSOR_HASWELL,
2231   PROCESSOR_BONNELL,
2232   PROCESSOR_SILVERMONT,
2233   PROCESSOR_GOLDMONT,
2234   PROCESSOR_GOLDMONT_PLUS,
2235   PROCESSOR_TREMONT,
2236   PROCESSOR_KNL,
2237   PROCESSOR_KNM,
2238   PROCESSOR_SKYLAKE,
2239   PROCESSOR_SKYLAKE_AVX512,
2240   PROCESSOR_CANNONLAKE,
2241   PROCESSOR_ICELAKE_CLIENT,
2242   PROCESSOR_ICELAKE_SERVER,
2243   PROCESSOR_CASCADELAKE,
2244   PROCESSOR_TIGERLAKE,
2245   PROCESSOR_COOPERLAKE,
2246   PROCESSOR_SAPPHIRERAPIDS,
2247   PROCESSOR_ALDERLAKE,
2248   PROCESSOR_ROCKETLAKE,
2249   PROCESSOR_INTEL,
2250   PROCESSOR_GEODE,
2251   PROCESSOR_K6,
2252   PROCESSOR_ATHLON,
2253   PROCESSOR_K8,
2254   PROCESSOR_AMDFAM10,
2255   PROCESSOR_BDVER1,
2256   PROCESSOR_BDVER2,
2257   PROCESSOR_BDVER3,
2258   PROCESSOR_BDVER4,
2259   PROCESSOR_BTVER1,
2260   PROCESSOR_BTVER2,
2261   PROCESSOR_ZNVER1,
2262   PROCESSOR_ZNVER2,
2263   PROCESSOR_ZNVER3,
2264   PROCESSOR_ZNVER4,
2265   PROCESSOR_max
2266 };
2267 
2268 #if !defined(IN_LIBGCC2) && !defined(IN_TARGET_LIBS) && !defined(IN_RTS)
2269 extern const char *const processor_names[];
2270 
2271 #include "wide-int-bitmask.h"
2272 
2273 enum pta_flag
2274 {
2275 #define DEF_PTA(NAME) _ ## NAME,
2276 #include "i386-isa.def"
2277 #undef DEF_PTA
2278   END_PTA
2279 };
2280 
2281 /* wide_int_bitmask can handle only 128 flags.  */
2282 STATIC_ASSERT (END_PTA <= 128);
2283 
2284 #define WIDE_INT_BITMASK_FROM_NTH(N) (N < 64 ? wide_int_bitmask (0, 1ULL << N) \
2285 				      : wide_int_bitmask (1ULL << (N - 64), 0))
2286 
2287 #define DEF_PTA(NAME) constexpr wide_int_bitmask PTA_ ## NAME \
2288   = WIDE_INT_BITMASK_FROM_NTH ((pta_flag) _ ## NAME);
2289 #include "i386-isa.def"
2290 #undef DEF_PTA
2291 
2292 constexpr wide_int_bitmask PTA_X86_64_BASELINE = PTA_64BIT | PTA_MMX | PTA_SSE
2293   | PTA_SSE2 | PTA_NO_SAHF | PTA_FXSR;
2294 constexpr wide_int_bitmask PTA_X86_64_V2 = (PTA_X86_64_BASELINE
2295 					    & (~PTA_NO_SAHF))
2296   | PTA_CX16 | PTA_POPCNT | PTA_SSE3 | PTA_SSE4_1 | PTA_SSE4_2 | PTA_SSSE3;
2297 constexpr wide_int_bitmask PTA_X86_64_V3 = PTA_X86_64_V2
2298   | PTA_AVX | PTA_AVX2 | PTA_BMI | PTA_BMI2 | PTA_F16C | PTA_FMA | PTA_LZCNT
2299   | PTA_MOVBE | PTA_XSAVE;
2300 constexpr wide_int_bitmask PTA_X86_64_V4 = PTA_X86_64_V3
2301   | PTA_AVX512F | PTA_AVX512BW | PTA_AVX512CD | PTA_AVX512DQ | PTA_AVX512VL;
2302 
2303 constexpr wide_int_bitmask PTA_CORE2 = PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2
2304   | PTA_SSE3 | PTA_SSSE3 | PTA_CX16 | PTA_FXSR;
2305 constexpr wide_int_bitmask PTA_NEHALEM = PTA_CORE2 | PTA_SSE4_1 | PTA_SSE4_2
2306   | PTA_POPCNT;
2307 constexpr wide_int_bitmask PTA_WESTMERE = PTA_NEHALEM | PTA_PCLMUL;
2308 constexpr wide_int_bitmask PTA_SANDYBRIDGE = PTA_WESTMERE | PTA_AVX | PTA_XSAVE
2309   | PTA_XSAVEOPT;
2310 constexpr wide_int_bitmask PTA_IVYBRIDGE = PTA_SANDYBRIDGE | PTA_FSGSBASE
2311   | PTA_RDRND | PTA_F16C;
2312 constexpr wide_int_bitmask PTA_HASWELL = PTA_IVYBRIDGE | PTA_AVX2 | PTA_BMI
2313   | PTA_BMI2 | PTA_LZCNT | PTA_FMA | PTA_MOVBE | PTA_HLE;
2314 constexpr wide_int_bitmask PTA_BROADWELL = PTA_HASWELL | PTA_ADX | PTA_RDSEED
2315   | PTA_PRFCHW;
2316 constexpr wide_int_bitmask PTA_SKYLAKE = PTA_BROADWELL | PTA_AES
2317   | PTA_CLFLUSHOPT | PTA_XSAVEC | PTA_XSAVES | PTA_SGX;
2318 constexpr wide_int_bitmask PTA_SKYLAKE_AVX512 = PTA_SKYLAKE | PTA_AVX512F
2319   | PTA_AVX512CD | PTA_AVX512VL | PTA_AVX512BW | PTA_AVX512DQ | PTA_PKU
2320   | PTA_CLWB;
2321 constexpr wide_int_bitmask PTA_CASCADELAKE = PTA_SKYLAKE_AVX512
2322   | PTA_AVX512VNNI;
2323 constexpr wide_int_bitmask PTA_COOPERLAKE = PTA_CASCADELAKE | PTA_AVX512BF16;
2324 constexpr wide_int_bitmask PTA_CANNONLAKE = PTA_SKYLAKE | PTA_AVX512F
2325   | PTA_AVX512CD | PTA_AVX512VL | PTA_AVX512BW | PTA_AVX512DQ | PTA_PKU
2326   | PTA_AVX512VBMI | PTA_AVX512IFMA | PTA_SHA;
2327 constexpr wide_int_bitmask PTA_ICELAKE_CLIENT = PTA_CANNONLAKE | PTA_AVX512VNNI
2328   | PTA_GFNI | PTA_VAES | PTA_AVX512VBMI2 | PTA_VPCLMULQDQ | PTA_AVX512BITALG
2329   | PTA_RDPID | PTA_AVX512VPOPCNTDQ;
2330 constexpr wide_int_bitmask PTA_ROCKETLAKE = PTA_ICELAKE_CLIENT & ~PTA_SGX;
2331 constexpr wide_int_bitmask PTA_ICELAKE_SERVER = PTA_ICELAKE_CLIENT
2332   | PTA_PCONFIG | PTA_WBNOINVD | PTA_CLWB;
2333 constexpr wide_int_bitmask PTA_TIGERLAKE = PTA_ICELAKE_CLIENT | PTA_MOVDIRI
2334   | PTA_MOVDIR64B | PTA_CLWB | PTA_AVX512VP2INTERSECT | PTA_KL | PTA_WIDEKL;
2335 constexpr wide_int_bitmask PTA_SAPPHIRERAPIDS = PTA_ICELAKE_SERVER | PTA_MOVDIRI
2336   | PTA_MOVDIR64B | PTA_ENQCMD | PTA_CLDEMOTE | PTA_PTWRITE | PTA_WAITPKG
2337   | PTA_SERIALIZE | PTA_TSXLDTRK | PTA_AMX_TILE | PTA_AMX_INT8 | PTA_AMX_BF16
2338   | PTA_UINTR | PTA_AVXVNNI | PTA_AVX512FP16 | PTA_AVX512BF16;
2339 constexpr wide_int_bitmask PTA_KNL = PTA_BROADWELL | PTA_AVX512PF
2340   | PTA_AVX512ER | PTA_AVX512F | PTA_AVX512CD | PTA_PREFETCHWT1;
2341 constexpr wide_int_bitmask PTA_BONNELL = PTA_CORE2 | PTA_MOVBE;
2342 constexpr wide_int_bitmask PTA_SILVERMONT = PTA_WESTMERE | PTA_MOVBE
2343   | PTA_RDRND | PTA_PRFCHW;
2344 constexpr wide_int_bitmask PTA_GOLDMONT = PTA_SILVERMONT | PTA_AES | PTA_SHA
2345   | PTA_XSAVE | PTA_RDSEED | PTA_XSAVEC | PTA_XSAVES | PTA_CLFLUSHOPT
2346   | PTA_XSAVEOPT | PTA_FSGSBASE;
2347 constexpr wide_int_bitmask PTA_GOLDMONT_PLUS = PTA_GOLDMONT | PTA_RDPID
2348   | PTA_SGX | PTA_PTWRITE;
2349 constexpr wide_int_bitmask PTA_TREMONT = PTA_GOLDMONT_PLUS | PTA_CLWB
2350   | PTA_GFNI | PTA_MOVDIRI | PTA_MOVDIR64B | PTA_CLDEMOTE | PTA_WAITPKG;
2351 constexpr wide_int_bitmask PTA_ALDERLAKE = PTA_TREMONT | PTA_ADX | PTA_AVX
2352   | PTA_AVX2 | PTA_BMI | PTA_BMI2 | PTA_F16C | PTA_FMA | PTA_LZCNT
2353   | PTA_PCONFIG | PTA_PKU | PTA_VAES | PTA_VPCLMULQDQ | PTA_SERIALIZE
2354   | PTA_HRESET | PTA_KL | PTA_WIDEKL | PTA_AVXVNNI;
2355 constexpr wide_int_bitmask PTA_KNM = PTA_KNL | PTA_AVX5124VNNIW
2356   | PTA_AVX5124FMAPS | PTA_AVX512VPOPCNTDQ;
2357 constexpr wide_int_bitmask PTA_ZNVER1 = PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2
2358   | PTA_SSE3 | PTA_SSE4A | PTA_CX16 | PTA_ABM | PTA_SSSE3 | PTA_SSE4_1
2359   | PTA_SSE4_2 | PTA_AES | PTA_PCLMUL | PTA_AVX | PTA_AVX2 | PTA_BMI | PTA_BMI2
2360   | PTA_F16C | PTA_FMA | PTA_PRFCHW | PTA_FXSR | PTA_XSAVE | PTA_XSAVEOPT
2361   | PTA_FSGSBASE | PTA_RDRND | PTA_MOVBE | PTA_MWAITX | PTA_ADX | PTA_RDSEED
2362   | PTA_CLZERO | PTA_CLFLUSHOPT | PTA_XSAVEC | PTA_XSAVES | PTA_SHA | PTA_LZCNT
2363   | PTA_POPCNT;
2364 constexpr wide_int_bitmask PTA_ZNVER2 = PTA_ZNVER1 | PTA_CLWB | PTA_RDPID
2365   | PTA_WBNOINVD;
2366 constexpr wide_int_bitmask PTA_ZNVER3 = PTA_ZNVER2 | PTA_VAES | PTA_VPCLMULQDQ
2367   | PTA_PKU;
2368 constexpr wide_int_bitmask PTA_ZNVER4 = PTA_ZNVER3 | PTA_AVX512F | PTA_AVX512DQ
2369   | PTA_AVX512IFMA | PTA_AVX512CD | PTA_AVX512BW | PTA_AVX512VL
2370   | PTA_AVX512BF16 | PTA_AVX512VBMI | PTA_AVX512VBMI2 | PTA_GFNI
2371   | PTA_AVX512VNNI | PTA_AVX512BITALG | PTA_AVX512VPOPCNTDQ;
2372 
2373 #ifndef GENERATOR_FILE
2374 
2375 #include "insn-attr-common.h"
2376 
2377 #include "common/config/i386/i386-cpuinfo.h"
2378 
2379 class pta
2380 {
2381 public:
2382   const char *const name;		/* processor name or nickname.  */
2383   const enum processor_type processor;
2384   const enum attr_cpu schedule;
2385   const wide_int_bitmask flags;
2386   const int model;
2387   const enum feature_priority priority;
2388 };
2389 
2390 extern const pta processor_alias_table[];
2391 extern unsigned int const pta_size;
2392 extern unsigned int const num_arch_names;
2393 #endif
2394 
2395 #endif
2396 
2397 extern enum processor_type ix86_tune;
2398 extern enum processor_type ix86_arch;
2399 
2400 /* Size of the RED_ZONE area.  */
2401 #define RED_ZONE_SIZE 128
2402 /* Reserved area of the red zone for temporaries.  */
2403 #define RED_ZONE_RESERVE 8
2404 
2405 extern unsigned int ix86_preferred_stack_boundary;
2406 extern unsigned int ix86_incoming_stack_boundary;
2407 
2408 /* Smallest class containing REGNO.  */
2409 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2410 
2411 enum ix86_fpcmp_strategy {
2412   IX86_FPCMP_SAHF,
2413   IX86_FPCMP_COMI,
2414   IX86_FPCMP_ARITH
2415 };
2416 
2417 /* To properly truncate FP values into integers, we need to set i387 control
2418    word.  We can't emit proper mode switching code before reload, as spills
2419    generated by reload may truncate values incorrectly, but we still can avoid
2420    redundant computation of new control word by the mode switching pass.
2421    The fldcw instructions are still emitted redundantly, but this is probably
2422    not going to be noticeable problem, as most CPUs do have fast path for
2423    the sequence.
2424 
2425    The machinery is to emit simple truncation instructions and split them
2426    before reload to instructions having USEs of two memory locations that
2427    are filled by this code to old and new control word.
2428 
2429    Post-reload pass may be later used to eliminate the redundant fildcw if
2430    needed.  */
2431 
2432 enum ix86_stack_slot
2433 {
2434   SLOT_TEMP = 0,
2435   SLOT_CW_STORED,
2436   SLOT_CW_ROUNDEVEN,
2437   SLOT_CW_TRUNC,
2438   SLOT_CW_FLOOR,
2439   SLOT_CW_CEIL,
2440   SLOT_STV_TEMP,
2441   SLOT_FLOATxFDI_387,
2442   MAX_386_STACK_LOCALS
2443 };
2444 
2445 enum ix86_entity
2446 {
2447   X86_DIRFLAG = 0,
2448   AVX_U128,
2449   I387_ROUNDEVEN,
2450   I387_TRUNC,
2451   I387_FLOOR,
2452   I387_CEIL,
2453   MAX_386_ENTITIES
2454 };
2455 
2456 enum x86_dirflag_state
2457 {
2458   X86_DIRFLAG_RESET,
2459   X86_DIRFLAG_ANY
2460 };
2461 
2462 enum avx_u128_state
2463 {
2464   AVX_U128_CLEAN,
2465   AVX_U128_DIRTY,
2466   AVX_U128_ANY
2467 };
2468 
2469 /* Define this macro if the port needs extra instructions inserted
2470    for mode switching in an optimizing compilation.  */
2471 
2472 #define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2473    ix86_optimize_mode_switching[(ENTITY)]
2474 
2475 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2476    initializer for an array of integers.  Each initializer element N
2477    refers to an entity that needs mode switching, and specifies the
2478    number of different modes that might need to be set for this
2479    entity.  The position of the initializer in the initializer -
2480    starting counting at zero - determines the integer that is used to
2481    refer to the mode-switched entity in question.  */
2482 
2483 #define NUM_MODES_FOR_MODE_SWITCHING			\
2484   { X86_DIRFLAG_ANY, AVX_U128_ANY,			\
2485     I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY  }
2486 
2487 
2488 /* Avoid renaming of stack registers, as doing so in combination with
2489    scheduling just increases amount of live registers at time and in
2490    the turn amount of fxch instructions needed.
2491 
2492    ??? Maybe Pentium chips benefits from renaming, someone can try....
2493 
2494    Don't rename evex to non-evex sse registers.  */
2495 
2496 #define HARD_REGNO_RENAME_OK(SRC, TARGET)				\
2497   (!STACK_REGNO_P (SRC)							\
2498    && EXT_REX_SSE_REGNO_P (SRC) == EXT_REX_SSE_REGNO_P (TARGET))
2499 
2500 
2501 #define FASTCALL_PREFIX '@'
2502 
2503 #ifndef USED_FOR_TARGET
2504 /* Structure describing stack frame layout.
2505    Stack grows downward:
2506 
2507    [arguments]
2508 					<- ARG_POINTER
2509    saved pc
2510 
2511    saved static chain			if ix86_static_chain_on_stack
2512 
2513    saved frame pointer			if frame_pointer_needed
2514 					<- HARD_FRAME_POINTER
2515    [saved regs]
2516 					<- reg_save_offset
2517    [padding0]
2518 					<- stack_realign_offset
2519    [saved SSE regs]
2520 	OR
2521    [stub-saved registers for ms x64 --> sysv clobbers
2522 			<- Start of out-of-line, stub-saved/restored regs
2523 			   (see libgcc/config/i386/(sav|res)ms64*.S)
2524      [XMM6-15]
2525      [RSI]
2526      [RDI]
2527      [?RBX]		only if RBX is clobbered
2528      [?RBP]		only if RBP and RBX are clobbered
2529      [?R12]		only if R12 and all previous regs are clobbered
2530      [?R13]		only if R13 and all previous regs are clobbered
2531      [?R14]		only if R14 and all previous regs are clobbered
2532      [?R15]		only if R15 and all previous regs are clobbered
2533 			<- end of stub-saved/restored regs
2534      [padding1]
2535    ]
2536 					<- sse_reg_save_offset
2537    [padding2]
2538 		       |		<- FRAME_POINTER
2539    [va_arg registers]  |
2540 		       |
2541    [frame]	       |
2542 		       |
2543    [padding2]	       | = to_allocate
2544 					<- STACK_POINTER
2545   */
2546 struct GTY(()) ix86_frame
2547 {
2548   int nsseregs;
2549   int nregs;
2550   int va_arg_size;
2551   int red_zone_size;
2552   int outgoing_arguments_size;
2553 
2554   /* The offsets relative to ARG_POINTER.  */
2555   HOST_WIDE_INT frame_pointer_offset;
2556   HOST_WIDE_INT hard_frame_pointer_offset;
2557   HOST_WIDE_INT stack_pointer_offset;
2558   HOST_WIDE_INT hfp_save_offset;
2559   HOST_WIDE_INT reg_save_offset;
2560   HOST_WIDE_INT stack_realign_allocate;
2561   HOST_WIDE_INT stack_realign_offset;
2562   HOST_WIDE_INT sse_reg_save_offset;
2563 
2564   /* When save_regs_using_mov is set, emit prologue using
2565      move instead of push instructions.  */
2566   bool save_regs_using_mov;
2567 
2568   /* Assume without checking that:
2569        EXPENSIVE_P = expensive_function_p (EXPENSIVE_COUNT).  */
2570   bool expensive_p;
2571   int expensive_count;
2572 };
2573 
2574 /* Machine specific frame tracking during prologue/epilogue generation.  All
2575    values are positive, but since the x86 stack grows downward, are subtratced
2576    from the CFA to produce a valid address.  */
2577 
2578 struct GTY(()) machine_frame_state
2579 {
2580   /* This pair tracks the currently active CFA as reg+offset.  When reg
2581      is drap_reg, we don't bother trying to record here the real CFA when
2582      it might really be a DW_CFA_def_cfa_expression.  */
2583   rtx cfa_reg;
2584   HOST_WIDE_INT cfa_offset;
2585 
2586   /* The current offset (canonically from the CFA) of ESP and EBP.
2587      When stack frame re-alignment is active, these may not be relative
2588      to the CFA.  However, in all cases they are relative to the offsets
2589      of the saved registers stored in ix86_frame.  */
2590   HOST_WIDE_INT sp_offset;
2591   HOST_WIDE_INT fp_offset;
2592 
2593   /* The size of the red-zone that may be assumed for the purposes of
2594      eliding register restore notes in the epilogue.  This may be zero
2595      if no red-zone is in effect, or may be reduced from the real
2596      red-zone value by a maximum runtime stack re-alignment value.  */
2597   int red_zone_offset;
2598 
2599   /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2600      value within the frame.  If false then the offset above should be
2601      ignored.  Note that DRAP, if valid, *always* points to the CFA and
2602      thus has an offset of zero.  */
2603   BOOL_BITFIELD sp_valid : 1;
2604   BOOL_BITFIELD fp_valid : 1;
2605   BOOL_BITFIELD drap_valid : 1;
2606 
2607   /* Indicate whether the local stack frame has been re-aligned.  When
2608      set, the SP/FP offsets above are relative to the aligned frame
2609      and not the CFA.  */
2610   BOOL_BITFIELD realigned : 1;
2611 
2612   /* Indicates whether the stack pointer has been re-aligned.  When set,
2613      SP/FP continue to be relative to the CFA, but the stack pointer
2614      should only be used for offsets > sp_realigned_offset, while
2615      the frame pointer should be used for offsets <= sp_realigned_fp_last.
2616      The flags realigned and sp_realigned are mutually exclusive.  */
2617   BOOL_BITFIELD sp_realigned : 1;
2618 
2619   /* If sp_realigned is set, this is the last valid offset from the CFA
2620      that can be used for access with the frame pointer.  */
2621   HOST_WIDE_INT sp_realigned_fp_last;
2622 
2623   /* If sp_realigned is set, this is the offset from the CFA that the stack
2624      pointer was realigned, and may or may not be equal to sp_realigned_fp_last.
2625      Access via the stack pointer is only valid for offsets that are greater than
2626      this value.  */
2627   HOST_WIDE_INT sp_realigned_offset;
2628 };
2629 
2630 /* Private to winnt.cc.  */
2631 struct seh_frame_state;
2632 
2633 enum function_type
2634 {
2635   TYPE_UNKNOWN = 0,
2636   TYPE_NORMAL,
2637   /* The current function is an interrupt service routine with a
2638      pointer argument as specified by the "interrupt" attribute.  */
2639   TYPE_INTERRUPT,
2640   /* The current function is an interrupt service routine with a
2641      pointer argument and an integer argument as specified by the
2642      "interrupt" attribute.  */
2643   TYPE_EXCEPTION
2644 };
2645 
2646 enum queued_insn_type
2647 {
2648   TYPE_NONE = 0,
2649   TYPE_ENDBR,
2650   TYPE_PATCHABLE_AREA
2651 };
2652 
2653 struct GTY(()) machine_function {
2654   struct stack_local_entry *stack_locals;
2655   int varargs_gpr_size;
2656   int varargs_fpr_size;
2657   int optimize_mode_switching[MAX_386_ENTITIES];
2658 
2659   /* Cached initial frame layout for the current function.  */
2660   struct ix86_frame frame;
2661 
2662   /* For -fsplit-stack support: A stack local which holds a pointer to
2663      the stack arguments for a function with a variable number of
2664      arguments.  This is set at the start of the function and is used
2665      to initialize the overflow_arg_area field of the va_list
2666      structure.  */
2667   rtx split_stack_varargs_pointer;
2668 
2669   /* This value is used for amd64 targets and specifies the current abi
2670      to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi.  */
2671   ENUM_BITFIELD(calling_abi) call_abi : 8;
2672 
2673   /* Nonzero if the function accesses a previous frame.  */
2674   BOOL_BITFIELD accesses_prev_frame : 1;
2675 
2676   /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2677      expander to determine the style used.  */
2678   BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2679 
2680   /* Nonzero if the current function calls pc thunk and
2681      must not use the red zone.  */
2682   BOOL_BITFIELD pc_thunk_call_expanded : 1;
2683 
2684   /* If true, the current function needs the default PIC register, not
2685      an alternate register (on x86) and must not use the red zone (on
2686      x86_64), even if it's a leaf function.  We don't want the
2687      function to be regarded as non-leaf because TLS calls need not
2688      affect register allocation.  This flag is set when a TLS call
2689      instruction is expanded within a function, and never reset, even
2690      if all such instructions are optimized away.  Use the
2691      ix86_current_function_calls_tls_descriptor macro for a better
2692      approximation.  */
2693   BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2694 
2695   /* If true, the current function has a STATIC_CHAIN is placed on the
2696      stack below the return address.  */
2697   BOOL_BITFIELD static_chain_on_stack : 1;
2698 
2699   /* If true, it is safe to not save/restore DRAP register.  */
2700   BOOL_BITFIELD no_drap_save_restore : 1;
2701 
2702   /* Function type.  */
2703   ENUM_BITFIELD(function_type) func_type : 2;
2704 
2705   /* How to generate indirec branch.  */
2706   ENUM_BITFIELD(indirect_branch) indirect_branch_type : 3;
2707 
2708   /* If true, the current function has local indirect jumps, like
2709      "indirect_jump" or "tablejump".  */
2710   BOOL_BITFIELD has_local_indirect_jump : 1;
2711 
2712   /* How to generate function return.  */
2713   ENUM_BITFIELD(indirect_branch) function_return_type : 3;
2714 
2715   /* If true, the current function is a function specified with
2716      the "interrupt" or "no_caller_saved_registers" attribute.  */
2717   BOOL_BITFIELD no_caller_saved_registers : 1;
2718 
2719   /* If true, there is register available for argument passing.  This
2720      is used only in ix86_function_ok_for_sibcall by 32-bit to determine
2721      if there is scratch register available for indirect sibcall.  In
2722      64-bit, rax, r10 and r11 are scratch registers which aren't used to
2723      pass arguments and can be used for indirect sibcall.  */
2724   BOOL_BITFIELD arg_reg_available : 1;
2725 
2726   /* If true, we're out-of-lining reg save/restore for regs clobbered
2727      by 64-bit ms_abi functions calling a sysv_abi function.  */
2728   BOOL_BITFIELD call_ms2sysv : 1;
2729 
2730   /* If true, the incoming 16-byte aligned stack has an offset (of 8) and
2731      needs padding prior to out-of-line stub save/restore area.  */
2732   BOOL_BITFIELD call_ms2sysv_pad_in : 1;
2733 
2734   /* This is the number of extra registers saved by stub (valid range is
2735      0-6). Each additional register is only saved/restored by the stubs
2736      if all successive ones are. (Will always be zero when using a hard
2737      frame pointer.) */
2738   unsigned int call_ms2sysv_extra_regs:3;
2739 
2740   /* Nonzero if the function places outgoing arguments on stack.  */
2741   BOOL_BITFIELD outgoing_args_on_stack : 1;
2742 
2743   /* If true, ENDBR or patchable area is queued at function entrance.  */
2744   ENUM_BITFIELD(queued_insn_type) insn_queued_at_entrance : 2;
2745 
2746   /* If true, the function label has been emitted.  */
2747   BOOL_BITFIELD function_label_emitted : 1;
2748 
2749   /* True if the function needs a stack frame.  */
2750   BOOL_BITFIELD stack_frame_required : 1;
2751 
2752   /* True if we should act silently, rather than raise an error for
2753      invalid calls.  */
2754   BOOL_BITFIELD silent_p : 1;
2755 
2756   /* True if red zone is used.  */
2757   BOOL_BITFIELD red_zone_used : 1;
2758 
2759   /* The largest alignment, in bytes, of stack slot actually used.  */
2760   unsigned int max_used_stack_alignment;
2761 
2762   /* During prologue/epilogue generation, the current frame state.
2763      Otherwise, the frame state at the end of the prologue.  */
2764   struct machine_frame_state fs;
2765 
2766   /* During SEH output, this is non-null.  */
2767   struct seh_frame_state * GTY((skip(""))) seh;
2768 };
2769 
2770 extern GTY(()) tree sysv_va_list_type_node;
2771 extern GTY(()) tree ms_va_list_type_node;
2772 #endif
2773 
2774 #define ix86_stack_locals (cfun->machine->stack_locals)
2775 #define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2776 #define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
2777 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2778 #define ix86_pc_thunk_call_expanded (cfun->machine->pc_thunk_call_expanded)
2779 #define ix86_tls_descriptor_calls_expanded_in_cfun \
2780   (cfun->machine->tls_descriptor_call_expanded_p)
2781 /* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2782    calls are optimized away, we try to detect cases in which it was
2783    optimized away.  Since such instructions (use (reg REG_SP)), we can
2784    verify whether there's any such instruction live by testing that
2785    REG_SP is live.  */
2786 #define ix86_current_function_calls_tls_descriptor \
2787   (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
2788 #define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
2789 #define ix86_red_zone_used (cfun->machine->red_zone_used)
2790 
2791 /* Control behavior of x86_file_start.  */
2792 #define X86_FILE_START_VERSION_DIRECTIVE false
2793 #define X86_FILE_START_FLTUSED false
2794 
2795 /* Flag to mark data that is in the large address area.  */
2796 #define SYMBOL_FLAG_FAR_ADDR		(SYMBOL_FLAG_MACH_DEP << 0)
2797 #define SYMBOL_REF_FAR_ADDR_P(X)	\
2798 	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
2799 
2800 /* Flags to mark dllimport/dllexport.  Used by PE ports, but handy to
2801    have defined always, to avoid ifdefing.  */
2802 #define SYMBOL_FLAG_DLLIMPORT		(SYMBOL_FLAG_MACH_DEP << 1)
2803 #define SYMBOL_REF_DLLIMPORT_P(X) \
2804 	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2805 
2806 #define SYMBOL_FLAG_DLLEXPORT		(SYMBOL_FLAG_MACH_DEP << 2)
2807 #define SYMBOL_REF_DLLEXPORT_P(X) \
2808 	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2809 
2810 #define SYMBOL_FLAG_STUBVAR	(SYMBOL_FLAG_MACH_DEP << 4)
2811 #define SYMBOL_REF_STUBVAR_P(X) \
2812 	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2813 
2814 extern void debug_ready_dispatch (void);
2815 extern void debug_dispatch_window (int);
2816 
2817 /* The value at zero is only defined for the BMI instructions
2818    LZCNT and TZCNT, not the BSR/BSF insns in the original isa.  */
2819 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2820 	((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI ? 2 : 0)
2821 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2822 	((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT ? 2 : 0)
2823 
2824 
2825 /* Flags returned by ix86_get_callcvt ().  */
2826 #define IX86_CALLCVT_CDECL	0x1
2827 #define IX86_CALLCVT_STDCALL	0x2
2828 #define IX86_CALLCVT_FASTCALL	0x4
2829 #define IX86_CALLCVT_THISCALL	0x8
2830 #define IX86_CALLCVT_REGPARM	0x10
2831 #define IX86_CALLCVT_SSEREGPARM	0x20
2832 
2833 #define IX86_BASE_CALLCVT(FLAGS) \
2834 	((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2835 		    | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2836 
2837 #define RECIP_MASK_NONE		0x00
2838 #define RECIP_MASK_DIV		0x01
2839 #define RECIP_MASK_SQRT		0x02
2840 #define RECIP_MASK_VEC_DIV	0x04
2841 #define RECIP_MASK_VEC_SQRT	0x08
2842 #define RECIP_MASK_ALL	(RECIP_MASK_DIV | RECIP_MASK_SQRT \
2843 			 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2844 #define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2845 
2846 #define TARGET_RECIP_DIV	((recip_mask & RECIP_MASK_DIV) != 0)
2847 #define TARGET_RECIP_SQRT	((recip_mask & RECIP_MASK_SQRT) != 0)
2848 #define TARGET_RECIP_VEC_DIV	((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2849 #define TARGET_RECIP_VEC_SQRT	((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2850 
2851 /* Use 128-bit AVX instructions in the auto-vectorizer.  */
2852 #define TARGET_PREFER_AVX128	(prefer_vector_width_type == PVW_AVX128)
2853 /* Use 256-bit AVX instructions in the auto-vectorizer.  */
2854 #define TARGET_PREFER_AVX256	(TARGET_PREFER_AVX128 \
2855 				 || prefer_vector_width_type == PVW_AVX256)
2856 
2857 #define TARGET_INDIRECT_BRANCH_REGISTER \
2858   (ix86_indirect_branch_register \
2859    || cfun->machine->indirect_branch_type != indirect_branch_keep)
2860 
2861 #define IX86_HLE_ACQUIRE (1 << 16)
2862 #define IX86_HLE_RELEASE (1 << 17)
2863 
2864 /* For switching between functions with different target attributes.  */
2865 #define SWITCHABLE_TARGET 1
2866 
2867 #define TARGET_SUPPORTS_WIDE_INT 1
2868 
2869 #if !defined(GENERATOR_FILE) && !defined(IN_LIBGCC2)
2870 extern enum attr_cpu ix86_schedule;
2871 
2872 #define NUM_X86_64_MS_CLOBBERED_REGS 12
2873 #endif
2874 
2875 /* __builtin_eh_return can't handle stack realignment, so disable MMX/SSE
2876    in 32-bit libgcc functions that call it.  */
2877 #ifndef __x86_64__
2878 #define LIBGCC2_UNWIND_ATTRIBUTE __attribute__((target ("no-mmx,no-sse")))
2879 #endif
2880 
2881 /*
2882 Local variables:
2883 version-control: t
2884 End:
2885 */
2886