1 //===- ICF.cpp ------------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "ICF.h" 10 #include "ConcatOutputSection.h" 11 #include "Config.h" 12 #include "InputSection.h" 13 #include "SymbolTable.h" 14 #include "Symbols.h" 15 #include "UnwindInfoSection.h" 16 17 #include "lld/Common/CommonLinkerContext.h" 18 #include "llvm/Support/LEB128.h" 19 #include "llvm/Support/Parallel.h" 20 #include "llvm/Support/TimeProfiler.h" 21 #include "llvm/Support/xxhash.h" 22 23 #include <atomic> 24 25 using namespace llvm; 26 using namespace lld; 27 using namespace lld::macho; 28 29 static constexpr bool verboseDiagnostics = false; 30 31 class ICF { 32 public: 33 ICF(std::vector<ConcatInputSection *> &inputs); 34 void run(); 35 36 using EqualsFn = bool (ICF::*)(const ConcatInputSection *, 37 const ConcatInputSection *); 38 void segregate(size_t begin, size_t end, EqualsFn); 39 size_t findBoundary(size_t begin, size_t end); 40 void forEachClassRange(size_t begin, size_t end, 41 llvm::function_ref<void(size_t, size_t)> func); 42 void forEachClass(llvm::function_ref<void(size_t, size_t)> func); 43 44 bool equalsConstant(const ConcatInputSection *ia, 45 const ConcatInputSection *ib); 46 bool equalsVariable(const ConcatInputSection *ia, 47 const ConcatInputSection *ib); 48 void applySafeThunksToRange(size_t begin, size_t end); 49 50 // ICF needs a copy of the inputs vector because its equivalence-class 51 // segregation algorithm destroys the proper sequence. 52 std::vector<ConcatInputSection *> icfInputs; 53 54 unsigned icfPass = 0; 55 std::atomic<bool> icfRepeat{false}; 56 std::atomic<uint64_t> equalsConstantCount{0}; 57 std::atomic<uint64_t> equalsVariableCount{0}; 58 }; 59 60 ICF::ICF(std::vector<ConcatInputSection *> &inputs) { 61 icfInputs.assign(inputs.begin(), inputs.end()); 62 } 63 64 // ICF = Identical Code Folding 65 // 66 // We only fold __TEXT,__text, so this is really "code" folding, and not 67 // "COMDAT" folding. String and scalar constant literals are deduplicated 68 // elsewhere. 69 // 70 // Summary of segments & sections: 71 // 72 // The __TEXT segment is readonly at the MMU. Some sections are already 73 // deduplicated elsewhere (__TEXT,__cstring & __TEXT,__literal*) and some are 74 // synthetic and inherently free of duplicates (__TEXT,__stubs & 75 // __TEXT,__unwind_info). Note that we don't yet run ICF on __TEXT,__const, 76 // because doing so induces many test failures. 77 // 78 // The __LINKEDIT segment is readonly at the MMU, yet entirely synthetic, and 79 // thus ineligible for ICF. 80 // 81 // The __DATA_CONST segment is read/write at the MMU, but is logically const to 82 // the application after dyld applies fixups to pointer data. We currently 83 // fold only the __DATA_CONST,__cfstring section. 84 // 85 // The __DATA segment is read/write at the MMU, and as application-writeable 86 // data, none of its sections are eligible for ICF. 87 // 88 // Please see the large block comment in lld/ELF/ICF.cpp for an explanation 89 // of the segregation algorithm. 90 // 91 // FIXME(gkm): implement keep-unique attributes 92 // FIXME(gkm): implement address-significance tables for MachO object files 93 94 // Compare "non-moving" parts of two ConcatInputSections, namely everything 95 // except references to other ConcatInputSections. 96 bool ICF::equalsConstant(const ConcatInputSection *ia, 97 const ConcatInputSection *ib) { 98 if (verboseDiagnostics) 99 ++equalsConstantCount; 100 // We can only fold within the same OutputSection. 101 if (ia->parent != ib->parent) 102 return false; 103 if (ia->data.size() != ib->data.size()) 104 return false; 105 if (ia->data != ib->data) 106 return false; 107 if (ia->relocs.size() != ib->relocs.size()) 108 return false; 109 auto f = [](const Reloc &ra, const Reloc &rb) { 110 if (ra.type != rb.type) 111 return false; 112 if (ra.pcrel != rb.pcrel) 113 return false; 114 if (ra.length != rb.length) 115 return false; 116 if (ra.offset != rb.offset) 117 return false; 118 if (isa<Symbol *>(ra.referent) != isa<Symbol *>(rb.referent)) 119 return false; 120 121 InputSection *isecA, *isecB; 122 123 uint64_t valueA = 0; 124 uint64_t valueB = 0; 125 if (isa<Symbol *>(ra.referent)) { 126 const auto *sa = cast<Symbol *>(ra.referent); 127 const auto *sb = cast<Symbol *>(rb.referent); 128 if (sa->kind() != sb->kind()) 129 return false; 130 // ICF runs before Undefineds are treated (and potentially converted into 131 // DylibSymbols). 132 if (isa<DylibSymbol>(sa) || isa<Undefined>(sa)) 133 return sa == sb && ra.addend == rb.addend; 134 assert(isa<Defined>(sa)); 135 const auto *da = cast<Defined>(sa); 136 const auto *db = cast<Defined>(sb); 137 if (!da->isec() || !db->isec()) { 138 assert(da->isAbsolute() && db->isAbsolute()); 139 return da->value + ra.addend == db->value + rb.addend; 140 } 141 isecA = da->isec(); 142 valueA = da->value; 143 isecB = db->isec(); 144 valueB = db->value; 145 } else { 146 isecA = cast<InputSection *>(ra.referent); 147 isecB = cast<InputSection *>(rb.referent); 148 } 149 150 // Typically, we should not encounter sections marked with `keepUnique` at 151 // this point as they would have resulted in different hashes and therefore 152 // no need for a full comparison. 153 // However, in `safe_thunks` mode, it's possible for two different 154 // relocations to reference identical `keepUnique` functions that will be 155 // distinguished later via thunks - so we need to handle this case 156 // explicitly. 157 if ((isecA != isecB) && ((isecA->keepUnique && isCodeSection(isecA)) || 158 (isecB->keepUnique && isCodeSection(isecB)))) 159 return false; 160 161 if (isecA->parent != isecB->parent) 162 return false; 163 // Sections with identical parents should be of the same kind. 164 assert(isecA->kind() == isecB->kind()); 165 // We will compare ConcatInputSection contents in equalsVariable. 166 if (isa<ConcatInputSection>(isecA)) 167 return ra.addend == rb.addend; 168 // Else we have two literal sections. References to them are equal iff their 169 // offsets in the output section are equal. 170 if (isa<Symbol *>(ra.referent)) 171 // For symbol relocs, we compare the contents at the symbol address. We 172 // don't do `getOffset(value + addend)` because value + addend may not be 173 // a valid offset in the literal section. 174 return isecA->getOffset(valueA) == isecB->getOffset(valueB) && 175 ra.addend == rb.addend; 176 else { 177 assert(valueA == 0 && valueB == 0); 178 // For section relocs, we compare the content at the section offset. 179 return isecA->getOffset(ra.addend) == isecB->getOffset(rb.addend); 180 } 181 }; 182 return std::equal(ia->relocs.begin(), ia->relocs.end(), ib->relocs.begin(), 183 f); 184 } 185 186 // Compare the "moving" parts of two ConcatInputSections -- i.e. everything not 187 // handled by equalsConstant(). 188 bool ICF::equalsVariable(const ConcatInputSection *ia, 189 const ConcatInputSection *ib) { 190 if (verboseDiagnostics) 191 ++equalsVariableCount; 192 assert(ia->relocs.size() == ib->relocs.size()); 193 auto f = [this](const Reloc &ra, const Reloc &rb) { 194 // We already filtered out mismatching values/addends in equalsConstant. 195 if (ra.referent == rb.referent) 196 return true; 197 const ConcatInputSection *isecA, *isecB; 198 if (isa<Symbol *>(ra.referent)) { 199 // Matching DylibSymbols are already filtered out by the 200 // identical-referent check above. Non-matching DylibSymbols were filtered 201 // out in equalsConstant(). So we can safely cast to Defined here. 202 const auto *da = cast<Defined>(cast<Symbol *>(ra.referent)); 203 const auto *db = cast<Defined>(cast<Symbol *>(rb.referent)); 204 if (da->isAbsolute()) 205 return true; 206 isecA = dyn_cast<ConcatInputSection>(da->isec()); 207 if (!isecA) 208 return true; // literal sections were checked in equalsConstant. 209 isecB = cast<ConcatInputSection>(db->isec()); 210 } else { 211 const auto *sa = cast<InputSection *>(ra.referent); 212 const auto *sb = cast<InputSection *>(rb.referent); 213 isecA = dyn_cast<ConcatInputSection>(sa); 214 if (!isecA) 215 return true; 216 isecB = cast<ConcatInputSection>(sb); 217 } 218 return isecA->icfEqClass[icfPass % 2] == isecB->icfEqClass[icfPass % 2]; 219 }; 220 if (!std::equal(ia->relocs.begin(), ia->relocs.end(), ib->relocs.begin(), f)) 221 return false; 222 223 // If there are symbols with associated unwind info, check that the unwind 224 // info matches. For simplicity, we only handle the case where there are only 225 // symbols at offset zero within the section (which is typically the case with 226 // .subsections_via_symbols.) 227 auto hasUnwind = [](Defined *d) { return d->unwindEntry() != nullptr; }; 228 const auto *itA = llvm::find_if(ia->symbols, hasUnwind); 229 const auto *itB = llvm::find_if(ib->symbols, hasUnwind); 230 if (itA == ia->symbols.end()) 231 return itB == ib->symbols.end(); 232 if (itB == ib->symbols.end()) 233 return false; 234 const Defined *da = *itA; 235 const Defined *db = *itB; 236 if (da->unwindEntry()->icfEqClass[icfPass % 2] != 237 db->unwindEntry()->icfEqClass[icfPass % 2] || 238 da->value != 0 || db->value != 0) 239 return false; 240 auto isZero = [](Defined *d) { return d->value == 0; }; 241 return std::find_if_not(std::next(itA), ia->symbols.end(), isZero) == 242 ia->symbols.end() && 243 std::find_if_not(std::next(itB), ib->symbols.end(), isZero) == 244 ib->symbols.end(); 245 } 246 247 // Find the first InputSection after BEGIN whose equivalence class differs 248 size_t ICF::findBoundary(size_t begin, size_t end) { 249 uint64_t beginHash = icfInputs[begin]->icfEqClass[icfPass % 2]; 250 for (size_t i = begin + 1; i < end; ++i) 251 if (beginHash != icfInputs[i]->icfEqClass[icfPass % 2]) 252 return i; 253 return end; 254 } 255 256 // Invoke FUNC on subranges with matching equivalence class 257 void ICF::forEachClassRange(size_t begin, size_t end, 258 llvm::function_ref<void(size_t, size_t)> func) { 259 while (begin < end) { 260 size_t mid = findBoundary(begin, end); 261 func(begin, mid); 262 begin = mid; 263 } 264 } 265 266 // Given a range of identical icfInputs, replace address significant functions 267 // with a thunk that is just a direct branch to the first function in the 268 // series. This way we keep only one main body of the function but we still 269 // retain the address uniqueness of relevant functions by having them be a 270 // direct branch thunk rather than containing a full copy of the actual function 271 // body. 272 void ICF::applySafeThunksToRange(size_t begin, size_t end) { 273 // If the functions we're dealing with are smaller than the thunk size, then 274 // just leave them all as-is - creating thunks would be a net loss. 275 uint32_t thunkSize = target->getICFSafeThunkSize(); 276 if (icfInputs[begin]->data.size() <= thunkSize) 277 return; 278 279 // When creating a unique ICF thunk, use the first section as the section that 280 // all thunks will branch to. 281 ConcatInputSection *masterIsec = icfInputs[begin]; 282 283 for (size_t i = begin + 1; i < end; ++i) { 284 ConcatInputSection *isec = icfInputs[i]; 285 // When we're done processing keepUnique entries, we can stop. Sorting 286 // guaratees that all keepUnique will be at the front. 287 if (!isec->keepUnique) 288 break; 289 290 ConcatInputSection *thunk = 291 makeSyntheticInputSection(isec->getSegName(), isec->getName()); 292 addInputSection(thunk); 293 294 target->initICFSafeThunkBody(thunk, masterIsec); 295 thunk->foldIdentical(isec, Symbol::ICFFoldKind::Thunk); 296 297 // Since we're folding the target function into a thunk, we need to adjust 298 // the symbols that now got relocated from the target function to the thunk. 299 // Since the thunk is only one branch, we move all symbols to offset 0 and 300 // make sure that the size of all non-zero-size symbols is equal to the size 301 // of the branch. 302 for (auto *sym : thunk->symbols) { 303 sym->value = 0; 304 if (sym->size != 0) 305 sym->size = thunkSize; 306 } 307 } 308 } 309 310 // Split icfInputs into shards, then parallelize invocation of FUNC on subranges 311 // with matching equivalence class 312 void ICF::forEachClass(llvm::function_ref<void(size_t, size_t)> func) { 313 // Only use threads when the benefits outweigh the overhead. 314 const size_t threadingThreshold = 1024; 315 if (icfInputs.size() < threadingThreshold) { 316 forEachClassRange(0, icfInputs.size(), func); 317 ++icfPass; 318 return; 319 } 320 321 // Shard into non-overlapping intervals, and call FUNC in parallel. The 322 // sharding must be completed before any calls to FUNC are made so that FUNC 323 // can modify the InputSection in its shard without causing data races. 324 const size_t shards = 256; 325 size_t step = icfInputs.size() / shards; 326 size_t boundaries[shards + 1]; 327 boundaries[0] = 0; 328 boundaries[shards] = icfInputs.size(); 329 parallelFor(1, shards, [&](size_t i) { 330 boundaries[i] = findBoundary((i - 1) * step, icfInputs.size()); 331 }); 332 parallelFor(1, shards + 1, [&](size_t i) { 333 if (boundaries[i - 1] < boundaries[i]) { 334 forEachClassRange(boundaries[i - 1], boundaries[i], func); 335 } 336 }); 337 ++icfPass; 338 } 339 340 void ICF::run() { 341 // Into each origin-section hash, combine all reloc referent section hashes. 342 for (icfPass = 0; icfPass < 2; ++icfPass) { 343 parallelForEach(icfInputs, [&](ConcatInputSection *isec) { 344 uint32_t hash = isec->icfEqClass[icfPass % 2]; 345 for (const Reloc &r : isec->relocs) { 346 if (auto *sym = r.referent.dyn_cast<Symbol *>()) { 347 if (auto *defined = dyn_cast<Defined>(sym)) { 348 if (defined->isec()) { 349 if (auto *referentIsec = 350 dyn_cast<ConcatInputSection>(defined->isec())) 351 hash += defined->value + referentIsec->icfEqClass[icfPass % 2]; 352 else 353 hash += defined->isec()->kind() + 354 defined->isec()->getOffset(defined->value); 355 } else { 356 hash += defined->value; 357 } 358 } else { 359 // ICF runs before Undefined diags 360 assert(isa<Undefined>(sym) || isa<DylibSymbol>(sym)); 361 } 362 } 363 } 364 // Set MSB to 1 to avoid collisions with non-hashed classes. 365 isec->icfEqClass[(icfPass + 1) % 2] = hash | (1ull << 31); 366 }); 367 } 368 369 llvm::stable_sort( 370 icfInputs, [](const ConcatInputSection *a, const ConcatInputSection *b) { 371 // When using safe_thunks, ensure that we first sort by icfEqClass and 372 // then by keepUnique (descending). This guarantees that within an 373 // equivalence class, the keepUnique inputs are always first. 374 if (config->icfLevel == ICFLevel::safe_thunks) 375 if (a->icfEqClass[0] == b->icfEqClass[0]) 376 return a->keepUnique > b->keepUnique; 377 return a->icfEqClass[0] < b->icfEqClass[0]; 378 }); 379 forEachClass([&](size_t begin, size_t end) { 380 segregate(begin, end, &ICF::equalsConstant); 381 }); 382 383 // Split equivalence groups by comparing relocations until convergence 384 do { 385 icfRepeat = false; 386 forEachClass([&](size_t begin, size_t end) { 387 segregate(begin, end, &ICF::equalsVariable); 388 }); 389 } while (icfRepeat); 390 log("ICF needed " + Twine(icfPass) + " iterations"); 391 if (verboseDiagnostics) { 392 log("equalsConstant() called " + Twine(equalsConstantCount) + " times"); 393 log("equalsVariable() called " + Twine(equalsVariableCount) + " times"); 394 } 395 396 // When using safe_thunks, we need to create thunks for all keepUnique 397 // functions that can be deduplicated. Since we're creating / adding new 398 // InputSections, we can't paralellize this. 399 if (config->icfLevel == ICFLevel::safe_thunks) 400 forEachClassRange(0, icfInputs.size(), [&](size_t begin, size_t end) { 401 applySafeThunksToRange(begin, end); 402 }); 403 404 // Fold sections within equivalence classes 405 forEachClass([&](size_t begin, size_t end) { 406 if (end - begin < 2) 407 return; 408 bool useSafeThunks = config->icfLevel == ICFLevel::safe_thunks; 409 410 // For ICF level safe_thunks, replace keepUnique function bodies with 411 // thunks. For all other ICF levles, directly merge the functions. 412 413 ConcatInputSection *beginIsec = icfInputs[begin]; 414 for (size_t i = begin + 1; i < end; ++i) { 415 // Skip keepUnique inputs when using safe_thunks (already handeled above) 416 if (useSafeThunks && icfInputs[i]->keepUnique) { 417 // Assert keepUnique sections are either small or replaced with thunks. 418 assert(!icfInputs[i]->live || 419 icfInputs[i]->data.size() <= target->getICFSafeThunkSize()); 420 assert(!icfInputs[i]->replacement || 421 icfInputs[i]->replacement->data.size() == 422 target->getICFSafeThunkSize()); 423 continue; 424 } 425 beginIsec->foldIdentical(icfInputs[i]); 426 } 427 }); 428 } 429 430 // Split an equivalence class into smaller classes. 431 void ICF::segregate(size_t begin, size_t end, EqualsFn equals) { 432 while (begin < end) { 433 // Divide [begin, end) into two. Let mid be the start index of the 434 // second group. 435 auto bound = std::stable_partition( 436 icfInputs.begin() + begin + 1, icfInputs.begin() + end, 437 [&](ConcatInputSection *isec) { 438 return (this->*equals)(icfInputs[begin], isec); 439 }); 440 size_t mid = bound - icfInputs.begin(); 441 442 // Split [begin, end) into [begin, mid) and [mid, end). We use mid as an 443 // equivalence class ID because every group ends with a unique index. 444 for (size_t i = begin; i < mid; ++i) 445 icfInputs[i]->icfEqClass[(icfPass + 1) % 2] = mid; 446 447 // If we created a group, we need to iterate the main loop again. 448 if (mid != end) 449 icfRepeat = true; 450 451 begin = mid; 452 } 453 } 454 455 void macho::markSymAsAddrSig(Symbol *s) { 456 if (auto *d = dyn_cast_or_null<Defined>(s)) 457 if (d->isec()) 458 d->isec()->keepUnique = true; 459 } 460 461 void macho::markAddrSigSymbols() { 462 TimeTraceScope timeScope("Mark addrsig symbols"); 463 for (InputFile *file : inputFiles) { 464 ObjFile *obj = dyn_cast<ObjFile>(file); 465 if (!obj) 466 continue; 467 468 Section *addrSigSection = obj->addrSigSection; 469 if (!addrSigSection) 470 continue; 471 assert(addrSigSection->subsections.size() == 1); 472 473 const InputSection *isec = addrSigSection->subsections[0].isec; 474 475 for (const Reloc &r : isec->relocs) { 476 if (auto *sym = r.referent.dyn_cast<Symbol *>()) 477 markSymAsAddrSig(sym); 478 else 479 error(toString(isec) + ": unexpected section relocation"); 480 } 481 } 482 } 483 484 // Given a symbol that was folded into a thunk, return the symbol pointing to 485 // the actual body of the function. We use this approach rather than storing the 486 // needed info in the Defined itself in order to minimize memory usage. 487 Defined *macho::getBodyForThunkFoldedSym(Defined *foldedSym) { 488 assert(isa<ConcatInputSection>(foldedSym->originalIsec) && 489 "thunk-folded ICF symbol expected to be on a ConcatInputSection"); 490 // foldedSec is the InputSection that was marked as deleted upon fold 491 ConcatInputSection *foldedSec = 492 cast<ConcatInputSection>(foldedSym->originalIsec); 493 494 // thunkBody is the actual live thunk, containing the code that branches to 495 // the actual body of the function. 496 InputSection *thunkBody = foldedSec->replacement; 497 498 // The actual (merged) body of the function that the thunk jumps to. This will 499 // end up in the final binary. 500 InputSection *functionBody = target->getThunkBranchTarget(thunkBody); 501 502 for (Symbol *sym : functionBody->symbols) { 503 Defined *d = dyn_cast<Defined>(sym); 504 // The symbol needs to be at the start of the InputSection 505 if (d && d->value == 0) 506 return d; 507 } 508 509 llvm_unreachable("could not find body symbol for ICF-generated thunk"); 510 } 511 void macho::foldIdenticalSections(bool onlyCfStrings) { 512 TimeTraceScope timeScope("Fold Identical Code Sections"); 513 // The ICF equivalence-class segregation algorithm relies on pre-computed 514 // hashes of InputSection::data for the ConcatOutputSection::inputs and all 515 // sections referenced by their relocs. We could recursively traverse the 516 // relocs to find every referenced InputSection, but that precludes easy 517 // parallelization. Therefore, we hash every InputSection here where we have 518 // them all accessible as simple vectors. 519 520 // If an InputSection is ineligible for ICF, we give it a unique ID to force 521 // it into an unfoldable singleton equivalence class. Begin the unique-ID 522 // space at inputSections.size(), so that it will never intersect with 523 // equivalence-class IDs which begin at 0. Since hashes & unique IDs never 524 // coexist with equivalence-class IDs, this is not necessary, but might help 525 // someone keep the numbers straight in case we ever need to debug the 526 // ICF::segregate() 527 std::vector<ConcatInputSection *> foldable; 528 uint64_t icfUniqueID = inputSections.size(); 529 for (ConcatInputSection *isec : inputSections) { 530 bool isFoldableWithAddendsRemoved = isCfStringSection(isec) || 531 isClassRefsSection(isec) || 532 isSelRefsSection(isec); 533 // NOTE: __objc_selrefs is typically marked as no_dead_strip by MC, but we 534 // can still fold it. 535 bool hasFoldableFlags = (isSelRefsSection(isec) || 536 sectionType(isec->getFlags()) == MachO::S_REGULAR); 537 538 bool isCodeSec = isCodeSection(isec); 539 540 // When keepUnique is true, the section is not foldable. Unless we are at 541 // icf level safe_thunks, in which case we still want to fold code sections. 542 // When using safe_thunks we'll apply the safe_thunks logic at merge time 543 // based on the 'keepUnique' flag. 544 bool noUniqueRequirement = 545 !isec->keepUnique || 546 ((config->icfLevel == ICFLevel::safe_thunks) && isCodeSec); 547 548 // FIXME: consider non-code __text sections as foldable? 549 bool isFoldable = (!onlyCfStrings || isCfStringSection(isec)) && 550 (isCodeSec || isFoldableWithAddendsRemoved || 551 isGccExceptTabSection(isec)) && 552 noUniqueRequirement && !isec->hasAltEntry && 553 !isec->shouldOmitFromOutput() && hasFoldableFlags; 554 if (isFoldable) { 555 foldable.push_back(isec); 556 for (Defined *d : isec->symbols) 557 if (d->unwindEntry()) 558 foldable.push_back(d->unwindEntry()); 559 560 // Some sections have embedded addends that foil ICF's hashing / equality 561 // checks. (We can ignore embedded addends when doing ICF because the same 562 // information gets recorded in our Reloc structs.) We therefore create a 563 // mutable copy of the section data and zero out the embedded addends 564 // before performing any hashing / equality checks. 565 if (isFoldableWithAddendsRemoved) { 566 // We have to do this copying serially as the BumpPtrAllocator is not 567 // thread-safe. FIXME: Make a thread-safe allocator. 568 MutableArrayRef<uint8_t> copy = isec->data.copy(bAlloc()); 569 for (const Reloc &r : isec->relocs) 570 target->relocateOne(copy.data() + r.offset, r, /*va=*/0, 571 /*relocVA=*/0); 572 isec->data = copy; 573 } 574 } else if (!isEhFrameSection(isec)) { 575 // EH frames are gathered as foldables from unwindEntry above; give a 576 // unique ID to everything else. 577 isec->icfEqClass[0] = ++icfUniqueID; 578 } 579 } 580 parallelForEach(foldable, [](ConcatInputSection *isec) { 581 assert(isec->icfEqClass[0] == 0); // don't overwrite a unique ID! 582 // Turn-on the top bit to guarantee that valid hashes have no collisions 583 // with the small-integer unique IDs for ICF-ineligible sections 584 isec->icfEqClass[0] = xxh3_64bits(isec->data) | (1ull << 31); 585 }); 586 // Now that every input section is either hashed or marked as unique, run the 587 // segregation algorithm to detect foldable subsections. 588 ICF(foldable).run(); 589 } 590