1 //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implements C++ name mangling according to the Itanium C++ ABI,
10 // which is used in GCC 3.2 and newer (and many compilers that are
11 // ABI-compatible with GCC):
12 //
13 // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclOpenMP.h"
23 #include "clang/AST/DeclTemplate.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExprConcepts.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/Mangle.h"
29 #include "clang/AST/TypeLoc.h"
30 #include "clang/Basic/ABI.h"
31 #include "clang/Basic/Module.h"
32 #include "clang/Basic/SourceManager.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Basic/Thunk.h"
35 #include "llvm/ADT/StringExtras.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38
39 using namespace clang;
40
41 namespace {
42
43 /// Retrieve the declaration context that should be used when mangling the given
44 /// declaration.
getEffectiveDeclContext(const Decl * D)45 static const DeclContext *getEffectiveDeclContext(const Decl *D) {
46 // The ABI assumes that lambda closure types that occur within
47 // default arguments live in the context of the function. However, due to
48 // the way in which Clang parses and creates function declarations, this is
49 // not the case: the lambda closure type ends up living in the context
50 // where the function itself resides, because the function declaration itself
51 // had not yet been created. Fix the context here.
52 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
53 if (RD->isLambda())
54 if (ParmVarDecl *ContextParam
55 = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
56 return ContextParam->getDeclContext();
57 }
58
59 // Perform the same check for block literals.
60 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
61 if (ParmVarDecl *ContextParam
62 = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
63 return ContextParam->getDeclContext();
64 }
65
66 const DeclContext *DC = D->getDeclContext();
67 if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC) ||
68 isa<OMPDeclareMapperDecl>(DC)) {
69 return getEffectiveDeclContext(cast<Decl>(DC));
70 }
71
72 if (const auto *VD = dyn_cast<VarDecl>(D))
73 if (VD->isExternC())
74 return VD->getASTContext().getTranslationUnitDecl();
75
76 if (const auto *FD = dyn_cast<FunctionDecl>(D))
77 if (FD->isExternC())
78 return FD->getASTContext().getTranslationUnitDecl();
79
80 return DC->getRedeclContext();
81 }
82
getEffectiveParentContext(const DeclContext * DC)83 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
84 return getEffectiveDeclContext(cast<Decl>(DC));
85 }
86
isLocalContainerContext(const DeclContext * DC)87 static bool isLocalContainerContext(const DeclContext *DC) {
88 return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
89 }
90
GetLocalClassDecl(const Decl * D)91 static const RecordDecl *GetLocalClassDecl(const Decl *D) {
92 const DeclContext *DC = getEffectiveDeclContext(D);
93 while (!DC->isNamespace() && !DC->isTranslationUnit()) {
94 if (isLocalContainerContext(DC))
95 return dyn_cast<RecordDecl>(D);
96 D = cast<Decl>(DC);
97 DC = getEffectiveDeclContext(D);
98 }
99 return nullptr;
100 }
101
getStructor(const FunctionDecl * fn)102 static const FunctionDecl *getStructor(const FunctionDecl *fn) {
103 if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
104 return ftd->getTemplatedDecl();
105
106 return fn;
107 }
108
getStructor(const NamedDecl * decl)109 static const NamedDecl *getStructor(const NamedDecl *decl) {
110 const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
111 return (fn ? getStructor(fn) : decl);
112 }
113
isLambda(const NamedDecl * ND)114 static bool isLambda(const NamedDecl *ND) {
115 const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
116 if (!Record)
117 return false;
118
119 return Record->isLambda();
120 }
121
122 static const unsigned UnknownArity = ~0U;
123
124 class ItaniumMangleContextImpl : public ItaniumMangleContext {
125 typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
126 llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
127 llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
128
129 bool IsDevCtx = false;
130 bool NeedsUniqueInternalLinkageNames = false;
131
132 public:
ItaniumMangleContextImpl(ASTContext & Context,DiagnosticsEngine & Diags)133 explicit ItaniumMangleContextImpl(ASTContext &Context,
134 DiagnosticsEngine &Diags)
135 : ItaniumMangleContext(Context, Diags) {}
136
137 /// @name Mangler Entry Points
138 /// @{
139
140 bool shouldMangleCXXName(const NamedDecl *D) override;
shouldMangleStringLiteral(const StringLiteral *)141 bool shouldMangleStringLiteral(const StringLiteral *) override {
142 return false;
143 }
144
145 bool isUniqueInternalLinkageDecl(const NamedDecl *ND) override;
needsUniqueInternalLinkageNames()146 void needsUniqueInternalLinkageNames() override {
147 NeedsUniqueInternalLinkageNames = true;
148 }
149
isDeviceMangleContext() const150 bool isDeviceMangleContext() const override { return IsDevCtx; }
setDeviceMangleContext(bool IsDev)151 void setDeviceMangleContext(bool IsDev) override { IsDevCtx = IsDev; }
152
153 void mangleCXXName(GlobalDecl GD, raw_ostream &) override;
154 void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
155 raw_ostream &) override;
156 void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
157 const ThisAdjustment &ThisAdjustment,
158 raw_ostream &) override;
159 void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber,
160 raw_ostream &) override;
161 void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override;
162 void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override;
163 void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
164 const CXXRecordDecl *Type, raw_ostream &) override;
165 void mangleCXXRTTI(QualType T, raw_ostream &) override;
166 void mangleCXXRTTIName(QualType T, raw_ostream &) override;
167 void mangleTypeName(QualType T, raw_ostream &) override;
168
169 void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override;
170 void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override;
171 void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override;
172 void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
173 void mangleDynamicAtExitDestructor(const VarDecl *D,
174 raw_ostream &Out) override;
175 void mangleDynamicStermFinalizer(const VarDecl *D, raw_ostream &Out) override;
176 void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
177 raw_ostream &Out) override;
178 void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
179 raw_ostream &Out) override;
180 void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override;
181 void mangleItaniumThreadLocalWrapper(const VarDecl *D,
182 raw_ostream &) override;
183
184 void mangleStringLiteral(const StringLiteral *, raw_ostream &) override;
185
186 void mangleLambdaSig(const CXXRecordDecl *Lambda, raw_ostream &) override;
187
getNextDiscriminator(const NamedDecl * ND,unsigned & disc)188 bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
189 // Lambda closure types are already numbered.
190 if (isLambda(ND))
191 return false;
192
193 // Anonymous tags are already numbered.
194 if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
195 if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
196 return false;
197 }
198
199 // Use the canonical number for externally visible decls.
200 if (ND->isExternallyVisible()) {
201 unsigned discriminator = getASTContext().getManglingNumber(ND);
202 if (discriminator == 1)
203 return false;
204 disc = discriminator - 2;
205 return true;
206 }
207
208 // Make up a reasonable number for internal decls.
209 unsigned &discriminator = Uniquifier[ND];
210 if (!discriminator) {
211 const DeclContext *DC = getEffectiveDeclContext(ND);
212 discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
213 }
214 if (discriminator == 1)
215 return false;
216 disc = discriminator-2;
217 return true;
218 }
219
getLambdaString(const CXXRecordDecl * Lambda)220 std::string getLambdaString(const CXXRecordDecl *Lambda) override {
221 // This function matches the one in MicrosoftMangle, which returns
222 // the string that is used in lambda mangled names.
223 assert(Lambda->isLambda() && "RD must be a lambda!");
224 std::string Name("<lambda");
225 Decl *LambdaContextDecl = Lambda->getLambdaContextDecl();
226 unsigned LambdaManglingNumber = Lambda->getLambdaManglingNumber();
227 unsigned LambdaId;
228 const ParmVarDecl *Parm = dyn_cast_or_null<ParmVarDecl>(LambdaContextDecl);
229 const FunctionDecl *Func =
230 Parm ? dyn_cast<FunctionDecl>(Parm->getDeclContext()) : nullptr;
231
232 if (Func) {
233 unsigned DefaultArgNo =
234 Func->getNumParams() - Parm->getFunctionScopeIndex();
235 Name += llvm::utostr(DefaultArgNo);
236 Name += "_";
237 }
238
239 if (LambdaManglingNumber)
240 LambdaId = LambdaManglingNumber;
241 else
242 LambdaId = getAnonymousStructIdForDebugInfo(Lambda);
243
244 Name += llvm::utostr(LambdaId);
245 Name += '>';
246 return Name;
247 }
248
249 /// @}
250 };
251
252 /// Manage the mangling of a single name.
253 class CXXNameMangler {
254 ItaniumMangleContextImpl &Context;
255 raw_ostream &Out;
256 bool NullOut = false;
257 /// In the "DisableDerivedAbiTags" mode derived ABI tags are not calculated.
258 /// This mode is used when mangler creates another mangler recursively to
259 /// calculate ABI tags for the function return value or the variable type.
260 /// Also it is required to avoid infinite recursion in some cases.
261 bool DisableDerivedAbiTags = false;
262
263 /// The "structor" is the top-level declaration being mangled, if
264 /// that's not a template specialization; otherwise it's the pattern
265 /// for that specialization.
266 const NamedDecl *Structor;
267 unsigned StructorType;
268
269 /// The next substitution sequence number.
270 unsigned SeqID;
271
272 class FunctionTypeDepthState {
273 unsigned Bits;
274
275 enum { InResultTypeMask = 1 };
276
277 public:
FunctionTypeDepthState()278 FunctionTypeDepthState() : Bits(0) {}
279
280 /// The number of function types we're inside.
getDepth() const281 unsigned getDepth() const {
282 return Bits >> 1;
283 }
284
285 /// True if we're in the return type of the innermost function type.
isInResultType() const286 bool isInResultType() const {
287 return Bits & InResultTypeMask;
288 }
289
push()290 FunctionTypeDepthState push() {
291 FunctionTypeDepthState tmp = *this;
292 Bits = (Bits & ~InResultTypeMask) + 2;
293 return tmp;
294 }
295
enterResultType()296 void enterResultType() {
297 Bits |= InResultTypeMask;
298 }
299
leaveResultType()300 void leaveResultType() {
301 Bits &= ~InResultTypeMask;
302 }
303
pop(FunctionTypeDepthState saved)304 void pop(FunctionTypeDepthState saved) {
305 assert(getDepth() == saved.getDepth() + 1);
306 Bits = saved.Bits;
307 }
308
309 } FunctionTypeDepth;
310
311 // abi_tag is a gcc attribute, taking one or more strings called "tags".
312 // The goal is to annotate against which version of a library an object was
313 // built and to be able to provide backwards compatibility ("dual abi").
314 // For more information see docs/ItaniumMangleAbiTags.rst.
315 typedef SmallVector<StringRef, 4> AbiTagList;
316
317 // State to gather all implicit and explicit tags used in a mangled name.
318 // Must always have an instance of this while emitting any name to keep
319 // track.
320 class AbiTagState final {
321 public:
AbiTagState(AbiTagState * & Head)322 explicit AbiTagState(AbiTagState *&Head) : LinkHead(Head) {
323 Parent = LinkHead;
324 LinkHead = this;
325 }
326
327 // No copy, no move.
328 AbiTagState(const AbiTagState &) = delete;
329 AbiTagState &operator=(const AbiTagState &) = delete;
330
~AbiTagState()331 ~AbiTagState() { pop(); }
332
write(raw_ostream & Out,const NamedDecl * ND,const AbiTagList * AdditionalAbiTags)333 void write(raw_ostream &Out, const NamedDecl *ND,
334 const AbiTagList *AdditionalAbiTags) {
335 ND = cast<NamedDecl>(ND->getCanonicalDecl());
336 if (!isa<FunctionDecl>(ND) && !isa<VarDecl>(ND)) {
337 assert(
338 !AdditionalAbiTags &&
339 "only function and variables need a list of additional abi tags");
340 if (const auto *NS = dyn_cast<NamespaceDecl>(ND)) {
341 if (const auto *AbiTag = NS->getAttr<AbiTagAttr>()) {
342 UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
343 AbiTag->tags().end());
344 }
345 // Don't emit abi tags for namespaces.
346 return;
347 }
348 }
349
350 AbiTagList TagList;
351 if (const auto *AbiTag = ND->getAttr<AbiTagAttr>()) {
352 UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
353 AbiTag->tags().end());
354 TagList.insert(TagList.end(), AbiTag->tags().begin(),
355 AbiTag->tags().end());
356 }
357
358 if (AdditionalAbiTags) {
359 UsedAbiTags.insert(UsedAbiTags.end(), AdditionalAbiTags->begin(),
360 AdditionalAbiTags->end());
361 TagList.insert(TagList.end(), AdditionalAbiTags->begin(),
362 AdditionalAbiTags->end());
363 }
364
365 llvm::sort(TagList);
366 TagList.erase(std::unique(TagList.begin(), TagList.end()), TagList.end());
367
368 writeSortedUniqueAbiTags(Out, TagList);
369 }
370
getUsedAbiTags() const371 const AbiTagList &getUsedAbiTags() const { return UsedAbiTags; }
setUsedAbiTags(const AbiTagList & AbiTags)372 void setUsedAbiTags(const AbiTagList &AbiTags) {
373 UsedAbiTags = AbiTags;
374 }
375
getEmittedAbiTags() const376 const AbiTagList &getEmittedAbiTags() const {
377 return EmittedAbiTags;
378 }
379
getSortedUniqueUsedAbiTags()380 const AbiTagList &getSortedUniqueUsedAbiTags() {
381 llvm::sort(UsedAbiTags);
382 UsedAbiTags.erase(std::unique(UsedAbiTags.begin(), UsedAbiTags.end()),
383 UsedAbiTags.end());
384 return UsedAbiTags;
385 }
386
387 private:
388 //! All abi tags used implicitly or explicitly.
389 AbiTagList UsedAbiTags;
390 //! All explicit abi tags (i.e. not from namespace).
391 AbiTagList EmittedAbiTags;
392
393 AbiTagState *&LinkHead;
394 AbiTagState *Parent = nullptr;
395
pop()396 void pop() {
397 assert(LinkHead == this &&
398 "abi tag link head must point to us on destruction");
399 if (Parent) {
400 Parent->UsedAbiTags.insert(Parent->UsedAbiTags.end(),
401 UsedAbiTags.begin(), UsedAbiTags.end());
402 Parent->EmittedAbiTags.insert(Parent->EmittedAbiTags.end(),
403 EmittedAbiTags.begin(),
404 EmittedAbiTags.end());
405 }
406 LinkHead = Parent;
407 }
408
writeSortedUniqueAbiTags(raw_ostream & Out,const AbiTagList & AbiTags)409 void writeSortedUniqueAbiTags(raw_ostream &Out, const AbiTagList &AbiTags) {
410 for (const auto &Tag : AbiTags) {
411 EmittedAbiTags.push_back(Tag);
412 Out << "B";
413 Out << Tag.size();
414 Out << Tag;
415 }
416 }
417 };
418
419 AbiTagState *AbiTags = nullptr;
420 AbiTagState AbiTagsRoot;
421
422 llvm::DenseMap<uintptr_t, unsigned> Substitutions;
423 llvm::DenseMap<StringRef, unsigned> ModuleSubstitutions;
424
getASTContext() const425 ASTContext &getASTContext() const { return Context.getASTContext(); }
426
427 public:
CXXNameMangler(ItaniumMangleContextImpl & C,raw_ostream & Out_,const NamedDecl * D=nullptr,bool NullOut_=false)428 CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
429 const NamedDecl *D = nullptr, bool NullOut_ = false)
430 : Context(C), Out(Out_), NullOut(NullOut_), Structor(getStructor(D)),
431 StructorType(0), SeqID(0), AbiTagsRoot(AbiTags) {
432 // These can't be mangled without a ctor type or dtor type.
433 assert(!D || (!isa<CXXDestructorDecl>(D) &&
434 !isa<CXXConstructorDecl>(D)));
435 }
CXXNameMangler(ItaniumMangleContextImpl & C,raw_ostream & Out_,const CXXConstructorDecl * D,CXXCtorType Type)436 CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
437 const CXXConstructorDecl *D, CXXCtorType Type)
438 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
439 SeqID(0), AbiTagsRoot(AbiTags) { }
CXXNameMangler(ItaniumMangleContextImpl & C,raw_ostream & Out_,const CXXDestructorDecl * D,CXXDtorType Type)440 CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
441 const CXXDestructorDecl *D, CXXDtorType Type)
442 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
443 SeqID(0), AbiTagsRoot(AbiTags) { }
444
CXXNameMangler(CXXNameMangler & Outer,raw_ostream & Out_)445 CXXNameMangler(CXXNameMangler &Outer, raw_ostream &Out_)
446 : Context(Outer.Context), Out(Out_), NullOut(false),
447 Structor(Outer.Structor), StructorType(Outer.StructorType),
448 SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
449 AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
450
CXXNameMangler(CXXNameMangler & Outer,llvm::raw_null_ostream & Out_)451 CXXNameMangler(CXXNameMangler &Outer, llvm::raw_null_ostream &Out_)
452 : Context(Outer.Context), Out(Out_), NullOut(true),
453 Structor(Outer.Structor), StructorType(Outer.StructorType),
454 SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
455 AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
456
getStream()457 raw_ostream &getStream() { return Out; }
458
disableDerivedAbiTags()459 void disableDerivedAbiTags() { DisableDerivedAbiTags = true; }
460 static bool shouldHaveAbiTags(ItaniumMangleContextImpl &C, const VarDecl *VD);
461
462 void mangle(GlobalDecl GD);
463 void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
464 void mangleNumber(const llvm::APSInt &I);
465 void mangleNumber(int64_t Number);
466 void mangleFloat(const llvm::APFloat &F);
467 void mangleFunctionEncoding(GlobalDecl GD);
468 void mangleSeqID(unsigned SeqID);
469 void mangleName(GlobalDecl GD);
470 void mangleType(QualType T);
471 void mangleNameOrStandardSubstitution(const NamedDecl *ND);
472 void mangleLambdaSig(const CXXRecordDecl *Lambda);
473
474 private:
475
476 bool mangleSubstitution(const NamedDecl *ND);
477 bool mangleSubstitution(QualType T);
478 bool mangleSubstitution(TemplateName Template);
479 bool mangleSubstitution(uintptr_t Ptr);
480
481 void mangleExistingSubstitution(TemplateName name);
482
483 bool mangleStandardSubstitution(const NamedDecl *ND);
484
addSubstitution(const NamedDecl * ND)485 void addSubstitution(const NamedDecl *ND) {
486 ND = cast<NamedDecl>(ND->getCanonicalDecl());
487
488 addSubstitution(reinterpret_cast<uintptr_t>(ND));
489 }
490 void addSubstitution(QualType T);
491 void addSubstitution(TemplateName Template);
492 void addSubstitution(uintptr_t Ptr);
493 // Destructive copy substitutions from other mangler.
494 void extendSubstitutions(CXXNameMangler* Other);
495
496 void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
497 bool recursive = false);
498 void mangleUnresolvedName(NestedNameSpecifier *qualifier,
499 DeclarationName name,
500 const TemplateArgumentLoc *TemplateArgs,
501 unsigned NumTemplateArgs,
502 unsigned KnownArity = UnknownArity);
503
504 void mangleFunctionEncodingBareType(const FunctionDecl *FD);
505
506 void mangleNameWithAbiTags(GlobalDecl GD,
507 const AbiTagList *AdditionalAbiTags);
508 void mangleModuleName(const Module *M);
509 void mangleModuleNamePrefix(StringRef Name);
510 void mangleTemplateName(const TemplateDecl *TD,
511 const TemplateArgument *TemplateArgs,
512 unsigned NumTemplateArgs);
mangleUnqualifiedName(GlobalDecl GD,const AbiTagList * AdditionalAbiTags)513 void mangleUnqualifiedName(GlobalDecl GD,
514 const AbiTagList *AdditionalAbiTags) {
515 mangleUnqualifiedName(GD, cast<NamedDecl>(GD.getDecl())->getDeclName(), UnknownArity,
516 AdditionalAbiTags);
517 }
518 void mangleUnqualifiedName(GlobalDecl GD, DeclarationName Name,
519 unsigned KnownArity,
520 const AbiTagList *AdditionalAbiTags);
521 void mangleUnscopedName(GlobalDecl GD,
522 const AbiTagList *AdditionalAbiTags);
523 void mangleUnscopedTemplateName(GlobalDecl GD,
524 const AbiTagList *AdditionalAbiTags);
525 void mangleSourceName(const IdentifierInfo *II);
526 void mangleRegCallName(const IdentifierInfo *II);
527 void mangleDeviceStubName(const IdentifierInfo *II);
528 void mangleSourceNameWithAbiTags(
529 const NamedDecl *ND, const AbiTagList *AdditionalAbiTags = nullptr);
530 void mangleLocalName(GlobalDecl GD,
531 const AbiTagList *AdditionalAbiTags);
532 void mangleBlockForPrefix(const BlockDecl *Block);
533 void mangleUnqualifiedBlock(const BlockDecl *Block);
534 void mangleTemplateParamDecl(const NamedDecl *Decl);
535 void mangleLambda(const CXXRecordDecl *Lambda);
536 void mangleNestedName(GlobalDecl GD, const DeclContext *DC,
537 const AbiTagList *AdditionalAbiTags,
538 bool NoFunction=false);
539 void mangleNestedName(const TemplateDecl *TD,
540 const TemplateArgument *TemplateArgs,
541 unsigned NumTemplateArgs);
542 void mangleNestedNameWithClosurePrefix(GlobalDecl GD,
543 const NamedDecl *PrefixND,
544 const AbiTagList *AdditionalAbiTags);
545 void manglePrefix(NestedNameSpecifier *qualifier);
546 void manglePrefix(const DeclContext *DC, bool NoFunction=false);
547 void manglePrefix(QualType type);
548 void mangleTemplatePrefix(GlobalDecl GD, bool NoFunction=false);
549 void mangleTemplatePrefix(TemplateName Template);
550 const NamedDecl *getClosurePrefix(const Decl *ND);
551 void mangleClosurePrefix(const NamedDecl *ND, bool NoFunction = false);
552 bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType,
553 StringRef Prefix = "");
554 void mangleOperatorName(DeclarationName Name, unsigned Arity);
555 void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
556 void mangleVendorQualifier(StringRef qualifier);
557 void mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST = nullptr);
558 void mangleRefQualifier(RefQualifierKind RefQualifier);
559
560 void mangleObjCMethodName(const ObjCMethodDecl *MD);
561
562 // Declare manglers for every type class.
563 #define ABSTRACT_TYPE(CLASS, PARENT)
564 #define NON_CANONICAL_TYPE(CLASS, PARENT)
565 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
566 #include "clang/AST/TypeNodes.inc"
567
568 void mangleType(const TagType*);
569 void mangleType(TemplateName);
570 static StringRef getCallingConvQualifierName(CallingConv CC);
571 void mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo info);
572 void mangleExtFunctionInfo(const FunctionType *T);
573 void mangleBareFunctionType(const FunctionProtoType *T, bool MangleReturnType,
574 const FunctionDecl *FD = nullptr);
575 void mangleNeonVectorType(const VectorType *T);
576 void mangleNeonVectorType(const DependentVectorType *T);
577 void mangleAArch64NeonVectorType(const VectorType *T);
578 void mangleAArch64NeonVectorType(const DependentVectorType *T);
579 void mangleAArch64FixedSveVectorType(const VectorType *T);
580 void mangleAArch64FixedSveVectorType(const DependentVectorType *T);
581
582 void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
583 void mangleFloatLiteral(QualType T, const llvm::APFloat &V);
584 void mangleFixedPointLiteral();
585 void mangleNullPointer(QualType T);
586
587 void mangleMemberExprBase(const Expr *base, bool isArrow);
588 void mangleMemberExpr(const Expr *base, bool isArrow,
589 NestedNameSpecifier *qualifier,
590 NamedDecl *firstQualifierLookup,
591 DeclarationName name,
592 const TemplateArgumentLoc *TemplateArgs,
593 unsigned NumTemplateArgs,
594 unsigned knownArity);
595 void mangleCastExpression(const Expr *E, StringRef CastEncoding);
596 void mangleInitListElements(const InitListExpr *InitList);
597 void mangleExpression(const Expr *E, unsigned Arity = UnknownArity,
598 bool AsTemplateArg = false);
599 void mangleCXXCtorType(CXXCtorType T, const CXXRecordDecl *InheritedFrom);
600 void mangleCXXDtorType(CXXDtorType T);
601
602 void mangleTemplateArgs(TemplateName TN,
603 const TemplateArgumentLoc *TemplateArgs,
604 unsigned NumTemplateArgs);
605 void mangleTemplateArgs(TemplateName TN, const TemplateArgument *TemplateArgs,
606 unsigned NumTemplateArgs);
607 void mangleTemplateArgs(TemplateName TN, const TemplateArgumentList &AL);
608 void mangleTemplateArg(TemplateArgument A, bool NeedExactType);
609 void mangleTemplateArgExpr(const Expr *E);
610 void mangleValueInTemplateArg(QualType T, const APValue &V, bool TopLevel,
611 bool NeedExactType = false);
612
613 void mangleTemplateParameter(unsigned Depth, unsigned Index);
614
615 void mangleFunctionParam(const ParmVarDecl *parm);
616
617 void writeAbiTags(const NamedDecl *ND,
618 const AbiTagList *AdditionalAbiTags);
619
620 // Returns sorted unique list of ABI tags.
621 AbiTagList makeFunctionReturnTypeTags(const FunctionDecl *FD);
622 // Returns sorted unique list of ABI tags.
623 AbiTagList makeVariableTypeTags(const VarDecl *VD);
624 };
625
626 }
627
isInternalLinkageDecl(const NamedDecl * ND)628 static bool isInternalLinkageDecl(const NamedDecl *ND) {
629 if (ND && ND->getFormalLinkage() == InternalLinkage &&
630 !ND->isExternallyVisible() &&
631 getEffectiveDeclContext(ND)->isFileContext() &&
632 !ND->isInAnonymousNamespace())
633 return true;
634 return false;
635 }
636
637 // Check if this Function Decl needs a unique internal linkage name.
isUniqueInternalLinkageDecl(const NamedDecl * ND)638 bool ItaniumMangleContextImpl::isUniqueInternalLinkageDecl(
639 const NamedDecl *ND) {
640 if (!NeedsUniqueInternalLinkageNames || !ND)
641 return false;
642
643 const auto *FD = dyn_cast<FunctionDecl>(ND);
644 if (!FD)
645 return false;
646
647 // For C functions without prototypes, return false as their
648 // names should not be mangled.
649 if (!FD->hasPrototype())
650 return false;
651
652 if (isInternalLinkageDecl(ND))
653 return true;
654
655 return false;
656 }
657
shouldMangleCXXName(const NamedDecl * D)658 bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
659 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
660 if (FD) {
661 LanguageLinkage L = FD->getLanguageLinkage();
662 // Overloadable functions need mangling.
663 if (FD->hasAttr<OverloadableAttr>())
664 return true;
665
666 // "main" is not mangled.
667 if (FD->isMain())
668 return false;
669
670 // The Windows ABI expects that we would never mangle "typical"
671 // user-defined entry points regardless of visibility or freestanding-ness.
672 //
673 // N.B. This is distinct from asking about "main". "main" has a lot of
674 // special rules associated with it in the standard while these
675 // user-defined entry points are outside of the purview of the standard.
676 // For example, there can be only one definition for "main" in a standards
677 // compliant program; however nothing forbids the existence of wmain and
678 // WinMain in the same translation unit.
679 if (FD->isMSVCRTEntryPoint())
680 return false;
681
682 // C++ functions and those whose names are not a simple identifier need
683 // mangling.
684 if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
685 return true;
686
687 // C functions are not mangled.
688 if (L == CLanguageLinkage)
689 return false;
690 }
691
692 // Otherwise, no mangling is done outside C++ mode.
693 if (!getASTContext().getLangOpts().CPlusPlus)
694 return false;
695
696 const VarDecl *VD = dyn_cast<VarDecl>(D);
697 if (VD && !isa<DecompositionDecl>(D)) {
698 // C variables are not mangled.
699 if (VD->isExternC())
700 return false;
701
702 // Variables at global scope with non-internal linkage are not mangled
703 const DeclContext *DC = getEffectiveDeclContext(D);
704 // Check for extern variable declared locally.
705 if (DC->isFunctionOrMethod() && D->hasLinkage())
706 while (!DC->isNamespace() && !DC->isTranslationUnit())
707 DC = getEffectiveParentContext(DC);
708 if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
709 !CXXNameMangler::shouldHaveAbiTags(*this, VD) &&
710 !isa<VarTemplateSpecializationDecl>(D))
711 return false;
712 }
713
714 return true;
715 }
716
writeAbiTags(const NamedDecl * ND,const AbiTagList * AdditionalAbiTags)717 void CXXNameMangler::writeAbiTags(const NamedDecl *ND,
718 const AbiTagList *AdditionalAbiTags) {
719 assert(AbiTags && "require AbiTagState");
720 AbiTags->write(Out, ND, DisableDerivedAbiTags ? nullptr : AdditionalAbiTags);
721 }
722
mangleSourceNameWithAbiTags(const NamedDecl * ND,const AbiTagList * AdditionalAbiTags)723 void CXXNameMangler::mangleSourceNameWithAbiTags(
724 const NamedDecl *ND, const AbiTagList *AdditionalAbiTags) {
725 mangleSourceName(ND->getIdentifier());
726 writeAbiTags(ND, AdditionalAbiTags);
727 }
728
mangle(GlobalDecl GD)729 void CXXNameMangler::mangle(GlobalDecl GD) {
730 // <mangled-name> ::= _Z <encoding>
731 // ::= <data name>
732 // ::= <special-name>
733 Out << "_Z";
734 if (isa<FunctionDecl>(GD.getDecl()))
735 mangleFunctionEncoding(GD);
736 else if (isa<VarDecl, FieldDecl, MSGuidDecl, TemplateParamObjectDecl,
737 BindingDecl>(GD.getDecl()))
738 mangleName(GD);
739 else if (const IndirectFieldDecl *IFD =
740 dyn_cast<IndirectFieldDecl>(GD.getDecl()))
741 mangleName(IFD->getAnonField());
742 else
743 llvm_unreachable("unexpected kind of global decl");
744 }
745
mangleFunctionEncoding(GlobalDecl GD)746 void CXXNameMangler::mangleFunctionEncoding(GlobalDecl GD) {
747 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
748 // <encoding> ::= <function name> <bare-function-type>
749
750 // Don't mangle in the type if this isn't a decl we should typically mangle.
751 if (!Context.shouldMangleDeclName(FD)) {
752 mangleName(GD);
753 return;
754 }
755
756 AbiTagList ReturnTypeAbiTags = makeFunctionReturnTypeTags(FD);
757 if (ReturnTypeAbiTags.empty()) {
758 // There are no tags for return type, the simplest case.
759 mangleName(GD);
760 mangleFunctionEncodingBareType(FD);
761 return;
762 }
763
764 // Mangle function name and encoding to temporary buffer.
765 // We have to output name and encoding to the same mangler to get the same
766 // substitution as it will be in final mangling.
767 SmallString<256> FunctionEncodingBuf;
768 llvm::raw_svector_ostream FunctionEncodingStream(FunctionEncodingBuf);
769 CXXNameMangler FunctionEncodingMangler(*this, FunctionEncodingStream);
770 // Output name of the function.
771 FunctionEncodingMangler.disableDerivedAbiTags();
772 FunctionEncodingMangler.mangleNameWithAbiTags(FD, nullptr);
773
774 // Remember length of the function name in the buffer.
775 size_t EncodingPositionStart = FunctionEncodingStream.str().size();
776 FunctionEncodingMangler.mangleFunctionEncodingBareType(FD);
777
778 // Get tags from return type that are not present in function name or
779 // encoding.
780 const AbiTagList &UsedAbiTags =
781 FunctionEncodingMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
782 AbiTagList AdditionalAbiTags(ReturnTypeAbiTags.size());
783 AdditionalAbiTags.erase(
784 std::set_difference(ReturnTypeAbiTags.begin(), ReturnTypeAbiTags.end(),
785 UsedAbiTags.begin(), UsedAbiTags.end(),
786 AdditionalAbiTags.begin()),
787 AdditionalAbiTags.end());
788
789 // Output name with implicit tags and function encoding from temporary buffer.
790 mangleNameWithAbiTags(FD, &AdditionalAbiTags);
791 Out << FunctionEncodingStream.str().substr(EncodingPositionStart);
792
793 // Function encoding could create new substitutions so we have to add
794 // temp mangled substitutions to main mangler.
795 extendSubstitutions(&FunctionEncodingMangler);
796 }
797
mangleFunctionEncodingBareType(const FunctionDecl * FD)798 void CXXNameMangler::mangleFunctionEncodingBareType(const FunctionDecl *FD) {
799 if (FD->hasAttr<EnableIfAttr>()) {
800 FunctionTypeDepthState Saved = FunctionTypeDepth.push();
801 Out << "Ua9enable_ifI";
802 for (AttrVec::const_iterator I = FD->getAttrs().begin(),
803 E = FD->getAttrs().end();
804 I != E; ++I) {
805 EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I);
806 if (!EIA)
807 continue;
808 if (Context.getASTContext().getLangOpts().getClangABICompat() >
809 LangOptions::ClangABI::Ver11) {
810 mangleTemplateArgExpr(EIA->getCond());
811 } else {
812 // Prior to Clang 12, we hardcoded the X/E around enable-if's argument,
813 // even though <template-arg> should not include an X/E around
814 // <expr-primary>.
815 Out << 'X';
816 mangleExpression(EIA->getCond());
817 Out << 'E';
818 }
819 }
820 Out << 'E';
821 FunctionTypeDepth.pop(Saved);
822 }
823
824 // When mangling an inheriting constructor, the bare function type used is
825 // that of the inherited constructor.
826 if (auto *CD = dyn_cast<CXXConstructorDecl>(FD))
827 if (auto Inherited = CD->getInheritedConstructor())
828 FD = Inherited.getConstructor();
829
830 // Whether the mangling of a function type includes the return type depends on
831 // the context and the nature of the function. The rules for deciding whether
832 // the return type is included are:
833 //
834 // 1. Template functions (names or types) have return types encoded, with
835 // the exceptions listed below.
836 // 2. Function types not appearing as part of a function name mangling,
837 // e.g. parameters, pointer types, etc., have return type encoded, with the
838 // exceptions listed below.
839 // 3. Non-template function names do not have return types encoded.
840 //
841 // The exceptions mentioned in (1) and (2) above, for which the return type is
842 // never included, are
843 // 1. Constructors.
844 // 2. Destructors.
845 // 3. Conversion operator functions, e.g. operator int.
846 bool MangleReturnType = false;
847 if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
848 if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
849 isa<CXXConversionDecl>(FD)))
850 MangleReturnType = true;
851
852 // Mangle the type of the primary template.
853 FD = PrimaryTemplate->getTemplatedDecl();
854 }
855
856 mangleBareFunctionType(FD->getType()->castAs<FunctionProtoType>(),
857 MangleReturnType, FD);
858 }
859
IgnoreLinkageSpecDecls(const DeclContext * DC)860 static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
861 while (isa<LinkageSpecDecl>(DC)) {
862 DC = getEffectiveParentContext(DC);
863 }
864
865 return DC;
866 }
867
868 /// Return whether a given namespace is the 'std' namespace.
isStd(const NamespaceDecl * NS)869 static bool isStd(const NamespaceDecl *NS) {
870 if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
871 ->isTranslationUnit())
872 return false;
873
874 const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
875 return II && II->isStr("std");
876 }
877
878 // isStdNamespace - Return whether a given decl context is a toplevel 'std'
879 // namespace.
isStdNamespace(const DeclContext * DC)880 static bool isStdNamespace(const DeclContext *DC) {
881 if (!DC->isNamespace())
882 return false;
883
884 return isStd(cast<NamespaceDecl>(DC));
885 }
886
887 static const GlobalDecl
isTemplate(GlobalDecl GD,const TemplateArgumentList * & TemplateArgs)888 isTemplate(GlobalDecl GD, const TemplateArgumentList *&TemplateArgs) {
889 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
890 // Check if we have a function template.
891 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
892 if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
893 TemplateArgs = FD->getTemplateSpecializationArgs();
894 return GD.getWithDecl(TD);
895 }
896 }
897
898 // Check if we have a class template.
899 if (const ClassTemplateSpecializationDecl *Spec =
900 dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
901 TemplateArgs = &Spec->getTemplateArgs();
902 return GD.getWithDecl(Spec->getSpecializedTemplate());
903 }
904
905 // Check if we have a variable template.
906 if (const VarTemplateSpecializationDecl *Spec =
907 dyn_cast<VarTemplateSpecializationDecl>(ND)) {
908 TemplateArgs = &Spec->getTemplateArgs();
909 return GD.getWithDecl(Spec->getSpecializedTemplate());
910 }
911
912 return GlobalDecl();
913 }
914
asTemplateName(GlobalDecl GD)915 static TemplateName asTemplateName(GlobalDecl GD) {
916 const TemplateDecl *TD = dyn_cast_or_null<TemplateDecl>(GD.getDecl());
917 return TemplateName(const_cast<TemplateDecl*>(TD));
918 }
919
mangleName(GlobalDecl GD)920 void CXXNameMangler::mangleName(GlobalDecl GD) {
921 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
922 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
923 // Variables should have implicit tags from its type.
924 AbiTagList VariableTypeAbiTags = makeVariableTypeTags(VD);
925 if (VariableTypeAbiTags.empty()) {
926 // Simple case no variable type tags.
927 mangleNameWithAbiTags(VD, nullptr);
928 return;
929 }
930
931 // Mangle variable name to null stream to collect tags.
932 llvm::raw_null_ostream NullOutStream;
933 CXXNameMangler VariableNameMangler(*this, NullOutStream);
934 VariableNameMangler.disableDerivedAbiTags();
935 VariableNameMangler.mangleNameWithAbiTags(VD, nullptr);
936
937 // Get tags from variable type that are not present in its name.
938 const AbiTagList &UsedAbiTags =
939 VariableNameMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
940 AbiTagList AdditionalAbiTags(VariableTypeAbiTags.size());
941 AdditionalAbiTags.erase(
942 std::set_difference(VariableTypeAbiTags.begin(),
943 VariableTypeAbiTags.end(), UsedAbiTags.begin(),
944 UsedAbiTags.end(), AdditionalAbiTags.begin()),
945 AdditionalAbiTags.end());
946
947 // Output name with implicit tags.
948 mangleNameWithAbiTags(VD, &AdditionalAbiTags);
949 } else {
950 mangleNameWithAbiTags(GD, nullptr);
951 }
952 }
953
mangleNameWithAbiTags(GlobalDecl GD,const AbiTagList * AdditionalAbiTags)954 void CXXNameMangler::mangleNameWithAbiTags(GlobalDecl GD,
955 const AbiTagList *AdditionalAbiTags) {
956 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
957 // <name> ::= [<module-name>] <nested-name>
958 // ::= [<module-name>] <unscoped-name>
959 // ::= [<module-name>] <unscoped-template-name> <template-args>
960 // ::= <local-name>
961 //
962 const DeclContext *DC = getEffectiveDeclContext(ND);
963
964 // If this is an extern variable declared locally, the relevant DeclContext
965 // is that of the containing namespace, or the translation unit.
966 // FIXME: This is a hack; extern variables declared locally should have
967 // a proper semantic declaration context!
968 if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
969 while (!DC->isNamespace() && !DC->isTranslationUnit())
970 DC = getEffectiveParentContext(DC);
971 else if (GetLocalClassDecl(ND)) {
972 mangleLocalName(GD, AdditionalAbiTags);
973 return;
974 }
975
976 DC = IgnoreLinkageSpecDecls(DC);
977
978 if (isLocalContainerContext(DC)) {
979 mangleLocalName(GD, AdditionalAbiTags);
980 return;
981 }
982
983 // Do not mangle the owning module for an external linkage declaration.
984 // This enables backwards-compatibility with non-modular code, and is
985 // a valid choice since conflicts are not permitted by C++ Modules TS
986 // [basic.def.odr]/6.2.
987 if (!ND->hasExternalFormalLinkage())
988 if (Module *M = ND->getOwningModuleForLinkage())
989 mangleModuleName(M);
990
991 // Closures can require a nested-name mangling even if they're semantically
992 // in the global namespace.
993 if (const NamedDecl *PrefixND = getClosurePrefix(ND)) {
994 mangleNestedNameWithClosurePrefix(GD, PrefixND, AdditionalAbiTags);
995 return;
996 }
997
998 if (DC->isTranslationUnit() || isStdNamespace(DC)) {
999 // Check if we have a template.
1000 const TemplateArgumentList *TemplateArgs = nullptr;
1001 if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) {
1002 mangleUnscopedTemplateName(TD, AdditionalAbiTags);
1003 mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
1004 return;
1005 }
1006
1007 mangleUnscopedName(GD, AdditionalAbiTags);
1008 return;
1009 }
1010
1011 mangleNestedName(GD, DC, AdditionalAbiTags);
1012 }
1013
mangleModuleName(const Module * M)1014 void CXXNameMangler::mangleModuleName(const Module *M) {
1015 // Implement the C++ Modules TS name mangling proposal; see
1016 // https://gcc.gnu.org/wiki/cxx-modules?action=AttachFile
1017 //
1018 // <module-name> ::= W <unscoped-name>+ E
1019 // ::= W <module-subst> <unscoped-name>* E
1020 Out << 'W';
1021 mangleModuleNamePrefix(M->Name);
1022 Out << 'E';
1023 }
1024
mangleModuleNamePrefix(StringRef Name)1025 void CXXNameMangler::mangleModuleNamePrefix(StringRef Name) {
1026 // <module-subst> ::= _ <seq-id> # 0 < seq-id < 10
1027 // ::= W <seq-id - 10> _ # otherwise
1028 auto It = ModuleSubstitutions.find(Name);
1029 if (It != ModuleSubstitutions.end()) {
1030 if (It->second < 10)
1031 Out << '_' << static_cast<char>('0' + It->second);
1032 else
1033 Out << 'W' << (It->second - 10) << '_';
1034 return;
1035 }
1036
1037 // FIXME: Preserve hierarchy in module names rather than flattening
1038 // them to strings; use Module*s as substitution keys.
1039 auto Parts = Name.rsplit('.');
1040 if (Parts.second.empty())
1041 Parts.second = Parts.first;
1042 else
1043 mangleModuleNamePrefix(Parts.first);
1044
1045 Out << Parts.second.size() << Parts.second;
1046 ModuleSubstitutions.insert({Name, ModuleSubstitutions.size()});
1047 }
1048
mangleTemplateName(const TemplateDecl * TD,const TemplateArgument * TemplateArgs,unsigned NumTemplateArgs)1049 void CXXNameMangler::mangleTemplateName(const TemplateDecl *TD,
1050 const TemplateArgument *TemplateArgs,
1051 unsigned NumTemplateArgs) {
1052 const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
1053
1054 if (DC->isTranslationUnit() || isStdNamespace(DC)) {
1055 mangleUnscopedTemplateName(TD, nullptr);
1056 mangleTemplateArgs(asTemplateName(TD), TemplateArgs, NumTemplateArgs);
1057 } else {
1058 mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
1059 }
1060 }
1061
mangleUnscopedName(GlobalDecl GD,const AbiTagList * AdditionalAbiTags)1062 void CXXNameMangler::mangleUnscopedName(GlobalDecl GD,
1063 const AbiTagList *AdditionalAbiTags) {
1064 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
1065 // <unscoped-name> ::= <unqualified-name>
1066 // ::= St <unqualified-name> # ::std::
1067
1068 if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
1069 Out << "St";
1070
1071 mangleUnqualifiedName(GD, AdditionalAbiTags);
1072 }
1073
mangleUnscopedTemplateName(GlobalDecl GD,const AbiTagList * AdditionalAbiTags)1074 void CXXNameMangler::mangleUnscopedTemplateName(
1075 GlobalDecl GD, const AbiTagList *AdditionalAbiTags) {
1076 const TemplateDecl *ND = cast<TemplateDecl>(GD.getDecl());
1077 // <unscoped-template-name> ::= <unscoped-name>
1078 // ::= <substitution>
1079 if (mangleSubstitution(ND))
1080 return;
1081
1082 // <template-template-param> ::= <template-param>
1083 if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1084 assert(!AdditionalAbiTags &&
1085 "template template param cannot have abi tags");
1086 mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
1087 } else if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND)) {
1088 mangleUnscopedName(GD, AdditionalAbiTags);
1089 } else {
1090 mangleUnscopedName(GD.getWithDecl(ND->getTemplatedDecl()), AdditionalAbiTags);
1091 }
1092
1093 addSubstitution(ND);
1094 }
1095
mangleFloat(const llvm::APFloat & f)1096 void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
1097 // ABI:
1098 // Floating-point literals are encoded using a fixed-length
1099 // lowercase hexadecimal string corresponding to the internal
1100 // representation (IEEE on Itanium), high-order bytes first,
1101 // without leading zeroes. For example: "Lf bf800000 E" is -1.0f
1102 // on Itanium.
1103 // The 'without leading zeroes' thing seems to be an editorial
1104 // mistake; see the discussion on cxx-abi-dev beginning on
1105 // 2012-01-16.
1106
1107 // Our requirements here are just barely weird enough to justify
1108 // using a custom algorithm instead of post-processing APInt::toString().
1109
1110 llvm::APInt valueBits = f.bitcastToAPInt();
1111 unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
1112 assert(numCharacters != 0);
1113
1114 // Allocate a buffer of the right number of characters.
1115 SmallVector<char, 20> buffer(numCharacters);
1116
1117 // Fill the buffer left-to-right.
1118 for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
1119 // The bit-index of the next hex digit.
1120 unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
1121
1122 // Project out 4 bits starting at 'digitIndex'.
1123 uint64_t hexDigit = valueBits.getRawData()[digitBitIndex / 64];
1124 hexDigit >>= (digitBitIndex % 64);
1125 hexDigit &= 0xF;
1126
1127 // Map that over to a lowercase hex digit.
1128 static const char charForHex[16] = {
1129 '0', '1', '2', '3', '4', '5', '6', '7',
1130 '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
1131 };
1132 buffer[stringIndex] = charForHex[hexDigit];
1133 }
1134
1135 Out.write(buffer.data(), numCharacters);
1136 }
1137
mangleFloatLiteral(QualType T,const llvm::APFloat & V)1138 void CXXNameMangler::mangleFloatLiteral(QualType T, const llvm::APFloat &V) {
1139 Out << 'L';
1140 mangleType(T);
1141 mangleFloat(V);
1142 Out << 'E';
1143 }
1144
mangleFixedPointLiteral()1145 void CXXNameMangler::mangleFixedPointLiteral() {
1146 DiagnosticsEngine &Diags = Context.getDiags();
1147 unsigned DiagID = Diags.getCustomDiagID(
1148 DiagnosticsEngine::Error, "cannot mangle fixed point literals yet");
1149 Diags.Report(DiagID);
1150 }
1151
mangleNullPointer(QualType T)1152 void CXXNameMangler::mangleNullPointer(QualType T) {
1153 // <expr-primary> ::= L <type> 0 E
1154 Out << 'L';
1155 mangleType(T);
1156 Out << "0E";
1157 }
1158
mangleNumber(const llvm::APSInt & Value)1159 void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
1160 if (Value.isSigned() && Value.isNegative()) {
1161 Out << 'n';
1162 Value.abs().print(Out, /*signed*/ false);
1163 } else {
1164 Value.print(Out, /*signed*/ false);
1165 }
1166 }
1167
mangleNumber(int64_t Number)1168 void CXXNameMangler::mangleNumber(int64_t Number) {
1169 // <number> ::= [n] <non-negative decimal integer>
1170 if (Number < 0) {
1171 Out << 'n';
1172 Number = -Number;
1173 }
1174
1175 Out << Number;
1176 }
1177
mangleCallOffset(int64_t NonVirtual,int64_t Virtual)1178 void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
1179 // <call-offset> ::= h <nv-offset> _
1180 // ::= v <v-offset> _
1181 // <nv-offset> ::= <offset number> # non-virtual base override
1182 // <v-offset> ::= <offset number> _ <virtual offset number>
1183 // # virtual base override, with vcall offset
1184 if (!Virtual) {
1185 Out << 'h';
1186 mangleNumber(NonVirtual);
1187 Out << '_';
1188 return;
1189 }
1190
1191 Out << 'v';
1192 mangleNumber(NonVirtual);
1193 Out << '_';
1194 mangleNumber(Virtual);
1195 Out << '_';
1196 }
1197
manglePrefix(QualType type)1198 void CXXNameMangler::manglePrefix(QualType type) {
1199 if (const auto *TST = type->getAs<TemplateSpecializationType>()) {
1200 if (!mangleSubstitution(QualType(TST, 0))) {
1201 mangleTemplatePrefix(TST->getTemplateName());
1202
1203 // FIXME: GCC does not appear to mangle the template arguments when
1204 // the template in question is a dependent template name. Should we
1205 // emulate that badness?
1206 mangleTemplateArgs(TST->getTemplateName(), TST->getArgs(),
1207 TST->getNumArgs());
1208 addSubstitution(QualType(TST, 0));
1209 }
1210 } else if (const auto *DTST =
1211 type->getAs<DependentTemplateSpecializationType>()) {
1212 if (!mangleSubstitution(QualType(DTST, 0))) {
1213 TemplateName Template = getASTContext().getDependentTemplateName(
1214 DTST->getQualifier(), DTST->getIdentifier());
1215 mangleTemplatePrefix(Template);
1216
1217 // FIXME: GCC does not appear to mangle the template arguments when
1218 // the template in question is a dependent template name. Should we
1219 // emulate that badness?
1220 mangleTemplateArgs(Template, DTST->getArgs(), DTST->getNumArgs());
1221 addSubstitution(QualType(DTST, 0));
1222 }
1223 } else {
1224 // We use the QualType mangle type variant here because it handles
1225 // substitutions.
1226 mangleType(type);
1227 }
1228 }
1229
1230 /// Mangle everything prior to the base-unresolved-name in an unresolved-name.
1231 ///
1232 /// \param recursive - true if this is being called recursively,
1233 /// i.e. if there is more prefix "to the right".
mangleUnresolvedPrefix(NestedNameSpecifier * qualifier,bool recursive)1234 void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
1235 bool recursive) {
1236
1237 // x, ::x
1238 // <unresolved-name> ::= [gs] <base-unresolved-name>
1239
1240 // T::x / decltype(p)::x
1241 // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
1242
1243 // T::N::x /decltype(p)::N::x
1244 // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
1245 // <base-unresolved-name>
1246
1247 // A::x, N::y, A<T>::z; "gs" means leading "::"
1248 // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
1249 // <base-unresolved-name>
1250
1251 switch (qualifier->getKind()) {
1252 case NestedNameSpecifier::Global:
1253 Out << "gs";
1254
1255 // We want an 'sr' unless this is the entire NNS.
1256 if (recursive)
1257 Out << "sr";
1258
1259 // We never want an 'E' here.
1260 return;
1261
1262 case NestedNameSpecifier::Super:
1263 llvm_unreachable("Can't mangle __super specifier");
1264
1265 case NestedNameSpecifier::Namespace:
1266 if (qualifier->getPrefix())
1267 mangleUnresolvedPrefix(qualifier->getPrefix(),
1268 /*recursive*/ true);
1269 else
1270 Out << "sr";
1271 mangleSourceNameWithAbiTags(qualifier->getAsNamespace());
1272 break;
1273 case NestedNameSpecifier::NamespaceAlias:
1274 if (qualifier->getPrefix())
1275 mangleUnresolvedPrefix(qualifier->getPrefix(),
1276 /*recursive*/ true);
1277 else
1278 Out << "sr";
1279 mangleSourceNameWithAbiTags(qualifier->getAsNamespaceAlias());
1280 break;
1281
1282 case NestedNameSpecifier::TypeSpec:
1283 case NestedNameSpecifier::TypeSpecWithTemplate: {
1284 const Type *type = qualifier->getAsType();
1285
1286 // We only want to use an unresolved-type encoding if this is one of:
1287 // - a decltype
1288 // - a template type parameter
1289 // - a template template parameter with arguments
1290 // In all of these cases, we should have no prefix.
1291 if (qualifier->getPrefix()) {
1292 mangleUnresolvedPrefix(qualifier->getPrefix(),
1293 /*recursive*/ true);
1294 } else {
1295 // Otherwise, all the cases want this.
1296 Out << "sr";
1297 }
1298
1299 if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : ""))
1300 return;
1301
1302 break;
1303 }
1304
1305 case NestedNameSpecifier::Identifier:
1306 // Member expressions can have these without prefixes.
1307 if (qualifier->getPrefix())
1308 mangleUnresolvedPrefix(qualifier->getPrefix(),
1309 /*recursive*/ true);
1310 else
1311 Out << "sr";
1312
1313 mangleSourceName(qualifier->getAsIdentifier());
1314 // An Identifier has no type information, so we can't emit abi tags for it.
1315 break;
1316 }
1317
1318 // If this was the innermost part of the NNS, and we fell out to
1319 // here, append an 'E'.
1320 if (!recursive)
1321 Out << 'E';
1322 }
1323
1324 /// Mangle an unresolved-name, which is generally used for names which
1325 /// weren't resolved to specific entities.
mangleUnresolvedName(NestedNameSpecifier * qualifier,DeclarationName name,const TemplateArgumentLoc * TemplateArgs,unsigned NumTemplateArgs,unsigned knownArity)1326 void CXXNameMangler::mangleUnresolvedName(
1327 NestedNameSpecifier *qualifier, DeclarationName name,
1328 const TemplateArgumentLoc *TemplateArgs, unsigned NumTemplateArgs,
1329 unsigned knownArity) {
1330 if (qualifier) mangleUnresolvedPrefix(qualifier);
1331 switch (name.getNameKind()) {
1332 // <base-unresolved-name> ::= <simple-id>
1333 case DeclarationName::Identifier:
1334 mangleSourceName(name.getAsIdentifierInfo());
1335 break;
1336 // <base-unresolved-name> ::= dn <destructor-name>
1337 case DeclarationName::CXXDestructorName:
1338 Out << "dn";
1339 mangleUnresolvedTypeOrSimpleId(name.getCXXNameType());
1340 break;
1341 // <base-unresolved-name> ::= on <operator-name>
1342 case DeclarationName::CXXConversionFunctionName:
1343 case DeclarationName::CXXLiteralOperatorName:
1344 case DeclarationName::CXXOperatorName:
1345 Out << "on";
1346 mangleOperatorName(name, knownArity);
1347 break;
1348 case DeclarationName::CXXConstructorName:
1349 llvm_unreachable("Can't mangle a constructor name!");
1350 case DeclarationName::CXXUsingDirective:
1351 llvm_unreachable("Can't mangle a using directive name!");
1352 case DeclarationName::CXXDeductionGuideName:
1353 llvm_unreachable("Can't mangle a deduction guide name!");
1354 case DeclarationName::ObjCMultiArgSelector:
1355 case DeclarationName::ObjCOneArgSelector:
1356 case DeclarationName::ObjCZeroArgSelector:
1357 llvm_unreachable("Can't mangle Objective-C selector names here!");
1358 }
1359
1360 // The <simple-id> and on <operator-name> productions end in an optional
1361 // <template-args>.
1362 if (TemplateArgs)
1363 mangleTemplateArgs(TemplateName(), TemplateArgs, NumTemplateArgs);
1364 }
1365
mangleUnqualifiedName(GlobalDecl GD,DeclarationName Name,unsigned KnownArity,const AbiTagList * AdditionalAbiTags)1366 void CXXNameMangler::mangleUnqualifiedName(GlobalDecl GD,
1367 DeclarationName Name,
1368 unsigned KnownArity,
1369 const AbiTagList *AdditionalAbiTags) {
1370 const NamedDecl *ND = cast_or_null<NamedDecl>(GD.getDecl());
1371 unsigned Arity = KnownArity;
1372 // <unqualified-name> ::= <operator-name>
1373 // ::= <ctor-dtor-name>
1374 // ::= <source-name>
1375 switch (Name.getNameKind()) {
1376 case DeclarationName::Identifier: {
1377 const IdentifierInfo *II = Name.getAsIdentifierInfo();
1378
1379 // We mangle decomposition declarations as the names of their bindings.
1380 if (auto *DD = dyn_cast<DecompositionDecl>(ND)) {
1381 // FIXME: Non-standard mangling for decomposition declarations:
1382 //
1383 // <unqualified-name> ::= DC <source-name>* E
1384 //
1385 // These can never be referenced across translation units, so we do
1386 // not need a cross-vendor mangling for anything other than demanglers.
1387 // Proposed on cxx-abi-dev on 2016-08-12
1388 Out << "DC";
1389 for (auto *BD : DD->bindings())
1390 mangleSourceName(BD->getDeclName().getAsIdentifierInfo());
1391 Out << 'E';
1392 writeAbiTags(ND, AdditionalAbiTags);
1393 break;
1394 }
1395
1396 if (auto *GD = dyn_cast<MSGuidDecl>(ND)) {
1397 // We follow MSVC in mangling GUID declarations as if they were variables
1398 // with a particular reserved name. Continue the pretense here.
1399 SmallString<sizeof("_GUID_12345678_1234_1234_1234_1234567890ab")> GUID;
1400 llvm::raw_svector_ostream GUIDOS(GUID);
1401 Context.mangleMSGuidDecl(GD, GUIDOS);
1402 Out << GUID.size() << GUID;
1403 break;
1404 }
1405
1406 if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) {
1407 // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63.
1408 Out << "TA";
1409 mangleValueInTemplateArg(TPO->getType().getUnqualifiedType(),
1410 TPO->getValue(), /*TopLevel=*/true);
1411 break;
1412 }
1413
1414 if (II) {
1415 // Match GCC's naming convention for internal linkage symbols, for
1416 // symbols that are not actually visible outside of this TU. GCC
1417 // distinguishes between internal and external linkage symbols in
1418 // its mangling, to support cases like this that were valid C++ prior
1419 // to DR426:
1420 //
1421 // void test() { extern void foo(); }
1422 // static void foo();
1423 //
1424 // Don't bother with the L marker for names in anonymous namespaces; the
1425 // 12_GLOBAL__N_1 mangling is quite sufficient there, and this better
1426 // matches GCC anyway, because GCC does not treat anonymous namespaces as
1427 // implying internal linkage.
1428 if (isInternalLinkageDecl(ND))
1429 Out << 'L';
1430
1431 auto *FD = dyn_cast<FunctionDecl>(ND);
1432 bool IsRegCall = FD &&
1433 FD->getType()->castAs<FunctionType>()->getCallConv() ==
1434 clang::CC_X86RegCall;
1435 bool IsDeviceStub =
1436 FD && FD->hasAttr<CUDAGlobalAttr>() &&
1437 GD.getKernelReferenceKind() == KernelReferenceKind::Stub;
1438 if (IsDeviceStub)
1439 mangleDeviceStubName(II);
1440 else if (IsRegCall)
1441 mangleRegCallName(II);
1442 else
1443 mangleSourceName(II);
1444
1445 writeAbiTags(ND, AdditionalAbiTags);
1446 break;
1447 }
1448
1449 // Otherwise, an anonymous entity. We must have a declaration.
1450 assert(ND && "mangling empty name without declaration");
1451
1452 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1453 if (NS->isAnonymousNamespace()) {
1454 // This is how gcc mangles these names.
1455 Out << "12_GLOBAL__N_1";
1456 break;
1457 }
1458 }
1459
1460 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1461 // We must have an anonymous union or struct declaration.
1462 const RecordDecl *RD = VD->getType()->castAs<RecordType>()->getDecl();
1463
1464 // Itanium C++ ABI 5.1.2:
1465 //
1466 // For the purposes of mangling, the name of an anonymous union is
1467 // considered to be the name of the first named data member found by a
1468 // pre-order, depth-first, declaration-order walk of the data members of
1469 // the anonymous union. If there is no such data member (i.e., if all of
1470 // the data members in the union are unnamed), then there is no way for
1471 // a program to refer to the anonymous union, and there is therefore no
1472 // need to mangle its name.
1473 assert(RD->isAnonymousStructOrUnion()
1474 && "Expected anonymous struct or union!");
1475 const FieldDecl *FD = RD->findFirstNamedDataMember();
1476
1477 // It's actually possible for various reasons for us to get here
1478 // with an empty anonymous struct / union. Fortunately, it
1479 // doesn't really matter what name we generate.
1480 if (!FD) break;
1481 assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1482
1483 mangleSourceName(FD->getIdentifier());
1484 // Not emitting abi tags: internal name anyway.
1485 break;
1486 }
1487
1488 // Class extensions have no name as a category, and it's possible
1489 // for them to be the semantic parent of certain declarations
1490 // (primarily, tag decls defined within declarations). Such
1491 // declarations will always have internal linkage, so the name
1492 // doesn't really matter, but we shouldn't crash on them. For
1493 // safety, just handle all ObjC containers here.
1494 if (isa<ObjCContainerDecl>(ND))
1495 break;
1496
1497 // We must have an anonymous struct.
1498 const TagDecl *TD = cast<TagDecl>(ND);
1499 if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1500 assert(TD->getDeclContext() == D->getDeclContext() &&
1501 "Typedef should not be in another decl context!");
1502 assert(D->getDeclName().getAsIdentifierInfo() &&
1503 "Typedef was not named!");
1504 mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1505 assert(!AdditionalAbiTags && "Type cannot have additional abi tags");
1506 // Explicit abi tags are still possible; take from underlying type, not
1507 // from typedef.
1508 writeAbiTags(TD, nullptr);
1509 break;
1510 }
1511
1512 // <unnamed-type-name> ::= <closure-type-name>
1513 //
1514 // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1515 // <lambda-sig> ::= <template-param-decl>* <parameter-type>+
1516 // # Parameter types or 'v' for 'void'.
1517 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1518 if (Record->isLambda() && Record->getLambdaManglingNumber()) {
1519 assert(!AdditionalAbiTags &&
1520 "Lambda type cannot have additional abi tags");
1521 mangleLambda(Record);
1522 break;
1523 }
1524 }
1525
1526 if (TD->isExternallyVisible()) {
1527 unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
1528 Out << "Ut";
1529 if (UnnamedMangle > 1)
1530 Out << UnnamedMangle - 2;
1531 Out << '_';
1532 writeAbiTags(TD, AdditionalAbiTags);
1533 break;
1534 }
1535
1536 // Get a unique id for the anonymous struct. If it is not a real output
1537 // ID doesn't matter so use fake one.
1538 unsigned AnonStructId = NullOut ? 0 : Context.getAnonymousStructId(TD);
1539
1540 // Mangle it as a source name in the form
1541 // [n] $_<id>
1542 // where n is the length of the string.
1543 SmallString<8> Str;
1544 Str += "$_";
1545 Str += llvm::utostr(AnonStructId);
1546
1547 Out << Str.size();
1548 Out << Str;
1549 break;
1550 }
1551
1552 case DeclarationName::ObjCZeroArgSelector:
1553 case DeclarationName::ObjCOneArgSelector:
1554 case DeclarationName::ObjCMultiArgSelector:
1555 llvm_unreachable("Can't mangle Objective-C selector names here!");
1556
1557 case DeclarationName::CXXConstructorName: {
1558 const CXXRecordDecl *InheritedFrom = nullptr;
1559 TemplateName InheritedTemplateName;
1560 const TemplateArgumentList *InheritedTemplateArgs = nullptr;
1561 if (auto Inherited =
1562 cast<CXXConstructorDecl>(ND)->getInheritedConstructor()) {
1563 InheritedFrom = Inherited.getConstructor()->getParent();
1564 InheritedTemplateName =
1565 TemplateName(Inherited.getConstructor()->getPrimaryTemplate());
1566 InheritedTemplateArgs =
1567 Inherited.getConstructor()->getTemplateSpecializationArgs();
1568 }
1569
1570 if (ND == Structor)
1571 // If the named decl is the C++ constructor we're mangling, use the type
1572 // we were given.
1573 mangleCXXCtorType(static_cast<CXXCtorType>(StructorType), InheritedFrom);
1574 else
1575 // Otherwise, use the complete constructor name. This is relevant if a
1576 // class with a constructor is declared within a constructor.
1577 mangleCXXCtorType(Ctor_Complete, InheritedFrom);
1578
1579 // FIXME: The template arguments are part of the enclosing prefix or
1580 // nested-name, but it's more convenient to mangle them here.
1581 if (InheritedTemplateArgs)
1582 mangleTemplateArgs(InheritedTemplateName, *InheritedTemplateArgs);
1583
1584 writeAbiTags(ND, AdditionalAbiTags);
1585 break;
1586 }
1587
1588 case DeclarationName::CXXDestructorName:
1589 if (ND == Structor)
1590 // If the named decl is the C++ destructor we're mangling, use the type we
1591 // were given.
1592 mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1593 else
1594 // Otherwise, use the complete destructor name. This is relevant if a
1595 // class with a destructor is declared within a destructor.
1596 mangleCXXDtorType(Dtor_Complete);
1597 writeAbiTags(ND, AdditionalAbiTags);
1598 break;
1599
1600 case DeclarationName::CXXOperatorName:
1601 if (ND && Arity == UnknownArity) {
1602 Arity = cast<FunctionDecl>(ND)->getNumParams();
1603
1604 // If we have a member function, we need to include the 'this' pointer.
1605 if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
1606 if (!MD->isStatic())
1607 Arity++;
1608 }
1609 LLVM_FALLTHROUGH;
1610 case DeclarationName::CXXConversionFunctionName:
1611 case DeclarationName::CXXLiteralOperatorName:
1612 mangleOperatorName(Name, Arity);
1613 writeAbiTags(ND, AdditionalAbiTags);
1614 break;
1615
1616 case DeclarationName::CXXDeductionGuideName:
1617 llvm_unreachable("Can't mangle a deduction guide name!");
1618
1619 case DeclarationName::CXXUsingDirective:
1620 llvm_unreachable("Can't mangle a using directive name!");
1621 }
1622 }
1623
mangleRegCallName(const IdentifierInfo * II)1624 void CXXNameMangler::mangleRegCallName(const IdentifierInfo *II) {
1625 // <source-name> ::= <positive length number> __regcall3__ <identifier>
1626 // <number> ::= [n] <non-negative decimal integer>
1627 // <identifier> ::= <unqualified source code identifier>
1628 Out << II->getLength() + sizeof("__regcall3__") - 1 << "__regcall3__"
1629 << II->getName();
1630 }
1631
mangleDeviceStubName(const IdentifierInfo * II)1632 void CXXNameMangler::mangleDeviceStubName(const IdentifierInfo *II) {
1633 // <source-name> ::= <positive length number> __device_stub__ <identifier>
1634 // <number> ::= [n] <non-negative decimal integer>
1635 // <identifier> ::= <unqualified source code identifier>
1636 Out << II->getLength() + sizeof("__device_stub__") - 1 << "__device_stub__"
1637 << II->getName();
1638 }
1639
mangleSourceName(const IdentifierInfo * II)1640 void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1641 // <source-name> ::= <positive length number> <identifier>
1642 // <number> ::= [n] <non-negative decimal integer>
1643 // <identifier> ::= <unqualified source code identifier>
1644 Out << II->getLength() << II->getName();
1645 }
1646
mangleNestedName(GlobalDecl GD,const DeclContext * DC,const AbiTagList * AdditionalAbiTags,bool NoFunction)1647 void CXXNameMangler::mangleNestedName(GlobalDecl GD,
1648 const DeclContext *DC,
1649 const AbiTagList *AdditionalAbiTags,
1650 bool NoFunction) {
1651 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
1652 // <nested-name>
1653 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1654 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1655 // <template-args> E
1656
1657 Out << 'N';
1658 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1659 Qualifiers MethodQuals = Method->getMethodQualifiers();
1660 // We do not consider restrict a distinguishing attribute for overloading
1661 // purposes so we must not mangle it.
1662 MethodQuals.removeRestrict();
1663 mangleQualifiers(MethodQuals);
1664 mangleRefQualifier(Method->getRefQualifier());
1665 }
1666
1667 // Check if we have a template.
1668 const TemplateArgumentList *TemplateArgs = nullptr;
1669 if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) {
1670 mangleTemplatePrefix(TD, NoFunction);
1671 mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
1672 } else {
1673 manglePrefix(DC, NoFunction);
1674 mangleUnqualifiedName(GD, AdditionalAbiTags);
1675 }
1676
1677 Out << 'E';
1678 }
mangleNestedName(const TemplateDecl * TD,const TemplateArgument * TemplateArgs,unsigned NumTemplateArgs)1679 void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1680 const TemplateArgument *TemplateArgs,
1681 unsigned NumTemplateArgs) {
1682 // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1683
1684 Out << 'N';
1685
1686 mangleTemplatePrefix(TD);
1687 mangleTemplateArgs(asTemplateName(TD), TemplateArgs, NumTemplateArgs);
1688
1689 Out << 'E';
1690 }
1691
mangleNestedNameWithClosurePrefix(GlobalDecl GD,const NamedDecl * PrefixND,const AbiTagList * AdditionalAbiTags)1692 void CXXNameMangler::mangleNestedNameWithClosurePrefix(
1693 GlobalDecl GD, const NamedDecl *PrefixND,
1694 const AbiTagList *AdditionalAbiTags) {
1695 // A <closure-prefix> represents a variable or field, not a regular
1696 // DeclContext, so needs special handling. In this case we're mangling a
1697 // limited form of <nested-name>:
1698 //
1699 // <nested-name> ::= N <closure-prefix> <closure-type-name> E
1700
1701 Out << 'N';
1702
1703 mangleClosurePrefix(PrefixND);
1704 mangleUnqualifiedName(GD, AdditionalAbiTags);
1705
1706 Out << 'E';
1707 }
1708
getParentOfLocalEntity(const DeclContext * DC)1709 static GlobalDecl getParentOfLocalEntity(const DeclContext *DC) {
1710 GlobalDecl GD;
1711 // The Itanium spec says:
1712 // For entities in constructors and destructors, the mangling of the
1713 // complete object constructor or destructor is used as the base function
1714 // name, i.e. the C1 or D1 version.
1715 if (auto *CD = dyn_cast<CXXConstructorDecl>(DC))
1716 GD = GlobalDecl(CD, Ctor_Complete);
1717 else if (auto *DD = dyn_cast<CXXDestructorDecl>(DC))
1718 GD = GlobalDecl(DD, Dtor_Complete);
1719 else
1720 GD = GlobalDecl(cast<FunctionDecl>(DC));
1721 return GD;
1722 }
1723
mangleLocalName(GlobalDecl GD,const AbiTagList * AdditionalAbiTags)1724 void CXXNameMangler::mangleLocalName(GlobalDecl GD,
1725 const AbiTagList *AdditionalAbiTags) {
1726 const Decl *D = GD.getDecl();
1727 // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1728 // := Z <function encoding> E s [<discriminator>]
1729 // <local-name> := Z <function encoding> E d [ <parameter number> ]
1730 // _ <entity name>
1731 // <discriminator> := _ <non-negative number>
1732 assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
1733 const RecordDecl *RD = GetLocalClassDecl(D);
1734 const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
1735
1736 Out << 'Z';
1737
1738 {
1739 AbiTagState LocalAbiTags(AbiTags);
1740
1741 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
1742 mangleObjCMethodName(MD);
1743 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
1744 mangleBlockForPrefix(BD);
1745 else
1746 mangleFunctionEncoding(getParentOfLocalEntity(DC));
1747
1748 // Implicit ABI tags (from namespace) are not available in the following
1749 // entity; reset to actually emitted tags, which are available.
1750 LocalAbiTags.setUsedAbiTags(LocalAbiTags.getEmittedAbiTags());
1751 }
1752
1753 Out << 'E';
1754
1755 // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
1756 // be a bug that is fixed in trunk.
1757
1758 if (RD) {
1759 // The parameter number is omitted for the last parameter, 0 for the
1760 // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1761 // <entity name> will of course contain a <closure-type-name>: Its
1762 // numbering will be local to the particular argument in which it appears
1763 // -- other default arguments do not affect its encoding.
1764 const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1765 if (CXXRD && CXXRD->isLambda()) {
1766 if (const ParmVarDecl *Parm
1767 = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
1768 if (const FunctionDecl *Func
1769 = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1770 Out << 'd';
1771 unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1772 if (Num > 1)
1773 mangleNumber(Num - 2);
1774 Out << '_';
1775 }
1776 }
1777 }
1778
1779 // Mangle the name relative to the closest enclosing function.
1780 // equality ok because RD derived from ND above
1781 if (D == RD) {
1782 mangleUnqualifiedName(RD, AdditionalAbiTags);
1783 } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1784 if (const NamedDecl *PrefixND = getClosurePrefix(BD))
1785 mangleClosurePrefix(PrefixND, true /*NoFunction*/);
1786 else
1787 manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
1788 assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1789 mangleUnqualifiedBlock(BD);
1790 } else {
1791 const NamedDecl *ND = cast<NamedDecl>(D);
1792 mangleNestedName(GD, getEffectiveDeclContext(ND), AdditionalAbiTags,
1793 true /*NoFunction*/);
1794 }
1795 } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1796 // Mangle a block in a default parameter; see above explanation for
1797 // lambdas.
1798 if (const ParmVarDecl *Parm
1799 = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
1800 if (const FunctionDecl *Func
1801 = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1802 Out << 'd';
1803 unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1804 if (Num > 1)
1805 mangleNumber(Num - 2);
1806 Out << '_';
1807 }
1808 }
1809
1810 assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1811 mangleUnqualifiedBlock(BD);
1812 } else {
1813 mangleUnqualifiedName(GD, AdditionalAbiTags);
1814 }
1815
1816 if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
1817 unsigned disc;
1818 if (Context.getNextDiscriminator(ND, disc)) {
1819 if (disc < 10)
1820 Out << '_' << disc;
1821 else
1822 Out << "__" << disc << '_';
1823 }
1824 }
1825 }
1826
mangleBlockForPrefix(const BlockDecl * Block)1827 void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
1828 if (GetLocalClassDecl(Block)) {
1829 mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1830 return;
1831 }
1832 const DeclContext *DC = getEffectiveDeclContext(Block);
1833 if (isLocalContainerContext(DC)) {
1834 mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1835 return;
1836 }
1837 if (const NamedDecl *PrefixND = getClosurePrefix(Block))
1838 mangleClosurePrefix(PrefixND);
1839 else
1840 manglePrefix(DC);
1841 mangleUnqualifiedBlock(Block);
1842 }
1843
mangleUnqualifiedBlock(const BlockDecl * Block)1844 void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
1845 // When trying to be ABI-compatibility with clang 12 and before, mangle a
1846 // <data-member-prefix> now, with no substitutions and no <template-args>.
1847 if (Decl *Context = Block->getBlockManglingContextDecl()) {
1848 if (getASTContext().getLangOpts().getClangABICompat() <=
1849 LangOptions::ClangABI::Ver12 &&
1850 (isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1851 Context->getDeclContext()->isRecord()) {
1852 const auto *ND = cast<NamedDecl>(Context);
1853 if (ND->getIdentifier()) {
1854 mangleSourceNameWithAbiTags(ND);
1855 Out << 'M';
1856 }
1857 }
1858 }
1859
1860 // If we have a block mangling number, use it.
1861 unsigned Number = Block->getBlockManglingNumber();
1862 // Otherwise, just make up a number. It doesn't matter what it is because
1863 // the symbol in question isn't externally visible.
1864 if (!Number)
1865 Number = Context.getBlockId(Block, false);
1866 else {
1867 // Stored mangling numbers are 1-based.
1868 --Number;
1869 }
1870 Out << "Ub";
1871 if (Number > 0)
1872 Out << Number - 1;
1873 Out << '_';
1874 }
1875
1876 // <template-param-decl>
1877 // ::= Ty # template type parameter
1878 // ::= Tn <type> # template non-type parameter
1879 // ::= Tt <template-param-decl>* E # template template parameter
1880 // ::= Tp <template-param-decl> # template parameter pack
mangleTemplateParamDecl(const NamedDecl * Decl)1881 void CXXNameMangler::mangleTemplateParamDecl(const NamedDecl *Decl) {
1882 if (auto *Ty = dyn_cast<TemplateTypeParmDecl>(Decl)) {
1883 if (Ty->isParameterPack())
1884 Out << "Tp";
1885 Out << "Ty";
1886 } else if (auto *Tn = dyn_cast<NonTypeTemplateParmDecl>(Decl)) {
1887 if (Tn->isExpandedParameterPack()) {
1888 for (unsigned I = 0, N = Tn->getNumExpansionTypes(); I != N; ++I) {
1889 Out << "Tn";
1890 mangleType(Tn->getExpansionType(I));
1891 }
1892 } else {
1893 QualType T = Tn->getType();
1894 if (Tn->isParameterPack()) {
1895 Out << "Tp";
1896 if (auto *PackExpansion = T->getAs<PackExpansionType>())
1897 T = PackExpansion->getPattern();
1898 }
1899 Out << "Tn";
1900 mangleType(T);
1901 }
1902 } else if (auto *Tt = dyn_cast<TemplateTemplateParmDecl>(Decl)) {
1903 if (Tt->isExpandedParameterPack()) {
1904 for (unsigned I = 0, N = Tt->getNumExpansionTemplateParameters(); I != N;
1905 ++I) {
1906 Out << "Tt";
1907 for (auto *Param : *Tt->getExpansionTemplateParameters(I))
1908 mangleTemplateParamDecl(Param);
1909 Out << "E";
1910 }
1911 } else {
1912 if (Tt->isParameterPack())
1913 Out << "Tp";
1914 Out << "Tt";
1915 for (auto *Param : *Tt->getTemplateParameters())
1916 mangleTemplateParamDecl(Param);
1917 Out << "E";
1918 }
1919 }
1920 }
1921
mangleLambda(const CXXRecordDecl * Lambda)1922 void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1923 // When trying to be ABI-compatibility with clang 12 and before, mangle a
1924 // <data-member-prefix> now, with no substitutions.
1925 if (Decl *Context = Lambda->getLambdaContextDecl()) {
1926 if (getASTContext().getLangOpts().getClangABICompat() <=
1927 LangOptions::ClangABI::Ver12 &&
1928 (isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1929 !isa<ParmVarDecl>(Context)) {
1930 if (const IdentifierInfo *Name
1931 = cast<NamedDecl>(Context)->getIdentifier()) {
1932 mangleSourceName(Name);
1933 const TemplateArgumentList *TemplateArgs = nullptr;
1934 if (GlobalDecl TD = isTemplate(cast<NamedDecl>(Context), TemplateArgs))
1935 mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
1936 Out << 'M';
1937 }
1938 }
1939 }
1940
1941 Out << "Ul";
1942 mangleLambdaSig(Lambda);
1943 Out << "E";
1944
1945 // The number is omitted for the first closure type with a given
1946 // <lambda-sig> in a given context; it is n-2 for the nth closure type
1947 // (in lexical order) with that same <lambda-sig> and context.
1948 //
1949 // The AST keeps track of the number for us.
1950 //
1951 // In CUDA/HIP, to ensure the consistent lamba numbering between the device-
1952 // and host-side compilations, an extra device mangle context may be created
1953 // if the host-side CXX ABI has different numbering for lambda. In such case,
1954 // if the mangle context is that device-side one, use the device-side lambda
1955 // mangling number for this lambda.
1956 unsigned Number = Context.isDeviceMangleContext()
1957 ? Lambda->getDeviceLambdaManglingNumber()
1958 : Lambda->getLambdaManglingNumber();
1959 assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1960 if (Number > 1)
1961 mangleNumber(Number - 2);
1962 Out << '_';
1963 }
1964
mangleLambdaSig(const CXXRecordDecl * Lambda)1965 void CXXNameMangler::mangleLambdaSig(const CXXRecordDecl *Lambda) {
1966 for (auto *D : Lambda->getLambdaExplicitTemplateParameters())
1967 mangleTemplateParamDecl(D);
1968 auto *Proto =
1969 Lambda->getLambdaTypeInfo()->getType()->castAs<FunctionProtoType>();
1970 mangleBareFunctionType(Proto, /*MangleReturnType=*/false,
1971 Lambda->getLambdaStaticInvoker());
1972 }
1973
manglePrefix(NestedNameSpecifier * qualifier)1974 void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1975 switch (qualifier->getKind()) {
1976 case NestedNameSpecifier::Global:
1977 // nothing
1978 return;
1979
1980 case NestedNameSpecifier::Super:
1981 llvm_unreachable("Can't mangle __super specifier");
1982
1983 case NestedNameSpecifier::Namespace:
1984 mangleName(qualifier->getAsNamespace());
1985 return;
1986
1987 case NestedNameSpecifier::NamespaceAlias:
1988 mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1989 return;
1990
1991 case NestedNameSpecifier::TypeSpec:
1992 case NestedNameSpecifier::TypeSpecWithTemplate:
1993 manglePrefix(QualType(qualifier->getAsType(), 0));
1994 return;
1995
1996 case NestedNameSpecifier::Identifier:
1997 // Member expressions can have these without prefixes, but that
1998 // should end up in mangleUnresolvedPrefix instead.
1999 assert(qualifier->getPrefix());
2000 manglePrefix(qualifier->getPrefix());
2001
2002 mangleSourceName(qualifier->getAsIdentifier());
2003 return;
2004 }
2005
2006 llvm_unreachable("unexpected nested name specifier");
2007 }
2008
manglePrefix(const DeclContext * DC,bool NoFunction)2009 void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
2010 // <prefix> ::= <prefix> <unqualified-name>
2011 // ::= <template-prefix> <template-args>
2012 // ::= <closure-prefix>
2013 // ::= <template-param>
2014 // ::= # empty
2015 // ::= <substitution>
2016
2017 DC = IgnoreLinkageSpecDecls(DC);
2018
2019 if (DC->isTranslationUnit())
2020 return;
2021
2022 if (NoFunction && isLocalContainerContext(DC))
2023 return;
2024
2025 assert(!isLocalContainerContext(DC));
2026
2027 const NamedDecl *ND = cast<NamedDecl>(DC);
2028 if (mangleSubstitution(ND))
2029 return;
2030
2031 // Check if we have a template-prefix or a closure-prefix.
2032 const TemplateArgumentList *TemplateArgs = nullptr;
2033 if (GlobalDecl TD = isTemplate(ND, TemplateArgs)) {
2034 mangleTemplatePrefix(TD);
2035 mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
2036 } else if (const NamedDecl *PrefixND = getClosurePrefix(ND)) {
2037 mangleClosurePrefix(PrefixND, NoFunction);
2038 mangleUnqualifiedName(ND, nullptr);
2039 } else {
2040 manglePrefix(getEffectiveDeclContext(ND), NoFunction);
2041 mangleUnqualifiedName(ND, nullptr);
2042 }
2043
2044 addSubstitution(ND);
2045 }
2046
mangleTemplatePrefix(TemplateName Template)2047 void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
2048 // <template-prefix> ::= <prefix> <template unqualified-name>
2049 // ::= <template-param>
2050 // ::= <substitution>
2051 if (TemplateDecl *TD = Template.getAsTemplateDecl())
2052 return mangleTemplatePrefix(TD);
2053
2054 DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
2055 assert(Dependent && "unexpected template name kind");
2056
2057 // Clang 11 and before mangled the substitution for a dependent template name
2058 // after already having emitted (a substitution for) the prefix.
2059 bool Clang11Compat = getASTContext().getLangOpts().getClangABICompat() <=
2060 LangOptions::ClangABI::Ver11;
2061 if (!Clang11Compat && mangleSubstitution(Template))
2062 return;
2063
2064 if (NestedNameSpecifier *Qualifier = Dependent->getQualifier())
2065 manglePrefix(Qualifier);
2066
2067 if (Clang11Compat && mangleSubstitution(Template))
2068 return;
2069
2070 if (const IdentifierInfo *Id = Dependent->getIdentifier())
2071 mangleSourceName(Id);
2072 else
2073 mangleOperatorName(Dependent->getOperator(), UnknownArity);
2074
2075 addSubstitution(Template);
2076 }
2077
mangleTemplatePrefix(GlobalDecl GD,bool NoFunction)2078 void CXXNameMangler::mangleTemplatePrefix(GlobalDecl GD,
2079 bool NoFunction) {
2080 const TemplateDecl *ND = cast<TemplateDecl>(GD.getDecl());
2081 // <template-prefix> ::= <prefix> <template unqualified-name>
2082 // ::= <template-param>
2083 // ::= <substitution>
2084 // <template-template-param> ::= <template-param>
2085 // <substitution>
2086
2087 if (mangleSubstitution(ND))
2088 return;
2089
2090 // <template-template-param> ::= <template-param>
2091 if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
2092 mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
2093 } else {
2094 manglePrefix(getEffectiveDeclContext(ND), NoFunction);
2095 if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND))
2096 mangleUnqualifiedName(GD, nullptr);
2097 else
2098 mangleUnqualifiedName(GD.getWithDecl(ND->getTemplatedDecl()), nullptr);
2099 }
2100
2101 addSubstitution(ND);
2102 }
2103
getClosurePrefix(const Decl * ND)2104 const NamedDecl *CXXNameMangler::getClosurePrefix(const Decl *ND) {
2105 if (getASTContext().getLangOpts().getClangABICompat() <=
2106 LangOptions::ClangABI::Ver12)
2107 return nullptr;
2108
2109 const NamedDecl *Context = nullptr;
2110 if (auto *Block = dyn_cast<BlockDecl>(ND)) {
2111 Context = dyn_cast_or_null<NamedDecl>(Block->getBlockManglingContextDecl());
2112 } else if (auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
2113 if (RD->isLambda())
2114 Context = dyn_cast_or_null<NamedDecl>(RD->getLambdaContextDecl());
2115 }
2116 if (!Context)
2117 return nullptr;
2118
2119 // Only lambdas within the initializer of a non-local variable or non-static
2120 // data member get a <closure-prefix>.
2121 if ((isa<VarDecl>(Context) && cast<VarDecl>(Context)->hasGlobalStorage()) ||
2122 isa<FieldDecl>(Context))
2123 return Context;
2124
2125 return nullptr;
2126 }
2127
mangleClosurePrefix(const NamedDecl * ND,bool NoFunction)2128 void CXXNameMangler::mangleClosurePrefix(const NamedDecl *ND, bool NoFunction) {
2129 // <closure-prefix> ::= [ <prefix> ] <unqualified-name> M
2130 // ::= <template-prefix> <template-args> M
2131 if (mangleSubstitution(ND))
2132 return;
2133
2134 const TemplateArgumentList *TemplateArgs = nullptr;
2135 if (GlobalDecl TD = isTemplate(ND, TemplateArgs)) {
2136 mangleTemplatePrefix(TD, NoFunction);
2137 mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
2138 } else {
2139 manglePrefix(getEffectiveDeclContext(ND), NoFunction);
2140 mangleUnqualifiedName(ND, nullptr);
2141 }
2142
2143 Out << 'M';
2144
2145 addSubstitution(ND);
2146 }
2147
2148 /// Mangles a template name under the production <type>. Required for
2149 /// template template arguments.
2150 /// <type> ::= <class-enum-type>
2151 /// ::= <template-param>
2152 /// ::= <substitution>
mangleType(TemplateName TN)2153 void CXXNameMangler::mangleType(TemplateName TN) {
2154 if (mangleSubstitution(TN))
2155 return;
2156
2157 TemplateDecl *TD = nullptr;
2158
2159 switch (TN.getKind()) {
2160 case TemplateName::QualifiedTemplate:
2161 TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
2162 goto HaveDecl;
2163
2164 case TemplateName::Template:
2165 TD = TN.getAsTemplateDecl();
2166 goto HaveDecl;
2167
2168 HaveDecl:
2169 if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TD))
2170 mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
2171 else
2172 mangleName(TD);
2173 break;
2174
2175 case TemplateName::OverloadedTemplate:
2176 case TemplateName::AssumedTemplate:
2177 llvm_unreachable("can't mangle an overloaded template name as a <type>");
2178
2179 case TemplateName::DependentTemplate: {
2180 const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
2181 assert(Dependent->isIdentifier());
2182
2183 // <class-enum-type> ::= <name>
2184 // <name> ::= <nested-name>
2185 mangleUnresolvedPrefix(Dependent->getQualifier());
2186 mangleSourceName(Dependent->getIdentifier());
2187 break;
2188 }
2189
2190 case TemplateName::SubstTemplateTemplateParm: {
2191 // Substituted template parameters are mangled as the substituted
2192 // template. This will check for the substitution twice, which is
2193 // fine, but we have to return early so that we don't try to *add*
2194 // the substitution twice.
2195 SubstTemplateTemplateParmStorage *subst
2196 = TN.getAsSubstTemplateTemplateParm();
2197 mangleType(subst->getReplacement());
2198 return;
2199 }
2200
2201 case TemplateName::SubstTemplateTemplateParmPack: {
2202 // FIXME: not clear how to mangle this!
2203 // template <template <class> class T...> class A {
2204 // template <template <class> class U...> void foo(B<T,U> x...);
2205 // };
2206 Out << "_SUBSTPACK_";
2207 break;
2208 }
2209 }
2210
2211 addSubstitution(TN);
2212 }
2213
mangleUnresolvedTypeOrSimpleId(QualType Ty,StringRef Prefix)2214 bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty,
2215 StringRef Prefix) {
2216 // Only certain other types are valid as prefixes; enumerate them.
2217 switch (Ty->getTypeClass()) {
2218 case Type::Builtin:
2219 case Type::Complex:
2220 case Type::Adjusted:
2221 case Type::Decayed:
2222 case Type::Pointer:
2223 case Type::BlockPointer:
2224 case Type::LValueReference:
2225 case Type::RValueReference:
2226 case Type::MemberPointer:
2227 case Type::ConstantArray:
2228 case Type::IncompleteArray:
2229 case Type::VariableArray:
2230 case Type::DependentSizedArray:
2231 case Type::DependentAddressSpace:
2232 case Type::DependentVector:
2233 case Type::DependentSizedExtVector:
2234 case Type::Vector:
2235 case Type::ExtVector:
2236 case Type::ConstantMatrix:
2237 case Type::DependentSizedMatrix:
2238 case Type::FunctionProto:
2239 case Type::FunctionNoProto:
2240 case Type::Paren:
2241 case Type::Attributed:
2242 case Type::Auto:
2243 case Type::DeducedTemplateSpecialization:
2244 case Type::PackExpansion:
2245 case Type::ObjCObject:
2246 case Type::ObjCInterface:
2247 case Type::ObjCObjectPointer:
2248 case Type::ObjCTypeParam:
2249 case Type::Atomic:
2250 case Type::Pipe:
2251 case Type::MacroQualified:
2252 case Type::ExtInt:
2253 case Type::DependentExtInt:
2254 llvm_unreachable("type is illegal as a nested name specifier");
2255
2256 case Type::SubstTemplateTypeParmPack:
2257 // FIXME: not clear how to mangle this!
2258 // template <class T...> class A {
2259 // template <class U...> void foo(decltype(T::foo(U())) x...);
2260 // };
2261 Out << "_SUBSTPACK_";
2262 break;
2263
2264 // <unresolved-type> ::= <template-param>
2265 // ::= <decltype>
2266 // ::= <template-template-param> <template-args>
2267 // (this last is not official yet)
2268 case Type::TypeOfExpr:
2269 case Type::TypeOf:
2270 case Type::Decltype:
2271 case Type::TemplateTypeParm:
2272 case Type::UnaryTransform:
2273 case Type::SubstTemplateTypeParm:
2274 unresolvedType:
2275 // Some callers want a prefix before the mangled type.
2276 Out << Prefix;
2277
2278 // This seems to do everything we want. It's not really
2279 // sanctioned for a substituted template parameter, though.
2280 mangleType(Ty);
2281
2282 // We never want to print 'E' directly after an unresolved-type,
2283 // so we return directly.
2284 return true;
2285
2286 case Type::Typedef:
2287 mangleSourceNameWithAbiTags(cast<TypedefType>(Ty)->getDecl());
2288 break;
2289
2290 case Type::UnresolvedUsing:
2291 mangleSourceNameWithAbiTags(
2292 cast<UnresolvedUsingType>(Ty)->getDecl());
2293 break;
2294
2295 case Type::Enum:
2296 case Type::Record:
2297 mangleSourceNameWithAbiTags(cast<TagType>(Ty)->getDecl());
2298 break;
2299
2300 case Type::TemplateSpecialization: {
2301 const TemplateSpecializationType *TST =
2302 cast<TemplateSpecializationType>(Ty);
2303 TemplateName TN = TST->getTemplateName();
2304 switch (TN.getKind()) {
2305 case TemplateName::Template:
2306 case TemplateName::QualifiedTemplate: {
2307 TemplateDecl *TD = TN.getAsTemplateDecl();
2308
2309 // If the base is a template template parameter, this is an
2310 // unresolved type.
2311 assert(TD && "no template for template specialization type");
2312 if (isa<TemplateTemplateParmDecl>(TD))
2313 goto unresolvedType;
2314
2315 mangleSourceNameWithAbiTags(TD);
2316 break;
2317 }
2318
2319 case TemplateName::OverloadedTemplate:
2320 case TemplateName::AssumedTemplate:
2321 case TemplateName::DependentTemplate:
2322 llvm_unreachable("invalid base for a template specialization type");
2323
2324 case TemplateName::SubstTemplateTemplateParm: {
2325 SubstTemplateTemplateParmStorage *subst =
2326 TN.getAsSubstTemplateTemplateParm();
2327 mangleExistingSubstitution(subst->getReplacement());
2328 break;
2329 }
2330
2331 case TemplateName::SubstTemplateTemplateParmPack: {
2332 // FIXME: not clear how to mangle this!
2333 // template <template <class U> class T...> class A {
2334 // template <class U...> void foo(decltype(T<U>::foo) x...);
2335 // };
2336 Out << "_SUBSTPACK_";
2337 break;
2338 }
2339 }
2340
2341 // Note: we don't pass in the template name here. We are mangling the
2342 // original source-level template arguments, so we shouldn't consider
2343 // conversions to the corresponding template parameter.
2344 // FIXME: Other compilers mangle partially-resolved template arguments in
2345 // unresolved-qualifier-levels.
2346 mangleTemplateArgs(TemplateName(), TST->getArgs(), TST->getNumArgs());
2347 break;
2348 }
2349
2350 case Type::InjectedClassName:
2351 mangleSourceNameWithAbiTags(
2352 cast<InjectedClassNameType>(Ty)->getDecl());
2353 break;
2354
2355 case Type::DependentName:
2356 mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier());
2357 break;
2358
2359 case Type::DependentTemplateSpecialization: {
2360 const DependentTemplateSpecializationType *DTST =
2361 cast<DependentTemplateSpecializationType>(Ty);
2362 TemplateName Template = getASTContext().getDependentTemplateName(
2363 DTST->getQualifier(), DTST->getIdentifier());
2364 mangleSourceName(DTST->getIdentifier());
2365 mangleTemplateArgs(Template, DTST->getArgs(), DTST->getNumArgs());
2366 break;
2367 }
2368
2369 case Type::Elaborated:
2370 return mangleUnresolvedTypeOrSimpleId(
2371 cast<ElaboratedType>(Ty)->getNamedType(), Prefix);
2372 }
2373
2374 return false;
2375 }
2376
mangleOperatorName(DeclarationName Name,unsigned Arity)2377 void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) {
2378 switch (Name.getNameKind()) {
2379 case DeclarationName::CXXConstructorName:
2380 case DeclarationName::CXXDestructorName:
2381 case DeclarationName::CXXDeductionGuideName:
2382 case DeclarationName::CXXUsingDirective:
2383 case DeclarationName::Identifier:
2384 case DeclarationName::ObjCMultiArgSelector:
2385 case DeclarationName::ObjCOneArgSelector:
2386 case DeclarationName::ObjCZeroArgSelector:
2387 llvm_unreachable("Not an operator name");
2388
2389 case DeclarationName::CXXConversionFunctionName:
2390 // <operator-name> ::= cv <type> # (cast)
2391 Out << "cv";
2392 mangleType(Name.getCXXNameType());
2393 break;
2394
2395 case DeclarationName::CXXLiteralOperatorName:
2396 Out << "li";
2397 mangleSourceName(Name.getCXXLiteralIdentifier());
2398 return;
2399
2400 case DeclarationName::CXXOperatorName:
2401 mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
2402 break;
2403 }
2404 }
2405
2406 void
mangleOperatorName(OverloadedOperatorKind OO,unsigned Arity)2407 CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
2408 switch (OO) {
2409 // <operator-name> ::= nw # new
2410 case OO_New: Out << "nw"; break;
2411 // ::= na # new[]
2412 case OO_Array_New: Out << "na"; break;
2413 // ::= dl # delete
2414 case OO_Delete: Out << "dl"; break;
2415 // ::= da # delete[]
2416 case OO_Array_Delete: Out << "da"; break;
2417 // ::= ps # + (unary)
2418 // ::= pl # + (binary or unknown)
2419 case OO_Plus:
2420 Out << (Arity == 1? "ps" : "pl"); break;
2421 // ::= ng # - (unary)
2422 // ::= mi # - (binary or unknown)
2423 case OO_Minus:
2424 Out << (Arity == 1? "ng" : "mi"); break;
2425 // ::= ad # & (unary)
2426 // ::= an # & (binary or unknown)
2427 case OO_Amp:
2428 Out << (Arity == 1? "ad" : "an"); break;
2429 // ::= de # * (unary)
2430 // ::= ml # * (binary or unknown)
2431 case OO_Star:
2432 // Use binary when unknown.
2433 Out << (Arity == 1? "de" : "ml"); break;
2434 // ::= co # ~
2435 case OO_Tilde: Out << "co"; break;
2436 // ::= dv # /
2437 case OO_Slash: Out << "dv"; break;
2438 // ::= rm # %
2439 case OO_Percent: Out << "rm"; break;
2440 // ::= or # |
2441 case OO_Pipe: Out << "or"; break;
2442 // ::= eo # ^
2443 case OO_Caret: Out << "eo"; break;
2444 // ::= aS # =
2445 case OO_Equal: Out << "aS"; break;
2446 // ::= pL # +=
2447 case OO_PlusEqual: Out << "pL"; break;
2448 // ::= mI # -=
2449 case OO_MinusEqual: Out << "mI"; break;
2450 // ::= mL # *=
2451 case OO_StarEqual: Out << "mL"; break;
2452 // ::= dV # /=
2453 case OO_SlashEqual: Out << "dV"; break;
2454 // ::= rM # %=
2455 case OO_PercentEqual: Out << "rM"; break;
2456 // ::= aN # &=
2457 case OO_AmpEqual: Out << "aN"; break;
2458 // ::= oR # |=
2459 case OO_PipeEqual: Out << "oR"; break;
2460 // ::= eO # ^=
2461 case OO_CaretEqual: Out << "eO"; break;
2462 // ::= ls # <<
2463 case OO_LessLess: Out << "ls"; break;
2464 // ::= rs # >>
2465 case OO_GreaterGreater: Out << "rs"; break;
2466 // ::= lS # <<=
2467 case OO_LessLessEqual: Out << "lS"; break;
2468 // ::= rS # >>=
2469 case OO_GreaterGreaterEqual: Out << "rS"; break;
2470 // ::= eq # ==
2471 case OO_EqualEqual: Out << "eq"; break;
2472 // ::= ne # !=
2473 case OO_ExclaimEqual: Out << "ne"; break;
2474 // ::= lt # <
2475 case OO_Less: Out << "lt"; break;
2476 // ::= gt # >
2477 case OO_Greater: Out << "gt"; break;
2478 // ::= le # <=
2479 case OO_LessEqual: Out << "le"; break;
2480 // ::= ge # >=
2481 case OO_GreaterEqual: Out << "ge"; break;
2482 // ::= nt # !
2483 case OO_Exclaim: Out << "nt"; break;
2484 // ::= aa # &&
2485 case OO_AmpAmp: Out << "aa"; break;
2486 // ::= oo # ||
2487 case OO_PipePipe: Out << "oo"; break;
2488 // ::= pp # ++
2489 case OO_PlusPlus: Out << "pp"; break;
2490 // ::= mm # --
2491 case OO_MinusMinus: Out << "mm"; break;
2492 // ::= cm # ,
2493 case OO_Comma: Out << "cm"; break;
2494 // ::= pm # ->*
2495 case OO_ArrowStar: Out << "pm"; break;
2496 // ::= pt # ->
2497 case OO_Arrow: Out << "pt"; break;
2498 // ::= cl # ()
2499 case OO_Call: Out << "cl"; break;
2500 // ::= ix # []
2501 case OO_Subscript: Out << "ix"; break;
2502
2503 // ::= qu # ?
2504 // The conditional operator can't be overloaded, but we still handle it when
2505 // mangling expressions.
2506 case OO_Conditional: Out << "qu"; break;
2507 // Proposal on cxx-abi-dev, 2015-10-21.
2508 // ::= aw # co_await
2509 case OO_Coawait: Out << "aw"; break;
2510 // Proposed in cxx-abi github issue 43.
2511 // ::= ss # <=>
2512 case OO_Spaceship: Out << "ss"; break;
2513
2514 case OO_None:
2515 case NUM_OVERLOADED_OPERATORS:
2516 llvm_unreachable("Not an overloaded operator");
2517 }
2518 }
2519
mangleQualifiers(Qualifiers Quals,const DependentAddressSpaceType * DAST)2520 void CXXNameMangler::mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST) {
2521 // Vendor qualifiers come first and if they are order-insensitive they must
2522 // be emitted in reversed alphabetical order, see Itanium ABI 5.1.5.
2523
2524 // <type> ::= U <addrspace-expr>
2525 if (DAST) {
2526 Out << "U2ASI";
2527 mangleExpression(DAST->getAddrSpaceExpr());
2528 Out << "E";
2529 }
2530
2531 // Address space qualifiers start with an ordinary letter.
2532 if (Quals.hasAddressSpace()) {
2533 // Address space extension:
2534 //
2535 // <type> ::= U <target-addrspace>
2536 // <type> ::= U <OpenCL-addrspace>
2537 // <type> ::= U <CUDA-addrspace>
2538
2539 SmallString<64> ASString;
2540 LangAS AS = Quals.getAddressSpace();
2541
2542 if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
2543 // <target-addrspace> ::= "AS" <address-space-number>
2544 unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
2545 if (TargetAS != 0 ||
2546 Context.getASTContext().getTargetAddressSpace(LangAS::Default) != 0)
2547 ASString = "AS" + llvm::utostr(TargetAS);
2548 } else {
2549 switch (AS) {
2550 default: llvm_unreachable("Not a language specific address space");
2551 // <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" |
2552 // "private"| "generic" | "device" |
2553 // "host" ]
2554 case LangAS::opencl_global:
2555 ASString = "CLglobal";
2556 break;
2557 case LangAS::opencl_global_device:
2558 ASString = "CLdevice";
2559 break;
2560 case LangAS::opencl_global_host:
2561 ASString = "CLhost";
2562 break;
2563 case LangAS::opencl_local:
2564 ASString = "CLlocal";
2565 break;
2566 case LangAS::opencl_constant:
2567 ASString = "CLconstant";
2568 break;
2569 case LangAS::opencl_private:
2570 ASString = "CLprivate";
2571 break;
2572 case LangAS::opencl_generic:
2573 ASString = "CLgeneric";
2574 break;
2575 // <SYCL-addrspace> ::= "SY" [ "global" | "local" | "private" |
2576 // "device" | "host" ]
2577 case LangAS::sycl_global:
2578 ASString = "SYglobal";
2579 break;
2580 case LangAS::sycl_global_device:
2581 ASString = "SYdevice";
2582 break;
2583 case LangAS::sycl_global_host:
2584 ASString = "SYhost";
2585 break;
2586 case LangAS::sycl_local:
2587 ASString = "SYlocal";
2588 break;
2589 case LangAS::sycl_private:
2590 ASString = "SYprivate";
2591 break;
2592 // <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
2593 case LangAS::cuda_device:
2594 ASString = "CUdevice";
2595 break;
2596 case LangAS::cuda_constant:
2597 ASString = "CUconstant";
2598 break;
2599 case LangAS::cuda_shared:
2600 ASString = "CUshared";
2601 break;
2602 // <ptrsize-addrspace> ::= [ "ptr32_sptr" | "ptr32_uptr" | "ptr64" ]
2603 case LangAS::ptr32_sptr:
2604 ASString = "ptr32_sptr";
2605 break;
2606 case LangAS::ptr32_uptr:
2607 ASString = "ptr32_uptr";
2608 break;
2609 case LangAS::ptr64:
2610 ASString = "ptr64";
2611 break;
2612 }
2613 }
2614 if (!ASString.empty())
2615 mangleVendorQualifier(ASString);
2616 }
2617
2618 // The ARC ownership qualifiers start with underscores.
2619 // Objective-C ARC Extension:
2620 //
2621 // <type> ::= U "__strong"
2622 // <type> ::= U "__weak"
2623 // <type> ::= U "__autoreleasing"
2624 //
2625 // Note: we emit __weak first to preserve the order as
2626 // required by the Itanium ABI.
2627 if (Quals.getObjCLifetime() == Qualifiers::OCL_Weak)
2628 mangleVendorQualifier("__weak");
2629
2630 // __unaligned (from -fms-extensions)
2631 if (Quals.hasUnaligned())
2632 mangleVendorQualifier("__unaligned");
2633
2634 // Remaining ARC ownership qualifiers.
2635 switch (Quals.getObjCLifetime()) {
2636 case Qualifiers::OCL_None:
2637 break;
2638
2639 case Qualifiers::OCL_Weak:
2640 // Do nothing as we already handled this case above.
2641 break;
2642
2643 case Qualifiers::OCL_Strong:
2644 mangleVendorQualifier("__strong");
2645 break;
2646
2647 case Qualifiers::OCL_Autoreleasing:
2648 mangleVendorQualifier("__autoreleasing");
2649 break;
2650
2651 case Qualifiers::OCL_ExplicitNone:
2652 // The __unsafe_unretained qualifier is *not* mangled, so that
2653 // __unsafe_unretained types in ARC produce the same manglings as the
2654 // equivalent (but, naturally, unqualified) types in non-ARC, providing
2655 // better ABI compatibility.
2656 //
2657 // It's safe to do this because unqualified 'id' won't show up
2658 // in any type signatures that need to be mangled.
2659 break;
2660 }
2661
2662 // <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const
2663 if (Quals.hasRestrict())
2664 Out << 'r';
2665 if (Quals.hasVolatile())
2666 Out << 'V';
2667 if (Quals.hasConst())
2668 Out << 'K';
2669 }
2670
mangleVendorQualifier(StringRef name)2671 void CXXNameMangler::mangleVendorQualifier(StringRef name) {
2672 Out << 'U' << name.size() << name;
2673 }
2674
mangleRefQualifier(RefQualifierKind RefQualifier)2675 void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
2676 // <ref-qualifier> ::= R # lvalue reference
2677 // ::= O # rvalue-reference
2678 switch (RefQualifier) {
2679 case RQ_None:
2680 break;
2681
2682 case RQ_LValue:
2683 Out << 'R';
2684 break;
2685
2686 case RQ_RValue:
2687 Out << 'O';
2688 break;
2689 }
2690 }
2691
mangleObjCMethodName(const ObjCMethodDecl * MD)2692 void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
2693 Context.mangleObjCMethodNameAsSourceName(MD, Out);
2694 }
2695
isTypeSubstitutable(Qualifiers Quals,const Type * Ty,ASTContext & Ctx)2696 static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty,
2697 ASTContext &Ctx) {
2698 if (Quals)
2699 return true;
2700 if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel))
2701 return true;
2702 if (Ty->isOpenCLSpecificType())
2703 return true;
2704 if (Ty->isBuiltinType())
2705 return false;
2706 // Through to Clang 6.0, we accidentally treated undeduced auto types as
2707 // substitution candidates.
2708 if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver6 &&
2709 isa<AutoType>(Ty))
2710 return false;
2711 // A placeholder type for class template deduction is substitutable with
2712 // its corresponding template name; this is handled specially when mangling
2713 // the type.
2714 if (auto *DeducedTST = Ty->getAs<DeducedTemplateSpecializationType>())
2715 if (DeducedTST->getDeducedType().isNull())
2716 return false;
2717 return true;
2718 }
2719
mangleType(QualType T)2720 void CXXNameMangler::mangleType(QualType T) {
2721 // If our type is instantiation-dependent but not dependent, we mangle
2722 // it as it was written in the source, removing any top-level sugar.
2723 // Otherwise, use the canonical type.
2724 //
2725 // FIXME: This is an approximation of the instantiation-dependent name
2726 // mangling rules, since we should really be using the type as written and
2727 // augmented via semantic analysis (i.e., with implicit conversions and
2728 // default template arguments) for any instantiation-dependent type.
2729 // Unfortunately, that requires several changes to our AST:
2730 // - Instantiation-dependent TemplateSpecializationTypes will need to be
2731 // uniqued, so that we can handle substitutions properly
2732 // - Default template arguments will need to be represented in the
2733 // TemplateSpecializationType, since they need to be mangled even though
2734 // they aren't written.
2735 // - Conversions on non-type template arguments need to be expressed, since
2736 // they can affect the mangling of sizeof/alignof.
2737 //
2738 // FIXME: This is wrong when mapping to the canonical type for a dependent
2739 // type discards instantiation-dependent portions of the type, such as for:
2740 //
2741 // template<typename T, int N> void f(T (&)[sizeof(N)]);
2742 // template<typename T> void f(T() throw(typename T::type)); (pre-C++17)
2743 //
2744 // It's also wrong in the opposite direction when instantiation-dependent,
2745 // canonically-equivalent types differ in some irrelevant portion of inner
2746 // type sugar. In such cases, we fail to form correct substitutions, eg:
2747 //
2748 // template<int N> void f(A<sizeof(N)> *, A<sizeof(N)> (*));
2749 //
2750 // We should instead canonicalize the non-instantiation-dependent parts,
2751 // regardless of whether the type as a whole is dependent or instantiation
2752 // dependent.
2753 if (!T->isInstantiationDependentType() || T->isDependentType())
2754 T = T.getCanonicalType();
2755 else {
2756 // Desugar any types that are purely sugar.
2757 do {
2758 // Don't desugar through template specialization types that aren't
2759 // type aliases. We need to mangle the template arguments as written.
2760 if (const TemplateSpecializationType *TST
2761 = dyn_cast<TemplateSpecializationType>(T))
2762 if (!TST->isTypeAlias())
2763 break;
2764
2765 // FIXME: We presumably shouldn't strip off ElaboratedTypes with
2766 // instantation-dependent qualifiers. See
2767 // https://github.com/itanium-cxx-abi/cxx-abi/issues/114.
2768
2769 QualType Desugared
2770 = T.getSingleStepDesugaredType(Context.getASTContext());
2771 if (Desugared == T)
2772 break;
2773
2774 T = Desugared;
2775 } while (true);
2776 }
2777 SplitQualType split = T.split();
2778 Qualifiers quals = split.Quals;
2779 const Type *ty = split.Ty;
2780
2781 bool isSubstitutable =
2782 isTypeSubstitutable(quals, ty, Context.getASTContext());
2783 if (isSubstitutable && mangleSubstitution(T))
2784 return;
2785
2786 // If we're mangling a qualified array type, push the qualifiers to
2787 // the element type.
2788 if (quals && isa<ArrayType>(T)) {
2789 ty = Context.getASTContext().getAsArrayType(T);
2790 quals = Qualifiers();
2791
2792 // Note that we don't update T: we want to add the
2793 // substitution at the original type.
2794 }
2795
2796 if (quals || ty->isDependentAddressSpaceType()) {
2797 if (const DependentAddressSpaceType *DAST =
2798 dyn_cast<DependentAddressSpaceType>(ty)) {
2799 SplitQualType splitDAST = DAST->getPointeeType().split();
2800 mangleQualifiers(splitDAST.Quals, DAST);
2801 mangleType(QualType(splitDAST.Ty, 0));
2802 } else {
2803 mangleQualifiers(quals);
2804
2805 // Recurse: even if the qualified type isn't yet substitutable,
2806 // the unqualified type might be.
2807 mangleType(QualType(ty, 0));
2808 }
2809 } else {
2810 switch (ty->getTypeClass()) {
2811 #define ABSTRACT_TYPE(CLASS, PARENT)
2812 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
2813 case Type::CLASS: \
2814 llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
2815 return;
2816 #define TYPE(CLASS, PARENT) \
2817 case Type::CLASS: \
2818 mangleType(static_cast<const CLASS##Type*>(ty)); \
2819 break;
2820 #include "clang/AST/TypeNodes.inc"
2821 }
2822 }
2823
2824 // Add the substitution.
2825 if (isSubstitutable)
2826 addSubstitution(T);
2827 }
2828
mangleNameOrStandardSubstitution(const NamedDecl * ND)2829 void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
2830 if (!mangleStandardSubstitution(ND))
2831 mangleName(ND);
2832 }
2833
mangleType(const BuiltinType * T)2834 void CXXNameMangler::mangleType(const BuiltinType *T) {
2835 // <type> ::= <builtin-type>
2836 // <builtin-type> ::= v # void
2837 // ::= w # wchar_t
2838 // ::= b # bool
2839 // ::= c # char
2840 // ::= a # signed char
2841 // ::= h # unsigned char
2842 // ::= s # short
2843 // ::= t # unsigned short
2844 // ::= i # int
2845 // ::= j # unsigned int
2846 // ::= l # long
2847 // ::= m # unsigned long
2848 // ::= x # long long, __int64
2849 // ::= y # unsigned long long, __int64
2850 // ::= n # __int128
2851 // ::= o # unsigned __int128
2852 // ::= f # float
2853 // ::= d # double
2854 // ::= e # long double, __float80
2855 // ::= g # __float128
2856 // UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits)
2857 // UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits)
2858 // UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits)
2859 // ::= Dh # IEEE 754r half-precision floating point (16 bits)
2860 // ::= DF <number> _ # ISO/IEC TS 18661 binary floating point type _FloatN (N bits);
2861 // ::= Di # char32_t
2862 // ::= Ds # char16_t
2863 // ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
2864 // ::= u <source-name> # vendor extended type
2865 std::string type_name;
2866 switch (T->getKind()) {
2867 case BuiltinType::Void:
2868 Out << 'v';
2869 break;
2870 case BuiltinType::Bool:
2871 Out << 'b';
2872 break;
2873 case BuiltinType::Char_U:
2874 case BuiltinType::Char_S:
2875 Out << 'c';
2876 break;
2877 case BuiltinType::UChar:
2878 Out << 'h';
2879 break;
2880 case BuiltinType::UShort:
2881 Out << 't';
2882 break;
2883 case BuiltinType::UInt:
2884 Out << 'j';
2885 break;
2886 case BuiltinType::ULong:
2887 Out << 'm';
2888 break;
2889 case BuiltinType::ULongLong:
2890 Out << 'y';
2891 break;
2892 case BuiltinType::UInt128:
2893 Out << 'o';
2894 break;
2895 case BuiltinType::SChar:
2896 Out << 'a';
2897 break;
2898 case BuiltinType::WChar_S:
2899 case BuiltinType::WChar_U:
2900 Out << 'w';
2901 break;
2902 case BuiltinType::Char8:
2903 Out << "Du";
2904 break;
2905 case BuiltinType::Char16:
2906 Out << "Ds";
2907 break;
2908 case BuiltinType::Char32:
2909 Out << "Di";
2910 break;
2911 case BuiltinType::Short:
2912 Out << 's';
2913 break;
2914 case BuiltinType::Int:
2915 Out << 'i';
2916 break;
2917 case BuiltinType::Long:
2918 Out << 'l';
2919 break;
2920 case BuiltinType::LongLong:
2921 Out << 'x';
2922 break;
2923 case BuiltinType::Int128:
2924 Out << 'n';
2925 break;
2926 case BuiltinType::Float16:
2927 Out << "DF16_";
2928 break;
2929 case BuiltinType::ShortAccum:
2930 case BuiltinType::Accum:
2931 case BuiltinType::LongAccum:
2932 case BuiltinType::UShortAccum:
2933 case BuiltinType::UAccum:
2934 case BuiltinType::ULongAccum:
2935 case BuiltinType::ShortFract:
2936 case BuiltinType::Fract:
2937 case BuiltinType::LongFract:
2938 case BuiltinType::UShortFract:
2939 case BuiltinType::UFract:
2940 case BuiltinType::ULongFract:
2941 case BuiltinType::SatShortAccum:
2942 case BuiltinType::SatAccum:
2943 case BuiltinType::SatLongAccum:
2944 case BuiltinType::SatUShortAccum:
2945 case BuiltinType::SatUAccum:
2946 case BuiltinType::SatULongAccum:
2947 case BuiltinType::SatShortFract:
2948 case BuiltinType::SatFract:
2949 case BuiltinType::SatLongFract:
2950 case BuiltinType::SatUShortFract:
2951 case BuiltinType::SatUFract:
2952 case BuiltinType::SatULongFract:
2953 llvm_unreachable("Fixed point types are disabled for c++");
2954 case BuiltinType::Half:
2955 Out << "Dh";
2956 break;
2957 case BuiltinType::Float:
2958 Out << 'f';
2959 break;
2960 case BuiltinType::Double:
2961 Out << 'd';
2962 break;
2963 case BuiltinType::LongDouble: {
2964 const TargetInfo *TI = getASTContext().getLangOpts().OpenMP &&
2965 getASTContext().getLangOpts().OpenMPIsDevice
2966 ? getASTContext().getAuxTargetInfo()
2967 : &getASTContext().getTargetInfo();
2968 Out << TI->getLongDoubleMangling();
2969 break;
2970 }
2971 case BuiltinType::Float128: {
2972 const TargetInfo *TI = getASTContext().getLangOpts().OpenMP &&
2973 getASTContext().getLangOpts().OpenMPIsDevice
2974 ? getASTContext().getAuxTargetInfo()
2975 : &getASTContext().getTargetInfo();
2976 Out << TI->getFloat128Mangling();
2977 break;
2978 }
2979 case BuiltinType::BFloat16: {
2980 const TargetInfo *TI = &getASTContext().getTargetInfo();
2981 Out << TI->getBFloat16Mangling();
2982 break;
2983 }
2984 case BuiltinType::NullPtr:
2985 Out << "Dn";
2986 break;
2987
2988 #define BUILTIN_TYPE(Id, SingletonId)
2989 #define PLACEHOLDER_TYPE(Id, SingletonId) \
2990 case BuiltinType::Id:
2991 #include "clang/AST/BuiltinTypes.def"
2992 case BuiltinType::Dependent:
2993 if (!NullOut)
2994 llvm_unreachable("mangling a placeholder type");
2995 break;
2996 case BuiltinType::ObjCId:
2997 Out << "11objc_object";
2998 break;
2999 case BuiltinType::ObjCClass:
3000 Out << "10objc_class";
3001 break;
3002 case BuiltinType::ObjCSel:
3003 Out << "13objc_selector";
3004 break;
3005 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
3006 case BuiltinType::Id: \
3007 type_name = "ocl_" #ImgType "_" #Suffix; \
3008 Out << type_name.size() << type_name; \
3009 break;
3010 #include "clang/Basic/OpenCLImageTypes.def"
3011 case BuiltinType::OCLSampler:
3012 Out << "11ocl_sampler";
3013 break;
3014 case BuiltinType::OCLEvent:
3015 Out << "9ocl_event";
3016 break;
3017 case BuiltinType::OCLClkEvent:
3018 Out << "12ocl_clkevent";
3019 break;
3020 case BuiltinType::OCLQueue:
3021 Out << "9ocl_queue";
3022 break;
3023 case BuiltinType::OCLReserveID:
3024 Out << "13ocl_reserveid";
3025 break;
3026 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
3027 case BuiltinType::Id: \
3028 type_name = "ocl_" #ExtType; \
3029 Out << type_name.size() << type_name; \
3030 break;
3031 #include "clang/Basic/OpenCLExtensionTypes.def"
3032 // The SVE types are effectively target-specific. The mangling scheme
3033 // is defined in the appendices to the Procedure Call Standard for the
3034 // Arm Architecture.
3035 #define SVE_VECTOR_TYPE(InternalName, MangledName, Id, SingletonId, NumEls, \
3036 ElBits, IsSigned, IsFP, IsBF) \
3037 case BuiltinType::Id: \
3038 type_name = MangledName; \
3039 Out << (type_name == InternalName ? "u" : "") << type_name.size() \
3040 << type_name; \
3041 break;
3042 #define SVE_PREDICATE_TYPE(InternalName, MangledName, Id, SingletonId, NumEls) \
3043 case BuiltinType::Id: \
3044 type_name = MangledName; \
3045 Out << (type_name == InternalName ? "u" : "") << type_name.size() \
3046 << type_name; \
3047 break;
3048 #include "clang/Basic/AArch64SVEACLETypes.def"
3049 #define PPC_VECTOR_TYPE(Name, Id, Size) \
3050 case BuiltinType::Id: \
3051 type_name = #Name; \
3052 Out << 'u' << type_name.size() << type_name; \
3053 break;
3054 #include "clang/Basic/PPCTypes.def"
3055 // TODO: Check the mangling scheme for RISC-V V.
3056 #define RVV_TYPE(Name, Id, SingletonId) \
3057 case BuiltinType::Id: \
3058 type_name = Name; \
3059 Out << 'u' << type_name.size() << type_name; \
3060 break;
3061 #include "clang/Basic/RISCVVTypes.def"
3062 }
3063 }
3064
getCallingConvQualifierName(CallingConv CC)3065 StringRef CXXNameMangler::getCallingConvQualifierName(CallingConv CC) {
3066 switch (CC) {
3067 case CC_C:
3068 return "";
3069
3070 case CC_X86VectorCall:
3071 case CC_X86Pascal:
3072 case CC_X86RegCall:
3073 case CC_AAPCS:
3074 case CC_AAPCS_VFP:
3075 case CC_AArch64VectorCall:
3076 case CC_IntelOclBicc:
3077 case CC_SpirFunction:
3078 case CC_OpenCLKernel:
3079 case CC_PreserveMost:
3080 case CC_PreserveAll:
3081 // FIXME: we should be mangling all of the above.
3082 return "";
3083
3084 case CC_X86ThisCall:
3085 // FIXME: To match mingw GCC, thiscall should only be mangled in when it is
3086 // used explicitly. At this point, we don't have that much information in
3087 // the AST, since clang tends to bake the convention into the canonical
3088 // function type. thiscall only rarely used explicitly, so don't mangle it
3089 // for now.
3090 return "";
3091
3092 case CC_X86StdCall:
3093 return "stdcall";
3094 case CC_X86FastCall:
3095 return "fastcall";
3096 case CC_X86_64SysV:
3097 return "sysv_abi";
3098 case CC_Win64:
3099 return "ms_abi";
3100 case CC_Swift:
3101 return "swiftcall";
3102 }
3103 llvm_unreachable("bad calling convention");
3104 }
3105
mangleExtFunctionInfo(const FunctionType * T)3106 void CXXNameMangler::mangleExtFunctionInfo(const FunctionType *T) {
3107 // Fast path.
3108 if (T->getExtInfo() == FunctionType::ExtInfo())
3109 return;
3110
3111 // Vendor-specific qualifiers are emitted in reverse alphabetical order.
3112 // This will get more complicated in the future if we mangle other
3113 // things here; but for now, since we mangle ns_returns_retained as
3114 // a qualifier on the result type, we can get away with this:
3115 StringRef CCQualifier = getCallingConvQualifierName(T->getExtInfo().getCC());
3116 if (!CCQualifier.empty())
3117 mangleVendorQualifier(CCQualifier);
3118
3119 // FIXME: regparm
3120 // FIXME: noreturn
3121 }
3122
3123 void
mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo PI)3124 CXXNameMangler::mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo PI) {
3125 // Vendor-specific qualifiers are emitted in reverse alphabetical order.
3126
3127 // Note that these are *not* substitution candidates. Demanglers might
3128 // have trouble with this if the parameter type is fully substituted.
3129
3130 switch (PI.getABI()) {
3131 case ParameterABI::Ordinary:
3132 break;
3133
3134 // All of these start with "swift", so they come before "ns_consumed".
3135 case ParameterABI::SwiftContext:
3136 case ParameterABI::SwiftErrorResult:
3137 case ParameterABI::SwiftIndirectResult:
3138 mangleVendorQualifier(getParameterABISpelling(PI.getABI()));
3139 break;
3140 }
3141
3142 if (PI.isConsumed())
3143 mangleVendorQualifier("ns_consumed");
3144
3145 if (PI.isNoEscape())
3146 mangleVendorQualifier("noescape");
3147 }
3148
3149 // <type> ::= <function-type>
3150 // <function-type> ::= [<CV-qualifiers>] F [Y]
3151 // <bare-function-type> [<ref-qualifier>] E
mangleType(const FunctionProtoType * T)3152 void CXXNameMangler::mangleType(const FunctionProtoType *T) {
3153 mangleExtFunctionInfo(T);
3154
3155 // Mangle CV-qualifiers, if present. These are 'this' qualifiers,
3156 // e.g. "const" in "int (A::*)() const".
3157 mangleQualifiers(T->getMethodQuals());
3158
3159 // Mangle instantiation-dependent exception-specification, if present,
3160 // per cxx-abi-dev proposal on 2016-10-11.
3161 if (T->hasInstantiationDependentExceptionSpec()) {
3162 if (isComputedNoexcept(T->getExceptionSpecType())) {
3163 Out << "DO";
3164 mangleExpression(T->getNoexceptExpr());
3165 Out << "E";
3166 } else {
3167 assert(T->getExceptionSpecType() == EST_Dynamic);
3168 Out << "Dw";
3169 for (auto ExceptTy : T->exceptions())
3170 mangleType(ExceptTy);
3171 Out << "E";
3172 }
3173 } else if (T->isNothrow()) {
3174 Out << "Do";
3175 }
3176
3177 Out << 'F';
3178
3179 // FIXME: We don't have enough information in the AST to produce the 'Y'
3180 // encoding for extern "C" function types.
3181 mangleBareFunctionType(T, /*MangleReturnType=*/true);
3182
3183 // Mangle the ref-qualifier, if present.
3184 mangleRefQualifier(T->getRefQualifier());
3185
3186 Out << 'E';
3187 }
3188
mangleType(const FunctionNoProtoType * T)3189 void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
3190 // Function types without prototypes can arise when mangling a function type
3191 // within an overloadable function in C. We mangle these as the absence of any
3192 // parameter types (not even an empty parameter list).
3193 Out << 'F';
3194
3195 FunctionTypeDepthState saved = FunctionTypeDepth.push();
3196
3197 FunctionTypeDepth.enterResultType();
3198 mangleType(T->getReturnType());
3199 FunctionTypeDepth.leaveResultType();
3200
3201 FunctionTypeDepth.pop(saved);
3202 Out << 'E';
3203 }
3204
mangleBareFunctionType(const FunctionProtoType * Proto,bool MangleReturnType,const FunctionDecl * FD)3205 void CXXNameMangler::mangleBareFunctionType(const FunctionProtoType *Proto,
3206 bool MangleReturnType,
3207 const FunctionDecl *FD) {
3208 // Record that we're in a function type. See mangleFunctionParam
3209 // for details on what we're trying to achieve here.
3210 FunctionTypeDepthState saved = FunctionTypeDepth.push();
3211
3212 // <bare-function-type> ::= <signature type>+
3213 if (MangleReturnType) {
3214 FunctionTypeDepth.enterResultType();
3215
3216 // Mangle ns_returns_retained as an order-sensitive qualifier here.
3217 if (Proto->getExtInfo().getProducesResult() && FD == nullptr)
3218 mangleVendorQualifier("ns_returns_retained");
3219
3220 // Mangle the return type without any direct ARC ownership qualifiers.
3221 QualType ReturnTy = Proto->getReturnType();
3222 if (ReturnTy.getObjCLifetime()) {
3223 auto SplitReturnTy = ReturnTy.split();
3224 SplitReturnTy.Quals.removeObjCLifetime();
3225 ReturnTy = getASTContext().getQualifiedType(SplitReturnTy);
3226 }
3227 mangleType(ReturnTy);
3228
3229 FunctionTypeDepth.leaveResultType();
3230 }
3231
3232 if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
3233 // <builtin-type> ::= v # void
3234 Out << 'v';
3235
3236 FunctionTypeDepth.pop(saved);
3237 return;
3238 }
3239
3240 assert(!FD || FD->getNumParams() == Proto->getNumParams());
3241 for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
3242 // Mangle extended parameter info as order-sensitive qualifiers here.
3243 if (Proto->hasExtParameterInfos() && FD == nullptr) {
3244 mangleExtParameterInfo(Proto->getExtParameterInfo(I));
3245 }
3246
3247 // Mangle the type.
3248 QualType ParamTy = Proto->getParamType(I);
3249 mangleType(Context.getASTContext().getSignatureParameterType(ParamTy));
3250
3251 if (FD) {
3252 if (auto *Attr = FD->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) {
3253 // Attr can only take 1 character, so we can hardcode the length below.
3254 assert(Attr->getType() <= 9 && Attr->getType() >= 0);
3255 if (Attr->isDynamic())
3256 Out << "U25pass_dynamic_object_size" << Attr->getType();
3257 else
3258 Out << "U17pass_object_size" << Attr->getType();
3259 }
3260 }
3261 }
3262
3263 FunctionTypeDepth.pop(saved);
3264
3265 // <builtin-type> ::= z # ellipsis
3266 if (Proto->isVariadic())
3267 Out << 'z';
3268 }
3269
3270 // <type> ::= <class-enum-type>
3271 // <class-enum-type> ::= <name>
mangleType(const UnresolvedUsingType * T)3272 void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
3273 mangleName(T->getDecl());
3274 }
3275
3276 // <type> ::= <class-enum-type>
3277 // <class-enum-type> ::= <name>
mangleType(const EnumType * T)3278 void CXXNameMangler::mangleType(const EnumType *T) {
3279 mangleType(static_cast<const TagType*>(T));
3280 }
mangleType(const RecordType * T)3281 void CXXNameMangler::mangleType(const RecordType *T) {
3282 mangleType(static_cast<const TagType*>(T));
3283 }
mangleType(const TagType * T)3284 void CXXNameMangler::mangleType(const TagType *T) {
3285 mangleName(T->getDecl());
3286 }
3287
3288 // <type> ::= <array-type>
3289 // <array-type> ::= A <positive dimension number> _ <element type>
3290 // ::= A [<dimension expression>] _ <element type>
mangleType(const ConstantArrayType * T)3291 void CXXNameMangler::mangleType(const ConstantArrayType *T) {
3292 Out << 'A' << T->getSize() << '_';
3293 mangleType(T->getElementType());
3294 }
mangleType(const VariableArrayType * T)3295 void CXXNameMangler::mangleType(const VariableArrayType *T) {
3296 Out << 'A';
3297 // decayed vla types (size 0) will just be skipped.
3298 if (T->getSizeExpr())
3299 mangleExpression(T->getSizeExpr());
3300 Out << '_';
3301 mangleType(T->getElementType());
3302 }
mangleType(const DependentSizedArrayType * T)3303 void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
3304 Out << 'A';
3305 // A DependentSizedArrayType might not have size expression as below
3306 //
3307 // template<int ...N> int arr[] = {N...};
3308 if (T->getSizeExpr())
3309 mangleExpression(T->getSizeExpr());
3310 Out << '_';
3311 mangleType(T->getElementType());
3312 }
mangleType(const IncompleteArrayType * T)3313 void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
3314 Out << "A_";
3315 mangleType(T->getElementType());
3316 }
3317
3318 // <type> ::= <pointer-to-member-type>
3319 // <pointer-to-member-type> ::= M <class type> <member type>
mangleType(const MemberPointerType * T)3320 void CXXNameMangler::mangleType(const MemberPointerType *T) {
3321 Out << 'M';
3322 mangleType(QualType(T->getClass(), 0));
3323 QualType PointeeType = T->getPointeeType();
3324 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
3325 mangleType(FPT);
3326
3327 // Itanium C++ ABI 5.1.8:
3328 //
3329 // The type of a non-static member function is considered to be different,
3330 // for the purposes of substitution, from the type of a namespace-scope or
3331 // static member function whose type appears similar. The types of two
3332 // non-static member functions are considered to be different, for the
3333 // purposes of substitution, if the functions are members of different
3334 // classes. In other words, for the purposes of substitution, the class of
3335 // which the function is a member is considered part of the type of
3336 // function.
3337
3338 // Given that we already substitute member function pointers as a
3339 // whole, the net effect of this rule is just to unconditionally
3340 // suppress substitution on the function type in a member pointer.
3341 // We increment the SeqID here to emulate adding an entry to the
3342 // substitution table.
3343 ++SeqID;
3344 } else
3345 mangleType(PointeeType);
3346 }
3347
3348 // <type> ::= <template-param>
mangleType(const TemplateTypeParmType * T)3349 void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
3350 mangleTemplateParameter(T->getDepth(), T->getIndex());
3351 }
3352
3353 // <type> ::= <template-param>
mangleType(const SubstTemplateTypeParmPackType * T)3354 void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
3355 // FIXME: not clear how to mangle this!
3356 // template <class T...> class A {
3357 // template <class U...> void foo(T(*)(U) x...);
3358 // };
3359 Out << "_SUBSTPACK_";
3360 }
3361
3362 // <type> ::= P <type> # pointer-to
mangleType(const PointerType * T)3363 void CXXNameMangler::mangleType(const PointerType *T) {
3364 Out << 'P';
3365 mangleType(T->getPointeeType());
3366 }
mangleType(const ObjCObjectPointerType * T)3367 void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
3368 Out << 'P';
3369 mangleType(T->getPointeeType());
3370 }
3371
3372 // <type> ::= R <type> # reference-to
mangleType(const LValueReferenceType * T)3373 void CXXNameMangler::mangleType(const LValueReferenceType *T) {
3374 Out << 'R';
3375 mangleType(T->getPointeeType());
3376 }
3377
3378 // <type> ::= O <type> # rvalue reference-to (C++0x)
mangleType(const RValueReferenceType * T)3379 void CXXNameMangler::mangleType(const RValueReferenceType *T) {
3380 Out << 'O';
3381 mangleType(T->getPointeeType());
3382 }
3383
3384 // <type> ::= C <type> # complex pair (C 2000)
mangleType(const ComplexType * T)3385 void CXXNameMangler::mangleType(const ComplexType *T) {
3386 Out << 'C';
3387 mangleType(T->getElementType());
3388 }
3389
3390 // ARM's ABI for Neon vector types specifies that they should be mangled as
3391 // if they are structs (to match ARM's initial implementation). The
3392 // vector type must be one of the special types predefined by ARM.
mangleNeonVectorType(const VectorType * T)3393 void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
3394 QualType EltType = T->getElementType();
3395 assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
3396 const char *EltName = nullptr;
3397 if (T->getVectorKind() == VectorType::NeonPolyVector) {
3398 switch (cast<BuiltinType>(EltType)->getKind()) {
3399 case BuiltinType::SChar:
3400 case BuiltinType::UChar:
3401 EltName = "poly8_t";
3402 break;
3403 case BuiltinType::Short:
3404 case BuiltinType::UShort:
3405 EltName = "poly16_t";
3406 break;
3407 case BuiltinType::LongLong:
3408 case BuiltinType::ULongLong:
3409 EltName = "poly64_t";
3410 break;
3411 default: llvm_unreachable("unexpected Neon polynomial vector element type");
3412 }
3413 } else {
3414 switch (cast<BuiltinType>(EltType)->getKind()) {
3415 case BuiltinType::SChar: EltName = "int8_t"; break;
3416 case BuiltinType::UChar: EltName = "uint8_t"; break;
3417 case BuiltinType::Short: EltName = "int16_t"; break;
3418 case BuiltinType::UShort: EltName = "uint16_t"; break;
3419 case BuiltinType::Int: EltName = "int32_t"; break;
3420 case BuiltinType::UInt: EltName = "uint32_t"; break;
3421 case BuiltinType::LongLong: EltName = "int64_t"; break;
3422 case BuiltinType::ULongLong: EltName = "uint64_t"; break;
3423 case BuiltinType::Double: EltName = "float64_t"; break;
3424 case BuiltinType::Float: EltName = "float32_t"; break;
3425 case BuiltinType::Half: EltName = "float16_t"; break;
3426 case BuiltinType::BFloat16: EltName = "bfloat16_t"; break;
3427 default:
3428 llvm_unreachable("unexpected Neon vector element type");
3429 }
3430 }
3431 const char *BaseName = nullptr;
3432 unsigned BitSize = (T->getNumElements() *
3433 getASTContext().getTypeSize(EltType));
3434 if (BitSize == 64)
3435 BaseName = "__simd64_";
3436 else {
3437 assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
3438 BaseName = "__simd128_";
3439 }
3440 Out << strlen(BaseName) + strlen(EltName);
3441 Out << BaseName << EltName;
3442 }
3443
mangleNeonVectorType(const DependentVectorType * T)3444 void CXXNameMangler::mangleNeonVectorType(const DependentVectorType *T) {
3445 DiagnosticsEngine &Diags = Context.getDiags();
3446 unsigned DiagID = Diags.getCustomDiagID(
3447 DiagnosticsEngine::Error,
3448 "cannot mangle this dependent neon vector type yet");
3449 Diags.Report(T->getAttributeLoc(), DiagID);
3450 }
3451
mangleAArch64VectorBase(const BuiltinType * EltType)3452 static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
3453 switch (EltType->getKind()) {
3454 case BuiltinType::SChar:
3455 return "Int8";
3456 case BuiltinType::Short:
3457 return "Int16";
3458 case BuiltinType::Int:
3459 return "Int32";
3460 case BuiltinType::Long:
3461 case BuiltinType::LongLong:
3462 return "Int64";
3463 case BuiltinType::UChar:
3464 return "Uint8";
3465 case BuiltinType::UShort:
3466 return "Uint16";
3467 case BuiltinType::UInt:
3468 return "Uint32";
3469 case BuiltinType::ULong:
3470 case BuiltinType::ULongLong:
3471 return "Uint64";
3472 case BuiltinType::Half:
3473 return "Float16";
3474 case BuiltinType::Float:
3475 return "Float32";
3476 case BuiltinType::Double:
3477 return "Float64";
3478 case BuiltinType::BFloat16:
3479 return "Bfloat16";
3480 default:
3481 llvm_unreachable("Unexpected vector element base type");
3482 }
3483 }
3484
3485 // AArch64's ABI for Neon vector types specifies that they should be mangled as
3486 // the equivalent internal name. The vector type must be one of the special
3487 // types predefined by ARM.
mangleAArch64NeonVectorType(const VectorType * T)3488 void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
3489 QualType EltType = T->getElementType();
3490 assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
3491 unsigned BitSize =
3492 (T->getNumElements() * getASTContext().getTypeSize(EltType));
3493 (void)BitSize; // Silence warning.
3494
3495 assert((BitSize == 64 || BitSize == 128) &&
3496 "Neon vector type not 64 or 128 bits");
3497
3498 StringRef EltName;
3499 if (T->getVectorKind() == VectorType::NeonPolyVector) {
3500 switch (cast<BuiltinType>(EltType)->getKind()) {
3501 case BuiltinType::UChar:
3502 EltName = "Poly8";
3503 break;
3504 case BuiltinType::UShort:
3505 EltName = "Poly16";
3506 break;
3507 case BuiltinType::ULong:
3508 case BuiltinType::ULongLong:
3509 EltName = "Poly64";
3510 break;
3511 default:
3512 llvm_unreachable("unexpected Neon polynomial vector element type");
3513 }
3514 } else
3515 EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
3516
3517 std::string TypeName =
3518 ("__" + EltName + "x" + Twine(T->getNumElements()) + "_t").str();
3519 Out << TypeName.length() << TypeName;
3520 }
mangleAArch64NeonVectorType(const DependentVectorType * T)3521 void CXXNameMangler::mangleAArch64NeonVectorType(const DependentVectorType *T) {
3522 DiagnosticsEngine &Diags = Context.getDiags();
3523 unsigned DiagID = Diags.getCustomDiagID(
3524 DiagnosticsEngine::Error,
3525 "cannot mangle this dependent neon vector type yet");
3526 Diags.Report(T->getAttributeLoc(), DiagID);
3527 }
3528
3529 // The AArch64 ACLE specifies that fixed-length SVE vector and predicate types
3530 // defined with the 'arm_sve_vector_bits' attribute map to the same AAPCS64
3531 // type as the sizeless variants.
3532 //
3533 // The mangling scheme for VLS types is implemented as a "pseudo" template:
3534 //
3535 // '__SVE_VLS<<type>, <vector length>>'
3536 //
3537 // Combining the existing SVE type and a specific vector length (in bits).
3538 // For example:
3539 //
3540 // typedef __SVInt32_t foo __attribute__((arm_sve_vector_bits(512)));
3541 //
3542 // is described as '__SVE_VLS<__SVInt32_t, 512u>' and mangled as:
3543 //
3544 // "9__SVE_VLSI" + base type mangling + "Lj" + __ARM_FEATURE_SVE_BITS + "EE"
3545 //
3546 // i.e. 9__SVE_VLSIu11__SVInt32_tLj512EE
3547 //
3548 // The latest ACLE specification (00bet5) does not contain details of this
3549 // mangling scheme, it will be specified in the next revision. The mangling
3550 // scheme is otherwise defined in the appendices to the Procedure Call Standard
3551 // for the Arm Architecture, see
3552 // https://github.com/ARM-software/abi-aa/blob/master/aapcs64/aapcs64.rst#appendix-c-mangling
mangleAArch64FixedSveVectorType(const VectorType * T)3553 void CXXNameMangler::mangleAArch64FixedSveVectorType(const VectorType *T) {
3554 assert((T->getVectorKind() == VectorType::SveFixedLengthDataVector ||
3555 T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) &&
3556 "expected fixed-length SVE vector!");
3557
3558 QualType EltType = T->getElementType();
3559 assert(EltType->isBuiltinType() &&
3560 "expected builtin type for fixed-length SVE vector!");
3561
3562 StringRef TypeName;
3563 switch (cast<BuiltinType>(EltType)->getKind()) {
3564 case BuiltinType::SChar:
3565 TypeName = "__SVInt8_t";
3566 break;
3567 case BuiltinType::UChar: {
3568 if (T->getVectorKind() == VectorType::SveFixedLengthDataVector)
3569 TypeName = "__SVUint8_t";
3570 else
3571 TypeName = "__SVBool_t";
3572 break;
3573 }
3574 case BuiltinType::Short:
3575 TypeName = "__SVInt16_t";
3576 break;
3577 case BuiltinType::UShort:
3578 TypeName = "__SVUint16_t";
3579 break;
3580 case BuiltinType::Int:
3581 TypeName = "__SVInt32_t";
3582 break;
3583 case BuiltinType::UInt:
3584 TypeName = "__SVUint32_t";
3585 break;
3586 case BuiltinType::Long:
3587 TypeName = "__SVInt64_t";
3588 break;
3589 case BuiltinType::ULong:
3590 TypeName = "__SVUint64_t";
3591 break;
3592 case BuiltinType::Half:
3593 TypeName = "__SVFloat16_t";
3594 break;
3595 case BuiltinType::Float:
3596 TypeName = "__SVFloat32_t";
3597 break;
3598 case BuiltinType::Double:
3599 TypeName = "__SVFloat64_t";
3600 break;
3601 case BuiltinType::BFloat16:
3602 TypeName = "__SVBfloat16_t";
3603 break;
3604 default:
3605 llvm_unreachable("unexpected element type for fixed-length SVE vector!");
3606 }
3607
3608 unsigned VecSizeInBits = getASTContext().getTypeInfo(T).Width;
3609
3610 if (T->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
3611 VecSizeInBits *= 8;
3612
3613 Out << "9__SVE_VLSI" << 'u' << TypeName.size() << TypeName << "Lj"
3614 << VecSizeInBits << "EE";
3615 }
3616
mangleAArch64FixedSveVectorType(const DependentVectorType * T)3617 void CXXNameMangler::mangleAArch64FixedSveVectorType(
3618 const DependentVectorType *T) {
3619 DiagnosticsEngine &Diags = Context.getDiags();
3620 unsigned DiagID = Diags.getCustomDiagID(
3621 DiagnosticsEngine::Error,
3622 "cannot mangle this dependent fixed-length SVE vector type yet");
3623 Diags.Report(T->getAttributeLoc(), DiagID);
3624 }
3625
3626 // GNU extension: vector types
3627 // <type> ::= <vector-type>
3628 // <vector-type> ::= Dv <positive dimension number> _
3629 // <extended element type>
3630 // ::= Dv [<dimension expression>] _ <element type>
3631 // <extended element type> ::= <element type>
3632 // ::= p # AltiVec vector pixel
3633 // ::= b # Altivec vector bool
mangleType(const VectorType * T)3634 void CXXNameMangler::mangleType(const VectorType *T) {
3635 if ((T->getVectorKind() == VectorType::NeonVector ||
3636 T->getVectorKind() == VectorType::NeonPolyVector)) {
3637 llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
3638 llvm::Triple::ArchType Arch =
3639 getASTContext().getTargetInfo().getTriple().getArch();
3640 if ((Arch == llvm::Triple::aarch64 ||
3641 Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin())
3642 mangleAArch64NeonVectorType(T);
3643 else
3644 mangleNeonVectorType(T);
3645 return;
3646 } else if (T->getVectorKind() == VectorType::SveFixedLengthDataVector ||
3647 T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) {
3648 mangleAArch64FixedSveVectorType(T);
3649 return;
3650 }
3651 Out << "Dv" << T->getNumElements() << '_';
3652 if (T->getVectorKind() == VectorType::AltiVecPixel)
3653 Out << 'p';
3654 else if (T->getVectorKind() == VectorType::AltiVecBool)
3655 Out << 'b';
3656 else
3657 mangleType(T->getElementType());
3658 }
3659
mangleType(const DependentVectorType * T)3660 void CXXNameMangler::mangleType(const DependentVectorType *T) {
3661 if ((T->getVectorKind() == VectorType::NeonVector ||
3662 T->getVectorKind() == VectorType::NeonPolyVector)) {
3663 llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
3664 llvm::Triple::ArchType Arch =
3665 getASTContext().getTargetInfo().getTriple().getArch();
3666 if ((Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) &&
3667 !Target.isOSDarwin())
3668 mangleAArch64NeonVectorType(T);
3669 else
3670 mangleNeonVectorType(T);
3671 return;
3672 } else if (T->getVectorKind() == VectorType::SveFixedLengthDataVector ||
3673 T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) {
3674 mangleAArch64FixedSveVectorType(T);
3675 return;
3676 }
3677
3678 Out << "Dv";
3679 mangleExpression(T->getSizeExpr());
3680 Out << '_';
3681 if (T->getVectorKind() == VectorType::AltiVecPixel)
3682 Out << 'p';
3683 else if (T->getVectorKind() == VectorType::AltiVecBool)
3684 Out << 'b';
3685 else
3686 mangleType(T->getElementType());
3687 }
3688
mangleType(const ExtVectorType * T)3689 void CXXNameMangler::mangleType(const ExtVectorType *T) {
3690 mangleType(static_cast<const VectorType*>(T));
3691 }
mangleType(const DependentSizedExtVectorType * T)3692 void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
3693 Out << "Dv";
3694 mangleExpression(T->getSizeExpr());
3695 Out << '_';
3696 mangleType(T->getElementType());
3697 }
3698
mangleType(const ConstantMatrixType * T)3699 void CXXNameMangler::mangleType(const ConstantMatrixType *T) {
3700 // Mangle matrix types as a vendor extended type:
3701 // u<Len>matrix_typeI<Rows><Columns><element type>E
3702
3703 StringRef VendorQualifier = "matrix_type";
3704 Out << "u" << VendorQualifier.size() << VendorQualifier;
3705
3706 Out << "I";
3707 auto &ASTCtx = getASTContext();
3708 unsigned BitWidth = ASTCtx.getTypeSize(ASTCtx.getSizeType());
3709 llvm::APSInt Rows(BitWidth);
3710 Rows = T->getNumRows();
3711 mangleIntegerLiteral(ASTCtx.getSizeType(), Rows);
3712 llvm::APSInt Columns(BitWidth);
3713 Columns = T->getNumColumns();
3714 mangleIntegerLiteral(ASTCtx.getSizeType(), Columns);
3715 mangleType(T->getElementType());
3716 Out << "E";
3717 }
3718
mangleType(const DependentSizedMatrixType * T)3719 void CXXNameMangler::mangleType(const DependentSizedMatrixType *T) {
3720 // Mangle matrix types as a vendor extended type:
3721 // u<Len>matrix_typeI<row expr><column expr><element type>E
3722 StringRef VendorQualifier = "matrix_type";
3723 Out << "u" << VendorQualifier.size() << VendorQualifier;
3724
3725 Out << "I";
3726 mangleTemplateArgExpr(T->getRowExpr());
3727 mangleTemplateArgExpr(T->getColumnExpr());
3728 mangleType(T->getElementType());
3729 Out << "E";
3730 }
3731
mangleType(const DependentAddressSpaceType * T)3732 void CXXNameMangler::mangleType(const DependentAddressSpaceType *T) {
3733 SplitQualType split = T->getPointeeType().split();
3734 mangleQualifiers(split.Quals, T);
3735 mangleType(QualType(split.Ty, 0));
3736 }
3737
mangleType(const PackExpansionType * T)3738 void CXXNameMangler::mangleType(const PackExpansionType *T) {
3739 // <type> ::= Dp <type> # pack expansion (C++0x)
3740 Out << "Dp";
3741 mangleType(T->getPattern());
3742 }
3743
mangleType(const ObjCInterfaceType * T)3744 void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
3745 mangleSourceName(T->getDecl()->getIdentifier());
3746 }
3747
mangleType(const ObjCObjectType * T)3748 void CXXNameMangler::mangleType(const ObjCObjectType *T) {
3749 // Treat __kindof as a vendor extended type qualifier.
3750 if (T->isKindOfType())
3751 Out << "U8__kindof";
3752
3753 if (!T->qual_empty()) {
3754 // Mangle protocol qualifiers.
3755 SmallString<64> QualStr;
3756 llvm::raw_svector_ostream QualOS(QualStr);
3757 QualOS << "objcproto";
3758 for (const auto *I : T->quals()) {
3759 StringRef name = I->getName();
3760 QualOS << name.size() << name;
3761 }
3762 Out << 'U' << QualStr.size() << QualStr;
3763 }
3764
3765 mangleType(T->getBaseType());
3766
3767 if (T->isSpecialized()) {
3768 // Mangle type arguments as I <type>+ E
3769 Out << 'I';
3770 for (auto typeArg : T->getTypeArgs())
3771 mangleType(typeArg);
3772 Out << 'E';
3773 }
3774 }
3775
mangleType(const BlockPointerType * T)3776 void CXXNameMangler::mangleType(const BlockPointerType *T) {
3777 Out << "U13block_pointer";
3778 mangleType(T->getPointeeType());
3779 }
3780
mangleType(const InjectedClassNameType * T)3781 void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
3782 // Mangle injected class name types as if the user had written the
3783 // specialization out fully. It may not actually be possible to see
3784 // this mangling, though.
3785 mangleType(T->getInjectedSpecializationType());
3786 }
3787
mangleType(const TemplateSpecializationType * T)3788 void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
3789 if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
3790 mangleTemplateName(TD, T->getArgs(), T->getNumArgs());
3791 } else {
3792 if (mangleSubstitution(QualType(T, 0)))
3793 return;
3794
3795 mangleTemplatePrefix(T->getTemplateName());
3796
3797 // FIXME: GCC does not appear to mangle the template arguments when
3798 // the template in question is a dependent template name. Should we
3799 // emulate that badness?
3800 mangleTemplateArgs(T->getTemplateName(), T->getArgs(), T->getNumArgs());
3801 addSubstitution(QualType(T, 0));
3802 }
3803 }
3804
mangleType(const DependentNameType * T)3805 void CXXNameMangler::mangleType(const DependentNameType *T) {
3806 // Proposal by cxx-abi-dev, 2014-03-26
3807 // <class-enum-type> ::= <name> # non-dependent or dependent type name or
3808 // # dependent elaborated type specifier using
3809 // # 'typename'
3810 // ::= Ts <name> # dependent elaborated type specifier using
3811 // # 'struct' or 'class'
3812 // ::= Tu <name> # dependent elaborated type specifier using
3813 // # 'union'
3814 // ::= Te <name> # dependent elaborated type specifier using
3815 // # 'enum'
3816 switch (T->getKeyword()) {
3817 case ETK_None:
3818 case ETK_Typename:
3819 break;
3820 case ETK_Struct:
3821 case ETK_Class:
3822 case ETK_Interface:
3823 Out << "Ts";
3824 break;
3825 case ETK_Union:
3826 Out << "Tu";
3827 break;
3828 case ETK_Enum:
3829 Out << "Te";
3830 break;
3831 }
3832 // Typename types are always nested
3833 Out << 'N';
3834 manglePrefix(T->getQualifier());
3835 mangleSourceName(T->getIdentifier());
3836 Out << 'E';
3837 }
3838
mangleType(const DependentTemplateSpecializationType * T)3839 void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
3840 // Dependently-scoped template types are nested if they have a prefix.
3841 Out << 'N';
3842
3843 // TODO: avoid making this TemplateName.
3844 TemplateName Prefix =
3845 getASTContext().getDependentTemplateName(T->getQualifier(),
3846 T->getIdentifier());
3847 mangleTemplatePrefix(Prefix);
3848
3849 // FIXME: GCC does not appear to mangle the template arguments when
3850 // the template in question is a dependent template name. Should we
3851 // emulate that badness?
3852 mangleTemplateArgs(Prefix, T->getArgs(), T->getNumArgs());
3853 Out << 'E';
3854 }
3855
mangleType(const TypeOfType * T)3856 void CXXNameMangler::mangleType(const TypeOfType *T) {
3857 // FIXME: this is pretty unsatisfactory, but there isn't an obvious
3858 // "extension with parameters" mangling.
3859 Out << "u6typeof";
3860 }
3861
mangleType(const TypeOfExprType * T)3862 void CXXNameMangler::mangleType(const TypeOfExprType *T) {
3863 // FIXME: this is pretty unsatisfactory, but there isn't an obvious
3864 // "extension with parameters" mangling.
3865 Out << "u6typeof";
3866 }
3867
mangleType(const DecltypeType * T)3868 void CXXNameMangler::mangleType(const DecltypeType *T) {
3869 Expr *E = T->getUnderlyingExpr();
3870
3871 // type ::= Dt <expression> E # decltype of an id-expression
3872 // # or class member access
3873 // ::= DT <expression> E # decltype of an expression
3874
3875 // This purports to be an exhaustive list of id-expressions and
3876 // class member accesses. Note that we do not ignore parentheses;
3877 // parentheses change the semantics of decltype for these
3878 // expressions (and cause the mangler to use the other form).
3879 if (isa<DeclRefExpr>(E) ||
3880 isa<MemberExpr>(E) ||
3881 isa<UnresolvedLookupExpr>(E) ||
3882 isa<DependentScopeDeclRefExpr>(E) ||
3883 isa<CXXDependentScopeMemberExpr>(E) ||
3884 isa<UnresolvedMemberExpr>(E))
3885 Out << "Dt";
3886 else
3887 Out << "DT";
3888 mangleExpression(E);
3889 Out << 'E';
3890 }
3891
mangleType(const UnaryTransformType * T)3892 void CXXNameMangler::mangleType(const UnaryTransformType *T) {
3893 // If this is dependent, we need to record that. If not, we simply
3894 // mangle it as the underlying type since they are equivalent.
3895 if (T->isDependentType()) {
3896 Out << 'U';
3897
3898 switch (T->getUTTKind()) {
3899 case UnaryTransformType::EnumUnderlyingType:
3900 Out << "3eut";
3901 break;
3902 }
3903 }
3904
3905 mangleType(T->getBaseType());
3906 }
3907
mangleType(const AutoType * T)3908 void CXXNameMangler::mangleType(const AutoType *T) {
3909 assert(T->getDeducedType().isNull() &&
3910 "Deduced AutoType shouldn't be handled here!");
3911 assert(T->getKeyword() != AutoTypeKeyword::GNUAutoType &&
3912 "shouldn't need to mangle __auto_type!");
3913 // <builtin-type> ::= Da # auto
3914 // ::= Dc # decltype(auto)
3915 Out << (T->isDecltypeAuto() ? "Dc" : "Da");
3916 }
3917
mangleType(const DeducedTemplateSpecializationType * T)3918 void CXXNameMangler::mangleType(const DeducedTemplateSpecializationType *T) {
3919 QualType Deduced = T->getDeducedType();
3920 if (!Deduced.isNull())
3921 return mangleType(Deduced);
3922
3923 TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl();
3924 assert(TD && "shouldn't form deduced TST unless we know we have a template");
3925
3926 if (mangleSubstitution(TD))
3927 return;
3928
3929 mangleName(GlobalDecl(TD));
3930 addSubstitution(TD);
3931 }
3932
mangleType(const AtomicType * T)3933 void CXXNameMangler::mangleType(const AtomicType *T) {
3934 // <type> ::= U <source-name> <type> # vendor extended type qualifier
3935 // (Until there's a standardized mangling...)
3936 Out << "U7_Atomic";
3937 mangleType(T->getValueType());
3938 }
3939
mangleType(const PipeType * T)3940 void CXXNameMangler::mangleType(const PipeType *T) {
3941 // Pipe type mangling rules are described in SPIR 2.0 specification
3942 // A.1 Data types and A.3 Summary of changes
3943 // <type> ::= 8ocl_pipe
3944 Out << "8ocl_pipe";
3945 }
3946
mangleType(const ExtIntType * T)3947 void CXXNameMangler::mangleType(const ExtIntType *T) {
3948 Out << "U7_ExtInt";
3949 llvm::APSInt BW(32, true);
3950 BW = T->getNumBits();
3951 TemplateArgument TA(Context.getASTContext(), BW, getASTContext().IntTy);
3952 mangleTemplateArgs(TemplateName(), &TA, 1);
3953 if (T->isUnsigned())
3954 Out << "j";
3955 else
3956 Out << "i";
3957 }
3958
mangleType(const DependentExtIntType * T)3959 void CXXNameMangler::mangleType(const DependentExtIntType *T) {
3960 Out << "U7_ExtInt";
3961 TemplateArgument TA(T->getNumBitsExpr());
3962 mangleTemplateArgs(TemplateName(), &TA, 1);
3963 if (T->isUnsigned())
3964 Out << "j";
3965 else
3966 Out << "i";
3967 }
3968
mangleIntegerLiteral(QualType T,const llvm::APSInt & Value)3969 void CXXNameMangler::mangleIntegerLiteral(QualType T,
3970 const llvm::APSInt &Value) {
3971 // <expr-primary> ::= L <type> <value number> E # integer literal
3972 Out << 'L';
3973
3974 mangleType(T);
3975 if (T->isBooleanType()) {
3976 // Boolean values are encoded as 0/1.
3977 Out << (Value.getBoolValue() ? '1' : '0');
3978 } else {
3979 mangleNumber(Value);
3980 }
3981 Out << 'E';
3982
3983 }
3984
mangleMemberExprBase(const Expr * Base,bool IsArrow)3985 void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) {
3986 // Ignore member expressions involving anonymous unions.
3987 while (const auto *RT = Base->getType()->getAs<RecordType>()) {
3988 if (!RT->getDecl()->isAnonymousStructOrUnion())
3989 break;
3990 const auto *ME = dyn_cast<MemberExpr>(Base);
3991 if (!ME)
3992 break;
3993 Base = ME->getBase();
3994 IsArrow = ME->isArrow();
3995 }
3996
3997 if (Base->isImplicitCXXThis()) {
3998 // Note: GCC mangles member expressions to the implicit 'this' as
3999 // *this., whereas we represent them as this->. The Itanium C++ ABI
4000 // does not specify anything here, so we follow GCC.
4001 Out << "dtdefpT";
4002 } else {
4003 Out << (IsArrow ? "pt" : "dt");
4004 mangleExpression(Base);
4005 }
4006 }
4007
4008 /// Mangles a member expression.
mangleMemberExpr(const Expr * base,bool isArrow,NestedNameSpecifier * qualifier,NamedDecl * firstQualifierLookup,DeclarationName member,const TemplateArgumentLoc * TemplateArgs,unsigned NumTemplateArgs,unsigned arity)4009 void CXXNameMangler::mangleMemberExpr(const Expr *base,
4010 bool isArrow,
4011 NestedNameSpecifier *qualifier,
4012 NamedDecl *firstQualifierLookup,
4013 DeclarationName member,
4014 const TemplateArgumentLoc *TemplateArgs,
4015 unsigned NumTemplateArgs,
4016 unsigned arity) {
4017 // <expression> ::= dt <expression> <unresolved-name>
4018 // ::= pt <expression> <unresolved-name>
4019 if (base)
4020 mangleMemberExprBase(base, isArrow);
4021 mangleUnresolvedName(qualifier, member, TemplateArgs, NumTemplateArgs, arity);
4022 }
4023
4024 /// Look at the callee of the given call expression and determine if
4025 /// it's a parenthesized id-expression which would have triggered ADL
4026 /// otherwise.
isParenthesizedADLCallee(const CallExpr * call)4027 static bool isParenthesizedADLCallee(const CallExpr *call) {
4028 const Expr *callee = call->getCallee();
4029 const Expr *fn = callee->IgnoreParens();
4030
4031 // Must be parenthesized. IgnoreParens() skips __extension__ nodes,
4032 // too, but for those to appear in the callee, it would have to be
4033 // parenthesized.
4034 if (callee == fn) return false;
4035
4036 // Must be an unresolved lookup.
4037 const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
4038 if (!lookup) return false;
4039
4040 assert(!lookup->requiresADL());
4041
4042 // Must be an unqualified lookup.
4043 if (lookup->getQualifier()) return false;
4044
4045 // Must not have found a class member. Note that if one is a class
4046 // member, they're all class members.
4047 if (lookup->getNumDecls() > 0 &&
4048 (*lookup->decls_begin())->isCXXClassMember())
4049 return false;
4050
4051 // Otherwise, ADL would have been triggered.
4052 return true;
4053 }
4054
mangleCastExpression(const Expr * E,StringRef CastEncoding)4055 void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) {
4056 const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
4057 Out << CastEncoding;
4058 mangleType(ECE->getType());
4059 mangleExpression(ECE->getSubExpr());
4060 }
4061
mangleInitListElements(const InitListExpr * InitList)4062 void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) {
4063 if (auto *Syntactic = InitList->getSyntacticForm())
4064 InitList = Syntactic;
4065 for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
4066 mangleExpression(InitList->getInit(i));
4067 }
4068
mangleExpression(const Expr * E,unsigned Arity,bool AsTemplateArg)4069 void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity,
4070 bool AsTemplateArg) {
4071 // <expression> ::= <unary operator-name> <expression>
4072 // ::= <binary operator-name> <expression> <expression>
4073 // ::= <trinary operator-name> <expression> <expression> <expression>
4074 // ::= cv <type> expression # conversion with one argument
4075 // ::= cv <type> _ <expression>* E # conversion with a different number of arguments
4076 // ::= dc <type> <expression> # dynamic_cast<type> (expression)
4077 // ::= sc <type> <expression> # static_cast<type> (expression)
4078 // ::= cc <type> <expression> # const_cast<type> (expression)
4079 // ::= rc <type> <expression> # reinterpret_cast<type> (expression)
4080 // ::= st <type> # sizeof (a type)
4081 // ::= at <type> # alignof (a type)
4082 // ::= <template-param>
4083 // ::= <function-param>
4084 // ::= fpT # 'this' expression (part of <function-param>)
4085 // ::= sr <type> <unqualified-name> # dependent name
4086 // ::= sr <type> <unqualified-name> <template-args> # dependent template-id
4087 // ::= ds <expression> <expression> # expr.*expr
4088 // ::= sZ <template-param> # size of a parameter pack
4089 // ::= sZ <function-param> # size of a function parameter pack
4090 // ::= u <source-name> <template-arg>* E # vendor extended expression
4091 // ::= <expr-primary>
4092 // <expr-primary> ::= L <type> <value number> E # integer literal
4093 // ::= L <type> <value float> E # floating literal
4094 // ::= L <type> <string type> E # string literal
4095 // ::= L <nullptr type> E # nullptr literal "LDnE"
4096 // ::= L <pointer type> 0 E # null pointer template argument
4097 // ::= L <type> <real-part float> _ <imag-part float> E # complex floating point literal (C99); not used by clang
4098 // ::= L <mangled-name> E # external name
4099 QualType ImplicitlyConvertedToType;
4100
4101 // A top-level expression that's not <expr-primary> needs to be wrapped in
4102 // X...E in a template arg.
4103 bool IsPrimaryExpr = true;
4104 auto NotPrimaryExpr = [&] {
4105 if (AsTemplateArg && IsPrimaryExpr)
4106 Out << 'X';
4107 IsPrimaryExpr = false;
4108 };
4109
4110 auto MangleDeclRefExpr = [&](const NamedDecl *D) {
4111 switch (D->getKind()) {
4112 default:
4113 // <expr-primary> ::= L <mangled-name> E # external name
4114 Out << 'L';
4115 mangle(D);
4116 Out << 'E';
4117 break;
4118
4119 case Decl::ParmVar:
4120 NotPrimaryExpr();
4121 mangleFunctionParam(cast<ParmVarDecl>(D));
4122 break;
4123
4124 case Decl::EnumConstant: {
4125 // <expr-primary>
4126 const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
4127 mangleIntegerLiteral(ED->getType(), ED->getInitVal());
4128 break;
4129 }
4130
4131 case Decl::NonTypeTemplateParm:
4132 NotPrimaryExpr();
4133 const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
4134 mangleTemplateParameter(PD->getDepth(), PD->getIndex());
4135 break;
4136 }
4137 };
4138
4139 // 'goto recurse' is used when handling a simple "unwrapping" node which
4140 // produces no output, where ImplicitlyConvertedToType and AsTemplateArg need
4141 // to be preserved.
4142 recurse:
4143 switch (E->getStmtClass()) {
4144 case Expr::NoStmtClass:
4145 #define ABSTRACT_STMT(Type)
4146 #define EXPR(Type, Base)
4147 #define STMT(Type, Base) \
4148 case Expr::Type##Class:
4149 #include "clang/AST/StmtNodes.inc"
4150 // fallthrough
4151
4152 // These all can only appear in local or variable-initialization
4153 // contexts and so should never appear in a mangling.
4154 case Expr::AddrLabelExprClass:
4155 case Expr::DesignatedInitUpdateExprClass:
4156 case Expr::ImplicitValueInitExprClass:
4157 case Expr::ArrayInitLoopExprClass:
4158 case Expr::ArrayInitIndexExprClass:
4159 case Expr::NoInitExprClass:
4160 case Expr::ParenListExprClass:
4161 case Expr::LambdaExprClass:
4162 case Expr::MSPropertyRefExprClass:
4163 case Expr::MSPropertySubscriptExprClass:
4164 case Expr::TypoExprClass: // This should no longer exist in the AST by now.
4165 case Expr::RecoveryExprClass:
4166 case Expr::OMPArraySectionExprClass:
4167 case Expr::OMPArrayShapingExprClass:
4168 case Expr::OMPIteratorExprClass:
4169 case Expr::CXXInheritedCtorInitExprClass:
4170 llvm_unreachable("unexpected statement kind");
4171
4172 case Expr::ConstantExprClass:
4173 E = cast<ConstantExpr>(E)->getSubExpr();
4174 goto recurse;
4175
4176 // FIXME: invent manglings for all these.
4177 case Expr::BlockExprClass:
4178 case Expr::ChooseExprClass:
4179 case Expr::CompoundLiteralExprClass:
4180 case Expr::ExtVectorElementExprClass:
4181 case Expr::GenericSelectionExprClass:
4182 case Expr::ObjCEncodeExprClass:
4183 case Expr::ObjCIsaExprClass:
4184 case Expr::ObjCIvarRefExprClass:
4185 case Expr::ObjCMessageExprClass:
4186 case Expr::ObjCPropertyRefExprClass:
4187 case Expr::ObjCProtocolExprClass:
4188 case Expr::ObjCSelectorExprClass:
4189 case Expr::ObjCStringLiteralClass:
4190 case Expr::ObjCBoxedExprClass:
4191 case Expr::ObjCArrayLiteralClass:
4192 case Expr::ObjCDictionaryLiteralClass:
4193 case Expr::ObjCSubscriptRefExprClass:
4194 case Expr::ObjCIndirectCopyRestoreExprClass:
4195 case Expr::ObjCAvailabilityCheckExprClass:
4196 case Expr::OffsetOfExprClass:
4197 case Expr::PredefinedExprClass:
4198 case Expr::ShuffleVectorExprClass:
4199 case Expr::ConvertVectorExprClass:
4200 case Expr::StmtExprClass:
4201 case Expr::TypeTraitExprClass:
4202 case Expr::RequiresExprClass:
4203 case Expr::ArrayTypeTraitExprClass:
4204 case Expr::ExpressionTraitExprClass:
4205 case Expr::VAArgExprClass:
4206 case Expr::CUDAKernelCallExprClass:
4207 case Expr::AsTypeExprClass:
4208 case Expr::PseudoObjectExprClass:
4209 case Expr::AtomicExprClass:
4210 case Expr::SourceLocExprClass:
4211 case Expr::BuiltinBitCastExprClass:
4212 {
4213 NotPrimaryExpr();
4214 if (!NullOut) {
4215 // As bad as this diagnostic is, it's better than crashing.
4216 DiagnosticsEngine &Diags = Context.getDiags();
4217 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
4218 "cannot yet mangle expression type %0");
4219 Diags.Report(E->getExprLoc(), DiagID)
4220 << E->getStmtClassName() << E->getSourceRange();
4221 return;
4222 }
4223 break;
4224 }
4225
4226 case Expr::CXXUuidofExprClass: {
4227 NotPrimaryExpr();
4228 const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E);
4229 // As of clang 12, uuidof uses the vendor extended expression
4230 // mangling. Previously, it used a special-cased nonstandard extension.
4231 if (Context.getASTContext().getLangOpts().getClangABICompat() >
4232 LangOptions::ClangABI::Ver11) {
4233 Out << "u8__uuidof";
4234 if (UE->isTypeOperand())
4235 mangleType(UE->getTypeOperand(Context.getASTContext()));
4236 else
4237 mangleTemplateArgExpr(UE->getExprOperand());
4238 Out << 'E';
4239 } else {
4240 if (UE->isTypeOperand()) {
4241 QualType UuidT = UE->getTypeOperand(Context.getASTContext());
4242 Out << "u8__uuidoft";
4243 mangleType(UuidT);
4244 } else {
4245 Expr *UuidExp = UE->getExprOperand();
4246 Out << "u8__uuidofz";
4247 mangleExpression(UuidExp);
4248 }
4249 }
4250 break;
4251 }
4252
4253 // Even gcc-4.5 doesn't mangle this.
4254 case Expr::BinaryConditionalOperatorClass: {
4255 NotPrimaryExpr();
4256 DiagnosticsEngine &Diags = Context.getDiags();
4257 unsigned DiagID =
4258 Diags.getCustomDiagID(DiagnosticsEngine::Error,
4259 "?: operator with omitted middle operand cannot be mangled");
4260 Diags.Report(E->getExprLoc(), DiagID)
4261 << E->getStmtClassName() << E->getSourceRange();
4262 return;
4263 }
4264
4265 // These are used for internal purposes and cannot be meaningfully mangled.
4266 case Expr::OpaqueValueExprClass:
4267 llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
4268
4269 case Expr::InitListExprClass: {
4270 NotPrimaryExpr();
4271 Out << "il";
4272 mangleInitListElements(cast<InitListExpr>(E));
4273 Out << "E";
4274 break;
4275 }
4276
4277 case Expr::DesignatedInitExprClass: {
4278 NotPrimaryExpr();
4279 auto *DIE = cast<DesignatedInitExpr>(E);
4280 for (const auto &Designator : DIE->designators()) {
4281 if (Designator.isFieldDesignator()) {
4282 Out << "di";
4283 mangleSourceName(Designator.getFieldName());
4284 } else if (Designator.isArrayDesignator()) {
4285 Out << "dx";
4286 mangleExpression(DIE->getArrayIndex(Designator));
4287 } else {
4288 assert(Designator.isArrayRangeDesignator() &&
4289 "unknown designator kind");
4290 Out << "dX";
4291 mangleExpression(DIE->getArrayRangeStart(Designator));
4292 mangleExpression(DIE->getArrayRangeEnd(Designator));
4293 }
4294 }
4295 mangleExpression(DIE->getInit());
4296 break;
4297 }
4298
4299 case Expr::CXXDefaultArgExprClass:
4300 E = cast<CXXDefaultArgExpr>(E)->getExpr();
4301 goto recurse;
4302
4303 case Expr::CXXDefaultInitExprClass:
4304 E = cast<CXXDefaultInitExpr>(E)->getExpr();
4305 goto recurse;
4306
4307 case Expr::CXXStdInitializerListExprClass:
4308 E = cast<CXXStdInitializerListExpr>(E)->getSubExpr();
4309 goto recurse;
4310
4311 case Expr::SubstNonTypeTemplateParmExprClass:
4312 E = cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement();
4313 goto recurse;
4314
4315 case Expr::UserDefinedLiteralClass:
4316 // We follow g++'s approach of mangling a UDL as a call to the literal
4317 // operator.
4318 case Expr::CXXMemberCallExprClass: // fallthrough
4319 case Expr::CallExprClass: {
4320 NotPrimaryExpr();
4321 const CallExpr *CE = cast<CallExpr>(E);
4322
4323 // <expression> ::= cp <simple-id> <expression>* E
4324 // We use this mangling only when the call would use ADL except
4325 // for being parenthesized. Per discussion with David
4326 // Vandervoorde, 2011.04.25.
4327 if (isParenthesizedADLCallee(CE)) {
4328 Out << "cp";
4329 // The callee here is a parenthesized UnresolvedLookupExpr with
4330 // no qualifier and should always get mangled as a <simple-id>
4331 // anyway.
4332
4333 // <expression> ::= cl <expression>* E
4334 } else {
4335 Out << "cl";
4336 }
4337
4338 unsigned CallArity = CE->getNumArgs();
4339 for (const Expr *Arg : CE->arguments())
4340 if (isa<PackExpansionExpr>(Arg))
4341 CallArity = UnknownArity;
4342
4343 mangleExpression(CE->getCallee(), CallArity);
4344 for (const Expr *Arg : CE->arguments())
4345 mangleExpression(Arg);
4346 Out << 'E';
4347 break;
4348 }
4349
4350 case Expr::CXXNewExprClass: {
4351 NotPrimaryExpr();
4352 const CXXNewExpr *New = cast<CXXNewExpr>(E);
4353 if (New->isGlobalNew()) Out << "gs";
4354 Out << (New->isArray() ? "na" : "nw");
4355 for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
4356 E = New->placement_arg_end(); I != E; ++I)
4357 mangleExpression(*I);
4358 Out << '_';
4359 mangleType(New->getAllocatedType());
4360 if (New->hasInitializer()) {
4361 if (New->getInitializationStyle() == CXXNewExpr::ListInit)
4362 Out << "il";
4363 else
4364 Out << "pi";
4365 const Expr *Init = New->getInitializer();
4366 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
4367 // Directly inline the initializers.
4368 for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
4369 E = CCE->arg_end();
4370 I != E; ++I)
4371 mangleExpression(*I);
4372 } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
4373 for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
4374 mangleExpression(PLE->getExpr(i));
4375 } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
4376 isa<InitListExpr>(Init)) {
4377 // Only take InitListExprs apart for list-initialization.
4378 mangleInitListElements(cast<InitListExpr>(Init));
4379 } else
4380 mangleExpression(Init);
4381 }
4382 Out << 'E';
4383 break;
4384 }
4385
4386 case Expr::CXXPseudoDestructorExprClass: {
4387 NotPrimaryExpr();
4388 const auto *PDE = cast<CXXPseudoDestructorExpr>(E);
4389 if (const Expr *Base = PDE->getBase())
4390 mangleMemberExprBase(Base, PDE->isArrow());
4391 NestedNameSpecifier *Qualifier = PDE->getQualifier();
4392 if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) {
4393 if (Qualifier) {
4394 mangleUnresolvedPrefix(Qualifier,
4395 /*recursive=*/true);
4396 mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType());
4397 Out << 'E';
4398 } else {
4399 Out << "sr";
4400 if (!mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType()))
4401 Out << 'E';
4402 }
4403 } else if (Qualifier) {
4404 mangleUnresolvedPrefix(Qualifier);
4405 }
4406 // <base-unresolved-name> ::= dn <destructor-name>
4407 Out << "dn";
4408 QualType DestroyedType = PDE->getDestroyedType();
4409 mangleUnresolvedTypeOrSimpleId(DestroyedType);
4410 break;
4411 }
4412
4413 case Expr::MemberExprClass: {
4414 NotPrimaryExpr();
4415 const MemberExpr *ME = cast<MemberExpr>(E);
4416 mangleMemberExpr(ME->getBase(), ME->isArrow(),
4417 ME->getQualifier(), nullptr,
4418 ME->getMemberDecl()->getDeclName(),
4419 ME->getTemplateArgs(), ME->getNumTemplateArgs(),
4420 Arity);
4421 break;
4422 }
4423
4424 case Expr::UnresolvedMemberExprClass: {
4425 NotPrimaryExpr();
4426 const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
4427 mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
4428 ME->isArrow(), ME->getQualifier(), nullptr,
4429 ME->getMemberName(),
4430 ME->getTemplateArgs(), ME->getNumTemplateArgs(),
4431 Arity);
4432 break;
4433 }
4434
4435 case Expr::CXXDependentScopeMemberExprClass: {
4436 NotPrimaryExpr();
4437 const CXXDependentScopeMemberExpr *ME
4438 = cast<CXXDependentScopeMemberExpr>(E);
4439 mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
4440 ME->isArrow(), ME->getQualifier(),
4441 ME->getFirstQualifierFoundInScope(),
4442 ME->getMember(),
4443 ME->getTemplateArgs(), ME->getNumTemplateArgs(),
4444 Arity);
4445 break;
4446 }
4447
4448 case Expr::UnresolvedLookupExprClass: {
4449 NotPrimaryExpr();
4450 const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
4451 mangleUnresolvedName(ULE->getQualifier(), ULE->getName(),
4452 ULE->getTemplateArgs(), ULE->getNumTemplateArgs(),
4453 Arity);
4454 break;
4455 }
4456
4457 case Expr::CXXUnresolvedConstructExprClass: {
4458 NotPrimaryExpr();
4459 const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
4460 unsigned N = CE->getNumArgs();
4461
4462 if (CE->isListInitialization()) {
4463 assert(N == 1 && "unexpected form for list initialization");
4464 auto *IL = cast<InitListExpr>(CE->getArg(0));
4465 Out << "tl";
4466 mangleType(CE->getType());
4467 mangleInitListElements(IL);
4468 Out << "E";
4469 break;
4470 }
4471
4472 Out << "cv";
4473 mangleType(CE->getType());
4474 if (N != 1) Out << '_';
4475 for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
4476 if (N != 1) Out << 'E';
4477 break;
4478 }
4479
4480 case Expr::CXXConstructExprClass: {
4481 // An implicit cast is silent, thus may contain <expr-primary>.
4482 const auto *CE = cast<CXXConstructExpr>(E);
4483 if (!CE->isListInitialization() || CE->isStdInitListInitialization()) {
4484 assert(
4485 CE->getNumArgs() >= 1 &&
4486 (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) &&
4487 "implicit CXXConstructExpr must have one argument");
4488 E = cast<CXXConstructExpr>(E)->getArg(0);
4489 goto recurse;
4490 }
4491 NotPrimaryExpr();
4492 Out << "il";
4493 for (auto *E : CE->arguments())
4494 mangleExpression(E);
4495 Out << "E";
4496 break;
4497 }
4498
4499 case Expr::CXXTemporaryObjectExprClass: {
4500 NotPrimaryExpr();
4501 const auto *CE = cast<CXXTemporaryObjectExpr>(E);
4502 unsigned N = CE->getNumArgs();
4503 bool List = CE->isListInitialization();
4504
4505 if (List)
4506 Out << "tl";
4507 else
4508 Out << "cv";
4509 mangleType(CE->getType());
4510 if (!List && N != 1)
4511 Out << '_';
4512 if (CE->isStdInitListInitialization()) {
4513 // We implicitly created a std::initializer_list<T> for the first argument
4514 // of a constructor of type U in an expression of the form U{a, b, c}.
4515 // Strip all the semantic gunk off the initializer list.
4516 auto *SILE =
4517 cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit());
4518 auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit());
4519 mangleInitListElements(ILE);
4520 } else {
4521 for (auto *E : CE->arguments())
4522 mangleExpression(E);
4523 }
4524 if (List || N != 1)
4525 Out << 'E';
4526 break;
4527 }
4528
4529 case Expr::CXXScalarValueInitExprClass:
4530 NotPrimaryExpr();
4531 Out << "cv";
4532 mangleType(E->getType());
4533 Out << "_E";
4534 break;
4535
4536 case Expr::CXXNoexceptExprClass:
4537 NotPrimaryExpr();
4538 Out << "nx";
4539 mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
4540 break;
4541
4542 case Expr::UnaryExprOrTypeTraitExprClass: {
4543 // Non-instantiation-dependent traits are an <expr-primary> integer literal.
4544 const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
4545
4546 if (!SAE->isInstantiationDependent()) {
4547 // Itanium C++ ABI:
4548 // If the operand of a sizeof or alignof operator is not
4549 // instantiation-dependent it is encoded as an integer literal
4550 // reflecting the result of the operator.
4551 //
4552 // If the result of the operator is implicitly converted to a known
4553 // integer type, that type is used for the literal; otherwise, the type
4554 // of std::size_t or std::ptrdiff_t is used.
4555 QualType T = (ImplicitlyConvertedToType.isNull() ||
4556 !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
4557 : ImplicitlyConvertedToType;
4558 llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
4559 mangleIntegerLiteral(T, V);
4560 break;
4561 }
4562
4563 NotPrimaryExpr(); // But otherwise, they are not.
4564
4565 auto MangleAlignofSizeofArg = [&] {
4566 if (SAE->isArgumentType()) {
4567 Out << 't';
4568 mangleType(SAE->getArgumentType());
4569 } else {
4570 Out << 'z';
4571 mangleExpression(SAE->getArgumentExpr());
4572 }
4573 };
4574
4575 switch(SAE->getKind()) {
4576 case UETT_SizeOf:
4577 Out << 's';
4578 MangleAlignofSizeofArg();
4579 break;
4580 case UETT_PreferredAlignOf:
4581 // As of clang 12, we mangle __alignof__ differently than alignof. (They
4582 // have acted differently since Clang 8, but were previously mangled the
4583 // same.)
4584 if (Context.getASTContext().getLangOpts().getClangABICompat() >
4585 LangOptions::ClangABI::Ver11) {
4586 Out << "u11__alignof__";
4587 if (SAE->isArgumentType())
4588 mangleType(SAE->getArgumentType());
4589 else
4590 mangleTemplateArgExpr(SAE->getArgumentExpr());
4591 Out << 'E';
4592 break;
4593 }
4594 LLVM_FALLTHROUGH;
4595 case UETT_AlignOf:
4596 Out << 'a';
4597 MangleAlignofSizeofArg();
4598 break;
4599 case UETT_VecStep: {
4600 DiagnosticsEngine &Diags = Context.getDiags();
4601 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
4602 "cannot yet mangle vec_step expression");
4603 Diags.Report(DiagID);
4604 return;
4605 }
4606 case UETT_OpenMPRequiredSimdAlign: {
4607 DiagnosticsEngine &Diags = Context.getDiags();
4608 unsigned DiagID = Diags.getCustomDiagID(
4609 DiagnosticsEngine::Error,
4610 "cannot yet mangle __builtin_omp_required_simd_align expression");
4611 Diags.Report(DiagID);
4612 return;
4613 }
4614 }
4615 break;
4616 }
4617
4618 case Expr::CXXThrowExprClass: {
4619 NotPrimaryExpr();
4620 const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
4621 // <expression> ::= tw <expression> # throw expression
4622 // ::= tr # rethrow
4623 if (TE->getSubExpr()) {
4624 Out << "tw";
4625 mangleExpression(TE->getSubExpr());
4626 } else {
4627 Out << "tr";
4628 }
4629 break;
4630 }
4631
4632 case Expr::CXXTypeidExprClass: {
4633 NotPrimaryExpr();
4634 const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
4635 // <expression> ::= ti <type> # typeid (type)
4636 // ::= te <expression> # typeid (expression)
4637 if (TIE->isTypeOperand()) {
4638 Out << "ti";
4639 mangleType(TIE->getTypeOperand(Context.getASTContext()));
4640 } else {
4641 Out << "te";
4642 mangleExpression(TIE->getExprOperand());
4643 }
4644 break;
4645 }
4646
4647 case Expr::CXXDeleteExprClass: {
4648 NotPrimaryExpr();
4649 const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
4650 // <expression> ::= [gs] dl <expression> # [::] delete expr
4651 // ::= [gs] da <expression> # [::] delete [] expr
4652 if (DE->isGlobalDelete()) Out << "gs";
4653 Out << (DE->isArrayForm() ? "da" : "dl");
4654 mangleExpression(DE->getArgument());
4655 break;
4656 }
4657
4658 case Expr::UnaryOperatorClass: {
4659 NotPrimaryExpr();
4660 const UnaryOperator *UO = cast<UnaryOperator>(E);
4661 mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
4662 /*Arity=*/1);
4663 mangleExpression(UO->getSubExpr());
4664 break;
4665 }
4666
4667 case Expr::ArraySubscriptExprClass: {
4668 NotPrimaryExpr();
4669 const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
4670
4671 // Array subscript is treated as a syntactically weird form of
4672 // binary operator.
4673 Out << "ix";
4674 mangleExpression(AE->getLHS());
4675 mangleExpression(AE->getRHS());
4676 break;
4677 }
4678
4679 case Expr::MatrixSubscriptExprClass: {
4680 NotPrimaryExpr();
4681 const MatrixSubscriptExpr *ME = cast<MatrixSubscriptExpr>(E);
4682 Out << "ixix";
4683 mangleExpression(ME->getBase());
4684 mangleExpression(ME->getRowIdx());
4685 mangleExpression(ME->getColumnIdx());
4686 break;
4687 }
4688
4689 case Expr::CompoundAssignOperatorClass: // fallthrough
4690 case Expr::BinaryOperatorClass: {
4691 NotPrimaryExpr();
4692 const BinaryOperator *BO = cast<BinaryOperator>(E);
4693 if (BO->getOpcode() == BO_PtrMemD)
4694 Out << "ds";
4695 else
4696 mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
4697 /*Arity=*/2);
4698 mangleExpression(BO->getLHS());
4699 mangleExpression(BO->getRHS());
4700 break;
4701 }
4702
4703 case Expr::CXXRewrittenBinaryOperatorClass: {
4704 NotPrimaryExpr();
4705 // The mangled form represents the original syntax.
4706 CXXRewrittenBinaryOperator::DecomposedForm Decomposed =
4707 cast<CXXRewrittenBinaryOperator>(E)->getDecomposedForm();
4708 mangleOperatorName(BinaryOperator::getOverloadedOperator(Decomposed.Opcode),
4709 /*Arity=*/2);
4710 mangleExpression(Decomposed.LHS);
4711 mangleExpression(Decomposed.RHS);
4712 break;
4713 }
4714
4715 case Expr::ConditionalOperatorClass: {
4716 NotPrimaryExpr();
4717 const ConditionalOperator *CO = cast<ConditionalOperator>(E);
4718 mangleOperatorName(OO_Conditional, /*Arity=*/3);
4719 mangleExpression(CO->getCond());
4720 mangleExpression(CO->getLHS(), Arity);
4721 mangleExpression(CO->getRHS(), Arity);
4722 break;
4723 }
4724
4725 case Expr::ImplicitCastExprClass: {
4726 ImplicitlyConvertedToType = E->getType();
4727 E = cast<ImplicitCastExpr>(E)->getSubExpr();
4728 goto recurse;
4729 }
4730
4731 case Expr::ObjCBridgedCastExprClass: {
4732 NotPrimaryExpr();
4733 // Mangle ownership casts as a vendor extended operator __bridge,
4734 // __bridge_transfer, or __bridge_retain.
4735 StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
4736 Out << "v1U" << Kind.size() << Kind;
4737 mangleCastExpression(E, "cv");
4738 break;
4739 }
4740
4741 case Expr::CStyleCastExprClass:
4742 NotPrimaryExpr();
4743 mangleCastExpression(E, "cv");
4744 break;
4745
4746 case Expr::CXXFunctionalCastExprClass: {
4747 NotPrimaryExpr();
4748 auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit();
4749 // FIXME: Add isImplicit to CXXConstructExpr.
4750 if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub))
4751 if (CCE->getParenOrBraceRange().isInvalid())
4752 Sub = CCE->getArg(0)->IgnoreImplicit();
4753 if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub))
4754 Sub = StdInitList->getSubExpr()->IgnoreImplicit();
4755 if (auto *IL = dyn_cast<InitListExpr>(Sub)) {
4756 Out << "tl";
4757 mangleType(E->getType());
4758 mangleInitListElements(IL);
4759 Out << "E";
4760 } else {
4761 mangleCastExpression(E, "cv");
4762 }
4763 break;
4764 }
4765
4766 case Expr::CXXStaticCastExprClass:
4767 NotPrimaryExpr();
4768 mangleCastExpression(E, "sc");
4769 break;
4770 case Expr::CXXDynamicCastExprClass:
4771 NotPrimaryExpr();
4772 mangleCastExpression(E, "dc");
4773 break;
4774 case Expr::CXXReinterpretCastExprClass:
4775 NotPrimaryExpr();
4776 mangleCastExpression(E, "rc");
4777 break;
4778 case Expr::CXXConstCastExprClass:
4779 NotPrimaryExpr();
4780 mangleCastExpression(E, "cc");
4781 break;
4782 case Expr::CXXAddrspaceCastExprClass:
4783 NotPrimaryExpr();
4784 mangleCastExpression(E, "ac");
4785 break;
4786
4787 case Expr::CXXOperatorCallExprClass: {
4788 NotPrimaryExpr();
4789 const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
4790 unsigned NumArgs = CE->getNumArgs();
4791 // A CXXOperatorCallExpr for OO_Arrow models only semantics, not syntax
4792 // (the enclosing MemberExpr covers the syntactic portion).
4793 if (CE->getOperator() != OO_Arrow)
4794 mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
4795 // Mangle the arguments.
4796 for (unsigned i = 0; i != NumArgs; ++i)
4797 mangleExpression(CE->getArg(i));
4798 break;
4799 }
4800
4801 case Expr::ParenExprClass:
4802 E = cast<ParenExpr>(E)->getSubExpr();
4803 goto recurse;
4804
4805 case Expr::ConceptSpecializationExprClass: {
4806 // <expr-primary> ::= L <mangled-name> E # external name
4807 Out << "L_Z";
4808 auto *CSE = cast<ConceptSpecializationExpr>(E);
4809 mangleTemplateName(CSE->getNamedConcept(),
4810 CSE->getTemplateArguments().data(),
4811 CSE->getTemplateArguments().size());
4812 Out << 'E';
4813 break;
4814 }
4815
4816 case Expr::DeclRefExprClass:
4817 // MangleDeclRefExpr helper handles primary-vs-nonprimary
4818 MangleDeclRefExpr(cast<DeclRefExpr>(E)->getDecl());
4819 break;
4820
4821 case Expr::SubstNonTypeTemplateParmPackExprClass:
4822 NotPrimaryExpr();
4823 // FIXME: not clear how to mangle this!
4824 // template <unsigned N...> class A {
4825 // template <class U...> void foo(U (&x)[N]...);
4826 // };
4827 Out << "_SUBSTPACK_";
4828 break;
4829
4830 case Expr::FunctionParmPackExprClass: {
4831 NotPrimaryExpr();
4832 // FIXME: not clear how to mangle this!
4833 const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
4834 Out << "v110_SUBSTPACK";
4835 MangleDeclRefExpr(FPPE->getParameterPack());
4836 break;
4837 }
4838
4839 case Expr::DependentScopeDeclRefExprClass: {
4840 NotPrimaryExpr();
4841 const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
4842 mangleUnresolvedName(DRE->getQualifier(), DRE->getDeclName(),
4843 DRE->getTemplateArgs(), DRE->getNumTemplateArgs(),
4844 Arity);
4845 break;
4846 }
4847
4848 case Expr::CXXBindTemporaryExprClass:
4849 E = cast<CXXBindTemporaryExpr>(E)->getSubExpr();
4850 goto recurse;
4851
4852 case Expr::ExprWithCleanupsClass:
4853 E = cast<ExprWithCleanups>(E)->getSubExpr();
4854 goto recurse;
4855
4856 case Expr::FloatingLiteralClass: {
4857 // <expr-primary>
4858 const FloatingLiteral *FL = cast<FloatingLiteral>(E);
4859 mangleFloatLiteral(FL->getType(), FL->getValue());
4860 break;
4861 }
4862
4863 case Expr::FixedPointLiteralClass:
4864 // Currently unimplemented -- might be <expr-primary> in future?
4865 mangleFixedPointLiteral();
4866 break;
4867
4868 case Expr::CharacterLiteralClass:
4869 // <expr-primary>
4870 Out << 'L';
4871 mangleType(E->getType());
4872 Out << cast<CharacterLiteral>(E)->getValue();
4873 Out << 'E';
4874 break;
4875
4876 // FIXME. __objc_yes/__objc_no are mangled same as true/false
4877 case Expr::ObjCBoolLiteralExprClass:
4878 // <expr-primary>
4879 Out << "Lb";
4880 Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
4881 Out << 'E';
4882 break;
4883
4884 case Expr::CXXBoolLiteralExprClass:
4885 // <expr-primary>
4886 Out << "Lb";
4887 Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
4888 Out << 'E';
4889 break;
4890
4891 case Expr::IntegerLiteralClass: {
4892 // <expr-primary>
4893 llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
4894 if (E->getType()->isSignedIntegerType())
4895 Value.setIsSigned(true);
4896 mangleIntegerLiteral(E->getType(), Value);
4897 break;
4898 }
4899
4900 case Expr::ImaginaryLiteralClass: {
4901 // <expr-primary>
4902 const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
4903 // Mangle as if a complex literal.
4904 // Proposal from David Vandevoorde, 2010.06.30.
4905 Out << 'L';
4906 mangleType(E->getType());
4907 if (const FloatingLiteral *Imag =
4908 dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
4909 // Mangle a floating-point zero of the appropriate type.
4910 mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
4911 Out << '_';
4912 mangleFloat(Imag->getValue());
4913 } else {
4914 Out << "0_";
4915 llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
4916 if (IE->getSubExpr()->getType()->isSignedIntegerType())
4917 Value.setIsSigned(true);
4918 mangleNumber(Value);
4919 }
4920 Out << 'E';
4921 break;
4922 }
4923
4924 case Expr::StringLiteralClass: {
4925 // <expr-primary>
4926 // Revised proposal from David Vandervoorde, 2010.07.15.
4927 Out << 'L';
4928 assert(isa<ConstantArrayType>(E->getType()));
4929 mangleType(E->getType());
4930 Out << 'E';
4931 break;
4932 }
4933
4934 case Expr::GNUNullExprClass:
4935 // <expr-primary>
4936 // Mangle as if an integer literal 0.
4937 mangleIntegerLiteral(E->getType(), llvm::APSInt(32));
4938 break;
4939
4940 case Expr::CXXNullPtrLiteralExprClass: {
4941 // <expr-primary>
4942 Out << "LDnE";
4943 break;
4944 }
4945
4946 case Expr::PackExpansionExprClass:
4947 NotPrimaryExpr();
4948 Out << "sp";
4949 mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
4950 break;
4951
4952 case Expr::SizeOfPackExprClass: {
4953 NotPrimaryExpr();
4954 auto *SPE = cast<SizeOfPackExpr>(E);
4955 if (SPE->isPartiallySubstituted()) {
4956 Out << "sP";
4957 for (const auto &A : SPE->getPartialArguments())
4958 mangleTemplateArg(A, false);
4959 Out << "E";
4960 break;
4961 }
4962
4963 Out << "sZ";
4964 const NamedDecl *Pack = SPE->getPack();
4965 if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
4966 mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
4967 else if (const NonTypeTemplateParmDecl *NTTP
4968 = dyn_cast<NonTypeTemplateParmDecl>(Pack))
4969 mangleTemplateParameter(NTTP->getDepth(), NTTP->getIndex());
4970 else if (const TemplateTemplateParmDecl *TempTP
4971 = dyn_cast<TemplateTemplateParmDecl>(Pack))
4972 mangleTemplateParameter(TempTP->getDepth(), TempTP->getIndex());
4973 else
4974 mangleFunctionParam(cast<ParmVarDecl>(Pack));
4975 break;
4976 }
4977
4978 case Expr::MaterializeTemporaryExprClass:
4979 E = cast<MaterializeTemporaryExpr>(E)->getSubExpr();
4980 goto recurse;
4981
4982 case Expr::CXXFoldExprClass: {
4983 NotPrimaryExpr();
4984 auto *FE = cast<CXXFoldExpr>(E);
4985 if (FE->isLeftFold())
4986 Out << (FE->getInit() ? "fL" : "fl");
4987 else
4988 Out << (FE->getInit() ? "fR" : "fr");
4989
4990 if (FE->getOperator() == BO_PtrMemD)
4991 Out << "ds";
4992 else
4993 mangleOperatorName(
4994 BinaryOperator::getOverloadedOperator(FE->getOperator()),
4995 /*Arity=*/2);
4996
4997 if (FE->getLHS())
4998 mangleExpression(FE->getLHS());
4999 if (FE->getRHS())
5000 mangleExpression(FE->getRHS());
5001 break;
5002 }
5003
5004 case Expr::CXXThisExprClass:
5005 NotPrimaryExpr();
5006 Out << "fpT";
5007 break;
5008
5009 case Expr::CoawaitExprClass:
5010 // FIXME: Propose a non-vendor mangling.
5011 NotPrimaryExpr();
5012 Out << "v18co_await";
5013 mangleExpression(cast<CoawaitExpr>(E)->getOperand());
5014 break;
5015
5016 case Expr::DependentCoawaitExprClass:
5017 // FIXME: Propose a non-vendor mangling.
5018 NotPrimaryExpr();
5019 Out << "v18co_await";
5020 mangleExpression(cast<DependentCoawaitExpr>(E)->getOperand());
5021 break;
5022
5023 case Expr::CoyieldExprClass:
5024 // FIXME: Propose a non-vendor mangling.
5025 NotPrimaryExpr();
5026 Out << "v18co_yield";
5027 mangleExpression(cast<CoawaitExpr>(E)->getOperand());
5028 break;
5029 }
5030
5031 if (AsTemplateArg && !IsPrimaryExpr)
5032 Out << 'E';
5033 }
5034
5035 /// Mangle an expression which refers to a parameter variable.
5036 ///
5037 /// <expression> ::= <function-param>
5038 /// <function-param> ::= fp <top-level CV-qualifiers> _ # L == 0, I == 0
5039 /// <function-param> ::= fp <top-level CV-qualifiers>
5040 /// <parameter-2 non-negative number> _ # L == 0, I > 0
5041 /// <function-param> ::= fL <L-1 non-negative number>
5042 /// p <top-level CV-qualifiers> _ # L > 0, I == 0
5043 /// <function-param> ::= fL <L-1 non-negative number>
5044 /// p <top-level CV-qualifiers>
5045 /// <I-1 non-negative number> _ # L > 0, I > 0
5046 ///
5047 /// L is the nesting depth of the parameter, defined as 1 if the
5048 /// parameter comes from the innermost function prototype scope
5049 /// enclosing the current context, 2 if from the next enclosing
5050 /// function prototype scope, and so on, with one special case: if
5051 /// we've processed the full parameter clause for the innermost
5052 /// function type, then L is one less. This definition conveniently
5053 /// makes it irrelevant whether a function's result type was written
5054 /// trailing or leading, but is otherwise overly complicated; the
5055 /// numbering was first designed without considering references to
5056 /// parameter in locations other than return types, and then the
5057 /// mangling had to be generalized without changing the existing
5058 /// manglings.
5059 ///
5060 /// I is the zero-based index of the parameter within its parameter
5061 /// declaration clause. Note that the original ABI document describes
5062 /// this using 1-based ordinals.
mangleFunctionParam(const ParmVarDecl * parm)5063 void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
5064 unsigned parmDepth = parm->getFunctionScopeDepth();
5065 unsigned parmIndex = parm->getFunctionScopeIndex();
5066
5067 // Compute 'L'.
5068 // parmDepth does not include the declaring function prototype.
5069 // FunctionTypeDepth does account for that.
5070 assert(parmDepth < FunctionTypeDepth.getDepth());
5071 unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
5072 if (FunctionTypeDepth.isInResultType())
5073 nestingDepth--;
5074
5075 if (nestingDepth == 0) {
5076 Out << "fp";
5077 } else {
5078 Out << "fL" << (nestingDepth - 1) << 'p';
5079 }
5080
5081 // Top-level qualifiers. We don't have to worry about arrays here,
5082 // because parameters declared as arrays should already have been
5083 // transformed to have pointer type. FIXME: apparently these don't
5084 // get mangled if used as an rvalue of a known non-class type?
5085 assert(!parm->getType()->isArrayType()
5086 && "parameter's type is still an array type?");
5087
5088 if (const DependentAddressSpaceType *DAST =
5089 dyn_cast<DependentAddressSpaceType>(parm->getType())) {
5090 mangleQualifiers(DAST->getPointeeType().getQualifiers(), DAST);
5091 } else {
5092 mangleQualifiers(parm->getType().getQualifiers());
5093 }
5094
5095 // Parameter index.
5096 if (parmIndex != 0) {
5097 Out << (parmIndex - 1);
5098 }
5099 Out << '_';
5100 }
5101
mangleCXXCtorType(CXXCtorType T,const CXXRecordDecl * InheritedFrom)5102 void CXXNameMangler::mangleCXXCtorType(CXXCtorType T,
5103 const CXXRecordDecl *InheritedFrom) {
5104 // <ctor-dtor-name> ::= C1 # complete object constructor
5105 // ::= C2 # base object constructor
5106 // ::= CI1 <type> # complete inheriting constructor
5107 // ::= CI2 <type> # base inheriting constructor
5108 //
5109 // In addition, C5 is a comdat name with C1 and C2 in it.
5110 Out << 'C';
5111 if (InheritedFrom)
5112 Out << 'I';
5113 switch (T) {
5114 case Ctor_Complete:
5115 Out << '1';
5116 break;
5117 case Ctor_Base:
5118 Out << '2';
5119 break;
5120 case Ctor_Comdat:
5121 Out << '5';
5122 break;
5123 case Ctor_DefaultClosure:
5124 case Ctor_CopyingClosure:
5125 llvm_unreachable("closure constructors don't exist for the Itanium ABI!");
5126 }
5127 if (InheritedFrom)
5128 mangleName(InheritedFrom);
5129 }
5130
mangleCXXDtorType(CXXDtorType T)5131 void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
5132 // <ctor-dtor-name> ::= D0 # deleting destructor
5133 // ::= D1 # complete object destructor
5134 // ::= D2 # base object destructor
5135 //
5136 // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it.
5137 switch (T) {
5138 case Dtor_Deleting:
5139 Out << "D0";
5140 break;
5141 case Dtor_Complete:
5142 Out << "D1";
5143 break;
5144 case Dtor_Base:
5145 Out << "D2";
5146 break;
5147 case Dtor_Comdat:
5148 Out << "D5";
5149 break;
5150 }
5151 }
5152
5153 namespace {
5154 // Helper to provide ancillary information on a template used to mangle its
5155 // arguments.
5156 struct TemplateArgManglingInfo {
5157 TemplateDecl *ResolvedTemplate = nullptr;
5158 bool SeenPackExpansionIntoNonPack = false;
5159 const NamedDecl *UnresolvedExpandedPack = nullptr;
5160
TemplateArgManglingInfo__anon58ce5dc70611::TemplateArgManglingInfo5161 TemplateArgManglingInfo(TemplateName TN) {
5162 if (TemplateDecl *TD = TN.getAsTemplateDecl())
5163 ResolvedTemplate = TD;
5164 }
5165
5166 /// Do we need to mangle template arguments with exactly correct types?
5167 ///
5168 /// This should be called exactly once for each parameter / argument pair, in
5169 /// order.
needExactType__anon58ce5dc70611::TemplateArgManglingInfo5170 bool needExactType(unsigned ParamIdx, const TemplateArgument &Arg) {
5171 // We need correct types when the template-name is unresolved or when it
5172 // names a template that is able to be overloaded.
5173 if (!ResolvedTemplate || SeenPackExpansionIntoNonPack)
5174 return true;
5175
5176 // Move to the next parameter.
5177 const NamedDecl *Param = UnresolvedExpandedPack;
5178 if (!Param) {
5179 assert(ParamIdx < ResolvedTemplate->getTemplateParameters()->size() &&
5180 "no parameter for argument");
5181 Param = ResolvedTemplate->getTemplateParameters()->getParam(ParamIdx);
5182
5183 // If we reach an expanded parameter pack whose argument isn't in pack
5184 // form, that means Sema couldn't figure out which arguments belonged to
5185 // it, because it contains a pack expansion. Track the expanded pack for
5186 // all further template arguments until we hit that pack expansion.
5187 if (Param->isParameterPack() && Arg.getKind() != TemplateArgument::Pack) {
5188 assert(getExpandedPackSize(Param) &&
5189 "failed to form pack argument for parameter pack");
5190 UnresolvedExpandedPack = Param;
5191 }
5192 }
5193
5194 // If we encounter a pack argument that is expanded into a non-pack
5195 // parameter, we can no longer track parameter / argument correspondence,
5196 // and need to use exact types from this point onwards.
5197 if (Arg.isPackExpansion() &&
5198 (!Param->isParameterPack() || UnresolvedExpandedPack)) {
5199 SeenPackExpansionIntoNonPack = true;
5200 return true;
5201 }
5202
5203 // We need exact types for function template arguments because they might be
5204 // overloaded on template parameter type. As a special case, a member
5205 // function template of a generic lambda is not overloadable.
5206 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(ResolvedTemplate)) {
5207 auto *RD = dyn_cast<CXXRecordDecl>(FTD->getDeclContext());
5208 if (!RD || !RD->isGenericLambda())
5209 return true;
5210 }
5211
5212 // Otherwise, we only need a correct type if the parameter has a deduced
5213 // type.
5214 //
5215 // Note: for an expanded parameter pack, getType() returns the type prior
5216 // to expansion. We could ask for the expanded type with getExpansionType(),
5217 // but it doesn't matter because substitution and expansion don't affect
5218 // whether a deduced type appears in the type.
5219 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param);
5220 return NTTP && NTTP->getType()->getContainedDeducedType();
5221 }
5222 };
5223 }
5224
mangleTemplateArgs(TemplateName TN,const TemplateArgumentLoc * TemplateArgs,unsigned NumTemplateArgs)5225 void CXXNameMangler::mangleTemplateArgs(TemplateName TN,
5226 const TemplateArgumentLoc *TemplateArgs,
5227 unsigned NumTemplateArgs) {
5228 // <template-args> ::= I <template-arg>+ E
5229 Out << 'I';
5230 TemplateArgManglingInfo Info(TN);
5231 for (unsigned i = 0; i != NumTemplateArgs; ++i)
5232 mangleTemplateArg(TemplateArgs[i].getArgument(),
5233 Info.needExactType(i, TemplateArgs[i].getArgument()));
5234 Out << 'E';
5235 }
5236
mangleTemplateArgs(TemplateName TN,const TemplateArgumentList & AL)5237 void CXXNameMangler::mangleTemplateArgs(TemplateName TN,
5238 const TemplateArgumentList &AL) {
5239 // <template-args> ::= I <template-arg>+ E
5240 Out << 'I';
5241 TemplateArgManglingInfo Info(TN);
5242 for (unsigned i = 0, e = AL.size(); i != e; ++i)
5243 mangleTemplateArg(AL[i], Info.needExactType(i, AL[i]));
5244 Out << 'E';
5245 }
5246
mangleTemplateArgs(TemplateName TN,const TemplateArgument * TemplateArgs,unsigned NumTemplateArgs)5247 void CXXNameMangler::mangleTemplateArgs(TemplateName TN,
5248 const TemplateArgument *TemplateArgs,
5249 unsigned NumTemplateArgs) {
5250 // <template-args> ::= I <template-arg>+ E
5251 Out << 'I';
5252 TemplateArgManglingInfo Info(TN);
5253 for (unsigned i = 0; i != NumTemplateArgs; ++i)
5254 mangleTemplateArg(TemplateArgs[i], Info.needExactType(i, TemplateArgs[i]));
5255 Out << 'E';
5256 }
5257
mangleTemplateArg(TemplateArgument A,bool NeedExactType)5258 void CXXNameMangler::mangleTemplateArg(TemplateArgument A, bool NeedExactType) {
5259 // <template-arg> ::= <type> # type or template
5260 // ::= X <expression> E # expression
5261 // ::= <expr-primary> # simple expressions
5262 // ::= J <template-arg>* E # argument pack
5263 if (!A.isInstantiationDependent() || A.isDependent())
5264 A = Context.getASTContext().getCanonicalTemplateArgument(A);
5265
5266 switch (A.getKind()) {
5267 case TemplateArgument::Null:
5268 llvm_unreachable("Cannot mangle NULL template argument");
5269
5270 case TemplateArgument::Type:
5271 mangleType(A.getAsType());
5272 break;
5273 case TemplateArgument::Template:
5274 // This is mangled as <type>.
5275 mangleType(A.getAsTemplate());
5276 break;
5277 case TemplateArgument::TemplateExpansion:
5278 // <type> ::= Dp <type> # pack expansion (C++0x)
5279 Out << "Dp";
5280 mangleType(A.getAsTemplateOrTemplatePattern());
5281 break;
5282 case TemplateArgument::Expression:
5283 mangleTemplateArgExpr(A.getAsExpr());
5284 break;
5285 case TemplateArgument::Integral:
5286 mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
5287 break;
5288 case TemplateArgument::Declaration: {
5289 // <expr-primary> ::= L <mangled-name> E # external name
5290 ValueDecl *D = A.getAsDecl();
5291
5292 // Template parameter objects are modeled by reproducing a source form
5293 // produced as if by aggregate initialization.
5294 if (A.getParamTypeForDecl()->isRecordType()) {
5295 auto *TPO = cast<TemplateParamObjectDecl>(D);
5296 mangleValueInTemplateArg(TPO->getType().getUnqualifiedType(),
5297 TPO->getValue(), /*TopLevel=*/true,
5298 NeedExactType);
5299 break;
5300 }
5301
5302 ASTContext &Ctx = Context.getASTContext();
5303 APValue Value;
5304 if (D->isCXXInstanceMember())
5305 // Simple pointer-to-member with no conversion.
5306 Value = APValue(D, /*IsDerivedMember=*/false, /*Path=*/{});
5307 else if (D->getType()->isArrayType() &&
5308 Ctx.hasSimilarType(Ctx.getDecayedType(D->getType()),
5309 A.getParamTypeForDecl()) &&
5310 Ctx.getLangOpts().getClangABICompat() >
5311 LangOptions::ClangABI::Ver11)
5312 // Build a value corresponding to this implicit array-to-pointer decay.
5313 Value = APValue(APValue::LValueBase(D), CharUnits::Zero(),
5314 {APValue::LValuePathEntry::ArrayIndex(0)},
5315 /*OnePastTheEnd=*/false);
5316 else
5317 // Regular pointer or reference to a declaration.
5318 Value = APValue(APValue::LValueBase(D), CharUnits::Zero(),
5319 ArrayRef<APValue::LValuePathEntry>(),
5320 /*OnePastTheEnd=*/false);
5321 mangleValueInTemplateArg(A.getParamTypeForDecl(), Value, /*TopLevel=*/true,
5322 NeedExactType);
5323 break;
5324 }
5325 case TemplateArgument::NullPtr: {
5326 mangleNullPointer(A.getNullPtrType());
5327 break;
5328 }
5329 case TemplateArgument::Pack: {
5330 // <template-arg> ::= J <template-arg>* E
5331 Out << 'J';
5332 for (const auto &P : A.pack_elements())
5333 mangleTemplateArg(P, NeedExactType);
5334 Out << 'E';
5335 }
5336 }
5337 }
5338
mangleTemplateArgExpr(const Expr * E)5339 void CXXNameMangler::mangleTemplateArgExpr(const Expr *E) {
5340 ASTContext &Ctx = Context.getASTContext();
5341 if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver11) {
5342 mangleExpression(E, UnknownArity, /*AsTemplateArg=*/true);
5343 return;
5344 }
5345
5346 // Prior to Clang 12, we didn't omit the X .. E around <expr-primary>
5347 // correctly in cases where the template argument was
5348 // constructed from an expression rather than an already-evaluated
5349 // literal. In such a case, we would then e.g. emit 'XLi0EE' instead of
5350 // 'Li0E'.
5351 //
5352 // We did special-case DeclRefExpr to attempt to DTRT for that one
5353 // expression-kind, but while doing so, unfortunately handled ParmVarDecl
5354 // (subtype of VarDecl) _incorrectly_, and emitted 'L_Z .. E' instead of
5355 // the proper 'Xfp_E'.
5356 E = E->IgnoreParenImpCasts();
5357 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
5358 const ValueDecl *D = DRE->getDecl();
5359 if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
5360 Out << 'L';
5361 mangle(D);
5362 Out << 'E';
5363 return;
5364 }
5365 }
5366 Out << 'X';
5367 mangleExpression(E);
5368 Out << 'E';
5369 }
5370
5371 /// Determine whether a given value is equivalent to zero-initialization for
5372 /// the purpose of discarding a trailing portion of a 'tl' mangling.
5373 ///
5374 /// Note that this is not in general equivalent to determining whether the
5375 /// value has an all-zeroes bit pattern.
isZeroInitialized(QualType T,const APValue & V)5376 static bool isZeroInitialized(QualType T, const APValue &V) {
5377 // FIXME: mangleValueInTemplateArg has quadratic time complexity in
5378 // pathological cases due to using this, but it's a little awkward
5379 // to do this in linear time in general.
5380 switch (V.getKind()) {
5381 case APValue::None:
5382 case APValue::Indeterminate:
5383 case APValue::AddrLabelDiff:
5384 return false;
5385
5386 case APValue::Struct: {
5387 const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5388 assert(RD && "unexpected type for record value");
5389 unsigned I = 0;
5390 for (const CXXBaseSpecifier &BS : RD->bases()) {
5391 if (!isZeroInitialized(BS.getType(), V.getStructBase(I)))
5392 return false;
5393 ++I;
5394 }
5395 I = 0;
5396 for (const FieldDecl *FD : RD->fields()) {
5397 if (!FD->isUnnamedBitfield() &&
5398 !isZeroInitialized(FD->getType(), V.getStructField(I)))
5399 return false;
5400 ++I;
5401 }
5402 return true;
5403 }
5404
5405 case APValue::Union: {
5406 const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5407 assert(RD && "unexpected type for union value");
5408 // Zero-initialization zeroes the first non-unnamed-bitfield field, if any.
5409 for (const FieldDecl *FD : RD->fields()) {
5410 if (!FD->isUnnamedBitfield())
5411 return V.getUnionField() && declaresSameEntity(FD, V.getUnionField()) &&
5412 isZeroInitialized(FD->getType(), V.getUnionValue());
5413 }
5414 // If there are no fields (other than unnamed bitfields), the value is
5415 // necessarily zero-initialized.
5416 return true;
5417 }
5418
5419 case APValue::Array: {
5420 QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0);
5421 for (unsigned I = 0, N = V.getArrayInitializedElts(); I != N; ++I)
5422 if (!isZeroInitialized(ElemT, V.getArrayInitializedElt(I)))
5423 return false;
5424 return !V.hasArrayFiller() || isZeroInitialized(ElemT, V.getArrayFiller());
5425 }
5426
5427 case APValue::Vector: {
5428 const VectorType *VT = T->castAs<VectorType>();
5429 for (unsigned I = 0, N = V.getVectorLength(); I != N; ++I)
5430 if (!isZeroInitialized(VT->getElementType(), V.getVectorElt(I)))
5431 return false;
5432 return true;
5433 }
5434
5435 case APValue::Int:
5436 return !V.getInt();
5437
5438 case APValue::Float:
5439 return V.getFloat().isPosZero();
5440
5441 case APValue::FixedPoint:
5442 return !V.getFixedPoint().getValue();
5443
5444 case APValue::ComplexFloat:
5445 return V.getComplexFloatReal().isPosZero() &&
5446 V.getComplexFloatImag().isPosZero();
5447
5448 case APValue::ComplexInt:
5449 return !V.getComplexIntReal() && !V.getComplexIntImag();
5450
5451 case APValue::LValue:
5452 return V.isNullPointer();
5453
5454 case APValue::MemberPointer:
5455 return !V.getMemberPointerDecl();
5456 }
5457
5458 llvm_unreachable("Unhandled APValue::ValueKind enum");
5459 }
5460
getLValueType(ASTContext & Ctx,const APValue & LV)5461 static QualType getLValueType(ASTContext &Ctx, const APValue &LV) {
5462 QualType T = LV.getLValueBase().getType();
5463 for (APValue::LValuePathEntry E : LV.getLValuePath()) {
5464 if (const ArrayType *AT = Ctx.getAsArrayType(T))
5465 T = AT->getElementType();
5466 else if (const FieldDecl *FD =
5467 dyn_cast<FieldDecl>(E.getAsBaseOrMember().getPointer()))
5468 T = FD->getType();
5469 else
5470 T = Ctx.getRecordType(
5471 cast<CXXRecordDecl>(E.getAsBaseOrMember().getPointer()));
5472 }
5473 return T;
5474 }
5475
mangleValueInTemplateArg(QualType T,const APValue & V,bool TopLevel,bool NeedExactType)5476 void CXXNameMangler::mangleValueInTemplateArg(QualType T, const APValue &V,
5477 bool TopLevel,
5478 bool NeedExactType) {
5479 // Ignore all top-level cv-qualifiers, to match GCC.
5480 Qualifiers Quals;
5481 T = getASTContext().getUnqualifiedArrayType(T, Quals);
5482
5483 // A top-level expression that's not a primary expression is wrapped in X...E.
5484 bool IsPrimaryExpr = true;
5485 auto NotPrimaryExpr = [&] {
5486 if (TopLevel && IsPrimaryExpr)
5487 Out << 'X';
5488 IsPrimaryExpr = false;
5489 };
5490
5491 // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63.
5492 switch (V.getKind()) {
5493 case APValue::None:
5494 case APValue::Indeterminate:
5495 Out << 'L';
5496 mangleType(T);
5497 Out << 'E';
5498 break;
5499
5500 case APValue::AddrLabelDiff:
5501 llvm_unreachable("unexpected value kind in template argument");
5502
5503 case APValue::Struct: {
5504 const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5505 assert(RD && "unexpected type for record value");
5506
5507 // Drop trailing zero-initialized elements.
5508 llvm::SmallVector<const FieldDecl *, 16> Fields(RD->field_begin(),
5509 RD->field_end());
5510 while (
5511 !Fields.empty() &&
5512 (Fields.back()->isUnnamedBitfield() ||
5513 isZeroInitialized(Fields.back()->getType(),
5514 V.getStructField(Fields.back()->getFieldIndex())))) {
5515 Fields.pop_back();
5516 }
5517 llvm::ArrayRef<CXXBaseSpecifier> Bases(RD->bases_begin(), RD->bases_end());
5518 if (Fields.empty()) {
5519 while (!Bases.empty() &&
5520 isZeroInitialized(Bases.back().getType(),
5521 V.getStructBase(Bases.size() - 1)))
5522 Bases = Bases.drop_back();
5523 }
5524
5525 // <expression> ::= tl <type> <braced-expression>* E
5526 NotPrimaryExpr();
5527 Out << "tl";
5528 mangleType(T);
5529 for (unsigned I = 0, N = Bases.size(); I != N; ++I)
5530 mangleValueInTemplateArg(Bases[I].getType(), V.getStructBase(I), false);
5531 for (unsigned I = 0, N = Fields.size(); I != N; ++I) {
5532 if (Fields[I]->isUnnamedBitfield())
5533 continue;
5534 mangleValueInTemplateArg(Fields[I]->getType(),
5535 V.getStructField(Fields[I]->getFieldIndex()),
5536 false);
5537 }
5538 Out << 'E';
5539 break;
5540 }
5541
5542 case APValue::Union: {
5543 assert(T->getAsCXXRecordDecl() && "unexpected type for union value");
5544 const FieldDecl *FD = V.getUnionField();
5545
5546 if (!FD) {
5547 Out << 'L';
5548 mangleType(T);
5549 Out << 'E';
5550 break;
5551 }
5552
5553 // <braced-expression> ::= di <field source-name> <braced-expression>
5554 NotPrimaryExpr();
5555 Out << "tl";
5556 mangleType(T);
5557 if (!isZeroInitialized(T, V)) {
5558 Out << "di";
5559 mangleSourceName(FD->getIdentifier());
5560 mangleValueInTemplateArg(FD->getType(), V.getUnionValue(), false);
5561 }
5562 Out << 'E';
5563 break;
5564 }
5565
5566 case APValue::Array: {
5567 QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0);
5568
5569 NotPrimaryExpr();
5570 Out << "tl";
5571 mangleType(T);
5572
5573 // Drop trailing zero-initialized elements.
5574 unsigned N = V.getArraySize();
5575 if (!V.hasArrayFiller() || isZeroInitialized(ElemT, V.getArrayFiller())) {
5576 N = V.getArrayInitializedElts();
5577 while (N && isZeroInitialized(ElemT, V.getArrayInitializedElt(N - 1)))
5578 --N;
5579 }
5580
5581 for (unsigned I = 0; I != N; ++I) {
5582 const APValue &Elem = I < V.getArrayInitializedElts()
5583 ? V.getArrayInitializedElt(I)
5584 : V.getArrayFiller();
5585 mangleValueInTemplateArg(ElemT, Elem, false);
5586 }
5587 Out << 'E';
5588 break;
5589 }
5590
5591 case APValue::Vector: {
5592 const VectorType *VT = T->castAs<VectorType>();
5593
5594 NotPrimaryExpr();
5595 Out << "tl";
5596 mangleType(T);
5597 unsigned N = V.getVectorLength();
5598 while (N && isZeroInitialized(VT->getElementType(), V.getVectorElt(N - 1)))
5599 --N;
5600 for (unsigned I = 0; I != N; ++I)
5601 mangleValueInTemplateArg(VT->getElementType(), V.getVectorElt(I), false);
5602 Out << 'E';
5603 break;
5604 }
5605
5606 case APValue::Int:
5607 mangleIntegerLiteral(T, V.getInt());
5608 break;
5609
5610 case APValue::Float:
5611 mangleFloatLiteral(T, V.getFloat());
5612 break;
5613
5614 case APValue::FixedPoint:
5615 mangleFixedPointLiteral();
5616 break;
5617
5618 case APValue::ComplexFloat: {
5619 const ComplexType *CT = T->castAs<ComplexType>();
5620 NotPrimaryExpr();
5621 Out << "tl";
5622 mangleType(T);
5623 if (!V.getComplexFloatReal().isPosZero() ||
5624 !V.getComplexFloatImag().isPosZero())
5625 mangleFloatLiteral(CT->getElementType(), V.getComplexFloatReal());
5626 if (!V.getComplexFloatImag().isPosZero())
5627 mangleFloatLiteral(CT->getElementType(), V.getComplexFloatImag());
5628 Out << 'E';
5629 break;
5630 }
5631
5632 case APValue::ComplexInt: {
5633 const ComplexType *CT = T->castAs<ComplexType>();
5634 NotPrimaryExpr();
5635 Out << "tl";
5636 mangleType(T);
5637 if (V.getComplexIntReal().getBoolValue() ||
5638 V.getComplexIntImag().getBoolValue())
5639 mangleIntegerLiteral(CT->getElementType(), V.getComplexIntReal());
5640 if (V.getComplexIntImag().getBoolValue())
5641 mangleIntegerLiteral(CT->getElementType(), V.getComplexIntImag());
5642 Out << 'E';
5643 break;
5644 }
5645
5646 case APValue::LValue: {
5647 // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47.
5648 assert((T->isPointerType() || T->isReferenceType()) &&
5649 "unexpected type for LValue template arg");
5650
5651 if (V.isNullPointer()) {
5652 mangleNullPointer(T);
5653 break;
5654 }
5655
5656 APValue::LValueBase B = V.getLValueBase();
5657 if (!B) {
5658 // Non-standard mangling for integer cast to a pointer; this can only
5659 // occur as an extension.
5660 CharUnits Offset = V.getLValueOffset();
5661 if (Offset.isZero()) {
5662 // This is reinterpret_cast<T*>(0), not a null pointer. Mangle this as
5663 // a cast, because L <type> 0 E means something else.
5664 NotPrimaryExpr();
5665 Out << "rc";
5666 mangleType(T);
5667 Out << "Li0E";
5668 if (TopLevel)
5669 Out << 'E';
5670 } else {
5671 Out << "L";
5672 mangleType(T);
5673 Out << Offset.getQuantity() << 'E';
5674 }
5675 break;
5676 }
5677
5678 ASTContext &Ctx = Context.getASTContext();
5679
5680 enum { Base, Offset, Path } Kind;
5681 if (!V.hasLValuePath()) {
5682 // Mangle as (T*)((char*)&base + N).
5683 if (T->isReferenceType()) {
5684 NotPrimaryExpr();
5685 Out << "decvP";
5686 mangleType(T->getPointeeType());
5687 } else {
5688 NotPrimaryExpr();
5689 Out << "cv";
5690 mangleType(T);
5691 }
5692 Out << "plcvPcad";
5693 Kind = Offset;
5694 } else {
5695 if (!V.getLValuePath().empty() || V.isLValueOnePastTheEnd()) {
5696 NotPrimaryExpr();
5697 // A final conversion to the template parameter's type is usually
5698 // folded into the 'so' mangling, but we can't do that for 'void*'
5699 // parameters without introducing collisions.
5700 if (NeedExactType && T->isVoidPointerType()) {
5701 Out << "cv";
5702 mangleType(T);
5703 }
5704 if (T->isPointerType())
5705 Out << "ad";
5706 Out << "so";
5707 mangleType(T->isVoidPointerType()
5708 ? getLValueType(Ctx, V).getUnqualifiedType()
5709 : T->getPointeeType());
5710 Kind = Path;
5711 } else {
5712 if (NeedExactType &&
5713 !Ctx.hasSameType(T->getPointeeType(), getLValueType(Ctx, V)) &&
5714 Ctx.getLangOpts().getClangABICompat() >
5715 LangOptions::ClangABI::Ver11) {
5716 NotPrimaryExpr();
5717 Out << "cv";
5718 mangleType(T);
5719 }
5720 if (T->isPointerType()) {
5721 NotPrimaryExpr();
5722 Out << "ad";
5723 }
5724 Kind = Base;
5725 }
5726 }
5727
5728 QualType TypeSoFar = B.getType();
5729 if (auto *VD = B.dyn_cast<const ValueDecl*>()) {
5730 Out << 'L';
5731 mangle(VD);
5732 Out << 'E';
5733 } else if (auto *E = B.dyn_cast<const Expr*>()) {
5734 NotPrimaryExpr();
5735 mangleExpression(E);
5736 } else if (auto TI = B.dyn_cast<TypeInfoLValue>()) {
5737 NotPrimaryExpr();
5738 Out << "ti";
5739 mangleType(QualType(TI.getType(), 0));
5740 } else {
5741 // We should never see dynamic allocations here.
5742 llvm_unreachable("unexpected lvalue base kind in template argument");
5743 }
5744
5745 switch (Kind) {
5746 case Base:
5747 break;
5748
5749 case Offset:
5750 Out << 'L';
5751 mangleType(Ctx.getPointerDiffType());
5752 mangleNumber(V.getLValueOffset().getQuantity());
5753 Out << 'E';
5754 break;
5755
5756 case Path:
5757 // <expression> ::= so <referent type> <expr> [<offset number>]
5758 // <union-selector>* [p] E
5759 if (!V.getLValueOffset().isZero())
5760 mangleNumber(V.getLValueOffset().getQuantity());
5761
5762 // We model a past-the-end array pointer as array indexing with index N,
5763 // not with the "past the end" flag. Compensate for that.
5764 bool OnePastTheEnd = V.isLValueOnePastTheEnd();
5765
5766 for (APValue::LValuePathEntry E : V.getLValuePath()) {
5767 if (auto *AT = TypeSoFar->getAsArrayTypeUnsafe()) {
5768 if (auto *CAT = dyn_cast<ConstantArrayType>(AT))
5769 OnePastTheEnd |= CAT->getSize() == E.getAsArrayIndex();
5770 TypeSoFar = AT->getElementType();
5771 } else {
5772 const Decl *D = E.getAsBaseOrMember().getPointer();
5773 if (auto *FD = dyn_cast<FieldDecl>(D)) {
5774 // <union-selector> ::= _ <number>
5775 if (FD->getParent()->isUnion()) {
5776 Out << '_';
5777 if (FD->getFieldIndex())
5778 Out << (FD->getFieldIndex() - 1);
5779 }
5780 TypeSoFar = FD->getType();
5781 } else {
5782 TypeSoFar = Ctx.getRecordType(cast<CXXRecordDecl>(D));
5783 }
5784 }
5785 }
5786
5787 if (OnePastTheEnd)
5788 Out << 'p';
5789 Out << 'E';
5790 break;
5791 }
5792
5793 break;
5794 }
5795
5796 case APValue::MemberPointer:
5797 // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47.
5798 if (!V.getMemberPointerDecl()) {
5799 mangleNullPointer(T);
5800 break;
5801 }
5802
5803 ASTContext &Ctx = Context.getASTContext();
5804
5805 NotPrimaryExpr();
5806 if (!V.getMemberPointerPath().empty()) {
5807 Out << "mc";
5808 mangleType(T);
5809 } else if (NeedExactType &&
5810 !Ctx.hasSameType(
5811 T->castAs<MemberPointerType>()->getPointeeType(),
5812 V.getMemberPointerDecl()->getType()) &&
5813 Ctx.getLangOpts().getClangABICompat() >
5814 LangOptions::ClangABI::Ver11) {
5815 Out << "cv";
5816 mangleType(T);
5817 }
5818 Out << "adL";
5819 mangle(V.getMemberPointerDecl());
5820 Out << 'E';
5821 if (!V.getMemberPointerPath().empty()) {
5822 CharUnits Offset =
5823 Context.getASTContext().getMemberPointerPathAdjustment(V);
5824 if (!Offset.isZero())
5825 mangleNumber(Offset.getQuantity());
5826 Out << 'E';
5827 }
5828 break;
5829 }
5830
5831 if (TopLevel && !IsPrimaryExpr)
5832 Out << 'E';
5833 }
5834
mangleTemplateParameter(unsigned Depth,unsigned Index)5835 void CXXNameMangler::mangleTemplateParameter(unsigned Depth, unsigned Index) {
5836 // <template-param> ::= T_ # first template parameter
5837 // ::= T <parameter-2 non-negative number> _
5838 // ::= TL <L-1 non-negative number> __
5839 // ::= TL <L-1 non-negative number> _
5840 // <parameter-2 non-negative number> _
5841 //
5842 // The latter two manglings are from a proposal here:
5843 // https://github.com/itanium-cxx-abi/cxx-abi/issues/31#issuecomment-528122117
5844 Out << 'T';
5845 if (Depth != 0)
5846 Out << 'L' << (Depth - 1) << '_';
5847 if (Index != 0)
5848 Out << (Index - 1);
5849 Out << '_';
5850 }
5851
mangleSeqID(unsigned SeqID)5852 void CXXNameMangler::mangleSeqID(unsigned SeqID) {
5853 if (SeqID == 1)
5854 Out << '0';
5855 else if (SeqID > 1) {
5856 SeqID--;
5857
5858 // <seq-id> is encoded in base-36, using digits and upper case letters.
5859 char Buffer[7]; // log(2**32) / log(36) ~= 7
5860 MutableArrayRef<char> BufferRef(Buffer);
5861 MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
5862
5863 for (; SeqID != 0; SeqID /= 36) {
5864 unsigned C = SeqID % 36;
5865 *I++ = (C < 10 ? '0' + C : 'A' + C - 10);
5866 }
5867
5868 Out.write(I.base(), I - BufferRef.rbegin());
5869 }
5870 Out << '_';
5871 }
5872
mangleExistingSubstitution(TemplateName tname)5873 void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
5874 bool result = mangleSubstitution(tname);
5875 assert(result && "no existing substitution for template name");
5876 (void) result;
5877 }
5878
5879 // <substitution> ::= S <seq-id> _
5880 // ::= S_
mangleSubstitution(const NamedDecl * ND)5881 bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
5882 // Try one of the standard substitutions first.
5883 if (mangleStandardSubstitution(ND))
5884 return true;
5885
5886 ND = cast<NamedDecl>(ND->getCanonicalDecl());
5887 return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
5888 }
5889
5890 /// Determine whether the given type has any qualifiers that are relevant for
5891 /// substitutions.
hasMangledSubstitutionQualifiers(QualType T)5892 static bool hasMangledSubstitutionQualifiers(QualType T) {
5893 Qualifiers Qs = T.getQualifiers();
5894 return Qs.getCVRQualifiers() || Qs.hasAddressSpace() || Qs.hasUnaligned();
5895 }
5896
mangleSubstitution(QualType T)5897 bool CXXNameMangler::mangleSubstitution(QualType T) {
5898 if (!hasMangledSubstitutionQualifiers(T)) {
5899 if (const RecordType *RT = T->getAs<RecordType>())
5900 return mangleSubstitution(RT->getDecl());
5901 }
5902
5903 uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
5904
5905 return mangleSubstitution(TypePtr);
5906 }
5907
mangleSubstitution(TemplateName Template)5908 bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
5909 if (TemplateDecl *TD = Template.getAsTemplateDecl())
5910 return mangleSubstitution(TD);
5911
5912 Template = Context.getASTContext().getCanonicalTemplateName(Template);
5913 return mangleSubstitution(
5914 reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
5915 }
5916
mangleSubstitution(uintptr_t Ptr)5917 bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
5918 llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
5919 if (I == Substitutions.end())
5920 return false;
5921
5922 unsigned SeqID = I->second;
5923 Out << 'S';
5924 mangleSeqID(SeqID);
5925
5926 return true;
5927 }
5928
isCharType(QualType T)5929 static bool isCharType(QualType T) {
5930 if (T.isNull())
5931 return false;
5932
5933 return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
5934 T->isSpecificBuiltinType(BuiltinType::Char_U);
5935 }
5936
5937 /// Returns whether a given type is a template specialization of a given name
5938 /// with a single argument of type char.
isCharSpecialization(QualType T,const char * Name)5939 static bool isCharSpecialization(QualType T, const char *Name) {
5940 if (T.isNull())
5941 return false;
5942
5943 const RecordType *RT = T->getAs<RecordType>();
5944 if (!RT)
5945 return false;
5946
5947 const ClassTemplateSpecializationDecl *SD =
5948 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5949 if (!SD)
5950 return false;
5951
5952 if (!isStdNamespace(getEffectiveDeclContext(SD)))
5953 return false;
5954
5955 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
5956 if (TemplateArgs.size() != 1)
5957 return false;
5958
5959 if (!isCharType(TemplateArgs[0].getAsType()))
5960 return false;
5961
5962 return SD->getIdentifier()->getName() == Name;
5963 }
5964
5965 template <std::size_t StrLen>
isStreamCharSpecialization(const ClassTemplateSpecializationDecl * SD,const char (& Str)[StrLen])5966 static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
5967 const char (&Str)[StrLen]) {
5968 if (!SD->getIdentifier()->isStr(Str))
5969 return false;
5970
5971 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
5972 if (TemplateArgs.size() != 2)
5973 return false;
5974
5975 if (!isCharType(TemplateArgs[0].getAsType()))
5976 return false;
5977
5978 if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
5979 return false;
5980
5981 return true;
5982 }
5983
mangleStandardSubstitution(const NamedDecl * ND)5984 bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
5985 // <substitution> ::= St # ::std::
5986 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
5987 if (isStd(NS)) {
5988 Out << "St";
5989 return true;
5990 }
5991 }
5992
5993 if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
5994 if (!isStdNamespace(getEffectiveDeclContext(TD)))
5995 return false;
5996
5997 // <substitution> ::= Sa # ::std::allocator
5998 if (TD->getIdentifier()->isStr("allocator")) {
5999 Out << "Sa";
6000 return true;
6001 }
6002
6003 // <<substitution> ::= Sb # ::std::basic_string
6004 if (TD->getIdentifier()->isStr("basic_string")) {
6005 Out << "Sb";
6006 return true;
6007 }
6008 }
6009
6010 if (const ClassTemplateSpecializationDecl *SD =
6011 dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
6012 if (!isStdNamespace(getEffectiveDeclContext(SD)))
6013 return false;
6014
6015 // <substitution> ::= Ss # ::std::basic_string<char,
6016 // ::std::char_traits<char>,
6017 // ::std::allocator<char> >
6018 if (SD->getIdentifier()->isStr("basic_string")) {
6019 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
6020
6021 if (TemplateArgs.size() != 3)
6022 return false;
6023
6024 if (!isCharType(TemplateArgs[0].getAsType()))
6025 return false;
6026
6027 if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
6028 return false;
6029
6030 if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
6031 return false;
6032
6033 Out << "Ss";
6034 return true;
6035 }
6036
6037 // <substitution> ::= Si # ::std::basic_istream<char,
6038 // ::std::char_traits<char> >
6039 if (isStreamCharSpecialization(SD, "basic_istream")) {
6040 Out << "Si";
6041 return true;
6042 }
6043
6044 // <substitution> ::= So # ::std::basic_ostream<char,
6045 // ::std::char_traits<char> >
6046 if (isStreamCharSpecialization(SD, "basic_ostream")) {
6047 Out << "So";
6048 return true;
6049 }
6050
6051 // <substitution> ::= Sd # ::std::basic_iostream<char,
6052 // ::std::char_traits<char> >
6053 if (isStreamCharSpecialization(SD, "basic_iostream")) {
6054 Out << "Sd";
6055 return true;
6056 }
6057 }
6058 return false;
6059 }
6060
addSubstitution(QualType T)6061 void CXXNameMangler::addSubstitution(QualType T) {
6062 if (!hasMangledSubstitutionQualifiers(T)) {
6063 if (const RecordType *RT = T->getAs<RecordType>()) {
6064 addSubstitution(RT->getDecl());
6065 return;
6066 }
6067 }
6068
6069 uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
6070 addSubstitution(TypePtr);
6071 }
6072
addSubstitution(TemplateName Template)6073 void CXXNameMangler::addSubstitution(TemplateName Template) {
6074 if (TemplateDecl *TD = Template.getAsTemplateDecl())
6075 return addSubstitution(TD);
6076
6077 Template = Context.getASTContext().getCanonicalTemplateName(Template);
6078 addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
6079 }
6080
addSubstitution(uintptr_t Ptr)6081 void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
6082 assert(!Substitutions.count(Ptr) && "Substitution already exists!");
6083 Substitutions[Ptr] = SeqID++;
6084 }
6085
extendSubstitutions(CXXNameMangler * Other)6086 void CXXNameMangler::extendSubstitutions(CXXNameMangler* Other) {
6087 assert(Other->SeqID >= SeqID && "Must be superset of substitutions!");
6088 if (Other->SeqID > SeqID) {
6089 Substitutions.swap(Other->Substitutions);
6090 SeqID = Other->SeqID;
6091 }
6092 }
6093
6094 CXXNameMangler::AbiTagList
makeFunctionReturnTypeTags(const FunctionDecl * FD)6095 CXXNameMangler::makeFunctionReturnTypeTags(const FunctionDecl *FD) {
6096 // When derived abi tags are disabled there is no need to make any list.
6097 if (DisableDerivedAbiTags)
6098 return AbiTagList();
6099
6100 llvm::raw_null_ostream NullOutStream;
6101 CXXNameMangler TrackReturnTypeTags(*this, NullOutStream);
6102 TrackReturnTypeTags.disableDerivedAbiTags();
6103
6104 const FunctionProtoType *Proto =
6105 cast<FunctionProtoType>(FD->getType()->getAs<FunctionType>());
6106 FunctionTypeDepthState saved = TrackReturnTypeTags.FunctionTypeDepth.push();
6107 TrackReturnTypeTags.FunctionTypeDepth.enterResultType();
6108 TrackReturnTypeTags.mangleType(Proto->getReturnType());
6109 TrackReturnTypeTags.FunctionTypeDepth.leaveResultType();
6110 TrackReturnTypeTags.FunctionTypeDepth.pop(saved);
6111
6112 return TrackReturnTypeTags.AbiTagsRoot.getSortedUniqueUsedAbiTags();
6113 }
6114
6115 CXXNameMangler::AbiTagList
makeVariableTypeTags(const VarDecl * VD)6116 CXXNameMangler::makeVariableTypeTags(const VarDecl *VD) {
6117 // When derived abi tags are disabled there is no need to make any list.
6118 if (DisableDerivedAbiTags)
6119 return AbiTagList();
6120
6121 llvm::raw_null_ostream NullOutStream;
6122 CXXNameMangler TrackVariableType(*this, NullOutStream);
6123 TrackVariableType.disableDerivedAbiTags();
6124
6125 TrackVariableType.mangleType(VD->getType());
6126
6127 return TrackVariableType.AbiTagsRoot.getSortedUniqueUsedAbiTags();
6128 }
6129
shouldHaveAbiTags(ItaniumMangleContextImpl & C,const VarDecl * VD)6130 bool CXXNameMangler::shouldHaveAbiTags(ItaniumMangleContextImpl &C,
6131 const VarDecl *VD) {
6132 llvm::raw_null_ostream NullOutStream;
6133 CXXNameMangler TrackAbiTags(C, NullOutStream, nullptr, true);
6134 TrackAbiTags.mangle(VD);
6135 return TrackAbiTags.AbiTagsRoot.getUsedAbiTags().size();
6136 }
6137
6138 //
6139
6140 /// Mangles the name of the declaration D and emits that name to the given
6141 /// output stream.
6142 ///
6143 /// If the declaration D requires a mangled name, this routine will emit that
6144 /// mangled name to \p os and return true. Otherwise, \p os will be unchanged
6145 /// and this routine will return false. In this case, the caller should just
6146 /// emit the identifier of the declaration (\c D->getIdentifier()) as its
6147 /// name.
mangleCXXName(GlobalDecl GD,raw_ostream & Out)6148 void ItaniumMangleContextImpl::mangleCXXName(GlobalDecl GD,
6149 raw_ostream &Out) {
6150 const NamedDecl *D = cast<NamedDecl>(GD.getDecl());
6151 assert((isa<FunctionDecl, VarDecl, TemplateParamObjectDecl>(D)) &&
6152 "Invalid mangleName() call, argument is not a variable or function!");
6153
6154 PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
6155 getASTContext().getSourceManager(),
6156 "Mangling declaration");
6157
6158 if (auto *CD = dyn_cast<CXXConstructorDecl>(D)) {
6159 auto Type = GD.getCtorType();
6160 CXXNameMangler Mangler(*this, Out, CD, Type);
6161 return Mangler.mangle(GlobalDecl(CD, Type));
6162 }
6163
6164 if (auto *DD = dyn_cast<CXXDestructorDecl>(D)) {
6165 auto Type = GD.getDtorType();
6166 CXXNameMangler Mangler(*this, Out, DD, Type);
6167 return Mangler.mangle(GlobalDecl(DD, Type));
6168 }
6169
6170 CXXNameMangler Mangler(*this, Out, D);
6171 Mangler.mangle(GD);
6172 }
6173
mangleCXXCtorComdat(const CXXConstructorDecl * D,raw_ostream & Out)6174 void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D,
6175 raw_ostream &Out) {
6176 CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat);
6177 Mangler.mangle(GlobalDecl(D, Ctor_Comdat));
6178 }
6179
mangleCXXDtorComdat(const CXXDestructorDecl * D,raw_ostream & Out)6180 void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D,
6181 raw_ostream &Out) {
6182 CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat);
6183 Mangler.mangle(GlobalDecl(D, Dtor_Comdat));
6184 }
6185
mangleThunk(const CXXMethodDecl * MD,const ThunkInfo & Thunk,raw_ostream & Out)6186 void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
6187 const ThunkInfo &Thunk,
6188 raw_ostream &Out) {
6189 // <special-name> ::= T <call-offset> <base encoding>
6190 // # base is the nominal target function of thunk
6191 // <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
6192 // # base is the nominal target function of thunk
6193 // # first call-offset is 'this' adjustment
6194 // # second call-offset is result adjustment
6195
6196 assert(!isa<CXXDestructorDecl>(MD) &&
6197 "Use mangleCXXDtor for destructor decls!");
6198 CXXNameMangler Mangler(*this, Out);
6199 Mangler.getStream() << "_ZT";
6200 if (!Thunk.Return.isEmpty())
6201 Mangler.getStream() << 'c';
6202
6203 // Mangle the 'this' pointer adjustment.
6204 Mangler.mangleCallOffset(Thunk.This.NonVirtual,
6205 Thunk.This.Virtual.Itanium.VCallOffsetOffset);
6206
6207 // Mangle the return pointer adjustment if there is one.
6208 if (!Thunk.Return.isEmpty())
6209 Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
6210 Thunk.Return.Virtual.Itanium.VBaseOffsetOffset);
6211
6212 Mangler.mangleFunctionEncoding(MD);
6213 }
6214
mangleCXXDtorThunk(const CXXDestructorDecl * DD,CXXDtorType Type,const ThisAdjustment & ThisAdjustment,raw_ostream & Out)6215 void ItaniumMangleContextImpl::mangleCXXDtorThunk(
6216 const CXXDestructorDecl *DD, CXXDtorType Type,
6217 const ThisAdjustment &ThisAdjustment, raw_ostream &Out) {
6218 // <special-name> ::= T <call-offset> <base encoding>
6219 // # base is the nominal target function of thunk
6220 CXXNameMangler Mangler(*this, Out, DD, Type);
6221 Mangler.getStream() << "_ZT";
6222
6223 // Mangle the 'this' pointer adjustment.
6224 Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
6225 ThisAdjustment.Virtual.Itanium.VCallOffsetOffset);
6226
6227 Mangler.mangleFunctionEncoding(GlobalDecl(DD, Type));
6228 }
6229
6230 /// Returns the mangled name for a guard variable for the passed in VarDecl.
mangleStaticGuardVariable(const VarDecl * D,raw_ostream & Out)6231 void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D,
6232 raw_ostream &Out) {
6233 // <special-name> ::= GV <object name> # Guard variable for one-time
6234 // # initialization
6235 CXXNameMangler Mangler(*this, Out);
6236 // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
6237 // be a bug that is fixed in trunk.
6238 Mangler.getStream() << "_ZGV";
6239 Mangler.mangleName(D);
6240 }
6241
mangleDynamicInitializer(const VarDecl * MD,raw_ostream & Out)6242 void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD,
6243 raw_ostream &Out) {
6244 // These symbols are internal in the Itanium ABI, so the names don't matter.
6245 // Clang has traditionally used this symbol and allowed LLVM to adjust it to
6246 // avoid duplicate symbols.
6247 Out << "__cxx_global_var_init";
6248 }
6249
mangleDynamicAtExitDestructor(const VarDecl * D,raw_ostream & Out)6250 void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
6251 raw_ostream &Out) {
6252 // Prefix the mangling of D with __dtor_.
6253 CXXNameMangler Mangler(*this, Out);
6254 Mangler.getStream() << "__dtor_";
6255 if (shouldMangleDeclName(D))
6256 Mangler.mangle(D);
6257 else
6258 Mangler.getStream() << D->getName();
6259 }
6260
mangleDynamicStermFinalizer(const VarDecl * D,raw_ostream & Out)6261 void ItaniumMangleContextImpl::mangleDynamicStermFinalizer(const VarDecl *D,
6262 raw_ostream &Out) {
6263 // Clang generates these internal-linkage functions as part of its
6264 // implementation of the XL ABI.
6265 CXXNameMangler Mangler(*this, Out);
6266 Mangler.getStream() << "__finalize_";
6267 if (shouldMangleDeclName(D))
6268 Mangler.mangle(D);
6269 else
6270 Mangler.getStream() << D->getName();
6271 }
6272
mangleSEHFilterExpression(const NamedDecl * EnclosingDecl,raw_ostream & Out)6273 void ItaniumMangleContextImpl::mangleSEHFilterExpression(
6274 const NamedDecl *EnclosingDecl, raw_ostream &Out) {
6275 CXXNameMangler Mangler(*this, Out);
6276 Mangler.getStream() << "__filt_";
6277 if (shouldMangleDeclName(EnclosingDecl))
6278 Mangler.mangle(EnclosingDecl);
6279 else
6280 Mangler.getStream() << EnclosingDecl->getName();
6281 }
6282
mangleSEHFinallyBlock(const NamedDecl * EnclosingDecl,raw_ostream & Out)6283 void ItaniumMangleContextImpl::mangleSEHFinallyBlock(
6284 const NamedDecl *EnclosingDecl, raw_ostream &Out) {
6285 CXXNameMangler Mangler(*this, Out);
6286 Mangler.getStream() << "__fin_";
6287 if (shouldMangleDeclName(EnclosingDecl))
6288 Mangler.mangle(EnclosingDecl);
6289 else
6290 Mangler.getStream() << EnclosingDecl->getName();
6291 }
6292
mangleItaniumThreadLocalInit(const VarDecl * D,raw_ostream & Out)6293 void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D,
6294 raw_ostream &Out) {
6295 // <special-name> ::= TH <object name>
6296 CXXNameMangler Mangler(*this, Out);
6297 Mangler.getStream() << "_ZTH";
6298 Mangler.mangleName(D);
6299 }
6300
6301 void
mangleItaniumThreadLocalWrapper(const VarDecl * D,raw_ostream & Out)6302 ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D,
6303 raw_ostream &Out) {
6304 // <special-name> ::= TW <object name>
6305 CXXNameMangler Mangler(*this, Out);
6306 Mangler.getStream() << "_ZTW";
6307 Mangler.mangleName(D);
6308 }
6309
mangleReferenceTemporary(const VarDecl * D,unsigned ManglingNumber,raw_ostream & Out)6310 void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D,
6311 unsigned ManglingNumber,
6312 raw_ostream &Out) {
6313 // We match the GCC mangling here.
6314 // <special-name> ::= GR <object name>
6315 CXXNameMangler Mangler(*this, Out);
6316 Mangler.getStream() << "_ZGR";
6317 Mangler.mangleName(D);
6318 assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!");
6319 Mangler.mangleSeqID(ManglingNumber - 1);
6320 }
6321
mangleCXXVTable(const CXXRecordDecl * RD,raw_ostream & Out)6322 void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD,
6323 raw_ostream &Out) {
6324 // <special-name> ::= TV <type> # virtual table
6325 CXXNameMangler Mangler(*this, Out);
6326 Mangler.getStream() << "_ZTV";
6327 Mangler.mangleNameOrStandardSubstitution(RD);
6328 }
6329
mangleCXXVTT(const CXXRecordDecl * RD,raw_ostream & Out)6330 void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD,
6331 raw_ostream &Out) {
6332 // <special-name> ::= TT <type> # VTT structure
6333 CXXNameMangler Mangler(*this, Out);
6334 Mangler.getStream() << "_ZTT";
6335 Mangler.mangleNameOrStandardSubstitution(RD);
6336 }
6337
mangleCXXCtorVTable(const CXXRecordDecl * RD,int64_t Offset,const CXXRecordDecl * Type,raw_ostream & Out)6338 void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD,
6339 int64_t Offset,
6340 const CXXRecordDecl *Type,
6341 raw_ostream &Out) {
6342 // <special-name> ::= TC <type> <offset number> _ <base type>
6343 CXXNameMangler Mangler(*this, Out);
6344 Mangler.getStream() << "_ZTC";
6345 Mangler.mangleNameOrStandardSubstitution(RD);
6346 Mangler.getStream() << Offset;
6347 Mangler.getStream() << '_';
6348 Mangler.mangleNameOrStandardSubstitution(Type);
6349 }
6350
mangleCXXRTTI(QualType Ty,raw_ostream & Out)6351 void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) {
6352 // <special-name> ::= TI <type> # typeinfo structure
6353 assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
6354 CXXNameMangler Mangler(*this, Out);
6355 Mangler.getStream() << "_ZTI";
6356 Mangler.mangleType(Ty);
6357 }
6358
mangleCXXRTTIName(QualType Ty,raw_ostream & Out)6359 void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty,
6360 raw_ostream &Out) {
6361 // <special-name> ::= TS <type> # typeinfo name (null terminated byte string)
6362 CXXNameMangler Mangler(*this, Out);
6363 Mangler.getStream() << "_ZTS";
6364 Mangler.mangleType(Ty);
6365 }
6366
mangleTypeName(QualType Ty,raw_ostream & Out)6367 void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) {
6368 mangleCXXRTTIName(Ty, Out);
6369 }
6370
mangleStringLiteral(const StringLiteral *,raw_ostream &)6371 void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) {
6372 llvm_unreachable("Can't mangle string literals");
6373 }
6374
mangleLambdaSig(const CXXRecordDecl * Lambda,raw_ostream & Out)6375 void ItaniumMangleContextImpl::mangleLambdaSig(const CXXRecordDecl *Lambda,
6376 raw_ostream &Out) {
6377 CXXNameMangler Mangler(*this, Out);
6378 Mangler.mangleLambdaSig(Lambda);
6379 }
6380
6381 ItaniumMangleContext *
create(ASTContext & Context,DiagnosticsEngine & Diags)6382 ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
6383 return new ItaniumMangleContextImpl(Context, Diags);
6384 }
6385