xref: /netbsd-src/external/mit/lua/dist/src/ltable.c (revision bdda0531de537df87feb2bf576711ab1be9b3675)
1  /*	$NetBSD: ltable.c,v 1.13 2023/06/08 21:12:08 nikita Exp $	*/
2  
3  /*
4  ** Id: ltable.c
5  ** Lua tables (hash)
6  ** See Copyright Notice in lua.h
7  */
8  
9  #define ltable_c
10  #define LUA_CORE
11  
12  #include "lprefix.h"
13  
14  
15  /*
16  ** Implementation of tables (aka arrays, objects, or hash tables).
17  ** Tables keep its elements in two parts: an array part and a hash part.
18  ** Non-negative integer keys are all candidates to be kept in the array
19  ** part. The actual size of the array is the largest 'n' such that
20  ** more than half the slots between 1 and n are in use.
21  ** Hash uses a mix of chained scatter table with Brent's variation.
22  ** A main invariant of these tables is that, if an element is not
23  ** in its main position (i.e. the 'original' position that its hash gives
24  ** to it), then the colliding element is in its own main position.
25  ** Hence even when the load factor reaches 100%, performance remains good.
26  */
27  
28  #ifndef _KERNEL
29  #include <math.h>
30  #include <limits.h>
31  #endif /* _KERNEL */
32  
33  #include "lua.h"
34  
35  #include "ldebug.h"
36  #include "ldo.h"
37  #include "lgc.h"
38  #include "lmem.h"
39  #include "lobject.h"
40  #include "lstate.h"
41  #include "lstring.h"
42  #include "ltable.h"
43  #include "lvm.h"
44  
45  
46  /*
47  ** MAXABITS is the largest integer such that MAXASIZE fits in an
48  ** unsigned int.
49  */
50  #define MAXABITS	cast_int(sizeof(int) * CHAR_BIT - 1)
51  
52  
53  /*
54  ** MAXASIZE is the maximum size of the array part. It is the minimum
55  ** between 2^MAXABITS and the maximum size that, measured in bytes,
56  ** fits in a 'size_t'.
57  */
58  #define MAXASIZE	luaM_limitN(1u << MAXABITS, TValue)
59  
60  /*
61  ** MAXHBITS is the largest integer such that 2^MAXHBITS fits in a
62  ** signed int.
63  */
64  #define MAXHBITS	(MAXABITS - 1)
65  
66  
67  /*
68  ** MAXHSIZE is the maximum size of the hash part. It is the minimum
69  ** between 2^MAXHBITS and the maximum size such that, measured in bytes,
70  ** it fits in a 'size_t'.
71  */
72  #define MAXHSIZE	luaM_limitN(1u << MAXHBITS, Node)
73  
74  
75  /*
76  ** When the original hash value is good, hashing by a power of 2
77  ** avoids the cost of '%'.
78  */
79  #define hashpow2(t,n)		(gnode(t, lmod((n), sizenode(t))))
80  
81  /*
82  ** for other types, it is better to avoid modulo by power of 2, as
83  ** they can have many 2 factors.
84  */
85  #define hashmod(t,n)	(gnode(t, ((n) % ((sizenode(t)-1)|1))))
86  
87  
88  #define hashstr(t,str)		hashpow2(t, (str)->hash)
89  #define hashboolean(t,p)	hashpow2(t, p)
90  
91  
92  #define hashpointer(t,p)	hashmod(t, point2uint(p))
93  
94  
95  #define dummynode		(&dummynode_)
96  
97  static const Node dummynode_ = {
98    {{NULL}, LUA_VEMPTY,  /* value's value and type */
99     LUA_VNIL, 0, {NULL}}  /* key type, next, and key value */
100  };
101  
102  
103  static const TValue absentkey = {ABSTKEYCONSTANT};
104  
105  
106  /*
107  ** Hash for integers. To allow a good hash, use the remainder operator
108  ** ('%'). If integer fits as a non-negative int, compute an int
109  ** remainder, which is faster. Otherwise, use an unsigned-integer
110  ** remainder, which uses all bits and ensures a non-negative result.
111  */
hashint(const Table * t,lua_Integer i)112  static Node *hashint (const Table *t, lua_Integer i) {
113    lua_Unsigned ui = l_castS2U(i);
114    if (ui <= cast_uint(INT_MAX))
115      return hashmod(t, cast_int(ui));
116    else
117      return hashmod(t, ui);
118  }
119  
120  
121  #ifndef _KERNEL
122  /*
123  ** Hash for floating-point numbers.
124  ** The main computation should be just
125  **     n = frexp(n, &i); return (n * INT_MAX) + i
126  ** but there are some numerical subtleties.
127  ** In a two-complement representation, INT_MAX does not has an exact
128  ** representation as a float, but INT_MIN does; because the absolute
129  ** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the
130  ** absolute value of the product 'frexp * -INT_MIN' is smaller or equal
131  ** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when
132  ** adding 'i'; the use of '~u' (instead of '-u') avoids problems with
133  ** INT_MIN.
134  */
135  #if !defined(l_hashfloat)
l_hashfloat(lua_Number n)136  static int l_hashfloat (lua_Number n) {
137    int i;
138    lua_Integer ni;
139    n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN);
140    if (!lua_numbertointeger(n, &ni)) {  /* is 'n' inf/-inf/NaN? */
141      lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL));
142      return 0;
143    }
144    else {  /* normal case */
145      unsigned int u = cast_uint(i) + cast_uint(ni);
146      return cast_int(u <= cast_uint(INT_MAX) ? u : ~u);
147    }
148  }
149  #endif
150  #endif /* _KERNEL */
151  
152  
153  /*
154  ** returns the 'main' position of an element in a table (that is,
155  ** the index of its hash value).
156  */
mainpositionTV(const Table * t,const TValue * key)157  static Node *mainpositionTV (const Table *t, const TValue *key) {
158    switch (ttypetag(key)) {
159      case LUA_VNUMINT: {
160        lua_Integer i = ivalue(key);
161        return hashint(t, i);
162      }
163  #ifndef _KERNEL
164      case LUA_VNUMFLT: {
165        lua_Number n = fltvalue(key);
166        return hashmod(t, l_hashfloat(n));
167      }
168  #endif /* _KERNEL */
169      case LUA_VSHRSTR: {
170        TString *ts = tsvalue(key);
171        return hashstr(t, ts);
172      }
173      case LUA_VLNGSTR: {
174        TString *ts = tsvalue(key);
175        return hashpow2(t, luaS_hashlongstr(ts));
176      }
177      case LUA_VFALSE:
178        return hashboolean(t, 0);
179      case LUA_VTRUE:
180        return hashboolean(t, 1);
181      case LUA_VLIGHTUSERDATA: {
182        void *p = pvalue(key);
183        return hashpointer(t, p);
184      }
185      case LUA_VLCF: {
186        lua_CFunction f = fvalue(key);
187        return hashpointer(t, f);
188      }
189      default: {
190        GCObject *o = gcvalue(key);
191        return hashpointer(t, o);
192      }
193    }
194  }
195  
196  
mainpositionfromnode(const Table * t,Node * nd)197  l_sinline Node *mainpositionfromnode (const Table *t, Node *nd) {
198    TValue key;
199    getnodekey(cast(lua_State *, NULL), &key, nd);
200    return mainpositionTV(t, &key);
201  }
202  
203  
204  /*
205  ** Check whether key 'k1' is equal to the key in node 'n2'. This
206  ** equality is raw, so there are no metamethods. Floats with integer
207  ** values have been normalized, so integers cannot be equal to
208  ** floats. It is assumed that 'eqshrstr' is simply pointer equality, so
209  ** that short strings are handled in the default case.
210  ** A true 'deadok' means to accept dead keys as equal to their original
211  ** values. All dead keys are compared in the default case, by pointer
212  ** identity. (Only collectable objects can produce dead keys.) Note that
213  ** dead long strings are also compared by identity.
214  ** Once a key is dead, its corresponding value may be collected, and
215  ** then another value can be created with the same address. If this
216  ** other value is given to 'next', 'equalkey' will signal a false
217  ** positive. In a regular traversal, this situation should never happen,
218  ** as all keys given to 'next' came from the table itself, and therefore
219  ** could not have been collected. Outside a regular traversal, we
220  ** have garbage in, garbage out. What is relevant is that this false
221  ** positive does not break anything.  (In particular, 'next' will return
222  ** some other valid item on the table or nil.)
223  */
equalkey(const TValue * k1,const Node * n2,int deadok)224  static int equalkey (const TValue *k1, const Node *n2, int deadok) {
225    if ((rawtt(k1) != keytt(n2)) &&  /* not the same variants? */
226         !(deadok && keyisdead(n2) && iscollectable(k1)))
227     return 0;  /* cannot be same key */
228    switch (keytt(n2)) {
229      case LUA_VNIL: case LUA_VFALSE: case LUA_VTRUE:
230        return 1;
231      case LUA_VNUMINT:
232        return (ivalue(k1) == keyival(n2));
233  #ifndef _KERNEL
234      case LUA_VNUMFLT:
235        return luai_numeq(fltvalue(k1), fltvalueraw(keyval(n2)));
236  #endif /* _KERNEL */
237      case LUA_VLIGHTUSERDATA:
238        return pvalue(k1) == pvalueraw(keyval(n2));
239      case LUA_VLCF:
240        return fvalue(k1) == fvalueraw(keyval(n2));
241      case ctb(LUA_VLNGSTR):
242        return luaS_eqlngstr(tsvalue(k1), keystrval(n2));
243      default:
244        return gcvalue(k1) == gcvalueraw(keyval(n2));
245    }
246  }
247  
248  
249  /*
250  ** True if value of 'alimit' is equal to the real size of the array
251  ** part of table 't'. (Otherwise, the array part must be larger than
252  ** 'alimit'.)
253  */
254  #define limitequalsasize(t)	(isrealasize(t) || ispow2((t)->alimit))
255  
256  
257  /*
258  ** Returns the real size of the 'array' array
259  */
luaH_realasize(const Table * t)260  LUAI_FUNC unsigned int luaH_realasize (const Table *t) {
261    if (limitequalsasize(t))
262      return t->alimit;  /* this is the size */
263    else {
264      unsigned int size = t->alimit;
265      /* compute the smallest power of 2 not smaller than 'n' */
266      size |= (size >> 1);
267      size |= (size >> 2);
268      size |= (size >> 4);
269      size |= (size >> 8);
270  #if (UINT_MAX >> 14) > 3  /* unsigned int has more than 16 bits */
271      size |= (size >> 16);
272  #if (UINT_MAX >> 30) > 3
273      size |= (size >> 32);  /* unsigned int has more than 32 bits */
274  #endif
275  #endif
276      size++;
277      lua_assert(ispow2(size) && size/2 < t->alimit && t->alimit < size);
278      return size;
279    }
280  }
281  
282  
283  /*
284  ** Check whether real size of the array is a power of 2.
285  ** (If it is not, 'alimit' cannot be changed to any other value
286  ** without changing the real size.)
287  */
ispow2realasize(const Table * t)288  static int ispow2realasize (const Table *t) {
289    return (!isrealasize(t) || ispow2(t->alimit));
290  }
291  
292  
setlimittosize(Table * t)293  static unsigned int setlimittosize (Table *t) {
294    t->alimit = luaH_realasize(t);
295    setrealasize(t);
296    return t->alimit;
297  }
298  
299  
300  #define limitasasize(t)	check_exp(isrealasize(t), t->alimit)
301  
302  
303  
304  /*
305  ** "Generic" get version. (Not that generic: not valid for integers,
306  ** which may be in array part, nor for floats with integral values.)
307  ** See explanation about 'deadok' in function 'equalkey'.
308  */
getgeneric(Table * t,const TValue * key,int deadok)309  static const TValue *getgeneric (Table *t, const TValue *key, int deadok) {
310    Node *n = mainpositionTV(t, key);
311    for (;;) {  /* check whether 'key' is somewhere in the chain */
312      if (equalkey(key, n, deadok))
313        return gval(n);  /* that's it */
314      else {
315        int nx = gnext(n);
316        if (nx == 0)
317          return &absentkey;  /* not found */
318        n += nx;
319      }
320    }
321  }
322  
323  
324  /*
325  ** returns the index for 'k' if 'k' is an appropriate key to live in
326  ** the array part of a table, 0 otherwise.
327  */
arrayindex(lua_Integer k)328  static unsigned int arrayindex (lua_Integer k) {
329    if (l_castS2U(k) - 1u < MAXASIZE)  /* 'k' in [1, MAXASIZE]? */
330      return cast_uint(k);  /* 'key' is an appropriate array index */
331    else
332      return 0;
333  }
334  
335  
336  /*
337  ** returns the index of a 'key' for table traversals. First goes all
338  ** elements in the array part, then elements in the hash part. The
339  ** beginning of a traversal is signaled by 0.
340  */
findindex(lua_State * L,Table * t,TValue * key,unsigned int asize)341  static unsigned int findindex (lua_State *L, Table *t, TValue *key,
342                                 unsigned int asize) {
343    unsigned int i;
344    if (ttisnil(key)) return 0;  /* first iteration */
345    i = ttisinteger(key) ? arrayindex(ivalue(key)) : 0;
346    if (i - 1u < asize)  /* is 'key' inside array part? */
347      return i;  /* yes; that's the index */
348    else {
349      const TValue *n = getgeneric(t, key, 1);
350      if (l_unlikely(isabstkey(n)))
351        luaG_runerror(L, "invalid key to 'next'");  /* key not found */
352      i = cast_int(nodefromval(n) - gnode(t, 0));  /* key index in hash table */
353      /* hash elements are numbered after array ones */
354      return (i + 1) + asize;
355    }
356  }
357  
358  
luaH_next(lua_State * L,Table * t,StkId key)359  int luaH_next (lua_State *L, Table *t, StkId key) {
360    unsigned int asize = luaH_realasize(t);
361    unsigned int i = findindex(L, t, s2v(key), asize);  /* find original key */
362    for (; i < asize; i++) {  /* try first array part */
363      if (!isempty(&t->array[i])) {  /* a non-empty entry? */
364        setivalue(s2v(key), i + 1);
365        setobj2s(L, key + 1, &t->array[i]);
366        return 1;
367      }
368    }
369    for (i -= asize; cast_int(i) < sizenode(t); i++) {  /* hash part */
370      if (!isempty(gval(gnode(t, i)))) {  /* a non-empty entry? */
371        Node *n = gnode(t, i);
372        getnodekey(L, s2v(key), n);
373        setobj2s(L, key + 1, gval(n));
374        return 1;
375      }
376    }
377    return 0;  /* no more elements */
378  }
379  
380  
freehash(lua_State * L,Table * t)381  static void freehash (lua_State *L, Table *t) {
382    if (!isdummy(t))
383      luaM_freearray(L, t->node, cast_sizet(sizenode(t)));
384  }
385  
386  
387  /*
388  ** {=============================================================
389  ** Rehash
390  ** ==============================================================
391  */
392  
393  /*
394  ** Compute the optimal size for the array part of table 't'. 'nums' is a
395  ** "count array" where 'nums[i]' is the number of integers in the table
396  ** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of
397  ** integer keys in the table and leaves with the number of keys that
398  ** will go to the array part; return the optimal size.  (The condition
399  ** 'twotoi > 0' in the for loop stops the loop if 'twotoi' overflows.)
400  */
computesizes(unsigned int nums[],unsigned int * pna)401  static unsigned int computesizes (unsigned int nums[], unsigned int *pna) {
402    int i;
403    unsigned int twotoi;  /* 2^i (candidate for optimal size) */
404    unsigned int a = 0;  /* number of elements smaller than 2^i */
405    unsigned int na = 0;  /* number of elements to go to array part */
406    unsigned int optimal = 0;  /* optimal size for array part */
407    /* loop while keys can fill more than half of total size */
408    for (i = 0, twotoi = 1;
409         twotoi > 0 && *pna > twotoi / 2;
410         i++, twotoi *= 2) {
411      a += nums[i];
412      if (a > twotoi/2) {  /* more than half elements present? */
413        optimal = twotoi;  /* optimal size (till now) */
414        na = a;  /* all elements up to 'optimal' will go to array part */
415      }
416    }
417    lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal);
418    *pna = na;
419    return optimal;
420  }
421  
422  
countint(lua_Integer key,unsigned int * nums)423  static int countint (lua_Integer key, unsigned int *nums) {
424    unsigned int k = arrayindex(key);
425    if (k != 0) {  /* is 'key' an appropriate array index? */
426      nums[luaO_ceillog2(k)]++;  /* count as such */
427      return 1;
428    }
429    else
430      return 0;
431  }
432  
433  
434  /*
435  ** Count keys in array part of table 't': Fill 'nums[i]' with
436  ** number of keys that will go into corresponding slice and return
437  ** total number of non-nil keys.
438  */
numusearray(const Table * t,unsigned int * nums)439  static unsigned int numusearray (const Table *t, unsigned int *nums) {
440    int lg;
441    unsigned int ttlg;  /* 2^lg */
442    unsigned int ause = 0;  /* summation of 'nums' */
443    unsigned int i = 1;  /* count to traverse all array keys */
444    unsigned int asize = limitasasize(t);  /* real array size */
445    /* traverse each slice */
446    for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) {
447      unsigned int lc = 0;  /* counter */
448      unsigned int lim = ttlg;
449      if (lim > asize) {
450        lim = asize;  /* adjust upper limit */
451        if (i > lim)
452          break;  /* no more elements to count */
453      }
454      /* count elements in range (2^(lg - 1), 2^lg] */
455      for (; i <= lim; i++) {
456        if (!isempty(&t->array[i-1]))
457          lc++;
458      }
459      nums[lg] += lc;
460      ause += lc;
461    }
462    return ause;
463  }
464  
465  
numusehash(const Table * t,unsigned int * nums,unsigned int * pna)466  static int numusehash (const Table *t, unsigned int *nums, unsigned int *pna) {
467    int totaluse = 0;  /* total number of elements */
468    int ause = 0;  /* elements added to 'nums' (can go to array part) */
469    int i = sizenode(t);
470    while (i--) {
471      Node *n = &t->node[i];
472      if (!isempty(gval(n))) {
473        if (keyisinteger(n))
474          ause += countint(keyival(n), nums);
475        totaluse++;
476      }
477    }
478    *pna += ause;
479    return totaluse;
480  }
481  
482  
483  /*
484  ** Creates an array for the hash part of a table with the given
485  ** size, or reuses the dummy node if size is zero.
486  ** The computation for size overflow is in two steps: the first
487  ** comparison ensures that the shift in the second one does not
488  ** overflow.
489  */
setnodevector(lua_State * L,Table * t,unsigned int size)490  static void setnodevector (lua_State *L, Table *t, unsigned int size) {
491    if (size == 0) {  /* no elements to hash part? */
492      t->node = cast(Node *, dummynode);  /* use common 'dummynode' */
493      t->lsizenode = 0;
494      t->lastfree = NULL;  /* signal that it is using dummy node */
495    }
496    else {
497      int i;
498      int lsize = luaO_ceillog2(size);
499      if (lsize > MAXHBITS || (1u << lsize) > MAXHSIZE)
500        luaG_runerror(L, "table overflow");
501      size = twoto(lsize);
502      t->node = luaM_newvector(L, size, Node);
503      for (i = 0; i < cast_int(size); i++) {
504        Node *n = gnode(t, i);
505        gnext(n) = 0;
506        setnilkey(n);
507        setempty(gval(n));
508      }
509      t->lsizenode = cast_byte(lsize);
510      t->lastfree = gnode(t, size);  /* all positions are free */
511    }
512  }
513  
514  
515  /*
516  ** (Re)insert all elements from the hash part of 'ot' into table 't'.
517  */
reinsert(lua_State * L,Table * ot,Table * t)518  static void reinsert (lua_State *L, Table *ot, Table *t) {
519    int j;
520    int size = sizenode(ot);
521    for (j = 0; j < size; j++) {
522      Node *old = gnode(ot, j);
523      if (!isempty(gval(old))) {
524        /* doesn't need barrier/invalidate cache, as entry was
525           already present in the table */
526        TValue k;
527        getnodekey(L, &k, old);
528        luaH_set(L, t, &k, gval(old));
529      }
530    }
531  }
532  
533  
534  /*
535  ** Exchange the hash part of 't1' and 't2'.
536  */
exchangehashpart(Table * t1,Table * t2)537  static void exchangehashpart (Table *t1, Table *t2) {
538    lu_byte lsizenode = t1->lsizenode;
539    Node *node = t1->node;
540    Node *lastfree = t1->lastfree;
541    t1->lsizenode = t2->lsizenode;
542    t1->node = t2->node;
543    t1->lastfree = t2->lastfree;
544    t2->lsizenode = lsizenode;
545    t2->node = node;
546    t2->lastfree = lastfree;
547  }
548  
549  
550  /*
551  ** Resize table 't' for the new given sizes. Both allocations (for
552  ** the hash part and for the array part) can fail, which creates some
553  ** subtleties. If the first allocation, for the hash part, fails, an
554  ** error is raised and that is it. Otherwise, it copies the elements from
555  ** the shrinking part of the array (if it is shrinking) into the new
556  ** hash. Then it reallocates the array part.  If that fails, the table
557  ** is in its original state; the function frees the new hash part and then
558  ** raises the allocation error. Otherwise, it sets the new hash part
559  ** into the table, initializes the new part of the array (if any) with
560  ** nils and reinserts the elements of the old hash back into the new
561  ** parts of the table.
562  */
luaH_resize(lua_State * L,Table * t,unsigned int newasize,unsigned int nhsize)563  void luaH_resize (lua_State *L, Table *t, unsigned int newasize,
564                                            unsigned int nhsize) {
565    unsigned int i;
566    Table newt;  /* to keep the new hash part */
567    unsigned int oldasize = setlimittosize(t);
568    TValue *newarray;
569    /* create new hash part with appropriate size into 'newt' */
570    setnodevector(L, &newt, nhsize);
571    if (newasize < oldasize) {  /* will array shrink? */
572      t->alimit = newasize;  /* pretend array has new size... */
573      exchangehashpart(t, &newt);  /* and new hash */
574      /* re-insert into the new hash the elements from vanishing slice */
575      for (i = newasize; i < oldasize; i++) {
576        if (!isempty(&t->array[i]))
577          luaH_setint(L, t, i + 1, &t->array[i]);
578      }
579      t->alimit = oldasize;  /* restore current size... */
580      exchangehashpart(t, &newt);  /* and hash (in case of errors) */
581    }
582    /* allocate new array */
583    newarray = luaM_reallocvector(L, t->array, oldasize, newasize, TValue);
584    if (l_unlikely(newarray == NULL && newasize > 0)) {  /* allocation failed? */
585      freehash(L, &newt);  /* release new hash part */
586      luaM_error(L);  /* raise error (with array unchanged) */
587    }
588    /* allocation ok; initialize new part of the array */
589    exchangehashpart(t, &newt);  /* 't' has the new hash ('newt' has the old) */
590    t->array = newarray;  /* set new array part */
591    t->alimit = newasize;
592    for (i = oldasize; i < newasize; i++)  /* clear new slice of the array */
593       setempty(&t->array[i]);
594    /* re-insert elements from old hash part into new parts */
595    reinsert(L, &newt, t);  /* 'newt' now has the old hash */
596    freehash(L, &newt);  /* free old hash part */
597  }
598  
599  
luaH_resizearray(lua_State * L,Table * t,unsigned int nasize)600  void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) {
601    int nsize = allocsizenode(t);
602    luaH_resize(L, t, nasize, nsize);
603  }
604  
605  /*
606  ** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i
607  */
rehash(lua_State * L,Table * t,const TValue * ek)608  static void rehash (lua_State *L, Table *t, const TValue *ek) {
609    unsigned int asize;  /* optimal size for array part */
610    unsigned int na;  /* number of keys in the array part */
611    unsigned int nums[MAXABITS + 1];
612    int i;
613    int totaluse;
614    for (i = 0; i <= MAXABITS; i++) nums[i] = 0;  /* reset counts */
615    setlimittosize(t);
616    na = numusearray(t, nums);  /* count keys in array part */
617    totaluse = na;  /* all those keys are integer keys */
618    totaluse += numusehash(t, nums, &na);  /* count keys in hash part */
619    /* count extra key */
620    if (ttisinteger(ek))
621      na += countint(ivalue(ek), nums);
622    totaluse++;
623    /* compute new size for array part */
624    asize = computesizes(nums, &na);
625    /* resize the table to new computed sizes */
626    luaH_resize(L, t, asize, totaluse - na);
627  }
628  
629  
630  
631  /*
632  ** }=============================================================
633  */
634  
635  
luaH_new(lua_State * L)636  Table *luaH_new (lua_State *L) {
637    GCObject *o = luaC_newobj(L, LUA_VTABLE, sizeof(Table));
638    Table *t = gco2t(o);
639    t->metatable = NULL;
640    t->flags = cast_byte(maskflags);  /* table has no metamethod fields */
641    t->array = NULL;
642    t->alimit = 0;
643    setnodevector(L, t, 0);
644    return t;
645  }
646  
647  
luaH_free(lua_State * L,Table * t)648  void luaH_free (lua_State *L, Table *t) {
649    freehash(L, t);
650    luaM_freearray(L, t->array, luaH_realasize(t));
651    luaM_free(L, t);
652  }
653  
654  
getfreepos(Table * t)655  static Node *getfreepos (Table *t) {
656    if (!isdummy(t)) {
657      while (t->lastfree > t->node) {
658        t->lastfree--;
659        if (keyisnil(t->lastfree))
660          return t->lastfree;
661      }
662    }
663    return NULL;  /* could not find a free place */
664  }
665  
666  
667  
668  /*
669  ** inserts a new key into a hash table; first, check whether key's main
670  ** position is free. If not, check whether colliding node is in its main
671  ** position or not: if it is not, move colliding node to an empty place and
672  ** put new key in its main position; otherwise (colliding node is in its main
673  ** position), new key goes to an empty position.
674  */
luaH_newkey(lua_State * L,Table * t,const TValue * key,TValue * value)675  void luaH_newkey (lua_State *L, Table *t, const TValue *key, TValue *value) {
676    Node *mp;
677  #ifndef _KERNEL
678    TValue aux;
679  #endif /* _KERNEL */
680    if (l_unlikely(ttisnil(key)))
681      luaG_runerror(L, "table index is nil");
682  #ifndef _KERNEL
683    else if (ttisfloat(key)) {
684      lua_Number f = fltvalue(key);
685      lua_Integer k;
686      if (luaV_flttointeger(f, &k, F2Ieq)) {  /* does key fit in an integer? */
687        setivalue(&aux, k);
688        key = &aux;  /* insert it as an integer */
689      }
690      else if (l_unlikely(luai_numisnan(f)))
691        luaG_runerror(L, "table index is NaN");
692    }
693  #endif /* _KERNEL */
694    if (ttisnil(value))
695      return;  /* do not insert nil values */
696    mp = mainpositionTV(t, key);
697    if (!isempty(gval(mp)) || isdummy(t)) {  /* main position is taken? */
698      Node *othern;
699      Node *f = getfreepos(t);  /* get a free place */
700      if (f == NULL) {  /* cannot find a free place? */
701        rehash(L, t, key);  /* grow table */
702        /* whatever called 'newkey' takes care of TM cache */
703        luaH_set(L, t, key, value);  /* insert key into grown table */
704        return;
705      }
706      lua_assert(!isdummy(t));
707      othern = mainpositionfromnode(t, mp);
708      if (othern != mp) {  /* is colliding node out of its main position? */
709        /* yes; move colliding node into free position */
710        while (othern + gnext(othern) != mp)  /* find previous */
711          othern += gnext(othern);
712        gnext(othern) = cast_int(f - othern);  /* rechain to point to 'f' */
713        *f = *mp;  /* copy colliding node into free pos. (mp->next also goes) */
714        if (gnext(mp) != 0) {
715          gnext(f) += cast_int(mp - f);  /* correct 'next' */
716          gnext(mp) = 0;  /* now 'mp' is free */
717        }
718        setempty(gval(mp));
719      }
720      else {  /* colliding node is in its own main position */
721        /* new node will go into free position */
722        if (gnext(mp) != 0)
723          gnext(f) = cast_int((mp + gnext(mp)) - f);  /* chain new position */
724        else lua_assert(gnext(f) == 0);
725        gnext(mp) = cast_int(f - mp);
726        mp = f;
727      }
728    }
729    setnodekey(L, mp, key);
730    luaC_barrierback(L, obj2gco(t), key);
731    lua_assert(isempty(gval(mp)));
732    setobj2t(L, gval(mp), value);
733  }
734  
735  
736  /*
737  ** Search function for integers. If integer is inside 'alimit', get it
738  ** directly from the array part. Otherwise, if 'alimit' is not equal to
739  ** the real size of the array, key still can be in the array part. In
740  ** this case, try to avoid a call to 'luaH_realasize' when key is just
741  ** one more than the limit (so that it can be incremented without
742  ** changing the real size of the array).
743  */
luaH_getint(Table * t,lua_Integer key)744  const TValue *luaH_getint (Table *t, lua_Integer key) {
745    if (l_castS2U(key) - 1u < t->alimit)  /* 'key' in [1, t->alimit]? */
746      return &t->array[key - 1];
747    else if (!limitequalsasize(t) &&  /* key still may be in the array part? */
748             (l_castS2U(key) == t->alimit + 1 ||
749              l_castS2U(key) - 1u < luaH_realasize(t))) {
750      t->alimit = cast_uint(key);  /* probably '#t' is here now */
751      return &t->array[key - 1];
752    }
753    else {
754      Node *n = hashint(t, key);
755      for (;;) {  /* check whether 'key' is somewhere in the chain */
756        if (keyisinteger(n) && keyival(n) == key)
757          return gval(n);  /* that's it */
758        else {
759          int nx = gnext(n);
760          if (nx == 0) break;
761          n += nx;
762        }
763      }
764      return &absentkey;
765    }
766  }
767  
768  
769  /*
770  ** search function for short strings
771  */
luaH_getshortstr(Table * t,TString * key)772  const TValue *luaH_getshortstr (Table *t, TString *key) {
773    Node *n = hashstr(t, key);
774    lua_assert(key->tt == LUA_VSHRSTR);
775    for (;;) {  /* check whether 'key' is somewhere in the chain */
776      if (keyisshrstr(n) && eqshrstr(keystrval(n), key))
777        return gval(n);  /* that's it */
778      else {
779        int nx = gnext(n);
780        if (nx == 0)
781          return &absentkey;  /* not found */
782        n += nx;
783      }
784    }
785  }
786  
787  
luaH_getstr(Table * t,TString * key)788  const TValue *luaH_getstr (Table *t, TString *key) {
789    if (key->tt == LUA_VSHRSTR)
790      return luaH_getshortstr(t, key);
791    else {  /* for long strings, use generic case */
792      TValue ko;
793      setsvalue(cast(lua_State *, NULL), &ko, key);
794      return getgeneric(t, &ko, 0);
795    }
796  }
797  
798  
799  /*
800  ** main search function
801  */
luaH_get(Table * t,const TValue * key)802  const TValue *luaH_get (Table *t, const TValue *key) {
803    switch (ttypetag(key)) {
804      case LUA_VSHRSTR: return luaH_getshortstr(t, tsvalue(key));
805      case LUA_VNUMINT: return luaH_getint(t, ivalue(key));
806      case LUA_VNIL: return &absentkey;
807  #ifndef _KERNEL
808      case LUA_VNUMFLT: {
809        lua_Integer k;
810        if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */
811          return luaH_getint(t, k);  /* use specialized version */
812        /* else... */
813      }  /* FALLTHROUGH */
814  #endif /* _KERNEL */
815      default:
816        return getgeneric(t, key, 0);
817    }
818  }
819  
820  
821  /*
822  ** Finish a raw "set table" operation, where 'slot' is where the value
823  ** should have been (the result of a previous "get table").
824  ** Beware: when using this function you probably need to check a GC
825  ** barrier and invalidate the TM cache.
826  */
luaH_finishset(lua_State * L,Table * t,const TValue * key,const TValue * slot,TValue * value)827  void luaH_finishset (lua_State *L, Table *t, const TValue *key,
828                                     const TValue *slot, TValue *value) {
829    if (isabstkey(slot))
830      luaH_newkey(L, t, key, value);
831    else
832      setobj2t(L, cast(TValue *, slot), value);
833  }
834  
835  
836  /*
837  ** beware: when using this function you probably need to check a GC
838  ** barrier and invalidate the TM cache.
839  */
luaH_set(lua_State * L,Table * t,const TValue * key,TValue * value)840  void luaH_set (lua_State *L, Table *t, const TValue *key, TValue *value) {
841    const TValue *slot = luaH_get(t, key);
842    luaH_finishset(L, t, key, slot, value);
843  }
844  
845  
luaH_setint(lua_State * L,Table * t,lua_Integer key,TValue * value)846  void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) {
847    const TValue *p = luaH_getint(t, key);
848    if (isabstkey(p)) {
849      TValue k;
850      setivalue(&k, key);
851      luaH_newkey(L, t, &k, value);
852    }
853    else
854      setobj2t(L, cast(TValue *, p), value);
855  }
856  
857  
858  /*
859  ** Try to find a boundary in the hash part of table 't'. From the
860  ** caller, we know that 'j' is zero or present and that 'j + 1' is
861  ** present. We want to find a larger key that is absent from the
862  ** table, so that we can do a binary search between the two keys to
863  ** find a boundary. We keep doubling 'j' until we get an absent index.
864  ** If the doubling would overflow, we try LUA_MAXINTEGER. If it is
865  ** absent, we are ready for the binary search. ('j', being max integer,
866  ** is larger or equal to 'i', but it cannot be equal because it is
867  ** absent while 'i' is present; so 'j > i'.) Otherwise, 'j' is a
868  ** boundary. ('j + 1' cannot be a present integer key because it is
869  ** not a valid integer in Lua.)
870  */
hash_search(Table * t,lua_Unsigned j)871  static lua_Unsigned hash_search (Table *t, lua_Unsigned j) {
872    lua_Unsigned i;
873    if (j == 0) j++;  /* the caller ensures 'j + 1' is present */
874    do {
875      i = j;  /* 'i' is a present index */
876      if (j <= l_castS2U(LUA_MAXINTEGER) / 2)
877        j *= 2;
878      else {
879        j = LUA_MAXINTEGER;
880        if (isempty(luaH_getint(t, j)))  /* t[j] not present? */
881          break;  /* 'j' now is an absent index */
882        else  /* weird case */
883          return j;  /* well, max integer is a boundary... */
884      }
885    } while (!isempty(luaH_getint(t, j)));  /* repeat until an absent t[j] */
886    /* i < j  &&  t[i] present  &&  t[j] absent */
887    while (j - i > 1u) {  /* do a binary search between them */
888      lua_Unsigned m = (i + j) / 2;
889      if (isempty(luaH_getint(t, m))) j = m;
890      else i = m;
891    }
892    return i;
893  }
894  
895  
binsearch(const TValue * array,unsigned int i,unsigned int j)896  static unsigned int binsearch (const TValue *array, unsigned int i,
897                                                      unsigned int j) {
898    while (j - i > 1u) {  /* binary search */
899      unsigned int m = (i + j) / 2;
900      if (isempty(&array[m - 1])) j = m;
901      else i = m;
902    }
903    return i;
904  }
905  
906  
907  /*
908  ** Try to find a boundary in table 't'. (A 'boundary' is an integer index
909  ** such that t[i] is present and t[i+1] is absent, or 0 if t[1] is absent
910  ** and 'maxinteger' if t[maxinteger] is present.)
911  ** (In the next explanation, we use Lua indices, that is, with base 1.
912  ** The code itself uses base 0 when indexing the array part of the table.)
913  ** The code starts with 'limit = t->alimit', a position in the array
914  ** part that may be a boundary.
915  **
916  ** (1) If 't[limit]' is empty, there must be a boundary before it.
917  ** As a common case (e.g., after 't[#t]=nil'), check whether 'limit-1'
918  ** is present. If so, it is a boundary. Otherwise, do a binary search
919  ** between 0 and limit to find a boundary. In both cases, try to
920  ** use this boundary as the new 'alimit', as a hint for the next call.
921  **
922  ** (2) If 't[limit]' is not empty and the array has more elements
923  ** after 'limit', try to find a boundary there. Again, try first
924  ** the special case (which should be quite frequent) where 'limit+1'
925  ** is empty, so that 'limit' is a boundary. Otherwise, check the
926  ** last element of the array part. If it is empty, there must be a
927  ** boundary between the old limit (present) and the last element
928  ** (absent), which is found with a binary search. (This boundary always
929  ** can be a new limit.)
930  **
931  ** (3) The last case is when there are no elements in the array part
932  ** (limit == 0) or its last element (the new limit) is present.
933  ** In this case, must check the hash part. If there is no hash part
934  ** or 'limit+1' is absent, 'limit' is a boundary.  Otherwise, call
935  ** 'hash_search' to find a boundary in the hash part of the table.
936  ** (In those cases, the boundary is not inside the array part, and
937  ** therefore cannot be used as a new limit.)
938  */
luaH_getn(Table * t)939  lua_Unsigned luaH_getn (Table *t) {
940    unsigned int limit = t->alimit;
941    if (limit > 0 && isempty(&t->array[limit - 1])) {  /* (1)? */
942      /* there must be a boundary before 'limit' */
943      if (limit >= 2 && !isempty(&t->array[limit - 2])) {
944        /* 'limit - 1' is a boundary; can it be a new limit? */
945        if (ispow2realasize(t) && !ispow2(limit - 1)) {
946          t->alimit = limit - 1;
947          setnorealasize(t);  /* now 'alimit' is not the real size */
948        }
949        return limit - 1;
950      }
951      else {  /* must search for a boundary in [0, limit] */
952        unsigned int boundary = binsearch(t->array, 0, limit);
953        /* can this boundary represent the real size of the array? */
954        if (ispow2realasize(t) && boundary > luaH_realasize(t) / 2) {
955          t->alimit = boundary;  /* use it as the new limit */
956          setnorealasize(t);
957        }
958        return boundary;
959      }
960    }
961    /* 'limit' is zero or present in table */
962    if (!limitequalsasize(t)) {  /* (2)? */
963      /* 'limit' > 0 and array has more elements after 'limit' */
964      if (isempty(&t->array[limit]))  /* 'limit + 1' is empty? */
965        return limit;  /* this is the boundary */
966      /* else, try last element in the array */
967      limit = luaH_realasize(t);
968      if (isempty(&t->array[limit - 1])) {  /* empty? */
969        /* there must be a boundary in the array after old limit,
970           and it must be a valid new limit */
971        unsigned int boundary = binsearch(t->array, t->alimit, limit);
972        t->alimit = boundary;
973        return boundary;
974      }
975      /* else, new limit is present in the table; check the hash part */
976    }
977    /* (3) 'limit' is the last element and either is zero or present in table */
978    lua_assert(limit == luaH_realasize(t) &&
979               (limit == 0 || !isempty(&t->array[limit - 1])));
980    if (isdummy(t) || isempty(luaH_getint(t, cast(lua_Integer, limit + 1))))
981      return limit;  /* 'limit + 1' is absent */
982    else  /* 'limit + 1' is also present */
983      return hash_search(t, limit);
984  }
985  
986  
987  
988  #if defined(LUA_DEBUG)
989  
990  /* export these functions for the test library */
991  
luaH_mainposition(const Table * t,const TValue * key)992  Node *luaH_mainposition (const Table *t, const TValue *key) {
993    return mainpositionTV(t, key);
994  }
995  
996  #endif
997