1 /* $NetBSD: ltable.c,v 1.13 2023/06/08 21:12:08 nikita Exp $ */ 2 3 /* 4 ** Id: ltable.c 5 ** Lua tables (hash) 6 ** See Copyright Notice in lua.h 7 */ 8 9 #define ltable_c 10 #define LUA_CORE 11 12 #include "lprefix.h" 13 14 15 /* 16 ** Implementation of tables (aka arrays, objects, or hash tables). 17 ** Tables keep its elements in two parts: an array part and a hash part. 18 ** Non-negative integer keys are all candidates to be kept in the array 19 ** part. The actual size of the array is the largest 'n' such that 20 ** more than half the slots between 1 and n are in use. 21 ** Hash uses a mix of chained scatter table with Brent's variation. 22 ** A main invariant of these tables is that, if an element is not 23 ** in its main position (i.e. the 'original' position that its hash gives 24 ** to it), then the colliding element is in its own main position. 25 ** Hence even when the load factor reaches 100%, performance remains good. 26 */ 27 28 #ifndef _KERNEL 29 #include <math.h> 30 #include <limits.h> 31 #endif /* _KERNEL */ 32 33 #include "lua.h" 34 35 #include "ldebug.h" 36 #include "ldo.h" 37 #include "lgc.h" 38 #include "lmem.h" 39 #include "lobject.h" 40 #include "lstate.h" 41 #include "lstring.h" 42 #include "ltable.h" 43 #include "lvm.h" 44 45 46 /* 47 ** MAXABITS is the largest integer such that MAXASIZE fits in an 48 ** unsigned int. 49 */ 50 #define MAXABITS cast_int(sizeof(int) * CHAR_BIT - 1) 51 52 53 /* 54 ** MAXASIZE is the maximum size of the array part. It is the minimum 55 ** between 2^MAXABITS and the maximum size that, measured in bytes, 56 ** fits in a 'size_t'. 57 */ 58 #define MAXASIZE luaM_limitN(1u << MAXABITS, TValue) 59 60 /* 61 ** MAXHBITS is the largest integer such that 2^MAXHBITS fits in a 62 ** signed int. 63 */ 64 #define MAXHBITS (MAXABITS - 1) 65 66 67 /* 68 ** MAXHSIZE is the maximum size of the hash part. It is the minimum 69 ** between 2^MAXHBITS and the maximum size such that, measured in bytes, 70 ** it fits in a 'size_t'. 71 */ 72 #define MAXHSIZE luaM_limitN(1u << MAXHBITS, Node) 73 74 75 /* 76 ** When the original hash value is good, hashing by a power of 2 77 ** avoids the cost of '%'. 78 */ 79 #define hashpow2(t,n) (gnode(t, lmod((n), sizenode(t)))) 80 81 /* 82 ** for other types, it is better to avoid modulo by power of 2, as 83 ** they can have many 2 factors. 84 */ 85 #define hashmod(t,n) (gnode(t, ((n) % ((sizenode(t)-1)|1)))) 86 87 88 #define hashstr(t,str) hashpow2(t, (str)->hash) 89 #define hashboolean(t,p) hashpow2(t, p) 90 91 92 #define hashpointer(t,p) hashmod(t, point2uint(p)) 93 94 95 #define dummynode (&dummynode_) 96 97 static const Node dummynode_ = { 98 {{NULL}, LUA_VEMPTY, /* value's value and type */ 99 LUA_VNIL, 0, {NULL}} /* key type, next, and key value */ 100 }; 101 102 103 static const TValue absentkey = {ABSTKEYCONSTANT}; 104 105 106 /* 107 ** Hash for integers. To allow a good hash, use the remainder operator 108 ** ('%'). If integer fits as a non-negative int, compute an int 109 ** remainder, which is faster. Otherwise, use an unsigned-integer 110 ** remainder, which uses all bits and ensures a non-negative result. 111 */ hashint(const Table * t,lua_Integer i)112 static Node *hashint (const Table *t, lua_Integer i) { 113 lua_Unsigned ui = l_castS2U(i); 114 if (ui <= cast_uint(INT_MAX)) 115 return hashmod(t, cast_int(ui)); 116 else 117 return hashmod(t, ui); 118 } 119 120 121 #ifndef _KERNEL 122 /* 123 ** Hash for floating-point numbers. 124 ** The main computation should be just 125 ** n = frexp(n, &i); return (n * INT_MAX) + i 126 ** but there are some numerical subtleties. 127 ** In a two-complement representation, INT_MAX does not has an exact 128 ** representation as a float, but INT_MIN does; because the absolute 129 ** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the 130 ** absolute value of the product 'frexp * -INT_MIN' is smaller or equal 131 ** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when 132 ** adding 'i'; the use of '~u' (instead of '-u') avoids problems with 133 ** INT_MIN. 134 */ 135 #if !defined(l_hashfloat) l_hashfloat(lua_Number n)136 static int l_hashfloat (lua_Number n) { 137 int i; 138 lua_Integer ni; 139 n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN); 140 if (!lua_numbertointeger(n, &ni)) { /* is 'n' inf/-inf/NaN? */ 141 lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL)); 142 return 0; 143 } 144 else { /* normal case */ 145 unsigned int u = cast_uint(i) + cast_uint(ni); 146 return cast_int(u <= cast_uint(INT_MAX) ? u : ~u); 147 } 148 } 149 #endif 150 #endif /* _KERNEL */ 151 152 153 /* 154 ** returns the 'main' position of an element in a table (that is, 155 ** the index of its hash value). 156 */ mainpositionTV(const Table * t,const TValue * key)157 static Node *mainpositionTV (const Table *t, const TValue *key) { 158 switch (ttypetag(key)) { 159 case LUA_VNUMINT: { 160 lua_Integer i = ivalue(key); 161 return hashint(t, i); 162 } 163 #ifndef _KERNEL 164 case LUA_VNUMFLT: { 165 lua_Number n = fltvalue(key); 166 return hashmod(t, l_hashfloat(n)); 167 } 168 #endif /* _KERNEL */ 169 case LUA_VSHRSTR: { 170 TString *ts = tsvalue(key); 171 return hashstr(t, ts); 172 } 173 case LUA_VLNGSTR: { 174 TString *ts = tsvalue(key); 175 return hashpow2(t, luaS_hashlongstr(ts)); 176 } 177 case LUA_VFALSE: 178 return hashboolean(t, 0); 179 case LUA_VTRUE: 180 return hashboolean(t, 1); 181 case LUA_VLIGHTUSERDATA: { 182 void *p = pvalue(key); 183 return hashpointer(t, p); 184 } 185 case LUA_VLCF: { 186 lua_CFunction f = fvalue(key); 187 return hashpointer(t, f); 188 } 189 default: { 190 GCObject *o = gcvalue(key); 191 return hashpointer(t, o); 192 } 193 } 194 } 195 196 mainpositionfromnode(const Table * t,Node * nd)197 l_sinline Node *mainpositionfromnode (const Table *t, Node *nd) { 198 TValue key; 199 getnodekey(cast(lua_State *, NULL), &key, nd); 200 return mainpositionTV(t, &key); 201 } 202 203 204 /* 205 ** Check whether key 'k1' is equal to the key in node 'n2'. This 206 ** equality is raw, so there are no metamethods. Floats with integer 207 ** values have been normalized, so integers cannot be equal to 208 ** floats. It is assumed that 'eqshrstr' is simply pointer equality, so 209 ** that short strings are handled in the default case. 210 ** A true 'deadok' means to accept dead keys as equal to their original 211 ** values. All dead keys are compared in the default case, by pointer 212 ** identity. (Only collectable objects can produce dead keys.) Note that 213 ** dead long strings are also compared by identity. 214 ** Once a key is dead, its corresponding value may be collected, and 215 ** then another value can be created with the same address. If this 216 ** other value is given to 'next', 'equalkey' will signal a false 217 ** positive. In a regular traversal, this situation should never happen, 218 ** as all keys given to 'next' came from the table itself, and therefore 219 ** could not have been collected. Outside a regular traversal, we 220 ** have garbage in, garbage out. What is relevant is that this false 221 ** positive does not break anything. (In particular, 'next' will return 222 ** some other valid item on the table or nil.) 223 */ equalkey(const TValue * k1,const Node * n2,int deadok)224 static int equalkey (const TValue *k1, const Node *n2, int deadok) { 225 if ((rawtt(k1) != keytt(n2)) && /* not the same variants? */ 226 !(deadok && keyisdead(n2) && iscollectable(k1))) 227 return 0; /* cannot be same key */ 228 switch (keytt(n2)) { 229 case LUA_VNIL: case LUA_VFALSE: case LUA_VTRUE: 230 return 1; 231 case LUA_VNUMINT: 232 return (ivalue(k1) == keyival(n2)); 233 #ifndef _KERNEL 234 case LUA_VNUMFLT: 235 return luai_numeq(fltvalue(k1), fltvalueraw(keyval(n2))); 236 #endif /* _KERNEL */ 237 case LUA_VLIGHTUSERDATA: 238 return pvalue(k1) == pvalueraw(keyval(n2)); 239 case LUA_VLCF: 240 return fvalue(k1) == fvalueraw(keyval(n2)); 241 case ctb(LUA_VLNGSTR): 242 return luaS_eqlngstr(tsvalue(k1), keystrval(n2)); 243 default: 244 return gcvalue(k1) == gcvalueraw(keyval(n2)); 245 } 246 } 247 248 249 /* 250 ** True if value of 'alimit' is equal to the real size of the array 251 ** part of table 't'. (Otherwise, the array part must be larger than 252 ** 'alimit'.) 253 */ 254 #define limitequalsasize(t) (isrealasize(t) || ispow2((t)->alimit)) 255 256 257 /* 258 ** Returns the real size of the 'array' array 259 */ luaH_realasize(const Table * t)260 LUAI_FUNC unsigned int luaH_realasize (const Table *t) { 261 if (limitequalsasize(t)) 262 return t->alimit; /* this is the size */ 263 else { 264 unsigned int size = t->alimit; 265 /* compute the smallest power of 2 not smaller than 'n' */ 266 size |= (size >> 1); 267 size |= (size >> 2); 268 size |= (size >> 4); 269 size |= (size >> 8); 270 #if (UINT_MAX >> 14) > 3 /* unsigned int has more than 16 bits */ 271 size |= (size >> 16); 272 #if (UINT_MAX >> 30) > 3 273 size |= (size >> 32); /* unsigned int has more than 32 bits */ 274 #endif 275 #endif 276 size++; 277 lua_assert(ispow2(size) && size/2 < t->alimit && t->alimit < size); 278 return size; 279 } 280 } 281 282 283 /* 284 ** Check whether real size of the array is a power of 2. 285 ** (If it is not, 'alimit' cannot be changed to any other value 286 ** without changing the real size.) 287 */ ispow2realasize(const Table * t)288 static int ispow2realasize (const Table *t) { 289 return (!isrealasize(t) || ispow2(t->alimit)); 290 } 291 292 setlimittosize(Table * t)293 static unsigned int setlimittosize (Table *t) { 294 t->alimit = luaH_realasize(t); 295 setrealasize(t); 296 return t->alimit; 297 } 298 299 300 #define limitasasize(t) check_exp(isrealasize(t), t->alimit) 301 302 303 304 /* 305 ** "Generic" get version. (Not that generic: not valid for integers, 306 ** which may be in array part, nor for floats with integral values.) 307 ** See explanation about 'deadok' in function 'equalkey'. 308 */ getgeneric(Table * t,const TValue * key,int deadok)309 static const TValue *getgeneric (Table *t, const TValue *key, int deadok) { 310 Node *n = mainpositionTV(t, key); 311 for (;;) { /* check whether 'key' is somewhere in the chain */ 312 if (equalkey(key, n, deadok)) 313 return gval(n); /* that's it */ 314 else { 315 int nx = gnext(n); 316 if (nx == 0) 317 return &absentkey; /* not found */ 318 n += nx; 319 } 320 } 321 } 322 323 324 /* 325 ** returns the index for 'k' if 'k' is an appropriate key to live in 326 ** the array part of a table, 0 otherwise. 327 */ arrayindex(lua_Integer k)328 static unsigned int arrayindex (lua_Integer k) { 329 if (l_castS2U(k) - 1u < MAXASIZE) /* 'k' in [1, MAXASIZE]? */ 330 return cast_uint(k); /* 'key' is an appropriate array index */ 331 else 332 return 0; 333 } 334 335 336 /* 337 ** returns the index of a 'key' for table traversals. First goes all 338 ** elements in the array part, then elements in the hash part. The 339 ** beginning of a traversal is signaled by 0. 340 */ findindex(lua_State * L,Table * t,TValue * key,unsigned int asize)341 static unsigned int findindex (lua_State *L, Table *t, TValue *key, 342 unsigned int asize) { 343 unsigned int i; 344 if (ttisnil(key)) return 0; /* first iteration */ 345 i = ttisinteger(key) ? arrayindex(ivalue(key)) : 0; 346 if (i - 1u < asize) /* is 'key' inside array part? */ 347 return i; /* yes; that's the index */ 348 else { 349 const TValue *n = getgeneric(t, key, 1); 350 if (l_unlikely(isabstkey(n))) 351 luaG_runerror(L, "invalid key to 'next'"); /* key not found */ 352 i = cast_int(nodefromval(n) - gnode(t, 0)); /* key index in hash table */ 353 /* hash elements are numbered after array ones */ 354 return (i + 1) + asize; 355 } 356 } 357 358 luaH_next(lua_State * L,Table * t,StkId key)359 int luaH_next (lua_State *L, Table *t, StkId key) { 360 unsigned int asize = luaH_realasize(t); 361 unsigned int i = findindex(L, t, s2v(key), asize); /* find original key */ 362 for (; i < asize; i++) { /* try first array part */ 363 if (!isempty(&t->array[i])) { /* a non-empty entry? */ 364 setivalue(s2v(key), i + 1); 365 setobj2s(L, key + 1, &t->array[i]); 366 return 1; 367 } 368 } 369 for (i -= asize; cast_int(i) < sizenode(t); i++) { /* hash part */ 370 if (!isempty(gval(gnode(t, i)))) { /* a non-empty entry? */ 371 Node *n = gnode(t, i); 372 getnodekey(L, s2v(key), n); 373 setobj2s(L, key + 1, gval(n)); 374 return 1; 375 } 376 } 377 return 0; /* no more elements */ 378 } 379 380 freehash(lua_State * L,Table * t)381 static void freehash (lua_State *L, Table *t) { 382 if (!isdummy(t)) 383 luaM_freearray(L, t->node, cast_sizet(sizenode(t))); 384 } 385 386 387 /* 388 ** {============================================================= 389 ** Rehash 390 ** ============================================================== 391 */ 392 393 /* 394 ** Compute the optimal size for the array part of table 't'. 'nums' is a 395 ** "count array" where 'nums[i]' is the number of integers in the table 396 ** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of 397 ** integer keys in the table and leaves with the number of keys that 398 ** will go to the array part; return the optimal size. (The condition 399 ** 'twotoi > 0' in the for loop stops the loop if 'twotoi' overflows.) 400 */ computesizes(unsigned int nums[],unsigned int * pna)401 static unsigned int computesizes (unsigned int nums[], unsigned int *pna) { 402 int i; 403 unsigned int twotoi; /* 2^i (candidate for optimal size) */ 404 unsigned int a = 0; /* number of elements smaller than 2^i */ 405 unsigned int na = 0; /* number of elements to go to array part */ 406 unsigned int optimal = 0; /* optimal size for array part */ 407 /* loop while keys can fill more than half of total size */ 408 for (i = 0, twotoi = 1; 409 twotoi > 0 && *pna > twotoi / 2; 410 i++, twotoi *= 2) { 411 a += nums[i]; 412 if (a > twotoi/2) { /* more than half elements present? */ 413 optimal = twotoi; /* optimal size (till now) */ 414 na = a; /* all elements up to 'optimal' will go to array part */ 415 } 416 } 417 lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal); 418 *pna = na; 419 return optimal; 420 } 421 422 countint(lua_Integer key,unsigned int * nums)423 static int countint (lua_Integer key, unsigned int *nums) { 424 unsigned int k = arrayindex(key); 425 if (k != 0) { /* is 'key' an appropriate array index? */ 426 nums[luaO_ceillog2(k)]++; /* count as such */ 427 return 1; 428 } 429 else 430 return 0; 431 } 432 433 434 /* 435 ** Count keys in array part of table 't': Fill 'nums[i]' with 436 ** number of keys that will go into corresponding slice and return 437 ** total number of non-nil keys. 438 */ numusearray(const Table * t,unsigned int * nums)439 static unsigned int numusearray (const Table *t, unsigned int *nums) { 440 int lg; 441 unsigned int ttlg; /* 2^lg */ 442 unsigned int ause = 0; /* summation of 'nums' */ 443 unsigned int i = 1; /* count to traverse all array keys */ 444 unsigned int asize = limitasasize(t); /* real array size */ 445 /* traverse each slice */ 446 for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) { 447 unsigned int lc = 0; /* counter */ 448 unsigned int lim = ttlg; 449 if (lim > asize) { 450 lim = asize; /* adjust upper limit */ 451 if (i > lim) 452 break; /* no more elements to count */ 453 } 454 /* count elements in range (2^(lg - 1), 2^lg] */ 455 for (; i <= lim; i++) { 456 if (!isempty(&t->array[i-1])) 457 lc++; 458 } 459 nums[lg] += lc; 460 ause += lc; 461 } 462 return ause; 463 } 464 465 numusehash(const Table * t,unsigned int * nums,unsigned int * pna)466 static int numusehash (const Table *t, unsigned int *nums, unsigned int *pna) { 467 int totaluse = 0; /* total number of elements */ 468 int ause = 0; /* elements added to 'nums' (can go to array part) */ 469 int i = sizenode(t); 470 while (i--) { 471 Node *n = &t->node[i]; 472 if (!isempty(gval(n))) { 473 if (keyisinteger(n)) 474 ause += countint(keyival(n), nums); 475 totaluse++; 476 } 477 } 478 *pna += ause; 479 return totaluse; 480 } 481 482 483 /* 484 ** Creates an array for the hash part of a table with the given 485 ** size, or reuses the dummy node if size is zero. 486 ** The computation for size overflow is in two steps: the first 487 ** comparison ensures that the shift in the second one does not 488 ** overflow. 489 */ setnodevector(lua_State * L,Table * t,unsigned int size)490 static void setnodevector (lua_State *L, Table *t, unsigned int size) { 491 if (size == 0) { /* no elements to hash part? */ 492 t->node = cast(Node *, dummynode); /* use common 'dummynode' */ 493 t->lsizenode = 0; 494 t->lastfree = NULL; /* signal that it is using dummy node */ 495 } 496 else { 497 int i; 498 int lsize = luaO_ceillog2(size); 499 if (lsize > MAXHBITS || (1u << lsize) > MAXHSIZE) 500 luaG_runerror(L, "table overflow"); 501 size = twoto(lsize); 502 t->node = luaM_newvector(L, size, Node); 503 for (i = 0; i < cast_int(size); i++) { 504 Node *n = gnode(t, i); 505 gnext(n) = 0; 506 setnilkey(n); 507 setempty(gval(n)); 508 } 509 t->lsizenode = cast_byte(lsize); 510 t->lastfree = gnode(t, size); /* all positions are free */ 511 } 512 } 513 514 515 /* 516 ** (Re)insert all elements from the hash part of 'ot' into table 't'. 517 */ reinsert(lua_State * L,Table * ot,Table * t)518 static void reinsert (lua_State *L, Table *ot, Table *t) { 519 int j; 520 int size = sizenode(ot); 521 for (j = 0; j < size; j++) { 522 Node *old = gnode(ot, j); 523 if (!isempty(gval(old))) { 524 /* doesn't need barrier/invalidate cache, as entry was 525 already present in the table */ 526 TValue k; 527 getnodekey(L, &k, old); 528 luaH_set(L, t, &k, gval(old)); 529 } 530 } 531 } 532 533 534 /* 535 ** Exchange the hash part of 't1' and 't2'. 536 */ exchangehashpart(Table * t1,Table * t2)537 static void exchangehashpart (Table *t1, Table *t2) { 538 lu_byte lsizenode = t1->lsizenode; 539 Node *node = t1->node; 540 Node *lastfree = t1->lastfree; 541 t1->lsizenode = t2->lsizenode; 542 t1->node = t2->node; 543 t1->lastfree = t2->lastfree; 544 t2->lsizenode = lsizenode; 545 t2->node = node; 546 t2->lastfree = lastfree; 547 } 548 549 550 /* 551 ** Resize table 't' for the new given sizes. Both allocations (for 552 ** the hash part and for the array part) can fail, which creates some 553 ** subtleties. If the first allocation, for the hash part, fails, an 554 ** error is raised and that is it. Otherwise, it copies the elements from 555 ** the shrinking part of the array (if it is shrinking) into the new 556 ** hash. Then it reallocates the array part. If that fails, the table 557 ** is in its original state; the function frees the new hash part and then 558 ** raises the allocation error. Otherwise, it sets the new hash part 559 ** into the table, initializes the new part of the array (if any) with 560 ** nils and reinserts the elements of the old hash back into the new 561 ** parts of the table. 562 */ luaH_resize(lua_State * L,Table * t,unsigned int newasize,unsigned int nhsize)563 void luaH_resize (lua_State *L, Table *t, unsigned int newasize, 564 unsigned int nhsize) { 565 unsigned int i; 566 Table newt; /* to keep the new hash part */ 567 unsigned int oldasize = setlimittosize(t); 568 TValue *newarray; 569 /* create new hash part with appropriate size into 'newt' */ 570 setnodevector(L, &newt, nhsize); 571 if (newasize < oldasize) { /* will array shrink? */ 572 t->alimit = newasize; /* pretend array has new size... */ 573 exchangehashpart(t, &newt); /* and new hash */ 574 /* re-insert into the new hash the elements from vanishing slice */ 575 for (i = newasize; i < oldasize; i++) { 576 if (!isempty(&t->array[i])) 577 luaH_setint(L, t, i + 1, &t->array[i]); 578 } 579 t->alimit = oldasize; /* restore current size... */ 580 exchangehashpart(t, &newt); /* and hash (in case of errors) */ 581 } 582 /* allocate new array */ 583 newarray = luaM_reallocvector(L, t->array, oldasize, newasize, TValue); 584 if (l_unlikely(newarray == NULL && newasize > 0)) { /* allocation failed? */ 585 freehash(L, &newt); /* release new hash part */ 586 luaM_error(L); /* raise error (with array unchanged) */ 587 } 588 /* allocation ok; initialize new part of the array */ 589 exchangehashpart(t, &newt); /* 't' has the new hash ('newt' has the old) */ 590 t->array = newarray; /* set new array part */ 591 t->alimit = newasize; 592 for (i = oldasize; i < newasize; i++) /* clear new slice of the array */ 593 setempty(&t->array[i]); 594 /* re-insert elements from old hash part into new parts */ 595 reinsert(L, &newt, t); /* 'newt' now has the old hash */ 596 freehash(L, &newt); /* free old hash part */ 597 } 598 599 luaH_resizearray(lua_State * L,Table * t,unsigned int nasize)600 void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) { 601 int nsize = allocsizenode(t); 602 luaH_resize(L, t, nasize, nsize); 603 } 604 605 /* 606 ** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i 607 */ rehash(lua_State * L,Table * t,const TValue * ek)608 static void rehash (lua_State *L, Table *t, const TValue *ek) { 609 unsigned int asize; /* optimal size for array part */ 610 unsigned int na; /* number of keys in the array part */ 611 unsigned int nums[MAXABITS + 1]; 612 int i; 613 int totaluse; 614 for (i = 0; i <= MAXABITS; i++) nums[i] = 0; /* reset counts */ 615 setlimittosize(t); 616 na = numusearray(t, nums); /* count keys in array part */ 617 totaluse = na; /* all those keys are integer keys */ 618 totaluse += numusehash(t, nums, &na); /* count keys in hash part */ 619 /* count extra key */ 620 if (ttisinteger(ek)) 621 na += countint(ivalue(ek), nums); 622 totaluse++; 623 /* compute new size for array part */ 624 asize = computesizes(nums, &na); 625 /* resize the table to new computed sizes */ 626 luaH_resize(L, t, asize, totaluse - na); 627 } 628 629 630 631 /* 632 ** }============================================================= 633 */ 634 635 luaH_new(lua_State * L)636 Table *luaH_new (lua_State *L) { 637 GCObject *o = luaC_newobj(L, LUA_VTABLE, sizeof(Table)); 638 Table *t = gco2t(o); 639 t->metatable = NULL; 640 t->flags = cast_byte(maskflags); /* table has no metamethod fields */ 641 t->array = NULL; 642 t->alimit = 0; 643 setnodevector(L, t, 0); 644 return t; 645 } 646 647 luaH_free(lua_State * L,Table * t)648 void luaH_free (lua_State *L, Table *t) { 649 freehash(L, t); 650 luaM_freearray(L, t->array, luaH_realasize(t)); 651 luaM_free(L, t); 652 } 653 654 getfreepos(Table * t)655 static Node *getfreepos (Table *t) { 656 if (!isdummy(t)) { 657 while (t->lastfree > t->node) { 658 t->lastfree--; 659 if (keyisnil(t->lastfree)) 660 return t->lastfree; 661 } 662 } 663 return NULL; /* could not find a free place */ 664 } 665 666 667 668 /* 669 ** inserts a new key into a hash table; first, check whether key's main 670 ** position is free. If not, check whether colliding node is in its main 671 ** position or not: if it is not, move colliding node to an empty place and 672 ** put new key in its main position; otherwise (colliding node is in its main 673 ** position), new key goes to an empty position. 674 */ luaH_newkey(lua_State * L,Table * t,const TValue * key,TValue * value)675 void luaH_newkey (lua_State *L, Table *t, const TValue *key, TValue *value) { 676 Node *mp; 677 #ifndef _KERNEL 678 TValue aux; 679 #endif /* _KERNEL */ 680 if (l_unlikely(ttisnil(key))) 681 luaG_runerror(L, "table index is nil"); 682 #ifndef _KERNEL 683 else if (ttisfloat(key)) { 684 lua_Number f = fltvalue(key); 685 lua_Integer k; 686 if (luaV_flttointeger(f, &k, F2Ieq)) { /* does key fit in an integer? */ 687 setivalue(&aux, k); 688 key = &aux; /* insert it as an integer */ 689 } 690 else if (l_unlikely(luai_numisnan(f))) 691 luaG_runerror(L, "table index is NaN"); 692 } 693 #endif /* _KERNEL */ 694 if (ttisnil(value)) 695 return; /* do not insert nil values */ 696 mp = mainpositionTV(t, key); 697 if (!isempty(gval(mp)) || isdummy(t)) { /* main position is taken? */ 698 Node *othern; 699 Node *f = getfreepos(t); /* get a free place */ 700 if (f == NULL) { /* cannot find a free place? */ 701 rehash(L, t, key); /* grow table */ 702 /* whatever called 'newkey' takes care of TM cache */ 703 luaH_set(L, t, key, value); /* insert key into grown table */ 704 return; 705 } 706 lua_assert(!isdummy(t)); 707 othern = mainpositionfromnode(t, mp); 708 if (othern != mp) { /* is colliding node out of its main position? */ 709 /* yes; move colliding node into free position */ 710 while (othern + gnext(othern) != mp) /* find previous */ 711 othern += gnext(othern); 712 gnext(othern) = cast_int(f - othern); /* rechain to point to 'f' */ 713 *f = *mp; /* copy colliding node into free pos. (mp->next also goes) */ 714 if (gnext(mp) != 0) { 715 gnext(f) += cast_int(mp - f); /* correct 'next' */ 716 gnext(mp) = 0; /* now 'mp' is free */ 717 } 718 setempty(gval(mp)); 719 } 720 else { /* colliding node is in its own main position */ 721 /* new node will go into free position */ 722 if (gnext(mp) != 0) 723 gnext(f) = cast_int((mp + gnext(mp)) - f); /* chain new position */ 724 else lua_assert(gnext(f) == 0); 725 gnext(mp) = cast_int(f - mp); 726 mp = f; 727 } 728 } 729 setnodekey(L, mp, key); 730 luaC_barrierback(L, obj2gco(t), key); 731 lua_assert(isempty(gval(mp))); 732 setobj2t(L, gval(mp), value); 733 } 734 735 736 /* 737 ** Search function for integers. If integer is inside 'alimit', get it 738 ** directly from the array part. Otherwise, if 'alimit' is not equal to 739 ** the real size of the array, key still can be in the array part. In 740 ** this case, try to avoid a call to 'luaH_realasize' when key is just 741 ** one more than the limit (so that it can be incremented without 742 ** changing the real size of the array). 743 */ luaH_getint(Table * t,lua_Integer key)744 const TValue *luaH_getint (Table *t, lua_Integer key) { 745 if (l_castS2U(key) - 1u < t->alimit) /* 'key' in [1, t->alimit]? */ 746 return &t->array[key - 1]; 747 else if (!limitequalsasize(t) && /* key still may be in the array part? */ 748 (l_castS2U(key) == t->alimit + 1 || 749 l_castS2U(key) - 1u < luaH_realasize(t))) { 750 t->alimit = cast_uint(key); /* probably '#t' is here now */ 751 return &t->array[key - 1]; 752 } 753 else { 754 Node *n = hashint(t, key); 755 for (;;) { /* check whether 'key' is somewhere in the chain */ 756 if (keyisinteger(n) && keyival(n) == key) 757 return gval(n); /* that's it */ 758 else { 759 int nx = gnext(n); 760 if (nx == 0) break; 761 n += nx; 762 } 763 } 764 return &absentkey; 765 } 766 } 767 768 769 /* 770 ** search function for short strings 771 */ luaH_getshortstr(Table * t,TString * key)772 const TValue *luaH_getshortstr (Table *t, TString *key) { 773 Node *n = hashstr(t, key); 774 lua_assert(key->tt == LUA_VSHRSTR); 775 for (;;) { /* check whether 'key' is somewhere in the chain */ 776 if (keyisshrstr(n) && eqshrstr(keystrval(n), key)) 777 return gval(n); /* that's it */ 778 else { 779 int nx = gnext(n); 780 if (nx == 0) 781 return &absentkey; /* not found */ 782 n += nx; 783 } 784 } 785 } 786 787 luaH_getstr(Table * t,TString * key)788 const TValue *luaH_getstr (Table *t, TString *key) { 789 if (key->tt == LUA_VSHRSTR) 790 return luaH_getshortstr(t, key); 791 else { /* for long strings, use generic case */ 792 TValue ko; 793 setsvalue(cast(lua_State *, NULL), &ko, key); 794 return getgeneric(t, &ko, 0); 795 } 796 } 797 798 799 /* 800 ** main search function 801 */ luaH_get(Table * t,const TValue * key)802 const TValue *luaH_get (Table *t, const TValue *key) { 803 switch (ttypetag(key)) { 804 case LUA_VSHRSTR: return luaH_getshortstr(t, tsvalue(key)); 805 case LUA_VNUMINT: return luaH_getint(t, ivalue(key)); 806 case LUA_VNIL: return &absentkey; 807 #ifndef _KERNEL 808 case LUA_VNUMFLT: { 809 lua_Integer k; 810 if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */ 811 return luaH_getint(t, k); /* use specialized version */ 812 /* else... */ 813 } /* FALLTHROUGH */ 814 #endif /* _KERNEL */ 815 default: 816 return getgeneric(t, key, 0); 817 } 818 } 819 820 821 /* 822 ** Finish a raw "set table" operation, where 'slot' is where the value 823 ** should have been (the result of a previous "get table"). 824 ** Beware: when using this function you probably need to check a GC 825 ** barrier and invalidate the TM cache. 826 */ luaH_finishset(lua_State * L,Table * t,const TValue * key,const TValue * slot,TValue * value)827 void luaH_finishset (lua_State *L, Table *t, const TValue *key, 828 const TValue *slot, TValue *value) { 829 if (isabstkey(slot)) 830 luaH_newkey(L, t, key, value); 831 else 832 setobj2t(L, cast(TValue *, slot), value); 833 } 834 835 836 /* 837 ** beware: when using this function you probably need to check a GC 838 ** barrier and invalidate the TM cache. 839 */ luaH_set(lua_State * L,Table * t,const TValue * key,TValue * value)840 void luaH_set (lua_State *L, Table *t, const TValue *key, TValue *value) { 841 const TValue *slot = luaH_get(t, key); 842 luaH_finishset(L, t, key, slot, value); 843 } 844 845 luaH_setint(lua_State * L,Table * t,lua_Integer key,TValue * value)846 void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) { 847 const TValue *p = luaH_getint(t, key); 848 if (isabstkey(p)) { 849 TValue k; 850 setivalue(&k, key); 851 luaH_newkey(L, t, &k, value); 852 } 853 else 854 setobj2t(L, cast(TValue *, p), value); 855 } 856 857 858 /* 859 ** Try to find a boundary in the hash part of table 't'. From the 860 ** caller, we know that 'j' is zero or present and that 'j + 1' is 861 ** present. We want to find a larger key that is absent from the 862 ** table, so that we can do a binary search between the two keys to 863 ** find a boundary. We keep doubling 'j' until we get an absent index. 864 ** If the doubling would overflow, we try LUA_MAXINTEGER. If it is 865 ** absent, we are ready for the binary search. ('j', being max integer, 866 ** is larger or equal to 'i', but it cannot be equal because it is 867 ** absent while 'i' is present; so 'j > i'.) Otherwise, 'j' is a 868 ** boundary. ('j + 1' cannot be a present integer key because it is 869 ** not a valid integer in Lua.) 870 */ hash_search(Table * t,lua_Unsigned j)871 static lua_Unsigned hash_search (Table *t, lua_Unsigned j) { 872 lua_Unsigned i; 873 if (j == 0) j++; /* the caller ensures 'j + 1' is present */ 874 do { 875 i = j; /* 'i' is a present index */ 876 if (j <= l_castS2U(LUA_MAXINTEGER) / 2) 877 j *= 2; 878 else { 879 j = LUA_MAXINTEGER; 880 if (isempty(luaH_getint(t, j))) /* t[j] not present? */ 881 break; /* 'j' now is an absent index */ 882 else /* weird case */ 883 return j; /* well, max integer is a boundary... */ 884 } 885 } while (!isempty(luaH_getint(t, j))); /* repeat until an absent t[j] */ 886 /* i < j && t[i] present && t[j] absent */ 887 while (j - i > 1u) { /* do a binary search between them */ 888 lua_Unsigned m = (i + j) / 2; 889 if (isempty(luaH_getint(t, m))) j = m; 890 else i = m; 891 } 892 return i; 893 } 894 895 binsearch(const TValue * array,unsigned int i,unsigned int j)896 static unsigned int binsearch (const TValue *array, unsigned int i, 897 unsigned int j) { 898 while (j - i > 1u) { /* binary search */ 899 unsigned int m = (i + j) / 2; 900 if (isempty(&array[m - 1])) j = m; 901 else i = m; 902 } 903 return i; 904 } 905 906 907 /* 908 ** Try to find a boundary in table 't'. (A 'boundary' is an integer index 909 ** such that t[i] is present and t[i+1] is absent, or 0 if t[1] is absent 910 ** and 'maxinteger' if t[maxinteger] is present.) 911 ** (In the next explanation, we use Lua indices, that is, with base 1. 912 ** The code itself uses base 0 when indexing the array part of the table.) 913 ** The code starts with 'limit = t->alimit', a position in the array 914 ** part that may be a boundary. 915 ** 916 ** (1) If 't[limit]' is empty, there must be a boundary before it. 917 ** As a common case (e.g., after 't[#t]=nil'), check whether 'limit-1' 918 ** is present. If so, it is a boundary. Otherwise, do a binary search 919 ** between 0 and limit to find a boundary. In both cases, try to 920 ** use this boundary as the new 'alimit', as a hint for the next call. 921 ** 922 ** (2) If 't[limit]' is not empty and the array has more elements 923 ** after 'limit', try to find a boundary there. Again, try first 924 ** the special case (which should be quite frequent) where 'limit+1' 925 ** is empty, so that 'limit' is a boundary. Otherwise, check the 926 ** last element of the array part. If it is empty, there must be a 927 ** boundary between the old limit (present) and the last element 928 ** (absent), which is found with a binary search. (This boundary always 929 ** can be a new limit.) 930 ** 931 ** (3) The last case is when there are no elements in the array part 932 ** (limit == 0) or its last element (the new limit) is present. 933 ** In this case, must check the hash part. If there is no hash part 934 ** or 'limit+1' is absent, 'limit' is a boundary. Otherwise, call 935 ** 'hash_search' to find a boundary in the hash part of the table. 936 ** (In those cases, the boundary is not inside the array part, and 937 ** therefore cannot be used as a new limit.) 938 */ luaH_getn(Table * t)939 lua_Unsigned luaH_getn (Table *t) { 940 unsigned int limit = t->alimit; 941 if (limit > 0 && isempty(&t->array[limit - 1])) { /* (1)? */ 942 /* there must be a boundary before 'limit' */ 943 if (limit >= 2 && !isempty(&t->array[limit - 2])) { 944 /* 'limit - 1' is a boundary; can it be a new limit? */ 945 if (ispow2realasize(t) && !ispow2(limit - 1)) { 946 t->alimit = limit - 1; 947 setnorealasize(t); /* now 'alimit' is not the real size */ 948 } 949 return limit - 1; 950 } 951 else { /* must search for a boundary in [0, limit] */ 952 unsigned int boundary = binsearch(t->array, 0, limit); 953 /* can this boundary represent the real size of the array? */ 954 if (ispow2realasize(t) && boundary > luaH_realasize(t) / 2) { 955 t->alimit = boundary; /* use it as the new limit */ 956 setnorealasize(t); 957 } 958 return boundary; 959 } 960 } 961 /* 'limit' is zero or present in table */ 962 if (!limitequalsasize(t)) { /* (2)? */ 963 /* 'limit' > 0 and array has more elements after 'limit' */ 964 if (isempty(&t->array[limit])) /* 'limit + 1' is empty? */ 965 return limit; /* this is the boundary */ 966 /* else, try last element in the array */ 967 limit = luaH_realasize(t); 968 if (isempty(&t->array[limit - 1])) { /* empty? */ 969 /* there must be a boundary in the array after old limit, 970 and it must be a valid new limit */ 971 unsigned int boundary = binsearch(t->array, t->alimit, limit); 972 t->alimit = boundary; 973 return boundary; 974 } 975 /* else, new limit is present in the table; check the hash part */ 976 } 977 /* (3) 'limit' is the last element and either is zero or present in table */ 978 lua_assert(limit == luaH_realasize(t) && 979 (limit == 0 || !isempty(&t->array[limit - 1]))); 980 if (isdummy(t) || isempty(luaH_getint(t, cast(lua_Integer, limit + 1)))) 981 return limit; /* 'limit + 1' is absent */ 982 else /* 'limit + 1' is also present */ 983 return hash_search(t, limit); 984 } 985 986 987 988 #if defined(LUA_DEBUG) 989 990 /* export these functions for the test library */ 991 luaH_mainposition(const Table * t,const TValue * key)992 Node *luaH_mainposition (const Table *t, const TValue *key) { 993 return mainpositionTV(t, key); 994 } 995 996 #endif 997