xref: /netbsd-src/external/mit/lua/dist/src/lgc.c (revision bdda0531de537df87feb2bf576711ab1be9b3675)
1 /*	$NetBSD: lgc.c,v 1.13 2023/06/08 21:12:08 nikita Exp $	*/
2 
3 /*
4 ** Id: lgc.c
5 ** Garbage Collector
6 ** See Copyright Notice in lua.h
7 */
8 
9 #define lgc_c
10 #define LUA_CORE
11 
12 #include "lprefix.h"
13 
14 #ifndef _KERNEL
15 #include <stdio.h>
16 #include <string.h>
17 #endif /* _KERNEL */
18 
19 #include "lua.h"
20 
21 #include "ldebug.h"
22 #include "ldo.h"
23 #include "lfunc.h"
24 #include "lgc.h"
25 #include "lmem.h"
26 #include "lobject.h"
27 #include "lstate.h"
28 #include "lstring.h"
29 #include "ltable.h"
30 #include "ltm.h"
31 
32 
33 /*
34 ** Maximum number of elements to sweep in each single step.
35 ** (Large enough to dissipate fixed overheads but small enough
36 ** to allow small steps for the collector.)
37 */
38 #define GCSWEEPMAX	100
39 
40 /*
41 ** Maximum number of finalizers to call in each single step.
42 */
43 #define GCFINMAX	10
44 
45 
46 /*
47 ** Cost of calling one finalizer.
48 */
49 #define GCFINALIZECOST	50
50 
51 
52 /*
53 ** The equivalent, in bytes, of one unit of "work" (visiting a slot,
54 ** sweeping an object, etc.)
55 */
56 #define WORK2MEM	sizeof(TValue)
57 
58 
59 /*
60 ** macro to adjust 'pause': 'pause' is actually used like
61 ** 'pause / PAUSEADJ' (value chosen by tests)
62 */
63 #define PAUSEADJ		100
64 
65 
66 /* mask with all color bits */
67 #define maskcolors	(bitmask(BLACKBIT) | WHITEBITS)
68 
69 /* mask with all GC bits */
70 #define maskgcbits      (maskcolors | AGEBITS)
71 
72 
73 /* macro to erase all color bits then set only the current white bit */
74 #define makewhite(g,x)	\
75   (x->marked = cast_byte((x->marked & ~maskcolors) | luaC_white(g)))
76 
77 /* make an object gray (neither white nor black) */
78 #define set2gray(x)	resetbits(x->marked, maskcolors)
79 
80 
81 /* make an object black (coming from any color) */
82 #define set2black(x)  \
83   (x->marked = cast_byte((x->marked & ~WHITEBITS) | bitmask(BLACKBIT)))
84 
85 
86 #define valiswhite(x)   (iscollectable(x) && iswhite(gcvalue(x)))
87 
88 #define keyiswhite(n)   (keyiscollectable(n) && iswhite(gckey(n)))
89 
90 
91 /*
92 ** Protected access to objects in values
93 */
94 #define gcvalueN(o)     (iscollectable(o) ? gcvalue(o) : NULL)
95 
96 
97 #define markvalue(g,o) { checkliveness(g->mainthread,o); \
98   if (valiswhite(o)) reallymarkobject(g,gcvalue(o)); }
99 
100 #define markkey(g, n)	{ if keyiswhite(n) reallymarkobject(g,gckey(n)); }
101 
102 #define markobject(g,t)	{ if (iswhite(t)) reallymarkobject(g, obj2gco(t)); }
103 
104 /*
105 ** mark an object that can be NULL (either because it is really optional,
106 ** or it was stripped as debug info, or inside an uncompleted structure)
107 */
108 #define markobjectN(g,t)	{ if (t) markobject(g,t); }
109 
110 static void reallymarkobject (global_State *g, GCObject *o);
111 static lu_mem atomic (lua_State *L);
112 static void entersweep (lua_State *L);
113 
114 
115 /*
116 ** {======================================================
117 ** Generic functions
118 ** =======================================================
119 */
120 
121 
122 /*
123 ** one after last element in a hash array
124 */
125 #define gnodelast(h)	gnode(h, cast_sizet(sizenode(h)))
126 
127 
getgclist(GCObject * o)128 static GCObject **getgclist (GCObject *o) {
129   switch (o->tt) {
130     case LUA_VTABLE: return &gco2t(o)->gclist;
131     case LUA_VLCL: return &gco2lcl(o)->gclist;
132     case LUA_VCCL: return &gco2ccl(o)->gclist;
133     case LUA_VTHREAD: return &gco2th(o)->gclist;
134     case LUA_VPROTO: return &gco2p(o)->gclist;
135     case LUA_VUSERDATA: {
136       Udata *u = gco2u(o);
137       lua_assert(u->nuvalue > 0);
138       return &u->gclist;
139     }
140     default: lua_assert(0); return 0;
141   }
142 }
143 
144 
145 /*
146 ** Link a collectable object 'o' with a known type into the list 'p'.
147 ** (Must be a macro to access the 'gclist' field in different types.)
148 */
149 #define linkgclist(o,p)	linkgclist_(obj2gco(o), &(o)->gclist, &(p))
150 
linkgclist_(GCObject * o,GCObject ** pnext,GCObject ** list)151 static void linkgclist_ (GCObject *o, GCObject **pnext, GCObject **list) {
152   lua_assert(!isgray(o));  /* cannot be in a gray list */
153   *pnext = *list;
154   *list = o;
155   set2gray(o);  /* now it is */
156 }
157 
158 
159 /*
160 ** Link a generic collectable object 'o' into the list 'p'.
161 */
162 #define linkobjgclist(o,p) linkgclist_(obj2gco(o), getgclist(o), &(p))
163 
164 
165 
166 /*
167 ** Clear keys for empty entries in tables. If entry is empty, mark its
168 ** entry as dead. This allows the collection of the key, but keeps its
169 ** entry in the table: its removal could break a chain and could break
170 ** a table traversal.  Other places never manipulate dead keys, because
171 ** its associated empty value is enough to signal that the entry is
172 ** logically empty.
173 */
clearkey(Node * n)174 static void clearkey (Node *n) {
175   lua_assert(isempty(gval(n)));
176   if (keyiscollectable(n))
177     setdeadkey(n);  /* unused key; remove it */
178 }
179 
180 
181 /*
182 ** tells whether a key or value can be cleared from a weak
183 ** table. Non-collectable objects are never removed from weak
184 ** tables. Strings behave as 'values', so are never removed too. for
185 ** other objects: if really collected, cannot keep them; for objects
186 ** being finalized, keep them in keys, but not in values
187 */
iscleared(global_State * g,const GCObject * o)188 static int iscleared (global_State *g, const GCObject *o) {
189   if (o == NULL) return 0;  /* non-collectable value */
190   else if (novariant(o->tt) == LUA_TSTRING) {
191     markobject(g, o);  /* strings are 'values', so are never weak */
192     return 0;
193   }
194   else return iswhite(o);
195 }
196 
197 
198 /*
199 ** Barrier that moves collector forward, that is, marks the white object
200 ** 'v' being pointed by the black object 'o'.  In the generational
201 ** mode, 'v' must also become old, if 'o' is old; however, it cannot
202 ** be changed directly to OLD, because it may still point to non-old
203 ** objects. So, it is marked as OLD0. In the next cycle it will become
204 ** OLD1, and in the next it will finally become OLD (regular old). By
205 ** then, any object it points to will also be old.  If called in the
206 ** incremental sweep phase, it clears the black object to white (sweep
207 ** it) to avoid other barrier calls for this same object. (That cannot
208 ** be done is generational mode, as its sweep does not distinguish
209 ** whites from deads.)
210 */
luaC_barrier_(lua_State * L,GCObject * o,GCObject * v)211 void luaC_barrier_ (lua_State *L, GCObject *o, GCObject *v) {
212   global_State *g = G(L);
213   lua_assert(isblack(o) && iswhite(v) && !isdead(g, v) && !isdead(g, o));
214   if (keepinvariant(g)) {  /* must keep invariant? */
215     reallymarkobject(g, v);  /* restore invariant */
216     if (isold(o)) {
217       lua_assert(!isold(v));  /* white object could not be old */
218       setage(v, G_OLD0);  /* restore generational invariant */
219     }
220   }
221   else {  /* sweep phase */
222     lua_assert(issweepphase(g));
223     if (g->gckind == KGC_INC)  /* incremental mode? */
224       makewhite(g, o);  /* mark 'o' as white to avoid other barriers */
225   }
226 }
227 
228 
229 /*
230 ** barrier that moves collector backward, that is, mark the black object
231 ** pointing to a white object as gray again.
232 */
luaC_barrierback_(lua_State * L,GCObject * o)233 void luaC_barrierback_ (lua_State *L, GCObject *o) {
234   global_State *g = G(L);
235   lua_assert(isblack(o) && !isdead(g, o));
236   lua_assert((g->gckind == KGC_GEN) == (isold(o) && getage(o) != G_TOUCHED1));
237   if (getage(o) == G_TOUCHED2)  /* already in gray list? */
238     set2gray(o);  /* make it gray to become touched1 */
239   else  /* link it in 'grayagain' and paint it gray */
240     linkobjgclist(o, g->grayagain);
241   if (isold(o))  /* generational mode? */
242     setage(o, G_TOUCHED1);  /* touched in current cycle */
243 }
244 
245 
luaC_fix(lua_State * L,GCObject * o)246 void luaC_fix (lua_State *L, GCObject *o) {
247   global_State *g = G(L);
248   lua_assert(g->allgc == o);  /* object must be 1st in 'allgc' list! */
249   set2gray(o);  /* they will be gray forever */
250   setage(o, G_OLD);  /* and old forever */
251   g->allgc = o->next;  /* remove object from 'allgc' list */
252   o->next = g->fixedgc;  /* link it to 'fixedgc' list */
253   g->fixedgc = o;
254 }
255 
256 
257 /*
258 ** create a new collectable object (with given type, size, and offset)
259 ** and link it to 'allgc' list.
260 */
luaC_newobjdt(lua_State * L,int tt,size_t sz,size_t offset)261 GCObject *luaC_newobjdt (lua_State *L, int tt, size_t sz, size_t offset) {
262   global_State *g = G(L);
263   char *p = cast_charp(luaM_newobject(L, novariant(tt), sz));
264   GCObject *o = cast(GCObject *, p + offset);
265   o->marked = luaC_white(g);
266   o->tt = tt;
267   o->next = g->allgc;
268   g->allgc = o;
269   return o;
270 }
271 
272 
luaC_newobj(lua_State * L,int tt,size_t sz)273 GCObject *luaC_newobj (lua_State *L, int tt, size_t sz) {
274   return luaC_newobjdt(L, tt, sz, 0);
275 }
276 
277 /* }====================================================== */
278 
279 
280 
281 /*
282 ** {======================================================
283 ** Mark functions
284 ** =======================================================
285 */
286 
287 
288 /*
289 ** Mark an object.  Userdata with no user values, strings, and closed
290 ** upvalues are visited and turned black here.  Open upvalues are
291 ** already indirectly linked through their respective threads in the
292 ** 'twups' list, so they don't go to the gray list; nevertheless, they
293 ** are kept gray to avoid barriers, as their values will be revisited
294 ** by the thread or by 'remarkupvals'.  Other objects are added to the
295 ** gray list to be visited (and turned black) later.  Both userdata and
296 ** upvalues can call this function recursively, but this recursion goes
297 ** for at most two levels: An upvalue cannot refer to another upvalue
298 ** (only closures can), and a userdata's metatable must be a table.
299 */
reallymarkobject(global_State * g,GCObject * o)300 static void reallymarkobject (global_State *g, GCObject *o) {
301   switch (o->tt) {
302     case LUA_VSHRSTR:
303     case LUA_VLNGSTR: {
304       set2black(o);  /* nothing to visit */
305       break;
306     }
307     case LUA_VUPVAL: {
308       UpVal *uv = gco2upv(o);
309       if (upisopen(uv))
310         set2gray(uv);  /* open upvalues are kept gray */
311       else
312         set2black(uv);  /* closed upvalues are visited here */
313       markvalue(g, uv->v.p);  /* mark its content */
314       break;
315     }
316     case LUA_VUSERDATA: {
317       Udata *u = gco2u(o);
318       if (u->nuvalue == 0) {  /* no user values? */
319         markobjectN(g, u->metatable);  /* mark its metatable */
320         set2black(u);  /* nothing else to mark */
321         break;
322       }
323       /* else... */
324     }  /* FALLTHROUGH */
325     case LUA_VLCL: case LUA_VCCL: case LUA_VTABLE:
326     case LUA_VTHREAD: case LUA_VPROTO: {
327       linkobjgclist(o, g->gray);  /* to be visited later */
328       break;
329     }
330     default: lua_assert(0); break;
331   }
332 }
333 
334 
335 /*
336 ** mark metamethods for basic types
337 */
markmt(global_State * g)338 static void markmt (global_State *g) {
339   int i;
340   for (i=0; i < LUA_NUMTAGS; i++)
341     markobjectN(g, g->mt[i]);
342 }
343 
344 
345 /*
346 ** mark all objects in list of being-finalized
347 */
markbeingfnz(global_State * g)348 static lu_mem markbeingfnz (global_State *g) {
349   GCObject *o;
350   lu_mem count = 0;
351   for (o = g->tobefnz; o != NULL; o = o->next) {
352     count++;
353     markobject(g, o);
354   }
355   return count;
356 }
357 
358 
359 /*
360 ** For each non-marked thread, simulates a barrier between each open
361 ** upvalue and its value. (If the thread is collected, the value will be
362 ** assigned to the upvalue, but then it can be too late for the barrier
363 ** to act. The "barrier" does not need to check colors: A non-marked
364 ** thread must be young; upvalues cannot be older than their threads; so
365 ** any visited upvalue must be young too.) Also removes the thread from
366 ** the list, as it was already visited. Removes also threads with no
367 ** upvalues, as they have nothing to be checked. (If the thread gets an
368 ** upvalue later, it will be linked in the list again.)
369 */
remarkupvals(global_State * g)370 static int remarkupvals (global_State *g) {
371   lua_State *thread;
372   lua_State **p = &g->twups;
373   int work = 0;  /* estimate of how much work was done here */
374   while ((thread = *p) != NULL) {
375     work++;
376     if (!iswhite(thread) && thread->openupval != NULL)
377       p = &thread->twups;  /* keep marked thread with upvalues in the list */
378     else {  /* thread is not marked or without upvalues */
379       UpVal *uv;
380       lua_assert(!isold(thread) || thread->openupval == NULL);
381       *p = thread->twups;  /* remove thread from the list */
382       thread->twups = thread;  /* mark that it is out of list */
383       for (uv = thread->openupval; uv != NULL; uv = uv->u.open.next) {
384         lua_assert(getage(uv) <= getage(thread));
385         work++;
386         if (!iswhite(uv)) {  /* upvalue already visited? */
387           lua_assert(upisopen(uv) && isgray(uv));
388           markvalue(g, uv->v.p);  /* mark its value */
389         }
390       }
391     }
392   }
393   return work;
394 }
395 
396 
cleargraylists(global_State * g)397 static void cleargraylists (global_State *g) {
398   g->gray = g->grayagain = NULL;
399   g->weak = g->allweak = g->ephemeron = NULL;
400 }
401 
402 
403 /*
404 ** mark root set and reset all gray lists, to start a new collection
405 */
restartcollection(global_State * g)406 static void restartcollection (global_State *g) {
407   cleargraylists(g);
408   markobject(g, g->mainthread);
409   markvalue(g, &g->l_registry);
410   markmt(g);
411   markbeingfnz(g);  /* mark any finalizing object left from previous cycle */
412 }
413 
414 /* }====================================================== */
415 
416 
417 /*
418 ** {======================================================
419 ** Traverse functions
420 ** =======================================================
421 */
422 
423 
424 /*
425 ** Check whether object 'o' should be kept in the 'grayagain' list for
426 ** post-processing by 'correctgraylist'. (It could put all old objects
427 ** in the list and leave all the work to 'correctgraylist', but it is
428 ** more efficient to avoid adding elements that will be removed.) Only
429 ** TOUCHED1 objects need to be in the list. TOUCHED2 doesn't need to go
430 ** back to a gray list, but then it must become OLD. (That is what
431 ** 'correctgraylist' does when it finds a TOUCHED2 object.)
432 */
genlink(global_State * g,GCObject * o)433 static void genlink (global_State *g, GCObject *o) {
434   lua_assert(isblack(o));
435   if (getage(o) == G_TOUCHED1) {  /* touched in this cycle? */
436     linkobjgclist(o, g->grayagain);  /* link it back in 'grayagain' */
437   }  /* everything else do not need to be linked back */
438   else if (getage(o) == G_TOUCHED2)
439     changeage(o, G_TOUCHED2, G_OLD);  /* advance age */
440 }
441 
442 
443 /*
444 ** Traverse a table with weak values and link it to proper list. During
445 ** propagate phase, keep it in 'grayagain' list, to be revisited in the
446 ** atomic phase. In the atomic phase, if table has any white value,
447 ** put it in 'weak' list, to be cleared.
448 */
traverseweakvalue(global_State * g,Table * h)449 static void traverseweakvalue (global_State *g, Table *h) {
450   Node *n, *limit = gnodelast(h);
451   /* if there is array part, assume it may have white values (it is not
452      worth traversing it now just to check) */
453   int hasclears = (h->alimit > 0);
454   for (n = gnode(h, 0); n < limit; n++) {  /* traverse hash part */
455     if (isempty(gval(n)))  /* entry is empty? */
456       clearkey(n);  /* clear its key */
457     else {
458       lua_assert(!keyisnil(n));
459       markkey(g, n);
460       if (!hasclears && iscleared(g, gcvalueN(gval(n))))  /* a white value? */
461         hasclears = 1;  /* table will have to be cleared */
462     }
463   }
464   if (g->gcstate == GCSatomic && hasclears)
465     linkgclist(h, g->weak);  /* has to be cleared later */
466   else
467     linkgclist(h, g->grayagain);  /* must retraverse it in atomic phase */
468 }
469 
470 
471 /*
472 ** Traverse an ephemeron table and link it to proper list. Returns true
473 ** iff any object was marked during this traversal (which implies that
474 ** convergence has to continue). During propagation phase, keep table
475 ** in 'grayagain' list, to be visited again in the atomic phase. In
476 ** the atomic phase, if table has any white->white entry, it has to
477 ** be revisited during ephemeron convergence (as that key may turn
478 ** black). Otherwise, if it has any white key, table has to be cleared
479 ** (in the atomic phase). In generational mode, some tables
480 ** must be kept in some gray list for post-processing; this is done
481 ** by 'genlink'.
482 */
traverseephemeron(global_State * g,Table * h,int inv)483 static int traverseephemeron (global_State *g, Table *h, int inv) {
484   int marked = 0;  /* true if an object is marked in this traversal */
485   int hasclears = 0;  /* true if table has white keys */
486   int hasww = 0;  /* true if table has entry "white-key -> white-value" */
487   unsigned int i;
488   unsigned int asize = luaH_realasize(h);
489   unsigned int nsize = sizenode(h);
490   /* traverse array part */
491   for (i = 0; i < asize; i++) {
492     if (valiswhite(&h->array[i])) {
493       marked = 1;
494       reallymarkobject(g, gcvalue(&h->array[i]));
495     }
496   }
497   /* traverse hash part; if 'inv', traverse descending
498      (see 'convergeephemerons') */
499   for (i = 0; i < nsize; i++) {
500     Node *n = inv ? gnode(h, nsize - 1 - i) : gnode(h, i);
501     if (isempty(gval(n)))  /* entry is empty? */
502       clearkey(n);  /* clear its key */
503     else if (iscleared(g, gckeyN(n))) {  /* key is not marked (yet)? */
504       hasclears = 1;  /* table must be cleared */
505       if (valiswhite(gval(n)))  /* value not marked yet? */
506         hasww = 1;  /* white-white entry */
507     }
508     else if (valiswhite(gval(n))) {  /* value not marked yet? */
509       marked = 1;
510       reallymarkobject(g, gcvalue(gval(n)));  /* mark it now */
511     }
512   }
513   /* link table into proper list */
514   if (g->gcstate == GCSpropagate)
515     linkgclist(h, g->grayagain);  /* must retraverse it in atomic phase */
516   else if (hasww)  /* table has white->white entries? */
517     linkgclist(h, g->ephemeron);  /* have to propagate again */
518   else if (hasclears)  /* table has white keys? */
519     linkgclist(h, g->allweak);  /* may have to clean white keys */
520   else
521     genlink(g, obj2gco(h));  /* check whether collector still needs to see it */
522   return marked;
523 }
524 
525 
traversestrongtable(global_State * g,Table * h)526 static void traversestrongtable (global_State *g, Table *h) {
527   Node *n, *limit = gnodelast(h);
528   unsigned int i;
529   unsigned int asize = luaH_realasize(h);
530   for (i = 0; i < asize; i++)  /* traverse array part */
531     markvalue(g, &h->array[i]);
532   for (n = gnode(h, 0); n < limit; n++) {  /* traverse hash part */
533     if (isempty(gval(n)))  /* entry is empty? */
534       clearkey(n);  /* clear its key */
535     else {
536       lua_assert(!keyisnil(n));
537       markkey(g, n);
538       markvalue(g, gval(n));
539     }
540   }
541   genlink(g, obj2gco(h));
542 }
543 
544 
traversetable(global_State * g,Table * h)545 static lu_mem traversetable (global_State *g, Table *h) {
546   const char *weakkey, *weakvalue;
547   const TValue *mode = gfasttm(g, h->metatable, TM_MODE);
548   markobjectN(g, h->metatable);
549   if (mode && ttisstring(mode) &&  /* is there a weak mode? */
550       (cast_void(weakkey = strchr(svalue(mode), 'k')),
551        cast_void(weakvalue = strchr(svalue(mode), 'v')),
552        (weakkey || weakvalue))) {  /* is really weak? */
553     if (!weakkey)  /* strong keys? */
554       traverseweakvalue(g, h);
555     else if (!weakvalue)  /* strong values? */
556       traverseephemeron(g, h, 0);
557     else  /* all weak */
558       linkgclist(h, g->allweak);  /* nothing to traverse now */
559   }
560   else  /* not weak */
561     traversestrongtable(g, h);
562   return 1 + h->alimit + 2 * allocsizenode(h);
563 }
564 
565 
traverseudata(global_State * g,Udata * u)566 static int traverseudata (global_State *g, Udata *u) {
567   int i;
568   markobjectN(g, u->metatable);  /* mark its metatable */
569   for (i = 0; i < u->nuvalue; i++)
570     markvalue(g, &u->uv[i].uv);
571   genlink(g, obj2gco(u));
572   return 1 + u->nuvalue;
573 }
574 
575 
576 /*
577 ** Traverse a prototype. (While a prototype is being build, its
578 ** arrays can be larger than needed; the extra slots are filled with
579 ** NULL, so the use of 'markobjectN')
580 */
traverseproto(global_State * g,Proto * f)581 static int traverseproto (global_State *g, Proto *f) {
582   int i;
583   markobjectN(g, f->source);
584   for (i = 0; i < f->sizek; i++)  /* mark literals */
585     markvalue(g, &f->k[i]);
586   for (i = 0; i < f->sizeupvalues; i++)  /* mark upvalue names */
587     markobjectN(g, f->upvalues[i].name);
588   for (i = 0; i < f->sizep; i++)  /* mark nested protos */
589     markobjectN(g, f->p[i]);
590   for (i = 0; i < f->sizelocvars; i++)  /* mark local-variable names */
591     markobjectN(g, f->locvars[i].varname);
592   return 1 + f->sizek + f->sizeupvalues + f->sizep + f->sizelocvars;
593 }
594 
595 
traverseCclosure(global_State * g,CClosure * cl)596 static int traverseCclosure (global_State *g, CClosure *cl) {
597   int i;
598   for (i = 0; i < cl->nupvalues; i++)  /* mark its upvalues */
599     markvalue(g, &cl->upvalue[i]);
600   return 1 + cl->nupvalues;
601 }
602 
603 /*
604 ** Traverse a Lua closure, marking its prototype and its upvalues.
605 ** (Both can be NULL while closure is being created.)
606 */
traverseLclosure(global_State * g,LClosure * cl)607 static int traverseLclosure (global_State *g, LClosure *cl) {
608   int i;
609   markobjectN(g, cl->p);  /* mark its prototype */
610   for (i = 0; i < cl->nupvalues; i++) {  /* visit its upvalues */
611     UpVal *uv = cl->upvals[i];
612     markobjectN(g, uv);  /* mark upvalue */
613   }
614   return 1 + cl->nupvalues;
615 }
616 
617 
618 /*
619 ** Traverse a thread, marking the elements in the stack up to its top
620 ** and cleaning the rest of the stack in the final traversal. That
621 ** ensures that the entire stack have valid (non-dead) objects.
622 ** Threads have no barriers. In gen. mode, old threads must be visited
623 ** at every cycle, because they might point to young objects.  In inc.
624 ** mode, the thread can still be modified before the end of the cycle,
625 ** and therefore it must be visited again in the atomic phase. To ensure
626 ** these visits, threads must return to a gray list if they are not new
627 ** (which can only happen in generational mode) or if the traverse is in
628 ** the propagate phase (which can only happen in incremental mode).
629 */
traversethread(global_State * g,lua_State * th)630 static int traversethread (global_State *g, lua_State *th) {
631   UpVal *uv;
632   StkId o = th->stack.p;
633   if (isold(th) || g->gcstate == GCSpropagate)
634     linkgclist(th, g->grayagain);  /* insert into 'grayagain' list */
635   if (o == NULL)
636     return 1;  /* stack not completely built yet */
637   lua_assert(g->gcstate == GCSatomic ||
638              th->openupval == NULL || isintwups(th));
639   for (; o < th->top.p; o++)  /* mark live elements in the stack */
640     markvalue(g, s2v(o));
641   for (uv = th->openupval; uv != NULL; uv = uv->u.open.next)
642     markobject(g, uv);  /* open upvalues cannot be collected */
643   if (g->gcstate == GCSatomic) {  /* final traversal? */
644     for (; o < th->stack_last.p + EXTRA_STACK; o++)
645       setnilvalue(s2v(o));  /* clear dead stack slice */
646     /* 'remarkupvals' may have removed thread from 'twups' list */
647     if (!isintwups(th) && th->openupval != NULL) {
648       th->twups = g->twups;  /* link it back to the list */
649       g->twups = th;
650     }
651   }
652   else if (!g->gcemergency)
653     luaD_shrinkstack(th); /* do not change stack in emergency cycle */
654   return 1 + stacksize(th);
655 }
656 
657 
658 /*
659 ** traverse one gray object, turning it to black.
660 */
propagatemark(global_State * g)661 static lu_mem propagatemark (global_State *g) {
662   GCObject *o = g->gray;
663   nw2black(o);
664   g->gray = *getgclist(o);  /* remove from 'gray' list */
665   switch (o->tt) {
666     case LUA_VTABLE: return traversetable(g, gco2t(o));
667     case LUA_VUSERDATA: return traverseudata(g, gco2u(o));
668     case LUA_VLCL: return traverseLclosure(g, gco2lcl(o));
669     case LUA_VCCL: return traverseCclosure(g, gco2ccl(o));
670     case LUA_VPROTO: return traverseproto(g, gco2p(o));
671     case LUA_VTHREAD: return traversethread(g, gco2th(o));
672     default: lua_assert(0); return 0;
673   }
674 }
675 
676 
propagateall(global_State * g)677 static lu_mem propagateall (global_State *g) {
678   lu_mem tot = 0;
679   while (g->gray)
680     tot += propagatemark(g);
681   return tot;
682 }
683 
684 
685 /*
686 ** Traverse all ephemeron tables propagating marks from keys to values.
687 ** Repeat until it converges, that is, nothing new is marked. 'dir'
688 ** inverts the direction of the traversals, trying to speed up
689 ** convergence on chains in the same table.
690 **
691 */
convergeephemerons(global_State * g)692 static void convergeephemerons (global_State *g) {
693   int changed;
694   int dir = 0;
695   do {
696     GCObject *w;
697     GCObject *next = g->ephemeron;  /* get ephemeron list */
698     g->ephemeron = NULL;  /* tables may return to this list when traversed */
699     changed = 0;
700     while ((w = next) != NULL) {  /* for each ephemeron table */
701       Table *h = gco2t(w);
702       next = h->gclist;  /* list is rebuilt during loop */
703       nw2black(h);  /* out of the list (for now) */
704       if (traverseephemeron(g, h, dir)) {  /* marked some value? */
705         propagateall(g);  /* propagate changes */
706         changed = 1;  /* will have to revisit all ephemeron tables */
707       }
708     }
709     dir = !dir;  /* invert direction next time */
710   } while (changed);  /* repeat until no more changes */
711 }
712 
713 /* }====================================================== */
714 
715 
716 /*
717 ** {======================================================
718 ** Sweep Functions
719 ** =======================================================
720 */
721 
722 
723 /*
724 ** clear entries with unmarked keys from all weaktables in list 'l'
725 */
clearbykeys(global_State * g,GCObject * l)726 static void clearbykeys (global_State *g, GCObject *l) {
727   for (; l; l = gco2t(l)->gclist) {
728     Table *h = gco2t(l);
729     Node *limit = gnodelast(h);
730     Node *n;
731     for (n = gnode(h, 0); n < limit; n++) {
732       if (iscleared(g, gckeyN(n)))  /* unmarked key? */
733         setempty(gval(n));  /* remove entry */
734       if (isempty(gval(n)))  /* is entry empty? */
735         clearkey(n);  /* clear its key */
736     }
737   }
738 }
739 
740 
741 /*
742 ** clear entries with unmarked values from all weaktables in list 'l' up
743 ** to element 'f'
744 */
clearbyvalues(global_State * g,GCObject * l,GCObject * f)745 static void clearbyvalues (global_State *g, GCObject *l, GCObject *f) {
746   for (; l != f; l = gco2t(l)->gclist) {
747     Table *h = gco2t(l);
748     Node *n, *limit = gnodelast(h);
749     unsigned int i;
750     unsigned int asize = luaH_realasize(h);
751     for (i = 0; i < asize; i++) {
752       TValue *o = &h->array[i];
753       if (iscleared(g, gcvalueN(o)))  /* value was collected? */
754         setempty(o);  /* remove entry */
755     }
756     for (n = gnode(h, 0); n < limit; n++) {
757       if (iscleared(g, gcvalueN(gval(n))))  /* unmarked value? */
758         setempty(gval(n));  /* remove entry */
759       if (isempty(gval(n)))  /* is entry empty? */
760         clearkey(n);  /* clear its key */
761     }
762   }
763 }
764 
765 
freeupval(lua_State * L,UpVal * uv)766 static void freeupval (lua_State *L, UpVal *uv) {
767   if (upisopen(uv))
768     luaF_unlinkupval(uv);
769   luaM_free(L, uv);
770 }
771 
772 
freeobj(lua_State * L,GCObject * o)773 static void freeobj (lua_State *L, GCObject *o) {
774   switch (o->tt) {
775     case LUA_VPROTO:
776       luaF_freeproto(L, gco2p(o));
777       break;
778     case LUA_VUPVAL:
779       freeupval(L, gco2upv(o));
780       break;
781     case LUA_VLCL: {
782       LClosure *cl = gco2lcl(o);
783       luaM_freemem(L, cl, sizeLclosure(cl->nupvalues));
784       break;
785     }
786     case LUA_VCCL: {
787       CClosure *cl = gco2ccl(o);
788       luaM_freemem(L, cl, sizeCclosure(cl->nupvalues));
789       break;
790     }
791     case LUA_VTABLE:
792       luaH_free(L, gco2t(o));
793       break;
794     case LUA_VTHREAD:
795       luaE_freethread(L, gco2th(o));
796       break;
797     case LUA_VUSERDATA: {
798       Udata *u = gco2u(o);
799       luaM_freemem(L, o, sizeudata(u->nuvalue, u->len));
800       break;
801     }
802     case LUA_VSHRSTR: {
803       TString *ts = gco2ts(o);
804       luaS_remove(L, ts);  /* remove it from hash table */
805       luaM_freemem(L, ts, sizelstring(ts->shrlen));
806       break;
807     }
808     case LUA_VLNGSTR: {
809       TString *ts = gco2ts(o);
810       luaM_freemem(L, ts, sizelstring(ts->u.lnglen));
811       break;
812     }
813     default: lua_assert(0);
814   }
815 }
816 
817 
818 /*
819 ** sweep at most 'countin' elements from a list of GCObjects erasing dead
820 ** objects, where a dead object is one marked with the old (non current)
821 ** white; change all non-dead objects back to white, preparing for next
822 ** collection cycle. Return where to continue the traversal or NULL if
823 ** list is finished. ('*countout' gets the number of elements traversed.)
824 */
sweeplist(lua_State * L,GCObject ** p,int countin,int * countout)825 static GCObject **sweeplist (lua_State *L, GCObject **p, int countin,
826                              int *countout) {
827   global_State *g = G(L);
828   int ow = otherwhite(g);
829   int i;
830   int white = luaC_white(g);  /* current white */
831   for (i = 0; *p != NULL && i < countin; i++) {
832     GCObject *curr = *p;
833     int marked = curr->marked;
834     if (isdeadm(ow, marked)) {  /* is 'curr' dead? */
835       *p = curr->next;  /* remove 'curr' from list */
836       freeobj(L, curr);  /* erase 'curr' */
837     }
838     else {  /* change mark to 'white' */
839       curr->marked = cast_byte((marked & ~maskgcbits) | white);
840       p = &curr->next;  /* go to next element */
841     }
842   }
843   if (countout)
844     *countout = i;  /* number of elements traversed */
845   return (*p == NULL) ? NULL : p;
846 }
847 
848 
849 /*
850 ** sweep a list until a live object (or end of list)
851 */
sweeptolive(lua_State * L,GCObject ** p)852 static GCObject **sweeptolive (lua_State *L, GCObject **p) {
853   GCObject **old = p;
854   do {
855     p = sweeplist(L, p, 1, NULL);
856   } while (p == old);
857   return p;
858 }
859 
860 /* }====================================================== */
861 
862 
863 /*
864 ** {======================================================
865 ** Finalization
866 ** =======================================================
867 */
868 
869 /*
870 ** If possible, shrink string table.
871 */
checkSizes(lua_State * L,global_State * g)872 static void checkSizes (lua_State *L, global_State *g) {
873   if (!g->gcemergency) {
874     if (g->strt.nuse < g->strt.size / 4) {  /* string table too big? */
875       l_mem olddebt = g->GCdebt;
876       luaS_resize(L, g->strt.size / 2);
877       g->GCestimate += g->GCdebt - olddebt;  /* correct estimate */
878     }
879   }
880 }
881 
882 
883 /*
884 ** Get the next udata to be finalized from the 'tobefnz' list, and
885 ** link it back into the 'allgc' list.
886 */
udata2finalize(global_State * g)887 static GCObject *udata2finalize (global_State *g) {
888   GCObject *o = g->tobefnz;  /* get first element */
889   lua_assert(tofinalize(o));
890   g->tobefnz = o->next;  /* remove it from 'tobefnz' list */
891   o->next = g->allgc;  /* return it to 'allgc' list */
892   g->allgc = o;
893   resetbit(o->marked, FINALIZEDBIT);  /* object is "normal" again */
894   if (issweepphase(g))
895     makewhite(g, o);  /* "sweep" object */
896   else if (getage(o) == G_OLD1)
897     g->firstold1 = o;  /* it is the first OLD1 object in the list */
898   return o;
899 }
900 
901 
dothecall(lua_State * L,void * ud)902 static void dothecall (lua_State *L, void *ud) {
903   UNUSED(ud);
904   luaD_callnoyield(L, L->top.p - 2, 0);
905 }
906 
907 
GCTM(lua_State * L)908 static void GCTM (lua_State *L) {
909   global_State *g = G(L);
910   const TValue *tm;
911   TValue v;
912   lua_assert(!g->gcemergency);
913   setgcovalue(L, &v, udata2finalize(g));
914   tm = luaT_gettmbyobj(L, &v, TM_GC);
915   if (!notm(tm)) {  /* is there a finalizer? */
916     int status;
917     lu_byte oldah = L->allowhook;
918     int oldgcstp  = g->gcstp;
919     g->gcstp |= GCSTPGC;  /* avoid GC steps */
920     L->allowhook = 0;  /* stop debug hooks during GC metamethod */
921     setobj2s(L, L->top.p++, tm);  /* push finalizer... */
922     setobj2s(L, L->top.p++, &v);  /* ... and its argument */
923     L->ci->callstatus |= CIST_FIN;  /* will run a finalizer */
924     status = luaD_pcall(L, dothecall, NULL, savestack(L, L->top.p - 2), 0);
925     L->ci->callstatus &= ~CIST_FIN;  /* not running a finalizer anymore */
926     L->allowhook = oldah;  /* restore hooks */
927     g->gcstp = oldgcstp;  /* restore state */
928     if (l_unlikely(status != LUA_OK)) {  /* error while running __gc? */
929       luaE_warnerror(L, "__gc");
930       L->top.p--;  /* pops error object */
931     }
932   }
933 }
934 
935 
936 /*
937 ** Call a few finalizers
938 */
runafewfinalizers(lua_State * L,int n)939 static int runafewfinalizers (lua_State *L, int n) {
940   global_State *g = G(L);
941   int i;
942   for (i = 0; i < n && g->tobefnz; i++)
943     GCTM(L);  /* call one finalizer */
944   return i;
945 }
946 
947 
948 /*
949 ** call all pending finalizers
950 */
callallpendingfinalizers(lua_State * L)951 static void callallpendingfinalizers (lua_State *L) {
952   global_State *g = G(L);
953   while (g->tobefnz)
954     GCTM(L);
955 }
956 
957 
958 /*
959 ** find last 'next' field in list 'p' list (to add elements in its end)
960 */
findlast(GCObject ** p)961 static GCObject **findlast (GCObject **p) {
962   while (*p != NULL)
963     p = &(*p)->next;
964   return p;
965 }
966 
967 
968 /*
969 ** Move all unreachable objects (or 'all' objects) that need
970 ** finalization from list 'finobj' to list 'tobefnz' (to be finalized).
971 ** (Note that objects after 'finobjold1' cannot be white, so they
972 ** don't need to be traversed. In incremental mode, 'finobjold1' is NULL,
973 ** so the whole list is traversed.)
974 */
separatetobefnz(global_State * g,int all)975 static void separatetobefnz (global_State *g, int all) {
976   GCObject *curr;
977   GCObject **p = &g->finobj;
978   GCObject **lastnext = findlast(&g->tobefnz);
979   while ((curr = *p) != g->finobjold1) {  /* traverse all finalizable objects */
980     lua_assert(tofinalize(curr));
981     if (!(iswhite(curr) || all))  /* not being collected? */
982       p = &curr->next;  /* don't bother with it */
983     else {
984       if (curr == g->finobjsur)  /* removing 'finobjsur'? */
985         g->finobjsur = curr->next;  /* correct it */
986       *p = curr->next;  /* remove 'curr' from 'finobj' list */
987       curr->next = *lastnext;  /* link at the end of 'tobefnz' list */
988       *lastnext = curr;
989       lastnext = &curr->next;
990     }
991   }
992 }
993 
994 
995 /*
996 ** If pointer 'p' points to 'o', move it to the next element.
997 */
checkpointer(GCObject ** p,GCObject * o)998 static void checkpointer (GCObject **p, GCObject *o) {
999   if (o == *p)
1000     *p = o->next;
1001 }
1002 
1003 
1004 /*
1005 ** Correct pointers to objects inside 'allgc' list when
1006 ** object 'o' is being removed from the list.
1007 */
correctpointers(global_State * g,GCObject * o)1008 static void correctpointers (global_State *g, GCObject *o) {
1009   checkpointer(&g->survival, o);
1010   checkpointer(&g->old1, o);
1011   checkpointer(&g->reallyold, o);
1012   checkpointer(&g->firstold1, o);
1013 }
1014 
1015 
1016 /*
1017 ** if object 'o' has a finalizer, remove it from 'allgc' list (must
1018 ** search the list to find it) and link it in 'finobj' list.
1019 */
luaC_checkfinalizer(lua_State * L,GCObject * o,Table * mt)1020 void luaC_checkfinalizer (lua_State *L, GCObject *o, Table *mt) {
1021   global_State *g = G(L);
1022   if (tofinalize(o) ||                 /* obj. is already marked... */
1023       gfasttm(g, mt, TM_GC) == NULL ||    /* or has no finalizer... */
1024       (g->gcstp & GCSTPCLS))                   /* or closing state? */
1025     return;  /* nothing to be done */
1026   else {  /* move 'o' to 'finobj' list */
1027     GCObject **p;
1028     if (issweepphase(g)) {
1029       makewhite(g, o);  /* "sweep" object 'o' */
1030       if (g->sweepgc == &o->next)  /* should not remove 'sweepgc' object */
1031         g->sweepgc = sweeptolive(L, g->sweepgc);  /* change 'sweepgc' */
1032     }
1033     else
1034       correctpointers(g, o);
1035     /* search for pointer pointing to 'o' */
1036     for (p = &g->allgc; *p != o; p = &(*p)->next) { /* empty */ }
1037     *p = o->next;  /* remove 'o' from 'allgc' list */
1038     o->next = g->finobj;  /* link it in 'finobj' list */
1039     g->finobj = o;
1040     l_setbit(o->marked, FINALIZEDBIT);  /* mark it as such */
1041   }
1042 }
1043 
1044 /* }====================================================== */
1045 
1046 
1047 /*
1048 ** {======================================================
1049 ** Generational Collector
1050 ** =======================================================
1051 */
1052 
1053 
1054 /*
1055 ** Set the "time" to wait before starting a new GC cycle; cycle will
1056 ** start when memory use hits the threshold of ('estimate' * pause /
1057 ** PAUSEADJ). (Division by 'estimate' should be OK: it cannot be zero,
1058 ** because Lua cannot even start with less than PAUSEADJ bytes).
1059 */
setpause(global_State * g)1060 static void setpause (global_State *g) {
1061   l_mem threshold, debt;
1062   int pause = getgcparam(g->gcpause);
1063   l_mem estimate = g->GCestimate / PAUSEADJ;  /* adjust 'estimate' */
1064   lua_assert(estimate > 0);
1065   threshold = (pause < MAX_LMEM / estimate)  /* overflow? */
1066             ? estimate * pause  /* no overflow */
1067             : MAX_LMEM;  /* overflow; truncate to maximum */
1068   debt = gettotalbytes(g) - threshold;
1069   if (debt > 0) debt = 0;
1070   luaE_setdebt(g, debt);
1071 }
1072 
1073 
1074 /*
1075 ** Sweep a list of objects to enter generational mode.  Deletes dead
1076 ** objects and turns the non dead to old. All non-dead threads---which
1077 ** are now old---must be in a gray list. Everything else is not in a
1078 ** gray list. Open upvalues are also kept gray.
1079 */
sweep2old(lua_State * L,GCObject ** p)1080 static void sweep2old (lua_State *L, GCObject **p) {
1081   GCObject *curr;
1082   global_State *g = G(L);
1083   while ((curr = *p) != NULL) {
1084     if (iswhite(curr)) {  /* is 'curr' dead? */
1085       lua_assert(isdead(g, curr));
1086       *p = curr->next;  /* remove 'curr' from list */
1087       freeobj(L, curr);  /* erase 'curr' */
1088     }
1089     else {  /* all surviving objects become old */
1090       setage(curr, G_OLD);
1091       if (curr->tt == LUA_VTHREAD) {  /* threads must be watched */
1092         lua_State *th = gco2th(curr);
1093         linkgclist(th, g->grayagain);  /* insert into 'grayagain' list */
1094       }
1095       else if (curr->tt == LUA_VUPVAL && upisopen(gco2upv(curr)))
1096         set2gray(curr);  /* open upvalues are always gray */
1097       else  /* everything else is black */
1098         nw2black(curr);
1099       p = &curr->next;  /* go to next element */
1100     }
1101   }
1102 }
1103 
1104 
1105 /*
1106 ** Sweep for generational mode. Delete dead objects. (Because the
1107 ** collection is not incremental, there are no "new white" objects
1108 ** during the sweep. So, any white object must be dead.) For
1109 ** non-dead objects, advance their ages and clear the color of
1110 ** new objects. (Old objects keep their colors.)
1111 ** The ages of G_TOUCHED1 and G_TOUCHED2 objects cannot be advanced
1112 ** here, because these old-generation objects are usually not swept
1113 ** here.  They will all be advanced in 'correctgraylist'. That function
1114 ** will also remove objects turned white here from any gray list.
1115 */
sweepgen(lua_State * L,global_State * g,GCObject ** p,GCObject * limit,GCObject ** pfirstold1)1116 static GCObject **sweepgen (lua_State *L, global_State *g, GCObject **p,
1117                             GCObject *limit, GCObject **pfirstold1) {
1118   static const lu_byte nextage[] = {
1119     G_SURVIVAL,  /* from G_NEW */
1120     G_OLD1,      /* from G_SURVIVAL */
1121     G_OLD1,      /* from G_OLD0 */
1122     G_OLD,       /* from G_OLD1 */
1123     G_OLD,       /* from G_OLD (do not change) */
1124     G_TOUCHED1,  /* from G_TOUCHED1 (do not change) */
1125     G_TOUCHED2   /* from G_TOUCHED2 (do not change) */
1126   };
1127   int white = luaC_white(g);
1128   GCObject *curr;
1129   while ((curr = *p) != limit) {
1130     if (iswhite(curr)) {  /* is 'curr' dead? */
1131       lua_assert(!isold(curr) && isdead(g, curr));
1132       *p = curr->next;  /* remove 'curr' from list */
1133       freeobj(L, curr);  /* erase 'curr' */
1134     }
1135     else {  /* correct mark and age */
1136       if (getage(curr) == G_NEW) {  /* new objects go back to white */
1137         int marked = curr->marked & ~maskgcbits;  /* erase GC bits */
1138         curr->marked = cast_byte(marked | G_SURVIVAL | white);
1139       }
1140       else {  /* all other objects will be old, and so keep their color */
1141         setage(curr, nextage[getage(curr)]);
1142         if (getage(curr) == G_OLD1 && *pfirstold1 == NULL)
1143           *pfirstold1 = curr;  /* first OLD1 object in the list */
1144       }
1145       p = &curr->next;  /* go to next element */
1146     }
1147   }
1148   return p;
1149 }
1150 
1151 
1152 /*
1153 ** Traverse a list making all its elements white and clearing their
1154 ** age. In incremental mode, all objects are 'new' all the time,
1155 ** except for fixed strings (which are always old).
1156 */
whitelist(global_State * g,GCObject * p)1157 static void whitelist (global_State *g, GCObject *p) {
1158   int white = luaC_white(g);
1159   for (; p != NULL; p = p->next)
1160     p->marked = cast_byte((p->marked & ~maskgcbits) | white);
1161 }
1162 
1163 
1164 /*
1165 ** Correct a list of gray objects. Return pointer to where rest of the
1166 ** list should be linked.
1167 ** Because this correction is done after sweeping, young objects might
1168 ** be turned white and still be in the list. They are only removed.
1169 ** 'TOUCHED1' objects are advanced to 'TOUCHED2' and remain on the list;
1170 ** Non-white threads also remain on the list; 'TOUCHED2' objects become
1171 ** regular old; they and anything else are removed from the list.
1172 */
correctgraylist(GCObject ** p)1173 static GCObject **correctgraylist (GCObject **p) {
1174   GCObject *curr;
1175   while ((curr = *p) != NULL) {
1176     GCObject **next = getgclist(curr);
1177     if (iswhite(curr))
1178       goto remove;  /* remove all white objects */
1179     else if (getage(curr) == G_TOUCHED1) {  /* touched in this cycle? */
1180       lua_assert(isgray(curr));
1181       nw2black(curr);  /* make it black, for next barrier */
1182       changeage(curr, G_TOUCHED1, G_TOUCHED2);
1183       goto remain;  /* keep it in the list and go to next element */
1184     }
1185     else if (curr->tt == LUA_VTHREAD) {
1186       lua_assert(isgray(curr));
1187       goto remain;  /* keep non-white threads on the list */
1188     }
1189     else {  /* everything else is removed */
1190       lua_assert(isold(curr));  /* young objects should be white here */
1191       if (getage(curr) == G_TOUCHED2)  /* advance from TOUCHED2... */
1192         changeage(curr, G_TOUCHED2, G_OLD);  /* ... to OLD */
1193       nw2black(curr);  /* make object black (to be removed) */
1194       goto remove;
1195     }
1196     remove: *p = *next; continue;
1197     remain: p = next; continue;
1198   }
1199   return p;
1200 }
1201 
1202 
1203 /*
1204 ** Correct all gray lists, coalescing them into 'grayagain'.
1205 */
correctgraylists(global_State * g)1206 static void correctgraylists (global_State *g) {
1207   GCObject **list = correctgraylist(&g->grayagain);
1208   *list = g->weak; g->weak = NULL;
1209   list = correctgraylist(list);
1210   *list = g->allweak; g->allweak = NULL;
1211   list = correctgraylist(list);
1212   *list = g->ephemeron; g->ephemeron = NULL;
1213   correctgraylist(list);
1214 }
1215 
1216 
1217 /*
1218 ** Mark black 'OLD1' objects when starting a new young collection.
1219 ** Gray objects are already in some gray list, and so will be visited
1220 ** in the atomic step.
1221 */
markold(global_State * g,GCObject * from,GCObject * to)1222 static void markold (global_State *g, GCObject *from, GCObject *to) {
1223   GCObject *p;
1224   for (p = from; p != to; p = p->next) {
1225     if (getage(p) == G_OLD1) {
1226       lua_assert(!iswhite(p));
1227       changeage(p, G_OLD1, G_OLD);  /* now they are old */
1228       if (isblack(p))
1229         reallymarkobject(g, p);
1230     }
1231   }
1232 }
1233 
1234 
1235 /*
1236 ** Finish a young-generation collection.
1237 */
finishgencycle(lua_State * L,global_State * g)1238 static void finishgencycle (lua_State *L, global_State *g) {
1239   correctgraylists(g);
1240   checkSizes(L, g);
1241   g->gcstate = GCSpropagate;  /* skip restart */
1242   if (!g->gcemergency)
1243     callallpendingfinalizers(L);
1244 }
1245 
1246 
1247 /*
1248 ** Does a young collection. First, mark 'OLD1' objects. Then does the
1249 ** atomic step. Then, sweep all lists and advance pointers. Finally,
1250 ** finish the collection.
1251 */
youngcollection(lua_State * L,global_State * g)1252 static void youngcollection (lua_State *L, global_State *g) {
1253   GCObject **psurvival;  /* to point to first non-dead survival object */
1254   GCObject *dummy;  /* dummy out parameter to 'sweepgen' */
1255   lua_assert(g->gcstate == GCSpropagate);
1256   if (g->firstold1) {  /* are there regular OLD1 objects? */
1257     markold(g, g->firstold1, g->reallyold);  /* mark them */
1258     g->firstold1 = NULL;  /* no more OLD1 objects (for now) */
1259   }
1260   markold(g, g->finobj, g->finobjrold);
1261   markold(g, g->tobefnz, NULL);
1262   atomic(L);
1263 
1264   /* sweep nursery and get a pointer to its last live element */
1265   g->gcstate = GCSswpallgc;
1266   psurvival = sweepgen(L, g, &g->allgc, g->survival, &g->firstold1);
1267   /* sweep 'survival' */
1268   sweepgen(L, g, psurvival, g->old1, &g->firstold1);
1269   g->reallyold = g->old1;
1270   g->old1 = *psurvival;  /* 'survival' survivals are old now */
1271   g->survival = g->allgc;  /* all news are survivals */
1272 
1273   /* repeat for 'finobj' lists */
1274   dummy = NULL;  /* no 'firstold1' optimization for 'finobj' lists */
1275   psurvival = sweepgen(L, g, &g->finobj, g->finobjsur, &dummy);
1276   /* sweep 'survival' */
1277   sweepgen(L, g, psurvival, g->finobjold1, &dummy);
1278   g->finobjrold = g->finobjold1;
1279   g->finobjold1 = *psurvival;  /* 'survival' survivals are old now */
1280   g->finobjsur = g->finobj;  /* all news are survivals */
1281 
1282   sweepgen(L, g, &g->tobefnz, NULL, &dummy);
1283   finishgencycle(L, g);
1284 }
1285 
1286 
1287 /*
1288 ** Clears all gray lists, sweeps objects, and prepare sublists to enter
1289 ** generational mode. The sweeps remove dead objects and turn all
1290 ** surviving objects to old. Threads go back to 'grayagain'; everything
1291 ** else is turned black (not in any gray list).
1292 */
atomic2gen(lua_State * L,global_State * g)1293 static void atomic2gen (lua_State *L, global_State *g) {
1294   cleargraylists(g);
1295   /* sweep all elements making them old */
1296   g->gcstate = GCSswpallgc;
1297   sweep2old(L, &g->allgc);
1298   /* everything alive now is old */
1299   g->reallyold = g->old1 = g->survival = g->allgc;
1300   g->firstold1 = NULL;  /* there are no OLD1 objects anywhere */
1301 
1302   /* repeat for 'finobj' lists */
1303   sweep2old(L, &g->finobj);
1304   g->finobjrold = g->finobjold1 = g->finobjsur = g->finobj;
1305 
1306   sweep2old(L, &g->tobefnz);
1307 
1308   g->gckind = KGC_GEN;
1309   g->lastatomic = 0;
1310   g->GCestimate = gettotalbytes(g);  /* base for memory control */
1311   finishgencycle(L, g);
1312 }
1313 
1314 
1315 /*
1316 ** Set debt for the next minor collection, which will happen when
1317 ** memory grows 'genminormul'%.
1318 */
setminordebt(global_State * g)1319 static void setminordebt (global_State *g) {
1320   luaE_setdebt(g, -(cast(l_mem, (gettotalbytes(g) / 100)) * g->genminormul));
1321 }
1322 
1323 
1324 /*
1325 ** Enter generational mode. Must go until the end of an atomic cycle
1326 ** to ensure that all objects are correctly marked and weak tables
1327 ** are cleared. Then, turn all objects into old and finishes the
1328 ** collection.
1329 */
entergen(lua_State * L,global_State * g)1330 static lu_mem entergen (lua_State *L, global_State *g) {
1331   lu_mem numobjs;
1332   luaC_runtilstate(L, bitmask(GCSpause));  /* prepare to start a new cycle */
1333   luaC_runtilstate(L, bitmask(GCSpropagate));  /* start new cycle */
1334   numobjs = atomic(L);  /* propagates all and then do the atomic stuff */
1335   atomic2gen(L, g);
1336   setminordebt(g);  /* set debt assuming next cycle will be minor */
1337   return numobjs;
1338 }
1339 
1340 
1341 /*
1342 ** Enter incremental mode. Turn all objects white, make all
1343 ** intermediate lists point to NULL (to avoid invalid pointers),
1344 ** and go to the pause state.
1345 */
enterinc(global_State * g)1346 static void enterinc (global_State *g) {
1347   whitelist(g, g->allgc);
1348   g->reallyold = g->old1 = g->survival = NULL;
1349   whitelist(g, g->finobj);
1350   whitelist(g, g->tobefnz);
1351   g->finobjrold = g->finobjold1 = g->finobjsur = NULL;
1352   g->gcstate = GCSpause;
1353   g->gckind = KGC_INC;
1354   g->lastatomic = 0;
1355 }
1356 
1357 
1358 /*
1359 ** Change collector mode to 'newmode'.
1360 */
luaC_changemode(lua_State * L,int newmode)1361 void luaC_changemode (lua_State *L, int newmode) {
1362   global_State *g = G(L);
1363   if (newmode != g->gckind) {
1364     if (newmode == KGC_GEN)  /* entering generational mode? */
1365       entergen(L, g);
1366     else
1367       enterinc(g);  /* entering incremental mode */
1368   }
1369   g->lastatomic = 0;
1370 }
1371 
1372 
1373 /*
1374 ** Does a full collection in generational mode.
1375 */
fullgen(lua_State * L,global_State * g)1376 static lu_mem fullgen (lua_State *L, global_State *g) {
1377   enterinc(g);
1378   return entergen(L, g);
1379 }
1380 
1381 
1382 /*
1383 ** Does a major collection after last collection was a "bad collection".
1384 **
1385 ** When the program is building a big structure, it allocates lots of
1386 ** memory but generates very little garbage. In those scenarios,
1387 ** the generational mode just wastes time doing small collections, and
1388 ** major collections are frequently what we call a "bad collection", a
1389 ** collection that frees too few objects. To avoid the cost of switching
1390 ** between generational mode and the incremental mode needed for full
1391 ** (major) collections, the collector tries to stay in incremental mode
1392 ** after a bad collection, and to switch back to generational mode only
1393 ** after a "good" collection (one that traverses less than 9/8 objects
1394 ** of the previous one).
1395 ** The collector must choose whether to stay in incremental mode or to
1396 ** switch back to generational mode before sweeping. At this point, it
1397 ** does not know the real memory in use, so it cannot use memory to
1398 ** decide whether to return to generational mode. Instead, it uses the
1399 ** number of objects traversed (returned by 'atomic') as a proxy. The
1400 ** field 'g->lastatomic' keeps this count from the last collection.
1401 ** ('g->lastatomic != 0' also means that the last collection was bad.)
1402 */
stepgenfull(lua_State * L,global_State * g)1403 static void stepgenfull (lua_State *L, global_State *g) {
1404   lu_mem newatomic;  /* count of traversed objects */
1405   lu_mem lastatomic = g->lastatomic;  /* count from last collection */
1406   if (g->gckind == KGC_GEN)  /* still in generational mode? */
1407     enterinc(g);  /* enter incremental mode */
1408   luaC_runtilstate(L, bitmask(GCSpropagate));  /* start new cycle */
1409   newatomic = atomic(L);  /* mark everybody */
1410   if (newatomic < lastatomic + (lastatomic >> 3)) {  /* good collection? */
1411     atomic2gen(L, g);  /* return to generational mode */
1412     setminordebt(g);
1413   }
1414   else {  /* another bad collection; stay in incremental mode */
1415     g->GCestimate = gettotalbytes(g);  /* first estimate */;
1416     entersweep(L);
1417     luaC_runtilstate(L, bitmask(GCSpause));  /* finish collection */
1418     setpause(g);
1419     g->lastatomic = newatomic;
1420   }
1421 }
1422 
1423 
1424 /*
1425 ** Does a generational "step".
1426 ** Usually, this means doing a minor collection and setting the debt to
1427 ** make another collection when memory grows 'genminormul'% larger.
1428 **
1429 ** However, there are exceptions.  If memory grows 'genmajormul'%
1430 ** larger than it was at the end of the last major collection (kept
1431 ** in 'g->GCestimate'), the function does a major collection. At the
1432 ** end, it checks whether the major collection was able to free a
1433 ** decent amount of memory (at least half the growth in memory since
1434 ** previous major collection). If so, the collector keeps its state,
1435 ** and the next collection will probably be minor again. Otherwise,
1436 ** we have what we call a "bad collection". In that case, set the field
1437 ** 'g->lastatomic' to signal that fact, so that the next collection will
1438 ** go to 'stepgenfull'.
1439 **
1440 ** 'GCdebt <= 0' means an explicit call to GC step with "size" zero;
1441 ** in that case, do a minor collection.
1442 */
genstep(lua_State * L,global_State * g)1443 static void genstep (lua_State *L, global_State *g) {
1444   if (g->lastatomic != 0)  /* last collection was a bad one? */
1445     stepgenfull(L, g);  /* do a full step */
1446   else {
1447     lu_mem majorbase = g->GCestimate;  /* memory after last major collection */
1448     lu_mem majorinc = (majorbase / 100) * getgcparam(g->genmajormul);
1449     if (g->GCdebt > 0 && gettotalbytes(g) > majorbase + majorinc) {
1450       lu_mem numobjs = fullgen(L, g);  /* do a major collection */
1451       if (gettotalbytes(g) < majorbase + (majorinc / 2)) {
1452         /* collected at least half of memory growth since last major
1453            collection; keep doing minor collections. */
1454         lua_assert(g->lastatomic == 0);
1455       }
1456       else {  /* bad collection */
1457         g->lastatomic = numobjs;  /* signal that last collection was bad */
1458         setpause(g);  /* do a long wait for next (major) collection */
1459       }
1460     }
1461     else {  /* regular case; do a minor collection */
1462       youngcollection(L, g);
1463       setminordebt(g);
1464       g->GCestimate = majorbase;  /* preserve base value */
1465     }
1466   }
1467   lua_assert(isdecGCmodegen(g));
1468 }
1469 
1470 /* }====================================================== */
1471 
1472 
1473 /*
1474 ** {======================================================
1475 ** GC control
1476 ** =======================================================
1477 */
1478 
1479 
1480 /*
1481 ** Enter first sweep phase.
1482 ** The call to 'sweeptolive' makes the pointer point to an object
1483 ** inside the list (instead of to the header), so that the real sweep do
1484 ** not need to skip objects created between "now" and the start of the
1485 ** real sweep.
1486 */
entersweep(lua_State * L)1487 static void entersweep (lua_State *L) {
1488   global_State *g = G(L);
1489   g->gcstate = GCSswpallgc;
1490   lua_assert(g->sweepgc == NULL);
1491   g->sweepgc = sweeptolive(L, &g->allgc);
1492 }
1493 
1494 
1495 /*
1496 ** Delete all objects in list 'p' until (but not including) object
1497 ** 'limit'.
1498 */
deletelist(lua_State * L,GCObject * p,GCObject * limit)1499 static void deletelist (lua_State *L, GCObject *p, GCObject *limit) {
1500   while (p != limit) {
1501     GCObject *next = p->next;
1502     freeobj(L, p);
1503     p = next;
1504   }
1505 }
1506 
1507 
1508 /*
1509 ** Call all finalizers of the objects in the given Lua state, and
1510 ** then free all objects, except for the main thread.
1511 */
luaC_freeallobjects(lua_State * L)1512 void luaC_freeallobjects (lua_State *L) {
1513   global_State *g = G(L);
1514   g->gcstp = GCSTPCLS;  /* no extra finalizers after here */
1515   luaC_changemode(L, KGC_INC);
1516   separatetobefnz(g, 1);  /* separate all objects with finalizers */
1517   lua_assert(g->finobj == NULL);
1518   callallpendingfinalizers(L);
1519   deletelist(L, g->allgc, obj2gco(g->mainthread));
1520   lua_assert(g->finobj == NULL);  /* no new finalizers */
1521   deletelist(L, g->fixedgc, NULL);  /* collect fixed objects */
1522   lua_assert(g->strt.nuse == 0);
1523 }
1524 
1525 
atomic(lua_State * L)1526 static lu_mem atomic (lua_State *L) {
1527   global_State *g = G(L);
1528   lu_mem work = 0;
1529   GCObject *origweak, *origall;
1530   GCObject *grayagain = g->grayagain;  /* save original list */
1531   g->grayagain = NULL;
1532   lua_assert(g->ephemeron == NULL && g->weak == NULL);
1533   lua_assert(!iswhite(g->mainthread));
1534   g->gcstate = GCSatomic;
1535   markobject(g, L);  /* mark running thread */
1536   /* registry and global metatables may be changed by API */
1537   markvalue(g, &g->l_registry);
1538   markmt(g);  /* mark global metatables */
1539   work += propagateall(g);  /* empties 'gray' list */
1540   /* remark occasional upvalues of (maybe) dead threads */
1541   work += remarkupvals(g);
1542   work += propagateall(g);  /* propagate changes */
1543   g->gray = grayagain;
1544   work += propagateall(g);  /* traverse 'grayagain' list */
1545   convergeephemerons(g);
1546   /* at this point, all strongly accessible objects are marked. */
1547   /* Clear values from weak tables, before checking finalizers */
1548   clearbyvalues(g, g->weak, NULL);
1549   clearbyvalues(g, g->allweak, NULL);
1550   origweak = g->weak; origall = g->allweak;
1551   separatetobefnz(g, 0);  /* separate objects to be finalized */
1552   work += markbeingfnz(g);  /* mark objects that will be finalized */
1553   work += propagateall(g);  /* remark, to propagate 'resurrection' */
1554   convergeephemerons(g);
1555   /* at this point, all resurrected objects are marked. */
1556   /* remove dead objects from weak tables */
1557   clearbykeys(g, g->ephemeron);  /* clear keys from all ephemeron tables */
1558   clearbykeys(g, g->allweak);  /* clear keys from all 'allweak' tables */
1559   /* clear values from resurrected weak tables */
1560   clearbyvalues(g, g->weak, origweak);
1561   clearbyvalues(g, g->allweak, origall);
1562   luaS_clearcache(g);
1563   g->currentwhite = cast_byte(otherwhite(g));  /* flip current white */
1564   lua_assert(g->gray == NULL);
1565   return work;  /* estimate of slots marked by 'atomic' */
1566 }
1567 
1568 
sweepstep(lua_State * L,global_State * g,int nextstate,GCObject ** nextlist)1569 static int sweepstep (lua_State *L, global_State *g,
1570                       int nextstate, GCObject **nextlist) {
1571   if (g->sweepgc) {
1572     l_mem olddebt = g->GCdebt;
1573     int count;
1574     g->sweepgc = sweeplist(L, g->sweepgc, GCSWEEPMAX, &count);
1575     g->GCestimate += g->GCdebt - olddebt;  /* update estimate */
1576     return count;
1577   }
1578   else {  /* enter next state */
1579     g->gcstate = nextstate;
1580     g->sweepgc = nextlist;
1581     return 0;  /* no work done */
1582   }
1583 }
1584 
1585 
singlestep(lua_State * L)1586 static lu_mem singlestep (lua_State *L) {
1587   global_State *g = G(L);
1588   lu_mem work;
1589   lua_assert(!g->gcstopem);  /* collector is not reentrant */
1590   g->gcstopem = 1;  /* no emergency collections while collecting */
1591   switch (g->gcstate) {
1592     case GCSpause: {
1593       restartcollection(g);
1594       g->gcstate = GCSpropagate;
1595       work = 1;
1596       break;
1597     }
1598     case GCSpropagate: {
1599       if (g->gray == NULL) {  /* no more gray objects? */
1600         g->gcstate = GCSenteratomic;  /* finish propagate phase */
1601         work = 0;
1602       }
1603       else
1604         work = propagatemark(g);  /* traverse one gray object */
1605       break;
1606     }
1607     case GCSenteratomic: {
1608       work = atomic(L);  /* work is what was traversed by 'atomic' */
1609       entersweep(L);
1610       g->GCestimate = gettotalbytes(g);  /* first estimate */;
1611       break;
1612     }
1613     case GCSswpallgc: {  /* sweep "regular" objects */
1614       work = sweepstep(L, g, GCSswpfinobj, &g->finobj);
1615       break;
1616     }
1617     case GCSswpfinobj: {  /* sweep objects with finalizers */
1618       work = sweepstep(L, g, GCSswptobefnz, &g->tobefnz);
1619       break;
1620     }
1621     case GCSswptobefnz: {  /* sweep objects to be finalized */
1622       work = sweepstep(L, g, GCSswpend, NULL);
1623       break;
1624     }
1625     case GCSswpend: {  /* finish sweeps */
1626       checkSizes(L, g);
1627       g->gcstate = GCScallfin;
1628       work = 0;
1629       break;
1630     }
1631     case GCScallfin: {  /* call remaining finalizers */
1632       if (g->tobefnz && !g->gcemergency) {
1633         g->gcstopem = 0;  /* ok collections during finalizers */
1634         work = runafewfinalizers(L, GCFINMAX) * GCFINALIZECOST;
1635       }
1636       else {  /* emergency mode or no more finalizers */
1637         g->gcstate = GCSpause;  /* finish collection */
1638         work = 0;
1639       }
1640       break;
1641     }
1642     default: lua_assert(0); return 0;
1643   }
1644   g->gcstopem = 0;
1645   return work;
1646 }
1647 
1648 
1649 /*
1650 ** advances the garbage collector until it reaches a state allowed
1651 ** by 'statemask'
1652 */
luaC_runtilstate(lua_State * L,int statesmask)1653 void luaC_runtilstate (lua_State *L, int statesmask) {
1654   global_State *g = G(L);
1655   while (!testbit(statesmask, g->gcstate))
1656     singlestep(L);
1657 }
1658 
1659 
1660 
1661 /*
1662 ** Performs a basic incremental step. The debt and step size are
1663 ** converted from bytes to "units of work"; then the function loops
1664 ** running single steps until adding that many units of work or
1665 ** finishing a cycle (pause state). Finally, it sets the debt that
1666 ** controls when next step will be performed.
1667 */
incstep(lua_State * L,global_State * g)1668 static void incstep (lua_State *L, global_State *g) {
1669   int stepmul = (getgcparam(g->gcstepmul) | 1);  /* avoid division by 0 */
1670   l_mem debt = (g->GCdebt / WORK2MEM) * stepmul;
1671   l_mem stepsize = (g->gcstepsize <= log2maxs(l_mem))
1672                  ? ((cast(l_mem, 1) << g->gcstepsize) / WORK2MEM) * stepmul
1673                  : MAX_LMEM;  /* overflow; keep maximum value */
1674   do {  /* repeat until pause or enough "credit" (negative debt) */
1675     lu_mem work = singlestep(L);  /* perform one single step */
1676     debt -= work;
1677   } while (debt > -stepsize && g->gcstate != GCSpause);
1678   if (g->gcstate == GCSpause)
1679     setpause(g);  /* pause until next cycle */
1680   else {
1681     debt = (debt / stepmul) * WORK2MEM;  /* convert 'work units' to bytes */
1682     luaE_setdebt(g, debt);
1683   }
1684 }
1685 
1686 /*
1687 ** Performs a basic GC step if collector is running. (If collector is
1688 ** not running, set a reasonable debt to avoid it being called at
1689 ** every single check.)
1690 */
luaC_step(lua_State * L)1691 void luaC_step (lua_State *L) {
1692   global_State *g = G(L);
1693   if (!gcrunning(g))  /* not running? */
1694     luaE_setdebt(g, -2000);
1695   else {
1696     if(isdecGCmodegen(g))
1697       genstep(L, g);
1698     else
1699       incstep(L, g);
1700   }
1701 }
1702 
1703 
1704 /*
1705 ** Perform a full collection in incremental mode.
1706 ** Before running the collection, check 'keepinvariant'; if it is true,
1707 ** there may be some objects marked as black, so the collector has
1708 ** to sweep all objects to turn them back to white (as white has not
1709 ** changed, nothing will be collected).
1710 */
fullinc(lua_State * L,global_State * g)1711 static void fullinc (lua_State *L, global_State *g) {
1712   if (keepinvariant(g))  /* black objects? */
1713     entersweep(L); /* sweep everything to turn them back to white */
1714   /* finish any pending sweep phase to start a new cycle */
1715   luaC_runtilstate(L, bitmask(GCSpause));
1716   luaC_runtilstate(L, bitmask(GCScallfin));  /* run up to finalizers */
1717   /* estimate must be correct after a full GC cycle */
1718   lua_assert(g->GCestimate == gettotalbytes(g));
1719   luaC_runtilstate(L, bitmask(GCSpause));  /* finish collection */
1720   setpause(g);
1721 }
1722 
1723 
1724 /*
1725 ** Performs a full GC cycle; if 'isemergency', set a flag to avoid
1726 ** some operations which could change the interpreter state in some
1727 ** unexpected ways (running finalizers and shrinking some structures).
1728 */
luaC_fullgc(lua_State * L,int isemergency)1729 void luaC_fullgc (lua_State *L, int isemergency) {
1730   global_State *g = G(L);
1731   lua_assert(!g->gcemergency);
1732   g->gcemergency = isemergency;  /* set flag */
1733   if (g->gckind == KGC_INC)
1734     fullinc(L, g);
1735   else
1736     fullgen(L, g);
1737   g->gcemergency = 0;
1738 }
1739 
1740 /* }====================================================== */
1741 
1742 
1743