1 /* $NetBSD: lgc.c,v 1.13 2023/06/08 21:12:08 nikita Exp $ */
2
3 /*
4 ** Id: lgc.c
5 ** Garbage Collector
6 ** See Copyright Notice in lua.h
7 */
8
9 #define lgc_c
10 #define LUA_CORE
11
12 #include "lprefix.h"
13
14 #ifndef _KERNEL
15 #include <stdio.h>
16 #include <string.h>
17 #endif /* _KERNEL */
18
19 #include "lua.h"
20
21 #include "ldebug.h"
22 #include "ldo.h"
23 #include "lfunc.h"
24 #include "lgc.h"
25 #include "lmem.h"
26 #include "lobject.h"
27 #include "lstate.h"
28 #include "lstring.h"
29 #include "ltable.h"
30 #include "ltm.h"
31
32
33 /*
34 ** Maximum number of elements to sweep in each single step.
35 ** (Large enough to dissipate fixed overheads but small enough
36 ** to allow small steps for the collector.)
37 */
38 #define GCSWEEPMAX 100
39
40 /*
41 ** Maximum number of finalizers to call in each single step.
42 */
43 #define GCFINMAX 10
44
45
46 /*
47 ** Cost of calling one finalizer.
48 */
49 #define GCFINALIZECOST 50
50
51
52 /*
53 ** The equivalent, in bytes, of one unit of "work" (visiting a slot,
54 ** sweeping an object, etc.)
55 */
56 #define WORK2MEM sizeof(TValue)
57
58
59 /*
60 ** macro to adjust 'pause': 'pause' is actually used like
61 ** 'pause / PAUSEADJ' (value chosen by tests)
62 */
63 #define PAUSEADJ 100
64
65
66 /* mask with all color bits */
67 #define maskcolors (bitmask(BLACKBIT) | WHITEBITS)
68
69 /* mask with all GC bits */
70 #define maskgcbits (maskcolors | AGEBITS)
71
72
73 /* macro to erase all color bits then set only the current white bit */
74 #define makewhite(g,x) \
75 (x->marked = cast_byte((x->marked & ~maskcolors) | luaC_white(g)))
76
77 /* make an object gray (neither white nor black) */
78 #define set2gray(x) resetbits(x->marked, maskcolors)
79
80
81 /* make an object black (coming from any color) */
82 #define set2black(x) \
83 (x->marked = cast_byte((x->marked & ~WHITEBITS) | bitmask(BLACKBIT)))
84
85
86 #define valiswhite(x) (iscollectable(x) && iswhite(gcvalue(x)))
87
88 #define keyiswhite(n) (keyiscollectable(n) && iswhite(gckey(n)))
89
90
91 /*
92 ** Protected access to objects in values
93 */
94 #define gcvalueN(o) (iscollectable(o) ? gcvalue(o) : NULL)
95
96
97 #define markvalue(g,o) { checkliveness(g->mainthread,o); \
98 if (valiswhite(o)) reallymarkobject(g,gcvalue(o)); }
99
100 #define markkey(g, n) { if keyiswhite(n) reallymarkobject(g,gckey(n)); }
101
102 #define markobject(g,t) { if (iswhite(t)) reallymarkobject(g, obj2gco(t)); }
103
104 /*
105 ** mark an object that can be NULL (either because it is really optional,
106 ** or it was stripped as debug info, or inside an uncompleted structure)
107 */
108 #define markobjectN(g,t) { if (t) markobject(g,t); }
109
110 static void reallymarkobject (global_State *g, GCObject *o);
111 static lu_mem atomic (lua_State *L);
112 static void entersweep (lua_State *L);
113
114
115 /*
116 ** {======================================================
117 ** Generic functions
118 ** =======================================================
119 */
120
121
122 /*
123 ** one after last element in a hash array
124 */
125 #define gnodelast(h) gnode(h, cast_sizet(sizenode(h)))
126
127
getgclist(GCObject * o)128 static GCObject **getgclist (GCObject *o) {
129 switch (o->tt) {
130 case LUA_VTABLE: return &gco2t(o)->gclist;
131 case LUA_VLCL: return &gco2lcl(o)->gclist;
132 case LUA_VCCL: return &gco2ccl(o)->gclist;
133 case LUA_VTHREAD: return &gco2th(o)->gclist;
134 case LUA_VPROTO: return &gco2p(o)->gclist;
135 case LUA_VUSERDATA: {
136 Udata *u = gco2u(o);
137 lua_assert(u->nuvalue > 0);
138 return &u->gclist;
139 }
140 default: lua_assert(0); return 0;
141 }
142 }
143
144
145 /*
146 ** Link a collectable object 'o' with a known type into the list 'p'.
147 ** (Must be a macro to access the 'gclist' field in different types.)
148 */
149 #define linkgclist(o,p) linkgclist_(obj2gco(o), &(o)->gclist, &(p))
150
linkgclist_(GCObject * o,GCObject ** pnext,GCObject ** list)151 static void linkgclist_ (GCObject *o, GCObject **pnext, GCObject **list) {
152 lua_assert(!isgray(o)); /* cannot be in a gray list */
153 *pnext = *list;
154 *list = o;
155 set2gray(o); /* now it is */
156 }
157
158
159 /*
160 ** Link a generic collectable object 'o' into the list 'p'.
161 */
162 #define linkobjgclist(o,p) linkgclist_(obj2gco(o), getgclist(o), &(p))
163
164
165
166 /*
167 ** Clear keys for empty entries in tables. If entry is empty, mark its
168 ** entry as dead. This allows the collection of the key, but keeps its
169 ** entry in the table: its removal could break a chain and could break
170 ** a table traversal. Other places never manipulate dead keys, because
171 ** its associated empty value is enough to signal that the entry is
172 ** logically empty.
173 */
clearkey(Node * n)174 static void clearkey (Node *n) {
175 lua_assert(isempty(gval(n)));
176 if (keyiscollectable(n))
177 setdeadkey(n); /* unused key; remove it */
178 }
179
180
181 /*
182 ** tells whether a key or value can be cleared from a weak
183 ** table. Non-collectable objects are never removed from weak
184 ** tables. Strings behave as 'values', so are never removed too. for
185 ** other objects: if really collected, cannot keep them; for objects
186 ** being finalized, keep them in keys, but not in values
187 */
iscleared(global_State * g,const GCObject * o)188 static int iscleared (global_State *g, const GCObject *o) {
189 if (o == NULL) return 0; /* non-collectable value */
190 else if (novariant(o->tt) == LUA_TSTRING) {
191 markobject(g, o); /* strings are 'values', so are never weak */
192 return 0;
193 }
194 else return iswhite(o);
195 }
196
197
198 /*
199 ** Barrier that moves collector forward, that is, marks the white object
200 ** 'v' being pointed by the black object 'o'. In the generational
201 ** mode, 'v' must also become old, if 'o' is old; however, it cannot
202 ** be changed directly to OLD, because it may still point to non-old
203 ** objects. So, it is marked as OLD0. In the next cycle it will become
204 ** OLD1, and in the next it will finally become OLD (regular old). By
205 ** then, any object it points to will also be old. If called in the
206 ** incremental sweep phase, it clears the black object to white (sweep
207 ** it) to avoid other barrier calls for this same object. (That cannot
208 ** be done is generational mode, as its sweep does not distinguish
209 ** whites from deads.)
210 */
luaC_barrier_(lua_State * L,GCObject * o,GCObject * v)211 void luaC_barrier_ (lua_State *L, GCObject *o, GCObject *v) {
212 global_State *g = G(L);
213 lua_assert(isblack(o) && iswhite(v) && !isdead(g, v) && !isdead(g, o));
214 if (keepinvariant(g)) { /* must keep invariant? */
215 reallymarkobject(g, v); /* restore invariant */
216 if (isold(o)) {
217 lua_assert(!isold(v)); /* white object could not be old */
218 setage(v, G_OLD0); /* restore generational invariant */
219 }
220 }
221 else { /* sweep phase */
222 lua_assert(issweepphase(g));
223 if (g->gckind == KGC_INC) /* incremental mode? */
224 makewhite(g, o); /* mark 'o' as white to avoid other barriers */
225 }
226 }
227
228
229 /*
230 ** barrier that moves collector backward, that is, mark the black object
231 ** pointing to a white object as gray again.
232 */
luaC_barrierback_(lua_State * L,GCObject * o)233 void luaC_barrierback_ (lua_State *L, GCObject *o) {
234 global_State *g = G(L);
235 lua_assert(isblack(o) && !isdead(g, o));
236 lua_assert((g->gckind == KGC_GEN) == (isold(o) && getage(o) != G_TOUCHED1));
237 if (getage(o) == G_TOUCHED2) /* already in gray list? */
238 set2gray(o); /* make it gray to become touched1 */
239 else /* link it in 'grayagain' and paint it gray */
240 linkobjgclist(o, g->grayagain);
241 if (isold(o)) /* generational mode? */
242 setage(o, G_TOUCHED1); /* touched in current cycle */
243 }
244
245
luaC_fix(lua_State * L,GCObject * o)246 void luaC_fix (lua_State *L, GCObject *o) {
247 global_State *g = G(L);
248 lua_assert(g->allgc == o); /* object must be 1st in 'allgc' list! */
249 set2gray(o); /* they will be gray forever */
250 setage(o, G_OLD); /* and old forever */
251 g->allgc = o->next; /* remove object from 'allgc' list */
252 o->next = g->fixedgc; /* link it to 'fixedgc' list */
253 g->fixedgc = o;
254 }
255
256
257 /*
258 ** create a new collectable object (with given type, size, and offset)
259 ** and link it to 'allgc' list.
260 */
luaC_newobjdt(lua_State * L,int tt,size_t sz,size_t offset)261 GCObject *luaC_newobjdt (lua_State *L, int tt, size_t sz, size_t offset) {
262 global_State *g = G(L);
263 char *p = cast_charp(luaM_newobject(L, novariant(tt), sz));
264 GCObject *o = cast(GCObject *, p + offset);
265 o->marked = luaC_white(g);
266 o->tt = tt;
267 o->next = g->allgc;
268 g->allgc = o;
269 return o;
270 }
271
272
luaC_newobj(lua_State * L,int tt,size_t sz)273 GCObject *luaC_newobj (lua_State *L, int tt, size_t sz) {
274 return luaC_newobjdt(L, tt, sz, 0);
275 }
276
277 /* }====================================================== */
278
279
280
281 /*
282 ** {======================================================
283 ** Mark functions
284 ** =======================================================
285 */
286
287
288 /*
289 ** Mark an object. Userdata with no user values, strings, and closed
290 ** upvalues are visited and turned black here. Open upvalues are
291 ** already indirectly linked through their respective threads in the
292 ** 'twups' list, so they don't go to the gray list; nevertheless, they
293 ** are kept gray to avoid barriers, as their values will be revisited
294 ** by the thread or by 'remarkupvals'. Other objects are added to the
295 ** gray list to be visited (and turned black) later. Both userdata and
296 ** upvalues can call this function recursively, but this recursion goes
297 ** for at most two levels: An upvalue cannot refer to another upvalue
298 ** (only closures can), and a userdata's metatable must be a table.
299 */
reallymarkobject(global_State * g,GCObject * o)300 static void reallymarkobject (global_State *g, GCObject *o) {
301 switch (o->tt) {
302 case LUA_VSHRSTR:
303 case LUA_VLNGSTR: {
304 set2black(o); /* nothing to visit */
305 break;
306 }
307 case LUA_VUPVAL: {
308 UpVal *uv = gco2upv(o);
309 if (upisopen(uv))
310 set2gray(uv); /* open upvalues are kept gray */
311 else
312 set2black(uv); /* closed upvalues are visited here */
313 markvalue(g, uv->v.p); /* mark its content */
314 break;
315 }
316 case LUA_VUSERDATA: {
317 Udata *u = gco2u(o);
318 if (u->nuvalue == 0) { /* no user values? */
319 markobjectN(g, u->metatable); /* mark its metatable */
320 set2black(u); /* nothing else to mark */
321 break;
322 }
323 /* else... */
324 } /* FALLTHROUGH */
325 case LUA_VLCL: case LUA_VCCL: case LUA_VTABLE:
326 case LUA_VTHREAD: case LUA_VPROTO: {
327 linkobjgclist(o, g->gray); /* to be visited later */
328 break;
329 }
330 default: lua_assert(0); break;
331 }
332 }
333
334
335 /*
336 ** mark metamethods for basic types
337 */
markmt(global_State * g)338 static void markmt (global_State *g) {
339 int i;
340 for (i=0; i < LUA_NUMTAGS; i++)
341 markobjectN(g, g->mt[i]);
342 }
343
344
345 /*
346 ** mark all objects in list of being-finalized
347 */
markbeingfnz(global_State * g)348 static lu_mem markbeingfnz (global_State *g) {
349 GCObject *o;
350 lu_mem count = 0;
351 for (o = g->tobefnz; o != NULL; o = o->next) {
352 count++;
353 markobject(g, o);
354 }
355 return count;
356 }
357
358
359 /*
360 ** For each non-marked thread, simulates a barrier between each open
361 ** upvalue and its value. (If the thread is collected, the value will be
362 ** assigned to the upvalue, but then it can be too late for the barrier
363 ** to act. The "barrier" does not need to check colors: A non-marked
364 ** thread must be young; upvalues cannot be older than their threads; so
365 ** any visited upvalue must be young too.) Also removes the thread from
366 ** the list, as it was already visited. Removes also threads with no
367 ** upvalues, as they have nothing to be checked. (If the thread gets an
368 ** upvalue later, it will be linked in the list again.)
369 */
remarkupvals(global_State * g)370 static int remarkupvals (global_State *g) {
371 lua_State *thread;
372 lua_State **p = &g->twups;
373 int work = 0; /* estimate of how much work was done here */
374 while ((thread = *p) != NULL) {
375 work++;
376 if (!iswhite(thread) && thread->openupval != NULL)
377 p = &thread->twups; /* keep marked thread with upvalues in the list */
378 else { /* thread is not marked or without upvalues */
379 UpVal *uv;
380 lua_assert(!isold(thread) || thread->openupval == NULL);
381 *p = thread->twups; /* remove thread from the list */
382 thread->twups = thread; /* mark that it is out of list */
383 for (uv = thread->openupval; uv != NULL; uv = uv->u.open.next) {
384 lua_assert(getage(uv) <= getage(thread));
385 work++;
386 if (!iswhite(uv)) { /* upvalue already visited? */
387 lua_assert(upisopen(uv) && isgray(uv));
388 markvalue(g, uv->v.p); /* mark its value */
389 }
390 }
391 }
392 }
393 return work;
394 }
395
396
cleargraylists(global_State * g)397 static void cleargraylists (global_State *g) {
398 g->gray = g->grayagain = NULL;
399 g->weak = g->allweak = g->ephemeron = NULL;
400 }
401
402
403 /*
404 ** mark root set and reset all gray lists, to start a new collection
405 */
restartcollection(global_State * g)406 static void restartcollection (global_State *g) {
407 cleargraylists(g);
408 markobject(g, g->mainthread);
409 markvalue(g, &g->l_registry);
410 markmt(g);
411 markbeingfnz(g); /* mark any finalizing object left from previous cycle */
412 }
413
414 /* }====================================================== */
415
416
417 /*
418 ** {======================================================
419 ** Traverse functions
420 ** =======================================================
421 */
422
423
424 /*
425 ** Check whether object 'o' should be kept in the 'grayagain' list for
426 ** post-processing by 'correctgraylist'. (It could put all old objects
427 ** in the list and leave all the work to 'correctgraylist', but it is
428 ** more efficient to avoid adding elements that will be removed.) Only
429 ** TOUCHED1 objects need to be in the list. TOUCHED2 doesn't need to go
430 ** back to a gray list, but then it must become OLD. (That is what
431 ** 'correctgraylist' does when it finds a TOUCHED2 object.)
432 */
genlink(global_State * g,GCObject * o)433 static void genlink (global_State *g, GCObject *o) {
434 lua_assert(isblack(o));
435 if (getage(o) == G_TOUCHED1) { /* touched in this cycle? */
436 linkobjgclist(o, g->grayagain); /* link it back in 'grayagain' */
437 } /* everything else do not need to be linked back */
438 else if (getage(o) == G_TOUCHED2)
439 changeage(o, G_TOUCHED2, G_OLD); /* advance age */
440 }
441
442
443 /*
444 ** Traverse a table with weak values and link it to proper list. During
445 ** propagate phase, keep it in 'grayagain' list, to be revisited in the
446 ** atomic phase. In the atomic phase, if table has any white value,
447 ** put it in 'weak' list, to be cleared.
448 */
traverseweakvalue(global_State * g,Table * h)449 static void traverseweakvalue (global_State *g, Table *h) {
450 Node *n, *limit = gnodelast(h);
451 /* if there is array part, assume it may have white values (it is not
452 worth traversing it now just to check) */
453 int hasclears = (h->alimit > 0);
454 for (n = gnode(h, 0); n < limit; n++) { /* traverse hash part */
455 if (isempty(gval(n))) /* entry is empty? */
456 clearkey(n); /* clear its key */
457 else {
458 lua_assert(!keyisnil(n));
459 markkey(g, n);
460 if (!hasclears && iscleared(g, gcvalueN(gval(n)))) /* a white value? */
461 hasclears = 1; /* table will have to be cleared */
462 }
463 }
464 if (g->gcstate == GCSatomic && hasclears)
465 linkgclist(h, g->weak); /* has to be cleared later */
466 else
467 linkgclist(h, g->grayagain); /* must retraverse it in atomic phase */
468 }
469
470
471 /*
472 ** Traverse an ephemeron table and link it to proper list. Returns true
473 ** iff any object was marked during this traversal (which implies that
474 ** convergence has to continue). During propagation phase, keep table
475 ** in 'grayagain' list, to be visited again in the atomic phase. In
476 ** the atomic phase, if table has any white->white entry, it has to
477 ** be revisited during ephemeron convergence (as that key may turn
478 ** black). Otherwise, if it has any white key, table has to be cleared
479 ** (in the atomic phase). In generational mode, some tables
480 ** must be kept in some gray list for post-processing; this is done
481 ** by 'genlink'.
482 */
traverseephemeron(global_State * g,Table * h,int inv)483 static int traverseephemeron (global_State *g, Table *h, int inv) {
484 int marked = 0; /* true if an object is marked in this traversal */
485 int hasclears = 0; /* true if table has white keys */
486 int hasww = 0; /* true if table has entry "white-key -> white-value" */
487 unsigned int i;
488 unsigned int asize = luaH_realasize(h);
489 unsigned int nsize = sizenode(h);
490 /* traverse array part */
491 for (i = 0; i < asize; i++) {
492 if (valiswhite(&h->array[i])) {
493 marked = 1;
494 reallymarkobject(g, gcvalue(&h->array[i]));
495 }
496 }
497 /* traverse hash part; if 'inv', traverse descending
498 (see 'convergeephemerons') */
499 for (i = 0; i < nsize; i++) {
500 Node *n = inv ? gnode(h, nsize - 1 - i) : gnode(h, i);
501 if (isempty(gval(n))) /* entry is empty? */
502 clearkey(n); /* clear its key */
503 else if (iscleared(g, gckeyN(n))) { /* key is not marked (yet)? */
504 hasclears = 1; /* table must be cleared */
505 if (valiswhite(gval(n))) /* value not marked yet? */
506 hasww = 1; /* white-white entry */
507 }
508 else if (valiswhite(gval(n))) { /* value not marked yet? */
509 marked = 1;
510 reallymarkobject(g, gcvalue(gval(n))); /* mark it now */
511 }
512 }
513 /* link table into proper list */
514 if (g->gcstate == GCSpropagate)
515 linkgclist(h, g->grayagain); /* must retraverse it in atomic phase */
516 else if (hasww) /* table has white->white entries? */
517 linkgclist(h, g->ephemeron); /* have to propagate again */
518 else if (hasclears) /* table has white keys? */
519 linkgclist(h, g->allweak); /* may have to clean white keys */
520 else
521 genlink(g, obj2gco(h)); /* check whether collector still needs to see it */
522 return marked;
523 }
524
525
traversestrongtable(global_State * g,Table * h)526 static void traversestrongtable (global_State *g, Table *h) {
527 Node *n, *limit = gnodelast(h);
528 unsigned int i;
529 unsigned int asize = luaH_realasize(h);
530 for (i = 0; i < asize; i++) /* traverse array part */
531 markvalue(g, &h->array[i]);
532 for (n = gnode(h, 0); n < limit; n++) { /* traverse hash part */
533 if (isempty(gval(n))) /* entry is empty? */
534 clearkey(n); /* clear its key */
535 else {
536 lua_assert(!keyisnil(n));
537 markkey(g, n);
538 markvalue(g, gval(n));
539 }
540 }
541 genlink(g, obj2gco(h));
542 }
543
544
traversetable(global_State * g,Table * h)545 static lu_mem traversetable (global_State *g, Table *h) {
546 const char *weakkey, *weakvalue;
547 const TValue *mode = gfasttm(g, h->metatable, TM_MODE);
548 markobjectN(g, h->metatable);
549 if (mode && ttisstring(mode) && /* is there a weak mode? */
550 (cast_void(weakkey = strchr(svalue(mode), 'k')),
551 cast_void(weakvalue = strchr(svalue(mode), 'v')),
552 (weakkey || weakvalue))) { /* is really weak? */
553 if (!weakkey) /* strong keys? */
554 traverseweakvalue(g, h);
555 else if (!weakvalue) /* strong values? */
556 traverseephemeron(g, h, 0);
557 else /* all weak */
558 linkgclist(h, g->allweak); /* nothing to traverse now */
559 }
560 else /* not weak */
561 traversestrongtable(g, h);
562 return 1 + h->alimit + 2 * allocsizenode(h);
563 }
564
565
traverseudata(global_State * g,Udata * u)566 static int traverseudata (global_State *g, Udata *u) {
567 int i;
568 markobjectN(g, u->metatable); /* mark its metatable */
569 for (i = 0; i < u->nuvalue; i++)
570 markvalue(g, &u->uv[i].uv);
571 genlink(g, obj2gco(u));
572 return 1 + u->nuvalue;
573 }
574
575
576 /*
577 ** Traverse a prototype. (While a prototype is being build, its
578 ** arrays can be larger than needed; the extra slots are filled with
579 ** NULL, so the use of 'markobjectN')
580 */
traverseproto(global_State * g,Proto * f)581 static int traverseproto (global_State *g, Proto *f) {
582 int i;
583 markobjectN(g, f->source);
584 for (i = 0; i < f->sizek; i++) /* mark literals */
585 markvalue(g, &f->k[i]);
586 for (i = 0; i < f->sizeupvalues; i++) /* mark upvalue names */
587 markobjectN(g, f->upvalues[i].name);
588 for (i = 0; i < f->sizep; i++) /* mark nested protos */
589 markobjectN(g, f->p[i]);
590 for (i = 0; i < f->sizelocvars; i++) /* mark local-variable names */
591 markobjectN(g, f->locvars[i].varname);
592 return 1 + f->sizek + f->sizeupvalues + f->sizep + f->sizelocvars;
593 }
594
595
traverseCclosure(global_State * g,CClosure * cl)596 static int traverseCclosure (global_State *g, CClosure *cl) {
597 int i;
598 for (i = 0; i < cl->nupvalues; i++) /* mark its upvalues */
599 markvalue(g, &cl->upvalue[i]);
600 return 1 + cl->nupvalues;
601 }
602
603 /*
604 ** Traverse a Lua closure, marking its prototype and its upvalues.
605 ** (Both can be NULL while closure is being created.)
606 */
traverseLclosure(global_State * g,LClosure * cl)607 static int traverseLclosure (global_State *g, LClosure *cl) {
608 int i;
609 markobjectN(g, cl->p); /* mark its prototype */
610 for (i = 0; i < cl->nupvalues; i++) { /* visit its upvalues */
611 UpVal *uv = cl->upvals[i];
612 markobjectN(g, uv); /* mark upvalue */
613 }
614 return 1 + cl->nupvalues;
615 }
616
617
618 /*
619 ** Traverse a thread, marking the elements in the stack up to its top
620 ** and cleaning the rest of the stack in the final traversal. That
621 ** ensures that the entire stack have valid (non-dead) objects.
622 ** Threads have no barriers. In gen. mode, old threads must be visited
623 ** at every cycle, because they might point to young objects. In inc.
624 ** mode, the thread can still be modified before the end of the cycle,
625 ** and therefore it must be visited again in the atomic phase. To ensure
626 ** these visits, threads must return to a gray list if they are not new
627 ** (which can only happen in generational mode) or if the traverse is in
628 ** the propagate phase (which can only happen in incremental mode).
629 */
traversethread(global_State * g,lua_State * th)630 static int traversethread (global_State *g, lua_State *th) {
631 UpVal *uv;
632 StkId o = th->stack.p;
633 if (isold(th) || g->gcstate == GCSpropagate)
634 linkgclist(th, g->grayagain); /* insert into 'grayagain' list */
635 if (o == NULL)
636 return 1; /* stack not completely built yet */
637 lua_assert(g->gcstate == GCSatomic ||
638 th->openupval == NULL || isintwups(th));
639 for (; o < th->top.p; o++) /* mark live elements in the stack */
640 markvalue(g, s2v(o));
641 for (uv = th->openupval; uv != NULL; uv = uv->u.open.next)
642 markobject(g, uv); /* open upvalues cannot be collected */
643 if (g->gcstate == GCSatomic) { /* final traversal? */
644 for (; o < th->stack_last.p + EXTRA_STACK; o++)
645 setnilvalue(s2v(o)); /* clear dead stack slice */
646 /* 'remarkupvals' may have removed thread from 'twups' list */
647 if (!isintwups(th) && th->openupval != NULL) {
648 th->twups = g->twups; /* link it back to the list */
649 g->twups = th;
650 }
651 }
652 else if (!g->gcemergency)
653 luaD_shrinkstack(th); /* do not change stack in emergency cycle */
654 return 1 + stacksize(th);
655 }
656
657
658 /*
659 ** traverse one gray object, turning it to black.
660 */
propagatemark(global_State * g)661 static lu_mem propagatemark (global_State *g) {
662 GCObject *o = g->gray;
663 nw2black(o);
664 g->gray = *getgclist(o); /* remove from 'gray' list */
665 switch (o->tt) {
666 case LUA_VTABLE: return traversetable(g, gco2t(o));
667 case LUA_VUSERDATA: return traverseudata(g, gco2u(o));
668 case LUA_VLCL: return traverseLclosure(g, gco2lcl(o));
669 case LUA_VCCL: return traverseCclosure(g, gco2ccl(o));
670 case LUA_VPROTO: return traverseproto(g, gco2p(o));
671 case LUA_VTHREAD: return traversethread(g, gco2th(o));
672 default: lua_assert(0); return 0;
673 }
674 }
675
676
propagateall(global_State * g)677 static lu_mem propagateall (global_State *g) {
678 lu_mem tot = 0;
679 while (g->gray)
680 tot += propagatemark(g);
681 return tot;
682 }
683
684
685 /*
686 ** Traverse all ephemeron tables propagating marks from keys to values.
687 ** Repeat until it converges, that is, nothing new is marked. 'dir'
688 ** inverts the direction of the traversals, trying to speed up
689 ** convergence on chains in the same table.
690 **
691 */
convergeephemerons(global_State * g)692 static void convergeephemerons (global_State *g) {
693 int changed;
694 int dir = 0;
695 do {
696 GCObject *w;
697 GCObject *next = g->ephemeron; /* get ephemeron list */
698 g->ephemeron = NULL; /* tables may return to this list when traversed */
699 changed = 0;
700 while ((w = next) != NULL) { /* for each ephemeron table */
701 Table *h = gco2t(w);
702 next = h->gclist; /* list is rebuilt during loop */
703 nw2black(h); /* out of the list (for now) */
704 if (traverseephemeron(g, h, dir)) { /* marked some value? */
705 propagateall(g); /* propagate changes */
706 changed = 1; /* will have to revisit all ephemeron tables */
707 }
708 }
709 dir = !dir; /* invert direction next time */
710 } while (changed); /* repeat until no more changes */
711 }
712
713 /* }====================================================== */
714
715
716 /*
717 ** {======================================================
718 ** Sweep Functions
719 ** =======================================================
720 */
721
722
723 /*
724 ** clear entries with unmarked keys from all weaktables in list 'l'
725 */
clearbykeys(global_State * g,GCObject * l)726 static void clearbykeys (global_State *g, GCObject *l) {
727 for (; l; l = gco2t(l)->gclist) {
728 Table *h = gco2t(l);
729 Node *limit = gnodelast(h);
730 Node *n;
731 for (n = gnode(h, 0); n < limit; n++) {
732 if (iscleared(g, gckeyN(n))) /* unmarked key? */
733 setempty(gval(n)); /* remove entry */
734 if (isempty(gval(n))) /* is entry empty? */
735 clearkey(n); /* clear its key */
736 }
737 }
738 }
739
740
741 /*
742 ** clear entries with unmarked values from all weaktables in list 'l' up
743 ** to element 'f'
744 */
clearbyvalues(global_State * g,GCObject * l,GCObject * f)745 static void clearbyvalues (global_State *g, GCObject *l, GCObject *f) {
746 for (; l != f; l = gco2t(l)->gclist) {
747 Table *h = gco2t(l);
748 Node *n, *limit = gnodelast(h);
749 unsigned int i;
750 unsigned int asize = luaH_realasize(h);
751 for (i = 0; i < asize; i++) {
752 TValue *o = &h->array[i];
753 if (iscleared(g, gcvalueN(o))) /* value was collected? */
754 setempty(o); /* remove entry */
755 }
756 for (n = gnode(h, 0); n < limit; n++) {
757 if (iscleared(g, gcvalueN(gval(n)))) /* unmarked value? */
758 setempty(gval(n)); /* remove entry */
759 if (isempty(gval(n))) /* is entry empty? */
760 clearkey(n); /* clear its key */
761 }
762 }
763 }
764
765
freeupval(lua_State * L,UpVal * uv)766 static void freeupval (lua_State *L, UpVal *uv) {
767 if (upisopen(uv))
768 luaF_unlinkupval(uv);
769 luaM_free(L, uv);
770 }
771
772
freeobj(lua_State * L,GCObject * o)773 static void freeobj (lua_State *L, GCObject *o) {
774 switch (o->tt) {
775 case LUA_VPROTO:
776 luaF_freeproto(L, gco2p(o));
777 break;
778 case LUA_VUPVAL:
779 freeupval(L, gco2upv(o));
780 break;
781 case LUA_VLCL: {
782 LClosure *cl = gco2lcl(o);
783 luaM_freemem(L, cl, sizeLclosure(cl->nupvalues));
784 break;
785 }
786 case LUA_VCCL: {
787 CClosure *cl = gco2ccl(o);
788 luaM_freemem(L, cl, sizeCclosure(cl->nupvalues));
789 break;
790 }
791 case LUA_VTABLE:
792 luaH_free(L, gco2t(o));
793 break;
794 case LUA_VTHREAD:
795 luaE_freethread(L, gco2th(o));
796 break;
797 case LUA_VUSERDATA: {
798 Udata *u = gco2u(o);
799 luaM_freemem(L, o, sizeudata(u->nuvalue, u->len));
800 break;
801 }
802 case LUA_VSHRSTR: {
803 TString *ts = gco2ts(o);
804 luaS_remove(L, ts); /* remove it from hash table */
805 luaM_freemem(L, ts, sizelstring(ts->shrlen));
806 break;
807 }
808 case LUA_VLNGSTR: {
809 TString *ts = gco2ts(o);
810 luaM_freemem(L, ts, sizelstring(ts->u.lnglen));
811 break;
812 }
813 default: lua_assert(0);
814 }
815 }
816
817
818 /*
819 ** sweep at most 'countin' elements from a list of GCObjects erasing dead
820 ** objects, where a dead object is one marked with the old (non current)
821 ** white; change all non-dead objects back to white, preparing for next
822 ** collection cycle. Return where to continue the traversal or NULL if
823 ** list is finished. ('*countout' gets the number of elements traversed.)
824 */
sweeplist(lua_State * L,GCObject ** p,int countin,int * countout)825 static GCObject **sweeplist (lua_State *L, GCObject **p, int countin,
826 int *countout) {
827 global_State *g = G(L);
828 int ow = otherwhite(g);
829 int i;
830 int white = luaC_white(g); /* current white */
831 for (i = 0; *p != NULL && i < countin; i++) {
832 GCObject *curr = *p;
833 int marked = curr->marked;
834 if (isdeadm(ow, marked)) { /* is 'curr' dead? */
835 *p = curr->next; /* remove 'curr' from list */
836 freeobj(L, curr); /* erase 'curr' */
837 }
838 else { /* change mark to 'white' */
839 curr->marked = cast_byte((marked & ~maskgcbits) | white);
840 p = &curr->next; /* go to next element */
841 }
842 }
843 if (countout)
844 *countout = i; /* number of elements traversed */
845 return (*p == NULL) ? NULL : p;
846 }
847
848
849 /*
850 ** sweep a list until a live object (or end of list)
851 */
sweeptolive(lua_State * L,GCObject ** p)852 static GCObject **sweeptolive (lua_State *L, GCObject **p) {
853 GCObject **old = p;
854 do {
855 p = sweeplist(L, p, 1, NULL);
856 } while (p == old);
857 return p;
858 }
859
860 /* }====================================================== */
861
862
863 /*
864 ** {======================================================
865 ** Finalization
866 ** =======================================================
867 */
868
869 /*
870 ** If possible, shrink string table.
871 */
checkSizes(lua_State * L,global_State * g)872 static void checkSizes (lua_State *L, global_State *g) {
873 if (!g->gcemergency) {
874 if (g->strt.nuse < g->strt.size / 4) { /* string table too big? */
875 l_mem olddebt = g->GCdebt;
876 luaS_resize(L, g->strt.size / 2);
877 g->GCestimate += g->GCdebt - olddebt; /* correct estimate */
878 }
879 }
880 }
881
882
883 /*
884 ** Get the next udata to be finalized from the 'tobefnz' list, and
885 ** link it back into the 'allgc' list.
886 */
udata2finalize(global_State * g)887 static GCObject *udata2finalize (global_State *g) {
888 GCObject *o = g->tobefnz; /* get first element */
889 lua_assert(tofinalize(o));
890 g->tobefnz = o->next; /* remove it from 'tobefnz' list */
891 o->next = g->allgc; /* return it to 'allgc' list */
892 g->allgc = o;
893 resetbit(o->marked, FINALIZEDBIT); /* object is "normal" again */
894 if (issweepphase(g))
895 makewhite(g, o); /* "sweep" object */
896 else if (getage(o) == G_OLD1)
897 g->firstold1 = o; /* it is the first OLD1 object in the list */
898 return o;
899 }
900
901
dothecall(lua_State * L,void * ud)902 static void dothecall (lua_State *L, void *ud) {
903 UNUSED(ud);
904 luaD_callnoyield(L, L->top.p - 2, 0);
905 }
906
907
GCTM(lua_State * L)908 static void GCTM (lua_State *L) {
909 global_State *g = G(L);
910 const TValue *tm;
911 TValue v;
912 lua_assert(!g->gcemergency);
913 setgcovalue(L, &v, udata2finalize(g));
914 tm = luaT_gettmbyobj(L, &v, TM_GC);
915 if (!notm(tm)) { /* is there a finalizer? */
916 int status;
917 lu_byte oldah = L->allowhook;
918 int oldgcstp = g->gcstp;
919 g->gcstp |= GCSTPGC; /* avoid GC steps */
920 L->allowhook = 0; /* stop debug hooks during GC metamethod */
921 setobj2s(L, L->top.p++, tm); /* push finalizer... */
922 setobj2s(L, L->top.p++, &v); /* ... and its argument */
923 L->ci->callstatus |= CIST_FIN; /* will run a finalizer */
924 status = luaD_pcall(L, dothecall, NULL, savestack(L, L->top.p - 2), 0);
925 L->ci->callstatus &= ~CIST_FIN; /* not running a finalizer anymore */
926 L->allowhook = oldah; /* restore hooks */
927 g->gcstp = oldgcstp; /* restore state */
928 if (l_unlikely(status != LUA_OK)) { /* error while running __gc? */
929 luaE_warnerror(L, "__gc");
930 L->top.p--; /* pops error object */
931 }
932 }
933 }
934
935
936 /*
937 ** Call a few finalizers
938 */
runafewfinalizers(lua_State * L,int n)939 static int runafewfinalizers (lua_State *L, int n) {
940 global_State *g = G(L);
941 int i;
942 for (i = 0; i < n && g->tobefnz; i++)
943 GCTM(L); /* call one finalizer */
944 return i;
945 }
946
947
948 /*
949 ** call all pending finalizers
950 */
callallpendingfinalizers(lua_State * L)951 static void callallpendingfinalizers (lua_State *L) {
952 global_State *g = G(L);
953 while (g->tobefnz)
954 GCTM(L);
955 }
956
957
958 /*
959 ** find last 'next' field in list 'p' list (to add elements in its end)
960 */
findlast(GCObject ** p)961 static GCObject **findlast (GCObject **p) {
962 while (*p != NULL)
963 p = &(*p)->next;
964 return p;
965 }
966
967
968 /*
969 ** Move all unreachable objects (or 'all' objects) that need
970 ** finalization from list 'finobj' to list 'tobefnz' (to be finalized).
971 ** (Note that objects after 'finobjold1' cannot be white, so they
972 ** don't need to be traversed. In incremental mode, 'finobjold1' is NULL,
973 ** so the whole list is traversed.)
974 */
separatetobefnz(global_State * g,int all)975 static void separatetobefnz (global_State *g, int all) {
976 GCObject *curr;
977 GCObject **p = &g->finobj;
978 GCObject **lastnext = findlast(&g->tobefnz);
979 while ((curr = *p) != g->finobjold1) { /* traverse all finalizable objects */
980 lua_assert(tofinalize(curr));
981 if (!(iswhite(curr) || all)) /* not being collected? */
982 p = &curr->next; /* don't bother with it */
983 else {
984 if (curr == g->finobjsur) /* removing 'finobjsur'? */
985 g->finobjsur = curr->next; /* correct it */
986 *p = curr->next; /* remove 'curr' from 'finobj' list */
987 curr->next = *lastnext; /* link at the end of 'tobefnz' list */
988 *lastnext = curr;
989 lastnext = &curr->next;
990 }
991 }
992 }
993
994
995 /*
996 ** If pointer 'p' points to 'o', move it to the next element.
997 */
checkpointer(GCObject ** p,GCObject * o)998 static void checkpointer (GCObject **p, GCObject *o) {
999 if (o == *p)
1000 *p = o->next;
1001 }
1002
1003
1004 /*
1005 ** Correct pointers to objects inside 'allgc' list when
1006 ** object 'o' is being removed from the list.
1007 */
correctpointers(global_State * g,GCObject * o)1008 static void correctpointers (global_State *g, GCObject *o) {
1009 checkpointer(&g->survival, o);
1010 checkpointer(&g->old1, o);
1011 checkpointer(&g->reallyold, o);
1012 checkpointer(&g->firstold1, o);
1013 }
1014
1015
1016 /*
1017 ** if object 'o' has a finalizer, remove it from 'allgc' list (must
1018 ** search the list to find it) and link it in 'finobj' list.
1019 */
luaC_checkfinalizer(lua_State * L,GCObject * o,Table * mt)1020 void luaC_checkfinalizer (lua_State *L, GCObject *o, Table *mt) {
1021 global_State *g = G(L);
1022 if (tofinalize(o) || /* obj. is already marked... */
1023 gfasttm(g, mt, TM_GC) == NULL || /* or has no finalizer... */
1024 (g->gcstp & GCSTPCLS)) /* or closing state? */
1025 return; /* nothing to be done */
1026 else { /* move 'o' to 'finobj' list */
1027 GCObject **p;
1028 if (issweepphase(g)) {
1029 makewhite(g, o); /* "sweep" object 'o' */
1030 if (g->sweepgc == &o->next) /* should not remove 'sweepgc' object */
1031 g->sweepgc = sweeptolive(L, g->sweepgc); /* change 'sweepgc' */
1032 }
1033 else
1034 correctpointers(g, o);
1035 /* search for pointer pointing to 'o' */
1036 for (p = &g->allgc; *p != o; p = &(*p)->next) { /* empty */ }
1037 *p = o->next; /* remove 'o' from 'allgc' list */
1038 o->next = g->finobj; /* link it in 'finobj' list */
1039 g->finobj = o;
1040 l_setbit(o->marked, FINALIZEDBIT); /* mark it as such */
1041 }
1042 }
1043
1044 /* }====================================================== */
1045
1046
1047 /*
1048 ** {======================================================
1049 ** Generational Collector
1050 ** =======================================================
1051 */
1052
1053
1054 /*
1055 ** Set the "time" to wait before starting a new GC cycle; cycle will
1056 ** start when memory use hits the threshold of ('estimate' * pause /
1057 ** PAUSEADJ). (Division by 'estimate' should be OK: it cannot be zero,
1058 ** because Lua cannot even start with less than PAUSEADJ bytes).
1059 */
setpause(global_State * g)1060 static void setpause (global_State *g) {
1061 l_mem threshold, debt;
1062 int pause = getgcparam(g->gcpause);
1063 l_mem estimate = g->GCestimate / PAUSEADJ; /* adjust 'estimate' */
1064 lua_assert(estimate > 0);
1065 threshold = (pause < MAX_LMEM / estimate) /* overflow? */
1066 ? estimate * pause /* no overflow */
1067 : MAX_LMEM; /* overflow; truncate to maximum */
1068 debt = gettotalbytes(g) - threshold;
1069 if (debt > 0) debt = 0;
1070 luaE_setdebt(g, debt);
1071 }
1072
1073
1074 /*
1075 ** Sweep a list of objects to enter generational mode. Deletes dead
1076 ** objects and turns the non dead to old. All non-dead threads---which
1077 ** are now old---must be in a gray list. Everything else is not in a
1078 ** gray list. Open upvalues are also kept gray.
1079 */
sweep2old(lua_State * L,GCObject ** p)1080 static void sweep2old (lua_State *L, GCObject **p) {
1081 GCObject *curr;
1082 global_State *g = G(L);
1083 while ((curr = *p) != NULL) {
1084 if (iswhite(curr)) { /* is 'curr' dead? */
1085 lua_assert(isdead(g, curr));
1086 *p = curr->next; /* remove 'curr' from list */
1087 freeobj(L, curr); /* erase 'curr' */
1088 }
1089 else { /* all surviving objects become old */
1090 setage(curr, G_OLD);
1091 if (curr->tt == LUA_VTHREAD) { /* threads must be watched */
1092 lua_State *th = gco2th(curr);
1093 linkgclist(th, g->grayagain); /* insert into 'grayagain' list */
1094 }
1095 else if (curr->tt == LUA_VUPVAL && upisopen(gco2upv(curr)))
1096 set2gray(curr); /* open upvalues are always gray */
1097 else /* everything else is black */
1098 nw2black(curr);
1099 p = &curr->next; /* go to next element */
1100 }
1101 }
1102 }
1103
1104
1105 /*
1106 ** Sweep for generational mode. Delete dead objects. (Because the
1107 ** collection is not incremental, there are no "new white" objects
1108 ** during the sweep. So, any white object must be dead.) For
1109 ** non-dead objects, advance their ages and clear the color of
1110 ** new objects. (Old objects keep their colors.)
1111 ** The ages of G_TOUCHED1 and G_TOUCHED2 objects cannot be advanced
1112 ** here, because these old-generation objects are usually not swept
1113 ** here. They will all be advanced in 'correctgraylist'. That function
1114 ** will also remove objects turned white here from any gray list.
1115 */
sweepgen(lua_State * L,global_State * g,GCObject ** p,GCObject * limit,GCObject ** pfirstold1)1116 static GCObject **sweepgen (lua_State *L, global_State *g, GCObject **p,
1117 GCObject *limit, GCObject **pfirstold1) {
1118 static const lu_byte nextage[] = {
1119 G_SURVIVAL, /* from G_NEW */
1120 G_OLD1, /* from G_SURVIVAL */
1121 G_OLD1, /* from G_OLD0 */
1122 G_OLD, /* from G_OLD1 */
1123 G_OLD, /* from G_OLD (do not change) */
1124 G_TOUCHED1, /* from G_TOUCHED1 (do not change) */
1125 G_TOUCHED2 /* from G_TOUCHED2 (do not change) */
1126 };
1127 int white = luaC_white(g);
1128 GCObject *curr;
1129 while ((curr = *p) != limit) {
1130 if (iswhite(curr)) { /* is 'curr' dead? */
1131 lua_assert(!isold(curr) && isdead(g, curr));
1132 *p = curr->next; /* remove 'curr' from list */
1133 freeobj(L, curr); /* erase 'curr' */
1134 }
1135 else { /* correct mark and age */
1136 if (getage(curr) == G_NEW) { /* new objects go back to white */
1137 int marked = curr->marked & ~maskgcbits; /* erase GC bits */
1138 curr->marked = cast_byte(marked | G_SURVIVAL | white);
1139 }
1140 else { /* all other objects will be old, and so keep their color */
1141 setage(curr, nextage[getage(curr)]);
1142 if (getage(curr) == G_OLD1 && *pfirstold1 == NULL)
1143 *pfirstold1 = curr; /* first OLD1 object in the list */
1144 }
1145 p = &curr->next; /* go to next element */
1146 }
1147 }
1148 return p;
1149 }
1150
1151
1152 /*
1153 ** Traverse a list making all its elements white and clearing their
1154 ** age. In incremental mode, all objects are 'new' all the time,
1155 ** except for fixed strings (which are always old).
1156 */
whitelist(global_State * g,GCObject * p)1157 static void whitelist (global_State *g, GCObject *p) {
1158 int white = luaC_white(g);
1159 for (; p != NULL; p = p->next)
1160 p->marked = cast_byte((p->marked & ~maskgcbits) | white);
1161 }
1162
1163
1164 /*
1165 ** Correct a list of gray objects. Return pointer to where rest of the
1166 ** list should be linked.
1167 ** Because this correction is done after sweeping, young objects might
1168 ** be turned white and still be in the list. They are only removed.
1169 ** 'TOUCHED1' objects are advanced to 'TOUCHED2' and remain on the list;
1170 ** Non-white threads also remain on the list; 'TOUCHED2' objects become
1171 ** regular old; they and anything else are removed from the list.
1172 */
correctgraylist(GCObject ** p)1173 static GCObject **correctgraylist (GCObject **p) {
1174 GCObject *curr;
1175 while ((curr = *p) != NULL) {
1176 GCObject **next = getgclist(curr);
1177 if (iswhite(curr))
1178 goto remove; /* remove all white objects */
1179 else if (getage(curr) == G_TOUCHED1) { /* touched in this cycle? */
1180 lua_assert(isgray(curr));
1181 nw2black(curr); /* make it black, for next barrier */
1182 changeage(curr, G_TOUCHED1, G_TOUCHED2);
1183 goto remain; /* keep it in the list and go to next element */
1184 }
1185 else if (curr->tt == LUA_VTHREAD) {
1186 lua_assert(isgray(curr));
1187 goto remain; /* keep non-white threads on the list */
1188 }
1189 else { /* everything else is removed */
1190 lua_assert(isold(curr)); /* young objects should be white here */
1191 if (getage(curr) == G_TOUCHED2) /* advance from TOUCHED2... */
1192 changeage(curr, G_TOUCHED2, G_OLD); /* ... to OLD */
1193 nw2black(curr); /* make object black (to be removed) */
1194 goto remove;
1195 }
1196 remove: *p = *next; continue;
1197 remain: p = next; continue;
1198 }
1199 return p;
1200 }
1201
1202
1203 /*
1204 ** Correct all gray lists, coalescing them into 'grayagain'.
1205 */
correctgraylists(global_State * g)1206 static void correctgraylists (global_State *g) {
1207 GCObject **list = correctgraylist(&g->grayagain);
1208 *list = g->weak; g->weak = NULL;
1209 list = correctgraylist(list);
1210 *list = g->allweak; g->allweak = NULL;
1211 list = correctgraylist(list);
1212 *list = g->ephemeron; g->ephemeron = NULL;
1213 correctgraylist(list);
1214 }
1215
1216
1217 /*
1218 ** Mark black 'OLD1' objects when starting a new young collection.
1219 ** Gray objects are already in some gray list, and so will be visited
1220 ** in the atomic step.
1221 */
markold(global_State * g,GCObject * from,GCObject * to)1222 static void markold (global_State *g, GCObject *from, GCObject *to) {
1223 GCObject *p;
1224 for (p = from; p != to; p = p->next) {
1225 if (getage(p) == G_OLD1) {
1226 lua_assert(!iswhite(p));
1227 changeage(p, G_OLD1, G_OLD); /* now they are old */
1228 if (isblack(p))
1229 reallymarkobject(g, p);
1230 }
1231 }
1232 }
1233
1234
1235 /*
1236 ** Finish a young-generation collection.
1237 */
finishgencycle(lua_State * L,global_State * g)1238 static void finishgencycle (lua_State *L, global_State *g) {
1239 correctgraylists(g);
1240 checkSizes(L, g);
1241 g->gcstate = GCSpropagate; /* skip restart */
1242 if (!g->gcemergency)
1243 callallpendingfinalizers(L);
1244 }
1245
1246
1247 /*
1248 ** Does a young collection. First, mark 'OLD1' objects. Then does the
1249 ** atomic step. Then, sweep all lists and advance pointers. Finally,
1250 ** finish the collection.
1251 */
youngcollection(lua_State * L,global_State * g)1252 static void youngcollection (lua_State *L, global_State *g) {
1253 GCObject **psurvival; /* to point to first non-dead survival object */
1254 GCObject *dummy; /* dummy out parameter to 'sweepgen' */
1255 lua_assert(g->gcstate == GCSpropagate);
1256 if (g->firstold1) { /* are there regular OLD1 objects? */
1257 markold(g, g->firstold1, g->reallyold); /* mark them */
1258 g->firstold1 = NULL; /* no more OLD1 objects (for now) */
1259 }
1260 markold(g, g->finobj, g->finobjrold);
1261 markold(g, g->tobefnz, NULL);
1262 atomic(L);
1263
1264 /* sweep nursery and get a pointer to its last live element */
1265 g->gcstate = GCSswpallgc;
1266 psurvival = sweepgen(L, g, &g->allgc, g->survival, &g->firstold1);
1267 /* sweep 'survival' */
1268 sweepgen(L, g, psurvival, g->old1, &g->firstold1);
1269 g->reallyold = g->old1;
1270 g->old1 = *psurvival; /* 'survival' survivals are old now */
1271 g->survival = g->allgc; /* all news are survivals */
1272
1273 /* repeat for 'finobj' lists */
1274 dummy = NULL; /* no 'firstold1' optimization for 'finobj' lists */
1275 psurvival = sweepgen(L, g, &g->finobj, g->finobjsur, &dummy);
1276 /* sweep 'survival' */
1277 sweepgen(L, g, psurvival, g->finobjold1, &dummy);
1278 g->finobjrold = g->finobjold1;
1279 g->finobjold1 = *psurvival; /* 'survival' survivals are old now */
1280 g->finobjsur = g->finobj; /* all news are survivals */
1281
1282 sweepgen(L, g, &g->tobefnz, NULL, &dummy);
1283 finishgencycle(L, g);
1284 }
1285
1286
1287 /*
1288 ** Clears all gray lists, sweeps objects, and prepare sublists to enter
1289 ** generational mode. The sweeps remove dead objects and turn all
1290 ** surviving objects to old. Threads go back to 'grayagain'; everything
1291 ** else is turned black (not in any gray list).
1292 */
atomic2gen(lua_State * L,global_State * g)1293 static void atomic2gen (lua_State *L, global_State *g) {
1294 cleargraylists(g);
1295 /* sweep all elements making them old */
1296 g->gcstate = GCSswpallgc;
1297 sweep2old(L, &g->allgc);
1298 /* everything alive now is old */
1299 g->reallyold = g->old1 = g->survival = g->allgc;
1300 g->firstold1 = NULL; /* there are no OLD1 objects anywhere */
1301
1302 /* repeat for 'finobj' lists */
1303 sweep2old(L, &g->finobj);
1304 g->finobjrold = g->finobjold1 = g->finobjsur = g->finobj;
1305
1306 sweep2old(L, &g->tobefnz);
1307
1308 g->gckind = KGC_GEN;
1309 g->lastatomic = 0;
1310 g->GCestimate = gettotalbytes(g); /* base for memory control */
1311 finishgencycle(L, g);
1312 }
1313
1314
1315 /*
1316 ** Set debt for the next minor collection, which will happen when
1317 ** memory grows 'genminormul'%.
1318 */
setminordebt(global_State * g)1319 static void setminordebt (global_State *g) {
1320 luaE_setdebt(g, -(cast(l_mem, (gettotalbytes(g) / 100)) * g->genminormul));
1321 }
1322
1323
1324 /*
1325 ** Enter generational mode. Must go until the end of an atomic cycle
1326 ** to ensure that all objects are correctly marked and weak tables
1327 ** are cleared. Then, turn all objects into old and finishes the
1328 ** collection.
1329 */
entergen(lua_State * L,global_State * g)1330 static lu_mem entergen (lua_State *L, global_State *g) {
1331 lu_mem numobjs;
1332 luaC_runtilstate(L, bitmask(GCSpause)); /* prepare to start a new cycle */
1333 luaC_runtilstate(L, bitmask(GCSpropagate)); /* start new cycle */
1334 numobjs = atomic(L); /* propagates all and then do the atomic stuff */
1335 atomic2gen(L, g);
1336 setminordebt(g); /* set debt assuming next cycle will be minor */
1337 return numobjs;
1338 }
1339
1340
1341 /*
1342 ** Enter incremental mode. Turn all objects white, make all
1343 ** intermediate lists point to NULL (to avoid invalid pointers),
1344 ** and go to the pause state.
1345 */
enterinc(global_State * g)1346 static void enterinc (global_State *g) {
1347 whitelist(g, g->allgc);
1348 g->reallyold = g->old1 = g->survival = NULL;
1349 whitelist(g, g->finobj);
1350 whitelist(g, g->tobefnz);
1351 g->finobjrold = g->finobjold1 = g->finobjsur = NULL;
1352 g->gcstate = GCSpause;
1353 g->gckind = KGC_INC;
1354 g->lastatomic = 0;
1355 }
1356
1357
1358 /*
1359 ** Change collector mode to 'newmode'.
1360 */
luaC_changemode(lua_State * L,int newmode)1361 void luaC_changemode (lua_State *L, int newmode) {
1362 global_State *g = G(L);
1363 if (newmode != g->gckind) {
1364 if (newmode == KGC_GEN) /* entering generational mode? */
1365 entergen(L, g);
1366 else
1367 enterinc(g); /* entering incremental mode */
1368 }
1369 g->lastatomic = 0;
1370 }
1371
1372
1373 /*
1374 ** Does a full collection in generational mode.
1375 */
fullgen(lua_State * L,global_State * g)1376 static lu_mem fullgen (lua_State *L, global_State *g) {
1377 enterinc(g);
1378 return entergen(L, g);
1379 }
1380
1381
1382 /*
1383 ** Does a major collection after last collection was a "bad collection".
1384 **
1385 ** When the program is building a big structure, it allocates lots of
1386 ** memory but generates very little garbage. In those scenarios,
1387 ** the generational mode just wastes time doing small collections, and
1388 ** major collections are frequently what we call a "bad collection", a
1389 ** collection that frees too few objects. To avoid the cost of switching
1390 ** between generational mode and the incremental mode needed for full
1391 ** (major) collections, the collector tries to stay in incremental mode
1392 ** after a bad collection, and to switch back to generational mode only
1393 ** after a "good" collection (one that traverses less than 9/8 objects
1394 ** of the previous one).
1395 ** The collector must choose whether to stay in incremental mode or to
1396 ** switch back to generational mode before sweeping. At this point, it
1397 ** does not know the real memory in use, so it cannot use memory to
1398 ** decide whether to return to generational mode. Instead, it uses the
1399 ** number of objects traversed (returned by 'atomic') as a proxy. The
1400 ** field 'g->lastatomic' keeps this count from the last collection.
1401 ** ('g->lastatomic != 0' also means that the last collection was bad.)
1402 */
stepgenfull(lua_State * L,global_State * g)1403 static void stepgenfull (lua_State *L, global_State *g) {
1404 lu_mem newatomic; /* count of traversed objects */
1405 lu_mem lastatomic = g->lastatomic; /* count from last collection */
1406 if (g->gckind == KGC_GEN) /* still in generational mode? */
1407 enterinc(g); /* enter incremental mode */
1408 luaC_runtilstate(L, bitmask(GCSpropagate)); /* start new cycle */
1409 newatomic = atomic(L); /* mark everybody */
1410 if (newatomic < lastatomic + (lastatomic >> 3)) { /* good collection? */
1411 atomic2gen(L, g); /* return to generational mode */
1412 setminordebt(g);
1413 }
1414 else { /* another bad collection; stay in incremental mode */
1415 g->GCestimate = gettotalbytes(g); /* first estimate */;
1416 entersweep(L);
1417 luaC_runtilstate(L, bitmask(GCSpause)); /* finish collection */
1418 setpause(g);
1419 g->lastatomic = newatomic;
1420 }
1421 }
1422
1423
1424 /*
1425 ** Does a generational "step".
1426 ** Usually, this means doing a minor collection and setting the debt to
1427 ** make another collection when memory grows 'genminormul'% larger.
1428 **
1429 ** However, there are exceptions. If memory grows 'genmajormul'%
1430 ** larger than it was at the end of the last major collection (kept
1431 ** in 'g->GCestimate'), the function does a major collection. At the
1432 ** end, it checks whether the major collection was able to free a
1433 ** decent amount of memory (at least half the growth in memory since
1434 ** previous major collection). If so, the collector keeps its state,
1435 ** and the next collection will probably be minor again. Otherwise,
1436 ** we have what we call a "bad collection". In that case, set the field
1437 ** 'g->lastatomic' to signal that fact, so that the next collection will
1438 ** go to 'stepgenfull'.
1439 **
1440 ** 'GCdebt <= 0' means an explicit call to GC step with "size" zero;
1441 ** in that case, do a minor collection.
1442 */
genstep(lua_State * L,global_State * g)1443 static void genstep (lua_State *L, global_State *g) {
1444 if (g->lastatomic != 0) /* last collection was a bad one? */
1445 stepgenfull(L, g); /* do a full step */
1446 else {
1447 lu_mem majorbase = g->GCestimate; /* memory after last major collection */
1448 lu_mem majorinc = (majorbase / 100) * getgcparam(g->genmajormul);
1449 if (g->GCdebt > 0 && gettotalbytes(g) > majorbase + majorinc) {
1450 lu_mem numobjs = fullgen(L, g); /* do a major collection */
1451 if (gettotalbytes(g) < majorbase + (majorinc / 2)) {
1452 /* collected at least half of memory growth since last major
1453 collection; keep doing minor collections. */
1454 lua_assert(g->lastatomic == 0);
1455 }
1456 else { /* bad collection */
1457 g->lastatomic = numobjs; /* signal that last collection was bad */
1458 setpause(g); /* do a long wait for next (major) collection */
1459 }
1460 }
1461 else { /* regular case; do a minor collection */
1462 youngcollection(L, g);
1463 setminordebt(g);
1464 g->GCestimate = majorbase; /* preserve base value */
1465 }
1466 }
1467 lua_assert(isdecGCmodegen(g));
1468 }
1469
1470 /* }====================================================== */
1471
1472
1473 /*
1474 ** {======================================================
1475 ** GC control
1476 ** =======================================================
1477 */
1478
1479
1480 /*
1481 ** Enter first sweep phase.
1482 ** The call to 'sweeptolive' makes the pointer point to an object
1483 ** inside the list (instead of to the header), so that the real sweep do
1484 ** not need to skip objects created between "now" and the start of the
1485 ** real sweep.
1486 */
entersweep(lua_State * L)1487 static void entersweep (lua_State *L) {
1488 global_State *g = G(L);
1489 g->gcstate = GCSswpallgc;
1490 lua_assert(g->sweepgc == NULL);
1491 g->sweepgc = sweeptolive(L, &g->allgc);
1492 }
1493
1494
1495 /*
1496 ** Delete all objects in list 'p' until (but not including) object
1497 ** 'limit'.
1498 */
deletelist(lua_State * L,GCObject * p,GCObject * limit)1499 static void deletelist (lua_State *L, GCObject *p, GCObject *limit) {
1500 while (p != limit) {
1501 GCObject *next = p->next;
1502 freeobj(L, p);
1503 p = next;
1504 }
1505 }
1506
1507
1508 /*
1509 ** Call all finalizers of the objects in the given Lua state, and
1510 ** then free all objects, except for the main thread.
1511 */
luaC_freeallobjects(lua_State * L)1512 void luaC_freeallobjects (lua_State *L) {
1513 global_State *g = G(L);
1514 g->gcstp = GCSTPCLS; /* no extra finalizers after here */
1515 luaC_changemode(L, KGC_INC);
1516 separatetobefnz(g, 1); /* separate all objects with finalizers */
1517 lua_assert(g->finobj == NULL);
1518 callallpendingfinalizers(L);
1519 deletelist(L, g->allgc, obj2gco(g->mainthread));
1520 lua_assert(g->finobj == NULL); /* no new finalizers */
1521 deletelist(L, g->fixedgc, NULL); /* collect fixed objects */
1522 lua_assert(g->strt.nuse == 0);
1523 }
1524
1525
atomic(lua_State * L)1526 static lu_mem atomic (lua_State *L) {
1527 global_State *g = G(L);
1528 lu_mem work = 0;
1529 GCObject *origweak, *origall;
1530 GCObject *grayagain = g->grayagain; /* save original list */
1531 g->grayagain = NULL;
1532 lua_assert(g->ephemeron == NULL && g->weak == NULL);
1533 lua_assert(!iswhite(g->mainthread));
1534 g->gcstate = GCSatomic;
1535 markobject(g, L); /* mark running thread */
1536 /* registry and global metatables may be changed by API */
1537 markvalue(g, &g->l_registry);
1538 markmt(g); /* mark global metatables */
1539 work += propagateall(g); /* empties 'gray' list */
1540 /* remark occasional upvalues of (maybe) dead threads */
1541 work += remarkupvals(g);
1542 work += propagateall(g); /* propagate changes */
1543 g->gray = grayagain;
1544 work += propagateall(g); /* traverse 'grayagain' list */
1545 convergeephemerons(g);
1546 /* at this point, all strongly accessible objects are marked. */
1547 /* Clear values from weak tables, before checking finalizers */
1548 clearbyvalues(g, g->weak, NULL);
1549 clearbyvalues(g, g->allweak, NULL);
1550 origweak = g->weak; origall = g->allweak;
1551 separatetobefnz(g, 0); /* separate objects to be finalized */
1552 work += markbeingfnz(g); /* mark objects that will be finalized */
1553 work += propagateall(g); /* remark, to propagate 'resurrection' */
1554 convergeephemerons(g);
1555 /* at this point, all resurrected objects are marked. */
1556 /* remove dead objects from weak tables */
1557 clearbykeys(g, g->ephemeron); /* clear keys from all ephemeron tables */
1558 clearbykeys(g, g->allweak); /* clear keys from all 'allweak' tables */
1559 /* clear values from resurrected weak tables */
1560 clearbyvalues(g, g->weak, origweak);
1561 clearbyvalues(g, g->allweak, origall);
1562 luaS_clearcache(g);
1563 g->currentwhite = cast_byte(otherwhite(g)); /* flip current white */
1564 lua_assert(g->gray == NULL);
1565 return work; /* estimate of slots marked by 'atomic' */
1566 }
1567
1568
sweepstep(lua_State * L,global_State * g,int nextstate,GCObject ** nextlist)1569 static int sweepstep (lua_State *L, global_State *g,
1570 int nextstate, GCObject **nextlist) {
1571 if (g->sweepgc) {
1572 l_mem olddebt = g->GCdebt;
1573 int count;
1574 g->sweepgc = sweeplist(L, g->sweepgc, GCSWEEPMAX, &count);
1575 g->GCestimate += g->GCdebt - olddebt; /* update estimate */
1576 return count;
1577 }
1578 else { /* enter next state */
1579 g->gcstate = nextstate;
1580 g->sweepgc = nextlist;
1581 return 0; /* no work done */
1582 }
1583 }
1584
1585
singlestep(lua_State * L)1586 static lu_mem singlestep (lua_State *L) {
1587 global_State *g = G(L);
1588 lu_mem work;
1589 lua_assert(!g->gcstopem); /* collector is not reentrant */
1590 g->gcstopem = 1; /* no emergency collections while collecting */
1591 switch (g->gcstate) {
1592 case GCSpause: {
1593 restartcollection(g);
1594 g->gcstate = GCSpropagate;
1595 work = 1;
1596 break;
1597 }
1598 case GCSpropagate: {
1599 if (g->gray == NULL) { /* no more gray objects? */
1600 g->gcstate = GCSenteratomic; /* finish propagate phase */
1601 work = 0;
1602 }
1603 else
1604 work = propagatemark(g); /* traverse one gray object */
1605 break;
1606 }
1607 case GCSenteratomic: {
1608 work = atomic(L); /* work is what was traversed by 'atomic' */
1609 entersweep(L);
1610 g->GCestimate = gettotalbytes(g); /* first estimate */;
1611 break;
1612 }
1613 case GCSswpallgc: { /* sweep "regular" objects */
1614 work = sweepstep(L, g, GCSswpfinobj, &g->finobj);
1615 break;
1616 }
1617 case GCSswpfinobj: { /* sweep objects with finalizers */
1618 work = sweepstep(L, g, GCSswptobefnz, &g->tobefnz);
1619 break;
1620 }
1621 case GCSswptobefnz: { /* sweep objects to be finalized */
1622 work = sweepstep(L, g, GCSswpend, NULL);
1623 break;
1624 }
1625 case GCSswpend: { /* finish sweeps */
1626 checkSizes(L, g);
1627 g->gcstate = GCScallfin;
1628 work = 0;
1629 break;
1630 }
1631 case GCScallfin: { /* call remaining finalizers */
1632 if (g->tobefnz && !g->gcemergency) {
1633 g->gcstopem = 0; /* ok collections during finalizers */
1634 work = runafewfinalizers(L, GCFINMAX) * GCFINALIZECOST;
1635 }
1636 else { /* emergency mode or no more finalizers */
1637 g->gcstate = GCSpause; /* finish collection */
1638 work = 0;
1639 }
1640 break;
1641 }
1642 default: lua_assert(0); return 0;
1643 }
1644 g->gcstopem = 0;
1645 return work;
1646 }
1647
1648
1649 /*
1650 ** advances the garbage collector until it reaches a state allowed
1651 ** by 'statemask'
1652 */
luaC_runtilstate(lua_State * L,int statesmask)1653 void luaC_runtilstate (lua_State *L, int statesmask) {
1654 global_State *g = G(L);
1655 while (!testbit(statesmask, g->gcstate))
1656 singlestep(L);
1657 }
1658
1659
1660
1661 /*
1662 ** Performs a basic incremental step. The debt and step size are
1663 ** converted from bytes to "units of work"; then the function loops
1664 ** running single steps until adding that many units of work or
1665 ** finishing a cycle (pause state). Finally, it sets the debt that
1666 ** controls when next step will be performed.
1667 */
incstep(lua_State * L,global_State * g)1668 static void incstep (lua_State *L, global_State *g) {
1669 int stepmul = (getgcparam(g->gcstepmul) | 1); /* avoid division by 0 */
1670 l_mem debt = (g->GCdebt / WORK2MEM) * stepmul;
1671 l_mem stepsize = (g->gcstepsize <= log2maxs(l_mem))
1672 ? ((cast(l_mem, 1) << g->gcstepsize) / WORK2MEM) * stepmul
1673 : MAX_LMEM; /* overflow; keep maximum value */
1674 do { /* repeat until pause or enough "credit" (negative debt) */
1675 lu_mem work = singlestep(L); /* perform one single step */
1676 debt -= work;
1677 } while (debt > -stepsize && g->gcstate != GCSpause);
1678 if (g->gcstate == GCSpause)
1679 setpause(g); /* pause until next cycle */
1680 else {
1681 debt = (debt / stepmul) * WORK2MEM; /* convert 'work units' to bytes */
1682 luaE_setdebt(g, debt);
1683 }
1684 }
1685
1686 /*
1687 ** Performs a basic GC step if collector is running. (If collector is
1688 ** not running, set a reasonable debt to avoid it being called at
1689 ** every single check.)
1690 */
luaC_step(lua_State * L)1691 void luaC_step (lua_State *L) {
1692 global_State *g = G(L);
1693 if (!gcrunning(g)) /* not running? */
1694 luaE_setdebt(g, -2000);
1695 else {
1696 if(isdecGCmodegen(g))
1697 genstep(L, g);
1698 else
1699 incstep(L, g);
1700 }
1701 }
1702
1703
1704 /*
1705 ** Perform a full collection in incremental mode.
1706 ** Before running the collection, check 'keepinvariant'; if it is true,
1707 ** there may be some objects marked as black, so the collector has
1708 ** to sweep all objects to turn them back to white (as white has not
1709 ** changed, nothing will be collected).
1710 */
fullinc(lua_State * L,global_State * g)1711 static void fullinc (lua_State *L, global_State *g) {
1712 if (keepinvariant(g)) /* black objects? */
1713 entersweep(L); /* sweep everything to turn them back to white */
1714 /* finish any pending sweep phase to start a new cycle */
1715 luaC_runtilstate(L, bitmask(GCSpause));
1716 luaC_runtilstate(L, bitmask(GCScallfin)); /* run up to finalizers */
1717 /* estimate must be correct after a full GC cycle */
1718 lua_assert(g->GCestimate == gettotalbytes(g));
1719 luaC_runtilstate(L, bitmask(GCSpause)); /* finish collection */
1720 setpause(g);
1721 }
1722
1723
1724 /*
1725 ** Performs a full GC cycle; if 'isemergency', set a flag to avoid
1726 ** some operations which could change the interpreter state in some
1727 ** unexpected ways (running finalizers and shrinking some structures).
1728 */
luaC_fullgc(lua_State * L,int isemergency)1729 void luaC_fullgc (lua_State *L, int isemergency) {
1730 global_State *g = G(L);
1731 lua_assert(!g->gcemergency);
1732 g->gcemergency = isemergency; /* set flag */
1733 if (g->gckind == KGC_INC)
1734 fullinc(L, g);
1735 else
1736 fullgen(L, g);
1737 g->gcemergency = 0;
1738 }
1739
1740 /* }====================================================== */
1741
1742
1743