xref: /dflybsd-src/sys/kern/kern_sig.c (revision bbd7e13329c5bb82b8ee744e2c8780d994efbfbf)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
35  * $FreeBSD: src/sys/kern/kern_sig.c,v 1.72.2.17 2003/05/16 16:34:34 obrien Exp $
36  */
37 
38 #include "opt_ktrace.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/sysmsg.h>
44 #include <sys/signalvar.h>
45 #include <sys/resourcevar.h>
46 #include <sys/vnode.h>
47 #include <sys/event.h>
48 #include <sys/proc.h>
49 #include <sys/nlookup.h>
50 #include <sys/pioctl.h>
51 #include <sys/acct.h>
52 #include <sys/fcntl.h>
53 #include <sys/lock.h>
54 #include <sys/wait.h>
55 #include <sys/ktrace.h>
56 #include <sys/syslog.h>
57 #include <sys/stat.h>
58 #include <sys/sysent.h>
59 #include <sys/sysctl.h>
60 #include <sys/malloc.h>
61 #include <sys/interrupt.h>
62 #include <sys/unistd.h>
63 #include <sys/kern_syscall.h>
64 #include <sys/vkernel.h>
65 
66 #include <sys/signal2.h>
67 #include <sys/thread2.h>
68 #include <sys/spinlock2.h>
69 
70 #include <machine/cpu.h>
71 #include <machine/smp.h>
72 
73 static int	coredump(struct lwp *, int);
74 static char	*expand_name(const char *, uid_t, pid_t);
75 static int	dokillpg(int sig, int pgid, int all);
76 static int	sig_ffs(sigset_t *set);
77 static int	sigprop(int sig);
78 static void	lwp_signotify(struct lwp *lp);
79 static void	lwp_signotify_remote(void *arg);
80 static int	kern_sigtimedwait(sigset_t set, siginfo_t *info,
81 		    struct timespec *timeout);
82 static void	proc_stopwait(struct proc *p);
83 
84 static int	filt_sigattach(struct knote *kn);
85 static void	filt_sigdetach(struct knote *kn);
86 static int	filt_signal(struct knote *kn, long hint);
87 
88 struct filterops sig_filtops =
89 	{ FILTEROP_MPSAFE, filt_sigattach, filt_sigdetach, filt_signal };
90 
91 static int	kern_logsigexit = 1;
92 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
93     &kern_logsigexit, 0,
94     "Log processes quitting on abnormal signals to syslog(3)");
95 
96 /*
97  * Can process p send the signal sig to process q?  Only processes within
98  * the current reaper or children of the current reaper can be signaled.
99  * Normally the reaper itself cannot be signalled, unless initok is set.
100  */
101 #define	CANSIGNAL(q, sig, initok)				\
102 	((!p_trespass(curproc->p_ucred, (q)->p_ucred) &&	\
103 	reaper_sigtest(curproc, p, initok)) ||			\
104 	((sig) == SIGCONT && (q)->p_session == curproc->p_session))
105 
106 /*
107  * Policy -- Can real uid ruid with ucred uc send a signal to process q?
108  */
109 #define	CANSIGIO(ruid, uc, q) \
110 	((uc)->cr_uid == 0 || \
111 	    (ruid) == (q)->p_ucred->cr_ruid || \
112 	    (uc)->cr_uid == (q)->p_ucred->cr_ruid || \
113 	    (ruid) == (q)->p_ucred->cr_uid || \
114 	    (uc)->cr_uid == (q)->p_ucred->cr_uid)
115 
116 int sugid_coredump;
117 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RW,
118 	&sugid_coredump, 0, "Enable coredumping set user/group ID processes");
119 
120 static int	do_coredump = 1;
121 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
122 	&do_coredump, 0, "Enable/Disable coredumps");
123 
124 /*
125  * Signal properties and actions.
126  * The array below categorizes the signals and their default actions
127  * according to the following properties:
128  */
129 #define	SA_KILL		0x01		/* terminates process by default */
130 #define	SA_CORE		0x02		/* ditto and coredumps */
131 #define	SA_STOP		0x04		/* suspend process */
132 #define	SA_TTYSTOP	0x08		/* ditto, from tty */
133 #define	SA_IGNORE	0x10		/* ignore by default */
134 #define	SA_CONT		0x20		/* continue if suspended */
135 #define	SA_CANTMASK	0x40		/* non-maskable, catchable */
136 #define	SA_CKPT		0x80		/* checkpoint process */
137 
138 
139 static int sigproptbl[NSIG] = {
140 	SA_KILL,		/* SIGHUP */
141 	SA_KILL,		/* SIGINT */
142 	SA_KILL|SA_CORE,	/* SIGQUIT */
143 	SA_KILL|SA_CORE,	/* SIGILL */
144 	SA_KILL|SA_CORE,	/* SIGTRAP */
145 	SA_KILL|SA_CORE,	/* SIGABRT */
146 	SA_KILL|SA_CORE,	/* SIGEMT */
147 	SA_KILL|SA_CORE,	/* SIGFPE */
148 	SA_KILL,		/* SIGKILL */
149 	SA_KILL|SA_CORE,	/* SIGBUS */
150 	SA_KILL|SA_CORE,	/* SIGSEGV */
151 	SA_KILL|SA_CORE,	/* SIGSYS */
152 	SA_KILL,		/* SIGPIPE */
153 	SA_KILL,		/* SIGALRM */
154 	SA_KILL,		/* SIGTERM */
155 	SA_IGNORE,		/* SIGURG */
156 	SA_STOP,		/* SIGSTOP */
157 	SA_STOP|SA_TTYSTOP,	/* SIGTSTP */
158 	SA_IGNORE|SA_CONT,	/* SIGCONT */
159 	SA_IGNORE,		/* SIGCHLD */
160 	SA_STOP|SA_TTYSTOP,	/* SIGTTIN */
161 	SA_STOP|SA_TTYSTOP,	/* SIGTTOU */
162 	SA_IGNORE,		/* SIGIO */
163 	SA_KILL,		/* SIGXCPU */
164 	SA_KILL,		/* SIGXFSZ */
165 	SA_KILL,		/* SIGVTALRM */
166 	SA_KILL,		/* SIGPROF */
167 	SA_IGNORE,		/* SIGWINCH  */
168 	SA_IGNORE,		/* SIGINFO */
169 	SA_KILL,		/* SIGUSR1 */
170 	SA_KILL,		/* SIGUSR2 */
171 	SA_IGNORE,		/* SIGTHR */
172 	SA_CKPT,		/* SIGCKPT */
173 	SA_KILL|SA_CKPT,	/* SIGCKPTEXIT */
174 	SA_IGNORE,
175 	SA_IGNORE,
176 	SA_IGNORE,
177 	SA_IGNORE,
178 	SA_IGNORE,
179 	SA_IGNORE,
180 	SA_IGNORE,
181 	SA_IGNORE,
182 	SA_IGNORE,
183 	SA_IGNORE,
184 	SA_IGNORE,
185 	SA_IGNORE,
186 	SA_IGNORE,
187 	SA_IGNORE,
188 	SA_IGNORE,
189 	SA_IGNORE,
190 	SA_IGNORE,
191 	SA_IGNORE,
192 	SA_IGNORE,
193 	SA_IGNORE,
194 	SA_IGNORE,
195 	SA_IGNORE,
196 	SA_IGNORE,
197 	SA_IGNORE,
198 	SA_IGNORE,
199 	SA_IGNORE,
200 	SA_IGNORE,
201 	SA_IGNORE,
202 	SA_IGNORE,
203 	SA_IGNORE,
204 };
205 
206 __read_mostly sigset_t sigcantmask_mask;
207 
208 static __inline int
sigprop(int sig)209 sigprop(int sig)
210 {
211 
212 	if (sig > 0 && sig < NSIG)
213 		return (sigproptbl[_SIG_IDX(sig)]);
214 
215 	return (0);
216 }
217 
218 static __inline int
sig_ffs(sigset_t * set)219 sig_ffs(sigset_t *set)
220 {
221 	int i;
222 
223 	for (i = 0; i < _SIG_WORDS; i++)
224 		if (set->__bits[i])
225 			return (ffs(set->__bits[i]) + (i * 32));
226 	return (0);
227 }
228 
229 /*
230  * Allows us to populate siginfo->si_pid and si_uid in the target process
231  * (p) from the originating thread (td).  This function must work properly
232  * even if a kernel thread is sending the signal.
233  *
234  * NOTE: Signals are not queued, so if multiple signals are received the
235  *	 signal handler will only see the most recent pid and uid for any
236  *	 given signal number.
237  */
238 static __inline void
sigsetfrompid(thread_t td,struct proc * p,int sig)239 sigsetfrompid(thread_t td, struct proc *p, int sig)
240 {
241 	struct sigacts *sap;
242 
243 	if ((sap = p->p_sigacts) == NULL)
244 		return;
245 	if (td->td_proc) {
246 		sap->ps_frominfo[sig].pid = td->td_proc->p_pid;
247 		sap->ps_frominfo[sig].uid = td->td_ucred->cr_uid;
248 	} else {
249 		sap->ps_frominfo[sig].pid = 0;
250 		sap->ps_frominfo[sig].uid = 0;
251 	}
252 }
253 
254 /*
255  * No requirements.
256  */
257 int
kern_sigaction(int sig,struct sigaction * act,struct sigaction * oact)258 kern_sigaction(int sig, struct sigaction *act, struct sigaction *oact)
259 {
260 	struct thread *td = curthread;
261 	struct proc *p = td->td_proc;
262 	struct lwp *lp;
263 	struct sigacts *ps = p->p_sigacts;
264 
265 	if (sig <= 0 || sig >= _SIG_MAXSIG)
266 		return (EINVAL);
267 
268 	lwkt_gettoken(&p->p_token);
269 
270 	if (oact) {
271 		oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
272 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
273 		oact->sa_flags = 0;
274 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
275 			oact->sa_flags |= SA_ONSTACK;
276 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
277 			oact->sa_flags |= SA_RESTART;
278 		if (SIGISMEMBER(ps->ps_sigreset, sig))
279 			oact->sa_flags |= SA_RESETHAND;
280 		if (SIGISMEMBER(ps->ps_signodefer, sig))
281 			oact->sa_flags |= SA_NODEFER;
282 		if (SIGISMEMBER(ps->ps_siginfo, sig))
283 			oact->sa_flags |= SA_SIGINFO;
284 		if (sig == SIGCHLD && p->p_sigacts->ps_flag & PS_NOCLDSTOP)
285 			oact->sa_flags |= SA_NOCLDSTOP;
286 		if (sig == SIGCHLD && p->p_sigacts->ps_flag & PS_NOCLDWAIT)
287 			oact->sa_flags |= SA_NOCLDWAIT;
288 	}
289 	if (act) {
290 		/*
291 		 * Check for invalid requests.  KILL and STOP cannot be
292 		 * caught.
293 		 */
294 		if (sig == SIGKILL || sig == SIGSTOP) {
295 			if (act->sa_handler != SIG_DFL) {
296 				lwkt_reltoken(&p->p_token);
297 				return (EINVAL);
298 			}
299 		}
300 
301 		/*
302 		 * Change setting atomically.
303 		 */
304 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
305 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
306 		if (act->sa_flags & SA_SIGINFO) {
307 			ps->ps_sigact[_SIG_IDX(sig)] =
308 			    (__sighandler_t *)act->sa_sigaction;
309 			SIGADDSET(ps->ps_siginfo, sig);
310 		} else {
311 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
312 			SIGDELSET(ps->ps_siginfo, sig);
313 		}
314 		if (!(act->sa_flags & SA_RESTART))
315 			SIGADDSET(ps->ps_sigintr, sig);
316 		else
317 			SIGDELSET(ps->ps_sigintr, sig);
318 		if (act->sa_flags & SA_ONSTACK)
319 			SIGADDSET(ps->ps_sigonstack, sig);
320 		else
321 			SIGDELSET(ps->ps_sigonstack, sig);
322 		if (act->sa_flags & SA_RESETHAND)
323 			SIGADDSET(ps->ps_sigreset, sig);
324 		else
325 			SIGDELSET(ps->ps_sigreset, sig);
326 		if (act->sa_flags & SA_NODEFER)
327 			SIGADDSET(ps->ps_signodefer, sig);
328 		else
329 			SIGDELSET(ps->ps_signodefer, sig);
330 		if (sig == SIGCHLD) {
331 			if (act->sa_flags & SA_NOCLDSTOP)
332 				p->p_sigacts->ps_flag |= PS_NOCLDSTOP;
333 			else
334 				p->p_sigacts->ps_flag &= ~PS_NOCLDSTOP;
335 			if (act->sa_flags & SA_NOCLDWAIT) {
336 				/*
337 				 * Paranoia: since SA_NOCLDWAIT is implemented
338 				 * by reparenting the dying child to PID 1 (and
339 				 * trust it to reap the zombie), PID 1 itself
340 				 * is forbidden to set SA_NOCLDWAIT.
341 				 */
342 				if (p->p_pid == 1)
343 					p->p_sigacts->ps_flag &= ~PS_NOCLDWAIT;
344 				else
345 					p->p_sigacts->ps_flag |= PS_NOCLDWAIT;
346 			} else {
347 				p->p_sigacts->ps_flag &= ~PS_NOCLDWAIT;
348 			}
349 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
350 				ps->ps_flag |= PS_CLDSIGIGN;
351 			else
352 				ps->ps_flag &= ~PS_CLDSIGIGN;
353 		}
354 		/*
355 		 * Set bit in p_sigignore for signals that are set to SIG_IGN,
356 		 * and for signals set to SIG_DFL where the default is to
357 		 * ignore. However, don't put SIGCONT in p_sigignore, as we
358 		 * have to restart the process.
359 		 *
360 		 * Also remove the signal from the process and lwp signal
361 		 * list.
362 		 */
363 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
364 		    (sigprop(sig) & SA_IGNORE &&
365 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
366 			SIGDELSET_ATOMIC(p->p_siglist, sig);
367 			FOREACH_LWP_IN_PROC(lp, p) {
368 				spin_lock(&lp->lwp_spin);
369 				SIGDELSET(lp->lwp_siglist, sig);
370 				spin_unlock(&lp->lwp_spin);
371 			}
372 			if (sig != SIGCONT) {
373 				/* easier in ksignal */
374 				SIGADDSET(p->p_sigignore, sig);
375 			}
376 			SIGDELSET(p->p_sigcatch, sig);
377 		} else {
378 			SIGDELSET(p->p_sigignore, sig);
379 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
380 				SIGDELSET(p->p_sigcatch, sig);
381 			else
382 				SIGADDSET(p->p_sigcatch, sig);
383 		}
384 	}
385 	lwkt_reltoken(&p->p_token);
386 	return (0);
387 }
388 
389 int
sys_sigaction(struct sysmsg * sysmsg,const struct sigaction_args * uap)390 sys_sigaction(struct sysmsg *sysmsg, const struct sigaction_args *uap)
391 {
392 	struct sigaction act, oact;
393 	struct sigaction *actp, *oactp;
394 	int error;
395 
396 	actp = (uap->act != NULL) ? &act : NULL;
397 	oactp = (uap->oact != NULL) ? &oact : NULL;
398 	if (actp) {
399 		error = copyin(uap->act, actp, sizeof(act));
400 		if (error)
401 			return (error);
402 	}
403 	error = kern_sigaction(uap->sig, actp, oactp);
404 	if (oactp && !error) {
405 		error = copyout(oactp, uap->oact, sizeof(oact));
406 	}
407 	return (error);
408 }
409 
410 /*
411  * Initialize signal state for process 0;
412  * set to ignore signals that are ignored by default.
413  */
414 void
siginit(struct proc * p)415 siginit(struct proc *p)
416 {
417 	int i;
418 
419 	for (i = 1; i <= NSIG; i++) {
420 		if (sigprop(i) & SA_IGNORE && i != SIGCONT)
421 			SIGADDSET(p->p_sigignore, i);
422 	}
423 
424 	/*
425 	 * Also initialize signal-related global state.
426 	 */
427 	SIGSETOR_CANTMASK(sigcantmask_mask);
428 }
429 
430 /*
431  * Reset signals for an exec of the specified process.
432  */
433 void
execsigs(struct proc * p)434 execsigs(struct proc *p)
435 {
436 	struct sigacts *ps = p->p_sigacts;
437 	struct lwp *lp;
438 	int sig;
439 
440 	lp = ONLY_LWP_IN_PROC(p);
441 
442 	/*
443 	 * Reset caught signals.  Held signals remain held
444 	 * through p_sigmask (unless they were caught,
445 	 * and are now ignored by default).
446 	 */
447 	while (SIGNOTEMPTY(p->p_sigcatch)) {
448 		sig = sig_ffs(&p->p_sigcatch);
449 		SIGDELSET(p->p_sigcatch, sig);
450 		if (sigprop(sig) & SA_IGNORE) {
451 			if (sig != SIGCONT)
452 				SIGADDSET(p->p_sigignore, sig);
453 			SIGDELSET_ATOMIC(p->p_siglist, sig);
454 			/* don't need spinlock */
455 			SIGDELSET(lp->lwp_siglist, sig);
456 		}
457 		ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
458 	}
459 
460 	/*
461 	 * Reset stack state to the user stack.
462 	 * Clear set of signals caught on the signal stack.
463 	 */
464 	lp->lwp_sigstk.ss_flags = SS_DISABLE;
465 	lp->lwp_sigstk.ss_size = 0;
466 	lp->lwp_sigstk.ss_sp = NULL;
467 	lp->lwp_flags &= ~LWP_ALTSTACK;
468 	/*
469 	 * Reset no zombies if child dies flag as Solaris does.
470 	 */
471 	p->p_sigacts->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
472 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
473 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
474 }
475 
476 /*
477  * kern_sigprocmask() - MP SAFE ONLY IF p == curproc
478  *
479  *	Manipulate signal mask.  This routine is MP SAFE *ONLY* if
480  *	p == curproc.
481  */
482 int
kern_sigprocmask(int how,sigset_t * set,sigset_t * oset)483 kern_sigprocmask(int how, sigset_t *set, sigset_t *oset)
484 {
485 	struct thread *td = curthread;
486 	struct lwp *lp = td->td_lwp;
487 	struct proc *p = td->td_proc;
488 	int error;
489 
490 	lwkt_gettoken(&p->p_token);
491 
492 	if (oset != NULL)
493 		*oset = lp->lwp_sigmask;
494 
495 	error = 0;
496 	if (set != NULL) {
497 		switch (how) {
498 		case SIG_BLOCK:
499 			SIG_CANTMASK(*set);
500 			SIGSETOR(lp->lwp_sigmask, *set);
501 			break;
502 		case SIG_UNBLOCK:
503 			SIGSETNAND(lp->lwp_sigmask, *set);
504 			break;
505 		case SIG_SETMASK:
506 			SIG_CANTMASK(*set);
507 			lp->lwp_sigmask = *set;
508 			sigirefs_wait(p);
509 			break;
510 		default:
511 			error = EINVAL;
512 			break;
513 		}
514 	}
515 
516 	lwkt_reltoken(&p->p_token);
517 
518 	return (error);
519 }
520 
521 /*
522  * sigprocmask()
523  *
524  * MPSAFE
525  */
526 int
sys_sigprocmask(struct sysmsg * sysmsg,const struct sigprocmask_args * uap)527 sys_sigprocmask(struct sysmsg *sysmsg, const struct sigprocmask_args *uap)
528 {
529 	sigset_t set, oset;
530 	sigset_t *setp, *osetp;
531 	int error;
532 
533 	setp = (uap->set != NULL) ? &set : NULL;
534 	osetp = (uap->oset != NULL) ? &oset : NULL;
535 	if (setp) {
536 		error = copyin(uap->set, setp, sizeof(set));
537 		if (error)
538 			return (error);
539 	}
540 	error = kern_sigprocmask(uap->how, setp, osetp);
541 	if (osetp && !error) {
542 		error = copyout(osetp, uap->oset, sizeof(oset));
543 	}
544 	return (error);
545 }
546 
547 /*
548  * MPSAFE
549  */
550 int
kern_sigpending(sigset_t * set)551 kern_sigpending(sigset_t *set)
552 {
553 	struct lwp *lp = curthread->td_lwp;
554 
555 	*set = lwp_sigpend(lp);
556 
557 	return (0);
558 }
559 
560 /*
561  * MPSAFE
562  */
563 int
sys_sigpending(struct sysmsg * sysmsg,const struct sigpending_args * uap)564 sys_sigpending(struct sysmsg *sysmsg, const struct sigpending_args *uap)
565 {
566 	sigset_t set;
567 	int error;
568 
569 	error = kern_sigpending(&set);
570 
571 	if (error == 0)
572 		error = copyout(&set, uap->set, sizeof(set));
573 	return (error);
574 }
575 
576 /*
577  * Suspend process until signal, providing mask to be set
578  * in the meantime.
579  *
580  * MPSAFE
581  */
582 int
kern_sigsuspend(sigset_t * set)583 kern_sigsuspend(sigset_t *set)
584 {
585 	struct thread *td = curthread;
586 	struct lwp *lp = td->td_lwp;
587 	struct proc *p = td->td_proc;
588 	struct sigacts *ps = p->p_sigacts;
589 
590 	/*
591 	 * When returning from sigsuspend, we want the old mask to be
592 	 * restored after the signal handler has finished.  Thus, we
593 	 * save it here and mark the sigacts structure to indicate this.
594 	 *
595 	 * To interlock signal deliveries which may race this function, we
596 	 * must hold the LWP token, otherwise the signal may be made pending
597 	 * to the process rather than the lwp during execution of the tsleep()
598 	 * (which does not hold the process token to interlock that) and be
599 	 * missed by the tsleep().
600 	 */
601 	lwkt_gettoken(&lp->lwp_token);
602 	lp->lwp_oldsigmask = lp->lwp_sigmask;
603 	lp->lwp_flags |= LWP_OLDMASK;
604 	SIG_CANTMASK(*set);
605 	lp->lwp_sigmask = *set;
606 	lwkt_reltoken(&lp->lwp_token);
607 	sigirefs_wait(p);
608 
609 	while (tsleep(ps, PCATCH, "pause", 0) == 0)
610 		/* void */;
611 	/* always return EINTR rather than ERESTART... */
612 	return (EINTR);
613 }
614 
615 /*
616  * Note nonstandard calling convention: libc stub passes mask, not
617  * pointer, to save a copyin.
618  *
619  * MPSAFE
620  */
621 int
sys_sigsuspend(struct sysmsg * sysmsg,const struct sigsuspend_args * uap)622 sys_sigsuspend(struct sysmsg *sysmsg, const struct sigsuspend_args *uap)
623 {
624 	sigset_t mask;
625 	int error;
626 
627 	error = copyin(uap->sigmask, &mask, sizeof(mask));
628 	if (error)
629 		return (error);
630 
631 	error = kern_sigsuspend(&mask);
632 
633 	return (error);
634 }
635 
636 /*
637  * MPSAFE
638  */
639 int
kern_sigaltstack(stack_t * ss,stack_t * oss)640 kern_sigaltstack(stack_t *ss, stack_t *oss)
641 {
642 	struct thread *td = curthread;
643 	struct lwp *lp = td->td_lwp;
644 	struct proc *p = td->td_proc;
645 
646 	if ((lp->lwp_flags & LWP_ALTSTACK) == 0)
647 		lp->lwp_sigstk.ss_flags |= SS_DISABLE;
648 
649 	if (oss)
650 		*oss = lp->lwp_sigstk;
651 
652 	if (ss) {
653 		if (ss->ss_flags & ~SS_DISABLE)
654 			return (EINVAL);
655 		if (ss->ss_flags & SS_DISABLE) {
656 			if (lp->lwp_sigstk.ss_flags & SS_ONSTACK)
657 				return (EPERM);
658 			lp->lwp_flags &= ~LWP_ALTSTACK;
659 			lp->lwp_sigstk.ss_flags = ss->ss_flags;
660 		} else {
661 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
662 				return (ENOMEM);
663 			lp->lwp_flags |= LWP_ALTSTACK;
664 			lp->lwp_sigstk = *ss;
665 		}
666 	}
667 
668 	return (0);
669 }
670 
671 /*
672  * MPSAFE
673  */
674 int
sys_sigaltstack(struct sysmsg * sysmsg,const struct sigaltstack_args * uap)675 sys_sigaltstack(struct sysmsg *sysmsg, const struct sigaltstack_args *uap)
676 {
677 	stack_t ss, oss;
678 	int error;
679 
680 	if (uap->ss) {
681 		error = copyin(uap->ss, &ss, sizeof(ss));
682 		if (error)
683 			return (error);
684 	}
685 
686 	error = kern_sigaltstack(uap->ss ? &ss : NULL, uap->oss ? &oss : NULL);
687 
688 	if (error == 0 && uap->oss)
689 		error = copyout(&oss, uap->oss, sizeof(*uap->oss));
690 	return (error);
691 }
692 
693 /*
694  * Common code for kill process group/broadcast kill.
695  * cp is calling process.
696  */
697 struct killpg_info {
698 	int nfound;
699 	int sig;
700 };
701 
702 static int killpg_all_callback(struct proc *p, void *data);
703 
704 static int
dokillpg(int sig,int pgid,int all)705 dokillpg(int sig, int pgid, int all)
706 {
707 	struct killpg_info info;
708 	struct proc *cp = curproc;
709 	struct proc *p;
710 	struct pgrp *pgrp;
711 
712 	info.nfound = 0;
713 	info.sig = sig;
714 
715 	if (all) {
716 		/*
717 		 * broadcast
718 		 */
719 		allproc_scan(killpg_all_callback, &info, 0);
720 	} else {
721 		if (pgid == 0) {
722 			/*
723 			 * zero pgid means send to my process group.
724 			 */
725 			pgrp = cp->p_pgrp;
726 			pgref(pgrp);
727 		} else {
728 			pgrp = pgfind(pgid);
729 			if (pgrp == NULL)
730 				return (ESRCH);
731 		}
732 
733 		/*
734 		 * Must interlock all signals against fork
735 		 */
736 		lockmgr(&pgrp->pg_lock, LK_EXCLUSIVE);
737 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
738 			if (p->p_pid <= 1 ||
739 			    p->p_stat == SZOMB ||
740 			    (p->p_flags & P_SYSTEM) ||
741 			    !CANSIGNAL(p, sig, 0)) {
742 				continue;
743 			}
744 			++info.nfound;
745 			if (sig)
746 				ksignal(p, sig);
747 		}
748 		lockmgr(&pgrp->pg_lock, LK_RELEASE);
749 		pgrel(pgrp);
750 	}
751 	return (info.nfound ? 0 : ESRCH);
752 }
753 
754 static int
killpg_all_callback(struct proc * p,void * data)755 killpg_all_callback(struct proc *p, void *data)
756 {
757 	struct killpg_info *info = data;
758 
759 	if (p->p_pid <= 1 || (p->p_flags & P_SYSTEM) ||
760 	    p == curproc || !CANSIGNAL(p, info->sig, 0)) {
761 		return (0);
762 	}
763 	++info->nfound;
764 	if (info->sig)
765 		ksignal(p, info->sig);
766 	return(0);
767 }
768 
769 /*
770  * Send a general signal to a process or LWPs within that process.
771  *
772  * Note that new signals cannot be sent if a process is exiting or already
773  * a zombie, but we return success anyway as userland is likely to not handle
774  * the race properly.
775  *
776  * No requirements.
777  */
778 int
kern_kill(int sig,pid_t pid,lwpid_t tid)779 kern_kill(int sig, pid_t pid, lwpid_t tid)
780 {
781 	int t;
782 
783 	if ((u_int)sig >= _SIG_MAXSIG)
784 		return (EINVAL);
785 
786 	if (pid > 0) {
787 		struct proc *p;
788 		struct lwp *lp = NULL;
789 
790 		/*
791 		 * Sending a signal to pid 1 as root requires that we
792 		 * are not reboot-restricted.
793 		 */
794 		if (pid == 1 && caps_priv_check_self(SYSCAP_NOREBOOT))
795 			return EPERM;
796 
797 		/*
798 		 * Send a signal to a single process.  If the kill() is
799 		 * racing an exiting process which has not yet been reaped
800 		 * act as though the signal was delivered successfully but
801 		 * don't actually try to deliver the signal.
802 		 */
803 		if ((p = pfind(pid)) == NULL) {
804 			if ((p = zpfind(pid)) == NULL)
805 				return (ESRCH);
806 			PRELE(p);
807 			return (0);
808 		}
809 		if (p != curproc) {
810 			lwkt_gettoken_shared(&p->p_token);
811 			if (!CANSIGNAL(p, sig, 1)) {
812 				lwkt_reltoken(&p->p_token);
813 				PRELE(p);
814 				return (EPERM);
815 			}
816 			lwkt_reltoken(&p->p_token);
817 		}
818 
819 		/*
820 		 * NOP if the process is exiting.  Note that lwpsignal() is
821 		 * called directly with P_WEXIT set to kill individual LWPs
822 		 * during exit, which is allowed.
823 		 */
824 		if (p->p_flags & P_WEXIT) {
825 			PRELE(p);
826 			return (0);
827 		}
828 		if (tid != -1) {
829 			lwkt_gettoken_shared(&p->p_token);
830 			lp = lwp_rb_tree_RB_LOOKUP(&p->p_lwp_tree, tid);
831 			if (lp == NULL) {
832 				lwkt_reltoken(&p->p_token);
833 				PRELE(p);
834 				return (ESRCH);
835 			}
836 			LWPHOLD(lp);
837 			lwkt_reltoken(&p->p_token);
838 		}
839 		if (sig)
840 			lwpsignal(p, lp, sig);
841 		if (lp)
842 			LWPRELE(lp);
843 		PRELE(p);
844 
845 		return (0);
846 	}
847 
848 	/*
849 	 * If we come here, pid is a special broadcast pid.
850 	 * This doesn't mix with a tid.
851 	 */
852 	if (tid != -1)
853 		return (EINVAL);
854 
855 	switch (pid) {
856 	case -1:		/* broadcast signal */
857 		t = (dokillpg(sig, 0, 1));
858 		break;
859 	case 0:			/* signal own process group */
860 		t = (dokillpg(sig, 0, 0));
861 		break;
862 	default:		/* negative explicit process group */
863 		t = (dokillpg(sig, -pid, 0));
864 		break;
865 	}
866 	return t;
867 }
868 
869 int
sys_kill(struct sysmsg * sysmsg,const struct kill_args * uap)870 sys_kill(struct sysmsg *sysmsg, const struct kill_args *uap)
871 {
872 	int error;
873 
874 	error = kern_kill(uap->signum, uap->pid, -1);
875 	return (error);
876 }
877 
878 int
sys_lwp_kill(struct sysmsg * sysmsg,const struct lwp_kill_args * uap)879 sys_lwp_kill(struct sysmsg *sysmsg, const struct lwp_kill_args *uap)
880 {
881 	int error;
882 	pid_t pid = uap->pid;
883 
884 	/*
885 	 * A tid is mandatory for lwp_kill(), otherwise
886 	 * you could simply use kill().
887 	 */
888 	if (uap->tid == -1)
889 		return (EINVAL);
890 
891 	/*
892 	 * To save on a getpid() function call for intra-process
893 	 * signals, pid == -1 means current process.
894 	 */
895 	if (pid == -1)
896 		pid = curproc->p_pid;
897 
898 	error = kern_kill(uap->signum, pid, uap->tid);
899 	return (error);
900 }
901 
902 /*
903  * Send a signal to a process group.
904  */
905 void
gsignal(int pgid,int sig)906 gsignal(int pgid, int sig)
907 {
908 	struct pgrp *pgrp;
909 
910 	if (pgid && (pgrp = pgfind(pgid)))
911 		pgsignal(pgrp, sig, 0);
912 }
913 
914 /*
915  * Send a signal to a process group.  If checktty is 1,
916  * limit to members which have a controlling terminal.
917  *
918  * pg_lock interlocks against a fork that might be in progress, to
919  * ensure that the new child process picks up the signal.
920  */
921 void
pgsignal(struct pgrp * pgrp,int sig,int checkctty)922 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
923 {
924 	struct proc *p;
925 
926 	/*
927 	 * Must interlock all signals against fork
928 	 */
929 	if (pgrp) {
930 		pgref(pgrp);
931 		lockmgr(&pgrp->pg_lock, LK_EXCLUSIVE);
932 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
933 			if (checkctty == 0 || p->p_flags & P_CONTROLT)
934 				ksignal(p, sig);
935 		}
936 		lockmgr(&pgrp->pg_lock, LK_RELEASE);
937 		pgrel(pgrp);
938 	}
939 }
940 
941 /*
942  * Send a signal caused by a trap to the current lwp.  If it will be caught
943  * immediately, deliver it with correct code.  Otherwise, post it normally.
944  *
945  * These signals may ONLY be delivered to the specified lwp and may never
946  * be delivered to the process generically.
947  *
948  * lpmap->blockallsigs is ignored.
949  */
950 void
trapsignal(struct lwp * lp,int sig,u_long code)951 trapsignal(struct lwp *lp, int sig, u_long code)
952 {
953 	struct proc *p = lp->lwp_proc;
954 	struct sigacts *ps = p->p_sigacts;
955 
956 	/*
957 	 * If we are a virtual kernel running an emulated user process
958 	 * context, switch back to the virtual kernel context before
959 	 * trying to post the signal.
960 	 */
961 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
962 		struct trapframe *tf = lp->lwp_md.md_regs;
963 		tf->tf_trapno = 0;
964 		vkernel_trap(lp, tf);
965 	}
966 
967 	if ((p->p_flags & P_TRACED) == 0 && SIGISMEMBER(p->p_sigcatch, sig) &&
968 	    !SIGISMEMBER(lp->lwp_sigmask, sig)) {
969 		lp->lwp_ru.ru_nsignals++;
970 #ifdef KTRACE
971 		if (KTRPOINT(lp->lwp_thread, KTR_PSIG))
972 			ktrpsig(lp, sig, ps->ps_sigact[_SIG_IDX(sig)],
973 				&lp->lwp_sigmask, code);
974 #endif
975 		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)], sig,
976 						&lp->lwp_sigmask, code);
977 		SIGSETOR(lp->lwp_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]);
978 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
979 			SIGADDSET(lp->lwp_sigmask, sig);
980 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
981 			/*
982 			 * See kern_sigaction() for origin of this code.
983 			 */
984 			SIGDELSET(p->p_sigcatch, sig);
985 			if (sig != SIGCONT &&
986 			    sigprop(sig) & SA_IGNORE)
987 				SIGADDSET(p->p_sigignore, sig);
988 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
989 		}
990 	} else {
991 		lp->lwp_code = code;	/* XXX for core dump/debugger */
992 		lp->lwp_sig = sig;	/* XXX to verify code */
993 		lwpsignal(p, lp, sig);
994 	}
995 }
996 
997 /*
998  * Find a suitable lwp to deliver the signal to.  Returns NULL if all
999  * lwps hold the signal blocked.
1000  *
1001  * Caller must hold p->p_token.
1002  *
1003  * Returns a lp or NULL.  If non-NULL the lp is held and its token is
1004  * acquired.
1005  */
1006 static struct lwp *
find_lwp_for_signal(struct proc * p,int sig)1007 find_lwp_for_signal(struct proc *p, int sig)
1008 {
1009 	struct lwp *lp;
1010 	struct lwp *run, *sleep, *stop;
1011 
1012 	/*
1013 	 * If the running/preempted thread belongs to the proc to which
1014 	 * the signal is being delivered and this thread does not block
1015 	 * the signal, then we can avoid a context switch by delivering
1016 	 * the signal to this thread, because it will return to userland
1017 	 * soon anyways.
1018 	 */
1019 	lp = lwkt_preempted_proc();
1020 	if (lp != NULL && lp->lwp_proc == p) {
1021 		LWPHOLD(lp);
1022 		lwkt_gettoken(&lp->lwp_token);
1023 		if (!SIGISMEMBER(lp->lwp_sigmask, sig)) {
1024 			/* return w/ token held */
1025 			return (lp);
1026 		}
1027 		lwkt_reltoken(&lp->lwp_token);
1028 		LWPRELE(lp);
1029 	}
1030 
1031 	run = sleep = stop = NULL;
1032 	FOREACH_LWP_IN_PROC(lp, p) {
1033 		/*
1034 		 * If the signal is being blocked by the lwp, then this
1035 		 * lwp is not eligible for receiving the signal.
1036 		 */
1037 		LWPHOLD(lp);
1038 		lwkt_gettoken(&lp->lwp_token);
1039 
1040 		if (SIGISMEMBER(lp->lwp_sigmask, sig)) {
1041 			lwkt_reltoken(&lp->lwp_token);
1042 			LWPRELE(lp);
1043 			continue;
1044 		}
1045 
1046 		switch (lp->lwp_stat) {
1047 		case LSRUN:
1048 			if (sleep) {
1049 				lwkt_token_swap();
1050 				lwkt_reltoken(&sleep->lwp_token);
1051 				LWPRELE(sleep);
1052 				sleep = NULL;
1053 				run = lp;
1054 			} else if (stop) {
1055 				lwkt_token_swap();
1056 				lwkt_reltoken(&stop->lwp_token);
1057 				LWPRELE(stop);
1058 				stop = NULL;
1059 				run = lp;
1060 			} else {
1061 				run = lp;
1062 			}
1063 			break;
1064 		case LSSLEEP:
1065 			if (lp->lwp_flags & LWP_SINTR) {
1066 				if (sleep) {
1067 					lwkt_reltoken(&lp->lwp_token);
1068 					LWPRELE(lp);
1069 				} else if (stop) {
1070 					lwkt_token_swap();
1071 					lwkt_reltoken(&stop->lwp_token);
1072 					LWPRELE(stop);
1073 					stop = NULL;
1074 					sleep = lp;
1075 				} else {
1076 					sleep = lp;
1077 				}
1078 			} else {
1079 				lwkt_reltoken(&lp->lwp_token);
1080 				LWPRELE(lp);
1081 			}
1082 			break;
1083 		case LSSTOP:
1084 			if (sleep) {
1085 				lwkt_reltoken(&lp->lwp_token);
1086 				LWPRELE(lp);
1087 			} else if (stop) {
1088 				lwkt_reltoken(&lp->lwp_token);
1089 				LWPRELE(lp);
1090 			} else {
1091 				stop = lp;
1092 			}
1093 			break;
1094 		}
1095 		if (run)
1096 			break;
1097 	}
1098 
1099 	if (run != NULL)
1100 		return (run);
1101 	else if (sleep != NULL)
1102 		return (sleep);
1103 	else
1104 		return (stop);
1105 }
1106 
1107 /*
1108  * Send the signal to the process.  If the signal has an action, the action
1109  * is usually performed by the target process rather than the caller; we add
1110  * the signal to the set of pending signals for the process.
1111  *
1112  * Exceptions:
1113  *   o When a stop signal is sent to a sleeping process that takes the
1114  *     default action, the process is stopped without awakening it.
1115  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
1116  *     regardless of the signal action (eg, blocked or ignored).
1117  *
1118  * Other ignored signals are discarded immediately.
1119  *
1120  * If the caller wishes to call this function from a hard code section the
1121  * caller must already hold p->p_token (see kern_clock.c).
1122  *
1123  * No requirements.
1124  */
1125 void
ksignal(struct proc * p,int sig)1126 ksignal(struct proc *p, int sig)
1127 {
1128 	lwpsignal(p, NULL, sig);
1129 }
1130 
1131 /*
1132  * The core for ksignal.  lp may be NULL, then a suitable thread
1133  * will be chosen.  If not, lp MUST be a member of p.
1134  *
1135  * If the caller wishes to call this function from a hard code section the
1136  * caller must already hold p->p_token.
1137  *
1138  * No requirements.
1139  */
1140 void
lwpsignal(struct proc * p,struct lwp * lp,int sig)1141 lwpsignal(struct proc *p, struct lwp *lp, int sig)
1142 {
1143 	struct proc *q;
1144 	sig_t action;
1145 	int prop;
1146 
1147 	if (sig >= _SIG_MAXSIG || sig <= 0) {
1148 		kprintf("lwpsignal: signal %d\n", sig);
1149 		panic("lwpsignal signal number");
1150 	}
1151 
1152 	KKASSERT(lp == NULL || lp->lwp_proc == p);
1153 
1154 	/*
1155 	 * We don't want to race... well, all sorts of things.  Get appropriate
1156 	 * tokens.
1157 	 *
1158 	 * Don't try to deliver a generic signal to an exiting process,
1159 	 * the signal structures could be in flux.  We check the LWP later
1160 	 * on.
1161 	 */
1162 	PHOLD(p);
1163 	if (lp) {
1164 		LWPHOLD(lp);
1165 		lwkt_gettoken(&lp->lwp_token);
1166 	} else {
1167 		lwkt_gettoken(&p->p_token);
1168 		if (p->p_flags & P_WEXIT)
1169 			goto out;
1170 	}
1171 
1172 	prop = sigprop(sig);
1173 
1174 	/*
1175 	 * If proc is traced, always give parent a chance;
1176 	 * if signal event is tracked by procfs, give *that*
1177 	 * a chance, as well.
1178 	 */
1179 	if ((p->p_flags & P_TRACED) || (p->p_stops & S_SIG)) {
1180 		action = SIG_DFL;
1181 	} else {
1182 		/*
1183 		 * Do not try to deliver signals to an exiting lwp other
1184 		 * than SIGKILL.  Note that we must still deliver the signal
1185 		 * if P_WEXIT is set in the process flags.
1186 		 */
1187 		if (lp && (lp->lwp_mpflags & LWP_MP_WEXIT) && sig != SIGKILL) {
1188 			lwkt_reltoken(&lp->lwp_token);
1189 			LWPRELE(lp);
1190 			PRELE(p);
1191 			return;
1192 		}
1193 
1194 		/*
1195 		 * If the signal is being ignored, then we forget about
1196 		 * it immediately.  NOTE: We don't set SIGCONT in p_sigignore,
1197 		 * and if it is set to SIG_IGN, action will be SIG_DFL here.
1198 		 */
1199 		if (SIGISMEMBER(p->p_sigignore, sig)) {
1200 			/*
1201 			 * Even if a signal is set SIG_IGN, it may still be
1202 			 * lurking in a kqueue.
1203 			 */
1204 			KNOTE(&p->p_klist, NOTE_SIGNAL | sig);
1205 			if (lp) {
1206 				lwkt_reltoken(&lp->lwp_token);
1207 				LWPRELE(lp);
1208 			} else {
1209 				lwkt_reltoken(&p->p_token);
1210 			}
1211 			PRELE(p);
1212 			return;
1213 		}
1214 		if (SIGISMEMBER(p->p_sigcatch, sig))
1215 			action = SIG_CATCH;
1216 		else
1217 			action = SIG_DFL;
1218 	}
1219 
1220 	/*
1221 	 * If continuing, clear any pending STOP signals for the whole
1222 	 * process.
1223 	 */
1224 	if (prop & SA_CONT) {
1225 		lwkt_gettoken(&p->p_token);
1226 		SIG_STOPSIGMASK_ATOMIC(p->p_siglist);
1227 		lwkt_reltoken(&p->p_token);
1228 	}
1229 
1230 	if (prop & SA_STOP) {
1231 		/*
1232 		 * If sending a tty stop signal to a member of an orphaned
1233 		 * process group, discard the signal here if the action
1234 		 * is default; don't stop the process below if sleeping,
1235 		 * and don't clear any pending SIGCONT.
1236 		 */
1237 		if ((prop & SA_TTYSTOP) && p->p_pgrp->pg_jobc == 0 &&
1238 		    action == SIG_DFL) {
1239 			if (lp) {
1240 				lwkt_reltoken(&lp->lwp_token);
1241 				LWPRELE(lp);
1242 			} else {
1243 				lwkt_reltoken(&p->p_token);
1244 			}
1245 			PRELE(p);
1246 			return;
1247 		}
1248 		lwkt_gettoken(&p->p_token);
1249 		SIG_CONTSIGMASK_ATOMIC(p->p_siglist);
1250 		p->p_flags &= ~P_CONTINUED;
1251 		lwkt_reltoken(&p->p_token);
1252 	}
1253 
1254 	if (p->p_stat == SSTOP) {
1255 		/*
1256 		 * Nobody can handle this signal, add it to the lwp or
1257 		 * process pending list
1258 		 */
1259 		lwkt_gettoken(&p->p_token);
1260 		if (p->p_stat != SSTOP) {
1261 			lwkt_reltoken(&p->p_token);
1262 			goto not_stopped;
1263 		}
1264 		sigsetfrompid(curthread, p, sig);
1265 		if (lp) {
1266 			spin_lock(&lp->lwp_spin);
1267 			SIGADDSET(lp->lwp_siglist, sig);
1268 			spin_unlock(&lp->lwp_spin);
1269 		} else {
1270 			SIGADDSET_ATOMIC(p->p_siglist, sig);
1271 		}
1272 
1273 		/*
1274 		 * If the process is stopped and is being traced, then no
1275 		 * further action is necessary.
1276 		 */
1277 		if (p->p_flags & P_TRACED) {
1278 			lwkt_reltoken(&p->p_token);
1279 			goto out;
1280 		}
1281 
1282 		/*
1283 		 * If the process is stopped and receives a KILL signal,
1284 		 * make the process runnable.
1285 		 */
1286 		if (sig == SIGKILL) {
1287 			proc_unstop(p, SSTOP);
1288 			lwkt_reltoken(&p->p_token);
1289 			goto active_process;
1290 		}
1291 
1292 		/*
1293 		 * If the process is stopped and receives a CONT signal,
1294 		 * then try to make the process runnable again.
1295 		 */
1296 		if (prop & SA_CONT) {
1297 			/*
1298 			 * If SIGCONT is default (or ignored), we continue the
1299 			 * process but don't leave the signal in p_siglist, as
1300 			 * it has no further action.  If SIGCONT is held, we
1301 			 * continue the process and leave the signal in
1302 			 * p_siglist.  If the process catches SIGCONT, let it
1303 			 * handle the signal itself.
1304 			 *
1305 			 * XXX what if the signal is being held blocked?
1306 			 *
1307 			 * Token required to interlock kern_wait().
1308 			 * Reparenting can also cause a race so we have to
1309 			 * hold (q).
1310 			 */
1311 			q = p->p_pptr;
1312 			PHOLD(q);
1313 			lwkt_gettoken(&q->p_token);
1314 			p->p_flags |= P_CONTINUED;
1315 			wakeup(q);
1316 			if (action == SIG_DFL)
1317 				SIGDELSET_ATOMIC(p->p_siglist, sig);
1318 			proc_unstop(p, SSTOP);
1319 			lwkt_reltoken(&q->p_token);
1320 			PRELE(q);
1321 			lwkt_reltoken(&p->p_token);
1322 			if (action == SIG_CATCH)
1323 				goto active_process;
1324 			goto out;
1325 		}
1326 
1327 		/*
1328 		 * If the process is stopped and receives another STOP
1329 		 * signal, we do not need to stop it again.  If we did
1330 		 * the shell could get confused.
1331 		 *
1332 		 * However, if the current/preempted lwp is part of the
1333 		 * process receiving the signal, we need to keep it,
1334 		 * so that this lwp can stop in issignal() later, as
1335 		 * we don't want to wait until it reaches userret!
1336 		 */
1337 		if (prop & SA_STOP) {
1338 			if (lwkt_preempted_proc() == NULL ||
1339 			    lwkt_preempted_proc()->lwp_proc != p) {
1340 				SIGDELSET_ATOMIC(p->p_siglist, sig);
1341 			}
1342 		}
1343 
1344 		/*
1345 		 * Otherwise the process is stopped and it received some
1346 		 * signal, which does not change its stopped state.  When
1347 		 * the process is continued a wakeup(p) will be issued which
1348 		 * will wakeup any threads sleeping in tstop().
1349 		 */
1350 		lwkt_reltoken(&p->p_token);
1351 		goto out;
1352 		/* NOTREACHED */
1353 	}
1354 not_stopped:
1355 	;
1356 	/* else not stopped */
1357 active_process:
1358 
1359 	/*
1360 	 * Never deliver a lwp-specific signal to a random lwp.
1361 	 *
1362 	 * When delivering an untargetted signal, use p_sigirefs to
1363 	 * inform lwps of potential collisions.
1364 	 */
1365 	if (lp == NULL) {
1366 		/* NOTE: returns lp w/ token held */
1367 		sigirefs_hold(p);
1368 		lp = find_lwp_for_signal(p, sig);
1369 		if (lp) {
1370 			if (SIGISMEMBER(lp->lwp_sigmask, sig)) {
1371 				lwkt_reltoken(&lp->lwp_token);
1372 				LWPRELE(lp);
1373 				lp = NULL;
1374 				/* maintain proc token */
1375 				/* maintain sigirefs */
1376 			} else {
1377 				lwkt_token_swap();
1378 				lwkt_reltoken(&p->p_token);
1379 				/* maintain lp token */
1380 				sigirefs_drop(p);
1381 			}
1382 		}
1383 	}
1384 
1385 	/*
1386 	 * Deliver to the process generically if (1) the signal is being
1387 	 * sent to any thread or (2) we could not find a thread to deliver
1388 	 * it to.
1389 	 *
1390 	 * Drop p_sigirefs after the signal has been resolved to interlock
1391 	 * against sigsuspend/ppoll/pselect.
1392 	 */
1393 	if (lp == NULL) {
1394 		sigsetfrompid(curthread, p, sig);
1395 		KNOTE(&p->p_klist, NOTE_SIGNAL | sig);
1396 		SIGADDSET_ATOMIC(p->p_siglist, sig);
1397 		sigirefs_drop(p);
1398 		goto out;
1399 	}
1400 
1401 	/*
1402 	 * Deliver to a specific LWP whether it masks it or not.  It will
1403 	 * not be dispatched if masked but we must still deliver it.
1404 	 */
1405 	if (p->p_nice > NZERO && action == SIG_DFL && (prop & SA_KILL) &&
1406 	    (p->p_flags & P_TRACED) == 0) {
1407 		lwkt_gettoken(&p->p_token);
1408 		p->p_nice = NZERO;
1409 		lwkt_reltoken(&p->p_token);
1410 	}
1411 
1412 	/*
1413 	 * If the process receives a STOP signal which indeed needs to
1414 	 * stop the process, do so.  If the process chose to catch the
1415 	 * signal, it will be treated like any other signal.
1416 	 */
1417 	if ((prop & SA_STOP) && action == SIG_DFL) {
1418 		/*
1419 		 * If a child holding parent blocked, stopping
1420 		 * could cause deadlock.  Take no action at this
1421 		 * time.
1422 		 */
1423 		lwkt_gettoken(&p->p_token);
1424 		if (p->p_flags & P_PPWAIT) {
1425 			sigsetfrompid(curthread, p, sig);
1426 			SIGADDSET_ATOMIC(p->p_siglist, sig);
1427 			lwkt_reltoken(&p->p_token);
1428 			goto out;
1429 		}
1430 
1431 		/*
1432 		 * Do not actually try to manipulate the process, but simply
1433 		 * stop it.  Lwps will stop as soon as they safely can.
1434 		 *
1435 		 * Ignore stop if the process is exiting.
1436 		 */
1437 		if ((p->p_flags & P_WEXIT) == 0) {
1438 			p->p_xstat = sig;
1439 			proc_stop(p, SSTOP);
1440 		}
1441 		lwkt_reltoken(&p->p_token);
1442 		goto out;
1443 	}
1444 
1445 	/*
1446 	 * If it is a CONT signal with default action, just ignore it.
1447 	 */
1448 	if ((prop & SA_CONT) && action == SIG_DFL)
1449 		goto out;
1450 
1451 	/*
1452 	 * Mark signal pending at this specific thread.
1453 	 */
1454 	sigsetfrompid(curthread, p, sig);
1455 	spin_lock(&lp->lwp_spin);
1456 	SIGADDSET(lp->lwp_siglist, sig);
1457 	spin_unlock(&lp->lwp_spin);
1458 
1459 	lwp_signotify(lp);
1460 
1461 out:
1462 	if (lp) {
1463 		lwkt_reltoken(&lp->lwp_token);
1464 		LWPRELE(lp);
1465 	} else {
1466 		lwkt_reltoken(&p->p_token);
1467 	}
1468 	PRELE(p);
1469 }
1470 
1471 /*
1472  * Notify the LWP that a signal has arrived.  The LWP does not have to be
1473  * sleeping on the current cpu.
1474  *
1475  * p->p_token and lp->lwp_token must be held on call.
1476  *
1477  * We can only safely schedule the thread on its current cpu and only if
1478  * one of the SINTR flags is set.  If an SINTR flag is set AND we are on
1479  * the correct cpu we are properly interlocked, otherwise we could be
1480  * racing other thread transition states (or the lwp is on the user scheduler
1481  * runq but not scheduled) and must not do anything.
1482  *
1483  * Since we hold the lwp token we know the lwp cannot be ripped out from
1484  * under us so we can safely hold it to prevent it from being ripped out
1485  * from under us if we are forced to IPI another cpu to make the local
1486  * checks there.
1487  *
1488  * Adjustment of lp->lwp_stat can only occur when we hold the lwp_token,
1489  * which we won't in an IPI so any fixups have to be done here, effectively
1490  * replicating part of what setrunnable() does.
1491  */
1492 static void
lwp_signotify(struct lwp * lp)1493 lwp_signotify(struct lwp *lp)
1494 {
1495 	thread_t dtd;
1496 
1497 	ASSERT_LWKT_TOKEN_HELD(&lp->lwp_token);
1498 	dtd = lp->lwp_thread;
1499 
1500 	crit_enter();
1501 	if (lp == lwkt_preempted_proc()) {
1502 		/*
1503 		 * lwp is on the current cpu AND it is currently running
1504 		 * (we preempted it).
1505 		 */
1506 		signotify();
1507 	} else if (lp->lwp_flags & LWP_SINTR) {
1508 		/*
1509 		 * lwp is sitting in tsleep() with PCATCH set
1510 		 */
1511 		if (dtd->td_gd == mycpu) {
1512 			setrunnable(lp);
1513 		} else {
1514 			/*
1515 			 * We can only adjust lwp_stat while we hold the
1516 			 * lwp_token, and we won't in the IPI function.
1517 			 */
1518 			LWPHOLD(lp);
1519 			if (lp->lwp_stat == LSSTOP)
1520 				lp->lwp_stat = LSSLEEP;
1521 			lwkt_send_ipiq(dtd->td_gd, lwp_signotify_remote, lp);
1522 		}
1523 	} else if (dtd->td_flags & TDF_SINTR) {
1524 		/*
1525 		 * lwp is sitting in lwkt_sleep() with PCATCH set.
1526 		 */
1527 		if (dtd->td_gd == mycpu) {
1528 			setrunnable(lp);
1529 		} else {
1530 			/*
1531 			 * We can only adjust lwp_stat while we hold the
1532 			 * lwp_token, and we won't in the IPI function.
1533 			 */
1534 			LWPHOLD(lp);
1535 			if (lp->lwp_stat == LSSTOP)
1536 				lp->lwp_stat = LSSLEEP;
1537 			lwkt_send_ipiq(dtd->td_gd, lwp_signotify_remote, lp);
1538 		}
1539 	} else {
1540 		/*
1541 		 * Otherwise the lwp is either in some uninterruptible state
1542 		 * or it is on the userland scheduler's runqueue waiting to
1543 		 * be scheduled to a cpu, or it is running in userland.  We
1544 		 * generally want to send an IPI so a running target gets the
1545 		 * signal ASAP, otherwise a scheduler-tick worth of latency
1546 		 * will occur.
1547 		 *
1548 		 * Issue an IPI to the remote cpu to knock it into the kernel,
1549 		 * remote cpu will issue the cpu-local signotify() if the IPI
1550 		 * preempts the desired thread.
1551 		 */
1552 		if (dtd->td_gd != mycpu) {
1553 			LWPHOLD(lp);
1554 			lwkt_send_ipiq(dtd->td_gd, lwp_signotify_remote, lp);
1555 		}
1556 	}
1557 	crit_exit();
1558 }
1559 
1560 /*
1561  * This function is called via an IPI so we cannot call setrunnable() here
1562  * (because while we hold the lp we don't own its token, and can't get it
1563  * from an IPI).
1564  *
1565  * We are interlocked by virtue of being on the same cpu as the target.  If
1566  * we still are and LWP_SINTR or TDF_SINTR is set we can safely schedule
1567  * the target thread.
1568  */
1569 static void
lwp_signotify_remote(void * arg)1570 lwp_signotify_remote(void *arg)
1571 {
1572 	struct lwp *lp = arg;
1573 	thread_t td = lp->lwp_thread;
1574 
1575 	if (lp == lwkt_preempted_proc()) {
1576 		signotify();
1577 		LWPRELE(lp);
1578 	} else if (td->td_gd == mycpu) {
1579 		if ((lp->lwp_flags & LWP_SINTR) ||
1580 		    (td->td_flags & TDF_SINTR)) {
1581 			lwkt_schedule(td);
1582 		}
1583 		LWPRELE(lp);
1584 	} else {
1585 		lwkt_send_ipiq(td->td_gd, lwp_signotify_remote, lp);
1586 		/* LWPHOLD() is forwarded to the target cpu */
1587 	}
1588 }
1589 
1590 /*
1591  * Caller must hold p->p_token
1592  */
1593 void
proc_stop(struct proc * p,int stat)1594 proc_stop(struct proc *p, int stat)
1595 {
1596 	struct proc *q;
1597 	struct lwp *lp;
1598 
1599 	ASSERT_LWKT_TOKEN_HELD(&p->p_token);
1600 
1601 	/*
1602 	 * If somebody raced us, be happy with it.  SCORE overrides SSTOP.
1603 	 */
1604 	if (stat == SCORE) {
1605 		if (p->p_stat == SCORE || p->p_stat == SZOMB)
1606 			return;
1607 	} else {
1608 		if (p->p_stat == SSTOP || p->p_stat == SCORE ||
1609 		    p->p_stat == SZOMB) {
1610 			return;
1611 		}
1612 	}
1613 	p->p_stat = stat;
1614 
1615 	FOREACH_LWP_IN_PROC(lp, p) {
1616 		LWPHOLD(lp);
1617 		lwkt_gettoken(&lp->lwp_token);
1618 
1619 		switch (lp->lwp_stat) {
1620 		case LSSTOP:
1621 			/*
1622 			 * Do nothing, we are already counted in
1623 			 * p_nstopped.
1624 			 */
1625 			break;
1626 
1627 		case LSSLEEP:
1628 			/*
1629 			 * We're sleeping, but we will stop before
1630 			 * returning to userspace, so count us
1631 			 * as stopped as well.  We set LWP_MP_WSTOP
1632 			 * to signal the lwp that it should not
1633 			 * increase p_nstopped when reaching tstop().
1634 			 *
1635 			 * LWP_MP_WSTOP is protected by lp->lwp_token.
1636 			 */
1637 			if ((lp->lwp_mpflags & LWP_MP_WSTOP) == 0) {
1638 				atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
1639 				++p->p_nstopped;
1640 			}
1641 			break;
1642 
1643 		case LSRUN:
1644 			/*
1645 			 * We might notify ourself, but that's not
1646 			 * a problem.
1647 			 */
1648 			lwp_signotify(lp);
1649 			break;
1650 		}
1651 		lwkt_reltoken(&lp->lwp_token);
1652 		LWPRELE(lp);
1653 	}
1654 
1655 	if (p->p_nstopped == p->p_nthreads) {
1656 		/*
1657 		 * Token required to interlock kern_wait().  Reparenting can
1658 		 * also cause a race so we have to hold (q).
1659 		 */
1660 		q = p->p_pptr;
1661 		PHOLD(q);
1662 		lwkt_gettoken(&q->p_token);
1663 		p->p_flags &= ~P_WAITED;
1664 		wakeup(q);
1665 		if ((q->p_sigacts->ps_flag & PS_NOCLDSTOP) == 0)
1666 			ksignal(p->p_pptr, SIGCHLD);
1667 		lwkt_reltoken(&q->p_token);
1668 		PRELE(q);
1669 	}
1670 }
1671 
1672 /*
1673  * Caller must hold p_token
1674  */
1675 void
proc_unstop(struct proc * p,int stat)1676 proc_unstop(struct proc *p, int stat)
1677 {
1678 	struct lwp *lp;
1679 
1680 	ASSERT_LWKT_TOKEN_HELD(&p->p_token);
1681 
1682 	if (p->p_stat != stat)
1683 		return;
1684 
1685 	p->p_stat = SACTIVE;
1686 
1687 	FOREACH_LWP_IN_PROC(lp, p) {
1688 		LWPHOLD(lp);
1689 		lwkt_gettoken(&lp->lwp_token);
1690 
1691 		switch (lp->lwp_stat) {
1692 		case LSRUN:
1693 			/*
1694 			 * Uh?  Not stopped?  Well, I guess that's okay.
1695 			 */
1696 			if (bootverbose)
1697 				kprintf("proc_unstop: lwp %d/%d not sleeping\n",
1698 					p->p_pid, lp->lwp_tid);
1699 			break;
1700 
1701 		case LSSLEEP:
1702 			/*
1703 			 * Still sleeping.  Don't bother waking it up.
1704 			 * However, if this thread was counted as
1705 			 * stopped, undo this.
1706 			 *
1707 			 * Nevertheless we call setrunnable() so that it
1708 			 * will wake up in case a signal or timeout arrived
1709 			 * in the meantime.
1710 			 *
1711 			 * LWP_MP_WSTOP is protected by lp->lwp_token.
1712 			 */
1713 			if (lp->lwp_mpflags & LWP_MP_WSTOP) {
1714 				atomic_clear_int(&lp->lwp_mpflags,
1715 						 LWP_MP_WSTOP);
1716 				--p->p_nstopped;
1717 			} else {
1718 				if (bootverbose)
1719 					kprintf("proc_unstop: lwp %d/%d sleeping, not stopped\n",
1720 						p->p_pid, lp->lwp_tid);
1721 			}
1722 			/* FALLTHROUGH */
1723 
1724 		case LSSTOP:
1725 			/*
1726 			 * This handles any lwp's waiting in a tsleep with
1727 			 * SIGCATCH.
1728 			 */
1729 			lwp_signotify(lp);
1730 			break;
1731 
1732 		}
1733 		lwkt_reltoken(&lp->lwp_token);
1734 		LWPRELE(lp);
1735 	}
1736 
1737 	/*
1738 	 * This handles any lwp's waiting in tstop().  We have interlocked
1739 	 * the setting of p_stat by acquiring and releasing each lpw's
1740 	 * token.
1741 	 */
1742 	wakeup(p);
1743 }
1744 
1745 /*
1746  * Wait for all threads except the current thread to stop.
1747  */
1748 static void
proc_stopwait(struct proc * p)1749 proc_stopwait(struct proc *p)
1750 {
1751 	while ((p->p_stat == SSTOP || p->p_stat == SCORE) &&
1752 	       p->p_nstopped < p->p_nthreads - 1) {
1753 		tsleep_interlock(&p->p_nstopped, 0);
1754 		if (p->p_nstopped < p->p_nthreads - 1) {
1755 			tsleep(&p->p_nstopped, PINTERLOCKED, "stopwt", hz);
1756 		}
1757 	}
1758 }
1759 
1760 /*
1761  * No requirements.
1762  */
1763 static int
kern_sigtimedwait(sigset_t waitset,siginfo_t * info,struct timespec * timeout)1764 kern_sigtimedwait(sigset_t waitset, siginfo_t *info, struct timespec *timeout)
1765 {
1766 	sigset_t savedmask, set;
1767 	struct proc *p = curproc;
1768 	struct lwp *lp = curthread->td_lwp;
1769 	int error, sig, hz, timevalid = 0;
1770 	struct timespec rts, ets, ts;
1771 	struct timeval tv;
1772 
1773 	error = 0;
1774 	sig = 0;
1775 	ets.tv_sec = 0;		/* silence compiler warning */
1776 	ets.tv_nsec = 0;	/* silence compiler warning */
1777 	SIG_CANTMASK(waitset);
1778 	savedmask = lp->lwp_sigmask;
1779 
1780 	if (timeout) {
1781 		if (timeout->tv_sec >= 0 && timeout->tv_nsec >= 0 &&
1782 		    timeout->tv_nsec < 1000000000) {
1783 			timevalid = 1;
1784 			getnanouptime(&rts);
1785 			timespecadd(&rts, timeout, &ets);
1786 		}
1787 	}
1788 
1789 	for (;;) {
1790 		set = lwp_sigpend(lp);
1791 		SIGSETAND(set, waitset);
1792 		if ((sig = sig_ffs(&set)) != 0) {
1793 			SIGFILLSET(lp->lwp_sigmask);
1794 			SIGDELSET(lp->lwp_sigmask, sig);
1795 			SIG_CANTMASK(lp->lwp_sigmask);
1796 			sig = issignal(lp, 1, 0);
1797 			/*
1798 			 * It may be a STOP signal, in the case, issignal
1799 			 * returns 0, because we may stop there, and new
1800 			 * signal can come in, we should restart if we got
1801 			 * nothing.
1802 			 */
1803 			if (sig == 0)
1804 				continue;
1805 			else
1806 				break;
1807 		}
1808 
1809 		/*
1810 		 * Previous checking got nothing, and we retried but still
1811 		 * got nothing, we should return the error status.
1812 		 */
1813 		if (error)
1814 			break;
1815 
1816 		/*
1817 		 * POSIX says this must be checked after looking for pending
1818 		 * signals.
1819 		 */
1820 		if (timeout) {
1821 			if (timevalid == 0) {
1822 				error = EINVAL;
1823 				break;
1824 			}
1825 			getnanouptime(&rts);
1826 			if (timespeccmp(&rts, &ets, >=)) {
1827 				error = EAGAIN;
1828 				break;
1829 			}
1830 			timespecsub(&ets, &rts, &ts);
1831 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1832 			hz = tvtohz_high(&tv);
1833 		} else {
1834 			hz = 0;
1835 		}
1836 
1837 		lp->lwp_sigmask = savedmask;
1838 		SIGSETNAND(lp->lwp_sigmask, waitset);
1839 		sigirefs_wait(p);
1840 
1841 		/*
1842 		 * We won't ever be woken up.  Instead, our sleep will
1843 		 * be broken in lwpsignal().
1844 		 */
1845 		error = tsleep(&p->p_sigacts, PCATCH, "sigwt", hz);
1846 		if (timeout) {
1847 			if (error == ERESTART) {
1848 				/* can not restart a timeout wait. */
1849 				error = EINTR;
1850 			} else if (error == EAGAIN) {
1851 				/* will calculate timeout by ourself. */
1852 				error = 0;
1853 			}
1854 		}
1855 		/* Retry ... */
1856 	}
1857 
1858 	lp->lwp_sigmask = savedmask;
1859 	sigirefs_wait(p);
1860 
1861 	if (sig) {
1862 		error = 0;
1863 		bzero(info, sizeof(*info));
1864 		info->si_signo = sig;
1865 		spin_lock(&lp->lwp_spin);
1866 		lwp_delsig(lp, sig, 1);	/* take the signal! */
1867 		spin_unlock(&lp->lwp_spin);
1868 
1869 		if (sig == SIGKILL) {
1870 			sigexit(lp, sig);
1871 			/* NOT REACHED */
1872 		}
1873 	}
1874 
1875 	return (error);
1876 }
1877 
1878 /*
1879  * MPALMOSTSAFE
1880  */
1881 int
sys_sigtimedwait(struct sysmsg * sysmsg,const struct sigtimedwait_args * uap)1882 sys_sigtimedwait(struct sysmsg *sysmsg, const struct sigtimedwait_args *uap)
1883 {
1884 	struct timespec ts;
1885 	struct timespec *timeout;
1886 	sigset_t set;
1887 	siginfo_t info;
1888 	int error;
1889 
1890 	if (uap->timeout) {
1891 		error = copyin(uap->timeout, &ts, sizeof(ts));
1892 		if (error)
1893 			return (error);
1894 		timeout = &ts;
1895 	} else {
1896 		timeout = NULL;
1897 	}
1898 	error = copyin(uap->set, &set, sizeof(set));
1899 	if (error)
1900 		return (error);
1901 	error = kern_sigtimedwait(set, &info, timeout);
1902 	if (error)
1903 		return (error);
1904 	if (uap->info)
1905 		error = copyout(&info, uap->info, sizeof(info));
1906 	/* Repost if we got an error. */
1907 	/*
1908 	 * XXX lwp
1909 	 *
1910 	 * This could transform a thread-specific signal to another
1911 	 * thread / process pending signal.
1912 	 */
1913 	if (error) {
1914 		ksignal(curproc, info.si_signo);
1915 	} else {
1916 		sysmsg->sysmsg_result = info.si_signo;
1917 	}
1918 	return (error);
1919 }
1920 
1921 /*
1922  * MPALMOSTSAFE
1923  */
1924 int
sys_sigwaitinfo(struct sysmsg * sysmsg,const struct sigwaitinfo_args * uap)1925 sys_sigwaitinfo(struct sysmsg *sysmsg, const struct sigwaitinfo_args *uap)
1926 {
1927 	siginfo_t info;
1928 	sigset_t set;
1929 	int error;
1930 
1931 	error = copyin(uap->set, &set, sizeof(set));
1932 	if (error)
1933 		return (error);
1934 	error = kern_sigtimedwait(set, &info, NULL);
1935 	if (error)
1936 		return (error);
1937 	if (uap->info)
1938 		error = copyout(&info, uap->info, sizeof(info));
1939 	/* Repost if we got an error. */
1940 	/*
1941 	 * XXX lwp
1942 	 *
1943 	 * This could transform a thread-specific signal to another
1944 	 * thread / process pending signal.
1945 	 */
1946 	if (error) {
1947 		ksignal(curproc, info.si_signo);
1948 	} else {
1949 		sysmsg->sysmsg_result = info.si_signo;
1950 	}
1951 	return (error);
1952 }
1953 
1954 /*
1955  * If the current process has received a signal that would interrupt a
1956  * system call, return EINTR or ERESTART as appropriate.
1957  */
1958 int
iscaught(struct lwp * lp)1959 iscaught(struct lwp *lp)
1960 {
1961 	struct proc *p = lp->lwp_proc;
1962 	int sig;
1963 
1964 	if (p) {
1965 		if ((sig = CURSIG(lp)) != 0) {
1966 			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
1967 				return (EINTR);
1968 			return (ERESTART);
1969 		}
1970 	}
1971 	return(EWOULDBLOCK);
1972 }
1973 
1974 /*
1975  * If the current lwp/proc has received a signal (should be caught or cause
1976  * termination, should interrupt current syscall), return the signal number.
1977  * Stop signals with default action are processed immediately, then cleared;
1978  * they aren't returned.  This is checked after each entry to the system for
1979  * a syscall or trap (though this can usually be done without calling issignal
1980  * by checking the pending signal masks in the CURSIG macro).
1981  *
1982  * This routine is called via CURSIG/__cursig.  We will acquire and release
1983  * p->p_token but if the caller needs to interlock the test the caller must
1984  * also hold p->p_token.
1985  *
1986  *	while (sig = CURSIG(curproc))
1987  *		postsig(sig);
1988  */
1989 int
issignal(struct lwp * lp,int maytrace,int * ptokp)1990 issignal(struct lwp *lp, int maytrace, int *ptokp)
1991 {
1992 	struct proc *p = lp->lwp_proc;
1993 	sigset_t mask;
1994 	int sig, prop;
1995 	int haveptok;
1996 
1997 	for (;;) {
1998 		int traced = (p->p_flags & P_TRACED) || (p->p_stops & S_SIG);
1999 
2000 		haveptok = 0;
2001 
2002 		/*
2003 		 * NOTE: Do not tstop here.  Issue the proc_stop()
2004 		 *	 so other parties see that we know we need
2005 		 *	 to stop, but don't block here.  Locks might
2006 		 *	 be held.
2007 		 *
2008 		 * XXX If this process is supposed to stop, stop this thread.
2009 		 *     removed.
2010 		 */
2011 #if 0
2012 		if (STOPLWP(p, lp)) {
2013 			lwkt_gettoken(&p->p_token);
2014 			tstop();
2015 			lwkt_reltoken(&p->p_token);
2016 		}
2017 #endif
2018 
2019 		/*
2020 		 * Quick check without token
2021 		 */
2022 		mask = lwp_sigpend(lp);
2023 		SIGSETNAND(mask, lp->lwp_sigmask);
2024 		if (p->p_flags & P_PPWAIT)
2025 			SIG_STOPSIGMASK(mask);
2026 		SIG_CONDBLOCKALLSIGS(mask, lp);
2027 
2028 		if (SIGISEMPTY(mask)) 		/* no signal to send */
2029 			return (0);
2030 
2031 		/*
2032 		 * If the signal is a member of the process signal set
2033 		 * we need p_token (even if it is also a member of the
2034 		 * lwp signal set).
2035 		 */
2036 		sig = sig_ffs(&mask);
2037 		if (SIGISMEMBER(p->p_siglist, sig)) {
2038 			/*
2039 			 * Recheck with token
2040 			 */
2041 			haveptok = 1;
2042 			lwkt_gettoken(&p->p_token);
2043 
2044 			mask = lwp_sigpend(lp);
2045 			SIGSETNAND(mask, lp->lwp_sigmask);
2046 			if (p->p_flags & P_PPWAIT)
2047 				SIG_STOPSIGMASK(mask);
2048 			if (SIGISEMPTY(mask)) {		/* no signal to send */
2049 				/* haveptok is TRUE */
2050 				lwkt_reltoken(&p->p_token);
2051 				return (0);
2052 			}
2053 			sig = sig_ffs(&mask);
2054 		}
2055 
2056 		STOPEVENT(p, S_SIG, sig);
2057 
2058 		/*
2059 		 * We should see pending but ignored signals
2060 		 * only if P_TRACED was on when they were posted.
2061 		 */
2062 		if (SIGISMEMBER(p->p_sigignore, sig) && (traced == 0)) {
2063 			spin_lock(&lp->lwp_spin);
2064 			lwp_delsig(lp, sig, haveptok);
2065 			spin_unlock(&lp->lwp_spin);
2066 			if (haveptok)
2067 				lwkt_reltoken(&p->p_token);
2068 			continue;
2069 		}
2070 		if (maytrace &&
2071 		    (p->p_flags & P_TRACED) &&
2072 		    (p->p_flags & P_PPWAIT) == 0) {
2073 			/*
2074 			 * If traced, always stop, and stay stopped until
2075 			 * released by the parent.
2076 			 *
2077 			 * NOTE: SSTOP may get cleared during the loop, but
2078 			 *	 we do not re-notify the parent if we have
2079 			 *	 to loop several times waiting for the parent
2080 			 *	 to let us continue.  XXX not sure if this is
2081 			 * 	 still true
2082 			 *
2083 			 * NOTE: Do not tstop here.  Issue the proc_stop()
2084 			 *	 so other parties see that we know we need
2085 			 *	 to stop, but don't block here.  Locks might
2086 			 *	 be held.
2087 			 */
2088 			if (haveptok == 0) {
2089 				lwkt_gettoken(&p->p_token);
2090 				haveptok = 1;
2091 			}
2092 			p->p_xstat = sig;
2093 			proc_stop(p, SSTOP);
2094 
2095 			/*
2096 			 * Normally we don't stop until we return to userland, but
2097 			 * make an exception when tracing and 'maytrace' is asserted.
2098 			 */
2099 			if (p->p_flags & P_TRACED)
2100 				tstop();
2101 
2102 			/*
2103 			 * If parent wants us to take the signal,
2104 			 * then it will leave it in p->p_xstat;
2105 			 * otherwise we just look for signals again.
2106 			 */
2107 			spin_lock(&lp->lwp_spin);
2108 			lwp_delsig(lp, sig, 1);	/* clear old signal */
2109 			spin_unlock(&lp->lwp_spin);
2110 			sig = p->p_xstat;
2111 			if (sig == 0) {
2112 				/* haveptok is TRUE */
2113 				lwkt_reltoken(&p->p_token);
2114 				continue;
2115 			}
2116 
2117 			/*
2118 			 * Put the new signal into p_siglist.  If the
2119 			 * signal is being masked, look for other signals.
2120 			 *
2121 			 * XXX lwp might need a call to ksignal()
2122 			 */
2123 			SIGADDSET_ATOMIC(p->p_siglist, sig);
2124 			if (SIGISMEMBER(lp->lwp_sigmask, sig)) {
2125 				/* haveptok is TRUE */
2126 				lwkt_reltoken(&p->p_token);
2127 				continue;
2128 			}
2129 
2130 			/*
2131 			 * If the traced bit got turned off, go back up
2132 			 * to the top to rescan signals.  This ensures
2133 			 * that p_sig* and ps_sigact are consistent.
2134 			 */
2135 			if ((p->p_flags & P_TRACED) == 0) {
2136 				/* haveptok is TRUE */
2137 				lwkt_reltoken(&p->p_token);
2138 				continue;
2139 			}
2140 		}
2141 
2142 		/*
2143 		 * p_token may be held here
2144 		 */
2145 		prop = sigprop(sig);
2146 
2147 		/*
2148 		 * Decide whether the signal should be returned.
2149 		 * Return the signal's number, or fall through
2150 		 * to clear it from the pending mask.
2151 		 */
2152 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2153 		case (intptr_t)SIG_DFL:
2154 			/*
2155 			 * Don't take default actions on system processes.
2156 			 */
2157 			if (p->p_pid <= 1) {
2158 #ifdef DIAGNOSTIC
2159 				/*
2160 				 * Are you sure you want to ignore SIGSEGV
2161 				 * in init? XXX
2162 				 */
2163 				kprintf("Process (pid %lu) got signal %d\n",
2164 					(u_long)p->p_pid, sig);
2165 #endif
2166 				break;		/* == ignore */
2167 			}
2168 
2169 			/*
2170 			 * Handle the in-kernel checkpoint action
2171 			 */
2172 			if (prop & SA_CKPT) {
2173 				if (haveptok == 0) {
2174 					lwkt_gettoken(&p->p_token);
2175 					haveptok = 1;
2176 				}
2177 				checkpoint_signal_handler(lp);
2178 				break;
2179 			}
2180 
2181 			/*
2182 			 * If there is a pending stop signal to process
2183 			 * with default action, stop here,
2184 			 * then clear the signal.  However,
2185 			 * if process is member of an orphaned
2186 			 * process group, ignore tty stop signals.
2187 			 */
2188 			if (prop & SA_STOP) {
2189 				if (haveptok == 0) {
2190 					lwkt_gettoken(&p->p_token);
2191 					haveptok = 1;
2192 				}
2193 				if (p->p_flags & P_TRACED ||
2194 		    		    (p->p_pgrp->pg_jobc == 0 &&
2195 				    prop & SA_TTYSTOP))
2196 					break;	/* == ignore */
2197 				if ((p->p_flags & P_WEXIT) == 0) {
2198 					/*
2199 					 * NOTE: We do not block here.  Issue
2200 					 *	 stopthe stop so other parties
2201 					 *	 see that we know we need to
2202 					 *	 stop.  Locks might be held.
2203 					 */
2204 					p->p_xstat = sig;
2205 					proc_stop(p, SSTOP);
2206 
2207 #if 0
2208 					tstop();
2209 #endif
2210 				}
2211 				break;
2212 			} else if (prop & SA_IGNORE) {
2213 				/*
2214 				 * Except for SIGCONT, shouldn't get here.
2215 				 * Default action is to ignore; drop it.
2216 				 */
2217 				break;		/* == ignore */
2218 			} else {
2219 				if (ptokp)
2220 					*ptokp = haveptok;
2221 				else if (haveptok)
2222 					lwkt_reltoken(&p->p_token);
2223 				return (sig);
2224 			}
2225 
2226 			/*NOTREACHED*/
2227 
2228 		case (intptr_t)SIG_IGN:
2229 			/*
2230 			 * Masking above should prevent us ever trying
2231 			 * to take action on an ignored signal other
2232 			 * than SIGCONT, unless process is traced.
2233 			 */
2234 			if ((prop & SA_CONT) == 0 &&
2235 			    (p->p_flags & P_TRACED) == 0)
2236 				kprintf("issignal\n");
2237 			break;		/* == ignore */
2238 
2239 		default:
2240 			/*
2241 			 * This signal has an action, let
2242 			 * postsig() process it.
2243 			 */
2244 			if (ptokp)
2245 				*ptokp = haveptok;
2246 			else if (haveptok)
2247 				lwkt_reltoken(&p->p_token);
2248 			return (sig);
2249 		}
2250 		spin_lock(&lp->lwp_spin);
2251 		lwp_delsig(lp, sig, haveptok);		/* take the signal! */
2252 		spin_unlock(&lp->lwp_spin);
2253 
2254 		if (haveptok)
2255 			lwkt_reltoken(&p->p_token);
2256 	}
2257 	/* NOTREACHED */
2258 }
2259 
2260 /*
2261  * Take the action for the specified signal from the current set of
2262  * pending signals.
2263  *
2264  * haveptok indicates whether the caller is holding p->p_token.  If the
2265  * caller is, we are responsible for releasing it.
2266  *
2267  * This routine can only be called from the top-level trap from usermode.
2268  * It is expecting to be able to modify the top-level stack frame.
2269  */
2270 void
postsig(int sig,int haveptok)2271 postsig(int sig, int haveptok)
2272 {
2273 	struct lwp *lp = curthread->td_lwp;
2274 	struct proc *p = lp->lwp_proc;
2275 	struct sigacts *ps = p->p_sigacts;
2276 	sig_t action;
2277 	sigset_t returnmask;
2278 	int code;
2279 
2280 	KASSERT(sig != 0, ("postsig"));
2281 
2282 	/*
2283 	 * If we are a virtual kernel running an emulated user process
2284 	 * context, switch back to the virtual kernel context before
2285 	 * trying to post the signal.
2286 	 */
2287 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
2288 		struct trapframe *tf = lp->lwp_md.md_regs;
2289 		tf->tf_trapno = 0;
2290 		vkernel_trap(lp, tf);
2291 	}
2292 
2293 	KNOTE(&p->p_klist, NOTE_SIGNAL | sig);
2294 
2295 	spin_lock(&lp->lwp_spin);
2296 	lwp_delsig(lp, sig, haveptok);
2297 	spin_unlock(&lp->lwp_spin);
2298 	action = ps->ps_sigact[_SIG_IDX(sig)];
2299 #ifdef KTRACE
2300 	if (KTRPOINT(lp->lwp_thread, KTR_PSIG))
2301 		ktrpsig(lp, sig, action, lp->lwp_flags & LWP_OLDMASK ?
2302 			&lp->lwp_oldsigmask : &lp->lwp_sigmask, 0);
2303 #endif
2304 	/*
2305 	 * We don't need p_token after this point.
2306 	 */
2307 	if (haveptok)
2308 		lwkt_reltoken(&p->p_token);
2309 
2310 	STOPEVENT(p, S_SIG, sig);
2311 
2312 	if (action == SIG_DFL) {
2313 		/*
2314 		 * Default action, where the default is to kill
2315 		 * the process.  (Other cases were ignored above.)
2316 		 */
2317 		sigexit(lp, sig);
2318 		/* NOTREACHED */
2319 	} else {
2320 		/*
2321 		 * If we get here, the signal must be caught.
2322 		 */
2323 		KASSERT(action != SIG_IGN && !SIGISMEMBER(lp->lwp_sigmask, sig),
2324 		    ("postsig action"));
2325 
2326 		/*
2327 		 * Reset the signal handler if asked to
2328 		 */
2329 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
2330 			/*
2331 			 * See kern_sigaction() for origin of this code.
2332 			 */
2333 			SIGDELSET(p->p_sigcatch, sig);
2334 			if (sig != SIGCONT &&
2335 			    sigprop(sig) & SA_IGNORE)
2336 				SIGADDSET(p->p_sigignore, sig);
2337 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
2338 		}
2339 
2340 		/*
2341 		 * Set the signal mask and calculate the mask to restore
2342 		 * when the signal function returns.
2343 		 *
2344 		 * Special case: user has done a sigsuspend.  Here the
2345 		 * current mask is not of interest, but rather the
2346 		 * mask from before the sigsuspend is what we want
2347 		 * restored after the signal processing is completed.
2348 		 */
2349 		if (lp->lwp_flags & LWP_OLDMASK) {
2350 			returnmask = lp->lwp_oldsigmask;
2351 			lp->lwp_flags &= ~LWP_OLDMASK;
2352 		} else {
2353 			returnmask = lp->lwp_sigmask;
2354 		}
2355 
2356 		SIGSETOR(lp->lwp_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]);
2357 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
2358 			SIGADDSET(lp->lwp_sigmask, sig);
2359 
2360 		lp->lwp_ru.ru_nsignals++;
2361 		if (lp->lwp_sig != sig) {
2362 			code = 0;
2363 		} else {
2364 			code = lp->lwp_code;
2365 			lp->lwp_code = 0;
2366 			lp->lwp_sig = 0;
2367 		}
2368 		(*p->p_sysent->sv_sendsig)(action, sig, &returnmask, code);
2369 	}
2370 }
2371 
2372 /*
2373  * Kill the current process for stated reason.
2374  */
2375 void
killproc(struct proc * p,char * why)2376 killproc(struct proc *p, char *why)
2377 {
2378 	log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n",
2379 		p->p_pid, p->p_comm,
2380 		p->p_ucred ? p->p_ucred->cr_uid : -1, why);
2381 	ksignal(p, SIGKILL);
2382 }
2383 
2384 /*
2385  * Force the current process to exit with the specified signal, dumping core
2386  * if appropriate.  We bypass the normal tests for masked and caught signals,
2387  * allowing unrecoverable failures to terminate the process without changing
2388  * signal state.  Mark the accounting record with the signal termination.
2389  * If dumping core, save the signal number for the debugger.  Calls exit and
2390  * does not return.
2391  *
2392  * This routine does not return.
2393  */
2394 void
sigexit(struct lwp * lp,int sig)2395 sigexit(struct lwp *lp, int sig)
2396 {
2397 	struct proc *p = lp->lwp_proc;
2398 
2399 	lwkt_gettoken(&p->p_token);
2400 	p->p_acflag |= AXSIG;
2401 	if (sigprop(sig) & SA_CORE) {
2402 		lp->lwp_sig = sig;
2403 
2404 		/*
2405 		 * All threads must be stopped before we can safely coredump.
2406 		 * Stop threads using SCORE, which cannot be overridden.
2407 		 */
2408 		if (p->p_stat != SCORE) {
2409 			proc_stop(p, SCORE);
2410 			proc_stopwait(p);
2411 
2412 			if (coredump(lp, sig) == 0)
2413 				sig |= WCOREFLAG;
2414 			p->p_stat = SSTOP;
2415 		}
2416 
2417 		/*
2418 		 * Log signals which would cause core dumps
2419 		 * (Log as LOG_INFO to appease those who don't want
2420 		 * these messages.)
2421 		 * XXX : Todo, as well as euid, write out ruid too
2422 		 */
2423 		if (kern_logsigexit) {
2424 			log(LOG_INFO,
2425 			    "pid %d (%s), uid %d: exited on signal %d%s\n",
2426 			    p->p_pid, p->p_comm,
2427 			    p->p_ucred ? p->p_ucred->cr_uid : -1,
2428 			    sig &~ WCOREFLAG,
2429 			    sig & WCOREFLAG ? " (core dumped)" : "");
2430 			if (kern_logsigexit > 1)
2431 				kprintf("DEBUG - waiting on kern.logsigexit\n");
2432 			while (kern_logsigexit > 1) {
2433 				tsleep(&kern_logsigexit, 0, "DEBUG", hz);
2434 			}
2435 		}
2436 	}
2437 	lwkt_reltoken(&p->p_token);
2438 	exit1(W_EXITCODE(0, sig));
2439 	/* NOTREACHED */
2440 }
2441 
2442 static char corefilename[MAXPATHLEN+1] = {"%N.core"};
2443 SYSCTL_STRING(_kern, OID_AUTO, corefile, CTLFLAG_RW, corefilename,
2444 	      sizeof(corefilename), "process corefile name format string");
2445 
2446 /*
2447  * expand_name(name, uid, pid)
2448  * Expand the name described in corefilename, using name, uid, and pid.
2449  * corefilename is a kprintf-like string, with three format specifiers:
2450  *	%N	name of process ("name")
2451  *	%P	process id (pid)
2452  *	%U	user id (uid)
2453  * For example, "%N.core" is the default; they can be disabled completely
2454  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
2455  * This is controlled by the sysctl variable kern.corefile (see above).
2456  */
2457 
2458 static char *
expand_name(const char * name,uid_t uid,pid_t pid)2459 expand_name(const char *name, uid_t uid, pid_t pid)
2460 {
2461 	char *temp;
2462 	char buf[11];		/* Buffer for pid/uid -- max 4B */
2463 	int i, n;
2464 	char *format = corefilename;
2465 	size_t namelen;
2466 
2467 	temp = kmalloc(MAXPATHLEN + 1, M_TEMP, M_NOWAIT);
2468 	if (temp == NULL)
2469 		return NULL;
2470 	namelen = strlen(name);
2471 	for (i = 0, n = 0; n < MAXPATHLEN && format[i]; i++) {
2472 		int l;
2473 		switch (format[i]) {
2474 		case '%':	/* Format character */
2475 			i++;
2476 			switch (format[i]) {
2477 			case '%':
2478 				temp[n++] = '%';
2479 				break;
2480 			case 'N':	/* process name */
2481 				if ((n + namelen) > MAXPATHLEN) {
2482 					log(LOG_ERR, "pid %d (%s), uid (%u):  Path `%s%s' is too long\n",
2483 					    pid, name, uid, temp, name);
2484 					kfree(temp, M_TEMP);
2485 					return NULL;
2486 				}
2487 				memcpy(temp+n, name, namelen);
2488 				n += namelen;
2489 				break;
2490 			case 'P':	/* process id */
2491 				l = ksprintf(buf, "%u", pid);
2492 				if ((n + l) > MAXPATHLEN) {
2493 					log(LOG_ERR, "pid %d (%s), uid (%u):  Path `%s%s' is too long\n",
2494 					    pid, name, uid, temp, name);
2495 					kfree(temp, M_TEMP);
2496 					return NULL;
2497 				}
2498 				memcpy(temp+n, buf, l);
2499 				n += l;
2500 				break;
2501 			case 'U':	/* user id */
2502 				l = ksprintf(buf, "%u", uid);
2503 				if ((n + l) > MAXPATHLEN) {
2504 					log(LOG_ERR, "pid %d (%s), uid (%u):  Path `%s%s' is too long\n",
2505 					    pid, name, uid, temp, name);
2506 					kfree(temp, M_TEMP);
2507 					return NULL;
2508 				}
2509 				memcpy(temp+n, buf, l);
2510 				n += l;
2511 				break;
2512 			default:
2513 			  	log(LOG_ERR, "Unknown format character %c in `%s'\n", format[i], format);
2514 			}
2515 			break;
2516 		default:
2517 			temp[n++] = format[i];
2518 		}
2519 	}
2520 	temp[n] = '\0';
2521 	return temp;
2522 }
2523 
2524 /*
2525  * Dump a process' core.  The main routine does some
2526  * policy checking, and creates the name of the coredump;
2527  * then it passes on a vnode and a size limit to the process-specific
2528  * coredump routine if there is one; if there _is not_ one, it returns
2529  * ENOSYS; otherwise it returns the error from the process-specific routine.
2530  *
2531  * The parameter `lp' is the lwp which triggered the coredump.
2532  */
2533 
2534 static int
coredump(struct lwp * lp,int sig)2535 coredump(struct lwp *lp, int sig)
2536 {
2537 	struct proc *p = lp->lwp_proc;
2538 	struct vnode *vp;
2539 	struct ucred *cred = p->p_ucred;
2540 	struct flock lf;
2541 	struct nlookupdata nd;
2542 	struct vattr vattr;
2543 	int error, error1;
2544 	char *name;			/* name of corefile */
2545 	off_t limit;
2546 
2547 	STOPEVENT(p, S_CORE, 0);
2548 
2549 	if (((sugid_coredump == 0) && (p->p_flags & P_SUGID)) ||
2550 	    do_coredump == 0)
2551 	{
2552 		return (EFAULT);
2553 	}
2554 
2555 	/*
2556 	 * Note that the bulk of limit checking is done after
2557 	 * the corefile is created.  The exception is if the limit
2558 	 * for corefiles is 0, in which case we don't bother
2559 	 * creating the corefile at all.  This layout means that
2560 	 * a corefile is truncated instead of not being created,
2561 	 * if it is larger than the limit.
2562 	 */
2563 	limit = p->p_rlimit[RLIMIT_CORE].rlim_cur;
2564 	if (limit == 0)
2565 		return EFBIG;
2566 
2567 	name = expand_name(p->p_comm, p->p_ucred->cr_uid, p->p_pid);
2568 	if (name == NULL)
2569 		return (EINVAL);
2570 	error = nlookup_init(&nd, name, UIO_SYSSPACE, NLC_LOCKVP);
2571 	if (error == 0)
2572 		error = vn_open(&nd, NULL,
2573 				O_CREAT | FWRITE | O_NOFOLLOW,
2574 				S_IRUSR | S_IWUSR);
2575 	kfree(name, M_TEMP);
2576 	if (error) {
2577 		nlookup_done(&nd);
2578 		return (error);
2579 	}
2580 	vp = nd.nl_open_vp;
2581 	nd.nl_open_vp = NULL;
2582 	nlookup_done(&nd);
2583 
2584 	vn_unlock(vp);
2585 	lf.l_whence = SEEK_SET;
2586 	lf.l_start = 0;
2587 	lf.l_len = 0;
2588 	lf.l_type = F_WRLCK;
2589 	error = VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, 0);
2590 	if (error)
2591 		goto out2;
2592 
2593 	/* Don't dump to non-regular files or files with links. */
2594 	if (vp->v_type != VREG ||
2595 	    VOP_GETATTR(vp, &vattr) || vattr.va_nlink != 1) {
2596 		error = EFAULT;
2597 		goto out1;
2598 	}
2599 
2600 	/* Don't dump to files current user does not own */
2601 	if (vattr.va_uid != p->p_ucred->cr_uid) {
2602 		error = EFAULT;
2603 		goto out1;
2604 	}
2605 
2606 	VATTR_NULL(&vattr);
2607 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2608 	vattr.va_size = 0;
2609 	VOP_SETATTR(vp, &vattr, cred);
2610 	p->p_acflag |= ACORE;
2611 	vn_unlock(vp);
2612 
2613 	error = p->p_sysent->sv_coredump ?
2614 		  p->p_sysent->sv_coredump(lp, sig, vp, limit) : ENOSYS;
2615 
2616 out1:
2617 	lf.l_type = F_UNLCK;
2618 	VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, 0);
2619 out2:
2620 	error1 = vn_close(vp, FWRITE, NULL);
2621 	if (error == 0)
2622 		error = error1;
2623 	return (error);
2624 }
2625 
2626 /*
2627  * Nonexistent system call-- signal process (may want to handle it).
2628  * Flag error in case process won't see signal immediately (blocked or ignored).
2629  *
2630  * MPALMOSTSAFE
2631  */
2632 /* ARGSUSED */
2633 int
sys_nosys(struct sysmsg * sysmsg,const struct nosys_args * args)2634 sys_nosys(struct sysmsg *sysmsg, const struct nosys_args *args)
2635 {
2636 	lwpsignal(curproc, curthread->td_lwp, SIGSYS);
2637 	return (EINVAL);
2638 }
2639 
2640 /*
2641  * Send a SIGIO or SIGURG signal to a process or process group using
2642  * stored credentials rather than those of the current process.
2643  */
2644 void
pgsigio(struct sigio * sigio,int sig,int checkctty)2645 pgsigio(struct sigio *sigio, int sig, int checkctty)
2646 {
2647 	if (sigio == NULL)
2648 		return;
2649 
2650 	if (sigio->sio_pgid > 0) {
2651 		if (CANSIGIO(sigio->sio_ruid, sigio->sio_ucred,
2652 			     sigio->sio_proc))
2653 			ksignal(sigio->sio_proc, sig);
2654 	} else if (sigio->sio_pgid < 0) {
2655 		struct proc *p;
2656 		struct pgrp *pg = sigio->sio_pgrp;
2657 
2658 		/*
2659 		 * Must interlock all signals against fork
2660 		 */
2661 		pgref(pg);
2662 		lockmgr(&pg->pg_lock, LK_EXCLUSIVE);
2663 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
2664 			if (CANSIGIO(sigio->sio_ruid, sigio->sio_ucred, p) &&
2665 			    (checkctty == 0 || (p->p_flags & P_CONTROLT)))
2666 				ksignal(p, sig);
2667 		}
2668 		lockmgr(&pg->pg_lock, LK_RELEASE);
2669 		pgrel(pg);
2670 	}
2671 }
2672 
2673 static int
filt_sigattach(struct knote * kn)2674 filt_sigattach(struct knote *kn)
2675 {
2676 	struct proc *p = curproc;
2677 
2678 	kn->kn_ptr.p_proc = p;
2679 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
2680 
2681 	/* XXX lock the proc here while adding to the list? */
2682 	knote_insert(&p->p_klist, kn);
2683 
2684 	return (0);
2685 }
2686 
2687 static void
filt_sigdetach(struct knote * kn)2688 filt_sigdetach(struct knote *kn)
2689 {
2690 	struct proc *p = kn->kn_ptr.p_proc;
2691 
2692 	knote_remove(&p->p_klist, kn);
2693 }
2694 
2695 /*
2696  * signal knotes are shared with proc knotes, so we apply a mask to
2697  * the hint in order to differentiate them from process hints.  This
2698  * could be avoided by using a signal-specific knote list, but probably
2699  * isn't worth the trouble.
2700  */
2701 static int
filt_signal(struct knote * kn,long hint)2702 filt_signal(struct knote *kn, long hint)
2703 {
2704 	if (hint & NOTE_SIGNAL) {
2705 		hint &= ~NOTE_SIGNAL;
2706 
2707 		if (kn->kn_id == hint)
2708 			kn->kn_data++;
2709 	}
2710 	return (kn->kn_data != 0);
2711 }
2712