xref: /netbsd-src/lib/libkvm/kvm_proc.c (revision 7b7254190e6be55a1aa05ac91201b9e6362e28ec)
1 /*	$NetBSD: kvm_proc.c,v 1.100 2024/12/15 12:58:38 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Charles M. Hannum.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1989, 1992, 1993
34  *	The Regents of the University of California.  All rights reserved.
35  *
36  * This code is derived from software developed by the Computer Systems
37  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
38  * BG 91-66 and contributed to Berkeley.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. Neither the name of the University nor the names of its contributors
49  *    may be used to endorse or promote products derived from this software
50  *    without specific prior written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62  * SUCH DAMAGE.
63  */
64 
65 #include <sys/cdefs.h>
66 #if defined(LIBC_SCCS) && !defined(lint)
67 #if 0
68 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
69 #else
70 __RCSID("$NetBSD: kvm_proc.c,v 1.100 2024/12/15 12:58:38 christos Exp $");
71 #endif
72 #endif /* LIBC_SCCS and not lint */
73 
74 /*
75  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
76  * users of this code, so we've factored it out into a separate module.
77  * Thus, we keep this grunge out of the other kvm applications (i.e.,
78  * most other applications are interested only in open/close/read/nlist).
79  */
80 
81 #include <sys/param.h>
82 #include <sys/lwp.h>
83 #include <sys/wait.h>
84 #include <sys/proc.h>
85 #include <sys/exec.h>
86 #include <sys/stat.h>
87 #include <sys/ioctl.h>
88 #include <sys/tty.h>
89 #include <sys/resourcevar.h>
90 #include <sys/mutex.h>
91 #include <sys/specificdata.h>
92 #include <sys/types.h>
93 
94 #include <errno.h>
95 #include <stdlib.h>
96 #include <stddef.h>
97 #include <string.h>
98 #include <unistd.h>
99 #include <nlist.h>
100 #include <kvm.h>
101 
102 #include <uvm/uvm_extern.h>
103 #include <uvm/uvm_param.h>
104 #include <uvm/uvm_amap.h>
105 #include <uvm/uvm_page.h>
106 
107 #include <sys/sysctl.h>
108 
109 #include <limits.h>
110 #include <db.h>
111 #include <paths.h>
112 
113 #include "kvm_private.h"
114 
115 /*
116  * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
117  */
118 struct miniproc {
119 	struct	vmspace *p_vmspace;
120 	char	p_stat;
121 	vaddr_t p_psstrp;
122 	struct	proc *p_paddr;
123 	pid_t	p_pid;
124 };
125 
126 /*
127  * Convert from struct proc and kinfo_proc to miniproc.
128  */
129 #define KPTOMINI(kp, p) \
130 	do { \
131 		(p)->p_stat = (kp)->kp_proc.p_stat; \
132 		(p)->p_pid = (kp)->kp_proc.p_pid; \
133 		(p)->p_paddr = (kp)->kp_eproc.e_paddr; \
134 		(p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
135 	} while (0)
136 
137 
138 /*
139  * NetBSD uses kauth(9) to manage credentials, which are stored in kauth_cred_t,
140  * a kernel-only opaque type. This is an embedded version which is *INTERNAL* to
141  * kvm(3) so dumps can be read properly.
142  *
143  * Whenever NetBSD starts exporting credentials to userland consistently (using
144  * 'struct uucred', or something) this will have to be updated again.
145  */
146 struct kvm_kauth_cred {
147 	u_int cr_refcnt;		/* reference count */
148 #if COHERENCY_UNIT > 4
149 	uint8_t cr_pad[COHERENCY_UNIT - 4];
150 #endif
151 	uid_t cr_uid;			/* user id */
152 	uid_t cr_euid;			/* effective user id */
153 	uid_t cr_svuid;			/* saved effective user id */
154 	gid_t cr_gid;			/* group id */
155 	gid_t cr_egid;			/* effective group id */
156 	gid_t cr_svgid;			/* saved effective group id */
157 	u_int cr_ngroups;		/* number of groups */
158 	gid_t cr_groups[NGROUPS];	/* group memberships */
159 	specificdata_reference cr_sd;	/* specific data */
160 };
161 
162 static char	*_kvm_ureadm(kvm_t *, const struct miniproc *, u_long,
163 		    u_long *);
164 static ssize_t	kvm_ureadm(kvm_t *, const struct miniproc *, u_long,
165 		    char *, size_t);
166 
167 static char	**kvm_argv(kvm_t *, const struct miniproc *, u_long, int, int);
168 static int	kvm_deadprocs(kvm_t *, int, int, u_long, u_long, int);
169 static char	**kvm_doargv(kvm_t *, const struct miniproc *, int,
170 		    void (*)(struct ps_strings *, u_long *, int *));
171 static char	**kvm_doargv2(kvm_t *, pid_t, int, int);
172 static int	kvm_proclist(kvm_t *, int, int, struct proc *,
173 		    struct kinfo_proc *, int);
174 static int	proc_verify(kvm_t *, u_long, const struct miniproc *);
175 static void	ps_str_a(struct ps_strings *, u_long *, int *);
176 static void	ps_str_e(struct ps_strings *, u_long *, int *);
177 
178 
179 static char *
180 _kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long va, u_long *cnt)
181 {
182 	u_long addr, head;
183 	u_long offset;
184 	struct vm_map_entry vme;
185 	struct vm_amap amap;
186 	struct vm_anon *anonp, anon;
187 	struct vm_page pg;
188 	u_long slot;
189 
190 	if (kd->swapspc == NULL) {
191 		kd->swapspc = _kvm_malloc(kd, (size_t)kd->nbpg);
192 		if (kd->swapspc == NULL)
193 			return (NULL);
194 	}
195 
196 	/*
197 	 * Look through the address map for the memory object
198 	 * that corresponds to the given virtual address.
199 	 * The header just has the entire valid range.
200 	 */
201 	head = (u_long)&p->p_vmspace->vm_map.header;
202 	addr = head;
203 	for (;;) {
204 		if (KREAD(kd, addr, &vme))
205 			return (NULL);
206 
207 		if (va >= vme.start && va < vme.end &&
208 		    vme.aref.ar_amap != NULL)
209 			break;
210 
211 		addr = (u_long)vme.next;
212 		if (addr == head)
213 			return (NULL);
214 	}
215 
216 	/*
217 	 * we found the map entry, now to find the object...
218 	 */
219 	if (vme.aref.ar_amap == NULL)
220 		return (NULL);
221 
222 	addr = (u_long)vme.aref.ar_amap;
223 	if (KREAD(kd, addr, &amap))
224 		return (NULL);
225 
226 	offset = va - vme.start;
227 	slot = offset / kd->nbpg + vme.aref.ar_pageoff;
228 	/* sanity-check slot number */
229 	if (slot > amap.am_nslot)
230 		return (NULL);
231 
232 	addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
233 	if (KREAD(kd, addr, &anonp))
234 		return (NULL);
235 
236 	addr = (u_long)anonp;
237 	if (KREAD(kd, addr, &anon))
238 		return (NULL);
239 
240 	addr = (u_long)anon.an_page;
241 	if (addr) {
242 		if (KREAD(kd, addr, &pg))
243 			return (NULL);
244 
245 		if (_kvm_pread(kd, kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
246 		    (off_t)pg.phys_addr & ~(kd->nbpg - 1)) != kd->nbpg)
247 			return (NULL);
248 	} else {
249 		if (kd->swfd < 0 ||
250 		    _kvm_pread(kd, kd->swfd, kd->swapspc, (size_t)kd->nbpg,
251 		    (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
252 			return (NULL);
253 	}
254 
255 	/* Found the page. */
256 	offset %= kd->nbpg;
257 	*cnt = kd->nbpg - offset;
258 	return (&kd->swapspc[(size_t)offset]);
259 }
260 
261 /*
262  * Convert credentials located in kernel space address 'cred' and store
263  * them in the appropriate members of 'eproc'.
264  */
265 static int
266 _kvm_convertcred(kvm_t *kd, u_long cred, struct eproc *eproc)
267 {
268 	struct kvm_kauth_cred kauthcred;
269 	struct ki_pcred *pc = &eproc->e_pcred;
270 	struct ki_ucred *uc = &eproc->e_ucred;
271 
272 	if (KREAD(kd, cred, &kauthcred) != 0)
273 		return (-1);
274 
275 	/* inlined version of kauth_cred_to_pcred, see kauth(9). */
276 	pc->p_ruid = kauthcred.cr_uid;
277 	pc->p_svuid = kauthcred.cr_svuid;
278 	pc->p_rgid = kauthcred.cr_gid;
279 	pc->p_svgid = kauthcred.cr_svgid;
280 	pc->p_refcnt = kauthcred.cr_refcnt;
281 	pc->p_pad = NULL;
282 
283 	/* inlined version of kauth_cred_to_ucred(), see kauth(9). */
284 	uc->cr_ref = kauthcred.cr_refcnt;
285 	uc->cr_uid = kauthcred.cr_euid;
286 	uc->cr_gid = kauthcred.cr_egid;
287 	uc->cr_ngroups = (uint32_t)MIN(kauthcred.cr_ngroups,
288 	    sizeof(uc->cr_groups) / sizeof(uc->cr_groups[0]));
289 	memcpy(uc->cr_groups, kauthcred.cr_groups,
290 	    uc->cr_ngroups * sizeof(uc->cr_groups[0]));
291 
292 	return (0);
293 }
294 
295 /*
296  * Read proc's from memory file into buffer bp, which has space to hold
297  * at most maxcnt procs.
298  */
299 static int
300 kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p,
301 	     struct kinfo_proc *bp, int maxcnt)
302 {
303 	int cnt = 0;
304 	int nlwps;
305 	struct kinfo_lwp *kl;
306 	struct eproc eproc;
307 	struct pgrp pgrp;
308 	struct session sess;
309 	struct tty tty;
310 	struct proc proc;
311 
312 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
313 		if (KREAD(kd, (u_long)p, &proc)) {
314 			_kvm_err(kd, kd->program, "can't read proc at %p", p);
315 			return (-1);
316 		}
317 		if (_kvm_convertcred(kd, (u_long)proc.p_cred, &eproc) != 0) {
318 			_kvm_err(kd, kd->program,
319 			    "can't read proc credentials at %p", p);
320 			return (-1);
321 		}
322 
323 		switch (what) {
324 
325 		case KERN_PROC_PID:
326 			if (proc.p_pid != (pid_t)arg)
327 				continue;
328 			break;
329 
330 		case KERN_PROC_UID:
331 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
332 				continue;
333 			break;
334 
335 		case KERN_PROC_RUID:
336 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
337 				continue;
338 			break;
339 		}
340 		/*
341 		 * We're going to add another proc to the set.  If this
342 		 * will overflow the buffer, assume the reason is because
343 		 * nprocs (or the proc list) is corrupt and declare an error.
344 		 */
345 		if (cnt >= maxcnt) {
346 			_kvm_err(kd, kd->program, "nprocs corrupt");
347 			return (-1);
348 		}
349 		/*
350 		 * gather eproc
351 		 */
352 		eproc.e_paddr = p;
353 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
354 			_kvm_err(kd, kd->program, "can't read pgrp at %p",
355 			    proc.p_pgrp);
356 			return (-1);
357 		}
358 		eproc.e_sess = pgrp.pg_session;
359 		eproc.e_pgid = pgrp.pg_id;
360 		eproc.e_jobc = pgrp.pg_jobc;
361 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
362 			_kvm_err(kd, kd->program, "can't read session at %p",
363 			    pgrp.pg_session);
364 			return (-1);
365 		}
366 		if ((proc.p_lflag & PL_CONTROLT) && sess.s_ttyp != NULL) {
367 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
368 				_kvm_err(kd, kd->program,
369 				    "can't read tty at %p", sess.s_ttyp);
370 				return (-1);
371 			}
372 			eproc.e_tdev = (uint32_t)tty.t_dev;
373 			eproc.e_tsess = tty.t_session;
374 			if (tty.t_pgrp != NULL) {
375 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
376 					_kvm_err(kd, kd->program,
377 					    "can't read tpgrp at %p",
378 					    tty.t_pgrp);
379 					return (-1);
380 				}
381 				eproc.e_tpgid = pgrp.pg_id;
382 			} else
383 				eproc.e_tpgid = -1;
384 		} else
385 			eproc.e_tdev = (uint32_t)NODEV;
386 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
387 		eproc.e_sid = sess.s_sid;
388 		if (sess.s_leader == p)
389 			eproc.e_flag |= EPROC_SLEADER;
390 		/*
391 		 * Fill in the old-style proc.p_wmesg by copying the wmesg
392 		 * from the first available LWP.
393 		 */
394 		kl = kvm_getlwps(kd, proc.p_pid,
395 		    (u_long)PTRTOUINT64(eproc.e_paddr),
396 		    sizeof(struct kinfo_lwp), &nlwps);
397 		if (kl) {
398 			if (nlwps > 0) {
399 				strcpy(eproc.e_wmesg, kl[0].l_wmesg);
400 			}
401 		}
402 		(void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
403 		    sizeof(eproc.e_vm));
404 
405 		eproc.e_xsize = eproc.e_xrssize = 0;
406 		eproc.e_xccount = eproc.e_xswrss = 0;
407 
408 		switch (what) {
409 
410 		case KERN_PROC_PGRP:
411 			if (eproc.e_pgid != (pid_t)arg)
412 				continue;
413 			break;
414 
415 		case KERN_PROC_TTY:
416 			if ((proc.p_lflag & PL_CONTROLT) == 0 ||
417 			    eproc.e_tdev != (dev_t)arg)
418 				continue;
419 			break;
420 		}
421 		memcpy(&bp->kp_proc, &proc, sizeof(proc));
422 		memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
423 		++bp;
424 		++cnt;
425 	}
426 	return (cnt);
427 }
428 
429 /*
430  * Build proc info array by reading in proc list from a crash dump.
431  * Return number of procs read.  maxcnt is the max we will read.
432  */
433 static int
434 kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc,
435 	      u_long a_zombproc, int maxcnt)
436 {
437 	struct kinfo_proc *bp = kd->procbase;
438 	int acnt, zcnt;
439 	struct proc *p;
440 
441 	if (KREAD(kd, a_allproc, &p)) {
442 		_kvm_err(kd, kd->program, "cannot read allproc");
443 		return (-1);
444 	}
445 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
446 	if (acnt < 0)
447 		return (acnt);
448 
449 	if (KREAD(kd, a_zombproc, &p)) {
450 		_kvm_err(kd, kd->program, "cannot read zombproc");
451 		return (-1);
452 	}
453 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
454 	    maxcnt - acnt);
455 	if (zcnt < 0)
456 		zcnt = 0;
457 
458 	return (acnt + zcnt);
459 }
460 
461 struct kinfo_proc2 *
462 kvm_getproc2(kvm_t *kd, int op, int arg, size_t esize, int *cnt)
463 {
464 	size_t size;
465 	int mib[6], st, nprocs;
466 	struct pstats pstats;
467 
468 	if (ISSYSCTL(kd)) {
469 		size = 0;
470 		mib[0] = CTL_KERN;
471 		mib[1] = KERN_PROC2;
472 		mib[2] = op;
473 		mib[3] = arg;
474 		mib[4] = (int)esize;
475 again:
476 		mib[5] = 0;
477 		st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0);
478 		if (st == -1) {
479 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
480 			return (NULL);
481 		}
482 
483 		mib[5] = (int) (size / esize);
484 		KVM_ALLOC(kd, procbase2, size);
485 		st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0);
486 		if (st == -1) {
487 			if (errno == ENOMEM) {
488 				goto again;
489 			}
490 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
491 			return (NULL);
492 		}
493 		nprocs = (int) (size / esize);
494 	} else {
495 		char *kp2c;
496 		struct kinfo_proc *kp;
497 		struct kinfo_proc2 kp2, *kp2p;
498 		struct kinfo_lwp *kl;
499 		int i, nlwps;
500 
501 		kp = kvm_getprocs(kd, op, arg, &nprocs);
502 		if (kp == NULL)
503 			return (NULL);
504 
505 		size = nprocs * esize;
506 		KVM_ALLOC(kd, procbase2, size);
507 		kp2c = (char *)(void *)kd->procbase2;
508 		kp2p = &kp2;
509 		for (i = 0; i < nprocs; i++, kp++) {
510 			struct timeval tv;
511 
512 			kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
513 			    (u_long)PTRTOUINT64(kp->kp_eproc.e_paddr),
514 			    sizeof(struct kinfo_lwp), &nlwps);
515 
516 			if (kl == NULL) {
517 				_kvm_syserr(kd, NULL,
518 					"kvm_getlwps() failed on process %u\n",
519 					kp->kp_proc.p_pid);
520 				if (nlwps == 0)
521 					return NULL;
522 				else
523 					continue;
524 			}
525 
526 			/* We use kl[0] as the "representative" LWP */
527 			memset(kp2p, 0, sizeof(kp2));
528 			kp2p->p_forw = kl[0].l_forw;
529 			kp2p->p_back = kl[0].l_back;
530 			kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr);
531 			kp2p->p_addr = kl[0].l_addr;
532 			kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd);
533 			kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi);
534 			kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats);
535 			kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit);
536 			kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace);
537 			kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts);
538 			kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess);
539 			kp2p->p_tsess = 0;
540 #if 1 /* XXX: dsl - p_ru was only ever non-zero for zombies */
541 			kp2p->p_ru = 0;
542 #else
543 			kp2p->p_ru = PTRTOUINT64(pstats.p_ru);
544 #endif
545 
546 			kp2p->p_eflag = 0;
547 			kp2p->p_exitsig = kp->kp_proc.p_exitsig;
548 			kp2p->p_flag = kp->kp_proc.p_flag;
549 
550 			kp2p->p_pid = kp->kp_proc.p_pid;
551 
552 			kp2p->p_ppid = kp->kp_eproc.e_ppid;
553 			kp2p->p_sid = kp->kp_eproc.e_sid;
554 			kp2p->p__pgid = kp->kp_eproc.e_pgid;
555 
556 			kp2p->p_tpgid = -1 /* XXX NO_PGID! */;
557 
558 			kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
559 			kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
560 			kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid;
561 			kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
562 			kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
563 			kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid;
564 
565 			/*CONSTCOND*/
566 			memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
567 			    MIN(sizeof(kp2p->p_groups),
568 			    sizeof(kp->kp_eproc.e_ucred.cr_groups)));
569 			kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
570 
571 			kp2p->p_jobc = kp->kp_eproc.e_jobc;
572 			kp2p->p_tdev = kp->kp_eproc.e_tdev;
573 			kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
574 			kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess);
575 
576 			kp2p->p_estcpu = 0;
577 			bintime2timeval(&kp->kp_proc.p_rtime, &tv);
578 			kp2p->p_rtime_sec = (uint32_t)tv.tv_sec;
579 			kp2p->p_rtime_usec = (uint32_t)tv.tv_usec;
580 			kp2p->p_cpticks = kl[0].l_cpticks;
581 			kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
582 			kp2p->p_swtime = kl[0].l_swtime;
583 			kp2p->p_slptime = kl[0].l_slptime;
584 #if 0 /* XXX thorpej */
585 			kp2p->p_schedflags = kp->kp_proc.p_schedflags;
586 #else
587 			kp2p->p_schedflags = 0;
588 #endif
589 
590 			kp2p->p_uticks = kp->kp_proc.p_uticks;
591 			kp2p->p_sticks = kp->kp_proc.p_sticks;
592 			kp2p->p_iticks = kp->kp_proc.p_iticks;
593 
594 			kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep);
595 			kp2p->p_traceflag = kp->kp_proc.p_traceflag;
596 
597 			kp2p->p_holdcnt = kl[0].l_holdcnt;
598 
599 			memcpy(&kp2p->p_siglist,
600 			    &kp->kp_proc.p_sigpend.sp_set,
601 			    sizeof(ki_sigset_t));
602 			memset(&kp2p->p_sigmask, 0,
603 			    sizeof(ki_sigset_t));
604 			memcpy(&kp2p->p_sigignore,
605 			    &kp->kp_proc.p_sigctx.ps_sigignore,
606 			    sizeof(ki_sigset_t));
607 			memcpy(&kp2p->p_sigcatch,
608 			    &kp->kp_proc.p_sigctx.ps_sigcatch,
609 			    sizeof(ki_sigset_t));
610 
611 			kp2p->p_stat = kl[0].l_stat;
612 			kp2p->p_priority = kl[0].l_priority;
613 			kp2p->p_usrpri = kl[0].l_priority;
614 			kp2p->p_nice = kp->kp_proc.p_nice;
615 
616 			kp2p->p_xstat = P_WAITSTATUS(&kp->kp_proc);
617 			kp2p->p_acflag = kp->kp_proc.p_acflag;
618 
619 			/*CONSTCOND*/
620 			strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
621 			    MIN(sizeof(kp2p->p_comm),
622 			    sizeof(kp->kp_proc.p_comm)));
623 
624 			strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
625 			    sizeof(kp2p->p_wmesg));
626 			kp2p->p_wchan = kl[0].l_wchan;
627 			strncpy(kp2p->p_login, kp->kp_eproc.e_login,
628 			    sizeof(kp2p->p_login));
629 
630 			kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
631 			kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
632 			kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
633 			kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
634 			kp2p->p_vm_vsize = kp->kp_eproc.e_vm.vm_map.size
635 			    / kd->nbpg;
636 			/* Adjust mapped size */
637 			kp2p->p_vm_msize =
638 			    (kp->kp_eproc.e_vm.vm_map.size / kd->nbpg) -
639 			    kp->kp_eproc.e_vm.vm_issize +
640 			    kp->kp_eproc.e_vm.vm_ssize;
641 
642 			kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
643 
644 			kp2p->p_realflag = kp->kp_proc.p_flag;
645 			kp2p->p_nlwps = kp->kp_proc.p_nlwps;
646 			kp2p->p_nrlwps = kp->kp_proc.p_nrlwps;
647 			kp2p->p_realstat = kp->kp_proc.p_stat;
648 
649 			if (P_ZOMBIE(&kp->kp_proc) ||
650 			    kp->kp_proc.p_stats == NULL ||
651 			    KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) {
652 				kp2p->p_uvalid = 0;
653 			} else {
654 				kp2p->p_uvalid = 1;
655 
656 				kp2p->p_ustart_sec = (u_int32_t)
657 				    pstats.p_start.tv_sec;
658 				kp2p->p_ustart_usec = (u_int32_t)
659 				    pstats.p_start.tv_usec;
660 
661 				kp2p->p_uutime_sec = (u_int32_t)
662 				    pstats.p_ru.ru_utime.tv_sec;
663 				kp2p->p_uutime_usec = (u_int32_t)
664 				    pstats.p_ru.ru_utime.tv_usec;
665 				kp2p->p_ustime_sec = (u_int32_t)
666 				    pstats.p_ru.ru_stime.tv_sec;
667 				kp2p->p_ustime_usec = (u_int32_t)
668 				    pstats.p_ru.ru_stime.tv_usec;
669 
670 				kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
671 				kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
672 				kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
673 				kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
674 				kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
675 				kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
676 				kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
677 				kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
678 				kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
679 				kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
680 				kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
681 				kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
682 				kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
683 				kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
684 
685 				kp2p->p_uctime_sec = (u_int32_t)
686 				    (pstats.p_cru.ru_utime.tv_sec +
687 				    pstats.p_cru.ru_stime.tv_sec);
688 				kp2p->p_uctime_usec = (u_int32_t)
689 				    (pstats.p_cru.ru_utime.tv_usec +
690 				    pstats.p_cru.ru_stime.tv_usec);
691 			}
692 
693 			memcpy(kp2c, &kp2, esize);
694 			kp2c += esize;
695 		}
696 	}
697 	*cnt = nprocs;
698 	return (kd->procbase2);
699 }
700 
701 struct kinfo_lwp *
702 kvm_getlwps(kvm_t *kd, int pid, u_long paddr, size_t esize, int *cnt)
703 {
704 	size_t size;
705 	int mib[5], nlwps;
706 	ssize_t st;
707 	struct kinfo_lwp *kl;
708 
709 	if (ISSYSCTL(kd)) {
710 		size = 0;
711 		mib[0] = CTL_KERN;
712 		mib[1] = KERN_LWP;
713 		mib[2] = pid;
714 		mib[3] = (int)esize;
715 		mib[4] = 0;
716 again:
717 		st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0);
718 		if (st == -1) {
719 			switch (errno) {
720 			case ESRCH: /* Treat this as a soft error; see kvm.c */
721 				_kvm_syserr(kd, NULL, "kvm_getlwps");
722 				return NULL;
723 			default:
724 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
725 				return NULL;
726 			}
727 		}
728 		mib[4] = (int) (size / esize);
729 		KVM_ALLOC(kd, lwpbase, size);
730 		st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0);
731 		if (st == -1) {
732 			switch (errno) {
733 			case ESRCH: /* Treat this as a soft error; see kvm.c */
734 				_kvm_syserr(kd, NULL, "kvm_getlwps");
735 				return NULL;
736 			case ENOMEM:
737 				goto again;
738 			default:
739 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
740 				return NULL;
741 			}
742 		}
743 		nlwps = (int) (size / esize);
744 	} else {
745 		/* grovel through the memory image */
746 		struct proc p;
747 		struct lwp l;
748 		u_long laddr;
749 		void *back;
750 		int i;
751 
752 		st = kvm_read(kd, paddr, &p, sizeof(p));
753 		if (st == -1) {
754 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
755 			return (NULL);
756 		}
757 
758 		nlwps = p.p_nlwps;
759 		size = nlwps * sizeof(*kd->lwpbase);
760 		KVM_ALLOC(kd, lwpbase, size);
761 		laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first);
762 		for (i = 0; (i < nlwps) && (laddr != 0); i++) {
763 			st = kvm_read(kd, laddr, &l, sizeof(l));
764 			if (st == -1) {
765 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
766 				return (NULL);
767 			}
768 			kl = &kd->lwpbase[i];
769 			kl->l_laddr = laddr;
770 			kl->l_forw = PTRTOUINT64(l.l_runq.tqe_next);
771 			laddr = (u_long)PTRTOUINT64(l.l_runq.tqe_prev);
772 			st = kvm_read(kd, laddr, &back, sizeof(back));
773 			if (st == -1) {
774 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
775 				return (NULL);
776 			}
777 			kl->l_back = PTRTOUINT64(back);
778 			kl->l_addr = PTRTOUINT64(l.l_addr);
779 			kl->l_lid = l.l_lid;
780 			kl->l_flag = l.l_flag;
781 			kl->l_swtime = l.l_swtime;
782 			kl->l_slptime = l.l_slptime;
783 			kl->l_schedflags = 0; /* XXX */
784 			kl->l_holdcnt = 0;
785 			kl->l_priority = l.l_priority;
786 			kl->l_usrpri = l.l_priority;
787 			kl->l_stat = l.l_stat;
788 			kl->l_wchan = PTRTOUINT64(l.l_wchan);
789 			if (l.l_wmesg)
790 				(void)kvm_read(kd, (u_long)l.l_wmesg,
791 				    kl->l_wmesg, (size_t)WMESGLEN);
792 			kl->l_cpuid = KI_NOCPU;
793 			laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next);
794 		}
795 	}
796 
797 	*cnt = nlwps;
798 	return (kd->lwpbase);
799 }
800 
801 struct kinfo_proc *
802 kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt)
803 {
804 	size_t size;
805 	int mib[4], st, nprocs;
806 
807 	if (ISALIVE(kd)) {
808 		size = 0;
809 		mib[0] = CTL_KERN;
810 		mib[1] = KERN_PROC;
811 		mib[2] = op;
812 		mib[3] = arg;
813 		st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0);
814 		if (st == -1) {
815 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
816 			return (NULL);
817 		}
818 		KVM_ALLOC(kd, procbase, size);
819 		st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0);
820 		if (st == -1) {
821 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
822 			return (NULL);
823 		}
824 		if (size % sizeof(struct kinfo_proc) != 0) {
825 			_kvm_err(kd, kd->program,
826 			    "proc size mismatch (%lu total, %lu chunks)",
827 			    (u_long)size, (u_long)sizeof(struct kinfo_proc));
828 			return (NULL);
829 		}
830 		nprocs = (int) (size / sizeof(struct kinfo_proc));
831 	} else {
832 		struct nlist nl[4], *p;
833 
834 		(void)memset(nl, 0, sizeof(nl));
835 		nl[0].n_name = "_nprocs";
836 		nl[1].n_name = "_allproc";
837 		nl[2].n_name = "_zombproc";
838 		nl[3].n_name = NULL;
839 
840 		if (kvm_nlist(kd, nl) != 0) {
841 			for (p = nl; p->n_type != 0; ++p)
842 				continue;
843 			_kvm_err(kd, kd->program,
844 			    "%s: no such symbol", p->n_name);
845 			return (NULL);
846 		}
847 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
848 			_kvm_err(kd, kd->program, "can't read nprocs");
849 			return (NULL);
850 		}
851 		size = nprocs * sizeof(*kd->procbase);
852 		KVM_ALLOC(kd, procbase, size);
853 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
854 		    nl[2].n_value, nprocs);
855 		if (nprocs < 0)
856 			return (NULL);
857 #ifdef notdef
858 		size = nprocs * sizeof(struct kinfo_proc);
859 		(void)realloc(kd->procbase, size);
860 #endif
861 	}
862 	*cnt = nprocs;
863 	return (kd->procbase);
864 }
865 
866 void *
867 _kvm_realloc(kvm_t *kd, void *p, size_t n)
868 {
869 	void *np = realloc(p, n);
870 
871 	if (np == NULL)
872 		_kvm_err(kd, kd->program, "out of memory");
873 	return (np);
874 }
875 
876 /*
877  * Read in an argument vector from the user address space of process p.
878  * addr if the user-space base address of narg null-terminated contiguous
879  * strings.  This is used to read in both the command arguments and
880  * environment strings.  Read at most maxcnt characters of strings.
881  */
882 static char **
883 kvm_argv(kvm_t *kd, const struct miniproc *p, u_long addr, int narg,
884 	 int maxcnt)
885 {
886 	char *np, *cp, *ep, *ap;
887 	u_long oaddr = (u_long)~0L;
888 	u_long len;
889 	size_t cc;
890 	char **argv;
891 
892 	/*
893 	 * Check that there aren't an unreasonable number of arguments,
894 	 * and that the address is in user space.
895 	 */
896 	if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
897 		return (NULL);
898 
899 	if (kd->argv == NULL) {
900 		/*
901 		 * Try to avoid reallocs.
902 		 */
903 		kd->argc = MAX(narg + 1, 32);
904 		kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
905 		if (kd->argv == NULL)
906 			return (NULL);
907 	} else if (narg + 1 > kd->argc) {
908 		kd->argc = MAX(2 * kd->argc, narg + 1);
909 		kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
910 		    sizeof(*kd->argv));
911 		if (kd->argv == NULL)
912 			return (NULL);
913 	}
914 	if (kd->argspc == NULL) {
915 		kd->argspc = _kvm_malloc(kd, (size_t)kd->nbpg);
916 		if (kd->argspc == NULL)
917 			return (NULL);
918 		kd->argspc_len = kd->nbpg;
919 	}
920 	if (kd->argbuf == NULL) {
921 		kd->argbuf = _kvm_malloc(kd, (size_t)kd->nbpg);
922 		if (kd->argbuf == NULL)
923 			return (NULL);
924 	}
925 	cc = sizeof(char *) * narg;
926 	if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
927 		return (NULL);
928 	ap = np = kd->argspc;
929 	argv = kd->argv;
930 	len = 0;
931 	/*
932 	 * Loop over pages, filling in the argument vector.
933 	 */
934 	while (argv < kd->argv + narg && *argv != NULL) {
935 		addr = (u_long)*argv & ~(kd->nbpg - 1);
936 		if (addr != oaddr) {
937 			if (kvm_ureadm(kd, p, addr, kd->argbuf,
938 			    (size_t)kd->nbpg) != kd->nbpg)
939 				return (NULL);
940 			oaddr = addr;
941 		}
942 		addr = (u_long)*argv & (kd->nbpg - 1);
943 		cp = kd->argbuf + (size_t)addr;
944 		cc = kd->nbpg - (size_t)addr;
945 		if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
946 			cc = (size_t)(maxcnt - len);
947 		ep = memchr(cp, '\0', cc);
948 		if (ep != NULL)
949 			cc = ep - cp + 1;
950 		if (len + cc > kd->argspc_len) {
951 			ptrdiff_t off;
952 			char **pp;
953 			uintptr_t op = (uintptr_t)kd->argspc;
954 
955 			kd->argspc_len *= 2;
956 			kd->argspc = _kvm_realloc(kd, kd->argspc,
957 			    kd->argspc_len);
958 			if (kd->argspc == NULL)
959 				return (NULL);
960 			/*
961 			 * Adjust argv pointers in case realloc moved
962 			 * the string space.
963 			 */
964 			off = (uintptr_t)kd->argspc - op;
965 			for (pp = kd->argv; pp < argv; pp++)
966 				*pp += off;
967 			ap += off;
968 			np += off;
969 		}
970 		memcpy(np, cp, cc);
971 		np += cc;
972 		len += cc;
973 		if (ep != NULL) {
974 			*argv++ = ap;
975 			ap = np;
976 		} else
977 			*argv += cc;
978 		if (maxcnt > 0 && len >= maxcnt) {
979 			/*
980 			 * We're stopping prematurely.  Terminate the
981 			 * current string.
982 			 */
983 			if (ep == NULL) {
984 				*np = '\0';
985 				*argv++ = ap;
986 			}
987 			break;
988 		}
989 	}
990 	/* Make sure argv is terminated. */
991 	*argv = NULL;
992 	return (kd->argv);
993 }
994 
995 static void
996 ps_str_a(struct ps_strings *p, u_long *addr, int *n)
997 {
998 
999 	*addr = (u_long)p->ps_argvstr;
1000 	*n = p->ps_nargvstr;
1001 }
1002 
1003 static void
1004 ps_str_e(struct ps_strings *p, u_long *addr, int *n)
1005 {
1006 
1007 	*addr = (u_long)p->ps_envstr;
1008 	*n = p->ps_nenvstr;
1009 }
1010 
1011 /*
1012  * Determine if the proc indicated by p is still active.
1013  * This test is not 100% foolproof in theory, but chances of
1014  * being wrong are very low.
1015  */
1016 static int
1017 proc_verify(kvm_t *kd, u_long kernp, const struct miniproc *p)
1018 {
1019 	struct proc kernproc;
1020 
1021 	/*
1022 	 * Just read in the whole proc.  It's not that big relative
1023 	 * to the cost of the read system call.
1024 	 */
1025 	if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
1026 	    sizeof(kernproc))
1027 		return (0);
1028 	return (p->p_pid == kernproc.p_pid &&
1029 	    (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
1030 }
1031 
1032 static char **
1033 kvm_doargv(kvm_t *kd, const struct miniproc *p, int nchr,
1034 	   void (*info)(struct ps_strings *, u_long *, int *))
1035 {
1036 	char **ap;
1037 	u_long addr;
1038 	int cnt;
1039 	struct ps_strings arginfo;
1040 
1041 	/*
1042 	 * Pointers are stored at the top of the user stack.
1043 	 */
1044 	if (p->p_stat == SZOMB)
1045 		return (NULL);
1046 	cnt = (int)kvm_ureadm(kd, p, p->p_psstrp,
1047 	    (void *)&arginfo, sizeof(arginfo));
1048 	if (cnt != sizeof(arginfo))
1049 		return (NULL);
1050 
1051 	(*info)(&arginfo, &addr, &cnt);
1052 	if (cnt == 0)
1053 		return (NULL);
1054 	ap = kvm_argv(kd, p, addr, cnt, nchr);
1055 	/*
1056 	 * For live kernels, make sure this process didn't go away.
1057 	 */
1058 	if (ap != NULL && ISALIVE(kd) &&
1059 	    !proc_verify(kd, (u_long)p->p_paddr, p))
1060 		ap = NULL;
1061 	return (ap);
1062 }
1063 
1064 /*
1065  * Get the command args.  This code is now machine independent.
1066  */
1067 char **
1068 kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
1069 {
1070 	struct miniproc p;
1071 
1072 	KPTOMINI(kp, &p);
1073 	return (kvm_doargv(kd, &p, nchr, ps_str_a));
1074 }
1075 
1076 char **
1077 kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
1078 {
1079 	struct miniproc p;
1080 
1081 	KPTOMINI(kp, &p);
1082 	return (kvm_doargv(kd, &p, nchr, ps_str_e));
1083 }
1084 
1085 static char **
1086 kvm_doargv2(kvm_t *kd, pid_t pid, int type, int nchr)
1087 {
1088 	size_t bufs;
1089 	int narg, mib[4];
1090 	size_t newargspc_len;
1091 	char **ap, *bp, *endp;
1092 
1093 	/*
1094 	 * Check that there aren't an unreasonable number of arguments.
1095 	 */
1096 	if (nchr > ARG_MAX)
1097 		return (NULL);
1098 
1099 	if (nchr == 0)
1100 		nchr = ARG_MAX;
1101 
1102 	/* Get number of strings in argv */
1103 	mib[0] = CTL_KERN;
1104 	mib[1] = KERN_PROC_ARGS;
1105 	mib[2] = pid;
1106 	mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
1107 	bufs = sizeof(narg);
1108 	if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1)
1109 		return (NULL);
1110 
1111 	if (kd->argv == NULL) {
1112 		/*
1113 		 * Try to avoid reallocs.
1114 		 */
1115 		kd->argc = MAX(narg + 1, 32);
1116 		kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
1117 		if (kd->argv == NULL)
1118 			return (NULL);
1119 	} else if (narg + 1 > kd->argc) {
1120 		kd->argc = MAX(2 * kd->argc, narg + 1);
1121 		kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
1122 		    sizeof(*kd->argv));
1123 		if (kd->argv == NULL)
1124 			return (NULL);
1125 	}
1126 
1127 	newargspc_len = MIN(nchr, ARG_MAX);
1128 	KVM_ALLOC(kd, argspc, newargspc_len);
1129 	memset(kd->argspc, 0, (size_t)kd->argspc_len);	/* XXX necessary? */
1130 
1131 	mib[0] = CTL_KERN;
1132 	mib[1] = KERN_PROC_ARGS;
1133 	mib[2] = pid;
1134 	mib[3] = type;
1135 	bufs = kd->argspc_len;
1136 	if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1)
1137 		return (NULL);
1138 
1139 	bp = kd->argspc;
1140 	bp[kd->argspc_len-1] = '\0';	/* make sure the string ends with nul */
1141 	ap = kd->argv;
1142 	endp = bp + MIN(nchr, bufs);
1143 
1144 	while (bp < endp) {
1145 		*ap++ = bp;
1146 		/*
1147 		 * XXX: don't need following anymore, or stick check
1148 		 * for max argc in above while loop?
1149 		 */
1150 		if (ap >= kd->argv + kd->argc) {
1151 			kd->argc *= 2;
1152 			kd->argv = _kvm_realloc(kd, kd->argv,
1153 			    kd->argc * sizeof(*kd->argv));
1154 			ap = kd->argv;
1155 		}
1156 		bp += strlen(bp) + 1;
1157 	}
1158 	*ap = NULL;
1159 
1160 	return (kd->argv);
1161 }
1162 
1163 char **
1164 kvm_getargv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr)
1165 {
1166 
1167 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
1168 }
1169 
1170 char **
1171 kvm_getenvv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr)
1172 {
1173 
1174 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
1175 }
1176 
1177 /*
1178  * Read from user space.  The user context is given by p.
1179  */
1180 static ssize_t
1181 kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long uva,
1182 	   char *buf, size_t len)
1183 {
1184 	char *cp;
1185 
1186 	cp = buf;
1187 	while (len > 0) {
1188 		size_t cc;
1189 		char *dp;
1190 		u_long cnt;
1191 
1192 		dp = _kvm_ureadm(kd, p, uva, &cnt);
1193 		if (dp == NULL) {
1194 			_kvm_err(kd, 0, "invalid address (%lx)", uva);
1195 			return (0);
1196 		}
1197 		cc = (size_t)MIN(cnt, len);
1198 		memcpy(cp, dp, cc);
1199 		cp += cc;
1200 		uva += cc;
1201 		len -= cc;
1202 	}
1203 	return (ssize_t)(cp - buf);
1204 }
1205