1 /* $NetBSD: kvm_proc.c,v 1.100 2024/12/15 12:58:38 christos Exp $ */ 2 3 /*- 4 * Copyright (c) 1998 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Charles M. Hannum. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /*- 33 * Copyright (c) 1989, 1992, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * This code is derived from software developed by the Computer Systems 37 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 38 * BG 91-66 and contributed to Berkeley. 39 * 40 * Redistribution and use in source and binary forms, with or without 41 * modification, are permitted provided that the following conditions 42 * are met: 43 * 1. Redistributions of source code must retain the above copyright 44 * notice, this list of conditions and the following disclaimer. 45 * 2. Redistributions in binary form must reproduce the above copyright 46 * notice, this list of conditions and the following disclaimer in the 47 * documentation and/or other materials provided with the distribution. 48 * 3. Neither the name of the University nor the names of its contributors 49 * may be used to endorse or promote products derived from this software 50 * without specific prior written permission. 51 * 52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 62 * SUCH DAMAGE. 63 */ 64 65 #include <sys/cdefs.h> 66 #if defined(LIBC_SCCS) && !defined(lint) 67 #if 0 68 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 69 #else 70 __RCSID("$NetBSD: kvm_proc.c,v 1.100 2024/12/15 12:58:38 christos Exp $"); 71 #endif 72 #endif /* LIBC_SCCS and not lint */ 73 74 /* 75 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 76 * users of this code, so we've factored it out into a separate module. 77 * Thus, we keep this grunge out of the other kvm applications (i.e., 78 * most other applications are interested only in open/close/read/nlist). 79 */ 80 81 #include <sys/param.h> 82 #include <sys/lwp.h> 83 #include <sys/wait.h> 84 #include <sys/proc.h> 85 #include <sys/exec.h> 86 #include <sys/stat.h> 87 #include <sys/ioctl.h> 88 #include <sys/tty.h> 89 #include <sys/resourcevar.h> 90 #include <sys/mutex.h> 91 #include <sys/specificdata.h> 92 #include <sys/types.h> 93 94 #include <errno.h> 95 #include <stdlib.h> 96 #include <stddef.h> 97 #include <string.h> 98 #include <unistd.h> 99 #include <nlist.h> 100 #include <kvm.h> 101 102 #include <uvm/uvm_extern.h> 103 #include <uvm/uvm_param.h> 104 #include <uvm/uvm_amap.h> 105 #include <uvm/uvm_page.h> 106 107 #include <sys/sysctl.h> 108 109 #include <limits.h> 110 #include <db.h> 111 #include <paths.h> 112 113 #include "kvm_private.h" 114 115 /* 116 * Common info from kinfo_proc and kinfo_proc2 used by helper routines. 117 */ 118 struct miniproc { 119 struct vmspace *p_vmspace; 120 char p_stat; 121 vaddr_t p_psstrp; 122 struct proc *p_paddr; 123 pid_t p_pid; 124 }; 125 126 /* 127 * Convert from struct proc and kinfo_proc to miniproc. 128 */ 129 #define KPTOMINI(kp, p) \ 130 do { \ 131 (p)->p_stat = (kp)->kp_proc.p_stat; \ 132 (p)->p_pid = (kp)->kp_proc.p_pid; \ 133 (p)->p_paddr = (kp)->kp_eproc.e_paddr; \ 134 (p)->p_vmspace = (kp)->kp_proc.p_vmspace; \ 135 } while (0) 136 137 138 /* 139 * NetBSD uses kauth(9) to manage credentials, which are stored in kauth_cred_t, 140 * a kernel-only opaque type. This is an embedded version which is *INTERNAL* to 141 * kvm(3) so dumps can be read properly. 142 * 143 * Whenever NetBSD starts exporting credentials to userland consistently (using 144 * 'struct uucred', or something) this will have to be updated again. 145 */ 146 struct kvm_kauth_cred { 147 u_int cr_refcnt; /* reference count */ 148 #if COHERENCY_UNIT > 4 149 uint8_t cr_pad[COHERENCY_UNIT - 4]; 150 #endif 151 uid_t cr_uid; /* user id */ 152 uid_t cr_euid; /* effective user id */ 153 uid_t cr_svuid; /* saved effective user id */ 154 gid_t cr_gid; /* group id */ 155 gid_t cr_egid; /* effective group id */ 156 gid_t cr_svgid; /* saved effective group id */ 157 u_int cr_ngroups; /* number of groups */ 158 gid_t cr_groups[NGROUPS]; /* group memberships */ 159 specificdata_reference cr_sd; /* specific data */ 160 }; 161 162 static char *_kvm_ureadm(kvm_t *, const struct miniproc *, u_long, 163 u_long *); 164 static ssize_t kvm_ureadm(kvm_t *, const struct miniproc *, u_long, 165 char *, size_t); 166 167 static char **kvm_argv(kvm_t *, const struct miniproc *, u_long, int, int); 168 static int kvm_deadprocs(kvm_t *, int, int, u_long, u_long, int); 169 static char **kvm_doargv(kvm_t *, const struct miniproc *, int, 170 void (*)(struct ps_strings *, u_long *, int *)); 171 static char **kvm_doargv2(kvm_t *, pid_t, int, int); 172 static int kvm_proclist(kvm_t *, int, int, struct proc *, 173 struct kinfo_proc *, int); 174 static int proc_verify(kvm_t *, u_long, const struct miniproc *); 175 static void ps_str_a(struct ps_strings *, u_long *, int *); 176 static void ps_str_e(struct ps_strings *, u_long *, int *); 177 178 179 static char * 180 _kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long va, u_long *cnt) 181 { 182 u_long addr, head; 183 u_long offset; 184 struct vm_map_entry vme; 185 struct vm_amap amap; 186 struct vm_anon *anonp, anon; 187 struct vm_page pg; 188 u_long slot; 189 190 if (kd->swapspc == NULL) { 191 kd->swapspc = _kvm_malloc(kd, (size_t)kd->nbpg); 192 if (kd->swapspc == NULL) 193 return (NULL); 194 } 195 196 /* 197 * Look through the address map for the memory object 198 * that corresponds to the given virtual address. 199 * The header just has the entire valid range. 200 */ 201 head = (u_long)&p->p_vmspace->vm_map.header; 202 addr = head; 203 for (;;) { 204 if (KREAD(kd, addr, &vme)) 205 return (NULL); 206 207 if (va >= vme.start && va < vme.end && 208 vme.aref.ar_amap != NULL) 209 break; 210 211 addr = (u_long)vme.next; 212 if (addr == head) 213 return (NULL); 214 } 215 216 /* 217 * we found the map entry, now to find the object... 218 */ 219 if (vme.aref.ar_amap == NULL) 220 return (NULL); 221 222 addr = (u_long)vme.aref.ar_amap; 223 if (KREAD(kd, addr, &amap)) 224 return (NULL); 225 226 offset = va - vme.start; 227 slot = offset / kd->nbpg + vme.aref.ar_pageoff; 228 /* sanity-check slot number */ 229 if (slot > amap.am_nslot) 230 return (NULL); 231 232 addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp); 233 if (KREAD(kd, addr, &anonp)) 234 return (NULL); 235 236 addr = (u_long)anonp; 237 if (KREAD(kd, addr, &anon)) 238 return (NULL); 239 240 addr = (u_long)anon.an_page; 241 if (addr) { 242 if (KREAD(kd, addr, &pg)) 243 return (NULL); 244 245 if (_kvm_pread(kd, kd->pmfd, kd->swapspc, (size_t)kd->nbpg, 246 (off_t)pg.phys_addr & ~(kd->nbpg - 1)) != kd->nbpg) 247 return (NULL); 248 } else { 249 if (kd->swfd < 0 || 250 _kvm_pread(kd, kd->swfd, kd->swapspc, (size_t)kd->nbpg, 251 (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg) 252 return (NULL); 253 } 254 255 /* Found the page. */ 256 offset %= kd->nbpg; 257 *cnt = kd->nbpg - offset; 258 return (&kd->swapspc[(size_t)offset]); 259 } 260 261 /* 262 * Convert credentials located in kernel space address 'cred' and store 263 * them in the appropriate members of 'eproc'. 264 */ 265 static int 266 _kvm_convertcred(kvm_t *kd, u_long cred, struct eproc *eproc) 267 { 268 struct kvm_kauth_cred kauthcred; 269 struct ki_pcred *pc = &eproc->e_pcred; 270 struct ki_ucred *uc = &eproc->e_ucred; 271 272 if (KREAD(kd, cred, &kauthcred) != 0) 273 return (-1); 274 275 /* inlined version of kauth_cred_to_pcred, see kauth(9). */ 276 pc->p_ruid = kauthcred.cr_uid; 277 pc->p_svuid = kauthcred.cr_svuid; 278 pc->p_rgid = kauthcred.cr_gid; 279 pc->p_svgid = kauthcred.cr_svgid; 280 pc->p_refcnt = kauthcred.cr_refcnt; 281 pc->p_pad = NULL; 282 283 /* inlined version of kauth_cred_to_ucred(), see kauth(9). */ 284 uc->cr_ref = kauthcred.cr_refcnt; 285 uc->cr_uid = kauthcred.cr_euid; 286 uc->cr_gid = kauthcred.cr_egid; 287 uc->cr_ngroups = (uint32_t)MIN(kauthcred.cr_ngroups, 288 sizeof(uc->cr_groups) / sizeof(uc->cr_groups[0])); 289 memcpy(uc->cr_groups, kauthcred.cr_groups, 290 uc->cr_ngroups * sizeof(uc->cr_groups[0])); 291 292 return (0); 293 } 294 295 /* 296 * Read proc's from memory file into buffer bp, which has space to hold 297 * at most maxcnt procs. 298 */ 299 static int 300 kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p, 301 struct kinfo_proc *bp, int maxcnt) 302 { 303 int cnt = 0; 304 int nlwps; 305 struct kinfo_lwp *kl; 306 struct eproc eproc; 307 struct pgrp pgrp; 308 struct session sess; 309 struct tty tty; 310 struct proc proc; 311 312 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) { 313 if (KREAD(kd, (u_long)p, &proc)) { 314 _kvm_err(kd, kd->program, "can't read proc at %p", p); 315 return (-1); 316 } 317 if (_kvm_convertcred(kd, (u_long)proc.p_cred, &eproc) != 0) { 318 _kvm_err(kd, kd->program, 319 "can't read proc credentials at %p", p); 320 return (-1); 321 } 322 323 switch (what) { 324 325 case KERN_PROC_PID: 326 if (proc.p_pid != (pid_t)arg) 327 continue; 328 break; 329 330 case KERN_PROC_UID: 331 if (eproc.e_ucred.cr_uid != (uid_t)arg) 332 continue; 333 break; 334 335 case KERN_PROC_RUID: 336 if (eproc.e_pcred.p_ruid != (uid_t)arg) 337 continue; 338 break; 339 } 340 /* 341 * We're going to add another proc to the set. If this 342 * will overflow the buffer, assume the reason is because 343 * nprocs (or the proc list) is corrupt and declare an error. 344 */ 345 if (cnt >= maxcnt) { 346 _kvm_err(kd, kd->program, "nprocs corrupt"); 347 return (-1); 348 } 349 /* 350 * gather eproc 351 */ 352 eproc.e_paddr = p; 353 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 354 _kvm_err(kd, kd->program, "can't read pgrp at %p", 355 proc.p_pgrp); 356 return (-1); 357 } 358 eproc.e_sess = pgrp.pg_session; 359 eproc.e_pgid = pgrp.pg_id; 360 eproc.e_jobc = pgrp.pg_jobc; 361 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 362 _kvm_err(kd, kd->program, "can't read session at %p", 363 pgrp.pg_session); 364 return (-1); 365 } 366 if ((proc.p_lflag & PL_CONTROLT) && sess.s_ttyp != NULL) { 367 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 368 _kvm_err(kd, kd->program, 369 "can't read tty at %p", sess.s_ttyp); 370 return (-1); 371 } 372 eproc.e_tdev = (uint32_t)tty.t_dev; 373 eproc.e_tsess = tty.t_session; 374 if (tty.t_pgrp != NULL) { 375 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 376 _kvm_err(kd, kd->program, 377 "can't read tpgrp at %p", 378 tty.t_pgrp); 379 return (-1); 380 } 381 eproc.e_tpgid = pgrp.pg_id; 382 } else 383 eproc.e_tpgid = -1; 384 } else 385 eproc.e_tdev = (uint32_t)NODEV; 386 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0; 387 eproc.e_sid = sess.s_sid; 388 if (sess.s_leader == p) 389 eproc.e_flag |= EPROC_SLEADER; 390 /* 391 * Fill in the old-style proc.p_wmesg by copying the wmesg 392 * from the first available LWP. 393 */ 394 kl = kvm_getlwps(kd, proc.p_pid, 395 (u_long)PTRTOUINT64(eproc.e_paddr), 396 sizeof(struct kinfo_lwp), &nlwps); 397 if (kl) { 398 if (nlwps > 0) { 399 strcpy(eproc.e_wmesg, kl[0].l_wmesg); 400 } 401 } 402 (void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm, 403 sizeof(eproc.e_vm)); 404 405 eproc.e_xsize = eproc.e_xrssize = 0; 406 eproc.e_xccount = eproc.e_xswrss = 0; 407 408 switch (what) { 409 410 case KERN_PROC_PGRP: 411 if (eproc.e_pgid != (pid_t)arg) 412 continue; 413 break; 414 415 case KERN_PROC_TTY: 416 if ((proc.p_lflag & PL_CONTROLT) == 0 || 417 eproc.e_tdev != (dev_t)arg) 418 continue; 419 break; 420 } 421 memcpy(&bp->kp_proc, &proc, sizeof(proc)); 422 memcpy(&bp->kp_eproc, &eproc, sizeof(eproc)); 423 ++bp; 424 ++cnt; 425 } 426 return (cnt); 427 } 428 429 /* 430 * Build proc info array by reading in proc list from a crash dump. 431 * Return number of procs read. maxcnt is the max we will read. 432 */ 433 static int 434 kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc, 435 u_long a_zombproc, int maxcnt) 436 { 437 struct kinfo_proc *bp = kd->procbase; 438 int acnt, zcnt; 439 struct proc *p; 440 441 if (KREAD(kd, a_allproc, &p)) { 442 _kvm_err(kd, kd->program, "cannot read allproc"); 443 return (-1); 444 } 445 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 446 if (acnt < 0) 447 return (acnt); 448 449 if (KREAD(kd, a_zombproc, &p)) { 450 _kvm_err(kd, kd->program, "cannot read zombproc"); 451 return (-1); 452 } 453 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, 454 maxcnt - acnt); 455 if (zcnt < 0) 456 zcnt = 0; 457 458 return (acnt + zcnt); 459 } 460 461 struct kinfo_proc2 * 462 kvm_getproc2(kvm_t *kd, int op, int arg, size_t esize, int *cnt) 463 { 464 size_t size; 465 int mib[6], st, nprocs; 466 struct pstats pstats; 467 468 if (ISSYSCTL(kd)) { 469 size = 0; 470 mib[0] = CTL_KERN; 471 mib[1] = KERN_PROC2; 472 mib[2] = op; 473 mib[3] = arg; 474 mib[4] = (int)esize; 475 again: 476 mib[5] = 0; 477 st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0); 478 if (st == -1) { 479 _kvm_syserr(kd, kd->program, "kvm_getproc2"); 480 return (NULL); 481 } 482 483 mib[5] = (int) (size / esize); 484 KVM_ALLOC(kd, procbase2, size); 485 st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0); 486 if (st == -1) { 487 if (errno == ENOMEM) { 488 goto again; 489 } 490 _kvm_syserr(kd, kd->program, "kvm_getproc2"); 491 return (NULL); 492 } 493 nprocs = (int) (size / esize); 494 } else { 495 char *kp2c; 496 struct kinfo_proc *kp; 497 struct kinfo_proc2 kp2, *kp2p; 498 struct kinfo_lwp *kl; 499 int i, nlwps; 500 501 kp = kvm_getprocs(kd, op, arg, &nprocs); 502 if (kp == NULL) 503 return (NULL); 504 505 size = nprocs * esize; 506 KVM_ALLOC(kd, procbase2, size); 507 kp2c = (char *)(void *)kd->procbase2; 508 kp2p = &kp2; 509 for (i = 0; i < nprocs; i++, kp++) { 510 struct timeval tv; 511 512 kl = kvm_getlwps(kd, kp->kp_proc.p_pid, 513 (u_long)PTRTOUINT64(kp->kp_eproc.e_paddr), 514 sizeof(struct kinfo_lwp), &nlwps); 515 516 if (kl == NULL) { 517 _kvm_syserr(kd, NULL, 518 "kvm_getlwps() failed on process %u\n", 519 kp->kp_proc.p_pid); 520 if (nlwps == 0) 521 return NULL; 522 else 523 continue; 524 } 525 526 /* We use kl[0] as the "representative" LWP */ 527 memset(kp2p, 0, sizeof(kp2)); 528 kp2p->p_forw = kl[0].l_forw; 529 kp2p->p_back = kl[0].l_back; 530 kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr); 531 kp2p->p_addr = kl[0].l_addr; 532 kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd); 533 kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi); 534 kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats); 535 kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit); 536 kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace); 537 kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts); 538 kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess); 539 kp2p->p_tsess = 0; 540 #if 1 /* XXX: dsl - p_ru was only ever non-zero for zombies */ 541 kp2p->p_ru = 0; 542 #else 543 kp2p->p_ru = PTRTOUINT64(pstats.p_ru); 544 #endif 545 546 kp2p->p_eflag = 0; 547 kp2p->p_exitsig = kp->kp_proc.p_exitsig; 548 kp2p->p_flag = kp->kp_proc.p_flag; 549 550 kp2p->p_pid = kp->kp_proc.p_pid; 551 552 kp2p->p_ppid = kp->kp_eproc.e_ppid; 553 kp2p->p_sid = kp->kp_eproc.e_sid; 554 kp2p->p__pgid = kp->kp_eproc.e_pgid; 555 556 kp2p->p_tpgid = -1 /* XXX NO_PGID! */; 557 558 kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid; 559 kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid; 560 kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid; 561 kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid; 562 kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid; 563 kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid; 564 565 /*CONSTCOND*/ 566 memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups, 567 MIN(sizeof(kp2p->p_groups), 568 sizeof(kp->kp_eproc.e_ucred.cr_groups))); 569 kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups; 570 571 kp2p->p_jobc = kp->kp_eproc.e_jobc; 572 kp2p->p_tdev = kp->kp_eproc.e_tdev; 573 kp2p->p_tpgid = kp->kp_eproc.e_tpgid; 574 kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess); 575 576 kp2p->p_estcpu = 0; 577 bintime2timeval(&kp->kp_proc.p_rtime, &tv); 578 kp2p->p_rtime_sec = (uint32_t)tv.tv_sec; 579 kp2p->p_rtime_usec = (uint32_t)tv.tv_usec; 580 kp2p->p_cpticks = kl[0].l_cpticks; 581 kp2p->p_pctcpu = kp->kp_proc.p_pctcpu; 582 kp2p->p_swtime = kl[0].l_swtime; 583 kp2p->p_slptime = kl[0].l_slptime; 584 #if 0 /* XXX thorpej */ 585 kp2p->p_schedflags = kp->kp_proc.p_schedflags; 586 #else 587 kp2p->p_schedflags = 0; 588 #endif 589 590 kp2p->p_uticks = kp->kp_proc.p_uticks; 591 kp2p->p_sticks = kp->kp_proc.p_sticks; 592 kp2p->p_iticks = kp->kp_proc.p_iticks; 593 594 kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep); 595 kp2p->p_traceflag = kp->kp_proc.p_traceflag; 596 597 kp2p->p_holdcnt = kl[0].l_holdcnt; 598 599 memcpy(&kp2p->p_siglist, 600 &kp->kp_proc.p_sigpend.sp_set, 601 sizeof(ki_sigset_t)); 602 memset(&kp2p->p_sigmask, 0, 603 sizeof(ki_sigset_t)); 604 memcpy(&kp2p->p_sigignore, 605 &kp->kp_proc.p_sigctx.ps_sigignore, 606 sizeof(ki_sigset_t)); 607 memcpy(&kp2p->p_sigcatch, 608 &kp->kp_proc.p_sigctx.ps_sigcatch, 609 sizeof(ki_sigset_t)); 610 611 kp2p->p_stat = kl[0].l_stat; 612 kp2p->p_priority = kl[0].l_priority; 613 kp2p->p_usrpri = kl[0].l_priority; 614 kp2p->p_nice = kp->kp_proc.p_nice; 615 616 kp2p->p_xstat = P_WAITSTATUS(&kp->kp_proc); 617 kp2p->p_acflag = kp->kp_proc.p_acflag; 618 619 /*CONSTCOND*/ 620 strncpy(kp2p->p_comm, kp->kp_proc.p_comm, 621 MIN(sizeof(kp2p->p_comm), 622 sizeof(kp->kp_proc.p_comm))); 623 624 strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg, 625 sizeof(kp2p->p_wmesg)); 626 kp2p->p_wchan = kl[0].l_wchan; 627 strncpy(kp2p->p_login, kp->kp_eproc.e_login, 628 sizeof(kp2p->p_login)); 629 630 kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize; 631 kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize; 632 kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize; 633 kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize; 634 kp2p->p_vm_vsize = kp->kp_eproc.e_vm.vm_map.size 635 / kd->nbpg; 636 /* Adjust mapped size */ 637 kp2p->p_vm_msize = 638 (kp->kp_eproc.e_vm.vm_map.size / kd->nbpg) - 639 kp->kp_eproc.e_vm.vm_issize + 640 kp->kp_eproc.e_vm.vm_ssize; 641 642 kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag; 643 644 kp2p->p_realflag = kp->kp_proc.p_flag; 645 kp2p->p_nlwps = kp->kp_proc.p_nlwps; 646 kp2p->p_nrlwps = kp->kp_proc.p_nrlwps; 647 kp2p->p_realstat = kp->kp_proc.p_stat; 648 649 if (P_ZOMBIE(&kp->kp_proc) || 650 kp->kp_proc.p_stats == NULL || 651 KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) { 652 kp2p->p_uvalid = 0; 653 } else { 654 kp2p->p_uvalid = 1; 655 656 kp2p->p_ustart_sec = (u_int32_t) 657 pstats.p_start.tv_sec; 658 kp2p->p_ustart_usec = (u_int32_t) 659 pstats.p_start.tv_usec; 660 661 kp2p->p_uutime_sec = (u_int32_t) 662 pstats.p_ru.ru_utime.tv_sec; 663 kp2p->p_uutime_usec = (u_int32_t) 664 pstats.p_ru.ru_utime.tv_usec; 665 kp2p->p_ustime_sec = (u_int32_t) 666 pstats.p_ru.ru_stime.tv_sec; 667 kp2p->p_ustime_usec = (u_int32_t) 668 pstats.p_ru.ru_stime.tv_usec; 669 670 kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss; 671 kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss; 672 kp2p->p_uru_idrss = pstats.p_ru.ru_idrss; 673 kp2p->p_uru_isrss = pstats.p_ru.ru_isrss; 674 kp2p->p_uru_minflt = pstats.p_ru.ru_minflt; 675 kp2p->p_uru_majflt = pstats.p_ru.ru_majflt; 676 kp2p->p_uru_nswap = pstats.p_ru.ru_nswap; 677 kp2p->p_uru_inblock = pstats.p_ru.ru_inblock; 678 kp2p->p_uru_oublock = pstats.p_ru.ru_oublock; 679 kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd; 680 kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv; 681 kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals; 682 kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw; 683 kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw; 684 685 kp2p->p_uctime_sec = (u_int32_t) 686 (pstats.p_cru.ru_utime.tv_sec + 687 pstats.p_cru.ru_stime.tv_sec); 688 kp2p->p_uctime_usec = (u_int32_t) 689 (pstats.p_cru.ru_utime.tv_usec + 690 pstats.p_cru.ru_stime.tv_usec); 691 } 692 693 memcpy(kp2c, &kp2, esize); 694 kp2c += esize; 695 } 696 } 697 *cnt = nprocs; 698 return (kd->procbase2); 699 } 700 701 struct kinfo_lwp * 702 kvm_getlwps(kvm_t *kd, int pid, u_long paddr, size_t esize, int *cnt) 703 { 704 size_t size; 705 int mib[5], nlwps; 706 ssize_t st; 707 struct kinfo_lwp *kl; 708 709 if (ISSYSCTL(kd)) { 710 size = 0; 711 mib[0] = CTL_KERN; 712 mib[1] = KERN_LWP; 713 mib[2] = pid; 714 mib[3] = (int)esize; 715 mib[4] = 0; 716 again: 717 st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0); 718 if (st == -1) { 719 switch (errno) { 720 case ESRCH: /* Treat this as a soft error; see kvm.c */ 721 _kvm_syserr(kd, NULL, "kvm_getlwps"); 722 return NULL; 723 default: 724 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 725 return NULL; 726 } 727 } 728 mib[4] = (int) (size / esize); 729 KVM_ALLOC(kd, lwpbase, size); 730 st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0); 731 if (st == -1) { 732 switch (errno) { 733 case ESRCH: /* Treat this as a soft error; see kvm.c */ 734 _kvm_syserr(kd, NULL, "kvm_getlwps"); 735 return NULL; 736 case ENOMEM: 737 goto again; 738 default: 739 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 740 return NULL; 741 } 742 } 743 nlwps = (int) (size / esize); 744 } else { 745 /* grovel through the memory image */ 746 struct proc p; 747 struct lwp l; 748 u_long laddr; 749 void *back; 750 int i; 751 752 st = kvm_read(kd, paddr, &p, sizeof(p)); 753 if (st == -1) { 754 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 755 return (NULL); 756 } 757 758 nlwps = p.p_nlwps; 759 size = nlwps * sizeof(*kd->lwpbase); 760 KVM_ALLOC(kd, lwpbase, size); 761 laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first); 762 for (i = 0; (i < nlwps) && (laddr != 0); i++) { 763 st = kvm_read(kd, laddr, &l, sizeof(l)); 764 if (st == -1) { 765 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 766 return (NULL); 767 } 768 kl = &kd->lwpbase[i]; 769 kl->l_laddr = laddr; 770 kl->l_forw = PTRTOUINT64(l.l_runq.tqe_next); 771 laddr = (u_long)PTRTOUINT64(l.l_runq.tqe_prev); 772 st = kvm_read(kd, laddr, &back, sizeof(back)); 773 if (st == -1) { 774 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 775 return (NULL); 776 } 777 kl->l_back = PTRTOUINT64(back); 778 kl->l_addr = PTRTOUINT64(l.l_addr); 779 kl->l_lid = l.l_lid; 780 kl->l_flag = l.l_flag; 781 kl->l_swtime = l.l_swtime; 782 kl->l_slptime = l.l_slptime; 783 kl->l_schedflags = 0; /* XXX */ 784 kl->l_holdcnt = 0; 785 kl->l_priority = l.l_priority; 786 kl->l_usrpri = l.l_priority; 787 kl->l_stat = l.l_stat; 788 kl->l_wchan = PTRTOUINT64(l.l_wchan); 789 if (l.l_wmesg) 790 (void)kvm_read(kd, (u_long)l.l_wmesg, 791 kl->l_wmesg, (size_t)WMESGLEN); 792 kl->l_cpuid = KI_NOCPU; 793 laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next); 794 } 795 } 796 797 *cnt = nlwps; 798 return (kd->lwpbase); 799 } 800 801 struct kinfo_proc * 802 kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt) 803 { 804 size_t size; 805 int mib[4], st, nprocs; 806 807 if (ISALIVE(kd)) { 808 size = 0; 809 mib[0] = CTL_KERN; 810 mib[1] = KERN_PROC; 811 mib[2] = op; 812 mib[3] = arg; 813 st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0); 814 if (st == -1) { 815 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 816 return (NULL); 817 } 818 KVM_ALLOC(kd, procbase, size); 819 st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0); 820 if (st == -1) { 821 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 822 return (NULL); 823 } 824 if (size % sizeof(struct kinfo_proc) != 0) { 825 _kvm_err(kd, kd->program, 826 "proc size mismatch (%lu total, %lu chunks)", 827 (u_long)size, (u_long)sizeof(struct kinfo_proc)); 828 return (NULL); 829 } 830 nprocs = (int) (size / sizeof(struct kinfo_proc)); 831 } else { 832 struct nlist nl[4], *p; 833 834 (void)memset(nl, 0, sizeof(nl)); 835 nl[0].n_name = "_nprocs"; 836 nl[1].n_name = "_allproc"; 837 nl[2].n_name = "_zombproc"; 838 nl[3].n_name = NULL; 839 840 if (kvm_nlist(kd, nl) != 0) { 841 for (p = nl; p->n_type != 0; ++p) 842 continue; 843 _kvm_err(kd, kd->program, 844 "%s: no such symbol", p->n_name); 845 return (NULL); 846 } 847 if (KREAD(kd, nl[0].n_value, &nprocs)) { 848 _kvm_err(kd, kd->program, "can't read nprocs"); 849 return (NULL); 850 } 851 size = nprocs * sizeof(*kd->procbase); 852 KVM_ALLOC(kd, procbase, size); 853 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 854 nl[2].n_value, nprocs); 855 if (nprocs < 0) 856 return (NULL); 857 #ifdef notdef 858 size = nprocs * sizeof(struct kinfo_proc); 859 (void)realloc(kd->procbase, size); 860 #endif 861 } 862 *cnt = nprocs; 863 return (kd->procbase); 864 } 865 866 void * 867 _kvm_realloc(kvm_t *kd, void *p, size_t n) 868 { 869 void *np = realloc(p, n); 870 871 if (np == NULL) 872 _kvm_err(kd, kd->program, "out of memory"); 873 return (np); 874 } 875 876 /* 877 * Read in an argument vector from the user address space of process p. 878 * addr if the user-space base address of narg null-terminated contiguous 879 * strings. This is used to read in both the command arguments and 880 * environment strings. Read at most maxcnt characters of strings. 881 */ 882 static char ** 883 kvm_argv(kvm_t *kd, const struct miniproc *p, u_long addr, int narg, 884 int maxcnt) 885 { 886 char *np, *cp, *ep, *ap; 887 u_long oaddr = (u_long)~0L; 888 u_long len; 889 size_t cc; 890 char **argv; 891 892 /* 893 * Check that there aren't an unreasonable number of arguments, 894 * and that the address is in user space. 895 */ 896 if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva) 897 return (NULL); 898 899 if (kd->argv == NULL) { 900 /* 901 * Try to avoid reallocs. 902 */ 903 kd->argc = MAX(narg + 1, 32); 904 kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv)); 905 if (kd->argv == NULL) 906 return (NULL); 907 } else if (narg + 1 > kd->argc) { 908 kd->argc = MAX(2 * kd->argc, narg + 1); 909 kd->argv = _kvm_realloc(kd, kd->argv, kd->argc * 910 sizeof(*kd->argv)); 911 if (kd->argv == NULL) 912 return (NULL); 913 } 914 if (kd->argspc == NULL) { 915 kd->argspc = _kvm_malloc(kd, (size_t)kd->nbpg); 916 if (kd->argspc == NULL) 917 return (NULL); 918 kd->argspc_len = kd->nbpg; 919 } 920 if (kd->argbuf == NULL) { 921 kd->argbuf = _kvm_malloc(kd, (size_t)kd->nbpg); 922 if (kd->argbuf == NULL) 923 return (NULL); 924 } 925 cc = sizeof(char *) * narg; 926 if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc) 927 return (NULL); 928 ap = np = kd->argspc; 929 argv = kd->argv; 930 len = 0; 931 /* 932 * Loop over pages, filling in the argument vector. 933 */ 934 while (argv < kd->argv + narg && *argv != NULL) { 935 addr = (u_long)*argv & ~(kd->nbpg - 1); 936 if (addr != oaddr) { 937 if (kvm_ureadm(kd, p, addr, kd->argbuf, 938 (size_t)kd->nbpg) != kd->nbpg) 939 return (NULL); 940 oaddr = addr; 941 } 942 addr = (u_long)*argv & (kd->nbpg - 1); 943 cp = kd->argbuf + (size_t)addr; 944 cc = kd->nbpg - (size_t)addr; 945 if (maxcnt > 0 && cc > (size_t)(maxcnt - len)) 946 cc = (size_t)(maxcnt - len); 947 ep = memchr(cp, '\0', cc); 948 if (ep != NULL) 949 cc = ep - cp + 1; 950 if (len + cc > kd->argspc_len) { 951 ptrdiff_t off; 952 char **pp; 953 uintptr_t op = (uintptr_t)kd->argspc; 954 955 kd->argspc_len *= 2; 956 kd->argspc = _kvm_realloc(kd, kd->argspc, 957 kd->argspc_len); 958 if (kd->argspc == NULL) 959 return (NULL); 960 /* 961 * Adjust argv pointers in case realloc moved 962 * the string space. 963 */ 964 off = (uintptr_t)kd->argspc - op; 965 for (pp = kd->argv; pp < argv; pp++) 966 *pp += off; 967 ap += off; 968 np += off; 969 } 970 memcpy(np, cp, cc); 971 np += cc; 972 len += cc; 973 if (ep != NULL) { 974 *argv++ = ap; 975 ap = np; 976 } else 977 *argv += cc; 978 if (maxcnt > 0 && len >= maxcnt) { 979 /* 980 * We're stopping prematurely. Terminate the 981 * current string. 982 */ 983 if (ep == NULL) { 984 *np = '\0'; 985 *argv++ = ap; 986 } 987 break; 988 } 989 } 990 /* Make sure argv is terminated. */ 991 *argv = NULL; 992 return (kd->argv); 993 } 994 995 static void 996 ps_str_a(struct ps_strings *p, u_long *addr, int *n) 997 { 998 999 *addr = (u_long)p->ps_argvstr; 1000 *n = p->ps_nargvstr; 1001 } 1002 1003 static void 1004 ps_str_e(struct ps_strings *p, u_long *addr, int *n) 1005 { 1006 1007 *addr = (u_long)p->ps_envstr; 1008 *n = p->ps_nenvstr; 1009 } 1010 1011 /* 1012 * Determine if the proc indicated by p is still active. 1013 * This test is not 100% foolproof in theory, but chances of 1014 * being wrong are very low. 1015 */ 1016 static int 1017 proc_verify(kvm_t *kd, u_long kernp, const struct miniproc *p) 1018 { 1019 struct proc kernproc; 1020 1021 /* 1022 * Just read in the whole proc. It's not that big relative 1023 * to the cost of the read system call. 1024 */ 1025 if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) != 1026 sizeof(kernproc)) 1027 return (0); 1028 return (p->p_pid == kernproc.p_pid && 1029 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB)); 1030 } 1031 1032 static char ** 1033 kvm_doargv(kvm_t *kd, const struct miniproc *p, int nchr, 1034 void (*info)(struct ps_strings *, u_long *, int *)) 1035 { 1036 char **ap; 1037 u_long addr; 1038 int cnt; 1039 struct ps_strings arginfo; 1040 1041 /* 1042 * Pointers are stored at the top of the user stack. 1043 */ 1044 if (p->p_stat == SZOMB) 1045 return (NULL); 1046 cnt = (int)kvm_ureadm(kd, p, p->p_psstrp, 1047 (void *)&arginfo, sizeof(arginfo)); 1048 if (cnt != sizeof(arginfo)) 1049 return (NULL); 1050 1051 (*info)(&arginfo, &addr, &cnt); 1052 if (cnt == 0) 1053 return (NULL); 1054 ap = kvm_argv(kd, p, addr, cnt, nchr); 1055 /* 1056 * For live kernels, make sure this process didn't go away. 1057 */ 1058 if (ap != NULL && ISALIVE(kd) && 1059 !proc_verify(kd, (u_long)p->p_paddr, p)) 1060 ap = NULL; 1061 return (ap); 1062 } 1063 1064 /* 1065 * Get the command args. This code is now machine independent. 1066 */ 1067 char ** 1068 kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr) 1069 { 1070 struct miniproc p; 1071 1072 KPTOMINI(kp, &p); 1073 return (kvm_doargv(kd, &p, nchr, ps_str_a)); 1074 } 1075 1076 char ** 1077 kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr) 1078 { 1079 struct miniproc p; 1080 1081 KPTOMINI(kp, &p); 1082 return (kvm_doargv(kd, &p, nchr, ps_str_e)); 1083 } 1084 1085 static char ** 1086 kvm_doargv2(kvm_t *kd, pid_t pid, int type, int nchr) 1087 { 1088 size_t bufs; 1089 int narg, mib[4]; 1090 size_t newargspc_len; 1091 char **ap, *bp, *endp; 1092 1093 /* 1094 * Check that there aren't an unreasonable number of arguments. 1095 */ 1096 if (nchr > ARG_MAX) 1097 return (NULL); 1098 1099 if (nchr == 0) 1100 nchr = ARG_MAX; 1101 1102 /* Get number of strings in argv */ 1103 mib[0] = CTL_KERN; 1104 mib[1] = KERN_PROC_ARGS; 1105 mib[2] = pid; 1106 mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV; 1107 bufs = sizeof(narg); 1108 if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1) 1109 return (NULL); 1110 1111 if (kd->argv == NULL) { 1112 /* 1113 * Try to avoid reallocs. 1114 */ 1115 kd->argc = MAX(narg + 1, 32); 1116 kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv)); 1117 if (kd->argv == NULL) 1118 return (NULL); 1119 } else if (narg + 1 > kd->argc) { 1120 kd->argc = MAX(2 * kd->argc, narg + 1); 1121 kd->argv = _kvm_realloc(kd, kd->argv, kd->argc * 1122 sizeof(*kd->argv)); 1123 if (kd->argv == NULL) 1124 return (NULL); 1125 } 1126 1127 newargspc_len = MIN(nchr, ARG_MAX); 1128 KVM_ALLOC(kd, argspc, newargspc_len); 1129 memset(kd->argspc, 0, (size_t)kd->argspc_len); /* XXX necessary? */ 1130 1131 mib[0] = CTL_KERN; 1132 mib[1] = KERN_PROC_ARGS; 1133 mib[2] = pid; 1134 mib[3] = type; 1135 bufs = kd->argspc_len; 1136 if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1) 1137 return (NULL); 1138 1139 bp = kd->argspc; 1140 bp[kd->argspc_len-1] = '\0'; /* make sure the string ends with nul */ 1141 ap = kd->argv; 1142 endp = bp + MIN(nchr, bufs); 1143 1144 while (bp < endp) { 1145 *ap++ = bp; 1146 /* 1147 * XXX: don't need following anymore, or stick check 1148 * for max argc in above while loop? 1149 */ 1150 if (ap >= kd->argv + kd->argc) { 1151 kd->argc *= 2; 1152 kd->argv = _kvm_realloc(kd, kd->argv, 1153 kd->argc * sizeof(*kd->argv)); 1154 ap = kd->argv; 1155 } 1156 bp += strlen(bp) + 1; 1157 } 1158 *ap = NULL; 1159 1160 return (kd->argv); 1161 } 1162 1163 char ** 1164 kvm_getargv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr) 1165 { 1166 1167 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr)); 1168 } 1169 1170 char ** 1171 kvm_getenvv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr) 1172 { 1173 1174 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr)); 1175 } 1176 1177 /* 1178 * Read from user space. The user context is given by p. 1179 */ 1180 static ssize_t 1181 kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long uva, 1182 char *buf, size_t len) 1183 { 1184 char *cp; 1185 1186 cp = buf; 1187 while (len > 0) { 1188 size_t cc; 1189 char *dp; 1190 u_long cnt; 1191 1192 dp = _kvm_ureadm(kd, p, uva, &cnt); 1193 if (dp == NULL) { 1194 _kvm_err(kd, 0, "invalid address (%lx)", uva); 1195 return (0); 1196 } 1197 cc = (size_t)MIN(cnt, len); 1198 memcpy(cp, dp, cc); 1199 cp += cc; 1200 uva += cc; 1201 len -= cc; 1202 } 1203 return (ssize_t)(cp - buf); 1204 } 1205