xref: /llvm-project/polly/lib/External/isl/isl_polynomial.c (revision a749e09e184b2b0b6dde71af01c82dd427b3e3e2)
1 /*
2  * Copyright 2010      INRIA Saclay
3  *
4  * Use of this software is governed by the MIT license
5  *
6  * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7  * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
8  * 91893 Orsay, France
9  */
10 
11 #include <stdlib.h>
12 #include <isl_ctx_private.h>
13 #include <isl_map_private.h>
14 #include <isl_factorization.h>
15 #include <isl_lp_private.h>
16 #include <isl_seq.h>
17 #include <isl_union_map_private.h>
18 #include <isl_constraint_private.h>
19 #include <isl_polynomial_private.h>
20 #include <isl_point_private.h>
21 #include <isl_space_private.h>
22 #include <isl_mat_private.h>
23 #include <isl_vec_private.h>
24 #include <isl_range.h>
25 #include <isl_local.h>
26 #include <isl_local_space_private.h>
27 #include <isl_aff_private.h>
28 #include <isl_val_private.h>
29 #include <isl_config.h>
30 
31 #undef EL_BASE
32 #define EL_BASE qpolynomial
33 
34 #include <isl_list_templ.c>
35 
36 #undef EL_BASE
37 #define EL_BASE pw_qpolynomial
38 
39 #include <isl_list_templ.c>
40 
pos(__isl_keep isl_space * space,enum isl_dim_type type)41 static unsigned pos(__isl_keep isl_space *space, enum isl_dim_type type)
42 {
43 	switch (type) {
44 	case isl_dim_param:	return 0;
45 	case isl_dim_in:	return space->nparam;
46 	case isl_dim_out:	return space->nparam + space->n_in;
47 	default:		return 0;
48 	}
49 }
50 
isl_poly_is_cst(__isl_keep isl_poly * poly)51 isl_bool isl_poly_is_cst(__isl_keep isl_poly *poly)
52 {
53 	if (!poly)
54 		return isl_bool_error;
55 
56 	return isl_bool_ok(poly->var < 0);
57 }
58 
isl_poly_as_cst(__isl_keep isl_poly * poly)59 __isl_keep isl_poly_cst *isl_poly_as_cst(__isl_keep isl_poly *poly)
60 {
61 	if (!poly)
62 		return NULL;
63 
64 	isl_assert(poly->ctx, poly->var < 0, return NULL);
65 
66 	return (isl_poly_cst *) poly;
67 }
68 
isl_poly_as_rec(__isl_keep isl_poly * poly)69 __isl_keep isl_poly_rec *isl_poly_as_rec(__isl_keep isl_poly *poly)
70 {
71 	if (!poly)
72 		return NULL;
73 
74 	isl_assert(poly->ctx, poly->var >= 0, return NULL);
75 
76 	return (isl_poly_rec *) poly;
77 }
78 
79 /* Compare two polynomials.
80  *
81  * Return -1 if "poly1" is "smaller" than "poly2", 1 if "poly1" is "greater"
82  * than "poly2" and 0 if they are equal.
83  */
isl_poly_plain_cmp(__isl_keep isl_poly * poly1,__isl_keep isl_poly * poly2)84 static int isl_poly_plain_cmp(__isl_keep isl_poly *poly1,
85 	__isl_keep isl_poly *poly2)
86 {
87 	int i;
88 	isl_bool is_cst1;
89 	isl_poly_rec *rec1, *rec2;
90 
91 	if (poly1 == poly2)
92 		return 0;
93 	is_cst1 = isl_poly_is_cst(poly1);
94 	if (is_cst1 < 0)
95 		return -1;
96 	if (!poly2)
97 		return 1;
98 	if (poly1->var != poly2->var)
99 		return poly1->var - poly2->var;
100 
101 	if (is_cst1) {
102 		isl_poly_cst *cst1, *cst2;
103 		int cmp;
104 
105 		cst1 = isl_poly_as_cst(poly1);
106 		cst2 = isl_poly_as_cst(poly2);
107 		if (!cst1 || !cst2)
108 			return 0;
109 		cmp = isl_int_cmp(cst1->n, cst2->n);
110 		if (cmp != 0)
111 			return cmp;
112 		return isl_int_cmp(cst1->d, cst2->d);
113 	}
114 
115 	rec1 = isl_poly_as_rec(poly1);
116 	rec2 = isl_poly_as_rec(poly2);
117 	if (!rec1 || !rec2)
118 		return 0;
119 
120 	if (rec1->n != rec2->n)
121 		return rec1->n - rec2->n;
122 
123 	for (i = 0; i < rec1->n; ++i) {
124 		int cmp = isl_poly_plain_cmp(rec1->p[i], rec2->p[i]);
125 		if (cmp != 0)
126 			return cmp;
127 	}
128 
129 	return 0;
130 }
131 
isl_poly_is_equal(__isl_keep isl_poly * poly1,__isl_keep isl_poly * poly2)132 isl_bool isl_poly_is_equal(__isl_keep isl_poly *poly1,
133 	__isl_keep isl_poly *poly2)
134 {
135 	int i;
136 	isl_bool is_cst1;
137 	isl_poly_rec *rec1, *rec2;
138 
139 	is_cst1 = isl_poly_is_cst(poly1);
140 	if (is_cst1 < 0 || !poly2)
141 		return isl_bool_error;
142 	if (poly1 == poly2)
143 		return isl_bool_true;
144 	if (poly1->var != poly2->var)
145 		return isl_bool_false;
146 	if (is_cst1) {
147 		isl_poly_cst *cst1, *cst2;
148 		int r;
149 		cst1 = isl_poly_as_cst(poly1);
150 		cst2 = isl_poly_as_cst(poly2);
151 		if (!cst1 || !cst2)
152 			return isl_bool_error;
153 		r = isl_int_eq(cst1->n, cst2->n) &&
154 		    isl_int_eq(cst1->d, cst2->d);
155 		return isl_bool_ok(r);
156 	}
157 
158 	rec1 = isl_poly_as_rec(poly1);
159 	rec2 = isl_poly_as_rec(poly2);
160 	if (!rec1 || !rec2)
161 		return isl_bool_error;
162 
163 	if (rec1->n != rec2->n)
164 		return isl_bool_false;
165 
166 	for (i = 0; i < rec1->n; ++i) {
167 		isl_bool eq = isl_poly_is_equal(rec1->p[i], rec2->p[i]);
168 		if (eq < 0 || !eq)
169 			return eq;
170 	}
171 
172 	return isl_bool_true;
173 }
174 
isl_poly_is_zero(__isl_keep isl_poly * poly)175 isl_bool isl_poly_is_zero(__isl_keep isl_poly *poly)
176 {
177 	isl_bool is_cst;
178 	isl_poly_cst *cst;
179 
180 	is_cst = isl_poly_is_cst(poly);
181 	if (is_cst < 0 || !is_cst)
182 		return is_cst;
183 
184 	cst = isl_poly_as_cst(poly);
185 	if (!cst)
186 		return isl_bool_error;
187 
188 	return isl_bool_ok(isl_int_is_zero(cst->n) && isl_int_is_pos(cst->d));
189 }
190 
isl_poly_sgn(__isl_keep isl_poly * poly)191 int isl_poly_sgn(__isl_keep isl_poly *poly)
192 {
193 	isl_bool is_cst;
194 	isl_poly_cst *cst;
195 
196 	is_cst = isl_poly_is_cst(poly);
197 	if (is_cst < 0 || !is_cst)
198 		return 0;
199 
200 	cst = isl_poly_as_cst(poly);
201 	if (!cst)
202 		return 0;
203 
204 	return isl_int_sgn(cst->n);
205 }
206 
isl_poly_is_nan(__isl_keep isl_poly * poly)207 isl_bool isl_poly_is_nan(__isl_keep isl_poly *poly)
208 {
209 	isl_bool is_cst;
210 	isl_poly_cst *cst;
211 
212 	is_cst = isl_poly_is_cst(poly);
213 	if (is_cst < 0 || !is_cst)
214 		return is_cst;
215 
216 	cst = isl_poly_as_cst(poly);
217 	if (!cst)
218 		return isl_bool_error;
219 
220 	return isl_bool_ok(isl_int_is_zero(cst->n) && isl_int_is_zero(cst->d));
221 }
222 
isl_poly_is_infty(__isl_keep isl_poly * poly)223 isl_bool isl_poly_is_infty(__isl_keep isl_poly *poly)
224 {
225 	isl_bool is_cst;
226 	isl_poly_cst *cst;
227 
228 	is_cst = isl_poly_is_cst(poly);
229 	if (is_cst < 0 || !is_cst)
230 		return is_cst;
231 
232 	cst = isl_poly_as_cst(poly);
233 	if (!cst)
234 		return isl_bool_error;
235 
236 	return isl_bool_ok(isl_int_is_pos(cst->n) && isl_int_is_zero(cst->d));
237 }
238 
isl_poly_is_neginfty(__isl_keep isl_poly * poly)239 isl_bool isl_poly_is_neginfty(__isl_keep isl_poly *poly)
240 {
241 	isl_bool is_cst;
242 	isl_poly_cst *cst;
243 
244 	is_cst = isl_poly_is_cst(poly);
245 	if (is_cst < 0 || !is_cst)
246 		return is_cst;
247 
248 	cst = isl_poly_as_cst(poly);
249 	if (!cst)
250 		return isl_bool_error;
251 
252 	return isl_bool_ok(isl_int_is_neg(cst->n) && isl_int_is_zero(cst->d));
253 }
254 
isl_poly_is_one(__isl_keep isl_poly * poly)255 isl_bool isl_poly_is_one(__isl_keep isl_poly *poly)
256 {
257 	isl_bool is_cst;
258 	isl_poly_cst *cst;
259 	int r;
260 
261 	is_cst = isl_poly_is_cst(poly);
262 	if (is_cst < 0 || !is_cst)
263 		return is_cst;
264 
265 	cst = isl_poly_as_cst(poly);
266 	if (!cst)
267 		return isl_bool_error;
268 
269 	r = isl_int_eq(cst->n, cst->d) && isl_int_is_pos(cst->d);
270 	return isl_bool_ok(r);
271 }
272 
isl_poly_is_negone(__isl_keep isl_poly * poly)273 isl_bool isl_poly_is_negone(__isl_keep isl_poly *poly)
274 {
275 	isl_bool is_cst;
276 	isl_poly_cst *cst;
277 
278 	is_cst = isl_poly_is_cst(poly);
279 	if (is_cst < 0 || !is_cst)
280 		return is_cst;
281 
282 	cst = isl_poly_as_cst(poly);
283 	if (!cst)
284 		return isl_bool_error;
285 
286 	return isl_bool_ok(isl_int_is_negone(cst->n) && isl_int_is_one(cst->d));
287 }
288 
isl_poly_cst_alloc(isl_ctx * ctx)289 __isl_give isl_poly_cst *isl_poly_cst_alloc(isl_ctx *ctx)
290 {
291 	isl_poly_cst *cst;
292 
293 	cst = isl_alloc_type(ctx, struct isl_poly_cst);
294 	if (!cst)
295 		return NULL;
296 
297 	cst->poly.ref = 1;
298 	cst->poly.ctx = ctx;
299 	isl_ctx_ref(ctx);
300 	cst->poly.var = -1;
301 
302 	isl_int_init(cst->n);
303 	isl_int_init(cst->d);
304 
305 	return cst;
306 }
307 
isl_poly_zero(isl_ctx * ctx)308 __isl_give isl_poly *isl_poly_zero(isl_ctx *ctx)
309 {
310 	isl_poly_cst *cst;
311 
312 	cst = isl_poly_cst_alloc(ctx);
313 	if (!cst)
314 		return NULL;
315 
316 	isl_int_set_si(cst->n, 0);
317 	isl_int_set_si(cst->d, 1);
318 
319 	return &cst->poly;
320 }
321 
isl_poly_one(isl_ctx * ctx)322 __isl_give isl_poly *isl_poly_one(isl_ctx *ctx)
323 {
324 	isl_poly_cst *cst;
325 
326 	cst = isl_poly_cst_alloc(ctx);
327 	if (!cst)
328 		return NULL;
329 
330 	isl_int_set_si(cst->n, 1);
331 	isl_int_set_si(cst->d, 1);
332 
333 	return &cst->poly;
334 }
335 
isl_poly_infty(isl_ctx * ctx)336 __isl_give isl_poly *isl_poly_infty(isl_ctx *ctx)
337 {
338 	isl_poly_cst *cst;
339 
340 	cst = isl_poly_cst_alloc(ctx);
341 	if (!cst)
342 		return NULL;
343 
344 	isl_int_set_si(cst->n, 1);
345 	isl_int_set_si(cst->d, 0);
346 
347 	return &cst->poly;
348 }
349 
isl_poly_neginfty(isl_ctx * ctx)350 __isl_give isl_poly *isl_poly_neginfty(isl_ctx *ctx)
351 {
352 	isl_poly_cst *cst;
353 
354 	cst = isl_poly_cst_alloc(ctx);
355 	if (!cst)
356 		return NULL;
357 
358 	isl_int_set_si(cst->n, -1);
359 	isl_int_set_si(cst->d, 0);
360 
361 	return &cst->poly;
362 }
363 
isl_poly_nan(isl_ctx * ctx)364 __isl_give isl_poly *isl_poly_nan(isl_ctx *ctx)
365 {
366 	isl_poly_cst *cst;
367 
368 	cst = isl_poly_cst_alloc(ctx);
369 	if (!cst)
370 		return NULL;
371 
372 	isl_int_set_si(cst->n, 0);
373 	isl_int_set_si(cst->d, 0);
374 
375 	return &cst->poly;
376 }
377 
isl_poly_rat_cst(isl_ctx * ctx,isl_int n,isl_int d)378 __isl_give isl_poly *isl_poly_rat_cst(isl_ctx *ctx, isl_int n, isl_int d)
379 {
380 	isl_poly_cst *cst;
381 
382 	cst = isl_poly_cst_alloc(ctx);
383 	if (!cst)
384 		return NULL;
385 
386 	isl_int_set(cst->n, n);
387 	isl_int_set(cst->d, d);
388 
389 	return &cst->poly;
390 }
391 
isl_poly_alloc_rec(isl_ctx * ctx,int var,int size)392 __isl_give isl_poly_rec *isl_poly_alloc_rec(isl_ctx *ctx, int var, int size)
393 {
394 	isl_poly_rec *rec;
395 
396 	isl_assert(ctx, var >= 0, return NULL);
397 	isl_assert(ctx, size >= 0, return NULL);
398 	rec = isl_calloc(ctx, struct isl_poly_rec,
399 			sizeof(struct isl_poly_rec) +
400 			size * sizeof(struct isl_poly *));
401 	if (!rec)
402 		return NULL;
403 
404 	rec->poly.ref = 1;
405 	rec->poly.ctx = ctx;
406 	isl_ctx_ref(ctx);
407 	rec->poly.var = var;
408 
409 	rec->n = 0;
410 	rec->size = size;
411 
412 	return rec;
413 }
414 
isl_qpolynomial_reset_domain_space(__isl_take isl_qpolynomial * qp,__isl_take isl_space * space)415 __isl_give isl_qpolynomial *isl_qpolynomial_reset_domain_space(
416 	__isl_take isl_qpolynomial *qp, __isl_take isl_space *space)
417 {
418 	qp = isl_qpolynomial_cow(qp);
419 	if (!qp || !space)
420 		goto error;
421 
422 	isl_space_free(qp->dim);
423 	qp->dim = space;
424 
425 	return qp;
426 error:
427 	isl_qpolynomial_free(qp);
428 	isl_space_free(space);
429 	return NULL;
430 }
431 
432 /* Reset the space of "qp".  This function is called from isl_pw_templ.c
433  * and doesn't know if the space of an element object is represented
434  * directly or through its domain.  It therefore passes along both.
435  */
isl_qpolynomial_reset_space_and_domain(__isl_take isl_qpolynomial * qp,__isl_take isl_space * space,__isl_take isl_space * domain)436 __isl_give isl_qpolynomial *isl_qpolynomial_reset_space_and_domain(
437 	__isl_take isl_qpolynomial *qp, __isl_take isl_space *space,
438 	__isl_take isl_space *domain)
439 {
440 	isl_space_free(space);
441 	return isl_qpolynomial_reset_domain_space(qp, domain);
442 }
443 
isl_qpolynomial_get_ctx(__isl_keep isl_qpolynomial * qp)444 isl_ctx *isl_qpolynomial_get_ctx(__isl_keep isl_qpolynomial *qp)
445 {
446 	return qp ? qp->dim->ctx : NULL;
447 }
448 
449 /* Return the domain space of "qp".
450  */
isl_qpolynomial_peek_domain_space(__isl_keep isl_qpolynomial * qp)451 static __isl_keep isl_space *isl_qpolynomial_peek_domain_space(
452 	__isl_keep isl_qpolynomial *qp)
453 {
454 	return qp ? qp->dim : NULL;
455 }
456 
457 /* Return a copy of the domain space of "qp".
458  */
isl_qpolynomial_get_domain_space(__isl_keep isl_qpolynomial * qp)459 __isl_give isl_space *isl_qpolynomial_get_domain_space(
460 	__isl_keep isl_qpolynomial *qp)
461 {
462 	return isl_space_copy(isl_qpolynomial_peek_domain_space(qp));
463 }
464 
465 #undef TYPE
466 #define TYPE		isl_qpolynomial
467 #undef PEEK_SPACE
468 #define PEEK_SPACE	peek_domain_space
469 
470 static
471 #include "isl_type_has_equal_space_bin_templ.c"
472 static
473 #include "isl_type_check_equal_space_templ.c"
474 
475 #undef PEEK_SPACE
476 
477 /* Return a copy of the local space on which "qp" is defined.
478  */
isl_qpolynomial_get_domain_local_space(__isl_keep isl_qpolynomial * qp)479 static __isl_give isl_local_space *isl_qpolynomial_get_domain_local_space(
480 	__isl_keep isl_qpolynomial *qp)
481 {
482 	isl_space *space;
483 
484 	if (!qp)
485 		return NULL;
486 
487 	space = isl_qpolynomial_get_domain_space(qp);
488 	return isl_local_space_alloc_div(space, isl_mat_copy(qp->div));
489 }
490 
isl_qpolynomial_get_space(__isl_keep isl_qpolynomial * qp)491 __isl_give isl_space *isl_qpolynomial_get_space(__isl_keep isl_qpolynomial *qp)
492 {
493 	isl_space *space;
494 	if (!qp)
495 		return NULL;
496 	space = isl_space_copy(qp->dim);
497 	space = isl_space_from_domain(space);
498 	space = isl_space_add_dims(space, isl_dim_out, 1);
499 	return space;
500 }
501 
502 /* Return the number of variables of the given type in the domain of "qp".
503  */
isl_qpolynomial_domain_dim(__isl_keep isl_qpolynomial * qp,enum isl_dim_type type)504 isl_size isl_qpolynomial_domain_dim(__isl_keep isl_qpolynomial *qp,
505 	enum isl_dim_type type)
506 {
507 	isl_space *space;
508 	isl_size dim;
509 
510 	space = isl_qpolynomial_peek_domain_space(qp);
511 
512 	if (!space)
513 		return isl_size_error;
514 	if (type == isl_dim_div)
515 		return qp->div->n_row;
516 	dim = isl_space_dim(space, type);
517 	if (dim < 0)
518 		return isl_size_error;
519 	if (type == isl_dim_all) {
520 		isl_size n_div;
521 
522 		n_div = isl_qpolynomial_domain_dim(qp, isl_dim_div);
523 		if (n_div < 0)
524 			return isl_size_error;
525 		dim += n_div;
526 	}
527 	return dim;
528 }
529 
530 /* Given the type of a dimension of an isl_qpolynomial,
531  * return the type of the corresponding dimension in its domain.
532  * This function is only called for "type" equal to isl_dim_in or
533  * isl_dim_param.
534  */
domain_type(enum isl_dim_type type)535 static enum isl_dim_type domain_type(enum isl_dim_type type)
536 {
537 	return type == isl_dim_in ? isl_dim_set : type;
538 }
539 
540 /* Externally, an isl_qpolynomial has a map space, but internally, the
541  * ls field corresponds to the domain of that space.
542  */
isl_qpolynomial_dim(__isl_keep isl_qpolynomial * qp,enum isl_dim_type type)543 isl_size isl_qpolynomial_dim(__isl_keep isl_qpolynomial *qp,
544 	enum isl_dim_type type)
545 {
546 	if (!qp)
547 		return isl_size_error;
548 	if (type == isl_dim_out)
549 		return 1;
550 	type = domain_type(type);
551 	return isl_qpolynomial_domain_dim(qp, type);
552 }
553 
554 /* Return the offset of the first variable of type "type" within
555  * the variables of the domain of "qp".
556  */
isl_qpolynomial_domain_var_offset(__isl_keep isl_qpolynomial * qp,enum isl_dim_type type)557 static isl_size isl_qpolynomial_domain_var_offset(
558 	__isl_keep isl_qpolynomial *qp, enum isl_dim_type type)
559 {
560 	isl_space *space;
561 
562 	space = isl_qpolynomial_peek_domain_space(qp);
563 	if (!space)
564 		return isl_size_error;
565 
566 	switch (type) {
567 	case isl_dim_param:
568 	case isl_dim_set:	return isl_space_offset(space, type);
569 	case isl_dim_div:	return isl_space_dim(space, isl_dim_all);
570 	case isl_dim_cst:
571 	default:
572 		isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid,
573 			"invalid dimension type", return isl_size_error);
574 	}
575 }
576 
577 /* Return the offset of the first coefficient of type "type" in
578  * the domain of "qp".
579  */
isl_qpolynomial_domain_offset(__isl_keep isl_qpolynomial * qp,enum isl_dim_type type)580 unsigned isl_qpolynomial_domain_offset(__isl_keep isl_qpolynomial *qp,
581 	enum isl_dim_type type)
582 {
583 	switch (type) {
584 	case isl_dim_cst:
585 		return 0;
586 	case isl_dim_param:
587 	case isl_dim_set:
588 	case isl_dim_div:
589 		return 1 + isl_qpolynomial_domain_var_offset(qp, type);
590 	default:
591 		return 0;
592 	}
593 }
594 
isl_qpolynomial_is_zero(__isl_keep isl_qpolynomial * qp)595 isl_bool isl_qpolynomial_is_zero(__isl_keep isl_qpolynomial *qp)
596 {
597 	return qp ? isl_poly_is_zero(qp->poly) : isl_bool_error;
598 }
599 
isl_qpolynomial_is_one(__isl_keep isl_qpolynomial * qp)600 isl_bool isl_qpolynomial_is_one(__isl_keep isl_qpolynomial *qp)
601 {
602 	return qp ? isl_poly_is_one(qp->poly) : isl_bool_error;
603 }
604 
isl_qpolynomial_is_nan(__isl_keep isl_qpolynomial * qp)605 isl_bool isl_qpolynomial_is_nan(__isl_keep isl_qpolynomial *qp)
606 {
607 	return qp ? isl_poly_is_nan(qp->poly) : isl_bool_error;
608 }
609 
isl_qpolynomial_is_infty(__isl_keep isl_qpolynomial * qp)610 isl_bool isl_qpolynomial_is_infty(__isl_keep isl_qpolynomial *qp)
611 {
612 	return qp ? isl_poly_is_infty(qp->poly) : isl_bool_error;
613 }
614 
isl_qpolynomial_is_neginfty(__isl_keep isl_qpolynomial * qp)615 isl_bool isl_qpolynomial_is_neginfty(__isl_keep isl_qpolynomial *qp)
616 {
617 	return qp ? isl_poly_is_neginfty(qp->poly) : isl_bool_error;
618 }
619 
isl_qpolynomial_sgn(__isl_keep isl_qpolynomial * qp)620 int isl_qpolynomial_sgn(__isl_keep isl_qpolynomial *qp)
621 {
622 	return qp ? isl_poly_sgn(qp->poly) : 0;
623 }
624 
poly_free_cst(__isl_take isl_poly_cst * cst)625 static void poly_free_cst(__isl_take isl_poly_cst *cst)
626 {
627 	isl_int_clear(cst->n);
628 	isl_int_clear(cst->d);
629 }
630 
poly_free_rec(__isl_take isl_poly_rec * rec)631 static void poly_free_rec(__isl_take isl_poly_rec *rec)
632 {
633 	int i;
634 
635 	for (i = 0; i < rec->n; ++i)
636 		isl_poly_free(rec->p[i]);
637 }
638 
isl_poly_copy(__isl_keep isl_poly * poly)639 __isl_give isl_poly *isl_poly_copy(__isl_keep isl_poly *poly)
640 {
641 	if (!poly)
642 		return NULL;
643 
644 	poly->ref++;
645 	return poly;
646 }
647 
isl_poly_dup_cst(__isl_keep isl_poly * poly)648 __isl_give isl_poly *isl_poly_dup_cst(__isl_keep isl_poly *poly)
649 {
650 	isl_poly_cst *cst;
651 	isl_poly_cst *dup;
652 
653 	cst = isl_poly_as_cst(poly);
654 	if (!cst)
655 		return NULL;
656 
657 	dup = isl_poly_as_cst(isl_poly_zero(poly->ctx));
658 	if (!dup)
659 		return NULL;
660 	isl_int_set(dup->n, cst->n);
661 	isl_int_set(dup->d, cst->d);
662 
663 	return &dup->poly;
664 }
665 
isl_poly_dup_rec(__isl_keep isl_poly * poly)666 __isl_give isl_poly *isl_poly_dup_rec(__isl_keep isl_poly *poly)
667 {
668 	int i;
669 	isl_poly_rec *rec;
670 	isl_poly_rec *dup;
671 
672 	rec = isl_poly_as_rec(poly);
673 	if (!rec)
674 		return NULL;
675 
676 	dup = isl_poly_alloc_rec(poly->ctx, poly->var, rec->n);
677 	if (!dup)
678 		return NULL;
679 
680 	for (i = 0; i < rec->n; ++i) {
681 		dup->p[i] = isl_poly_copy(rec->p[i]);
682 		if (!dup->p[i])
683 			goto error;
684 		dup->n++;
685 	}
686 
687 	return &dup->poly;
688 error:
689 	isl_poly_free(&dup->poly);
690 	return NULL;
691 }
692 
isl_poly_dup(__isl_keep isl_poly * poly)693 __isl_give isl_poly *isl_poly_dup(__isl_keep isl_poly *poly)
694 {
695 	isl_bool is_cst;
696 
697 	is_cst = isl_poly_is_cst(poly);
698 	if (is_cst < 0)
699 		return NULL;
700 	if (is_cst)
701 		return isl_poly_dup_cst(poly);
702 	else
703 		return isl_poly_dup_rec(poly);
704 }
705 
isl_poly_cow(__isl_take isl_poly * poly)706 __isl_give isl_poly *isl_poly_cow(__isl_take isl_poly *poly)
707 {
708 	if (!poly)
709 		return NULL;
710 
711 	if (poly->ref == 1)
712 		return poly;
713 	poly->ref--;
714 	return isl_poly_dup(poly);
715 }
716 
isl_poly_free(__isl_take isl_poly * poly)717 __isl_null isl_poly *isl_poly_free(__isl_take isl_poly *poly)
718 {
719 	if (!poly)
720 		return NULL;
721 
722 	if (--poly->ref > 0)
723 		return NULL;
724 
725 	if (poly->var < 0)
726 		poly_free_cst((isl_poly_cst *) poly);
727 	else
728 		poly_free_rec((isl_poly_rec *) poly);
729 
730 	isl_ctx_deref(poly->ctx);
731 	free(poly);
732 	return NULL;
733 }
734 
isl_poly_cst_reduce(__isl_keep isl_poly_cst * cst)735 static void isl_poly_cst_reduce(__isl_keep isl_poly_cst *cst)
736 {
737 	isl_int gcd;
738 
739 	isl_int_init(gcd);
740 	isl_int_gcd(gcd, cst->n, cst->d);
741 	if (!isl_int_is_zero(gcd) && !isl_int_is_one(gcd)) {
742 		isl_int_divexact(cst->n, cst->n, gcd);
743 		isl_int_divexact(cst->d, cst->d, gcd);
744 	}
745 	isl_int_clear(gcd);
746 }
747 
isl_poly_sum_cst(__isl_take isl_poly * poly1,__isl_take isl_poly * poly2)748 __isl_give isl_poly *isl_poly_sum_cst(__isl_take isl_poly *poly1,
749 	__isl_take isl_poly *poly2)
750 {
751 	isl_poly_cst *cst1;
752 	isl_poly_cst *cst2;
753 
754 	poly1 = isl_poly_cow(poly1);
755 	if (!poly1 || !poly2)
756 		goto error;
757 
758 	cst1 = isl_poly_as_cst(poly1);
759 	cst2 = isl_poly_as_cst(poly2);
760 
761 	if (isl_int_eq(cst1->d, cst2->d))
762 		isl_int_add(cst1->n, cst1->n, cst2->n);
763 	else {
764 		isl_int_mul(cst1->n, cst1->n, cst2->d);
765 		isl_int_addmul(cst1->n, cst2->n, cst1->d);
766 		isl_int_mul(cst1->d, cst1->d, cst2->d);
767 	}
768 
769 	isl_poly_cst_reduce(cst1);
770 
771 	isl_poly_free(poly2);
772 	return poly1;
773 error:
774 	isl_poly_free(poly1);
775 	isl_poly_free(poly2);
776 	return NULL;
777 }
778 
replace_by_zero(__isl_take isl_poly * poly)779 static __isl_give isl_poly *replace_by_zero(__isl_take isl_poly *poly)
780 {
781 	struct isl_ctx *ctx;
782 
783 	if (!poly)
784 		return NULL;
785 	ctx = poly->ctx;
786 	isl_poly_free(poly);
787 	return isl_poly_zero(ctx);
788 }
789 
replace_by_constant_term(__isl_take isl_poly * poly)790 static __isl_give isl_poly *replace_by_constant_term(__isl_take isl_poly *poly)
791 {
792 	isl_poly_rec *rec;
793 	isl_poly *cst;
794 
795 	if (!poly)
796 		return NULL;
797 
798 	rec = isl_poly_as_rec(poly);
799 	if (!rec)
800 		goto error;
801 	cst = isl_poly_copy(rec->p[0]);
802 	isl_poly_free(poly);
803 	return cst;
804 error:
805 	isl_poly_free(poly);
806 	return NULL;
807 }
808 
isl_poly_sum(__isl_take isl_poly * poly1,__isl_take isl_poly * poly2)809 __isl_give isl_poly *isl_poly_sum(__isl_take isl_poly *poly1,
810 	__isl_take isl_poly *poly2)
811 {
812 	int i;
813 	isl_bool is_zero, is_nan, is_cst;
814 	isl_poly_rec *rec1, *rec2;
815 
816 	if (!poly1 || !poly2)
817 		goto error;
818 
819 	is_nan = isl_poly_is_nan(poly1);
820 	if (is_nan < 0)
821 		goto error;
822 	if (is_nan) {
823 		isl_poly_free(poly2);
824 		return poly1;
825 	}
826 
827 	is_nan = isl_poly_is_nan(poly2);
828 	if (is_nan < 0)
829 		goto error;
830 	if (is_nan) {
831 		isl_poly_free(poly1);
832 		return poly2;
833 	}
834 
835 	is_zero = isl_poly_is_zero(poly1);
836 	if (is_zero < 0)
837 		goto error;
838 	if (is_zero) {
839 		isl_poly_free(poly1);
840 		return poly2;
841 	}
842 
843 	is_zero = isl_poly_is_zero(poly2);
844 	if (is_zero < 0)
845 		goto error;
846 	if (is_zero) {
847 		isl_poly_free(poly2);
848 		return poly1;
849 	}
850 
851 	if (poly1->var < poly2->var)
852 		return isl_poly_sum(poly2, poly1);
853 
854 	if (poly2->var < poly1->var) {
855 		isl_poly_rec *rec;
856 		isl_bool is_infty;
857 
858 		is_infty = isl_poly_is_infty(poly2);
859 		if (is_infty >= 0 && !is_infty)
860 			is_infty = isl_poly_is_neginfty(poly2);
861 		if (is_infty < 0)
862 			goto error;
863 		if (is_infty) {
864 			isl_poly_free(poly1);
865 			return poly2;
866 		}
867 		poly1 = isl_poly_cow(poly1);
868 		rec = isl_poly_as_rec(poly1);
869 		if (!rec)
870 			goto error;
871 		rec->p[0] = isl_poly_sum(rec->p[0], poly2);
872 		if (rec->n == 1)
873 			poly1 = replace_by_constant_term(poly1);
874 		return poly1;
875 	}
876 
877 	is_cst = isl_poly_is_cst(poly1);
878 	if (is_cst < 0)
879 		goto error;
880 	if (is_cst)
881 		return isl_poly_sum_cst(poly1, poly2);
882 
883 	rec1 = isl_poly_as_rec(poly1);
884 	rec2 = isl_poly_as_rec(poly2);
885 	if (!rec1 || !rec2)
886 		goto error;
887 
888 	if (rec1->n < rec2->n)
889 		return isl_poly_sum(poly2, poly1);
890 
891 	poly1 = isl_poly_cow(poly1);
892 	rec1 = isl_poly_as_rec(poly1);
893 	if (!rec1)
894 		goto error;
895 
896 	for (i = rec2->n - 1; i >= 0; --i) {
897 		isl_bool is_zero;
898 
899 		rec1->p[i] = isl_poly_sum(rec1->p[i],
900 					    isl_poly_copy(rec2->p[i]));
901 		if (!rec1->p[i])
902 			goto error;
903 		if (i != rec1->n - 1)
904 			continue;
905 		is_zero = isl_poly_is_zero(rec1->p[i]);
906 		if (is_zero < 0)
907 			goto error;
908 		if (is_zero) {
909 			isl_poly_free(rec1->p[i]);
910 			rec1->n--;
911 		}
912 	}
913 
914 	if (rec1->n == 0)
915 		poly1 = replace_by_zero(poly1);
916 	else if (rec1->n == 1)
917 		poly1 = replace_by_constant_term(poly1);
918 
919 	isl_poly_free(poly2);
920 
921 	return poly1;
922 error:
923 	isl_poly_free(poly1);
924 	isl_poly_free(poly2);
925 	return NULL;
926 }
927 
isl_poly_cst_add_isl_int(__isl_take isl_poly * poly,isl_int v)928 __isl_give isl_poly *isl_poly_cst_add_isl_int(__isl_take isl_poly *poly,
929 	isl_int v)
930 {
931 	isl_poly_cst *cst;
932 
933 	poly = isl_poly_cow(poly);
934 	if (!poly)
935 		return NULL;
936 
937 	cst = isl_poly_as_cst(poly);
938 
939 	isl_int_addmul(cst->n, cst->d, v);
940 
941 	return poly;
942 }
943 
isl_poly_add_isl_int(__isl_take isl_poly * poly,isl_int v)944 __isl_give isl_poly *isl_poly_add_isl_int(__isl_take isl_poly *poly, isl_int v)
945 {
946 	isl_bool is_cst;
947 	isl_poly_rec *rec;
948 
949 	is_cst = isl_poly_is_cst(poly);
950 	if (is_cst < 0)
951 		return isl_poly_free(poly);
952 	if (is_cst)
953 		return isl_poly_cst_add_isl_int(poly, v);
954 
955 	poly = isl_poly_cow(poly);
956 	rec = isl_poly_as_rec(poly);
957 	if (!rec)
958 		goto error;
959 
960 	rec->p[0] = isl_poly_add_isl_int(rec->p[0], v);
961 	if (!rec->p[0])
962 		goto error;
963 
964 	return poly;
965 error:
966 	isl_poly_free(poly);
967 	return NULL;
968 }
969 
isl_poly_cst_mul_isl_int(__isl_take isl_poly * poly,isl_int v)970 __isl_give isl_poly *isl_poly_cst_mul_isl_int(__isl_take isl_poly *poly,
971 	isl_int v)
972 {
973 	isl_bool is_zero;
974 	isl_poly_cst *cst;
975 
976 	is_zero = isl_poly_is_zero(poly);
977 	if (is_zero < 0)
978 		return isl_poly_free(poly);
979 	if (is_zero)
980 		return poly;
981 
982 	poly = isl_poly_cow(poly);
983 	if (!poly)
984 		return NULL;
985 
986 	cst = isl_poly_as_cst(poly);
987 
988 	isl_int_mul(cst->n, cst->n, v);
989 
990 	return poly;
991 }
992 
isl_poly_mul_isl_int(__isl_take isl_poly * poly,isl_int v)993 __isl_give isl_poly *isl_poly_mul_isl_int(__isl_take isl_poly *poly, isl_int v)
994 {
995 	int i;
996 	isl_bool is_cst;
997 	isl_poly_rec *rec;
998 
999 	is_cst = isl_poly_is_cst(poly);
1000 	if (is_cst < 0)
1001 		return isl_poly_free(poly);
1002 	if (is_cst)
1003 		return isl_poly_cst_mul_isl_int(poly, v);
1004 
1005 	poly = isl_poly_cow(poly);
1006 	rec = isl_poly_as_rec(poly);
1007 	if (!rec)
1008 		goto error;
1009 
1010 	for (i = 0; i < rec->n; ++i) {
1011 		rec->p[i] = isl_poly_mul_isl_int(rec->p[i], v);
1012 		if (!rec->p[i])
1013 			goto error;
1014 	}
1015 
1016 	return poly;
1017 error:
1018 	isl_poly_free(poly);
1019 	return NULL;
1020 }
1021 
1022 /* Multiply the constant polynomial "poly" by "v".
1023  */
isl_poly_cst_scale_val(__isl_take isl_poly * poly,__isl_keep isl_val * v)1024 static __isl_give isl_poly *isl_poly_cst_scale_val(__isl_take isl_poly *poly,
1025 	__isl_keep isl_val *v)
1026 {
1027 	isl_bool is_zero;
1028 	isl_poly_cst *cst;
1029 
1030 	is_zero = isl_poly_is_zero(poly);
1031 	if (is_zero < 0)
1032 		return isl_poly_free(poly);
1033 	if (is_zero)
1034 		return poly;
1035 
1036 	poly = isl_poly_cow(poly);
1037 	if (!poly)
1038 		return NULL;
1039 
1040 	cst = isl_poly_as_cst(poly);
1041 
1042 	isl_int_mul(cst->n, cst->n, v->n);
1043 	isl_int_mul(cst->d, cst->d, v->d);
1044 	isl_poly_cst_reduce(cst);
1045 
1046 	return poly;
1047 }
1048 
1049 /* Multiply the polynomial "poly" by "v".
1050  */
isl_poly_scale_val(__isl_take isl_poly * poly,__isl_keep isl_val * v)1051 static __isl_give isl_poly *isl_poly_scale_val(__isl_take isl_poly *poly,
1052 	__isl_keep isl_val *v)
1053 {
1054 	int i;
1055 	isl_bool is_cst;
1056 	isl_poly_rec *rec;
1057 
1058 	is_cst = isl_poly_is_cst(poly);
1059 	if (is_cst < 0)
1060 		return isl_poly_free(poly);
1061 	if (is_cst)
1062 		return isl_poly_cst_scale_val(poly, v);
1063 
1064 	poly = isl_poly_cow(poly);
1065 	rec = isl_poly_as_rec(poly);
1066 	if (!rec)
1067 		goto error;
1068 
1069 	for (i = 0; i < rec->n; ++i) {
1070 		rec->p[i] = isl_poly_scale_val(rec->p[i], v);
1071 		if (!rec->p[i])
1072 			goto error;
1073 	}
1074 
1075 	return poly;
1076 error:
1077 	isl_poly_free(poly);
1078 	return NULL;
1079 }
1080 
isl_poly_mul_cst(__isl_take isl_poly * poly1,__isl_take isl_poly * poly2)1081 __isl_give isl_poly *isl_poly_mul_cst(__isl_take isl_poly *poly1,
1082 	__isl_take isl_poly *poly2)
1083 {
1084 	isl_poly_cst *cst1;
1085 	isl_poly_cst *cst2;
1086 
1087 	poly1 = isl_poly_cow(poly1);
1088 	if (!poly1 || !poly2)
1089 		goto error;
1090 
1091 	cst1 = isl_poly_as_cst(poly1);
1092 	cst2 = isl_poly_as_cst(poly2);
1093 
1094 	isl_int_mul(cst1->n, cst1->n, cst2->n);
1095 	isl_int_mul(cst1->d, cst1->d, cst2->d);
1096 
1097 	isl_poly_cst_reduce(cst1);
1098 
1099 	isl_poly_free(poly2);
1100 	return poly1;
1101 error:
1102 	isl_poly_free(poly1);
1103 	isl_poly_free(poly2);
1104 	return NULL;
1105 }
1106 
isl_poly_mul_rec(__isl_take isl_poly * poly1,__isl_take isl_poly * poly2)1107 __isl_give isl_poly *isl_poly_mul_rec(__isl_take isl_poly *poly1,
1108 	__isl_take isl_poly *poly2)
1109 {
1110 	isl_poly_rec *rec1;
1111 	isl_poly_rec *rec2;
1112 	isl_poly_rec *res = NULL;
1113 	int i, j;
1114 	int size;
1115 
1116 	rec1 = isl_poly_as_rec(poly1);
1117 	rec2 = isl_poly_as_rec(poly2);
1118 	if (!rec1 || !rec2)
1119 		goto error;
1120 	size = rec1->n + rec2->n - 1;
1121 	res = isl_poly_alloc_rec(poly1->ctx, poly1->var, size);
1122 	if (!res)
1123 		goto error;
1124 
1125 	for (i = 0; i < rec1->n; ++i) {
1126 		res->p[i] = isl_poly_mul(isl_poly_copy(rec2->p[0]),
1127 					    isl_poly_copy(rec1->p[i]));
1128 		if (!res->p[i])
1129 			goto error;
1130 		res->n++;
1131 	}
1132 	for (; i < size; ++i) {
1133 		res->p[i] = isl_poly_zero(poly1->ctx);
1134 		if (!res->p[i])
1135 			goto error;
1136 		res->n++;
1137 	}
1138 	for (i = 0; i < rec1->n; ++i) {
1139 		for (j = 1; j < rec2->n; ++j) {
1140 			isl_poly *poly;
1141 			poly = isl_poly_mul(isl_poly_copy(rec2->p[j]),
1142 					    isl_poly_copy(rec1->p[i]));
1143 			res->p[i + j] = isl_poly_sum(res->p[i + j], poly);
1144 			if (!res->p[i + j])
1145 				goto error;
1146 		}
1147 	}
1148 
1149 	isl_poly_free(poly1);
1150 	isl_poly_free(poly2);
1151 
1152 	return &res->poly;
1153 error:
1154 	isl_poly_free(poly1);
1155 	isl_poly_free(poly2);
1156 	isl_poly_free(&res->poly);
1157 	return NULL;
1158 }
1159 
isl_poly_mul(__isl_take isl_poly * poly1,__isl_take isl_poly * poly2)1160 __isl_give isl_poly *isl_poly_mul(__isl_take isl_poly *poly1,
1161 	__isl_take isl_poly *poly2)
1162 {
1163 	isl_bool is_zero, is_nan, is_one, is_cst;
1164 
1165 	if (!poly1 || !poly2)
1166 		goto error;
1167 
1168 	is_nan = isl_poly_is_nan(poly1);
1169 	if (is_nan < 0)
1170 		goto error;
1171 	if (is_nan) {
1172 		isl_poly_free(poly2);
1173 		return poly1;
1174 	}
1175 
1176 	is_nan = isl_poly_is_nan(poly2);
1177 	if (is_nan < 0)
1178 		goto error;
1179 	if (is_nan) {
1180 		isl_poly_free(poly1);
1181 		return poly2;
1182 	}
1183 
1184 	is_zero = isl_poly_is_zero(poly1);
1185 	if (is_zero < 0)
1186 		goto error;
1187 	if (is_zero) {
1188 		isl_poly_free(poly2);
1189 		return poly1;
1190 	}
1191 
1192 	is_zero = isl_poly_is_zero(poly2);
1193 	if (is_zero < 0)
1194 		goto error;
1195 	if (is_zero) {
1196 		isl_poly_free(poly1);
1197 		return poly2;
1198 	}
1199 
1200 	is_one = isl_poly_is_one(poly1);
1201 	if (is_one < 0)
1202 		goto error;
1203 	if (is_one) {
1204 		isl_poly_free(poly1);
1205 		return poly2;
1206 	}
1207 
1208 	is_one = isl_poly_is_one(poly2);
1209 	if (is_one < 0)
1210 		goto error;
1211 	if (is_one) {
1212 		isl_poly_free(poly2);
1213 		return poly1;
1214 	}
1215 
1216 	if (poly1->var < poly2->var)
1217 		return isl_poly_mul(poly2, poly1);
1218 
1219 	if (poly2->var < poly1->var) {
1220 		int i;
1221 		isl_poly_rec *rec;
1222 		isl_bool is_infty;
1223 
1224 		is_infty = isl_poly_is_infty(poly2);
1225 		if (is_infty >= 0 && !is_infty)
1226 			is_infty = isl_poly_is_neginfty(poly2);
1227 		if (is_infty < 0)
1228 			goto error;
1229 		if (is_infty) {
1230 			isl_ctx *ctx = poly1->ctx;
1231 			isl_poly_free(poly1);
1232 			isl_poly_free(poly2);
1233 			return isl_poly_nan(ctx);
1234 		}
1235 		poly1 = isl_poly_cow(poly1);
1236 		rec = isl_poly_as_rec(poly1);
1237 		if (!rec)
1238 			goto error;
1239 
1240 		for (i = 0; i < rec->n; ++i) {
1241 			rec->p[i] = isl_poly_mul(rec->p[i],
1242 						isl_poly_copy(poly2));
1243 			if (!rec->p[i])
1244 				goto error;
1245 		}
1246 		isl_poly_free(poly2);
1247 		return poly1;
1248 	}
1249 
1250 	is_cst = isl_poly_is_cst(poly1);
1251 	if (is_cst < 0)
1252 		goto error;
1253 	if (is_cst)
1254 		return isl_poly_mul_cst(poly1, poly2);
1255 
1256 	return isl_poly_mul_rec(poly1, poly2);
1257 error:
1258 	isl_poly_free(poly1);
1259 	isl_poly_free(poly2);
1260 	return NULL;
1261 }
1262 
isl_poly_pow(__isl_take isl_poly * poly,unsigned power)1263 __isl_give isl_poly *isl_poly_pow(__isl_take isl_poly *poly, unsigned power)
1264 {
1265 	isl_poly *res;
1266 
1267 	if (!poly)
1268 		return NULL;
1269 	if (power == 1)
1270 		return poly;
1271 
1272 	if (power % 2)
1273 		res = isl_poly_copy(poly);
1274 	else
1275 		res = isl_poly_one(poly->ctx);
1276 
1277 	while (power >>= 1) {
1278 		poly = isl_poly_mul(poly, isl_poly_copy(poly));
1279 		if (power % 2)
1280 			res = isl_poly_mul(res, isl_poly_copy(poly));
1281 	}
1282 
1283 	isl_poly_free(poly);
1284 	return res;
1285 }
1286 
isl_qpolynomial_alloc(__isl_take isl_space * space,unsigned n_div,__isl_take isl_poly * poly)1287 __isl_give isl_qpolynomial *isl_qpolynomial_alloc(__isl_take isl_space *space,
1288 	unsigned n_div, __isl_take isl_poly *poly)
1289 {
1290 	struct isl_qpolynomial *qp = NULL;
1291 	isl_size total;
1292 
1293 	total = isl_space_dim(space, isl_dim_all);
1294 	if (total < 0 || !poly)
1295 		goto error;
1296 
1297 	if (!isl_space_is_set(space))
1298 		isl_die(isl_space_get_ctx(space), isl_error_invalid,
1299 			"domain of polynomial should be a set", goto error);
1300 
1301 	qp = isl_calloc_type(space->ctx, struct isl_qpolynomial);
1302 	if (!qp)
1303 		goto error;
1304 
1305 	qp->ref = 1;
1306 	qp->div = isl_mat_alloc(space->ctx, n_div, 1 + 1 + total + n_div);
1307 	if (!qp->div)
1308 		goto error;
1309 
1310 	qp->dim = space;
1311 	qp->poly = poly;
1312 
1313 	return qp;
1314 error:
1315 	isl_space_free(space);
1316 	isl_poly_free(poly);
1317 	isl_qpolynomial_free(qp);
1318 	return NULL;
1319 }
1320 
isl_qpolynomial_copy(__isl_keep isl_qpolynomial * qp)1321 __isl_give isl_qpolynomial *isl_qpolynomial_copy(__isl_keep isl_qpolynomial *qp)
1322 {
1323 	if (!qp)
1324 		return NULL;
1325 
1326 	qp->ref++;
1327 	return qp;
1328 }
1329 
isl_qpolynomial_dup(__isl_keep isl_qpolynomial * qp)1330 __isl_give isl_qpolynomial *isl_qpolynomial_dup(__isl_keep isl_qpolynomial *qp)
1331 {
1332 	struct isl_qpolynomial *dup;
1333 
1334 	if (!qp)
1335 		return NULL;
1336 
1337 	dup = isl_qpolynomial_alloc(isl_space_copy(qp->dim), qp->div->n_row,
1338 				    isl_poly_copy(qp->poly));
1339 	if (!dup)
1340 		return NULL;
1341 	isl_mat_free(dup->div);
1342 	dup->div = isl_mat_copy(qp->div);
1343 	if (!dup->div)
1344 		goto error;
1345 
1346 	return dup;
1347 error:
1348 	isl_qpolynomial_free(dup);
1349 	return NULL;
1350 }
1351 
isl_qpolynomial_cow(__isl_take isl_qpolynomial * qp)1352 __isl_give isl_qpolynomial *isl_qpolynomial_cow(__isl_take isl_qpolynomial *qp)
1353 {
1354 	if (!qp)
1355 		return NULL;
1356 
1357 	if (qp->ref == 1)
1358 		return qp;
1359 	qp->ref--;
1360 	return isl_qpolynomial_dup(qp);
1361 }
1362 
isl_qpolynomial_free(__isl_take isl_qpolynomial * qp)1363 __isl_null isl_qpolynomial *isl_qpolynomial_free(
1364 	__isl_take isl_qpolynomial *qp)
1365 {
1366 	if (!qp)
1367 		return NULL;
1368 
1369 	if (--qp->ref > 0)
1370 		return NULL;
1371 
1372 	isl_space_free(qp->dim);
1373 	isl_mat_free(qp->div);
1374 	isl_poly_free(qp->poly);
1375 
1376 	free(qp);
1377 	return NULL;
1378 }
1379 
isl_poly_var_pow(isl_ctx * ctx,int pos,int power)1380 __isl_give isl_poly *isl_poly_var_pow(isl_ctx *ctx, int pos, int power)
1381 {
1382 	int i;
1383 	isl_poly_rec *rec;
1384 	isl_poly_cst *cst;
1385 
1386 	rec = isl_poly_alloc_rec(ctx, pos, 1 + power);
1387 	if (!rec)
1388 		return NULL;
1389 	for (i = 0; i < 1 + power; ++i) {
1390 		rec->p[i] = isl_poly_zero(ctx);
1391 		if (!rec->p[i])
1392 			goto error;
1393 		rec->n++;
1394 	}
1395 	cst = isl_poly_as_cst(rec->p[power]);
1396 	isl_int_set_si(cst->n, 1);
1397 
1398 	return &rec->poly;
1399 error:
1400 	isl_poly_free(&rec->poly);
1401 	return NULL;
1402 }
1403 
1404 /* r array maps original positions to new positions.
1405  */
reorder(__isl_take isl_poly * poly,int * r)1406 static __isl_give isl_poly *reorder(__isl_take isl_poly *poly, int *r)
1407 {
1408 	int i;
1409 	isl_bool is_cst;
1410 	isl_poly_rec *rec;
1411 	isl_poly *base;
1412 	isl_poly *res;
1413 
1414 	is_cst = isl_poly_is_cst(poly);
1415 	if (is_cst < 0)
1416 		return isl_poly_free(poly);
1417 	if (is_cst)
1418 		return poly;
1419 
1420 	rec = isl_poly_as_rec(poly);
1421 	if (!rec)
1422 		goto error;
1423 
1424 	isl_assert(poly->ctx, rec->n >= 1, goto error);
1425 
1426 	base = isl_poly_var_pow(poly->ctx, r[poly->var], 1);
1427 	res = reorder(isl_poly_copy(rec->p[rec->n - 1]), r);
1428 
1429 	for (i = rec->n - 2; i >= 0; --i) {
1430 		res = isl_poly_mul(res, isl_poly_copy(base));
1431 		res = isl_poly_sum(res, reorder(isl_poly_copy(rec->p[i]), r));
1432 	}
1433 
1434 	isl_poly_free(base);
1435 	isl_poly_free(poly);
1436 
1437 	return res;
1438 error:
1439 	isl_poly_free(poly);
1440 	return NULL;
1441 }
1442 
compatible_divs(__isl_keep isl_mat * div1,__isl_keep isl_mat * div2)1443 static isl_bool compatible_divs(__isl_keep isl_mat *div1,
1444 	__isl_keep isl_mat *div2)
1445 {
1446 	int n_row, n_col;
1447 	isl_bool equal;
1448 
1449 	isl_assert(div1->ctx, div1->n_row >= div2->n_row &&
1450 				div1->n_col >= div2->n_col,
1451 		    return isl_bool_error);
1452 
1453 	if (div1->n_row == div2->n_row)
1454 		return isl_mat_is_equal(div1, div2);
1455 
1456 	n_row = div1->n_row;
1457 	n_col = div1->n_col;
1458 	div1->n_row = div2->n_row;
1459 	div1->n_col = div2->n_col;
1460 
1461 	equal = isl_mat_is_equal(div1, div2);
1462 
1463 	div1->n_row = n_row;
1464 	div1->n_col = n_col;
1465 
1466 	return equal;
1467 }
1468 
cmp_row(__isl_keep isl_mat * div,int i,int j)1469 static int cmp_row(__isl_keep isl_mat *div, int i, int j)
1470 {
1471 	int li, lj;
1472 
1473 	li = isl_seq_last_non_zero(div->row[i], div->n_col);
1474 	lj = isl_seq_last_non_zero(div->row[j], div->n_col);
1475 
1476 	if (li != lj)
1477 		return li - lj;
1478 
1479 	return isl_seq_cmp(div->row[i], div->row[j], div->n_col);
1480 }
1481 
1482 struct isl_div_sort_info {
1483 	isl_mat	*div;
1484 	int	 row;
1485 };
1486 
div_sort_cmp(const void * p1,const void * p2)1487 static int div_sort_cmp(const void *p1, const void *p2)
1488 {
1489 	const struct isl_div_sort_info *i1, *i2;
1490 	i1 = (const struct isl_div_sort_info *) p1;
1491 	i2 = (const struct isl_div_sort_info *) p2;
1492 
1493 	return cmp_row(i1->div, i1->row, i2->row);
1494 }
1495 
1496 /* Sort divs and remove duplicates.
1497  */
sort_divs(__isl_take isl_qpolynomial * qp)1498 static __isl_give isl_qpolynomial *sort_divs(__isl_take isl_qpolynomial *qp)
1499 {
1500 	int i;
1501 	int skip;
1502 	int len;
1503 	struct isl_div_sort_info *array = NULL;
1504 	int *pos = NULL, *at = NULL;
1505 	int *reordering = NULL;
1506 	isl_size div_pos;
1507 
1508 	if (!qp)
1509 		return NULL;
1510 	if (qp->div->n_row <= 1)
1511 		return qp;
1512 
1513 	div_pos = isl_qpolynomial_domain_var_offset(qp, isl_dim_div);
1514 	if (div_pos < 0)
1515 		return isl_qpolynomial_free(qp);
1516 
1517 	array = isl_alloc_array(qp->div->ctx, struct isl_div_sort_info,
1518 				qp->div->n_row);
1519 	pos = isl_alloc_array(qp->div->ctx, int, qp->div->n_row);
1520 	at = isl_alloc_array(qp->div->ctx, int, qp->div->n_row);
1521 	len = qp->div->n_col - 2;
1522 	reordering = isl_alloc_array(qp->div->ctx, int, len);
1523 	if (!array || !pos || !at || !reordering)
1524 		goto error;
1525 
1526 	for (i = 0; i < qp->div->n_row; ++i) {
1527 		array[i].div = qp->div;
1528 		array[i].row = i;
1529 		pos[i] = i;
1530 		at[i] = i;
1531 	}
1532 
1533 	qsort(array, qp->div->n_row, sizeof(struct isl_div_sort_info),
1534 		div_sort_cmp);
1535 
1536 	for (i = 0; i < div_pos; ++i)
1537 		reordering[i] = i;
1538 
1539 	for (i = 0; i < qp->div->n_row; ++i) {
1540 		if (pos[array[i].row] == i)
1541 			continue;
1542 		qp->div = isl_mat_swap_rows(qp->div, i, pos[array[i].row]);
1543 		pos[at[i]] = pos[array[i].row];
1544 		at[pos[array[i].row]] = at[i];
1545 		at[i] = array[i].row;
1546 		pos[array[i].row] = i;
1547 	}
1548 
1549 	skip = 0;
1550 	for (i = 0; i < len - div_pos; ++i) {
1551 		if (i > 0 &&
1552 		    isl_seq_eq(qp->div->row[i - skip - 1],
1553 			       qp->div->row[i - skip], qp->div->n_col)) {
1554 			qp->div = isl_mat_drop_rows(qp->div, i - skip, 1);
1555 			isl_mat_col_add(qp->div, 2 + div_pos + i - skip - 1,
1556 						 2 + div_pos + i - skip);
1557 			qp->div = isl_mat_drop_cols(qp->div,
1558 						    2 + div_pos + i - skip, 1);
1559 			skip++;
1560 		}
1561 		reordering[div_pos + array[i].row] = div_pos + i - skip;
1562 	}
1563 
1564 	qp->poly = reorder(qp->poly, reordering);
1565 
1566 	if (!qp->poly || !qp->div)
1567 		goto error;
1568 
1569 	free(at);
1570 	free(pos);
1571 	free(array);
1572 	free(reordering);
1573 
1574 	return qp;
1575 error:
1576 	free(at);
1577 	free(pos);
1578 	free(array);
1579 	free(reordering);
1580 	isl_qpolynomial_free(qp);
1581 	return NULL;
1582 }
1583 
expand(__isl_take isl_poly * poly,int * exp,int first)1584 static __isl_give isl_poly *expand(__isl_take isl_poly *poly, int *exp,
1585 	int first)
1586 {
1587 	int i;
1588 	isl_bool is_cst;
1589 	isl_poly_rec *rec;
1590 
1591 	is_cst = isl_poly_is_cst(poly);
1592 	if (is_cst < 0)
1593 		return isl_poly_free(poly);
1594 	if (is_cst)
1595 		return poly;
1596 
1597 	if (poly->var < first)
1598 		return poly;
1599 
1600 	if (exp[poly->var - first] == poly->var - first)
1601 		return poly;
1602 
1603 	poly = isl_poly_cow(poly);
1604 	if (!poly)
1605 		goto error;
1606 
1607 	poly->var = exp[poly->var - first] + first;
1608 
1609 	rec = isl_poly_as_rec(poly);
1610 	if (!rec)
1611 		goto error;
1612 
1613 	for (i = 0; i < rec->n; ++i) {
1614 		rec->p[i] = expand(rec->p[i], exp, first);
1615 		if (!rec->p[i])
1616 			goto error;
1617 	}
1618 
1619 	return poly;
1620 error:
1621 	isl_poly_free(poly);
1622 	return NULL;
1623 }
1624 
with_merged_divs(__isl_give isl_qpolynomial * (* fn)(__isl_take isl_qpolynomial * qp1,__isl_take isl_qpolynomial * qp2),__isl_take isl_qpolynomial * qp1,__isl_take isl_qpolynomial * qp2)1625 static __isl_give isl_qpolynomial *with_merged_divs(
1626 	__isl_give isl_qpolynomial *(*fn)(__isl_take isl_qpolynomial *qp1,
1627 					  __isl_take isl_qpolynomial *qp2),
1628 	__isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2)
1629 {
1630 	int *exp1 = NULL;
1631 	int *exp2 = NULL;
1632 	isl_mat *div = NULL;
1633 	int n_div1, n_div2;
1634 
1635 	qp1 = isl_qpolynomial_cow(qp1);
1636 	qp2 = isl_qpolynomial_cow(qp2);
1637 
1638 	if (!qp1 || !qp2)
1639 		goto error;
1640 
1641 	isl_assert(qp1->div->ctx, qp1->div->n_row >= qp2->div->n_row &&
1642 				qp1->div->n_col >= qp2->div->n_col, goto error);
1643 
1644 	n_div1 = qp1->div->n_row;
1645 	n_div2 = qp2->div->n_row;
1646 	exp1 = isl_alloc_array(qp1->div->ctx, int, n_div1);
1647 	exp2 = isl_alloc_array(qp2->div->ctx, int, n_div2);
1648 	if ((n_div1 && !exp1) || (n_div2 && !exp2))
1649 		goto error;
1650 
1651 	div = isl_merge_divs(qp1->div, qp2->div, exp1, exp2);
1652 	if (!div)
1653 		goto error;
1654 
1655 	isl_mat_free(qp1->div);
1656 	qp1->div = isl_mat_copy(div);
1657 	isl_mat_free(qp2->div);
1658 	qp2->div = isl_mat_copy(div);
1659 
1660 	qp1->poly = expand(qp1->poly, exp1, div->n_col - div->n_row - 2);
1661 	qp2->poly = expand(qp2->poly, exp2, div->n_col - div->n_row - 2);
1662 
1663 	if (!qp1->poly || !qp2->poly)
1664 		goto error;
1665 
1666 	isl_mat_free(div);
1667 	free(exp1);
1668 	free(exp2);
1669 
1670 	return fn(qp1, qp2);
1671 error:
1672 	isl_mat_free(div);
1673 	free(exp1);
1674 	free(exp2);
1675 	isl_qpolynomial_free(qp1);
1676 	isl_qpolynomial_free(qp2);
1677 	return NULL;
1678 }
1679 
isl_qpolynomial_add(__isl_take isl_qpolynomial * qp1,__isl_take isl_qpolynomial * qp2)1680 __isl_give isl_qpolynomial *isl_qpolynomial_add(__isl_take isl_qpolynomial *qp1,
1681 	__isl_take isl_qpolynomial *qp2)
1682 {
1683 	isl_bool compatible;
1684 
1685 	qp1 = isl_qpolynomial_cow(qp1);
1686 
1687 	if (isl_qpolynomial_check_equal_space(qp1, qp2) < 0)
1688 		goto error;
1689 
1690 	if (qp1->div->n_row < qp2->div->n_row)
1691 		return isl_qpolynomial_add(qp2, qp1);
1692 
1693 	compatible = compatible_divs(qp1->div, qp2->div);
1694 	if (compatible < 0)
1695 		goto error;
1696 	if (!compatible)
1697 		return with_merged_divs(isl_qpolynomial_add, qp1, qp2);
1698 
1699 	qp1->poly = isl_poly_sum(qp1->poly, isl_poly_copy(qp2->poly));
1700 	if (!qp1->poly)
1701 		goto error;
1702 
1703 	isl_qpolynomial_free(qp2);
1704 
1705 	return qp1;
1706 error:
1707 	isl_qpolynomial_free(qp1);
1708 	isl_qpolynomial_free(qp2);
1709 	return NULL;
1710 }
1711 
isl_qpolynomial_add_on_domain(__isl_keep isl_set * dom,__isl_take isl_qpolynomial * qp1,__isl_take isl_qpolynomial * qp2)1712 __isl_give isl_qpolynomial *isl_qpolynomial_add_on_domain(
1713 	__isl_keep isl_set *dom,
1714 	__isl_take isl_qpolynomial *qp1,
1715 	__isl_take isl_qpolynomial *qp2)
1716 {
1717 	qp1 = isl_qpolynomial_add(qp1, qp2);
1718 	qp1 = isl_qpolynomial_gist(qp1, isl_set_copy(dom));
1719 	return qp1;
1720 }
1721 
isl_qpolynomial_sub(__isl_take isl_qpolynomial * qp1,__isl_take isl_qpolynomial * qp2)1722 __isl_give isl_qpolynomial *isl_qpolynomial_sub(__isl_take isl_qpolynomial *qp1,
1723 	__isl_take isl_qpolynomial *qp2)
1724 {
1725 	return isl_qpolynomial_add(qp1, isl_qpolynomial_neg(qp2));
1726 }
1727 
isl_qpolynomial_add_isl_int(__isl_take isl_qpolynomial * qp,isl_int v)1728 __isl_give isl_qpolynomial *isl_qpolynomial_add_isl_int(
1729 	__isl_take isl_qpolynomial *qp, isl_int v)
1730 {
1731 	if (isl_int_is_zero(v))
1732 		return qp;
1733 
1734 	qp = isl_qpolynomial_cow(qp);
1735 	if (!qp)
1736 		return NULL;
1737 
1738 	qp->poly = isl_poly_add_isl_int(qp->poly, v);
1739 	if (!qp->poly)
1740 		goto error;
1741 
1742 	return qp;
1743 error:
1744 	isl_qpolynomial_free(qp);
1745 	return NULL;
1746 
1747 }
1748 
isl_qpolynomial_neg(__isl_take isl_qpolynomial * qp)1749 __isl_give isl_qpolynomial *isl_qpolynomial_neg(__isl_take isl_qpolynomial *qp)
1750 {
1751 	if (!qp)
1752 		return NULL;
1753 
1754 	return isl_qpolynomial_mul_isl_int(qp, qp->dim->ctx->negone);
1755 }
1756 
isl_qpolynomial_mul_isl_int(__isl_take isl_qpolynomial * qp,isl_int v)1757 __isl_give isl_qpolynomial *isl_qpolynomial_mul_isl_int(
1758 	__isl_take isl_qpolynomial *qp, isl_int v)
1759 {
1760 	if (isl_int_is_one(v))
1761 		return qp;
1762 
1763 	if (qp && isl_int_is_zero(v)) {
1764 		isl_qpolynomial *zero;
1765 		zero = isl_qpolynomial_zero_on_domain(isl_space_copy(qp->dim));
1766 		isl_qpolynomial_free(qp);
1767 		return zero;
1768 	}
1769 
1770 	qp = isl_qpolynomial_cow(qp);
1771 	if (!qp)
1772 		return NULL;
1773 
1774 	qp->poly = isl_poly_mul_isl_int(qp->poly, v);
1775 	if (!qp->poly)
1776 		goto error;
1777 
1778 	return qp;
1779 error:
1780 	isl_qpolynomial_free(qp);
1781 	return NULL;
1782 }
1783 
isl_qpolynomial_scale(__isl_take isl_qpolynomial * qp,isl_int v)1784 __isl_give isl_qpolynomial *isl_qpolynomial_scale(
1785 	__isl_take isl_qpolynomial *qp, isl_int v)
1786 {
1787 	return isl_qpolynomial_mul_isl_int(qp, v);
1788 }
1789 
1790 /* Multiply "qp" by "v".
1791  */
isl_qpolynomial_scale_val(__isl_take isl_qpolynomial * qp,__isl_take isl_val * v)1792 __isl_give isl_qpolynomial *isl_qpolynomial_scale_val(
1793 	__isl_take isl_qpolynomial *qp, __isl_take isl_val *v)
1794 {
1795 	if (!qp || !v)
1796 		goto error;
1797 
1798 	if (!isl_val_is_rat(v))
1799 		isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid,
1800 			"expecting rational factor", goto error);
1801 
1802 	if (isl_val_is_one(v)) {
1803 		isl_val_free(v);
1804 		return qp;
1805 	}
1806 
1807 	if (isl_val_is_zero(v)) {
1808 		isl_space *space;
1809 
1810 		space = isl_qpolynomial_get_domain_space(qp);
1811 		isl_qpolynomial_free(qp);
1812 		isl_val_free(v);
1813 		return isl_qpolynomial_zero_on_domain(space);
1814 	}
1815 
1816 	qp = isl_qpolynomial_cow(qp);
1817 	if (!qp)
1818 		goto error;
1819 
1820 	qp->poly = isl_poly_scale_val(qp->poly, v);
1821 	if (!qp->poly)
1822 		qp = isl_qpolynomial_free(qp);
1823 
1824 	isl_val_free(v);
1825 	return qp;
1826 error:
1827 	isl_val_free(v);
1828 	isl_qpolynomial_free(qp);
1829 	return NULL;
1830 }
1831 
1832 /* Divide "qp" by "v".
1833  */
isl_qpolynomial_scale_down_val(__isl_take isl_qpolynomial * qp,__isl_take isl_val * v)1834 __isl_give isl_qpolynomial *isl_qpolynomial_scale_down_val(
1835 	__isl_take isl_qpolynomial *qp, __isl_take isl_val *v)
1836 {
1837 	if (!qp || !v)
1838 		goto error;
1839 
1840 	if (!isl_val_is_rat(v))
1841 		isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid,
1842 			"expecting rational factor", goto error);
1843 	if (isl_val_is_zero(v))
1844 		isl_die(isl_val_get_ctx(v), isl_error_invalid,
1845 			"cannot scale down by zero", goto error);
1846 
1847 	return isl_qpolynomial_scale_val(qp, isl_val_inv(v));
1848 error:
1849 	isl_val_free(v);
1850 	isl_qpolynomial_free(qp);
1851 	return NULL;
1852 }
1853 
isl_qpolynomial_mul(__isl_take isl_qpolynomial * qp1,__isl_take isl_qpolynomial * qp2)1854 __isl_give isl_qpolynomial *isl_qpolynomial_mul(__isl_take isl_qpolynomial *qp1,
1855 	__isl_take isl_qpolynomial *qp2)
1856 {
1857 	isl_bool compatible;
1858 
1859 	qp1 = isl_qpolynomial_cow(qp1);
1860 
1861 	if (isl_qpolynomial_check_equal_space(qp1, qp2) < 0)
1862 		goto error;
1863 
1864 	if (qp1->div->n_row < qp2->div->n_row)
1865 		return isl_qpolynomial_mul(qp2, qp1);
1866 
1867 	compatible = compatible_divs(qp1->div, qp2->div);
1868 	if (compatible < 0)
1869 		goto error;
1870 	if (!compatible)
1871 		return with_merged_divs(isl_qpolynomial_mul, qp1, qp2);
1872 
1873 	qp1->poly = isl_poly_mul(qp1->poly, isl_poly_copy(qp2->poly));
1874 	if (!qp1->poly)
1875 		goto error;
1876 
1877 	isl_qpolynomial_free(qp2);
1878 
1879 	return qp1;
1880 error:
1881 	isl_qpolynomial_free(qp1);
1882 	isl_qpolynomial_free(qp2);
1883 	return NULL;
1884 }
1885 
isl_qpolynomial_pow(__isl_take isl_qpolynomial * qp,unsigned power)1886 __isl_give isl_qpolynomial *isl_qpolynomial_pow(__isl_take isl_qpolynomial *qp,
1887 	unsigned power)
1888 {
1889 	qp = isl_qpolynomial_cow(qp);
1890 
1891 	if (!qp)
1892 		return NULL;
1893 
1894 	qp->poly = isl_poly_pow(qp->poly, power);
1895 	if (!qp->poly)
1896 		goto error;
1897 
1898 	return qp;
1899 error:
1900 	isl_qpolynomial_free(qp);
1901 	return NULL;
1902 }
1903 
isl_pw_qpolynomial_pow(__isl_take isl_pw_qpolynomial * pwqp,unsigned power)1904 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_pow(
1905 	__isl_take isl_pw_qpolynomial *pwqp, unsigned power)
1906 {
1907 	int i;
1908 
1909 	if (power == 1)
1910 		return pwqp;
1911 
1912 	pwqp = isl_pw_qpolynomial_cow(pwqp);
1913 	if (!pwqp)
1914 		return NULL;
1915 
1916 	for (i = 0; i < pwqp->n; ++i) {
1917 		pwqp->p[i].qp = isl_qpolynomial_pow(pwqp->p[i].qp, power);
1918 		if (!pwqp->p[i].qp)
1919 			return isl_pw_qpolynomial_free(pwqp);
1920 	}
1921 
1922 	return pwqp;
1923 }
1924 
isl_qpolynomial_zero_on_domain(__isl_take isl_space * domain)1925 __isl_give isl_qpolynomial *isl_qpolynomial_zero_on_domain(
1926 	__isl_take isl_space *domain)
1927 {
1928 	if (!domain)
1929 		return NULL;
1930 	return isl_qpolynomial_alloc(domain, 0, isl_poly_zero(domain->ctx));
1931 }
1932 
isl_qpolynomial_one_on_domain(__isl_take isl_space * domain)1933 __isl_give isl_qpolynomial *isl_qpolynomial_one_on_domain(
1934 	__isl_take isl_space *domain)
1935 {
1936 	if (!domain)
1937 		return NULL;
1938 	return isl_qpolynomial_alloc(domain, 0, isl_poly_one(domain->ctx));
1939 }
1940 
isl_qpolynomial_infty_on_domain(__isl_take isl_space * domain)1941 __isl_give isl_qpolynomial *isl_qpolynomial_infty_on_domain(
1942 	__isl_take isl_space *domain)
1943 {
1944 	if (!domain)
1945 		return NULL;
1946 	return isl_qpolynomial_alloc(domain, 0, isl_poly_infty(domain->ctx));
1947 }
1948 
isl_qpolynomial_neginfty_on_domain(__isl_take isl_space * domain)1949 __isl_give isl_qpolynomial *isl_qpolynomial_neginfty_on_domain(
1950 	__isl_take isl_space *domain)
1951 {
1952 	if (!domain)
1953 		return NULL;
1954 	return isl_qpolynomial_alloc(domain, 0, isl_poly_neginfty(domain->ctx));
1955 }
1956 
isl_qpolynomial_nan_on_domain(__isl_take isl_space * domain)1957 __isl_give isl_qpolynomial *isl_qpolynomial_nan_on_domain(
1958 	__isl_take isl_space *domain)
1959 {
1960 	if (!domain)
1961 		return NULL;
1962 	return isl_qpolynomial_alloc(domain, 0, isl_poly_nan(domain->ctx));
1963 }
1964 
isl_qpolynomial_cst_on_domain(__isl_take isl_space * domain,isl_int v)1965 __isl_give isl_qpolynomial *isl_qpolynomial_cst_on_domain(
1966 	__isl_take isl_space *domain,
1967 	isl_int v)
1968 {
1969 	struct isl_qpolynomial *qp;
1970 	isl_poly_cst *cst;
1971 
1972 	qp = isl_qpolynomial_zero_on_domain(domain);
1973 	if (!qp)
1974 		return NULL;
1975 
1976 	cst = isl_poly_as_cst(qp->poly);
1977 	isl_int_set(cst->n, v);
1978 
1979 	return qp;
1980 }
1981 
isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial * qp,isl_int * n,isl_int * d)1982 isl_bool isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp,
1983 	isl_int *n, isl_int *d)
1984 {
1985 	isl_bool is_cst;
1986 	isl_poly_cst *cst;
1987 
1988 	if (!qp)
1989 		return isl_bool_error;
1990 
1991 	is_cst = isl_poly_is_cst(qp->poly);
1992 	if (is_cst < 0 || !is_cst)
1993 		return is_cst;
1994 
1995 	cst = isl_poly_as_cst(qp->poly);
1996 	if (!cst)
1997 		return isl_bool_error;
1998 
1999 	if (n)
2000 		isl_int_set(*n, cst->n);
2001 	if (d)
2002 		isl_int_set(*d, cst->d);
2003 
2004 	return isl_bool_true;
2005 }
2006 
2007 /* Return the constant term of "poly".
2008  */
isl_poly_get_constant_val(__isl_keep isl_poly * poly)2009 static __isl_give isl_val *isl_poly_get_constant_val(__isl_keep isl_poly *poly)
2010 {
2011 	isl_bool is_cst;
2012 	isl_poly_cst *cst;
2013 
2014 	if (!poly)
2015 		return NULL;
2016 
2017 	while ((is_cst = isl_poly_is_cst(poly)) == isl_bool_false) {
2018 		isl_poly_rec *rec;
2019 
2020 		rec = isl_poly_as_rec(poly);
2021 		if (!rec)
2022 			return NULL;
2023 		poly = rec->p[0];
2024 	}
2025 	if (is_cst < 0)
2026 		return NULL;
2027 
2028 	cst = isl_poly_as_cst(poly);
2029 	if (!cst)
2030 		return NULL;
2031 	return isl_val_rat_from_isl_int(cst->poly.ctx, cst->n, cst->d);
2032 }
2033 
2034 /* Return the constant term of "qp".
2035  */
isl_qpolynomial_get_constant_val(__isl_keep isl_qpolynomial * qp)2036 __isl_give isl_val *isl_qpolynomial_get_constant_val(
2037 	__isl_keep isl_qpolynomial *qp)
2038 {
2039 	if (!qp)
2040 		return NULL;
2041 
2042 	return isl_poly_get_constant_val(qp->poly);
2043 }
2044 
isl_poly_is_affine(__isl_keep isl_poly * poly)2045 isl_bool isl_poly_is_affine(__isl_keep isl_poly *poly)
2046 {
2047 	isl_bool is_cst;
2048 	isl_poly_rec *rec;
2049 
2050 	if (!poly)
2051 		return isl_bool_error;
2052 
2053 	if (poly->var < 0)
2054 		return isl_bool_true;
2055 
2056 	rec = isl_poly_as_rec(poly);
2057 	if (!rec)
2058 		return isl_bool_error;
2059 
2060 	if (rec->n > 2)
2061 		return isl_bool_false;
2062 
2063 	isl_assert(poly->ctx, rec->n > 1, return isl_bool_error);
2064 
2065 	is_cst = isl_poly_is_cst(rec->p[1]);
2066 	if (is_cst < 0 || !is_cst)
2067 		return is_cst;
2068 
2069 	return isl_poly_is_affine(rec->p[0]);
2070 }
2071 
isl_qpolynomial_is_affine(__isl_keep isl_qpolynomial * qp)2072 isl_bool isl_qpolynomial_is_affine(__isl_keep isl_qpolynomial *qp)
2073 {
2074 	if (!qp)
2075 		return isl_bool_error;
2076 
2077 	if (qp->div->n_row > 0)
2078 		return isl_bool_false;
2079 
2080 	return isl_poly_is_affine(qp->poly);
2081 }
2082 
update_coeff(__isl_keep isl_vec * aff,__isl_keep isl_poly_cst * cst,int pos)2083 static void update_coeff(__isl_keep isl_vec *aff,
2084 	__isl_keep isl_poly_cst *cst, int pos)
2085 {
2086 	isl_int gcd;
2087 	isl_int f;
2088 
2089 	if (isl_int_is_zero(cst->n))
2090 		return;
2091 
2092 	isl_int_init(gcd);
2093 	isl_int_init(f);
2094 	isl_int_gcd(gcd, cst->d, aff->el[0]);
2095 	isl_int_divexact(f, cst->d, gcd);
2096 	isl_int_divexact(gcd, aff->el[0], gcd);
2097 	isl_seq_scale(aff->el, aff->el, f, aff->size);
2098 	isl_int_mul(aff->el[1 + pos], gcd, cst->n);
2099 	isl_int_clear(gcd);
2100 	isl_int_clear(f);
2101 }
2102 
isl_poly_update_affine(__isl_keep isl_poly * poly,__isl_keep isl_vec * aff)2103 int isl_poly_update_affine(__isl_keep isl_poly *poly, __isl_keep isl_vec *aff)
2104 {
2105 	isl_poly_cst *cst;
2106 	isl_poly_rec *rec;
2107 
2108 	if (!poly || !aff)
2109 		return -1;
2110 
2111 	if (poly->var < 0) {
2112 		isl_poly_cst *cst;
2113 
2114 		cst = isl_poly_as_cst(poly);
2115 		if (!cst)
2116 			return -1;
2117 		update_coeff(aff, cst, 0);
2118 		return 0;
2119 	}
2120 
2121 	rec = isl_poly_as_rec(poly);
2122 	if (!rec)
2123 		return -1;
2124 	isl_assert(poly->ctx, rec->n == 2, return -1);
2125 
2126 	cst = isl_poly_as_cst(rec->p[1]);
2127 	if (!cst)
2128 		return -1;
2129 	update_coeff(aff, cst, 1 + poly->var);
2130 
2131 	return isl_poly_update_affine(rec->p[0], aff);
2132 }
2133 
isl_qpolynomial_extract_affine(__isl_keep isl_qpolynomial * qp)2134 __isl_give isl_vec *isl_qpolynomial_extract_affine(
2135 	__isl_keep isl_qpolynomial *qp)
2136 {
2137 	isl_vec *aff;
2138 	isl_size d;
2139 
2140 	d = isl_qpolynomial_domain_dim(qp, isl_dim_all);
2141 	if (d < 0)
2142 		return NULL;
2143 
2144 	aff = isl_vec_alloc(qp->div->ctx, 2 + d);
2145 	if (!aff)
2146 		return NULL;
2147 
2148 	isl_seq_clr(aff->el + 1, 1 + d);
2149 	isl_int_set_si(aff->el[0], 1);
2150 
2151 	if (isl_poly_update_affine(qp->poly, aff) < 0)
2152 		goto error;
2153 
2154 	return aff;
2155 error:
2156 	isl_vec_free(aff);
2157 	return NULL;
2158 }
2159 
2160 /* Compare two quasi-polynomials.
2161  *
2162  * Return -1 if "qp1" is "smaller" than "qp2", 1 if "qp1" is "greater"
2163  * than "qp2" and 0 if they are equal.
2164  */
isl_qpolynomial_plain_cmp(__isl_keep isl_qpolynomial * qp1,__isl_keep isl_qpolynomial * qp2)2165 int isl_qpolynomial_plain_cmp(__isl_keep isl_qpolynomial *qp1,
2166 	__isl_keep isl_qpolynomial *qp2)
2167 {
2168 	int cmp;
2169 
2170 	if (qp1 == qp2)
2171 		return 0;
2172 	if (!qp1)
2173 		return -1;
2174 	if (!qp2)
2175 		return 1;
2176 
2177 	cmp = isl_space_cmp(qp1->dim, qp2->dim);
2178 	if (cmp != 0)
2179 		return cmp;
2180 
2181 	cmp = isl_local_cmp(qp1->div, qp2->div);
2182 	if (cmp != 0)
2183 		return cmp;
2184 
2185 	return isl_poly_plain_cmp(qp1->poly, qp2->poly);
2186 }
2187 
2188 /* Is "qp1" obviously equal to "qp2"?
2189  *
2190  * NaN is not equal to anything, not even to another NaN.
2191  */
isl_qpolynomial_plain_is_equal(__isl_keep isl_qpolynomial * qp1,__isl_keep isl_qpolynomial * qp2)2192 isl_bool isl_qpolynomial_plain_is_equal(__isl_keep isl_qpolynomial *qp1,
2193 	__isl_keep isl_qpolynomial *qp2)
2194 {
2195 	isl_bool equal;
2196 
2197 	if (!qp1 || !qp2)
2198 		return isl_bool_error;
2199 
2200 	if (isl_qpolynomial_is_nan(qp1) || isl_qpolynomial_is_nan(qp2))
2201 		return isl_bool_false;
2202 
2203 	equal = isl_space_is_equal(qp1->dim, qp2->dim);
2204 	if (equal < 0 || !equal)
2205 		return equal;
2206 
2207 	equal = isl_mat_is_equal(qp1->div, qp2->div);
2208 	if (equal < 0 || !equal)
2209 		return equal;
2210 
2211 	return isl_poly_is_equal(qp1->poly, qp2->poly);
2212 }
2213 
poly_update_den(__isl_keep isl_poly * poly,isl_int * d)2214 static isl_stat poly_update_den(__isl_keep isl_poly *poly, isl_int *d)
2215 {
2216 	int i;
2217 	isl_bool is_cst;
2218 	isl_poly_rec *rec;
2219 
2220 	is_cst = isl_poly_is_cst(poly);
2221 	if (is_cst < 0)
2222 		return isl_stat_error;
2223 	if (is_cst) {
2224 		isl_poly_cst *cst;
2225 		cst = isl_poly_as_cst(poly);
2226 		if (!cst)
2227 			return isl_stat_error;
2228 		isl_int_lcm(*d, *d, cst->d);
2229 		return isl_stat_ok;
2230 	}
2231 
2232 	rec = isl_poly_as_rec(poly);
2233 	if (!rec)
2234 		return isl_stat_error;
2235 
2236 	for (i = 0; i < rec->n; ++i)
2237 		poly_update_den(rec->p[i], d);
2238 
2239 	return isl_stat_ok;
2240 }
2241 
isl_qpolynomial_get_den(__isl_keep isl_qpolynomial * qp)2242 __isl_give isl_val *isl_qpolynomial_get_den(__isl_keep isl_qpolynomial *qp)
2243 {
2244 	isl_val *d;
2245 
2246 	if (!qp)
2247 		return NULL;
2248 	d = isl_val_one(isl_qpolynomial_get_ctx(qp));
2249 	if (!d)
2250 		return NULL;
2251 	if (poly_update_den(qp->poly, &d->n) < 0)
2252 		return isl_val_free(d);
2253 	return d;
2254 }
2255 
isl_qpolynomial_var_pow_on_domain(__isl_take isl_space * domain,int pos,int power)2256 __isl_give isl_qpolynomial *isl_qpolynomial_var_pow_on_domain(
2257 	__isl_take isl_space *domain, int pos, int power)
2258 {
2259 	struct isl_ctx *ctx;
2260 
2261 	if (!domain)
2262 		return NULL;
2263 
2264 	ctx = domain->ctx;
2265 
2266 	return isl_qpolynomial_alloc(domain, 0,
2267 					isl_poly_var_pow(ctx, pos, power));
2268 }
2269 
isl_qpolynomial_var_on_domain(__isl_take isl_space * domain,enum isl_dim_type type,unsigned pos)2270 __isl_give isl_qpolynomial *isl_qpolynomial_var_on_domain(
2271 	__isl_take isl_space *domain, enum isl_dim_type type, unsigned pos)
2272 {
2273 	if (isl_space_check_is_set(domain ) < 0)
2274 		goto error;
2275 	if (isl_space_check_range(domain, type, pos, 1) < 0)
2276 		goto error;
2277 
2278 	pos += isl_space_offset(domain, type);
2279 
2280 	return isl_qpolynomial_var_pow_on_domain(domain, pos, 1);
2281 error:
2282 	isl_space_free(domain);
2283 	return NULL;
2284 }
2285 
isl_poly_subs(__isl_take isl_poly * poly,unsigned first,unsigned n,__isl_keep isl_poly ** subs)2286 __isl_give isl_poly *isl_poly_subs(__isl_take isl_poly *poly,
2287 	unsigned first, unsigned n, __isl_keep isl_poly **subs)
2288 {
2289 	int i;
2290 	isl_bool is_cst;
2291 	isl_poly_rec *rec;
2292 	isl_poly *base, *res;
2293 
2294 	is_cst = isl_poly_is_cst(poly);
2295 	if (is_cst < 0)
2296 		return isl_poly_free(poly);
2297 	if (is_cst)
2298 		return poly;
2299 
2300 	if (poly->var < first)
2301 		return poly;
2302 
2303 	rec = isl_poly_as_rec(poly);
2304 	if (!rec)
2305 		goto error;
2306 
2307 	isl_assert(poly->ctx, rec->n >= 1, goto error);
2308 
2309 	if (poly->var >= first + n)
2310 		base = isl_poly_var_pow(poly->ctx, poly->var, 1);
2311 	else
2312 		base = isl_poly_copy(subs[poly->var - first]);
2313 
2314 	res = isl_poly_subs(isl_poly_copy(rec->p[rec->n - 1]), first, n, subs);
2315 	for (i = rec->n - 2; i >= 0; --i) {
2316 		isl_poly *t;
2317 		t = isl_poly_subs(isl_poly_copy(rec->p[i]), first, n, subs);
2318 		res = isl_poly_mul(res, isl_poly_copy(base));
2319 		res = isl_poly_sum(res, t);
2320 	}
2321 
2322 	isl_poly_free(base);
2323 	isl_poly_free(poly);
2324 
2325 	return res;
2326 error:
2327 	isl_poly_free(poly);
2328 	return NULL;
2329 }
2330 
isl_poly_from_affine(isl_ctx * ctx,isl_int * f,isl_int denom,unsigned len)2331 __isl_give isl_poly *isl_poly_from_affine(isl_ctx *ctx, isl_int *f,
2332 	isl_int denom, unsigned len)
2333 {
2334 	int i;
2335 	isl_poly *poly;
2336 
2337 	isl_assert(ctx, len >= 1, return NULL);
2338 
2339 	poly = isl_poly_rat_cst(ctx, f[0], denom);
2340 	for (i = 0; i < len - 1; ++i) {
2341 		isl_poly *t;
2342 		isl_poly *c;
2343 
2344 		if (isl_int_is_zero(f[1 + i]))
2345 			continue;
2346 
2347 		c = isl_poly_rat_cst(ctx, f[1 + i], denom);
2348 		t = isl_poly_var_pow(ctx, i, 1);
2349 		t = isl_poly_mul(c, t);
2350 		poly = isl_poly_sum(poly, t);
2351 	}
2352 
2353 	return poly;
2354 }
2355 
2356 /* Remove common factor of non-constant terms and denominator.
2357  */
normalize_div(__isl_keep isl_qpolynomial * qp,int div)2358 static void normalize_div(__isl_keep isl_qpolynomial *qp, int div)
2359 {
2360 	isl_ctx *ctx = qp->div->ctx;
2361 	unsigned total = qp->div->n_col - 2;
2362 
2363 	isl_seq_gcd(qp->div->row[div] + 2, total, &ctx->normalize_gcd);
2364 	isl_int_gcd(ctx->normalize_gcd,
2365 		    ctx->normalize_gcd, qp->div->row[div][0]);
2366 	if (isl_int_is_one(ctx->normalize_gcd))
2367 		return;
2368 
2369 	isl_seq_scale_down(qp->div->row[div] + 2, qp->div->row[div] + 2,
2370 			    ctx->normalize_gcd, total);
2371 	isl_int_divexact(qp->div->row[div][0], qp->div->row[div][0],
2372 			    ctx->normalize_gcd);
2373 	isl_int_fdiv_q(qp->div->row[div][1], qp->div->row[div][1],
2374 			    ctx->normalize_gcd);
2375 }
2376 
2377 /* Replace the integer division identified by "div" by the polynomial "s".
2378  * The integer division is assumed not to appear in the definition
2379  * of any other integer divisions.
2380  */
substitute_div(__isl_take isl_qpolynomial * qp,int div,__isl_take isl_poly * s)2381 static __isl_give isl_qpolynomial *substitute_div(
2382 	__isl_take isl_qpolynomial *qp, int div, __isl_take isl_poly *s)
2383 {
2384 	int i;
2385 	isl_size div_pos;
2386 	int *reordering;
2387 	isl_ctx *ctx;
2388 
2389 	if (!qp || !s)
2390 		goto error;
2391 
2392 	qp = isl_qpolynomial_cow(qp);
2393 	if (!qp)
2394 		goto error;
2395 
2396 	div_pos = isl_qpolynomial_domain_var_offset(qp, isl_dim_div);
2397 	if (div_pos < 0)
2398 		goto error;
2399 	qp->poly = isl_poly_subs(qp->poly, div_pos + div, 1, &s);
2400 	if (!qp->poly)
2401 		goto error;
2402 
2403 	ctx = isl_qpolynomial_get_ctx(qp);
2404 	reordering = isl_alloc_array(ctx, int, div_pos + qp->div->n_row);
2405 	if (!reordering)
2406 		goto error;
2407 	for (i = 0; i < div_pos + div; ++i)
2408 		reordering[i] = i;
2409 	for (i = div_pos + div + 1; i < div_pos + qp->div->n_row; ++i)
2410 		reordering[i] = i - 1;
2411 	qp->div = isl_mat_drop_rows(qp->div, div, 1);
2412 	qp->div = isl_mat_drop_cols(qp->div, 2 + div_pos + div, 1);
2413 	qp->poly = reorder(qp->poly, reordering);
2414 	free(reordering);
2415 
2416 	if (!qp->poly || !qp->div)
2417 		goto error;
2418 
2419 	isl_poly_free(s);
2420 	return qp;
2421 error:
2422 	isl_qpolynomial_free(qp);
2423 	isl_poly_free(s);
2424 	return NULL;
2425 }
2426 
2427 /* Replace all integer divisions [e/d] that turn out to not actually be integer
2428  * divisions because d is equal to 1 by their definition, i.e., e.
2429  */
substitute_non_divs(__isl_take isl_qpolynomial * qp)2430 static __isl_give isl_qpolynomial *substitute_non_divs(
2431 	__isl_take isl_qpolynomial *qp)
2432 {
2433 	int i, j;
2434 	isl_size div_pos;
2435 	isl_poly *s;
2436 
2437 	div_pos = isl_qpolynomial_domain_var_offset(qp, isl_dim_div);
2438 	if (div_pos < 0)
2439 		return isl_qpolynomial_free(qp);
2440 
2441 	for (i = 0; qp && i < qp->div->n_row; ++i) {
2442 		if (!isl_int_is_one(qp->div->row[i][0]))
2443 			continue;
2444 		for (j = i + 1; j < qp->div->n_row; ++j) {
2445 			if (isl_int_is_zero(qp->div->row[j][2 + div_pos + i]))
2446 				continue;
2447 			isl_seq_combine(qp->div->row[j] + 1,
2448 				qp->div->ctx->one, qp->div->row[j] + 1,
2449 				qp->div->row[j][2 + div_pos + i],
2450 				qp->div->row[i] + 1, 1 + div_pos + i);
2451 			isl_int_set_si(qp->div->row[j][2 + div_pos + i], 0);
2452 			normalize_div(qp, j);
2453 		}
2454 		s = isl_poly_from_affine(qp->dim->ctx, qp->div->row[i] + 1,
2455 					qp->div->row[i][0], qp->div->n_col - 1);
2456 		qp = substitute_div(qp, i, s);
2457 		--i;
2458 	}
2459 
2460 	return qp;
2461 }
2462 
2463 /* Reduce the coefficients of div "div" to lie in the interval [0, d-1],
2464  * with d the denominator.  When replacing the coefficient e of x by
2465  * d * frac(e/d) = e - d * floor(e/d), we are subtracting d * floor(e/d) * x
2466  * inside the division, so we need to add floor(e/d) * x outside.
2467  * That is, we replace q by q' + floor(e/d) * x and we therefore need
2468  * to adjust the coefficient of x in each later div that depends on the
2469  * current div "div" and also in the affine expressions in the rows of "mat"
2470  * (if they too depend on "div").
2471  */
reduce_div(__isl_keep isl_qpolynomial * qp,int div,__isl_keep isl_mat ** mat)2472 static void reduce_div(__isl_keep isl_qpolynomial *qp, int div,
2473 	__isl_keep isl_mat **mat)
2474 {
2475 	int i, j;
2476 	isl_int v;
2477 	unsigned total = qp->div->n_col - qp->div->n_row - 2;
2478 
2479 	isl_int_init(v);
2480 	for (i = 0; i < 1 + total + div; ++i) {
2481 		if (isl_int_is_nonneg(qp->div->row[div][1 + i]) &&
2482 		    isl_int_lt(qp->div->row[div][1 + i], qp->div->row[div][0]))
2483 			continue;
2484 		isl_int_fdiv_q(v, qp->div->row[div][1 + i], qp->div->row[div][0]);
2485 		isl_int_fdiv_r(qp->div->row[div][1 + i],
2486 				qp->div->row[div][1 + i], qp->div->row[div][0]);
2487 		*mat = isl_mat_col_addmul(*mat, i, v, 1 + total + div);
2488 		for (j = div + 1; j < qp->div->n_row; ++j) {
2489 			if (isl_int_is_zero(qp->div->row[j][2 + total + div]))
2490 				continue;
2491 			isl_int_addmul(qp->div->row[j][1 + i],
2492 					v, qp->div->row[j][2 + total + div]);
2493 		}
2494 	}
2495 	isl_int_clear(v);
2496 }
2497 
2498 /* Check if the last non-zero coefficient is bigger that half of the
2499  * denominator.  If so, we will invert the div to further reduce the number
2500  * of distinct divs that may appear.
2501  * If the last non-zero coefficient is exactly half the denominator,
2502  * then we continue looking for earlier coefficients that are bigger
2503  * than half the denominator.
2504  */
needs_invert(__isl_keep isl_mat * div,int row)2505 static int needs_invert(__isl_keep isl_mat *div, int row)
2506 {
2507 	int i;
2508 	int cmp;
2509 
2510 	for (i = div->n_col - 1; i >= 1; --i) {
2511 		if (isl_int_is_zero(div->row[row][i]))
2512 			continue;
2513 		isl_int_mul_ui(div->row[row][i], div->row[row][i], 2);
2514 		cmp = isl_int_cmp(div->row[row][i], div->row[row][0]);
2515 		isl_int_divexact_ui(div->row[row][i], div->row[row][i], 2);
2516 		if (cmp)
2517 			return cmp > 0;
2518 		if (i == 1)
2519 			return 1;
2520 	}
2521 
2522 	return 0;
2523 }
2524 
2525 /* Replace div "div" q = [e/d] by -[(-e+(d-1))/d].
2526  * We only invert the coefficients of e (and the coefficient of q in
2527  * later divs and in the rows of "mat").  After calling this function, the
2528  * coefficients of e should be reduced again.
2529  */
invert_div(__isl_keep isl_qpolynomial * qp,int div,__isl_keep isl_mat ** mat)2530 static void invert_div(__isl_keep isl_qpolynomial *qp, int div,
2531 	__isl_keep isl_mat **mat)
2532 {
2533 	unsigned total = qp->div->n_col - qp->div->n_row - 2;
2534 
2535 	isl_seq_neg(qp->div->row[div] + 1,
2536 		    qp->div->row[div] + 1, qp->div->n_col - 1);
2537 	isl_int_sub_ui(qp->div->row[div][1], qp->div->row[div][1], 1);
2538 	isl_int_add(qp->div->row[div][1],
2539 		    qp->div->row[div][1], qp->div->row[div][0]);
2540 	*mat = isl_mat_col_neg(*mat, 1 + total + div);
2541 	isl_mat_col_mul(qp->div, 2 + total + div,
2542 			qp->div->ctx->negone, 2 + total + div);
2543 }
2544 
2545 /* Reduce all divs of "qp" to have coefficients
2546  * in the interval [0, d-1], with d the denominator and such that the
2547  * last non-zero coefficient that is not equal to d/2 is smaller than d/2.
2548  * The modifications to the integer divisions need to be reflected
2549  * in the factors of the polynomial that refer to the original
2550  * integer divisions.  To this end, the modifications are collected
2551  * as a set of affine expressions and then plugged into the polynomial.
2552  *
2553  * After the reduction, some divs may have become redundant or identical,
2554  * so we call substitute_non_divs and sort_divs.  If these functions
2555  * eliminate divs or merge two or more divs into one, the coefficients
2556  * of the enclosing divs may have to be reduced again, so we call
2557  * ourselves recursively if the number of divs decreases.
2558  */
reduce_divs(__isl_take isl_qpolynomial * qp)2559 static __isl_give isl_qpolynomial *reduce_divs(__isl_take isl_qpolynomial *qp)
2560 {
2561 	int i;
2562 	isl_ctx *ctx;
2563 	isl_mat *mat;
2564 	isl_poly **s;
2565 	unsigned o_div;
2566 	isl_size n_div, total, new_n_div;
2567 
2568 	total = isl_qpolynomial_domain_dim(qp, isl_dim_all);
2569 	n_div = isl_qpolynomial_domain_dim(qp, isl_dim_div);
2570 	o_div = isl_qpolynomial_domain_offset(qp, isl_dim_div);
2571 	if (total < 0 || n_div < 0)
2572 		return isl_qpolynomial_free(qp);
2573 	ctx = isl_qpolynomial_get_ctx(qp);
2574 	mat = isl_mat_zero(ctx, n_div, 1 + total);
2575 
2576 	for (i = 0; i < n_div; ++i)
2577 		mat = isl_mat_set_element_si(mat, i, o_div + i, 1);
2578 
2579 	for (i = 0; i < qp->div->n_row; ++i) {
2580 		normalize_div(qp, i);
2581 		reduce_div(qp, i, &mat);
2582 		if (needs_invert(qp->div, i)) {
2583 			invert_div(qp, i, &mat);
2584 			reduce_div(qp, i, &mat);
2585 		}
2586 	}
2587 	if (!mat)
2588 		goto error;
2589 
2590 	s = isl_alloc_array(ctx, struct isl_poly *, n_div);
2591 	if (n_div && !s)
2592 		goto error;
2593 	for (i = 0; i < n_div; ++i)
2594 		s[i] = isl_poly_from_affine(ctx, mat->row[i], ctx->one,
2595 					    1 + total);
2596 	qp->poly = isl_poly_subs(qp->poly, o_div - 1, n_div, s);
2597 	for (i = 0; i < n_div; ++i)
2598 		isl_poly_free(s[i]);
2599 	free(s);
2600 	if (!qp->poly)
2601 		goto error;
2602 
2603 	isl_mat_free(mat);
2604 
2605 	qp = substitute_non_divs(qp);
2606 	qp = sort_divs(qp);
2607 	new_n_div = isl_qpolynomial_domain_dim(qp, isl_dim_div);
2608 	if (new_n_div < 0)
2609 		return isl_qpolynomial_free(qp);
2610 	if (new_n_div < n_div)
2611 		return reduce_divs(qp);
2612 
2613 	return qp;
2614 error:
2615 	isl_qpolynomial_free(qp);
2616 	isl_mat_free(mat);
2617 	return NULL;
2618 }
2619 
isl_qpolynomial_rat_cst_on_domain(__isl_take isl_space * domain,const isl_int n,const isl_int d)2620 __isl_give isl_qpolynomial *isl_qpolynomial_rat_cst_on_domain(
2621 	__isl_take isl_space *domain, const isl_int n, const isl_int d)
2622 {
2623 	struct isl_qpolynomial *qp;
2624 	isl_poly_cst *cst;
2625 
2626 	qp = isl_qpolynomial_zero_on_domain(domain);
2627 	if (!qp)
2628 		return NULL;
2629 
2630 	cst = isl_poly_as_cst(qp->poly);
2631 	isl_int_set(cst->n, n);
2632 	isl_int_set(cst->d, d);
2633 
2634 	return qp;
2635 }
2636 
2637 /* Return an isl_qpolynomial that is equal to "val" on domain space "domain".
2638  */
isl_qpolynomial_val_on_domain(__isl_take isl_space * domain,__isl_take isl_val * val)2639 __isl_give isl_qpolynomial *isl_qpolynomial_val_on_domain(
2640 	__isl_take isl_space *domain, __isl_take isl_val *val)
2641 {
2642 	isl_qpolynomial *qp;
2643 	isl_poly_cst *cst;
2644 
2645 	qp = isl_qpolynomial_zero_on_domain(domain);
2646 	if (!qp || !val)
2647 		goto error;
2648 
2649 	cst = isl_poly_as_cst(qp->poly);
2650 	isl_int_set(cst->n, val->n);
2651 	isl_int_set(cst->d, val->d);
2652 
2653 	isl_val_free(val);
2654 	return qp;
2655 error:
2656 	isl_val_free(val);
2657 	isl_qpolynomial_free(qp);
2658 	return NULL;
2659 }
2660 
poly_set_active(__isl_keep isl_poly * poly,int * active,int d)2661 static isl_stat poly_set_active(__isl_keep isl_poly *poly, int *active, int d)
2662 {
2663 	isl_bool is_cst;
2664 	isl_poly_rec *rec;
2665 	int i;
2666 
2667 	is_cst = isl_poly_is_cst(poly);
2668 	if (is_cst < 0)
2669 		return isl_stat_error;
2670 	if (is_cst)
2671 		return isl_stat_ok;
2672 
2673 	if (poly->var < d)
2674 		active[poly->var] = 1;
2675 
2676 	rec = isl_poly_as_rec(poly);
2677 	for (i = 0; i < rec->n; ++i)
2678 		if (poly_set_active(rec->p[i], active, d) < 0)
2679 			return isl_stat_error;
2680 
2681 	return isl_stat_ok;
2682 }
2683 
set_active(__isl_keep isl_qpolynomial * qp,int * active)2684 static isl_stat set_active(__isl_keep isl_qpolynomial *qp, int *active)
2685 {
2686 	int i, j;
2687 	isl_size d;
2688 	isl_space *space;
2689 
2690 	space = isl_qpolynomial_peek_domain_space(qp);
2691 	d = isl_space_dim(space, isl_dim_all);
2692 	if (d < 0 || !active)
2693 		return isl_stat_error;
2694 
2695 	for (i = 0; i < d; ++i)
2696 		for (j = 0; j < qp->div->n_row; ++j) {
2697 			if (isl_int_is_zero(qp->div->row[j][2 + i]))
2698 				continue;
2699 			active[i] = 1;
2700 			break;
2701 		}
2702 
2703 	return poly_set_active(qp->poly, active, d);
2704 }
2705 
2706 #undef TYPE
2707 #define TYPE	isl_qpolynomial
2708 static
2709 #include "check_type_range_templ.c"
2710 
isl_qpolynomial_involves_dims(__isl_keep isl_qpolynomial * qp,enum isl_dim_type type,unsigned first,unsigned n)2711 isl_bool isl_qpolynomial_involves_dims(__isl_keep isl_qpolynomial *qp,
2712 	enum isl_dim_type type, unsigned first, unsigned n)
2713 {
2714 	int i;
2715 	int *active = NULL;
2716 	isl_bool involves = isl_bool_false;
2717 	isl_size offset;
2718 	isl_size d;
2719 	isl_space *space;
2720 
2721 	if (!qp)
2722 		return isl_bool_error;
2723 	if (n == 0)
2724 		return isl_bool_false;
2725 
2726 	if (isl_qpolynomial_check_range(qp, type, first, n) < 0)
2727 		return isl_bool_error;
2728 	isl_assert(qp->dim->ctx, type == isl_dim_param ||
2729 				 type == isl_dim_in, return isl_bool_error);
2730 
2731 	space = isl_qpolynomial_peek_domain_space(qp);
2732 	d = isl_space_dim(space, isl_dim_all);
2733 	if (d < 0)
2734 		return isl_bool_error;
2735 	active = isl_calloc_array(qp->dim->ctx, int, d);
2736 	if (set_active(qp, active) < 0)
2737 		goto error;
2738 
2739 	offset = isl_qpolynomial_domain_var_offset(qp, domain_type(type));
2740 	if (offset < 0)
2741 		goto error;
2742 	first += offset;
2743 	for (i = 0; i < n; ++i)
2744 		if (active[first + i]) {
2745 			involves = isl_bool_true;
2746 			break;
2747 		}
2748 
2749 	free(active);
2750 
2751 	return involves;
2752 error:
2753 	free(active);
2754 	return isl_bool_error;
2755 }
2756 
2757 /* Remove divs that do not appear in the quasi-polynomial, nor in any
2758  * of the divs that do appear in the quasi-polynomial.
2759  */
remove_redundant_divs(__isl_take isl_qpolynomial * qp)2760 static __isl_give isl_qpolynomial *remove_redundant_divs(
2761 	__isl_take isl_qpolynomial *qp)
2762 {
2763 	int i, j;
2764 	isl_size div_pos;
2765 	int len;
2766 	int skip;
2767 	int *active = NULL;
2768 	int *reordering = NULL;
2769 	int redundant = 0;
2770 	int n_div;
2771 	isl_ctx *ctx;
2772 
2773 	if (!qp)
2774 		return NULL;
2775 	if (qp->div->n_row == 0)
2776 		return qp;
2777 
2778 	div_pos = isl_qpolynomial_domain_var_offset(qp, isl_dim_div);
2779 	if (div_pos < 0)
2780 		return isl_qpolynomial_free(qp);
2781 	len = qp->div->n_col - 2;
2782 	ctx = isl_qpolynomial_get_ctx(qp);
2783 	active = isl_calloc_array(ctx, int, len);
2784 	if (!active)
2785 		goto error;
2786 
2787 	if (poly_set_active(qp->poly, active, len) < 0)
2788 		goto error;
2789 
2790 	for (i = qp->div->n_row - 1; i >= 0; --i) {
2791 		if (!active[div_pos + i]) {
2792 			redundant = 1;
2793 			continue;
2794 		}
2795 		for (j = 0; j < i; ++j) {
2796 			if (isl_int_is_zero(qp->div->row[i][2 + div_pos + j]))
2797 				continue;
2798 			active[div_pos + j] = 1;
2799 			break;
2800 		}
2801 	}
2802 
2803 	if (!redundant) {
2804 		free(active);
2805 		return qp;
2806 	}
2807 
2808 	reordering = isl_alloc_array(qp->div->ctx, int, len);
2809 	if (!reordering)
2810 		goto error;
2811 
2812 	for (i = 0; i < div_pos; ++i)
2813 		reordering[i] = i;
2814 
2815 	skip = 0;
2816 	n_div = qp->div->n_row;
2817 	for (i = 0; i < n_div; ++i) {
2818 		if (!active[div_pos + i]) {
2819 			qp->div = isl_mat_drop_rows(qp->div, i - skip, 1);
2820 			qp->div = isl_mat_drop_cols(qp->div,
2821 						    2 + div_pos + i - skip, 1);
2822 			skip++;
2823 		}
2824 		reordering[div_pos + i] = div_pos + i - skip;
2825 	}
2826 
2827 	qp->poly = reorder(qp->poly, reordering);
2828 
2829 	if (!qp->poly || !qp->div)
2830 		goto error;
2831 
2832 	free(active);
2833 	free(reordering);
2834 
2835 	return qp;
2836 error:
2837 	free(active);
2838 	free(reordering);
2839 	isl_qpolynomial_free(qp);
2840 	return NULL;
2841 }
2842 
isl_poly_drop(__isl_take isl_poly * poly,unsigned first,unsigned n)2843 __isl_give isl_poly *isl_poly_drop(__isl_take isl_poly *poly,
2844 	unsigned first, unsigned n)
2845 {
2846 	int i;
2847 	isl_poly_rec *rec;
2848 
2849 	if (!poly)
2850 		return NULL;
2851 	if (n == 0 || poly->var < 0 || poly->var < first)
2852 		return poly;
2853 	if (poly->var < first + n) {
2854 		poly = replace_by_constant_term(poly);
2855 		return isl_poly_drop(poly, first, n);
2856 	}
2857 	poly = isl_poly_cow(poly);
2858 	if (!poly)
2859 		return NULL;
2860 	poly->var -= n;
2861 	rec = isl_poly_as_rec(poly);
2862 	if (!rec)
2863 		goto error;
2864 
2865 	for (i = 0; i < rec->n; ++i) {
2866 		rec->p[i] = isl_poly_drop(rec->p[i], first, n);
2867 		if (!rec->p[i])
2868 			goto error;
2869 	}
2870 
2871 	return poly;
2872 error:
2873 	isl_poly_free(poly);
2874 	return NULL;
2875 }
2876 
isl_qpolynomial_set_dim_name(__isl_take isl_qpolynomial * qp,enum isl_dim_type type,unsigned pos,const char * s)2877 __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name(
2878 	__isl_take isl_qpolynomial *qp,
2879 	enum isl_dim_type type, unsigned pos, const char *s)
2880 {
2881 	qp = isl_qpolynomial_cow(qp);
2882 	if (!qp)
2883 		return NULL;
2884 	if (type == isl_dim_out)
2885 		isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid,
2886 			"cannot set name of output/set dimension",
2887 			return isl_qpolynomial_free(qp));
2888 	type = domain_type(type);
2889 	qp->dim = isl_space_set_dim_name(qp->dim, type, pos, s);
2890 	if (!qp->dim)
2891 		goto error;
2892 	return qp;
2893 error:
2894 	isl_qpolynomial_free(qp);
2895 	return NULL;
2896 }
2897 
isl_qpolynomial_drop_dims(__isl_take isl_qpolynomial * qp,enum isl_dim_type type,unsigned first,unsigned n)2898 __isl_give isl_qpolynomial *isl_qpolynomial_drop_dims(
2899 	__isl_take isl_qpolynomial *qp,
2900 	enum isl_dim_type type, unsigned first, unsigned n)
2901 {
2902 	isl_size offset;
2903 
2904 	if (!qp)
2905 		return NULL;
2906 	if (type == isl_dim_out)
2907 		isl_die(qp->dim->ctx, isl_error_invalid,
2908 			"cannot drop output/set dimension",
2909 			goto error);
2910 	if (isl_qpolynomial_check_range(qp, type, first, n) < 0)
2911 		return isl_qpolynomial_free(qp);
2912 	type = domain_type(type);
2913 	if (n == 0 && !isl_space_is_named_or_nested(qp->dim, type))
2914 		return qp;
2915 
2916 	qp = isl_qpolynomial_cow(qp);
2917 	if (!qp)
2918 		return NULL;
2919 
2920 	isl_assert(qp->dim->ctx, type == isl_dim_param ||
2921 				 type == isl_dim_set, goto error);
2922 
2923 	qp->dim = isl_space_drop_dims(qp->dim, type, first, n);
2924 	if (!qp->dim)
2925 		goto error;
2926 
2927 	offset = isl_qpolynomial_domain_var_offset(qp, type);
2928 	if (offset < 0)
2929 		goto error;
2930 	first += offset;
2931 
2932 	qp->div = isl_mat_drop_cols(qp->div, 2 + first, n);
2933 	if (!qp->div)
2934 		goto error;
2935 
2936 	qp->poly = isl_poly_drop(qp->poly, first, n);
2937 	if (!qp->poly)
2938 		goto error;
2939 
2940 	return qp;
2941 error:
2942 	isl_qpolynomial_free(qp);
2943 	return NULL;
2944 }
2945 
2946 /* Project the domain of the quasi-polynomial onto its parameter space.
2947  * The quasi-polynomial may not involve any of the domain dimensions.
2948  */
isl_qpolynomial_project_domain_on_params(__isl_take isl_qpolynomial * qp)2949 __isl_give isl_qpolynomial *isl_qpolynomial_project_domain_on_params(
2950 	__isl_take isl_qpolynomial *qp)
2951 {
2952 	isl_space *space;
2953 	isl_size n;
2954 	isl_bool involves;
2955 
2956 	n = isl_qpolynomial_dim(qp, isl_dim_in);
2957 	if (n < 0)
2958 		return isl_qpolynomial_free(qp);
2959 	involves = isl_qpolynomial_involves_dims(qp, isl_dim_in, 0, n);
2960 	if (involves < 0)
2961 		return isl_qpolynomial_free(qp);
2962 	if (involves)
2963 		isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid,
2964 			"polynomial involves some of the domain dimensions",
2965 			return isl_qpolynomial_free(qp));
2966 	qp = isl_qpolynomial_drop_dims(qp, isl_dim_in, 0, n);
2967 	space = isl_qpolynomial_get_domain_space(qp);
2968 	space = isl_space_params(space);
2969 	qp = isl_qpolynomial_reset_domain_space(qp, space);
2970 	return qp;
2971 }
2972 
isl_qpolynomial_substitute_equalities_lifted(__isl_take isl_qpolynomial * qp,__isl_take isl_basic_set * eq)2973 static __isl_give isl_qpolynomial *isl_qpolynomial_substitute_equalities_lifted(
2974 	__isl_take isl_qpolynomial *qp, __isl_take isl_basic_set *eq)
2975 {
2976 	int i, j, k;
2977 	isl_int denom;
2978 	unsigned total;
2979 	unsigned n_div;
2980 	isl_poly *poly;
2981 
2982 	if (!eq)
2983 		goto error;
2984 	if (eq->n_eq == 0) {
2985 		isl_basic_set_free(eq);
2986 		return qp;
2987 	}
2988 
2989 	qp = isl_qpolynomial_cow(qp);
2990 	if (!qp)
2991 		goto error;
2992 	qp->div = isl_mat_cow(qp->div);
2993 	if (!qp->div)
2994 		goto error;
2995 
2996 	total = isl_basic_set_offset(eq, isl_dim_div);
2997 	n_div = eq->n_div;
2998 	isl_int_init(denom);
2999 	for (i = 0; i < eq->n_eq; ++i) {
3000 		j = isl_seq_last_non_zero(eq->eq[i], total + n_div);
3001 		if (j < 0 || j == 0 || j >= total)
3002 			continue;
3003 
3004 		for (k = 0; k < qp->div->n_row; ++k) {
3005 			if (isl_int_is_zero(qp->div->row[k][1 + j]))
3006 				continue;
3007 			isl_seq_elim(qp->div->row[k] + 1, eq->eq[i], j, total,
3008 					&qp->div->row[k][0]);
3009 			normalize_div(qp, k);
3010 		}
3011 
3012 		if (isl_int_is_pos(eq->eq[i][j]))
3013 			isl_seq_neg(eq->eq[i], eq->eq[i], total);
3014 		isl_int_abs(denom, eq->eq[i][j]);
3015 		isl_int_set_si(eq->eq[i][j], 0);
3016 
3017 		poly = isl_poly_from_affine(qp->dim->ctx,
3018 						   eq->eq[i], denom, total);
3019 		qp->poly = isl_poly_subs(qp->poly, j - 1, 1, &poly);
3020 		isl_poly_free(poly);
3021 	}
3022 	isl_int_clear(denom);
3023 
3024 	if (!qp->poly)
3025 		goto error;
3026 
3027 	isl_basic_set_free(eq);
3028 
3029 	qp = substitute_non_divs(qp);
3030 	qp = sort_divs(qp);
3031 
3032 	return qp;
3033 error:
3034 	isl_basic_set_free(eq);
3035 	isl_qpolynomial_free(qp);
3036 	return NULL;
3037 }
3038 
3039 /* Exploit the equalities in "eq" to simplify the quasi-polynomial.
3040  */
isl_qpolynomial_substitute_equalities(__isl_take isl_qpolynomial * qp,__isl_take isl_basic_set * eq)3041 __isl_give isl_qpolynomial *isl_qpolynomial_substitute_equalities(
3042 	__isl_take isl_qpolynomial *qp, __isl_take isl_basic_set *eq)
3043 {
3044 	if (!qp || !eq)
3045 		goto error;
3046 	if (qp->div->n_row > 0)
3047 		eq = isl_basic_set_add_dims(eq, isl_dim_set, qp->div->n_row);
3048 	return isl_qpolynomial_substitute_equalities_lifted(qp, eq);
3049 error:
3050 	isl_basic_set_free(eq);
3051 	isl_qpolynomial_free(qp);
3052 	return NULL;
3053 }
3054 
3055 /* Look for equalities among the variables shared by context and qp
3056  * and the integer divisions of qp, if any.
3057  * The equalities are then used to eliminate variables and/or integer
3058  * divisions from qp.
3059  */
isl_qpolynomial_gist(__isl_take isl_qpolynomial * qp,__isl_take isl_set * context)3060 __isl_give isl_qpolynomial *isl_qpolynomial_gist(
3061 	__isl_take isl_qpolynomial *qp, __isl_take isl_set *context)
3062 {
3063 	isl_local_space *ls;
3064 	isl_basic_set *aff;
3065 
3066 	ls = isl_qpolynomial_get_domain_local_space(qp);
3067 	context = isl_local_space_lift_set(ls, context);
3068 
3069 	aff = isl_set_affine_hull(context);
3070 	return isl_qpolynomial_substitute_equalities_lifted(qp, aff);
3071 }
3072 
isl_qpolynomial_gist_params(__isl_take isl_qpolynomial * qp,__isl_take isl_set * context)3073 __isl_give isl_qpolynomial *isl_qpolynomial_gist_params(
3074 	__isl_take isl_qpolynomial *qp, __isl_take isl_set *context)
3075 {
3076 	isl_space *space = isl_qpolynomial_get_domain_space(qp);
3077 	isl_set *dom_context = isl_set_universe(space);
3078 	dom_context = isl_set_intersect_params(dom_context, context);
3079 	return isl_qpolynomial_gist(qp, dom_context);
3080 }
3081 
3082 /* Return a zero isl_qpolynomial in the given space.
3083  *
3084  * This is a helper function for isl_pw_*_as_* that ensures a uniform
3085  * interface over all piecewise types.
3086  */
isl_qpolynomial_zero_in_space(__isl_take isl_space * space)3087 static __isl_give isl_qpolynomial *isl_qpolynomial_zero_in_space(
3088 	__isl_take isl_space *space)
3089 {
3090 	return isl_qpolynomial_zero_on_domain(isl_space_domain(space));
3091 }
3092 
3093 #define isl_qpolynomial_involves_nan isl_qpolynomial_is_nan
3094 
3095 #undef PW
3096 #define PW isl_pw_qpolynomial
3097 #undef BASE
3098 #define BASE qpolynomial
3099 #undef EL_IS_ZERO
3100 #define EL_IS_ZERO is_zero
3101 #undef ZERO
3102 #define ZERO zero
3103 #undef IS_ZERO
3104 #define IS_ZERO is_zero
3105 #undef FIELD
3106 #define FIELD qp
3107 #undef DEFAULT_IS_ZERO
3108 #define DEFAULT_IS_ZERO 1
3109 
3110 #include <isl_pw_templ.c>
3111 #include <isl_pw_un_op_templ.c>
3112 #include <isl_pw_add_disjoint_templ.c>
3113 #include <isl_pw_eval.c>
3114 #include <isl_pw_fix_templ.c>
3115 #include <isl_pw_from_range_templ.c>
3116 #include <isl_pw_insert_dims_templ.c>
3117 #include <isl_pw_lift_templ.c>
3118 #include <isl_pw_morph_templ.c>
3119 #include <isl_pw_move_dims_templ.c>
3120 #include <isl_pw_neg_templ.c>
3121 #include <isl_pw_opt_templ.c>
3122 #include <isl_pw_split_dims_templ.c>
3123 #include <isl_pw_sub_templ.c>
3124 
3125 #undef BASE
3126 #define BASE pw_qpolynomial
3127 
3128 #include <isl_union_single.c>
3129 #include <isl_union_eval.c>
3130 #include <isl_union_neg.c>
3131 #include <isl_union_sub_templ.c>
3132 
isl_pw_qpolynomial_is_one(__isl_keep isl_pw_qpolynomial * pwqp)3133 int isl_pw_qpolynomial_is_one(__isl_keep isl_pw_qpolynomial *pwqp)
3134 {
3135 	if (!pwqp)
3136 		return -1;
3137 
3138 	if (pwqp->n != -1)
3139 		return 0;
3140 
3141 	if (!isl_set_plain_is_universe(pwqp->p[0].set))
3142 		return 0;
3143 
3144 	return isl_qpolynomial_is_one(pwqp->p[0].qp);
3145 }
3146 
isl_pw_qpolynomial_add(__isl_take isl_pw_qpolynomial * pwqp1,__isl_take isl_pw_qpolynomial * pwqp2)3147 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add(
3148 	__isl_take isl_pw_qpolynomial *pwqp1,
3149 	__isl_take isl_pw_qpolynomial *pwqp2)
3150 {
3151 	return isl_pw_qpolynomial_union_add_(pwqp1, pwqp2);
3152 }
3153 
isl_pw_qpolynomial_mul(__isl_take isl_pw_qpolynomial * pwqp1,__isl_take isl_pw_qpolynomial * pwqp2)3154 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
3155 	__isl_take isl_pw_qpolynomial *pwqp1,
3156 	__isl_take isl_pw_qpolynomial *pwqp2)
3157 {
3158 	int i, j, n;
3159 	struct isl_pw_qpolynomial *res;
3160 
3161 	if (!pwqp1 || !pwqp2)
3162 		goto error;
3163 
3164 	isl_assert(pwqp1->dim->ctx, isl_space_is_equal(pwqp1->dim, pwqp2->dim),
3165 			goto error);
3166 
3167 	if (isl_pw_qpolynomial_is_zero(pwqp1)) {
3168 		isl_pw_qpolynomial_free(pwqp2);
3169 		return pwqp1;
3170 	}
3171 
3172 	if (isl_pw_qpolynomial_is_zero(pwqp2)) {
3173 		isl_pw_qpolynomial_free(pwqp1);
3174 		return pwqp2;
3175 	}
3176 
3177 	if (isl_pw_qpolynomial_is_one(pwqp1)) {
3178 		isl_pw_qpolynomial_free(pwqp1);
3179 		return pwqp2;
3180 	}
3181 
3182 	if (isl_pw_qpolynomial_is_one(pwqp2)) {
3183 		isl_pw_qpolynomial_free(pwqp2);
3184 		return pwqp1;
3185 	}
3186 
3187 	n = pwqp1->n * pwqp2->n;
3188 	res = isl_pw_qpolynomial_alloc_size(isl_space_copy(pwqp1->dim), n);
3189 
3190 	for (i = 0; i < pwqp1->n; ++i) {
3191 		for (j = 0; j < pwqp2->n; ++j) {
3192 			struct isl_set *common;
3193 			struct isl_qpolynomial *prod;
3194 			common = isl_set_intersect(isl_set_copy(pwqp1->p[i].set),
3195 						isl_set_copy(pwqp2->p[j].set));
3196 			if (isl_set_plain_is_empty(common)) {
3197 				isl_set_free(common);
3198 				continue;
3199 			}
3200 
3201 			prod = isl_qpolynomial_mul(
3202 				isl_qpolynomial_copy(pwqp1->p[i].qp),
3203 				isl_qpolynomial_copy(pwqp2->p[j].qp));
3204 
3205 			res = isl_pw_qpolynomial_add_piece(res, common, prod);
3206 		}
3207 	}
3208 
3209 	isl_pw_qpolynomial_free(pwqp1);
3210 	isl_pw_qpolynomial_free(pwqp2);
3211 
3212 	return res;
3213 error:
3214 	isl_pw_qpolynomial_free(pwqp1);
3215 	isl_pw_qpolynomial_free(pwqp2);
3216 	return NULL;
3217 }
3218 
isl_poly_eval(__isl_take isl_poly * poly,__isl_take isl_vec * vec)3219 __isl_give isl_val *isl_poly_eval(__isl_take isl_poly *poly,
3220 	__isl_take isl_vec *vec)
3221 {
3222 	int i;
3223 	isl_bool is_cst;
3224 	isl_poly_rec *rec;
3225 	isl_val *res;
3226 	isl_val *base;
3227 
3228 	is_cst = isl_poly_is_cst(poly);
3229 	if (is_cst < 0)
3230 		goto error;
3231 	if (is_cst) {
3232 		isl_vec_free(vec);
3233 		res = isl_poly_get_constant_val(poly);
3234 		isl_poly_free(poly);
3235 		return res;
3236 	}
3237 
3238 	rec = isl_poly_as_rec(poly);
3239 	if (!rec || !vec)
3240 		goto error;
3241 
3242 	isl_assert(poly->ctx, rec->n >= 1, goto error);
3243 
3244 	base = isl_val_rat_from_isl_int(poly->ctx,
3245 					vec->el[1 + poly->var], vec->el[0]);
3246 
3247 	res = isl_poly_eval(isl_poly_copy(rec->p[rec->n - 1]),
3248 				isl_vec_copy(vec));
3249 
3250 	for (i = rec->n - 2; i >= 0; --i) {
3251 		res = isl_val_mul(res, isl_val_copy(base));
3252 		res = isl_val_add(res, isl_poly_eval(isl_poly_copy(rec->p[i]),
3253 							    isl_vec_copy(vec)));
3254 	}
3255 
3256 	isl_val_free(base);
3257 	isl_poly_free(poly);
3258 	isl_vec_free(vec);
3259 	return res;
3260 error:
3261 	isl_poly_free(poly);
3262 	isl_vec_free(vec);
3263 	return NULL;
3264 }
3265 
3266 /* Evaluate "qp" in the void point "pnt".
3267  * In particular, return the value NaN.
3268  */
eval_void(__isl_take isl_qpolynomial * qp,__isl_take isl_point * pnt)3269 static __isl_give isl_val *eval_void(__isl_take isl_qpolynomial *qp,
3270 	__isl_take isl_point *pnt)
3271 {
3272 	isl_ctx *ctx;
3273 
3274 	ctx = isl_point_get_ctx(pnt);
3275 	isl_qpolynomial_free(qp);
3276 	isl_point_free(pnt);
3277 	return isl_val_nan(ctx);
3278 }
3279 
isl_qpolynomial_eval(__isl_take isl_qpolynomial * qp,__isl_take isl_point * pnt)3280 __isl_give isl_val *isl_qpolynomial_eval(__isl_take isl_qpolynomial *qp,
3281 	__isl_take isl_point *pnt)
3282 {
3283 	isl_bool is_void;
3284 	isl_vec *ext;
3285 	isl_val *v;
3286 
3287 	if (!qp || !pnt)
3288 		goto error;
3289 	isl_assert(pnt->dim->ctx, isl_space_is_equal(pnt->dim, qp->dim), goto error);
3290 	is_void = isl_point_is_void(pnt);
3291 	if (is_void < 0)
3292 		goto error;
3293 	if (is_void)
3294 		return eval_void(qp, pnt);
3295 
3296 	ext = isl_local_extend_point_vec(qp->div, isl_vec_copy(pnt->vec));
3297 
3298 	v = isl_poly_eval(isl_poly_copy(qp->poly), ext);
3299 
3300 	isl_qpolynomial_free(qp);
3301 	isl_point_free(pnt);
3302 
3303 	return v;
3304 error:
3305 	isl_qpolynomial_free(qp);
3306 	isl_point_free(pnt);
3307 	return NULL;
3308 }
3309 
isl_poly_cmp(__isl_keep isl_poly_cst * cst1,__isl_keep isl_poly_cst * cst2)3310 int isl_poly_cmp(__isl_keep isl_poly_cst *cst1, __isl_keep isl_poly_cst *cst2)
3311 {
3312 	int cmp;
3313 	isl_int t;
3314 	isl_int_init(t);
3315 	isl_int_mul(t, cst1->n, cst2->d);
3316 	isl_int_submul(t, cst2->n, cst1->d);
3317 	cmp = isl_int_sgn(t);
3318 	isl_int_clear(t);
3319 	return cmp;
3320 }
3321 
isl_qpolynomial_insert_dims(__isl_take isl_qpolynomial * qp,enum isl_dim_type type,unsigned first,unsigned n)3322 __isl_give isl_qpolynomial *isl_qpolynomial_insert_dims(
3323 	__isl_take isl_qpolynomial *qp, enum isl_dim_type type,
3324 	unsigned first, unsigned n)
3325 {
3326 	unsigned total;
3327 	unsigned g_pos;
3328 	int *exp;
3329 
3330 	if (!qp)
3331 		return NULL;
3332 	if (type == isl_dim_out)
3333 		isl_die(qp->div->ctx, isl_error_invalid,
3334 			"cannot insert output/set dimensions",
3335 			goto error);
3336 	if (isl_qpolynomial_check_range(qp, type, first, 0) < 0)
3337 		return isl_qpolynomial_free(qp);
3338 	type = domain_type(type);
3339 	if (n == 0 && !isl_space_is_named_or_nested(qp->dim, type))
3340 		return qp;
3341 
3342 	qp = isl_qpolynomial_cow(qp);
3343 	if (!qp)
3344 		return NULL;
3345 
3346 	g_pos = pos(qp->dim, type) + first;
3347 
3348 	qp->div = isl_mat_insert_zero_cols(qp->div, 2 + g_pos, n);
3349 	if (!qp->div)
3350 		goto error;
3351 
3352 	total = qp->div->n_col - 2;
3353 	if (total > g_pos) {
3354 		int i;
3355 		exp = isl_alloc_array(qp->div->ctx, int, total - g_pos);
3356 		if (!exp)
3357 			goto error;
3358 		for (i = 0; i < total - g_pos; ++i)
3359 			exp[i] = i + n;
3360 		qp->poly = expand(qp->poly, exp, g_pos);
3361 		free(exp);
3362 		if (!qp->poly)
3363 			goto error;
3364 	}
3365 
3366 	qp->dim = isl_space_insert_dims(qp->dim, type, first, n);
3367 	if (!qp->dim)
3368 		goto error;
3369 
3370 	return qp;
3371 error:
3372 	isl_qpolynomial_free(qp);
3373 	return NULL;
3374 }
3375 
isl_qpolynomial_add_dims(__isl_take isl_qpolynomial * qp,enum isl_dim_type type,unsigned n)3376 __isl_give isl_qpolynomial *isl_qpolynomial_add_dims(
3377 	__isl_take isl_qpolynomial *qp, enum isl_dim_type type, unsigned n)
3378 {
3379 	isl_size pos;
3380 
3381 	pos = isl_qpolynomial_dim(qp, type);
3382 	if (pos < 0)
3383 		return isl_qpolynomial_free(qp);
3384 
3385 	return isl_qpolynomial_insert_dims(qp, type, pos, n);
3386 }
3387 
reordering_move(isl_ctx * ctx,unsigned len,unsigned dst,unsigned src,unsigned n)3388 static int *reordering_move(isl_ctx *ctx,
3389 	unsigned len, unsigned dst, unsigned src, unsigned n)
3390 {
3391 	int i;
3392 	int *reordering;
3393 
3394 	reordering = isl_alloc_array(ctx, int, len);
3395 	if (!reordering)
3396 		return NULL;
3397 
3398 	if (dst <= src) {
3399 		for (i = 0; i < dst; ++i)
3400 			reordering[i] = i;
3401 		for (i = 0; i < n; ++i)
3402 			reordering[src + i] = dst + i;
3403 		for (i = 0; i < src - dst; ++i)
3404 			reordering[dst + i] = dst + n + i;
3405 		for (i = 0; i < len - src - n; ++i)
3406 			reordering[src + n + i] = src + n + i;
3407 	} else {
3408 		for (i = 0; i < src; ++i)
3409 			reordering[i] = i;
3410 		for (i = 0; i < n; ++i)
3411 			reordering[src + i] = dst + i;
3412 		for (i = 0; i < dst - src; ++i)
3413 			reordering[src + n + i] = src + i;
3414 		for (i = 0; i < len - dst - n; ++i)
3415 			reordering[dst + n + i] = dst + n + i;
3416 	}
3417 
3418 	return reordering;
3419 }
3420 
isl_qpolynomial_move_dims(__isl_take isl_qpolynomial * qp,enum isl_dim_type dst_type,unsigned dst_pos,enum isl_dim_type src_type,unsigned src_pos,unsigned n)3421 __isl_give isl_qpolynomial *isl_qpolynomial_move_dims(
3422 	__isl_take isl_qpolynomial *qp,
3423 	enum isl_dim_type dst_type, unsigned dst_pos,
3424 	enum isl_dim_type src_type, unsigned src_pos, unsigned n)
3425 {
3426 	unsigned g_dst_pos;
3427 	unsigned g_src_pos;
3428 	int *reordering;
3429 
3430 	if (!qp)
3431 		return NULL;
3432 
3433 	if (dst_type == isl_dim_out || src_type == isl_dim_out)
3434 		isl_die(qp->dim->ctx, isl_error_invalid,
3435 			"cannot move output/set dimension",
3436 			goto error);
3437 	if (isl_qpolynomial_check_range(qp, src_type, src_pos, n) < 0)
3438 		return isl_qpolynomial_free(qp);
3439 	if (dst_type == isl_dim_in)
3440 		dst_type = isl_dim_set;
3441 	if (src_type == isl_dim_in)
3442 		src_type = isl_dim_set;
3443 
3444 	if (n == 0 &&
3445 	    !isl_space_is_named_or_nested(qp->dim, src_type) &&
3446 	    !isl_space_is_named_or_nested(qp->dim, dst_type))
3447 		return qp;
3448 
3449 	qp = isl_qpolynomial_cow(qp);
3450 	if (!qp)
3451 		return NULL;
3452 
3453 	g_dst_pos = pos(qp->dim, dst_type) + dst_pos;
3454 	g_src_pos = pos(qp->dim, src_type) + src_pos;
3455 	if (dst_type > src_type)
3456 		g_dst_pos -= n;
3457 
3458 	qp->div = isl_mat_move_cols(qp->div, 2 + g_dst_pos, 2 + g_src_pos, n);
3459 	if (!qp->div)
3460 		goto error;
3461 	qp = sort_divs(qp);
3462 	if (!qp)
3463 		goto error;
3464 
3465 	reordering = reordering_move(qp->dim->ctx,
3466 				qp->div->n_col - 2, g_dst_pos, g_src_pos, n);
3467 	if (!reordering)
3468 		goto error;
3469 
3470 	qp->poly = reorder(qp->poly, reordering);
3471 	free(reordering);
3472 	if (!qp->poly)
3473 		goto error;
3474 
3475 	qp->dim = isl_space_move_dims(qp->dim, dst_type, dst_pos, src_type, src_pos, n);
3476 	if (!qp->dim)
3477 		goto error;
3478 
3479 	return qp;
3480 error:
3481 	isl_qpolynomial_free(qp);
3482 	return NULL;
3483 }
3484 
isl_qpolynomial_from_affine(__isl_take isl_space * space,isl_int * f,isl_int denom)3485 __isl_give isl_qpolynomial *isl_qpolynomial_from_affine(
3486 	__isl_take isl_space *space, isl_int *f, isl_int denom)
3487 {
3488 	isl_size d;
3489 	isl_poly *poly;
3490 
3491 	space = isl_space_domain(space);
3492 	if (!space)
3493 		return NULL;
3494 
3495 	d = isl_space_dim(space, isl_dim_all);
3496 	poly = d < 0 ? NULL : isl_poly_from_affine(space->ctx, f, denom, 1 + d);
3497 
3498 	return isl_qpolynomial_alloc(space, 0, poly);
3499 }
3500 
isl_qpolynomial_from_aff(__isl_take isl_aff * aff)3501 __isl_give isl_qpolynomial *isl_qpolynomial_from_aff(__isl_take isl_aff *aff)
3502 {
3503 	isl_ctx *ctx;
3504 	isl_poly *poly;
3505 	isl_qpolynomial *qp;
3506 
3507 	if (!aff)
3508 		return NULL;
3509 
3510 	ctx = isl_aff_get_ctx(aff);
3511 	poly = isl_poly_from_affine(ctx, aff->v->el + 1, aff->v->el[0],
3512 				    aff->v->size - 1);
3513 
3514 	qp = isl_qpolynomial_alloc(isl_aff_get_domain_space(aff),
3515 				    aff->ls->div->n_row, poly);
3516 	if (!qp)
3517 		goto error;
3518 
3519 	isl_mat_free(qp->div);
3520 	qp->div = isl_mat_copy(aff->ls->div);
3521 	qp->div = isl_mat_cow(qp->div);
3522 	if (!qp->div)
3523 		goto error;
3524 
3525 	isl_aff_free(aff);
3526 	qp = reduce_divs(qp);
3527 	qp = remove_redundant_divs(qp);
3528 	return qp;
3529 error:
3530 	isl_aff_free(aff);
3531 	return isl_qpolynomial_free(qp);
3532 }
3533 
isl_pw_qpolynomial_from_pw_aff(__isl_take isl_pw_aff * pwaff)3534 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_pw_aff(
3535 	__isl_take isl_pw_aff *pwaff)
3536 {
3537 	int i;
3538 	isl_pw_qpolynomial *pwqp;
3539 
3540 	if (!pwaff)
3541 		return NULL;
3542 
3543 	pwqp = isl_pw_qpolynomial_alloc_size(isl_pw_aff_get_space(pwaff),
3544 						pwaff->n);
3545 
3546 	for (i = 0; i < pwaff->n; ++i) {
3547 		isl_set *dom;
3548 		isl_qpolynomial *qp;
3549 
3550 		dom = isl_set_copy(pwaff->p[i].set);
3551 		qp = isl_qpolynomial_from_aff(isl_aff_copy(pwaff->p[i].aff));
3552 		pwqp = isl_pw_qpolynomial_add_piece(pwqp,  dom, qp);
3553 	}
3554 
3555 	isl_pw_aff_free(pwaff);
3556 	return pwqp;
3557 }
3558 
isl_qpolynomial_from_constraint(__isl_take isl_constraint * c,enum isl_dim_type type,unsigned pos)3559 __isl_give isl_qpolynomial *isl_qpolynomial_from_constraint(
3560 	__isl_take isl_constraint *c, enum isl_dim_type type, unsigned pos)
3561 {
3562 	isl_aff *aff;
3563 
3564 	aff = isl_constraint_get_bound(c, type, pos);
3565 	isl_constraint_free(c);
3566 	return isl_qpolynomial_from_aff(aff);
3567 }
3568 
3569 /* For each 0 <= i < "n", replace variable "first" + i of type "type"
3570  * in "qp" by subs[i].
3571  */
isl_qpolynomial_substitute(__isl_take isl_qpolynomial * qp,enum isl_dim_type type,unsigned first,unsigned n,__isl_keep isl_qpolynomial ** subs)3572 __isl_give isl_qpolynomial *isl_qpolynomial_substitute(
3573 	__isl_take isl_qpolynomial *qp,
3574 	enum isl_dim_type type, unsigned first, unsigned n,
3575 	__isl_keep isl_qpolynomial **subs)
3576 {
3577 	int i;
3578 	isl_poly **polys;
3579 
3580 	if (n == 0)
3581 		return qp;
3582 
3583 	qp = isl_qpolynomial_cow(qp);
3584 	if (!qp)
3585 		return NULL;
3586 
3587 	if (type == isl_dim_out)
3588 		isl_die(qp->dim->ctx, isl_error_invalid,
3589 			"cannot substitute output/set dimension",
3590 			goto error);
3591 	if (isl_qpolynomial_check_range(qp, type, first, n) < 0)
3592 		return isl_qpolynomial_free(qp);
3593 	type = domain_type(type);
3594 
3595 	for (i = 0; i < n; ++i)
3596 		if (!subs[i])
3597 			goto error;
3598 
3599 	for (i = 0; i < n; ++i)
3600 		if (isl_qpolynomial_check_equal_space(qp, subs[i]) < 0)
3601 			goto error;
3602 
3603 	isl_assert(qp->dim->ctx, qp->div->n_row == 0, goto error);
3604 	for (i = 0; i < n; ++i)
3605 		isl_assert(qp->dim->ctx, subs[i]->div->n_row == 0, goto error);
3606 
3607 	first += pos(qp->dim, type);
3608 
3609 	polys = isl_alloc_array(qp->dim->ctx, struct isl_poly *, n);
3610 	if (!polys)
3611 		goto error;
3612 	for (i = 0; i < n; ++i)
3613 		polys[i] = subs[i]->poly;
3614 
3615 	qp->poly = isl_poly_subs(qp->poly, first, n, polys);
3616 
3617 	free(polys);
3618 
3619 	if (!qp->poly)
3620 		goto error;
3621 
3622 	return qp;
3623 error:
3624 	isl_qpolynomial_free(qp);
3625 	return NULL;
3626 }
3627 
3628 /* Extend "bset" with extra set dimensions for each integer division
3629  * in "qp" and then call "fn" with the extended bset and the polynomial
3630  * that results from replacing each of the integer divisions by the
3631  * corresponding extra set dimension.
3632  */
isl_qpolynomial_as_polynomial_on_domain(__isl_keep isl_qpolynomial * qp,__isl_keep isl_basic_set * bset,isl_stat (* fn)(__isl_take isl_basic_set * bset,__isl_take isl_qpolynomial * poly,void * user),void * user)3633 isl_stat isl_qpolynomial_as_polynomial_on_domain(__isl_keep isl_qpolynomial *qp,
3634 	__isl_keep isl_basic_set *bset,
3635 	isl_stat (*fn)(__isl_take isl_basic_set *bset,
3636 		  __isl_take isl_qpolynomial *poly, void *user), void *user)
3637 {
3638 	isl_space *space;
3639 	isl_local_space *ls;
3640 	isl_qpolynomial *poly;
3641 
3642 	if (!qp || !bset)
3643 		return isl_stat_error;
3644 	if (qp->div->n_row == 0)
3645 		return fn(isl_basic_set_copy(bset), isl_qpolynomial_copy(qp),
3646 			  user);
3647 
3648 	space = isl_space_copy(qp->dim);
3649 	space = isl_space_add_dims(space, isl_dim_set, qp->div->n_row);
3650 	poly = isl_qpolynomial_alloc(space, 0, isl_poly_copy(qp->poly));
3651 	bset = isl_basic_set_copy(bset);
3652 	ls = isl_qpolynomial_get_domain_local_space(qp);
3653 	bset = isl_local_space_lift_basic_set(ls, bset);
3654 
3655 	return fn(bset, poly, user);
3656 }
3657 
3658 /* Return total degree in variables first (inclusive) up to last (exclusive).
3659  */
isl_poly_degree(__isl_keep isl_poly * poly,int first,int last)3660 int isl_poly_degree(__isl_keep isl_poly *poly, int first, int last)
3661 {
3662 	int deg = -1;
3663 	int i;
3664 	isl_bool is_zero, is_cst;
3665 	isl_poly_rec *rec;
3666 
3667 	is_zero = isl_poly_is_zero(poly);
3668 	if (is_zero < 0)
3669 		return -2;
3670 	if (is_zero)
3671 		return -1;
3672 	is_cst = isl_poly_is_cst(poly);
3673 	if (is_cst < 0)
3674 		return -2;
3675 	if (is_cst || poly->var < first)
3676 		return 0;
3677 
3678 	rec = isl_poly_as_rec(poly);
3679 	if (!rec)
3680 		return -2;
3681 
3682 	for (i = 0; i < rec->n; ++i) {
3683 		int d;
3684 
3685 		is_zero = isl_poly_is_zero(rec->p[i]);
3686 		if (is_zero < 0)
3687 			return -2;
3688 		if (is_zero)
3689 			continue;
3690 		d = isl_poly_degree(rec->p[i], first, last);
3691 		if (poly->var < last)
3692 			d += i;
3693 		if (d > deg)
3694 			deg = d;
3695 	}
3696 
3697 	return deg;
3698 }
3699 
3700 /* Return total degree in set variables.
3701  */
isl_qpolynomial_degree(__isl_keep isl_qpolynomial * poly)3702 int isl_qpolynomial_degree(__isl_keep isl_qpolynomial *poly)
3703 {
3704 	unsigned ovar;
3705 	isl_size nvar;
3706 
3707 	if (!poly)
3708 		return -2;
3709 
3710 	ovar = isl_space_offset(poly->dim, isl_dim_set);
3711 	nvar = isl_space_dim(poly->dim, isl_dim_set);
3712 	if (nvar < 0)
3713 		return -2;
3714 	return isl_poly_degree(poly->poly, ovar, ovar + nvar);
3715 }
3716 
isl_poly_coeff(__isl_keep isl_poly * poly,unsigned pos,int deg)3717 __isl_give isl_poly *isl_poly_coeff(__isl_keep isl_poly *poly,
3718 	unsigned pos, int deg)
3719 {
3720 	int i;
3721 	isl_bool is_cst;
3722 	isl_poly_rec *rec;
3723 
3724 	is_cst = isl_poly_is_cst(poly);
3725 	if (is_cst < 0)
3726 		return NULL;
3727 	if (is_cst || poly->var < pos) {
3728 		if (deg == 0)
3729 			return isl_poly_copy(poly);
3730 		else
3731 			return isl_poly_zero(poly->ctx);
3732 	}
3733 
3734 	rec = isl_poly_as_rec(poly);
3735 	if (!rec)
3736 		return NULL;
3737 
3738 	if (poly->var == pos) {
3739 		if (deg < rec->n)
3740 			return isl_poly_copy(rec->p[deg]);
3741 		else
3742 			return isl_poly_zero(poly->ctx);
3743 	}
3744 
3745 	poly = isl_poly_copy(poly);
3746 	poly = isl_poly_cow(poly);
3747 	rec = isl_poly_as_rec(poly);
3748 	if (!rec)
3749 		goto error;
3750 
3751 	for (i = 0; i < rec->n; ++i) {
3752 		isl_poly *t;
3753 		t = isl_poly_coeff(rec->p[i], pos, deg);
3754 		if (!t)
3755 			goto error;
3756 		isl_poly_free(rec->p[i]);
3757 		rec->p[i] = t;
3758 	}
3759 
3760 	return poly;
3761 error:
3762 	isl_poly_free(poly);
3763 	return NULL;
3764 }
3765 
3766 /* Return coefficient of power "deg" of variable "t_pos" of type "type".
3767  */
isl_qpolynomial_coeff(__isl_keep isl_qpolynomial * qp,enum isl_dim_type type,unsigned t_pos,int deg)3768 __isl_give isl_qpolynomial *isl_qpolynomial_coeff(
3769 	__isl_keep isl_qpolynomial *qp,
3770 	enum isl_dim_type type, unsigned t_pos, int deg)
3771 {
3772 	unsigned g_pos;
3773 	isl_poly *poly;
3774 	isl_qpolynomial *c;
3775 
3776 	if (!qp)
3777 		return NULL;
3778 
3779 	if (type == isl_dim_out)
3780 		isl_die(qp->div->ctx, isl_error_invalid,
3781 			"output/set dimension does not have a coefficient",
3782 			return NULL);
3783 	if (isl_qpolynomial_check_range(qp, type, t_pos, 1) < 0)
3784 		return NULL;
3785 	type = domain_type(type);
3786 
3787 	g_pos = pos(qp->dim, type) + t_pos;
3788 	poly = isl_poly_coeff(qp->poly, g_pos, deg);
3789 
3790 	c = isl_qpolynomial_alloc(isl_space_copy(qp->dim),
3791 				qp->div->n_row, poly);
3792 	if (!c)
3793 		return NULL;
3794 	isl_mat_free(c->div);
3795 	c->div = isl_mat_copy(qp->div);
3796 	if (!c->div)
3797 		goto error;
3798 	return c;
3799 error:
3800 	isl_qpolynomial_free(c);
3801 	return NULL;
3802 }
3803 
3804 /* Homogenize the polynomial in the variables first (inclusive) up to
3805  * last (exclusive) by inserting powers of variable first.
3806  * Variable first is assumed not to appear in the input.
3807  */
isl_poly_homogenize(__isl_take isl_poly * poly,int deg,int target,int first,int last)3808 __isl_give isl_poly *isl_poly_homogenize(__isl_take isl_poly *poly, int deg,
3809 	int target, int first, int last)
3810 {
3811 	int i;
3812 	isl_bool is_zero, is_cst;
3813 	isl_poly_rec *rec;
3814 
3815 	is_zero = isl_poly_is_zero(poly);
3816 	if (is_zero < 0)
3817 		return isl_poly_free(poly);
3818 	if (is_zero)
3819 		return poly;
3820 	if (deg == target)
3821 		return poly;
3822 	is_cst = isl_poly_is_cst(poly);
3823 	if (is_cst < 0)
3824 		return isl_poly_free(poly);
3825 	if (is_cst || poly->var < first) {
3826 		isl_poly *hom;
3827 
3828 		hom = isl_poly_var_pow(poly->ctx, first, target - deg);
3829 		if (!hom)
3830 			goto error;
3831 		rec = isl_poly_as_rec(hom);
3832 		rec->p[target - deg] = isl_poly_mul(rec->p[target - deg], poly);
3833 
3834 		return hom;
3835 	}
3836 
3837 	poly = isl_poly_cow(poly);
3838 	rec = isl_poly_as_rec(poly);
3839 	if (!rec)
3840 		goto error;
3841 
3842 	for (i = 0; i < rec->n; ++i) {
3843 		is_zero = isl_poly_is_zero(rec->p[i]);
3844 		if (is_zero < 0)
3845 			return isl_poly_free(poly);
3846 		if (is_zero)
3847 			continue;
3848 		rec->p[i] = isl_poly_homogenize(rec->p[i],
3849 				poly->var < last ? deg + i : i, target,
3850 				first, last);
3851 		if (!rec->p[i])
3852 			goto error;
3853 	}
3854 
3855 	return poly;
3856 error:
3857 	isl_poly_free(poly);
3858 	return NULL;
3859 }
3860 
3861 /* Homogenize the polynomial in the set variables by introducing
3862  * powers of an extra set variable at position 0.
3863  */
isl_qpolynomial_homogenize(__isl_take isl_qpolynomial * poly)3864 __isl_give isl_qpolynomial *isl_qpolynomial_homogenize(
3865 	__isl_take isl_qpolynomial *poly)
3866 {
3867 	unsigned ovar;
3868 	isl_size nvar;
3869 	int deg = isl_qpolynomial_degree(poly);
3870 
3871 	if (deg < -1)
3872 		goto error;
3873 
3874 	poly = isl_qpolynomial_insert_dims(poly, isl_dim_in, 0, 1);
3875 	poly = isl_qpolynomial_cow(poly);
3876 	if (!poly)
3877 		goto error;
3878 
3879 	ovar = isl_space_offset(poly->dim, isl_dim_set);
3880 	nvar = isl_space_dim(poly->dim, isl_dim_set);
3881 	if (nvar < 0)
3882 		return isl_qpolynomial_free(poly);
3883 	poly->poly = isl_poly_homogenize(poly->poly, 0, deg, ovar, ovar + nvar);
3884 	if (!poly->poly)
3885 		goto error;
3886 
3887 	return poly;
3888 error:
3889 	isl_qpolynomial_free(poly);
3890 	return NULL;
3891 }
3892 
isl_term_alloc(__isl_take isl_space * space,__isl_take isl_mat * div)3893 __isl_give isl_term *isl_term_alloc(__isl_take isl_space *space,
3894 	__isl_take isl_mat *div)
3895 {
3896 	isl_term *term;
3897 	isl_size d;
3898 	int n;
3899 
3900 	d = isl_space_dim(space, isl_dim_all);
3901 	if (d < 0 || !div)
3902 		goto error;
3903 
3904 	n = d + div->n_row;
3905 
3906 	term = isl_calloc(space->ctx, struct isl_term,
3907 			sizeof(struct isl_term) + (n - 1) * sizeof(int));
3908 	if (!term)
3909 		goto error;
3910 
3911 	term->ref = 1;
3912 	term->dim = space;
3913 	term->div = div;
3914 	isl_int_init(term->n);
3915 	isl_int_init(term->d);
3916 
3917 	return term;
3918 error:
3919 	isl_space_free(space);
3920 	isl_mat_free(div);
3921 	return NULL;
3922 }
3923 
isl_term_copy(__isl_keep isl_term * term)3924 __isl_give isl_term *isl_term_copy(__isl_keep isl_term *term)
3925 {
3926 	if (!term)
3927 		return NULL;
3928 
3929 	term->ref++;
3930 	return term;
3931 }
3932 
isl_term_dup(__isl_keep isl_term * term)3933 __isl_give isl_term *isl_term_dup(__isl_keep isl_term *term)
3934 {
3935 	int i;
3936 	isl_term *dup;
3937 	isl_size total;
3938 
3939 	total = isl_term_dim(term, isl_dim_all);
3940 	if (total < 0)
3941 		return NULL;
3942 
3943 	dup = isl_term_alloc(isl_space_copy(term->dim), isl_mat_copy(term->div));
3944 	if (!dup)
3945 		return NULL;
3946 
3947 	isl_int_set(dup->n, term->n);
3948 	isl_int_set(dup->d, term->d);
3949 
3950 	for (i = 0; i < total; ++i)
3951 		dup->pow[i] = term->pow[i];
3952 
3953 	return dup;
3954 }
3955 
isl_term_cow(__isl_take isl_term * term)3956 __isl_give isl_term *isl_term_cow(__isl_take isl_term *term)
3957 {
3958 	if (!term)
3959 		return NULL;
3960 
3961 	if (term->ref == 1)
3962 		return term;
3963 	term->ref--;
3964 	return isl_term_dup(term);
3965 }
3966 
isl_term_free(__isl_take isl_term * term)3967 __isl_null isl_term *isl_term_free(__isl_take isl_term *term)
3968 {
3969 	if (!term)
3970 		return NULL;
3971 
3972 	if (--term->ref > 0)
3973 		return NULL;
3974 
3975 	isl_space_free(term->dim);
3976 	isl_mat_free(term->div);
3977 	isl_int_clear(term->n);
3978 	isl_int_clear(term->d);
3979 	free(term);
3980 
3981 	return NULL;
3982 }
3983 
isl_term_dim(__isl_keep isl_term * term,enum isl_dim_type type)3984 isl_size isl_term_dim(__isl_keep isl_term *term, enum isl_dim_type type)
3985 {
3986 	isl_size dim;
3987 
3988 	if (!term)
3989 		return isl_size_error;
3990 
3991 	switch (type) {
3992 	case isl_dim_param:
3993 	case isl_dim_in:
3994 	case isl_dim_out:	return isl_space_dim(term->dim, type);
3995 	case isl_dim_div:	return term->div->n_row;
3996 	case isl_dim_all:	dim = isl_space_dim(term->dim, isl_dim_all);
3997 				if (dim < 0)
3998 					return isl_size_error;
3999 				return dim + term->div->n_row;
4000 	default:		return isl_size_error;
4001 	}
4002 }
4003 
4004 /* Return the space of "term".
4005  */
isl_term_peek_space(__isl_keep isl_term * term)4006 static __isl_keep isl_space *isl_term_peek_space(__isl_keep isl_term *term)
4007 {
4008 	return term ? term->dim : NULL;
4009 }
4010 
4011 /* Return the offset of the first variable of type "type" within
4012  * the variables of "term".
4013  */
isl_term_offset(__isl_keep isl_term * term,enum isl_dim_type type)4014 static isl_size isl_term_offset(__isl_keep isl_term *term,
4015 	enum isl_dim_type type)
4016 {
4017 	isl_space *space;
4018 
4019 	space = isl_term_peek_space(term);
4020 	if (!space)
4021 		return isl_size_error;
4022 
4023 	switch (type) {
4024 	case isl_dim_param:
4025 	case isl_dim_set:	return isl_space_offset(space, type);
4026 	case isl_dim_div:	return isl_space_dim(space, isl_dim_all);
4027 	default:
4028 		isl_die(isl_term_get_ctx(term), isl_error_invalid,
4029 			"invalid dimension type", return isl_size_error);
4030 	}
4031 }
4032 
isl_term_get_ctx(__isl_keep isl_term * term)4033 isl_ctx *isl_term_get_ctx(__isl_keep isl_term *term)
4034 {
4035 	return term ? term->dim->ctx : NULL;
4036 }
4037 
isl_term_get_num(__isl_keep isl_term * term,isl_int * n)4038 void isl_term_get_num(__isl_keep isl_term *term, isl_int *n)
4039 {
4040 	if (!term)
4041 		return;
4042 	isl_int_set(*n, term->n);
4043 }
4044 
4045 /* Return the coefficient of the term "term".
4046  */
isl_term_get_coefficient_val(__isl_keep isl_term * term)4047 __isl_give isl_val *isl_term_get_coefficient_val(__isl_keep isl_term *term)
4048 {
4049 	if (!term)
4050 		return NULL;
4051 
4052 	return isl_val_rat_from_isl_int(isl_term_get_ctx(term),
4053 					term->n, term->d);
4054 }
4055 
4056 #undef TYPE
4057 #define TYPE	isl_term
4058 static
4059 #include "check_type_range_templ.c"
4060 
isl_term_get_exp(__isl_keep isl_term * term,enum isl_dim_type type,unsigned pos)4061 isl_size isl_term_get_exp(__isl_keep isl_term *term,
4062 	enum isl_dim_type type, unsigned pos)
4063 {
4064 	isl_size offset;
4065 
4066 	if (isl_term_check_range(term, type, pos, 1) < 0)
4067 		return isl_size_error;
4068 	offset = isl_term_offset(term, type);
4069 	if (offset < 0)
4070 		return isl_size_error;
4071 
4072 	return term->pow[offset + pos];
4073 }
4074 
isl_term_get_div(__isl_keep isl_term * term,unsigned pos)4075 __isl_give isl_aff *isl_term_get_div(__isl_keep isl_term *term, unsigned pos)
4076 {
4077 	isl_local_space *ls;
4078 	isl_aff *aff;
4079 
4080 	if (isl_term_check_range(term, isl_dim_div, pos, 1) < 0)
4081 		return NULL;
4082 
4083 	ls = isl_local_space_alloc_div(isl_space_copy(term->dim),
4084 					isl_mat_copy(term->div));
4085 	aff = isl_aff_alloc(ls);
4086 	if (!aff)
4087 		return NULL;
4088 
4089 	isl_seq_cpy(aff->v->el, term->div->row[pos], aff->v->size);
4090 
4091 	aff = isl_aff_normalize(aff);
4092 
4093 	return aff;
4094 }
4095 
isl_poly_foreach_term(__isl_keep isl_poly * poly,isl_stat (* fn)(__isl_take isl_term * term,void * user),__isl_take isl_term * term,void * user)4096 __isl_give isl_term *isl_poly_foreach_term(__isl_keep isl_poly *poly,
4097 	isl_stat (*fn)(__isl_take isl_term *term, void *user),
4098 	__isl_take isl_term *term, void *user)
4099 {
4100 	int i;
4101 	isl_bool is_zero, is_bad, is_cst;
4102 	isl_poly_rec *rec;
4103 
4104 	is_zero = isl_poly_is_zero(poly);
4105 	if (is_zero < 0 || !term)
4106 		goto error;
4107 
4108 	if (is_zero)
4109 		return term;
4110 
4111 	is_cst = isl_poly_is_cst(poly);
4112 	is_bad = isl_poly_is_nan(poly);
4113 	if (is_bad >= 0 && !is_bad)
4114 		is_bad = isl_poly_is_infty(poly);
4115 	if (is_bad >= 0 && !is_bad)
4116 		is_bad = isl_poly_is_neginfty(poly);
4117 	if (is_cst < 0 || is_bad < 0)
4118 		return isl_term_free(term);
4119 	if (is_bad)
4120 		isl_die(isl_term_get_ctx(term), isl_error_invalid,
4121 			"cannot handle NaN/infty polynomial",
4122 			return isl_term_free(term));
4123 
4124 	if (is_cst) {
4125 		isl_poly_cst *cst;
4126 		cst = isl_poly_as_cst(poly);
4127 		if (!cst)
4128 			goto error;
4129 		term = isl_term_cow(term);
4130 		if (!term)
4131 			goto error;
4132 		isl_int_set(term->n, cst->n);
4133 		isl_int_set(term->d, cst->d);
4134 		if (fn(isl_term_copy(term), user) < 0)
4135 			goto error;
4136 		return term;
4137 	}
4138 
4139 	rec = isl_poly_as_rec(poly);
4140 	if (!rec)
4141 		goto error;
4142 
4143 	for (i = 0; i < rec->n; ++i) {
4144 		term = isl_term_cow(term);
4145 		if (!term)
4146 			goto error;
4147 		term->pow[poly->var] = i;
4148 		term = isl_poly_foreach_term(rec->p[i], fn, term, user);
4149 		if (!term)
4150 			goto error;
4151 	}
4152 	term = isl_term_cow(term);
4153 	if (!term)
4154 		return NULL;
4155 	term->pow[poly->var] = 0;
4156 
4157 	return term;
4158 error:
4159 	isl_term_free(term);
4160 	return NULL;
4161 }
4162 
isl_qpolynomial_foreach_term(__isl_keep isl_qpolynomial * qp,isl_stat (* fn)(__isl_take isl_term * term,void * user),void * user)4163 isl_stat isl_qpolynomial_foreach_term(__isl_keep isl_qpolynomial *qp,
4164 	isl_stat (*fn)(__isl_take isl_term *term, void *user), void *user)
4165 {
4166 	isl_term *term;
4167 
4168 	if (!qp)
4169 		return isl_stat_error;
4170 
4171 	term = isl_term_alloc(isl_space_copy(qp->dim), isl_mat_copy(qp->div));
4172 	if (!term)
4173 		return isl_stat_error;
4174 
4175 	term = isl_poly_foreach_term(qp->poly, fn, term, user);
4176 
4177 	isl_term_free(term);
4178 
4179 	return term ? isl_stat_ok : isl_stat_error;
4180 }
4181 
isl_qpolynomial_from_term(__isl_take isl_term * term)4182 __isl_give isl_qpolynomial *isl_qpolynomial_from_term(__isl_take isl_term *term)
4183 {
4184 	isl_poly *poly;
4185 	isl_qpolynomial *qp;
4186 	int i;
4187 	isl_size n;
4188 
4189 	n = isl_term_dim(term, isl_dim_all);
4190 	if (n < 0)
4191 		term = isl_term_free(term);
4192 	if (!term)
4193 		return NULL;
4194 
4195 	poly = isl_poly_rat_cst(term->dim->ctx, term->n, term->d);
4196 	for (i = 0; i < n; ++i) {
4197 		if (!term->pow[i])
4198 			continue;
4199 		poly = isl_poly_mul(poly,
4200 			    isl_poly_var_pow(term->dim->ctx, i, term->pow[i]));
4201 	}
4202 
4203 	qp = isl_qpolynomial_alloc(isl_space_copy(term->dim),
4204 				    term->div->n_row, poly);
4205 	if (!qp)
4206 		goto error;
4207 	isl_mat_free(qp->div);
4208 	qp->div = isl_mat_copy(term->div);
4209 	if (!qp->div)
4210 		goto error;
4211 
4212 	isl_term_free(term);
4213 	return qp;
4214 error:
4215 	isl_qpolynomial_free(qp);
4216 	isl_term_free(term);
4217 	return NULL;
4218 }
4219 
isl_qpolynomial_lift(__isl_take isl_qpolynomial * qp,__isl_take isl_space * space)4220 __isl_give isl_qpolynomial *isl_qpolynomial_lift(__isl_take isl_qpolynomial *qp,
4221 	__isl_take isl_space *space)
4222 {
4223 	int i;
4224 	int extra;
4225 	isl_size total, d_set, d_qp;
4226 
4227 	if (!qp || !space)
4228 		goto error;
4229 
4230 	if (isl_space_is_equal(qp->dim, space)) {
4231 		isl_space_free(space);
4232 		return qp;
4233 	}
4234 
4235 	qp = isl_qpolynomial_cow(qp);
4236 	if (!qp)
4237 		goto error;
4238 
4239 	d_set = isl_space_dim(space, isl_dim_set);
4240 	d_qp = isl_qpolynomial_domain_dim(qp, isl_dim_set);
4241 	extra = d_set - d_qp;
4242 	total = isl_space_dim(qp->dim, isl_dim_all);
4243 	if (d_set < 0 || d_qp < 0 || total < 0)
4244 		goto error;
4245 	if (qp->div->n_row) {
4246 		int *exp;
4247 
4248 		exp = isl_alloc_array(qp->div->ctx, int, qp->div->n_row);
4249 		if (!exp)
4250 			goto error;
4251 		for (i = 0; i < qp->div->n_row; ++i)
4252 			exp[i] = extra + i;
4253 		qp->poly = expand(qp->poly, exp, total);
4254 		free(exp);
4255 		if (!qp->poly)
4256 			goto error;
4257 	}
4258 	qp->div = isl_mat_insert_cols(qp->div, 2 + total, extra);
4259 	if (!qp->div)
4260 		goto error;
4261 	for (i = 0; i < qp->div->n_row; ++i)
4262 		isl_seq_clr(qp->div->row[i] + 2 + total, extra);
4263 
4264 	isl_space_free(qp->dim);
4265 	qp->dim = space;
4266 
4267 	return qp;
4268 error:
4269 	isl_space_free(space);
4270 	isl_qpolynomial_free(qp);
4271 	return NULL;
4272 }
4273 
4274 /* For each parameter or variable that does not appear in qp,
4275  * first eliminate the variable from all constraints and then set it to zero.
4276  */
fix_inactive(__isl_take isl_set * set,__isl_keep isl_qpolynomial * qp)4277 static __isl_give isl_set *fix_inactive(__isl_take isl_set *set,
4278 	__isl_keep isl_qpolynomial *qp)
4279 {
4280 	int *active = NULL;
4281 	int i;
4282 	isl_size d;
4283 	isl_size nparam;
4284 	isl_size nvar;
4285 
4286 	d = isl_set_dim(set, isl_dim_all);
4287 	if (d < 0 || !qp)
4288 		goto error;
4289 
4290 	active = isl_calloc_array(set->ctx, int, d);
4291 	if (set_active(qp, active) < 0)
4292 		goto error;
4293 
4294 	for (i = 0; i < d; ++i)
4295 		if (!active[i])
4296 			break;
4297 
4298 	if (i == d) {
4299 		free(active);
4300 		return set;
4301 	}
4302 
4303 	nparam = isl_set_dim(set, isl_dim_param);
4304 	nvar = isl_set_dim(set, isl_dim_set);
4305 	if (nparam < 0 || nvar < 0)
4306 		goto error;
4307 	for (i = 0; i < nparam; ++i) {
4308 		if (active[i])
4309 			continue;
4310 		set = isl_set_eliminate(set, isl_dim_param, i, 1);
4311 		set = isl_set_fix_si(set, isl_dim_param, i, 0);
4312 	}
4313 	for (i = 0; i < nvar; ++i) {
4314 		if (active[nparam + i])
4315 			continue;
4316 		set = isl_set_eliminate(set, isl_dim_set, i, 1);
4317 		set = isl_set_fix_si(set, isl_dim_set, i, 0);
4318 	}
4319 
4320 	free(active);
4321 
4322 	return set;
4323 error:
4324 	free(active);
4325 	isl_set_free(set);
4326 	return NULL;
4327 }
4328 
4329 struct isl_opt_data {
4330 	isl_qpolynomial *qp;
4331 	int first;
4332 	isl_val *opt;
4333 	int max;
4334 };
4335 
opt_fn(__isl_take isl_point * pnt,void * user)4336 static isl_stat opt_fn(__isl_take isl_point *pnt, void *user)
4337 {
4338 	struct isl_opt_data *data = (struct isl_opt_data *)user;
4339 	isl_val *val;
4340 
4341 	val = isl_qpolynomial_eval(isl_qpolynomial_copy(data->qp), pnt);
4342 	if (data->first) {
4343 		data->first = 0;
4344 		data->opt = val;
4345 	} else if (data->max) {
4346 		data->opt = isl_val_max(data->opt, val);
4347 	} else {
4348 		data->opt = isl_val_min(data->opt, val);
4349 	}
4350 
4351 	return isl_stat_ok;
4352 }
4353 
isl_qpolynomial_opt_on_domain(__isl_take isl_qpolynomial * qp,__isl_take isl_set * set,int max)4354 __isl_give isl_val *isl_qpolynomial_opt_on_domain(
4355 	__isl_take isl_qpolynomial *qp, __isl_take isl_set *set, int max)
4356 {
4357 	struct isl_opt_data data = { NULL, 1, NULL, max };
4358 	isl_bool is_cst;
4359 
4360 	if (!set || !qp)
4361 		goto error;
4362 
4363 	is_cst = isl_poly_is_cst(qp->poly);
4364 	if (is_cst < 0)
4365 		goto error;
4366 	if (is_cst) {
4367 		isl_set_free(set);
4368 		data.opt = isl_qpolynomial_get_constant_val(qp);
4369 		isl_qpolynomial_free(qp);
4370 		return data.opt;
4371 	}
4372 
4373 	set = fix_inactive(set, qp);
4374 
4375 	data.qp = qp;
4376 	if (isl_set_foreach_point(set, opt_fn, &data) < 0)
4377 		goto error;
4378 
4379 	if (data.first)
4380 		data.opt = isl_val_zero(isl_set_get_ctx(set));
4381 
4382 	isl_set_free(set);
4383 	isl_qpolynomial_free(qp);
4384 	return data.opt;
4385 error:
4386 	isl_set_free(set);
4387 	isl_qpolynomial_free(qp);
4388 	isl_val_free(data.opt);
4389 	return NULL;
4390 }
4391 
isl_qpolynomial_morph_domain(__isl_take isl_qpolynomial * qp,__isl_take isl_morph * morph)4392 __isl_give isl_qpolynomial *isl_qpolynomial_morph_domain(
4393 	__isl_take isl_qpolynomial *qp, __isl_take isl_morph *morph)
4394 {
4395 	int i;
4396 	int n_sub;
4397 	isl_ctx *ctx;
4398 	isl_space *space;
4399 	isl_poly **subs;
4400 	isl_mat *mat, *diag;
4401 
4402 	qp = isl_qpolynomial_cow(qp);
4403 
4404 	space = isl_qpolynomial_peek_domain_space(qp);
4405 	if (isl_morph_check_applies(morph, space) < 0)
4406 		goto error;
4407 
4408 	ctx = isl_qpolynomial_get_ctx(qp);
4409 	n_sub = morph->inv->n_row - 1;
4410 	if (morph->inv->n_row != morph->inv->n_col)
4411 		n_sub += qp->div->n_row;
4412 	subs = isl_calloc_array(ctx, struct isl_poly *, n_sub);
4413 	if (n_sub && !subs)
4414 		goto error;
4415 
4416 	for (i = 0; 1 + i < morph->inv->n_row; ++i)
4417 		subs[i] = isl_poly_from_affine(ctx, morph->inv->row[1 + i],
4418 					morph->inv->row[0][0], morph->inv->n_col);
4419 	if (morph->inv->n_row != morph->inv->n_col)
4420 		for (i = 0; i < qp->div->n_row; ++i)
4421 			subs[morph->inv->n_row - 1 + i] =
4422 			    isl_poly_var_pow(ctx, morph->inv->n_col - 1 + i, 1);
4423 
4424 	qp->poly = isl_poly_subs(qp->poly, 0, n_sub, subs);
4425 
4426 	for (i = 0; i < n_sub; ++i)
4427 		isl_poly_free(subs[i]);
4428 	free(subs);
4429 
4430 	diag = isl_mat_diag(ctx, 1, morph->inv->row[0][0]);
4431 	mat = isl_mat_diagonal(diag, isl_mat_copy(morph->inv));
4432 	diag = isl_mat_diag(ctx, qp->div->n_row, morph->inv->row[0][0]);
4433 	mat = isl_mat_diagonal(mat, diag);
4434 	qp->div = isl_mat_product(qp->div, mat);
4435 	isl_space_free(qp->dim);
4436 	qp->dim = isl_space_copy(morph->ran->dim);
4437 
4438 	if (!qp->poly || !qp->div || !qp->dim)
4439 		goto error;
4440 
4441 	isl_morph_free(morph);
4442 
4443 	return qp;
4444 error:
4445 	isl_qpolynomial_free(qp);
4446 	isl_morph_free(morph);
4447 	return NULL;
4448 }
4449 
isl_union_pw_qpolynomial_mul(__isl_take isl_union_pw_qpolynomial * upwqp1,__isl_take isl_union_pw_qpolynomial * upwqp2)4450 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul(
4451 	__isl_take isl_union_pw_qpolynomial *upwqp1,
4452 	__isl_take isl_union_pw_qpolynomial *upwqp2)
4453 {
4454 	return isl_union_pw_qpolynomial_match_bin_op(upwqp1, upwqp2,
4455 						&isl_pw_qpolynomial_mul);
4456 }
4457 
4458 /* Reorder the dimension of "qp" according to the given reordering.
4459  */
isl_qpolynomial_realign_domain(__isl_take isl_qpolynomial * qp,__isl_take isl_reordering * r)4460 __isl_give isl_qpolynomial *isl_qpolynomial_realign_domain(
4461 	__isl_take isl_qpolynomial *qp, __isl_take isl_reordering *r)
4462 {
4463 	isl_space *space;
4464 
4465 	qp = isl_qpolynomial_cow(qp);
4466 	if (!qp)
4467 		goto error;
4468 
4469 	r = isl_reordering_extend(r, qp->div->n_row);
4470 	if (!r)
4471 		goto error;
4472 
4473 	qp->div = isl_local_reorder(qp->div, isl_reordering_copy(r));
4474 	if (!qp->div)
4475 		goto error;
4476 
4477 	qp->poly = reorder(qp->poly, r->pos);
4478 	if (!qp->poly)
4479 		goto error;
4480 
4481 	space = isl_reordering_get_space(r);
4482 	qp = isl_qpolynomial_reset_domain_space(qp, space);
4483 
4484 	isl_reordering_free(r);
4485 	return qp;
4486 error:
4487 	isl_qpolynomial_free(qp);
4488 	isl_reordering_free(r);
4489 	return NULL;
4490 }
4491 
isl_qpolynomial_align_params(__isl_take isl_qpolynomial * qp,__isl_take isl_space * model)4492 __isl_give isl_qpolynomial *isl_qpolynomial_align_params(
4493 	__isl_take isl_qpolynomial *qp, __isl_take isl_space *model)
4494 {
4495 	isl_space *domain_space;
4496 	isl_bool equal_params;
4497 
4498 	domain_space = isl_qpolynomial_peek_domain_space(qp);
4499 	equal_params = isl_space_has_equal_params(domain_space, model);
4500 	if (equal_params < 0)
4501 		goto error;
4502 	if (!equal_params) {
4503 		isl_reordering *exp;
4504 
4505 		exp = isl_parameter_alignment_reordering(domain_space, model);
4506 		qp = isl_qpolynomial_realign_domain(qp, exp);
4507 	}
4508 
4509 	isl_space_free(model);
4510 	return qp;
4511 error:
4512 	isl_space_free(model);
4513 	isl_qpolynomial_free(qp);
4514 	return NULL;
4515 }
4516 
4517 struct isl_split_periods_data {
4518 	int max_periods;
4519 	isl_pw_qpolynomial *res;
4520 };
4521 
4522 /* Create a slice where the integer division "div" has the fixed value "v".
4523  * In particular, if "div" refers to floor(f/m), then create a slice
4524  *
4525  *	m v <= f <= m v + (m - 1)
4526  *
4527  * or
4528  *
4529  *	f - m v >= 0
4530  *	-f + m v + (m - 1) >= 0
4531  */
set_div_slice(__isl_take isl_space * space,__isl_keep isl_qpolynomial * qp,int div,isl_int v)4532 static __isl_give isl_set *set_div_slice(__isl_take isl_space *space,
4533 	__isl_keep isl_qpolynomial *qp, int div, isl_int v)
4534 {
4535 	isl_size total;
4536 	isl_basic_set *bset = NULL;
4537 	int k;
4538 
4539 	total = isl_space_dim(space, isl_dim_all);
4540 	if (total < 0 || !qp)
4541 		goto error;
4542 
4543 	bset = isl_basic_set_alloc_space(isl_space_copy(space), 0, 0, 2);
4544 
4545 	k = isl_basic_set_alloc_inequality(bset);
4546 	if (k < 0)
4547 		goto error;
4548 	isl_seq_cpy(bset->ineq[k], qp->div->row[div] + 1, 1 + total);
4549 	isl_int_submul(bset->ineq[k][0], v, qp->div->row[div][0]);
4550 
4551 	k = isl_basic_set_alloc_inequality(bset);
4552 	if (k < 0)
4553 		goto error;
4554 	isl_seq_neg(bset->ineq[k], qp->div->row[div] + 1, 1 + total);
4555 	isl_int_addmul(bset->ineq[k][0], v, qp->div->row[div][0]);
4556 	isl_int_add(bset->ineq[k][0], bset->ineq[k][0], qp->div->row[div][0]);
4557 	isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1);
4558 
4559 	isl_space_free(space);
4560 	return isl_set_from_basic_set(bset);
4561 error:
4562 	isl_basic_set_free(bset);
4563 	isl_space_free(space);
4564 	return NULL;
4565 }
4566 
4567 static isl_stat split_periods(__isl_take isl_set *set,
4568 	__isl_take isl_qpolynomial *qp, void *user);
4569 
4570 /* Create a slice of the domain "set" such that integer division "div"
4571  * has the fixed value "v" and add the results to data->res,
4572  * replacing the integer division by "v" in "qp".
4573  */
set_div(__isl_take isl_set * set,__isl_take isl_qpolynomial * qp,int div,isl_int v,struct isl_split_periods_data * data)4574 static isl_stat set_div(__isl_take isl_set *set,
4575 	__isl_take isl_qpolynomial *qp, int div, isl_int v,
4576 	struct isl_split_periods_data *data)
4577 {
4578 	int i;
4579 	isl_size div_pos;
4580 	isl_set *slice;
4581 	isl_poly *cst;
4582 
4583 	slice = set_div_slice(isl_set_get_space(set), qp, div, v);
4584 	set = isl_set_intersect(set, slice);
4585 
4586 	div_pos = isl_qpolynomial_domain_var_offset(qp, isl_dim_div);
4587 	if (div_pos < 0)
4588 		goto error;
4589 
4590 	for (i = div + 1; i < qp->div->n_row; ++i) {
4591 		if (isl_int_is_zero(qp->div->row[i][2 + div_pos + div]))
4592 			continue;
4593 		isl_int_addmul(qp->div->row[i][1],
4594 				qp->div->row[i][2 + div_pos + div], v);
4595 		isl_int_set_si(qp->div->row[i][2 + div_pos + div], 0);
4596 	}
4597 
4598 	cst = isl_poly_rat_cst(qp->dim->ctx, v, qp->dim->ctx->one);
4599 	qp = substitute_div(qp, div, cst);
4600 
4601 	return split_periods(set, qp, data);
4602 error:
4603 	isl_set_free(set);
4604 	isl_qpolynomial_free(qp);
4605 	return isl_stat_error;
4606 }
4607 
4608 /* Split the domain "set" such that integer division "div"
4609  * has a fixed value (ranging from "min" to "max") on each slice
4610  * and add the results to data->res.
4611  */
split_div(__isl_take isl_set * set,__isl_take isl_qpolynomial * qp,int div,isl_int min,isl_int max,struct isl_split_periods_data * data)4612 static isl_stat split_div(__isl_take isl_set *set,
4613 	__isl_take isl_qpolynomial *qp, int div, isl_int min, isl_int max,
4614 	struct isl_split_periods_data *data)
4615 {
4616 	for (; isl_int_le(min, max); isl_int_add_ui(min, min, 1)) {
4617 		isl_set *set_i = isl_set_copy(set);
4618 		isl_qpolynomial *qp_i = isl_qpolynomial_copy(qp);
4619 
4620 		if (set_div(set_i, qp_i, div, min, data) < 0)
4621 			goto error;
4622 	}
4623 	isl_set_free(set);
4624 	isl_qpolynomial_free(qp);
4625 	return isl_stat_ok;
4626 error:
4627 	isl_set_free(set);
4628 	isl_qpolynomial_free(qp);
4629 	return isl_stat_error;
4630 }
4631 
4632 /* If "qp" refers to any integer division
4633  * that can only attain "max_periods" distinct values on "set"
4634  * then split the domain along those distinct values.
4635  * Add the results (or the original if no splitting occurs)
4636  * to data->res.
4637  */
split_periods(__isl_take isl_set * set,__isl_take isl_qpolynomial * qp,void * user)4638 static isl_stat split_periods(__isl_take isl_set *set,
4639 	__isl_take isl_qpolynomial *qp, void *user)
4640 {
4641 	int i;
4642 	isl_pw_qpolynomial *pwqp;
4643 	struct isl_split_periods_data *data;
4644 	isl_int min, max;
4645 	isl_size div_pos;
4646 	isl_stat r = isl_stat_ok;
4647 
4648 	data = (struct isl_split_periods_data *)user;
4649 
4650 	if (!set || !qp)
4651 		goto error;
4652 
4653 	if (qp->div->n_row == 0) {
4654 		pwqp = isl_pw_qpolynomial_alloc(set, qp);
4655 		data->res = isl_pw_qpolynomial_add_disjoint(data->res, pwqp);
4656 		return isl_stat_ok;
4657 	}
4658 
4659 	div_pos = isl_qpolynomial_domain_var_offset(qp, isl_dim_div);
4660 	if (div_pos < 0)
4661 		goto error;
4662 
4663 	isl_int_init(min);
4664 	isl_int_init(max);
4665 	for (i = 0; i < qp->div->n_row; ++i) {
4666 		enum isl_lp_result lp_res;
4667 
4668 		if (isl_seq_first_non_zero(qp->div->row[i] + 2 + div_pos,
4669 						qp->div->n_row) != -1)
4670 			continue;
4671 
4672 		lp_res = isl_set_solve_lp(set, 0, qp->div->row[i] + 1,
4673 					  set->ctx->one, &min, NULL, NULL);
4674 		if (lp_res == isl_lp_error)
4675 			goto error2;
4676 		if (lp_res == isl_lp_unbounded || lp_res == isl_lp_empty)
4677 			continue;
4678 		isl_int_fdiv_q(min, min, qp->div->row[i][0]);
4679 
4680 		lp_res = isl_set_solve_lp(set, 1, qp->div->row[i] + 1,
4681 					  set->ctx->one, &max, NULL, NULL);
4682 		if (lp_res == isl_lp_error)
4683 			goto error2;
4684 		if (lp_res == isl_lp_unbounded || lp_res == isl_lp_empty)
4685 			continue;
4686 		isl_int_fdiv_q(max, max, qp->div->row[i][0]);
4687 
4688 		isl_int_sub(max, max, min);
4689 		if (isl_int_cmp_si(max, data->max_periods) < 0) {
4690 			isl_int_add(max, max, min);
4691 			break;
4692 		}
4693 	}
4694 
4695 	if (i < qp->div->n_row) {
4696 		r = split_div(set, qp, i, min, max, data);
4697 	} else {
4698 		pwqp = isl_pw_qpolynomial_alloc(set, qp);
4699 		data->res = isl_pw_qpolynomial_add_disjoint(data->res, pwqp);
4700 	}
4701 
4702 	isl_int_clear(max);
4703 	isl_int_clear(min);
4704 
4705 	return r;
4706 error2:
4707 	isl_int_clear(max);
4708 	isl_int_clear(min);
4709 error:
4710 	isl_set_free(set);
4711 	isl_qpolynomial_free(qp);
4712 	return isl_stat_error;
4713 }
4714 
4715 /* If any quasi-polynomial in pwqp refers to any integer division
4716  * that can only attain "max_periods" distinct values on its domain
4717  * then split the domain along those distinct values.
4718  */
isl_pw_qpolynomial_split_periods(__isl_take isl_pw_qpolynomial * pwqp,int max_periods)4719 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_split_periods(
4720 	__isl_take isl_pw_qpolynomial *pwqp, int max_periods)
4721 {
4722 	struct isl_split_periods_data data;
4723 
4724 	data.max_periods = max_periods;
4725 	data.res = isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_space(pwqp));
4726 
4727 	if (isl_pw_qpolynomial_foreach_piece(pwqp, &split_periods, &data) < 0)
4728 		goto error;
4729 
4730 	isl_pw_qpolynomial_free(pwqp);
4731 
4732 	return data.res;
4733 error:
4734 	isl_pw_qpolynomial_free(data.res);
4735 	isl_pw_qpolynomial_free(pwqp);
4736 	return NULL;
4737 }
4738 
4739 /* Construct a piecewise quasipolynomial that is constant on the given
4740  * domain.  In particular, it is
4741  *	0	if cst == 0
4742  *	1	if cst == 1
4743  *  infinity	if cst == -1
4744  *
4745  * If cst == -1, then explicitly check whether the domain is empty and,
4746  * if so, return 0 instead.
4747  */
constant_on_domain(__isl_take isl_basic_set * bset,int cst)4748 static __isl_give isl_pw_qpolynomial *constant_on_domain(
4749 	__isl_take isl_basic_set *bset, int cst)
4750 {
4751 	isl_space *space;
4752 	isl_qpolynomial *qp;
4753 
4754 	if (cst < 0 && isl_basic_set_is_empty(bset) == isl_bool_true)
4755 		cst = 0;
4756 	if (!bset)
4757 		return NULL;
4758 
4759 	bset = isl_basic_set_params(bset);
4760 	space = isl_basic_set_get_space(bset);
4761 	if (cst < 0)
4762 		qp = isl_qpolynomial_infty_on_domain(space);
4763 	else if (cst == 0)
4764 		qp = isl_qpolynomial_zero_on_domain(space);
4765 	else
4766 		qp = isl_qpolynomial_one_on_domain(space);
4767 	return isl_pw_qpolynomial_alloc(isl_set_from_basic_set(bset), qp);
4768 }
4769 
4770 /* Internal data structure for multiplicative_call_factor_pw_qpolynomial.
4771  * "fn" is the function that is called on each factor.
4772  * "pwpq" collects the results.
4773  */
4774 struct isl_multiplicative_call_data_pw_qpolynomial {
4775 	__isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset);
4776 	isl_pw_qpolynomial *pwqp;
4777 };
4778 
4779 /* Call "fn" on "bset" and return the result,
4780  * but first check if "bset" has any redundant constraints or
4781  * implicit equality constraints.
4782  * If so, there may be further opportunities for detecting factors or
4783  * removing equality constraints, so recursively call
4784  * the top-level isl_basic_set_multiplicative_call.
4785  */
multiplicative_call_base(__isl_take isl_basic_set * bset,__isl_give isl_pw_qpolynomial * (* fn)(__isl_take isl_basic_set * bset))4786 static __isl_give isl_pw_qpolynomial *multiplicative_call_base(
4787 	__isl_take isl_basic_set *bset,
4788 	__isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset))
4789 {
4790 	isl_size n1, n2, n_eq;
4791 
4792 	n1 = isl_basic_set_n_constraint(bset);
4793 	if (n1 < 0)
4794 		bset = isl_basic_set_free(bset);
4795 	bset = isl_basic_set_remove_redundancies(bset);
4796 	bset = isl_basic_set_detect_equalities(bset);
4797 	n2 = isl_basic_set_n_constraint(bset);
4798 	n_eq = isl_basic_set_n_equality(bset);
4799 	if (n2 < 0 || n_eq < 0)
4800 		bset = isl_basic_set_free(bset);
4801 	else if (n2 < n1 || n_eq > 0)
4802 		return isl_basic_set_multiplicative_call(bset, fn);
4803 	return fn(bset);
4804 }
4805 
4806 /* isl_factorizer_every_factor_basic_set callback that applies
4807  * data->fn to the factor "bset" and multiplies in the result
4808  * in data->pwqp.
4809  */
multiplicative_call_factor_pw_qpolynomial(__isl_keep isl_basic_set * bset,void * user)4810 static isl_bool multiplicative_call_factor_pw_qpolynomial(
4811 	__isl_keep isl_basic_set *bset, void *user)
4812 {
4813 	struct isl_multiplicative_call_data_pw_qpolynomial *data = user;
4814 	isl_pw_qpolynomial *res;
4815 
4816 	bset = isl_basic_set_copy(bset);
4817 	res = multiplicative_call_base(bset, data->fn);
4818 	data->pwqp = isl_pw_qpolynomial_mul(data->pwqp, res);
4819 	if (!data->pwqp)
4820 		return isl_bool_error;
4821 
4822 	return isl_bool_true;
4823 }
4824 
4825 /* Factor bset, call fn on each of the factors and return the product.
4826  *
4827  * If no factors can be found, simply call fn on the input.
4828  * Otherwise, construct the factors based on the factorizer,
4829  * call fn on each factor and compute the product.
4830  */
compressed_multiplicative_call(__isl_take isl_basic_set * bset,__isl_give isl_pw_qpolynomial * (* fn)(__isl_take isl_basic_set * bset))4831 static __isl_give isl_pw_qpolynomial *compressed_multiplicative_call(
4832 	__isl_take isl_basic_set *bset,
4833 	__isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset))
4834 {
4835 	struct isl_multiplicative_call_data_pw_qpolynomial data = { fn };
4836 	isl_space *space;
4837 	isl_set *set;
4838 	isl_factorizer *f;
4839 	isl_qpolynomial *qp;
4840 	isl_bool every;
4841 
4842 	f = isl_basic_set_factorizer(bset);
4843 	if (!f)
4844 		goto error;
4845 	if (f->n_group == 0) {
4846 		isl_factorizer_free(f);
4847 		return multiplicative_call_base(bset, fn);
4848 	}
4849 
4850 	space = isl_basic_set_get_space(bset);
4851 	space = isl_space_params(space);
4852 	set = isl_set_universe(isl_space_copy(space));
4853 	qp = isl_qpolynomial_one_on_domain(space);
4854 	data.pwqp = isl_pw_qpolynomial_alloc(set, qp);
4855 
4856 	every = isl_factorizer_every_factor_basic_set(f,
4857 			&multiplicative_call_factor_pw_qpolynomial, &data);
4858 	if (every < 0)
4859 		data.pwqp = isl_pw_qpolynomial_free(data.pwqp);
4860 
4861 	isl_basic_set_free(bset);
4862 	isl_factorizer_free(f);
4863 
4864 	return data.pwqp;
4865 error:
4866 	isl_basic_set_free(bset);
4867 	return NULL;
4868 }
4869 
4870 /* Factor bset, call fn on each of the factors and return the product.
4871  * The function is assumed to evaluate to zero on empty domains,
4872  * to one on zero-dimensional domains and to infinity on unbounded domains
4873  * and will not be called explicitly on zero-dimensional or unbounded domains.
4874  *
4875  * We first check for some special cases and remove all equalities.
4876  * Then we hand over control to compressed_multiplicative_call.
4877  */
isl_basic_set_multiplicative_call(__isl_take isl_basic_set * bset,__isl_give isl_pw_qpolynomial * (* fn)(__isl_take isl_basic_set * bset))4878 __isl_give isl_pw_qpolynomial *isl_basic_set_multiplicative_call(
4879 	__isl_take isl_basic_set *bset,
4880 	__isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset))
4881 {
4882 	isl_bool bounded;
4883 	isl_size dim;
4884 	isl_morph *morph;
4885 	isl_pw_qpolynomial *pwqp;
4886 
4887 	if (!bset)
4888 		return NULL;
4889 
4890 	if (isl_basic_set_plain_is_empty(bset))
4891 		return constant_on_domain(bset, 0);
4892 
4893 	dim = isl_basic_set_dim(bset, isl_dim_set);
4894 	if (dim < 0)
4895 		goto error;
4896 	if (dim == 0)
4897 		return constant_on_domain(bset, 1);
4898 
4899 	bounded = isl_basic_set_is_bounded(bset);
4900 	if (bounded < 0)
4901 		goto error;
4902 	if (!bounded)
4903 		return constant_on_domain(bset, -1);
4904 
4905 	if (bset->n_eq == 0)
4906 		return compressed_multiplicative_call(bset, fn);
4907 
4908 	morph = isl_basic_set_full_compression(bset);
4909 	bset = isl_morph_basic_set(isl_morph_copy(morph), bset);
4910 
4911 	pwqp = compressed_multiplicative_call(bset, fn);
4912 
4913 	morph = isl_morph_dom_params(morph);
4914 	morph = isl_morph_ran_params(morph);
4915 	morph = isl_morph_inverse(morph);
4916 
4917 	pwqp = isl_pw_qpolynomial_morph_domain(pwqp, morph);
4918 
4919 	return pwqp;
4920 error:
4921 	isl_basic_set_free(bset);
4922 	return NULL;
4923 }
4924 
4925 /* Drop all floors in "qp", turning each integer division [a/m] into
4926  * a rational division a/m.  If "down" is set, then the integer division
4927  * is replaced by (a-(m-1))/m instead.
4928  */
qp_drop_floors(__isl_take isl_qpolynomial * qp,int down)4929 static __isl_give isl_qpolynomial *qp_drop_floors(
4930 	__isl_take isl_qpolynomial *qp, int down)
4931 {
4932 	int i;
4933 	isl_poly *s;
4934 
4935 	if (!qp)
4936 		return NULL;
4937 	if (qp->div->n_row == 0)
4938 		return qp;
4939 
4940 	qp = isl_qpolynomial_cow(qp);
4941 	if (!qp)
4942 		return NULL;
4943 
4944 	for (i = qp->div->n_row - 1; i >= 0; --i) {
4945 		if (down) {
4946 			isl_int_sub(qp->div->row[i][1],
4947 				    qp->div->row[i][1], qp->div->row[i][0]);
4948 			isl_int_add_ui(qp->div->row[i][1],
4949 				       qp->div->row[i][1], 1);
4950 		}
4951 		s = isl_poly_from_affine(qp->dim->ctx, qp->div->row[i] + 1,
4952 					qp->div->row[i][0], qp->div->n_col - 1);
4953 		qp = substitute_div(qp, i, s);
4954 		if (!qp)
4955 			return NULL;
4956 	}
4957 
4958 	return qp;
4959 }
4960 
4961 /* Drop all floors in "pwqp", turning each integer division [a/m] into
4962  * a rational division a/m.
4963  */
pwqp_drop_floors(__isl_take isl_pw_qpolynomial * pwqp)4964 static __isl_give isl_pw_qpolynomial *pwqp_drop_floors(
4965 	__isl_take isl_pw_qpolynomial *pwqp)
4966 {
4967 	int i;
4968 
4969 	if (!pwqp)
4970 		return NULL;
4971 
4972 	if (isl_pw_qpolynomial_is_zero(pwqp))
4973 		return pwqp;
4974 
4975 	pwqp = isl_pw_qpolynomial_cow(pwqp);
4976 	if (!pwqp)
4977 		return NULL;
4978 
4979 	for (i = 0; i < pwqp->n; ++i) {
4980 		pwqp->p[i].qp = qp_drop_floors(pwqp->p[i].qp, 0);
4981 		if (!pwqp->p[i].qp)
4982 			goto error;
4983 	}
4984 
4985 	return pwqp;
4986 error:
4987 	isl_pw_qpolynomial_free(pwqp);
4988 	return NULL;
4989 }
4990 
4991 /* Adjust all the integer divisions in "qp" such that they are at least
4992  * one over the given orthant (identified by "signs").  This ensures
4993  * that they will still be non-negative even after subtracting (m-1)/m.
4994  *
4995  * In particular, f is replaced by f' + v, changing f = [a/m]
4996  * to f' = [(a - m v)/m].
4997  * If the constant term k in a is smaller than m,
4998  * the constant term of v is set to floor(k/m) - 1.
4999  * For any other term, if the coefficient c and the variable x have
5000  * the same sign, then no changes are needed.
5001  * Otherwise, if the variable is positive (and c is negative),
5002  * then the coefficient of x in v is set to floor(c/m).
5003  * If the variable is negative (and c is positive),
5004  * then the coefficient of x in v is set to ceil(c/m).
5005  */
make_divs_pos(__isl_take isl_qpolynomial * qp,int * signs)5006 static __isl_give isl_qpolynomial *make_divs_pos(__isl_take isl_qpolynomial *qp,
5007 	int *signs)
5008 {
5009 	int i, j;
5010 	isl_size div_pos;
5011 	isl_vec *v = NULL;
5012 	isl_poly *s;
5013 
5014 	qp = isl_qpolynomial_cow(qp);
5015 	div_pos = isl_qpolynomial_domain_var_offset(qp, isl_dim_div);
5016 	if (div_pos < 0)
5017 		return isl_qpolynomial_free(qp);
5018 	qp->div = isl_mat_cow(qp->div);
5019 	if (!qp->div)
5020 		goto error;
5021 
5022 	v = isl_vec_alloc(qp->div->ctx, qp->div->n_col - 1);
5023 
5024 	for (i = 0; i < qp->div->n_row; ++i) {
5025 		isl_int *row = qp->div->row[i];
5026 		v = isl_vec_clr(v);
5027 		if (!v)
5028 			goto error;
5029 		if (isl_int_lt(row[1], row[0])) {
5030 			isl_int_fdiv_q(v->el[0], row[1], row[0]);
5031 			isl_int_sub_ui(v->el[0], v->el[0], 1);
5032 			isl_int_submul(row[1], row[0], v->el[0]);
5033 		}
5034 		for (j = 0; j < div_pos; ++j) {
5035 			if (isl_int_sgn(row[2 + j]) * signs[j] >= 0)
5036 				continue;
5037 			if (signs[j] < 0)
5038 				isl_int_cdiv_q(v->el[1 + j], row[2 + j], row[0]);
5039 			else
5040 				isl_int_fdiv_q(v->el[1 + j], row[2 + j], row[0]);
5041 			isl_int_submul(row[2 + j], row[0], v->el[1 + j]);
5042 		}
5043 		for (j = 0; j < i; ++j) {
5044 			if (isl_int_sgn(row[2 + div_pos + j]) >= 0)
5045 				continue;
5046 			isl_int_fdiv_q(v->el[1 + div_pos + j],
5047 					row[2 + div_pos + j], row[0]);
5048 			isl_int_submul(row[2 + div_pos + j],
5049 					row[0], v->el[1 + div_pos + j]);
5050 		}
5051 		for (j = i + 1; j < qp->div->n_row; ++j) {
5052 			if (isl_int_is_zero(qp->div->row[j][2 + div_pos + i]))
5053 				continue;
5054 			isl_seq_combine(qp->div->row[j] + 1,
5055 				qp->div->ctx->one, qp->div->row[j] + 1,
5056 				qp->div->row[j][2 + div_pos + i], v->el,
5057 				v->size);
5058 		}
5059 		isl_int_set_si(v->el[1 + div_pos + i], 1);
5060 		s = isl_poly_from_affine(qp->dim->ctx, v->el,
5061 					qp->div->ctx->one, v->size);
5062 		qp->poly = isl_poly_subs(qp->poly, div_pos + i, 1, &s);
5063 		isl_poly_free(s);
5064 		if (!qp->poly)
5065 			goto error;
5066 	}
5067 
5068 	isl_vec_free(v);
5069 	return qp;
5070 error:
5071 	isl_vec_free(v);
5072 	isl_qpolynomial_free(qp);
5073 	return NULL;
5074 }
5075 
5076 struct isl_to_poly_data {
5077 	int sign;
5078 	isl_pw_qpolynomial *res;
5079 	isl_qpolynomial *qp;
5080 };
5081 
5082 /* Appoximate data->qp by a polynomial on the orthant identified by "signs".
5083  * We first make all integer divisions positive and then split the
5084  * quasipolynomials into terms with sign data->sign (the direction
5085  * of the requested approximation) and terms with the opposite sign.
5086  * In the first set of terms, each integer division [a/m] is
5087  * overapproximated by a/m, while in the second it is underapproximated
5088  * by (a-(m-1))/m.
5089  */
to_polynomial_on_orthant(__isl_take isl_set * orthant,int * signs,void * user)5090 static isl_stat to_polynomial_on_orthant(__isl_take isl_set *orthant,
5091 	int *signs, void *user)
5092 {
5093 	struct isl_to_poly_data *data = user;
5094 	isl_pw_qpolynomial *t;
5095 	isl_qpolynomial *qp, *up, *down;
5096 
5097 	qp = isl_qpolynomial_copy(data->qp);
5098 	qp = make_divs_pos(qp, signs);
5099 
5100 	up = isl_qpolynomial_terms_of_sign(qp, signs, data->sign);
5101 	up = qp_drop_floors(up, 0);
5102 	down = isl_qpolynomial_terms_of_sign(qp, signs, -data->sign);
5103 	down = qp_drop_floors(down, 1);
5104 
5105 	isl_qpolynomial_free(qp);
5106 	qp = isl_qpolynomial_add(up, down);
5107 
5108 	t = isl_pw_qpolynomial_alloc(orthant, qp);
5109 	data->res = isl_pw_qpolynomial_add_disjoint(data->res, t);
5110 
5111 	return isl_stat_ok;
5112 }
5113 
5114 /* Approximate each quasipolynomial by a polynomial.  If "sign" is positive,
5115  * the polynomial will be an overapproximation.  If "sign" is negative,
5116  * it will be an underapproximation.  If "sign" is zero, the approximation
5117  * will lie somewhere in between.
5118  *
5119  * In particular, is sign == 0, we simply drop the floors, turning
5120  * the integer divisions into rational divisions.
5121  * Otherwise, we split the domains into orthants, make all integer divisions
5122  * positive and then approximate each [a/m] by either a/m or (a-(m-1))/m,
5123  * depending on the requested sign and the sign of the term in which
5124  * the integer division appears.
5125  */
isl_pw_qpolynomial_to_polynomial(__isl_take isl_pw_qpolynomial * pwqp,int sign)5126 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial(
5127 	__isl_take isl_pw_qpolynomial *pwqp, int sign)
5128 {
5129 	int i;
5130 	struct isl_to_poly_data data;
5131 
5132 	if (sign == 0)
5133 		return pwqp_drop_floors(pwqp);
5134 
5135 	if (!pwqp)
5136 		return NULL;
5137 
5138 	data.sign = sign;
5139 	data.res = isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_space(pwqp));
5140 
5141 	for (i = 0; i < pwqp->n; ++i) {
5142 		if (pwqp->p[i].qp->div->n_row == 0) {
5143 			isl_pw_qpolynomial *t;
5144 			t = isl_pw_qpolynomial_alloc(
5145 					isl_set_copy(pwqp->p[i].set),
5146 					isl_qpolynomial_copy(pwqp->p[i].qp));
5147 			data.res = isl_pw_qpolynomial_add_disjoint(data.res, t);
5148 			continue;
5149 		}
5150 		data.qp = pwqp->p[i].qp;
5151 		if (isl_set_foreach_orthant(pwqp->p[i].set,
5152 					&to_polynomial_on_orthant, &data) < 0)
5153 			goto error;
5154 	}
5155 
5156 	isl_pw_qpolynomial_free(pwqp);
5157 
5158 	return data.res;
5159 error:
5160 	isl_pw_qpolynomial_free(pwqp);
5161 	isl_pw_qpolynomial_free(data.res);
5162 	return NULL;
5163 }
5164 
poly_entry(__isl_take isl_pw_qpolynomial * pwqp,void * user)5165 static __isl_give isl_pw_qpolynomial *poly_entry(
5166 	__isl_take isl_pw_qpolynomial *pwqp, void *user)
5167 {
5168 	int *sign = user;
5169 
5170 	return isl_pw_qpolynomial_to_polynomial(pwqp, *sign);
5171 }
5172 
isl_union_pw_qpolynomial_to_polynomial(__isl_take isl_union_pw_qpolynomial * upwqp,int sign)5173 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_to_polynomial(
5174 	__isl_take isl_union_pw_qpolynomial *upwqp, int sign)
5175 {
5176 	return isl_union_pw_qpolynomial_transform_inplace(upwqp,
5177 				   &poly_entry, &sign);
5178 }
5179 
isl_basic_map_from_qpolynomial(__isl_take isl_qpolynomial * qp)5180 __isl_give isl_basic_map *isl_basic_map_from_qpolynomial(
5181 	__isl_take isl_qpolynomial *qp)
5182 {
5183 	int i, k;
5184 	isl_space *space;
5185 	isl_vec *aff = NULL;
5186 	isl_basic_map *bmap = NULL;
5187 	isl_bool is_affine;
5188 	unsigned pos;
5189 	unsigned n_div;
5190 
5191 	if (!qp)
5192 		return NULL;
5193 	is_affine = isl_poly_is_affine(qp->poly);
5194 	if (is_affine < 0)
5195 		goto error;
5196 	if (!is_affine)
5197 		isl_die(qp->dim->ctx, isl_error_invalid,
5198 			"input quasi-polynomial not affine", goto error);
5199 	aff = isl_qpolynomial_extract_affine(qp);
5200 	if (!aff)
5201 		goto error;
5202 	space = isl_qpolynomial_get_space(qp);
5203 	pos = 1 + isl_space_offset(space, isl_dim_out);
5204 	n_div = qp->div->n_row;
5205 	bmap = isl_basic_map_alloc_space(space, n_div, 1, 2 * n_div);
5206 
5207 	for (i = 0; i < n_div; ++i) {
5208 		k = isl_basic_map_alloc_div(bmap);
5209 		if (k < 0)
5210 			goto error;
5211 		isl_seq_cpy(bmap->div[k], qp->div->row[i], qp->div->n_col);
5212 		isl_int_set_si(bmap->div[k][qp->div->n_col], 0);
5213 		bmap = isl_basic_map_add_div_constraints(bmap, k);
5214 	}
5215 	k = isl_basic_map_alloc_equality(bmap);
5216 	if (k < 0)
5217 		goto error;
5218 	isl_int_neg(bmap->eq[k][pos], aff->el[0]);
5219 	isl_seq_cpy(bmap->eq[k], aff->el + 1, pos);
5220 	isl_seq_cpy(bmap->eq[k] + pos + 1, aff->el + 1 + pos, n_div);
5221 
5222 	isl_vec_free(aff);
5223 	isl_qpolynomial_free(qp);
5224 	bmap = isl_basic_map_finalize(bmap);
5225 	return bmap;
5226 error:
5227 	isl_vec_free(aff);
5228 	isl_qpolynomial_free(qp);
5229 	isl_basic_map_free(bmap);
5230 	return NULL;
5231 }
5232