1 /* Handle initialization things in -*- C++ -*-
2 Copyright (C) 1987-2022 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* High-level class interface. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "target.h"
27 #include "cp-tree.h"
28 #include "stringpool.h"
29 #include "varasm.h"
30 #include "gimplify.h"
31 #include "c-family/c-ubsan.h"
32 #include "intl.h"
33 #include "stringpool.h"
34 #include "attribs.h"
35 #include "asan.h"
36 #include "stor-layout.h"
37 #include "pointer-query.h"
38
39 static bool begin_init_stmts (tree *, tree *);
40 static tree finish_init_stmts (bool, tree, tree);
41 static void construct_virtual_base (tree, tree);
42 static bool expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t);
43 static bool expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t);
44 static int member_init_ok_or_else (tree, tree, tree);
45 static void expand_virtual_init (tree, tree);
46 static tree sort_mem_initializers (tree, tree);
47 static tree initializing_context (tree);
48 static void expand_cleanup_for_base (tree, tree);
49 static tree dfs_initialize_vtbl_ptrs (tree, void *);
50 static tree build_field_list (tree, tree, int *);
51 static int diagnose_uninitialized_cst_or_ref_member_1 (tree, tree, bool, bool);
52
53 static GTY(()) tree fn;
54
55 /* We are about to generate some complex initialization code.
56 Conceptually, it is all a single expression. However, we may want
57 to include conditionals, loops, and other such statement-level
58 constructs. Therefore, we build the initialization code inside a
59 statement-expression. This function starts such an expression.
60 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
61 pass them back to finish_init_stmts when the expression is
62 complete. */
63
64 static bool
begin_init_stmts(tree * stmt_expr_p,tree * compound_stmt_p)65 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
66 {
67 bool is_global = !building_stmt_list_p ();
68
69 *stmt_expr_p = begin_stmt_expr ();
70 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
71
72 return is_global;
73 }
74
75 /* Finish out the statement-expression begun by the previous call to
76 begin_init_stmts. Returns the statement-expression itself. */
77
78 static tree
finish_init_stmts(bool is_global,tree stmt_expr,tree compound_stmt)79 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
80 {
81 finish_compound_stmt (compound_stmt);
82
83 stmt_expr = finish_stmt_expr (stmt_expr, true);
84
85 gcc_assert (!building_stmt_list_p () == is_global);
86
87 return stmt_expr;
88 }
89
90 /* Constructors */
91
92 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
93 which we want to initialize the vtable pointer for, DATA is
94 TREE_LIST whose TREE_VALUE is the this ptr expression. */
95
96 static tree
dfs_initialize_vtbl_ptrs(tree binfo,void * data)97 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
98 {
99 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
100 return dfs_skip_bases;
101
102 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
103 {
104 tree base_ptr = TREE_VALUE ((tree) data);
105
106 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1,
107 tf_warning_or_error);
108
109 expand_virtual_init (binfo, base_ptr);
110 }
111
112 return NULL_TREE;
113 }
114
115 /* Initialize all the vtable pointers in the object pointed to by
116 ADDR. */
117
118 void
initialize_vtbl_ptrs(tree addr)119 initialize_vtbl_ptrs (tree addr)
120 {
121 tree list;
122 tree type;
123
124 type = TREE_TYPE (TREE_TYPE (addr));
125 list = build_tree_list (type, addr);
126
127 /* Walk through the hierarchy, initializing the vptr in each base
128 class. We do these in pre-order because we can't find the virtual
129 bases for a class until we've initialized the vtbl for that
130 class. */
131 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
132 }
133
134 /* Return an expression for the zero-initialization of an object with
135 type T. This expression will either be a constant (in the case
136 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
137 aggregate), or NULL (in the case that T does not require
138 initialization). In either case, the value can be used as
139 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
140 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
141 is the number of elements in the array. If STATIC_STORAGE_P is
142 TRUE, initializers are only generated for entities for which
143 zero-initialization does not simply mean filling the storage with
144 zero bytes. FIELD_SIZE, if non-NULL, is the bit size of the field,
145 subfields with bit positions at or above that bit size shouldn't
146 be added. Note that this only works when the result is assigned
147 to a base COMPONENT_REF; if we only have a pointer to the base subobject,
148 expand_assignment will end up clearing the full size of TYPE. */
149
150 static tree
build_zero_init_1(tree type,tree nelts,bool static_storage_p,tree field_size)151 build_zero_init_1 (tree type, tree nelts, bool static_storage_p,
152 tree field_size)
153 {
154 tree init = NULL_TREE;
155
156 /* [dcl.init]
157
158 To zero-initialize an object of type T means:
159
160 -- if T is a scalar type, the storage is set to the value of zero
161 converted to T.
162
163 -- if T is a non-union class type, the storage for each non-static
164 data member and each base-class subobject is zero-initialized.
165
166 -- if T is a union type, the storage for its first data member is
167 zero-initialized.
168
169 -- if T is an array type, the storage for each element is
170 zero-initialized.
171
172 -- if T is a reference type, no initialization is performed. */
173
174 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
175
176 if (type == error_mark_node)
177 ;
178 else if (static_storage_p && zero_init_p (type))
179 /* In order to save space, we do not explicitly build initializers
180 for items that do not need them. GCC's semantics are that
181 items with static storage duration that are not otherwise
182 initialized are initialized to zero. */
183 ;
184 else if (TYPE_PTR_OR_PTRMEM_P (type))
185 init = fold (convert (type, nullptr_node));
186 else if (NULLPTR_TYPE_P (type))
187 init = build_int_cst (type, 0);
188 else if (SCALAR_TYPE_P (type))
189 init = build_zero_cst (type);
190 else if (RECORD_OR_UNION_CODE_P (TREE_CODE (type)))
191 {
192 tree field, next;
193 vec<constructor_elt, va_gc> *v = NULL;
194
195 /* Iterate over the fields, building initializations. */
196 for (field = TYPE_FIELDS (type); field; field = next)
197 {
198 next = DECL_CHAIN (field);
199
200 if (TREE_CODE (field) != FIELD_DECL)
201 continue;
202
203 /* For unions, only the first field is initialized. */
204 if (TREE_CODE (type) == UNION_TYPE)
205 next = NULL_TREE;
206
207 if (TREE_TYPE (field) == error_mark_node)
208 continue;
209
210 /* Don't add virtual bases for base classes if they are beyond
211 the size of the current field, that means it is present
212 somewhere else in the object. */
213 if (field_size)
214 {
215 tree bitpos = bit_position (field);
216 if (TREE_CODE (bitpos) == INTEGER_CST
217 && !tree_int_cst_lt (bitpos, field_size))
218 continue;
219 }
220
221 /* Don't add zero width bitfields. */
222 if (DECL_C_BIT_FIELD (field)
223 && integer_zerop (DECL_SIZE (field)))
224 continue;
225
226 /* Note that for class types there will be FIELD_DECLs
227 corresponding to base classes as well. Thus, iterating
228 over TYPE_FIELDs will result in correct initialization of
229 all of the subobjects. */
230 if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
231 {
232 tree new_field_size
233 = (DECL_FIELD_IS_BASE (field)
234 && DECL_SIZE (field)
235 && TREE_CODE (DECL_SIZE (field)) == INTEGER_CST)
236 ? DECL_SIZE (field) : NULL_TREE;
237 tree value = build_zero_init_1 (TREE_TYPE (field),
238 /*nelts=*/NULL_TREE,
239 static_storage_p,
240 new_field_size);
241 if (value)
242 CONSTRUCTOR_APPEND_ELT(v, field, value);
243 }
244 }
245
246 /* Build a constructor to contain the initializations. */
247 init = build_constructor (type, v);
248 }
249 else if (TREE_CODE (type) == ARRAY_TYPE)
250 {
251 tree max_index;
252 vec<constructor_elt, va_gc> *v = NULL;
253
254 /* Iterate over the array elements, building initializations. */
255 if (nelts)
256 max_index = fold_build2_loc (input_location, MINUS_EXPR,
257 TREE_TYPE (nelts), nelts,
258 build_one_cst (TREE_TYPE (nelts)));
259 /* Treat flexible array members like [0] arrays. */
260 else if (TYPE_DOMAIN (type) == NULL_TREE)
261 return NULL_TREE;
262 else
263 max_index = array_type_nelts (type);
264
265 /* If we have an error_mark here, we should just return error mark
266 as we don't know the size of the array yet. */
267 if (max_index == error_mark_node)
268 return error_mark_node;
269 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
270
271 /* A zero-sized array, which is accepted as an extension, will
272 have an upper bound of -1. */
273 if (!integer_minus_onep (max_index))
274 {
275 constructor_elt ce;
276
277 /* If this is a one element array, we just use a regular init. */
278 if (integer_zerop (max_index))
279 ce.index = size_zero_node;
280 else
281 ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node,
282 max_index);
283
284 ce.value = build_zero_init_1 (TREE_TYPE (type), /*nelts=*/NULL_TREE,
285 static_storage_p, NULL_TREE);
286 if (ce.value)
287 {
288 vec_alloc (v, 1);
289 v->quick_push (ce);
290 }
291 }
292
293 /* Build a constructor to contain the initializations. */
294 init = build_constructor (type, v);
295 }
296 else if (VECTOR_TYPE_P (type))
297 init = build_zero_cst (type);
298 else
299 gcc_assert (TYPE_REF_P (type));
300
301 /* In all cases, the initializer is a constant. */
302 if (init)
303 TREE_CONSTANT (init) = 1;
304
305 return init;
306 }
307
308 /* Return an expression for the zero-initialization of an object with
309 type T. This expression will either be a constant (in the case
310 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
311 aggregate), or NULL (in the case that T does not require
312 initialization). In either case, the value can be used as
313 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
314 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
315 is the number of elements in the array. If STATIC_STORAGE_P is
316 TRUE, initializers are only generated for entities for which
317 zero-initialization does not simply mean filling the storage with
318 zero bytes. */
319
320 tree
build_zero_init(tree type,tree nelts,bool static_storage_p)321 build_zero_init (tree type, tree nelts, bool static_storage_p)
322 {
323 return build_zero_init_1 (type, nelts, static_storage_p, NULL_TREE);
324 }
325
326 /* Return a suitable initializer for value-initializing an object of type
327 TYPE, as described in [dcl.init]. */
328
329 tree
build_value_init(tree type,tsubst_flags_t complain)330 build_value_init (tree type, tsubst_flags_t complain)
331 {
332 /* [dcl.init]
333
334 To value-initialize an object of type T means:
335
336 - if T is a class type (clause 9) with either no default constructor
337 (12.1) or a default constructor that is user-provided or deleted,
338 then the object is default-initialized;
339
340 - if T is a (possibly cv-qualified) class type without a user-provided
341 or deleted default constructor, then the object is zero-initialized
342 and the semantic constraints for default-initialization are checked,
343 and if T has a non-trivial default constructor, the object is
344 default-initialized;
345
346 - if T is an array type, then each element is value-initialized;
347
348 - otherwise, the object is zero-initialized.
349
350 A program that calls for default-initialization or
351 value-initialization of an entity of reference type is ill-formed. */
352
353 if (CLASS_TYPE_P (type) && type_build_ctor_call (type))
354 {
355 tree ctor
356 = build_special_member_call (NULL_TREE, complete_ctor_identifier,
357 NULL, type, LOOKUP_NORMAL, complain);
358 if (ctor == error_mark_node || TREE_CONSTANT (ctor))
359 return ctor;
360 if (processing_template_decl)
361 /* The AGGR_INIT_EXPR tweaking below breaks in templates. */
362 return build_min (CAST_EXPR, type, NULL_TREE);
363 tree fn = NULL_TREE;
364 if (TREE_CODE (ctor) == CALL_EXPR)
365 fn = get_callee_fndecl (ctor);
366 ctor = build_aggr_init_expr (type, ctor);
367 if (fn && user_provided_p (fn))
368 return ctor;
369 else if (TYPE_HAS_COMPLEX_DFLT (type))
370 {
371 /* This is a class that needs constructing, but doesn't have
372 a user-provided constructor. So we need to zero-initialize
373 the object and then call the implicitly defined ctor.
374 This will be handled in simplify_aggr_init_expr. */
375 AGGR_INIT_ZERO_FIRST (ctor) = 1;
376 return ctor;
377 }
378 }
379
380 /* Discard any access checking during subobject initialization;
381 the checks are implied by the call to the ctor which we have
382 verified is OK (cpp0x/defaulted46.C). */
383 push_deferring_access_checks (dk_deferred);
384 tree r = build_value_init_noctor (type, complain);
385 pop_deferring_access_checks ();
386 return r;
387 }
388
389 /* Like build_value_init, but don't call the constructor for TYPE. Used
390 for base initializers. */
391
392 tree
build_value_init_noctor(tree type,tsubst_flags_t complain)393 build_value_init_noctor (tree type, tsubst_flags_t complain)
394 {
395 if (!COMPLETE_TYPE_P (type))
396 {
397 if (complain & tf_error)
398 error ("value-initialization of incomplete type %qT", type);
399 return error_mark_node;
400 }
401 /* FIXME the class and array cases should just use digest_init once it is
402 SFINAE-enabled. */
403 if (CLASS_TYPE_P (type))
404 {
405 gcc_assert (!TYPE_HAS_COMPLEX_DFLT (type)
406 || errorcount != 0);
407
408 if (TREE_CODE (type) != UNION_TYPE)
409 {
410 tree field;
411 vec<constructor_elt, va_gc> *v = NULL;
412
413 /* Iterate over the fields, building initializations. */
414 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
415 {
416 tree ftype, value;
417
418 if (TREE_CODE (field) != FIELD_DECL)
419 continue;
420
421 ftype = TREE_TYPE (field);
422
423 if (ftype == error_mark_node)
424 continue;
425
426 /* Ignore flexible array members for value initialization. */
427 if (TREE_CODE (ftype) == ARRAY_TYPE
428 && !COMPLETE_TYPE_P (ftype)
429 && !TYPE_DOMAIN (ftype)
430 && COMPLETE_TYPE_P (TREE_TYPE (ftype))
431 && (next_initializable_field (DECL_CHAIN (field))
432 == NULL_TREE))
433 continue;
434
435 /* Ignore unnamed zero-width bitfields. */
436 if (DECL_UNNAMED_BIT_FIELD (field)
437 && integer_zerop (DECL_SIZE (field)))
438 continue;
439
440 /* We could skip vfields and fields of types with
441 user-defined constructors, but I think that won't improve
442 performance at all; it should be simpler in general just
443 to zero out the entire object than try to only zero the
444 bits that actually need it. */
445
446 /* Note that for class types there will be FIELD_DECLs
447 corresponding to base classes as well. Thus, iterating
448 over TYPE_FIELDs will result in correct initialization of
449 all of the subobjects. */
450 value = build_value_init (ftype, complain);
451 value = maybe_constant_init (value);
452
453 if (value == error_mark_node)
454 return error_mark_node;
455
456 CONSTRUCTOR_APPEND_ELT(v, field, value);
457
458 /* We shouldn't have gotten here for anything that would need
459 non-trivial initialization, and gimplify_init_ctor_preeval
460 would need to be fixed to allow it. */
461 gcc_assert (TREE_CODE (value) != TARGET_EXPR
462 && TREE_CODE (value) != AGGR_INIT_EXPR);
463 }
464
465 /* Build a constructor to contain the zero- initializations. */
466 return build_constructor (type, v);
467 }
468 }
469 else if (TREE_CODE (type) == ARRAY_TYPE)
470 {
471 vec<constructor_elt, va_gc> *v = NULL;
472
473 /* Iterate over the array elements, building initializations. */
474 tree max_index = array_type_nelts (type);
475
476 /* If we have an error_mark here, we should just return error mark
477 as we don't know the size of the array yet. */
478 if (max_index == error_mark_node)
479 {
480 if (complain & tf_error)
481 error ("cannot value-initialize array of unknown bound %qT",
482 type);
483 return error_mark_node;
484 }
485 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
486
487 /* A zero-sized array, which is accepted as an extension, will
488 have an upper bound of -1. */
489 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
490 {
491 constructor_elt ce;
492
493 /* If this is a one element array, we just use a regular init. */
494 if (tree_int_cst_equal (size_zero_node, max_index))
495 ce.index = size_zero_node;
496 else
497 ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node, max_index);
498
499 ce.value = build_value_init (TREE_TYPE (type), complain);
500 ce.value = maybe_constant_init (ce.value);
501 if (ce.value == error_mark_node)
502 return error_mark_node;
503
504 vec_alloc (v, 1);
505 v->quick_push (ce);
506
507 /* We shouldn't have gotten here for anything that would need
508 non-trivial initialization, and gimplify_init_ctor_preeval
509 would need to be fixed to allow it. */
510 gcc_assert (TREE_CODE (ce.value) != TARGET_EXPR
511 && TREE_CODE (ce.value) != AGGR_INIT_EXPR);
512 }
513
514 /* Build a constructor to contain the initializations. */
515 return build_constructor (type, v);
516 }
517 else if (TREE_CODE (type) == FUNCTION_TYPE)
518 {
519 if (complain & tf_error)
520 error ("value-initialization of function type %qT", type);
521 return error_mark_node;
522 }
523 else if (TYPE_REF_P (type))
524 {
525 if (complain & tf_error)
526 error ("value-initialization of reference type %qT", type);
527 return error_mark_node;
528 }
529
530 return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
531 }
532
533 /* Initialize current class with INIT, a TREE_LIST of arguments for
534 a target constructor. If TREE_LIST is void_type_node, an empty
535 initializer list was given. Return the target constructor. */
536
537 static tree
perform_target_ctor(tree init)538 perform_target_ctor (tree init)
539 {
540 tree decl = current_class_ref;
541 tree type = current_class_type;
542
543 init = build_aggr_init (decl, init, LOOKUP_NORMAL|LOOKUP_DELEGATING_CONS,
544 tf_warning_or_error);
545 finish_expr_stmt (init);
546 if (type_build_dtor_call (type))
547 {
548 tree expr = build_delete (input_location,
549 type, decl, sfk_complete_destructor,
550 LOOKUP_NORMAL
551 |LOOKUP_NONVIRTUAL
552 |LOOKUP_DESTRUCTOR,
553 0, tf_warning_or_error);
554 if (DECL_HAS_IN_CHARGE_PARM_P (current_function_decl))
555 {
556 tree base = build_delete (input_location,
557 type, decl, sfk_base_destructor,
558 LOOKUP_NORMAL
559 |LOOKUP_NONVIRTUAL
560 |LOOKUP_DESTRUCTOR,
561 0, tf_warning_or_error);
562 expr = build_if_in_charge (expr, base);
563 }
564 if (expr != error_mark_node
565 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
566 finish_eh_cleanup (expr);
567 }
568 return init;
569 }
570
571 /* Instantiate the default member initializer of MEMBER, if needed.
572 Only get_nsdmi should use the return value of this function. */
573
574 static GTY((cache)) decl_tree_cache_map *nsdmi_inst;
575
576 tree
maybe_instantiate_nsdmi_init(tree member,tsubst_flags_t complain)577 maybe_instantiate_nsdmi_init (tree member, tsubst_flags_t complain)
578 {
579 tree init = DECL_INITIAL (member);
580 if (init && DECL_LANG_SPECIFIC (member) && DECL_TEMPLATE_INFO (member))
581 {
582 /* Clear any special tsubst flags; the result of NSDMI instantiation
583 should be independent of the substitution context. */
584 complain &= tf_warning_or_error;
585
586 init = DECL_INITIAL (DECL_TI_TEMPLATE (member));
587 location_t expr_loc
588 = cp_expr_loc_or_loc (init, DECL_SOURCE_LOCATION (member));
589 if (TREE_CODE (init) == DEFERRED_PARSE)
590 /* Unparsed. */;
591 else if (tree *slot = hash_map_safe_get (nsdmi_inst, member))
592 init = *slot;
593 /* Check recursive instantiation. */
594 else if (DECL_INSTANTIATING_NSDMI_P (member))
595 {
596 if (complain & tf_error)
597 error_at (expr_loc, "recursive instantiation of default member "
598 "initializer for %qD", member);
599 init = error_mark_node;
600 }
601 else
602 {
603 cp_evaluated ev;
604
605 location_t sloc = input_location;
606 input_location = expr_loc;
607
608 DECL_INSTANTIATING_NSDMI_P (member) = 1;
609
610 bool pushed = false;
611 tree ctx = DECL_CONTEXT (member);
612
613 bool push_to_top = maybe_push_to_top_level (member);
614 if (!currently_open_class (ctx))
615 {
616 push_nested_class (ctx);
617 push_deferring_access_checks (dk_no_deferred);
618 pushed = true;
619 }
620
621 inject_this_parameter (ctx, TYPE_UNQUALIFIED);
622
623 start_lambda_scope (member);
624
625 /* Do deferred instantiation of the NSDMI. */
626 init = (tsubst_copy_and_build
627 (init, DECL_TI_ARGS (member),
628 complain, member, /*function_p=*/false,
629 /*integral_constant_expression_p=*/false));
630 init = digest_nsdmi_init (member, init, complain);
631
632 finish_lambda_scope ();
633
634 DECL_INSTANTIATING_NSDMI_P (member) = 0;
635
636 if (init != error_mark_node)
637 hash_map_safe_put<hm_ggc> (nsdmi_inst, member, init);
638
639 if (pushed)
640 {
641 pop_deferring_access_checks ();
642 pop_nested_class ();
643 }
644 maybe_pop_from_top_level (push_to_top);
645
646 input_location = sloc;
647 }
648 }
649
650 return init;
651 }
652
653 /* Return the non-static data initializer for FIELD_DECL MEMBER. */
654
655 tree
get_nsdmi(tree member,bool in_ctor,tsubst_flags_t complain)656 get_nsdmi (tree member, bool in_ctor, tsubst_flags_t complain)
657 {
658 tree save_ccp = current_class_ptr;
659 tree save_ccr = current_class_ref;
660
661 tree init = maybe_instantiate_nsdmi_init (member, complain);
662
663 if (init && TREE_CODE (init) == DEFERRED_PARSE)
664 {
665 if (complain & tf_error)
666 {
667 error ("default member initializer for %qD required before the end "
668 "of its enclosing class", member);
669 inform (location_of (init), "defined here");
670 DECL_INITIAL (member) = error_mark_node;
671 }
672 init = error_mark_node;
673 }
674
675 if (in_ctor)
676 {
677 current_class_ptr = save_ccp;
678 current_class_ref = save_ccr;
679 }
680 else
681 {
682 /* Use a PLACEHOLDER_EXPR when we don't have a 'this' parameter to
683 refer to; constexpr evaluation knows what to do with it. */
684 current_class_ref = build0 (PLACEHOLDER_EXPR, DECL_CONTEXT (member));
685 current_class_ptr = build_address (current_class_ref);
686 }
687
688 /* Clear processing_template_decl for sake of break_out_target_exprs;
689 INIT is always non-templated. */
690 processing_template_decl_sentinel ptds;
691
692 /* Strip redundant TARGET_EXPR so we don't need to remap it, and
693 so the aggregate init code below will see a CONSTRUCTOR. */
694 bool simple_target = (init && SIMPLE_TARGET_EXPR_P (init));
695 if (simple_target)
696 init = TARGET_EXPR_INITIAL (init);
697 init = break_out_target_exprs (init, /*loc*/true);
698 if (init && TREE_CODE (init) == TARGET_EXPR)
699 /* In a constructor, this expresses the full initialization, prevent
700 perform_member_init from calling another constructor (58162). */
701 TARGET_EXPR_DIRECT_INIT_P (init) = in_ctor;
702 if (simple_target && TREE_CODE (init) != CONSTRUCTOR)
703 /* Now put it back so C++17 copy elision works. */
704 init = get_target_expr (init);
705
706 current_class_ptr = save_ccp;
707 current_class_ref = save_ccr;
708 return init;
709 }
710
711 /* Diagnose the flexible array MEMBER if its INITializer is non-null
712 and return true if so. Otherwise return false. */
713
714 bool
maybe_reject_flexarray_init(tree member,tree init)715 maybe_reject_flexarray_init (tree member, tree init)
716 {
717 tree type = TREE_TYPE (member);
718
719 if (!init
720 || TREE_CODE (type) != ARRAY_TYPE
721 || TYPE_DOMAIN (type))
722 return false;
723
724 /* Point at the flexible array member declaration if it's initialized
725 in-class, and at the ctor if it's initialized in a ctor member
726 initializer list. */
727 location_t loc;
728 if (DECL_INITIAL (member) == init
729 || !current_function_decl
730 || DECL_DEFAULTED_FN (current_function_decl))
731 loc = DECL_SOURCE_LOCATION (member);
732 else
733 loc = DECL_SOURCE_LOCATION (current_function_decl);
734
735 error_at (loc, "initializer for flexible array member %q#D", member);
736 return true;
737 }
738
739 /* If INIT's value can come from a call to std::initializer_list<T>::begin,
740 return that function. Otherwise, NULL_TREE. */
741
742 static tree
find_list_begin(tree init)743 find_list_begin (tree init)
744 {
745 STRIP_NOPS (init);
746 while (TREE_CODE (init) == COMPOUND_EXPR)
747 init = TREE_OPERAND (init, 1);
748 STRIP_NOPS (init);
749 if (TREE_CODE (init) == COND_EXPR)
750 {
751 tree left = TREE_OPERAND (init, 1);
752 if (!left)
753 left = TREE_OPERAND (init, 0);
754 left = find_list_begin (left);
755 if (left)
756 return left;
757 return find_list_begin (TREE_OPERAND (init, 2));
758 }
759 if (TREE_CODE (init) == CALL_EXPR)
760 if (tree fn = get_callee_fndecl (init))
761 if (id_equal (DECL_NAME (fn), "begin")
762 && is_std_init_list (DECL_CONTEXT (fn)))
763 return fn;
764 return NULL_TREE;
765 }
766
767 /* If INIT initializing MEMBER is copying the address of the underlying array
768 of an initializer_list, warn. */
769
770 static void
maybe_warn_list_ctor(tree member,tree init)771 maybe_warn_list_ctor (tree member, tree init)
772 {
773 tree memtype = TREE_TYPE (member);
774 if (!init || !TYPE_PTR_P (memtype)
775 || !is_list_ctor (current_function_decl))
776 return;
777
778 tree parm = FUNCTION_FIRST_USER_PARMTYPE (current_function_decl);
779 parm = TREE_VALUE (parm);
780 tree initlist = non_reference (parm);
781
782 /* Do not warn if the parameter is an lvalue reference to non-const. */
783 if (TYPE_REF_P (parm) && !TYPE_REF_IS_RVALUE (parm)
784 && !CP_TYPE_CONST_P (initlist))
785 return;
786
787 tree targs = CLASSTYPE_TI_ARGS (initlist);
788 tree elttype = TREE_VEC_ELT (targs, 0);
789
790 if (!same_type_ignoring_top_level_qualifiers_p
791 (TREE_TYPE (memtype), elttype))
792 return;
793
794 tree begin = find_list_begin (init);
795 if (!begin)
796 return;
797
798 location_t loc = cp_expr_loc_or_input_loc (init);
799 warning_at (loc, OPT_Winit_list_lifetime,
800 "initializing %qD from %qE does not extend the lifetime "
801 "of the underlying array", member, begin);
802 }
803
804 /* Data structure for find_uninit_fields_r, below. */
805
806 struct find_uninit_data {
807 /* The set tracking the yet-uninitialized members. */
808 hash_set<tree> *uninitialized;
809 /* The data member we are currently initializing. It can be either
810 a type (initializing a base class/delegating constructors), or
811 a COMPONENT_REF. */
812 tree member;
813 };
814
815 /* walk_tree callback that warns about using uninitialized data in
816 a member-initializer-list. */
817
818 static tree
find_uninit_fields_r(tree * tp,int * walk_subtrees,void * data)819 find_uninit_fields_r (tree *tp, int *walk_subtrees, void *data)
820 {
821 find_uninit_data *d = static_cast<find_uninit_data *>(data);
822 hash_set<tree> *uninitialized = d->uninitialized;
823 tree init = *tp;
824 const tree_code code = TREE_CODE (init);
825
826 /* No need to look into types or unevaluated operands. */
827 if (TYPE_P (init) || unevaluated_p (code))
828 {
829 *walk_subtrees = false;
830 return NULL_TREE;
831 }
832
833 switch (code)
834 {
835 /* We'd need data flow info to avoid false positives. */
836 case COND_EXPR:
837 case VEC_COND_EXPR:
838 case BIND_EXPR:
839 /* We might see a MODIFY_EXPR in cases like S() : a((b = 42)), c(b) { }
840 where the initializer for 'a' surreptitiously initializes 'b'. Let's
841 not bother with these complicated scenarios in the front end. */
842 case MODIFY_EXPR:
843 /* Don't attempt to handle statement-expressions, either. */
844 case STATEMENT_LIST:
845 uninitialized->empty ();
846 gcc_fallthrough ();
847 /* If we're just taking the address of an object, it doesn't matter
848 whether it's been initialized. */
849 case ADDR_EXPR:
850 *walk_subtrees = false;
851 return NULL_TREE;
852 default:
853 break;
854 }
855
856 /* We'd need data flow info to avoid false positives. */
857 if (truth_value_p (code))
858 goto give_up;
859 /* Attempt to handle a simple a{b}, but no more. */
860 else if (BRACE_ENCLOSED_INITIALIZER_P (init))
861 {
862 if (CONSTRUCTOR_NELTS (init) == 1
863 && !BRACE_ENCLOSED_INITIALIZER_P (CONSTRUCTOR_ELT (init, 0)->value))
864 init = CONSTRUCTOR_ELT (init, 0)->value;
865 else
866 goto give_up;
867 }
868 /* Warn about uninitialized 'this'. */
869 else if (code == CALL_EXPR)
870 {
871 tree fn = get_callee_fndecl (init);
872 if (fn && DECL_NONSTATIC_MEMBER_FUNCTION_P (fn))
873 {
874 tree op = CALL_EXPR_ARG (init, 0);
875 if (TREE_CODE (op) == ADDR_EXPR)
876 op = TREE_OPERAND (op, 0);
877 temp_override<tree> ovr (d->member, DECL_ARGUMENTS (fn));
878 cp_walk_tree_without_duplicates (&op, find_uninit_fields_r, data);
879 }
880 /* Functions (whether static or nonstatic member) may have side effects
881 and initialize other members; it's not the front end's job to try to
882 figure it out. But don't give up for constructors: we still want to
883 warn when initializing base classes:
884
885 struct D : public B {
886 int x;
887 D() : B(x) {}
888 };
889
890 so carry on to detect that 'x' is used uninitialized. */
891 if (!fn || !DECL_CONSTRUCTOR_P (fn))
892 goto give_up;
893 }
894
895 /* If we find FIELD in the uninitialized set, we warn. */
896 if (code == COMPONENT_REF)
897 {
898 tree field = TREE_OPERAND (init, 1);
899 tree type = TYPE_P (d->member) ? d->member : TREE_TYPE (d->member);
900
901 /* We're initializing a reference member with itself. */
902 if (TYPE_REF_P (type) && cp_tree_equal (d->member, init))
903 warning_at (EXPR_LOCATION (init), OPT_Winit_self,
904 "%qD is initialized with itself", field);
905 else if (cp_tree_equal (TREE_OPERAND (init, 0), current_class_ref)
906 && uninitialized->contains (field))
907 {
908 if (TYPE_REF_P (TREE_TYPE (field)))
909 warning_at (EXPR_LOCATION (init), OPT_Wuninitialized,
910 "reference %qD is not yet bound to a value when used "
911 "here", field);
912 else if (!INDIRECT_TYPE_P (type) || is_this_parameter (d->member))
913 warning_at (EXPR_LOCATION (init), OPT_Wuninitialized,
914 "member %qD is used uninitialized", field);
915 *walk_subtrees = false;
916 }
917 }
918
919 return NULL_TREE;
920
921 give_up:
922 *walk_subtrees = false;
923 uninitialized->empty ();
924 return integer_zero_node;
925 }
926
927 /* Wrapper around find_uninit_fields_r above. */
928
929 static void
find_uninit_fields(tree * t,hash_set<tree> * uninitialized,tree member)930 find_uninit_fields (tree *t, hash_set<tree> *uninitialized, tree member)
931 {
932 if (!uninitialized->is_empty ())
933 {
934 find_uninit_data data = { uninitialized, member };
935 cp_walk_tree_without_duplicates (t, find_uninit_fields_r, &data);
936 }
937 }
938
939 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
940 arguments. If TREE_LIST is void_type_node, an empty initializer
941 list was given; if NULL_TREE no initializer was given. UNINITIALIZED
942 is the hash set that tracks uninitialized fields. */
943
944 static void
perform_member_init(tree member,tree init,hash_set<tree> & uninitialized)945 perform_member_init (tree member, tree init, hash_set<tree> &uninitialized)
946 {
947 tree decl;
948 tree type = TREE_TYPE (member);
949
950 /* Use the non-static data member initializer if there was no
951 mem-initializer for this field. */
952 if (init == NULL_TREE)
953 init = get_nsdmi (member, /*ctor*/true, tf_warning_or_error);
954
955 if (init == error_mark_node)
956 return;
957
958 /* Effective C++ rule 12 requires that all data members be
959 initialized. */
960 if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE)
961 warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Weffc__,
962 "%qD should be initialized in the member initialization list",
963 member);
964
965 /* Get an lvalue for the data member. */
966 decl = build_class_member_access_expr (current_class_ref, member,
967 /*access_path=*/NULL_TREE,
968 /*preserve_reference=*/true,
969 tf_warning_or_error);
970 if (decl == error_mark_node)
971 return;
972
973 if ((warn_init_self || warn_uninitialized)
974 && init
975 && TREE_CODE (init) == TREE_LIST
976 && TREE_CHAIN (init) == NULL_TREE)
977 {
978 tree val = TREE_VALUE (init);
979 /* Handle references. */
980 if (REFERENCE_REF_P (val))
981 val = TREE_OPERAND (val, 0);
982 if (TREE_CODE (val) == COMPONENT_REF && TREE_OPERAND (val, 1) == member
983 && TREE_OPERAND (val, 0) == current_class_ref)
984 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
985 OPT_Winit_self, "%qD is initialized with itself",
986 member);
987 else
988 find_uninit_fields (&val, &uninitialized, decl);
989 }
990
991 if (array_of_unknown_bound_p (type))
992 {
993 maybe_reject_flexarray_init (member, init);
994 return;
995 }
996
997 if (init && TREE_CODE (init) == TREE_LIST)
998 {
999 /* A(): a{e} */
1000 if (DIRECT_LIST_INIT_P (TREE_VALUE (init)))
1001 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
1002 tf_warning_or_error);
1003 /* We are trying to initialize an array from a ()-list. If we
1004 should attempt to do so, conjure up a CONSTRUCTOR. */
1005 else if (TREE_CODE (type) == ARRAY_TYPE
1006 /* P0960 is a C++20 feature. */
1007 && cxx_dialect >= cxx20)
1008 init = do_aggregate_paren_init (init, type);
1009 else if (!CLASS_TYPE_P (type))
1010 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
1011 tf_warning_or_error);
1012 /* If we're initializing a class from a ()-list, leave the TREE_LIST
1013 alone: we might call an appropriate constructor, or (in C++20)
1014 do aggregate-initialization. */
1015 }
1016
1017 /* Assume we are initializing the member. */
1018 bool member_initialized_p = true;
1019
1020 if (init == void_type_node)
1021 {
1022 /* mem() means value-initialization. */
1023 if (TREE_CODE (type) == ARRAY_TYPE)
1024 {
1025 init = build_vec_init_expr (type, init, tf_warning_or_error);
1026 init = build2 (INIT_EXPR, type, decl, init);
1027 finish_expr_stmt (init);
1028 }
1029 else
1030 {
1031 tree value = build_value_init (type, tf_warning_or_error);
1032 if (value == error_mark_node)
1033 return;
1034 init = build2 (INIT_EXPR, type, decl, value);
1035 finish_expr_stmt (init);
1036 }
1037 }
1038 /* Deal with this here, as we will get confused if we try to call the
1039 assignment op for an anonymous union. This can happen in a
1040 synthesized copy constructor. */
1041 else if (ANON_AGGR_TYPE_P (type))
1042 {
1043 if (init)
1044 {
1045 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
1046 finish_expr_stmt (init);
1047 }
1048 }
1049 else if (init
1050 && (TYPE_REF_P (type)
1051 || (TREE_CODE (init) == CONSTRUCTOR
1052 && (CP_AGGREGATE_TYPE_P (type)
1053 || is_std_init_list (type)))))
1054 {
1055 /* With references and list-initialization, we need to deal with
1056 extending temporary lifetimes. 12.2p5: "A temporary bound to a
1057 reference member in a constructor’s ctor-initializer (12.6.2)
1058 persists until the constructor exits." */
1059 unsigned i; tree t;
1060 releasing_vec cleanups;
1061 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (init), type))
1062 {
1063 if (BRACE_ENCLOSED_INITIALIZER_P (init)
1064 && CP_AGGREGATE_TYPE_P (type))
1065 init = reshape_init (type, init, tf_warning_or_error);
1066 init = digest_init (type, init, tf_warning_or_error);
1067 }
1068 if (init == error_mark_node)
1069 return;
1070 if (is_empty_field (member)
1071 && !TREE_SIDE_EFFECTS (init))
1072 /* Don't add trivial initialization of an empty base/field, as they
1073 might not be ordered the way the back-end expects. */
1074 return;
1075 /* A FIELD_DECL doesn't really have a suitable lifetime, but
1076 make_temporary_var_for_ref_to_temp will treat it as automatic and
1077 set_up_extended_ref_temp wants to use the decl in a warning. */
1078 init = extend_ref_init_temps (member, init, &cleanups);
1079 if (TREE_CODE (type) == ARRAY_TYPE
1080 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (type)))
1081 init = build_vec_init_expr (type, init, tf_warning_or_error);
1082 init = build2 (INIT_EXPR, type, decl, init);
1083 finish_expr_stmt (init);
1084 FOR_EACH_VEC_ELT (*cleanups, i, t)
1085 push_cleanup (NULL_TREE, t, false);
1086 }
1087 else if (type_build_ctor_call (type)
1088 || (init && CLASS_TYPE_P (strip_array_types (type))))
1089 {
1090 if (TREE_CODE (type) == ARRAY_TYPE)
1091 {
1092 if (init == NULL_TREE
1093 || same_type_ignoring_top_level_qualifiers_p (type,
1094 TREE_TYPE (init)))
1095 {
1096 if (TYPE_DOMAIN (type) && TYPE_MAX_VALUE (TYPE_DOMAIN (type)))
1097 {
1098 /* Initialize the array only if it's not a flexible
1099 array member (i.e., if it has an upper bound). */
1100 init = build_vec_init_expr (type, init, tf_warning_or_error);
1101 init = build2 (INIT_EXPR, type, decl, init);
1102 finish_expr_stmt (init);
1103 }
1104 }
1105 else
1106 error ("invalid initializer for array member %q#D", member);
1107 }
1108 else
1109 {
1110 int flags = LOOKUP_NORMAL;
1111 if (DECL_DEFAULTED_FN (current_function_decl))
1112 flags |= LOOKUP_DEFAULTED;
1113 if (CP_TYPE_CONST_P (type)
1114 && init == NULL_TREE
1115 && default_init_uninitialized_part (type))
1116 {
1117 /* TYPE_NEEDS_CONSTRUCTING can be set just because we have a
1118 vtable; still give this diagnostic. */
1119 auto_diagnostic_group d;
1120 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
1121 "uninitialized const member in %q#T", type))
1122 inform (DECL_SOURCE_LOCATION (member),
1123 "%q#D should be initialized", member );
1124 }
1125 finish_expr_stmt (build_aggr_init (decl, init, flags,
1126 tf_warning_or_error));
1127 }
1128 }
1129 else
1130 {
1131 if (init == NULL_TREE)
1132 {
1133 tree core_type;
1134 /* member traversal: note it leaves init NULL */
1135 if (TYPE_REF_P (type))
1136 {
1137 auto_diagnostic_group d;
1138 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
1139 "uninitialized reference member in %q#T", type))
1140 inform (DECL_SOURCE_LOCATION (member),
1141 "%q#D should be initialized", member);
1142 }
1143 else if (CP_TYPE_CONST_P (type))
1144 {
1145 auto_diagnostic_group d;
1146 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
1147 "uninitialized const member in %q#T", type))
1148 inform (DECL_SOURCE_LOCATION (member),
1149 "%q#D should be initialized", member );
1150 }
1151
1152 core_type = strip_array_types (type);
1153
1154 if (CLASS_TYPE_P (core_type)
1155 && (CLASSTYPE_READONLY_FIELDS_NEED_INIT (core_type)
1156 || CLASSTYPE_REF_FIELDS_NEED_INIT (core_type)))
1157 diagnose_uninitialized_cst_or_ref_member (core_type,
1158 /*using_new=*/false,
1159 /*complain=*/true);
1160
1161 /* We left the member uninitialized. */
1162 member_initialized_p = false;
1163 }
1164
1165 maybe_warn_list_ctor (member, init);
1166
1167 if (init)
1168 finish_expr_stmt (cp_build_modify_expr (input_location, decl,
1169 INIT_EXPR, init,
1170 tf_warning_or_error));
1171 }
1172
1173 if (member_initialized_p && warn_uninitialized)
1174 /* This member is now initialized, remove it from the uninitialized
1175 set. */
1176 uninitialized.remove (member);
1177
1178 if (type_build_dtor_call (type))
1179 {
1180 tree expr;
1181
1182 expr = build_class_member_access_expr (current_class_ref, member,
1183 /*access_path=*/NULL_TREE,
1184 /*preserve_reference=*/false,
1185 tf_warning_or_error);
1186 expr = build_delete (input_location,
1187 type, expr, sfk_complete_destructor,
1188 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0,
1189 tf_warning_or_error);
1190
1191 if (expr != error_mark_node
1192 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
1193 finish_eh_cleanup (expr);
1194 }
1195 }
1196
1197 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
1198 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
1199
1200 static tree
build_field_list(tree t,tree list,int * uses_unions_or_anon_p)1201 build_field_list (tree t, tree list, int *uses_unions_or_anon_p)
1202 {
1203 tree fields;
1204
1205 /* Note whether or not T is a union. */
1206 if (TREE_CODE (t) == UNION_TYPE)
1207 *uses_unions_or_anon_p = 1;
1208
1209 for (fields = TYPE_FIELDS (t); fields; fields = DECL_CHAIN (fields))
1210 {
1211 tree fieldtype;
1212
1213 /* Skip CONST_DECLs for enumeration constants and so forth. */
1214 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
1215 continue;
1216
1217 fieldtype = TREE_TYPE (fields);
1218
1219 /* For an anonymous struct or union, we must recursively
1220 consider the fields of the anonymous type. They can be
1221 directly initialized from the constructor. */
1222 if (ANON_AGGR_TYPE_P (fieldtype))
1223 {
1224 /* Add this field itself. Synthesized copy constructors
1225 initialize the entire aggregate. */
1226 list = tree_cons (fields, NULL_TREE, list);
1227 /* And now add the fields in the anonymous aggregate. */
1228 list = build_field_list (fieldtype, list, uses_unions_or_anon_p);
1229 *uses_unions_or_anon_p = 1;
1230 }
1231 /* Add this field. */
1232 else if (DECL_NAME (fields))
1233 list = tree_cons (fields, NULL_TREE, list);
1234 }
1235
1236 return list;
1237 }
1238
1239 /* Return the innermost aggregate scope for FIELD, whether that is
1240 the enclosing class or an anonymous aggregate within it. */
1241
1242 static tree
innermost_aggr_scope(tree field)1243 innermost_aggr_scope (tree field)
1244 {
1245 if (ANON_AGGR_TYPE_P (TREE_TYPE (field)))
1246 return TREE_TYPE (field);
1247 else
1248 return DECL_CONTEXT (field);
1249 }
1250
1251 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
1252 a FIELD_DECL or BINFO in T that needs initialization. The
1253 TREE_VALUE gives the initializer, or list of initializer arguments.
1254
1255 Return a TREE_LIST containing all of the initializations required
1256 for T, in the order in which they should be performed. The output
1257 list has the same format as the input. */
1258
1259 static tree
sort_mem_initializers(tree t,tree mem_inits)1260 sort_mem_initializers (tree t, tree mem_inits)
1261 {
1262 tree init;
1263 tree base, binfo, base_binfo;
1264 tree sorted_inits;
1265 tree next_subobject;
1266 vec<tree, va_gc> *vbases;
1267 int i;
1268 int uses_unions_or_anon_p = 0;
1269
1270 /* Build up a list of initializations. The TREE_PURPOSE of entry
1271 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
1272 TREE_VALUE will be the constructor arguments, or NULL if no
1273 explicit initialization was provided. */
1274 sorted_inits = NULL_TREE;
1275
1276 /* Process the virtual bases. */
1277 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
1278 vec_safe_iterate (vbases, i, &base); i++)
1279 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
1280
1281 /* Process the direct bases. */
1282 for (binfo = TYPE_BINFO (t), i = 0;
1283 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
1284 if (!BINFO_VIRTUAL_P (base_binfo))
1285 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
1286
1287 /* Process the non-static data members. */
1288 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_or_anon_p);
1289 /* Reverse the entire list of initializations, so that they are in
1290 the order that they will actually be performed. */
1291 sorted_inits = nreverse (sorted_inits);
1292
1293 /* If the user presented the initializers in an order different from
1294 that in which they will actually occur, we issue a warning. Keep
1295 track of the next subobject which can be explicitly initialized
1296 without issuing a warning. */
1297 next_subobject = sorted_inits;
1298
1299 /* Go through the explicit initializers, filling in TREE_PURPOSE in
1300 the SORTED_INITS. */
1301 for (init = mem_inits; init; init = TREE_CHAIN (init))
1302 {
1303 tree subobject;
1304 tree subobject_init;
1305
1306 subobject = TREE_PURPOSE (init);
1307
1308 /* If the explicit initializers are in sorted order, then
1309 SUBOBJECT will be NEXT_SUBOBJECT, or something following
1310 it. */
1311 for (subobject_init = next_subobject;
1312 subobject_init;
1313 subobject_init = TREE_CHAIN (subobject_init))
1314 if (TREE_PURPOSE (subobject_init) == subobject)
1315 break;
1316
1317 /* Issue a warning if the explicit initializer order does not
1318 match that which will actually occur.
1319 ??? Are all these on the correct lines? */
1320 if (warn_reorder && !subobject_init)
1321 {
1322 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
1323 warning_at (DECL_SOURCE_LOCATION (TREE_PURPOSE (next_subobject)),
1324 OPT_Wreorder, "%qD will be initialized after",
1325 TREE_PURPOSE (next_subobject));
1326 else
1327 warning (OPT_Wreorder, "base %qT will be initialized after",
1328 TREE_PURPOSE (next_subobject));
1329 if (TREE_CODE (subobject) == FIELD_DECL)
1330 warning_at (DECL_SOURCE_LOCATION (subobject),
1331 OPT_Wreorder, " %q#D", subobject);
1332 else
1333 warning (OPT_Wreorder, " base %qT", subobject);
1334 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
1335 OPT_Wreorder, " when initialized here");
1336 }
1337
1338 /* Look again, from the beginning of the list. */
1339 if (!subobject_init)
1340 {
1341 subobject_init = sorted_inits;
1342 while (TREE_PURPOSE (subobject_init) != subobject)
1343 subobject_init = TREE_CHAIN (subobject_init);
1344 }
1345
1346 /* It is invalid to initialize the same subobject more than
1347 once. */
1348 if (TREE_VALUE (subobject_init))
1349 {
1350 if (TREE_CODE (subobject) == FIELD_DECL)
1351 error_at (DECL_SOURCE_LOCATION (current_function_decl),
1352 "multiple initializations given for %qD",
1353 subobject);
1354 else
1355 error_at (DECL_SOURCE_LOCATION (current_function_decl),
1356 "multiple initializations given for base %qT",
1357 subobject);
1358 }
1359
1360 /* Record the initialization. */
1361 TREE_VALUE (subobject_init) = TREE_VALUE (init);
1362 /* Carry over the dummy TREE_TYPE node containing the source location. */
1363 TREE_TYPE (subobject_init) = TREE_TYPE (init);
1364 next_subobject = subobject_init;
1365 }
1366
1367 /* [class.base.init]
1368
1369 If a ctor-initializer specifies more than one mem-initializer for
1370 multiple members of the same union (including members of
1371 anonymous unions), the ctor-initializer is ill-formed.
1372
1373 Here we also splice out uninitialized union members. */
1374 if (uses_unions_or_anon_p)
1375 {
1376 tree *last_p = NULL;
1377 tree *p;
1378 for (p = &sorted_inits; *p; )
1379 {
1380 tree field;
1381 tree ctx;
1382
1383 init = *p;
1384
1385 field = TREE_PURPOSE (init);
1386
1387 /* Skip base classes. */
1388 if (TREE_CODE (field) != FIELD_DECL)
1389 goto next;
1390
1391 /* If this is an anonymous aggregate with no explicit initializer,
1392 splice it out. */
1393 if (!TREE_VALUE (init) && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
1394 goto splice;
1395
1396 /* See if this field is a member of a union, or a member of a
1397 structure contained in a union, etc. */
1398 ctx = innermost_aggr_scope (field);
1399
1400 /* If this field is not a member of a union, skip it. */
1401 if (TREE_CODE (ctx) != UNION_TYPE
1402 && !ANON_AGGR_TYPE_P (ctx))
1403 goto next;
1404
1405 /* If this union member has no explicit initializer and no NSDMI,
1406 splice it out. */
1407 if (TREE_VALUE (init) || DECL_INITIAL (field))
1408 /* OK. */;
1409 else
1410 goto splice;
1411
1412 /* It's only an error if we have two initializers for the same
1413 union type. */
1414 if (!last_p)
1415 {
1416 last_p = p;
1417 goto next;
1418 }
1419
1420 /* See if LAST_FIELD and the field initialized by INIT are
1421 members of the same union (or the union itself). If so, there's
1422 a problem, unless they're actually members of the same structure
1423 which is itself a member of a union. For example, given:
1424
1425 union { struct { int i; int j; }; };
1426
1427 initializing both `i' and `j' makes sense. */
1428 ctx = common_enclosing_class
1429 (innermost_aggr_scope (field),
1430 innermost_aggr_scope (TREE_PURPOSE (*last_p)));
1431
1432 if (ctx && (TREE_CODE (ctx) == UNION_TYPE
1433 || ctx == TREE_TYPE (TREE_PURPOSE (*last_p))))
1434 {
1435 /* A mem-initializer hides an NSDMI. */
1436 if (TREE_VALUE (init) && !TREE_VALUE (*last_p))
1437 *last_p = TREE_CHAIN (*last_p);
1438 else if (TREE_VALUE (*last_p) && !TREE_VALUE (init))
1439 goto splice;
1440 else
1441 {
1442 error_at (DECL_SOURCE_LOCATION (current_function_decl),
1443 "initializations for multiple members of %qT",
1444 ctx);
1445 goto splice;
1446 }
1447 }
1448
1449 last_p = p;
1450
1451 next:
1452 p = &TREE_CHAIN (*p);
1453 continue;
1454 splice:
1455 *p = TREE_CHAIN (*p);
1456 continue;
1457 }
1458 }
1459
1460 return sorted_inits;
1461 }
1462
1463 /* Callback for cp_walk_tree to mark all PARM_DECLs in a tree as read. */
1464
1465 static tree
mark_exp_read_r(tree * tp,int *,void *)1466 mark_exp_read_r (tree *tp, int *, void *)
1467 {
1468 tree t = *tp;
1469 if (TREE_CODE (t) == PARM_DECL)
1470 mark_exp_read (t);
1471 return NULL_TREE;
1472 }
1473
1474 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
1475 is a TREE_LIST giving the explicit mem-initializer-list for the
1476 constructor. The TREE_PURPOSE of each entry is a subobject (a
1477 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
1478 is a TREE_LIST giving the arguments to the constructor or
1479 void_type_node for an empty list of arguments. */
1480
1481 void
emit_mem_initializers(tree mem_inits)1482 emit_mem_initializers (tree mem_inits)
1483 {
1484 int flags = LOOKUP_NORMAL;
1485
1486 /* We will already have issued an error message about the fact that
1487 the type is incomplete. */
1488 if (!COMPLETE_TYPE_P (current_class_type))
1489 return;
1490
1491 /* Keep a set holding fields that are not initialized. */
1492 hash_set<tree> uninitialized;
1493
1494 /* Initially that is all of them. */
1495 if (warn_uninitialized)
1496 for (tree f = next_initializable_field (TYPE_FIELDS (current_class_type));
1497 f != NULL_TREE;
1498 f = next_initializable_field (DECL_CHAIN (f)))
1499 if (!DECL_ARTIFICIAL (f)
1500 && !is_really_empty_class (TREE_TYPE (f), /*ignore_vptr*/false))
1501 uninitialized.add (f);
1502
1503 if (mem_inits
1504 && TYPE_P (TREE_PURPOSE (mem_inits))
1505 && same_type_p (TREE_PURPOSE (mem_inits), current_class_type))
1506 {
1507 /* Delegating constructor. */
1508 gcc_assert (TREE_CHAIN (mem_inits) == NULL_TREE);
1509 tree ctor = perform_target_ctor (TREE_VALUE (mem_inits));
1510 find_uninit_fields (&ctor, &uninitialized, current_class_type);
1511 return;
1512 }
1513
1514 if (DECL_DEFAULTED_FN (current_function_decl)
1515 && ! DECL_INHERITED_CTOR (current_function_decl))
1516 flags |= LOOKUP_DEFAULTED;
1517
1518 /* Sort the mem-initializers into the order in which the
1519 initializations should be performed. */
1520 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
1521
1522 in_base_initializer = 1;
1523
1524 /* Initialize base classes. */
1525 for (; (mem_inits
1526 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL);
1527 mem_inits = TREE_CHAIN (mem_inits))
1528 {
1529 tree subobject = TREE_PURPOSE (mem_inits);
1530 tree arguments = TREE_VALUE (mem_inits);
1531
1532 /* We already have issued an error message. */
1533 if (arguments == error_mark_node)
1534 continue;
1535
1536 /* Suppress access control when calling the inherited ctor. */
1537 bool inherited_base = (DECL_INHERITED_CTOR (current_function_decl)
1538 && flag_new_inheriting_ctors
1539 && arguments);
1540 if (inherited_base)
1541 push_deferring_access_checks (dk_deferred);
1542
1543 if (arguments == NULL_TREE)
1544 {
1545 /* If these initializations are taking place in a copy constructor,
1546 the base class should probably be explicitly initialized if there
1547 is a user-defined constructor in the base class (other than the
1548 default constructor, which will be called anyway). */
1549 if (extra_warnings
1550 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
1551 && type_has_user_nondefault_constructor (BINFO_TYPE (subobject)))
1552 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
1553 OPT_Wextra, "base class %q#T should be explicitly "
1554 "initialized in the copy constructor",
1555 BINFO_TYPE (subobject));
1556 }
1557
1558 /* Initialize the base. */
1559 if (!BINFO_VIRTUAL_P (subobject))
1560 {
1561 tree base_addr;
1562
1563 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
1564 subobject, 1, tf_warning_or_error);
1565 expand_aggr_init_1 (subobject, NULL_TREE,
1566 cp_build_fold_indirect_ref (base_addr),
1567 arguments,
1568 flags,
1569 tf_warning_or_error);
1570 expand_cleanup_for_base (subobject, NULL_TREE);
1571 if (STATEMENT_LIST_TAIL (cur_stmt_list))
1572 find_uninit_fields (&STATEMENT_LIST_TAIL (cur_stmt_list)->stmt,
1573 &uninitialized, BINFO_TYPE (subobject));
1574 }
1575 else if (!ABSTRACT_CLASS_TYPE_P (current_class_type))
1576 /* C++14 DR1658 Means we do not have to construct vbases of
1577 abstract classes. */
1578 construct_virtual_base (subobject, arguments);
1579 else
1580 /* When not constructing vbases of abstract classes, at least mark
1581 the arguments expressions as read to avoid
1582 -Wunused-but-set-parameter false positives. */
1583 cp_walk_tree (&arguments, mark_exp_read_r, NULL, NULL);
1584
1585 if (inherited_base)
1586 pop_deferring_access_checks ();
1587 }
1588 in_base_initializer = 0;
1589
1590 /* Initialize the vptrs. */
1591 initialize_vtbl_ptrs (current_class_ptr);
1592
1593 /* Initialize the data members. */
1594 while (mem_inits)
1595 {
1596 /* If this initializer was explicitly provided, then the dummy TREE_TYPE
1597 node contains the source location. */
1598 iloc_sentinel ils (EXPR_LOCATION (TREE_TYPE (mem_inits)));
1599
1600 perform_member_init (TREE_PURPOSE (mem_inits),
1601 TREE_VALUE (mem_inits),
1602 uninitialized);
1603
1604 mem_inits = TREE_CHAIN (mem_inits);
1605 }
1606 }
1607
1608 /* Returns the address of the vtable (i.e., the value that should be
1609 assigned to the vptr) for BINFO. */
1610
1611 tree
build_vtbl_address(tree binfo)1612 build_vtbl_address (tree binfo)
1613 {
1614 tree binfo_for = binfo;
1615 tree vtbl;
1616
1617 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
1618 /* If this is a virtual primary base, then the vtable we want to store
1619 is that for the base this is being used as the primary base of. We
1620 can't simply skip the initialization, because we may be expanding the
1621 inits of a subobject constructor where the virtual base layout
1622 can be different. */
1623 while (BINFO_PRIMARY_P (binfo_for))
1624 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
1625
1626 /* Figure out what vtable BINFO's vtable is based on, and mark it as
1627 used. */
1628 vtbl = get_vtbl_decl_for_binfo (binfo_for);
1629 TREE_USED (vtbl) = true;
1630
1631 /* Now compute the address to use when initializing the vptr. */
1632 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
1633 if (VAR_P (vtbl))
1634 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
1635
1636 return vtbl;
1637 }
1638
1639 /* This code sets up the virtual function tables appropriate for
1640 the pointer DECL. It is a one-ply initialization.
1641
1642 BINFO is the exact type that DECL is supposed to be. In
1643 multiple inheritance, this might mean "C's A" if C : A, B. */
1644
1645 static void
expand_virtual_init(tree binfo,tree decl)1646 expand_virtual_init (tree binfo, tree decl)
1647 {
1648 tree vtbl, vtbl_ptr;
1649 tree vtt_index;
1650
1651 /* Compute the initializer for vptr. */
1652 vtbl = build_vtbl_address (binfo);
1653
1654 /* We may get this vptr from a VTT, if this is a subobject
1655 constructor or subobject destructor. */
1656 vtt_index = BINFO_VPTR_INDEX (binfo);
1657 if (vtt_index)
1658 {
1659 tree vtbl2;
1660 tree vtt_parm;
1661
1662 /* Compute the value to use, when there's a VTT. */
1663 vtt_parm = current_vtt_parm;
1664 vtbl2 = fold_build_pointer_plus (vtt_parm, vtt_index);
1665 vtbl2 = cp_build_fold_indirect_ref (vtbl2);
1666 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
1667
1668 /* The actual initializer is the VTT value only in the subobject
1669 constructor. In maybe_clone_body we'll substitute NULL for
1670 the vtt_parm in the case of the non-subobject constructor. */
1671 vtbl = build_if_in_charge (vtbl, vtbl2);
1672 }
1673
1674 /* Compute the location of the vtpr. */
1675 vtbl_ptr = build_vfield_ref (cp_build_fold_indirect_ref (decl),
1676 TREE_TYPE (binfo));
1677 gcc_assert (vtbl_ptr != error_mark_node);
1678
1679 /* Assign the vtable to the vptr. */
1680 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0, tf_warning_or_error);
1681 finish_expr_stmt (cp_build_modify_expr (input_location, vtbl_ptr, NOP_EXPR,
1682 vtbl, tf_warning_or_error));
1683 }
1684
1685 /* If an exception is thrown in a constructor, those base classes already
1686 constructed must be destroyed. This function creates the cleanup
1687 for BINFO, which has just been constructed. If FLAG is non-NULL,
1688 it is a DECL which is nonzero when this base needs to be
1689 destroyed. */
1690
1691 static void
expand_cleanup_for_base(tree binfo,tree flag)1692 expand_cleanup_for_base (tree binfo, tree flag)
1693 {
1694 tree expr;
1695
1696 if (!type_build_dtor_call (BINFO_TYPE (binfo)))
1697 return;
1698
1699 /* Call the destructor. */
1700 expr = build_special_member_call (current_class_ref,
1701 base_dtor_identifier,
1702 NULL,
1703 binfo,
1704 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
1705 tf_warning_or_error);
1706
1707 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
1708 return;
1709
1710 if (flag)
1711 expr = fold_build3_loc (input_location,
1712 COND_EXPR, void_type_node,
1713 c_common_truthvalue_conversion (input_location, flag),
1714 expr, integer_zero_node);
1715
1716 finish_eh_cleanup (expr);
1717 }
1718
1719 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
1720 constructor. */
1721
1722 static void
construct_virtual_base(tree vbase,tree arguments)1723 construct_virtual_base (tree vbase, tree arguments)
1724 {
1725 tree inner_if_stmt;
1726 tree exp;
1727 tree flag;
1728
1729 /* If there are virtual base classes with destructors, we need to
1730 emit cleanups to destroy them if an exception is thrown during
1731 the construction process. These exception regions (i.e., the
1732 period during which the cleanups must occur) begin from the time
1733 the construction is complete to the end of the function. If we
1734 create a conditional block in which to initialize the
1735 base-classes, then the cleanup region for the virtual base begins
1736 inside a block, and ends outside of that block. This situation
1737 confuses the sjlj exception-handling code. Therefore, we do not
1738 create a single conditional block, but one for each
1739 initialization. (That way the cleanup regions always begin
1740 in the outer block.) We trust the back end to figure out
1741 that the FLAG will not change across initializations, and
1742 avoid doing multiple tests. */
1743 flag = DECL_CHAIN (DECL_ARGUMENTS (current_function_decl));
1744 inner_if_stmt = begin_if_stmt ();
1745 finish_if_stmt_cond (flag, inner_if_stmt);
1746
1747 /* Compute the location of the virtual base. If we're
1748 constructing virtual bases, then we must be the most derived
1749 class. Therefore, we don't have to look up the virtual base;
1750 we already know where it is. */
1751 exp = convert_to_base_statically (current_class_ref, vbase);
1752
1753 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
1754 0, tf_warning_or_error);
1755 finish_then_clause (inner_if_stmt);
1756 finish_if_stmt (inner_if_stmt);
1757
1758 expand_cleanup_for_base (vbase, flag);
1759 }
1760
1761 /* Find the context in which this FIELD can be initialized. */
1762
1763 static tree
initializing_context(tree field)1764 initializing_context (tree field)
1765 {
1766 tree t = DECL_CONTEXT (field);
1767
1768 /* Anonymous union members can be initialized in the first enclosing
1769 non-anonymous union context. */
1770 while (t && ANON_AGGR_TYPE_P (t))
1771 t = TYPE_CONTEXT (t);
1772 return t;
1773 }
1774
1775 /* Function to give error message if member initialization specification
1776 is erroneous. FIELD is the member we decided to initialize.
1777 TYPE is the type for which the initialization is being performed.
1778 FIELD must be a member of TYPE.
1779
1780 MEMBER_NAME is the name of the member. */
1781
1782 static int
member_init_ok_or_else(tree field,tree type,tree member_name)1783 member_init_ok_or_else (tree field, tree type, tree member_name)
1784 {
1785 if (field == error_mark_node)
1786 return 0;
1787 if (!field)
1788 {
1789 error ("class %qT does not have any field named %qD", type,
1790 member_name);
1791 return 0;
1792 }
1793 if (VAR_P (field))
1794 {
1795 error ("%q#D is a static data member; it can only be "
1796 "initialized at its definition",
1797 field);
1798 return 0;
1799 }
1800 if (TREE_CODE (field) != FIELD_DECL)
1801 {
1802 error ("%q#D is not a non-static data member of %qT",
1803 field, type);
1804 return 0;
1805 }
1806 if (initializing_context (field) != type)
1807 {
1808 error ("class %qT does not have any field named %qD", type,
1809 member_name);
1810 return 0;
1811 }
1812
1813 return 1;
1814 }
1815
1816 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
1817 is a _TYPE node or TYPE_DECL which names a base for that type.
1818 Check the validity of NAME, and return either the base _TYPE, base
1819 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
1820 NULL_TREE and issue a diagnostic.
1821
1822 An old style unnamed direct single base construction is permitted,
1823 where NAME is NULL. */
1824
1825 tree
expand_member_init(tree name)1826 expand_member_init (tree name)
1827 {
1828 tree basetype;
1829 tree field;
1830
1831 if (!current_class_ref)
1832 return NULL_TREE;
1833
1834 if (!name)
1835 {
1836 /* This is an obsolete unnamed base class initializer. The
1837 parser will already have warned about its use. */
1838 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
1839 {
1840 case 0:
1841 error ("unnamed initializer for %qT, which has no base classes",
1842 current_class_type);
1843 return NULL_TREE;
1844 case 1:
1845 basetype = BINFO_TYPE
1846 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
1847 break;
1848 default:
1849 error ("unnamed initializer for %qT, which uses multiple inheritance",
1850 current_class_type);
1851 return NULL_TREE;
1852 }
1853 }
1854 else if (TYPE_P (name))
1855 {
1856 basetype = TYPE_MAIN_VARIANT (name);
1857 name = TYPE_NAME (name);
1858 }
1859 else if (TREE_CODE (name) == TYPE_DECL)
1860 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
1861 else
1862 basetype = NULL_TREE;
1863
1864 if (basetype)
1865 {
1866 tree class_binfo;
1867 tree direct_binfo;
1868 tree virtual_binfo;
1869 int i;
1870
1871 if (current_template_parms
1872 || same_type_p (basetype, current_class_type))
1873 return basetype;
1874
1875 class_binfo = TYPE_BINFO (current_class_type);
1876 direct_binfo = NULL_TREE;
1877 virtual_binfo = NULL_TREE;
1878
1879 /* Look for a direct base. */
1880 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
1881 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1882 break;
1883
1884 /* Look for a virtual base -- unless the direct base is itself
1885 virtual. */
1886 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1887 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1888
1889 /* [class.base.init]
1890
1891 If a mem-initializer-id is ambiguous because it designates
1892 both a direct non-virtual base class and an inherited virtual
1893 base class, the mem-initializer is ill-formed. */
1894 if (direct_binfo && virtual_binfo)
1895 {
1896 error ("%qD is both a direct base and an indirect virtual base",
1897 basetype);
1898 return NULL_TREE;
1899 }
1900
1901 if (!direct_binfo && !virtual_binfo)
1902 {
1903 if (CLASSTYPE_VBASECLASSES (current_class_type))
1904 error ("type %qT is not a direct or virtual base of %qT",
1905 basetype, current_class_type);
1906 else
1907 error ("type %qT is not a direct base of %qT",
1908 basetype, current_class_type);
1909 return NULL_TREE;
1910 }
1911
1912 return direct_binfo ? direct_binfo : virtual_binfo;
1913 }
1914 else
1915 {
1916 if (identifier_p (name))
1917 field = lookup_field (current_class_type, name, 1, false);
1918 else
1919 field = name;
1920
1921 if (member_init_ok_or_else (field, current_class_type, name))
1922 return field;
1923 }
1924
1925 return NULL_TREE;
1926 }
1927
1928 /* This is like `expand_member_init', only it stores one aggregate
1929 value into another.
1930
1931 INIT comes in two flavors: it is either a value which
1932 is to be stored in EXP, or it is a parameter list
1933 to go to a constructor, which will operate on EXP.
1934 If INIT is not a parameter list for a constructor, then set
1935 LOOKUP_ONLYCONVERTING.
1936 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1937 the initializer, if FLAGS is 0, then it is the (init) form.
1938 If `init' is a CONSTRUCTOR, then we emit a warning message,
1939 explaining that such initializations are invalid.
1940
1941 If INIT resolves to a CALL_EXPR which happens to return
1942 something of the type we are looking for, then we know
1943 that we can safely use that call to perform the
1944 initialization.
1945
1946 The virtual function table pointer cannot be set up here, because
1947 we do not really know its type.
1948
1949 This never calls operator=().
1950
1951 When initializing, nothing is CONST.
1952
1953 A default copy constructor may have to be used to perform the
1954 initialization.
1955
1956 A constructor or a conversion operator may have to be used to
1957 perform the initialization, but not both, as it would be ambiguous. */
1958
1959 tree
build_aggr_init(tree exp,tree init,int flags,tsubst_flags_t complain)1960 build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain)
1961 {
1962 tree stmt_expr;
1963 tree compound_stmt;
1964 int destroy_temps;
1965 tree type = TREE_TYPE (exp);
1966 int was_const = TREE_READONLY (exp);
1967 int was_volatile = TREE_THIS_VOLATILE (exp);
1968 int is_global;
1969
1970 if (init == error_mark_node)
1971 return error_mark_node;
1972
1973 location_t init_loc = (init
1974 ? cp_expr_loc_or_input_loc (init)
1975 : location_of (exp));
1976
1977 TREE_READONLY (exp) = 0;
1978 TREE_THIS_VOLATILE (exp) = 0;
1979
1980 if (TREE_CODE (type) == ARRAY_TYPE)
1981 {
1982 tree itype = init ? TREE_TYPE (init) : NULL_TREE;
1983 int from_array = 0;
1984
1985 if (VAR_P (exp) && DECL_DECOMPOSITION_P (exp))
1986 {
1987 from_array = 1;
1988 init = mark_rvalue_use (init);
1989 if (init
1990 && DECL_P (tree_strip_any_location_wrapper (init))
1991 && !(flags & LOOKUP_ONLYCONVERTING))
1992 {
1993 /* Wrap the initializer in a CONSTRUCTOR so that build_vec_init
1994 recognizes it as direct-initialization. */
1995 init = build_constructor_single (init_list_type_node,
1996 NULL_TREE, init);
1997 CONSTRUCTOR_IS_DIRECT_INIT (init) = true;
1998 }
1999 }
2000 else
2001 {
2002 /* Must arrange to initialize each element of EXP
2003 from elements of INIT. */
2004 if (cv_qualified_p (type))
2005 TREE_TYPE (exp) = cv_unqualified (type);
2006 if (itype && cv_qualified_p (itype))
2007 TREE_TYPE (init) = cv_unqualified (itype);
2008 from_array = (itype && same_type_p (TREE_TYPE (init),
2009 TREE_TYPE (exp)));
2010
2011 if (init && !BRACE_ENCLOSED_INITIALIZER_P (init)
2012 && (!from_array
2013 || (TREE_CODE (init) != CONSTRUCTOR
2014 /* Can happen, eg, handling the compound-literals
2015 extension (ext/complit12.C). */
2016 && TREE_CODE (init) != TARGET_EXPR)))
2017 {
2018 if (complain & tf_error)
2019 error_at (init_loc, "array must be initialized "
2020 "with a brace-enclosed initializer");
2021 return error_mark_node;
2022 }
2023 }
2024
2025 stmt_expr = build_vec_init (exp, NULL_TREE, init,
2026 /*explicit_value_init_p=*/false,
2027 from_array,
2028 complain);
2029 TREE_READONLY (exp) = was_const;
2030 TREE_THIS_VOLATILE (exp) = was_volatile;
2031 TREE_TYPE (exp) = type;
2032 /* Restore the type of init unless it was used directly. */
2033 if (init && TREE_CODE (stmt_expr) != INIT_EXPR)
2034 TREE_TYPE (init) = itype;
2035 return stmt_expr;
2036 }
2037
2038 if (is_copy_initialization (init))
2039 flags |= LOOKUP_ONLYCONVERTING;
2040
2041 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
2042 destroy_temps = stmts_are_full_exprs_p ();
2043 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2044 bool ok = expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
2045 init, LOOKUP_NORMAL|flags, complain);
2046 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
2047 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
2048 TREE_READONLY (exp) = was_const;
2049 TREE_THIS_VOLATILE (exp) = was_volatile;
2050 if (!ok)
2051 return error_mark_node;
2052
2053 if ((VAR_P (exp) || TREE_CODE (exp) == PARM_DECL)
2054 && TREE_SIDE_EFFECTS (stmt_expr)
2055 && !lookup_attribute ("warn_unused", TYPE_ATTRIBUTES (type)))
2056 /* Just know that we've seen something for this node. */
2057 TREE_USED (exp) = 1;
2058
2059 return stmt_expr;
2060 }
2061
2062 static bool
expand_default_init(tree binfo,tree true_exp,tree exp,tree init,int flags,tsubst_flags_t complain)2063 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags,
2064 tsubst_flags_t complain)
2065 {
2066 tree type = TREE_TYPE (exp);
2067
2068 /* It fails because there may not be a constructor which takes
2069 its own type as the first (or only parameter), but which does
2070 take other types via a conversion. So, if the thing initializing
2071 the expression is a unit element of type X, first try X(X&),
2072 followed by initialization by X. If neither of these work
2073 out, then look hard. */
2074 tree rval;
2075 vec<tree, va_gc> *parms;
2076
2077 /* If we have direct-initialization from an initializer list, pull
2078 it out of the TREE_LIST so the code below can see it. */
2079 if (init && TREE_CODE (init) == TREE_LIST
2080 && DIRECT_LIST_INIT_P (TREE_VALUE (init)))
2081 {
2082 gcc_checking_assert ((flags & LOOKUP_ONLYCONVERTING) == 0
2083 && TREE_CHAIN (init) == NULL_TREE);
2084 init = TREE_VALUE (init);
2085 /* Only call reshape_init if it has not been called earlier
2086 by the callers. */
2087 if (BRACE_ENCLOSED_INITIALIZER_P (init) && CP_AGGREGATE_TYPE_P (type))
2088 init = reshape_init (type, init, complain);
2089 }
2090
2091 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
2092 && CP_AGGREGATE_TYPE_P (type))
2093 /* A brace-enclosed initializer for an aggregate. In C++0x this can
2094 happen for direct-initialization, too. */
2095 init = digest_init (type, init, complain);
2096
2097 if (init == error_mark_node)
2098 return false;
2099
2100 /* A CONSTRUCTOR of the target's type is a previously digested
2101 initializer, whether that happened just above or in
2102 cp_parser_late_parsing_nsdmi.
2103
2104 A TARGET_EXPR with TARGET_EXPR_DIRECT_INIT_P or TARGET_EXPR_LIST_INIT_P
2105 set represents the whole initialization, so we shouldn't build up
2106 another ctor call. */
2107 if (init
2108 && (TREE_CODE (init) == CONSTRUCTOR
2109 || (TREE_CODE (init) == TARGET_EXPR
2110 && (TARGET_EXPR_DIRECT_INIT_P (init)
2111 || TARGET_EXPR_LIST_INIT_P (init))))
2112 && same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (init), type))
2113 {
2114 /* Early initialization via a TARGET_EXPR only works for
2115 complete objects. */
2116 gcc_assert (TREE_CODE (init) == CONSTRUCTOR || true_exp == exp);
2117
2118 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
2119 TREE_SIDE_EFFECTS (init) = 1;
2120 finish_expr_stmt (init);
2121 return true;
2122 }
2123
2124 if (init && TREE_CODE (init) != TREE_LIST
2125 && (flags & LOOKUP_ONLYCONVERTING)
2126 && !unsafe_return_slot_p (exp))
2127 {
2128 /* Base subobjects should only get direct-initialization. */
2129 gcc_assert (true_exp == exp);
2130
2131 if (flags & DIRECT_BIND)
2132 /* Do nothing. We hit this in two cases: Reference initialization,
2133 where we aren't initializing a real variable, so we don't want
2134 to run a new constructor; and catching an exception, where we
2135 have already built up the constructor call so we could wrap it
2136 in an exception region. */;
2137 else
2138 {
2139 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP,
2140 flags, complain | tf_no_cleanup);
2141 if (init == error_mark_node)
2142 return false;
2143 }
2144
2145 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
2146 /* We need to protect the initialization of a catch parm with a
2147 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
2148 around the TARGET_EXPR for the copy constructor. See
2149 initialize_handler_parm. */
2150 {
2151 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
2152 TREE_OPERAND (init, 0));
2153 TREE_TYPE (init) = void_type_node;
2154 }
2155 else
2156 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
2157 TREE_SIDE_EFFECTS (init) = 1;
2158 finish_expr_stmt (init);
2159 return true;
2160 }
2161
2162 if (init == NULL_TREE)
2163 parms = NULL;
2164 else if (TREE_CODE (init) == TREE_LIST && !TREE_TYPE (init))
2165 {
2166 parms = make_tree_vector ();
2167 for (; init != NULL_TREE; init = TREE_CHAIN (init))
2168 vec_safe_push (parms, TREE_VALUE (init));
2169 }
2170 else
2171 parms = make_tree_vector_single (init);
2172
2173 if (exp == current_class_ref && current_function_decl
2174 && DECL_HAS_IN_CHARGE_PARM_P (current_function_decl))
2175 {
2176 /* Delegating constructor. */
2177 tree complete;
2178 tree base;
2179 tree elt; unsigned i;
2180
2181 /* Unshare the arguments for the second call. */
2182 releasing_vec parms2;
2183 FOR_EACH_VEC_SAFE_ELT (parms, i, elt)
2184 {
2185 elt = break_out_target_exprs (elt);
2186 vec_safe_push (parms2, elt);
2187 }
2188 complete = build_special_member_call (exp, complete_ctor_identifier,
2189 &parms2, binfo, flags,
2190 complain);
2191 complete = fold_build_cleanup_point_expr (void_type_node, complete);
2192
2193 base = build_special_member_call (exp, base_ctor_identifier,
2194 &parms, binfo, flags,
2195 complain);
2196 base = fold_build_cleanup_point_expr (void_type_node, base);
2197 if (complete == error_mark_node || base == error_mark_node)
2198 return false;
2199 rval = build_if_in_charge (complete, base);
2200 }
2201 else
2202 {
2203 tree ctor_name = (true_exp == exp
2204 ? complete_ctor_identifier : base_ctor_identifier);
2205
2206 rval = build_special_member_call (exp, ctor_name, &parms, binfo, flags,
2207 complain);
2208 if (rval == error_mark_node)
2209 return false;
2210 }
2211
2212 if (parms != NULL)
2213 release_tree_vector (parms);
2214
2215 if (exp == true_exp && TREE_CODE (rval) == CALL_EXPR)
2216 {
2217 tree fn = get_callee_fndecl (rval);
2218 if (fn && DECL_DECLARED_CONSTEXPR_P (fn))
2219 {
2220 tree e = maybe_constant_init (rval, exp);
2221 if (TREE_CONSTANT (e))
2222 rval = build2 (INIT_EXPR, type, exp, e);
2223 }
2224 }
2225
2226 /* FIXME put back convert_to_void? */
2227 if (TREE_SIDE_EFFECTS (rval))
2228 finish_expr_stmt (rval);
2229
2230 return true;
2231 }
2232
2233 /* This function is responsible for initializing EXP with INIT
2234 (if any). Returns true on success, false on failure.
2235
2236 BINFO is the binfo of the type for who we are performing the
2237 initialization. For example, if W is a virtual base class of A and B,
2238 and C : A, B.
2239 If we are initializing B, then W must contain B's W vtable, whereas
2240 were we initializing C, W must contain C's W vtable.
2241
2242 TRUE_EXP is nonzero if it is the true expression being initialized.
2243 In this case, it may be EXP, or may just contain EXP. The reason we
2244 need this is because if EXP is a base element of TRUE_EXP, we
2245 don't necessarily know by looking at EXP where its virtual
2246 baseclass fields should really be pointing. But we do know
2247 from TRUE_EXP. In constructors, we don't know anything about
2248 the value being initialized.
2249
2250 FLAGS is just passed to `build_new_method_call'. See that function
2251 for its description. */
2252
2253 static bool
expand_aggr_init_1(tree binfo,tree true_exp,tree exp,tree init,int flags,tsubst_flags_t complain)2254 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags,
2255 tsubst_flags_t complain)
2256 {
2257 tree type = TREE_TYPE (exp);
2258
2259 gcc_assert (init != error_mark_node && type != error_mark_node);
2260 gcc_assert (building_stmt_list_p ());
2261
2262 /* Use a function returning the desired type to initialize EXP for us.
2263 If the function is a constructor, and its first argument is
2264 NULL_TREE, know that it was meant for us--just slide exp on
2265 in and expand the constructor. Constructors now come
2266 as TARGET_EXPRs. */
2267
2268 if (init && VAR_P (exp)
2269 && COMPOUND_LITERAL_P (init))
2270 {
2271 vec<tree, va_gc> *cleanups = NULL;
2272 /* If store_init_value returns NULL_TREE, the INIT has been
2273 recorded as the DECL_INITIAL for EXP. That means there's
2274 nothing more we have to do. */
2275 init = store_init_value (exp, init, &cleanups, flags);
2276 if (init)
2277 finish_expr_stmt (init);
2278 gcc_assert (!cleanups);
2279 return true;
2280 }
2281
2282 /* List-initialization from {} becomes value-initialization for non-aggregate
2283 classes with default constructors. Handle this here when we're
2284 initializing a base, so protected access works. */
2285 if (exp != true_exp && init && TREE_CODE (init) == TREE_LIST)
2286 {
2287 tree elt = TREE_VALUE (init);
2288 if (DIRECT_LIST_INIT_P (elt)
2289 && CONSTRUCTOR_ELTS (elt) == 0
2290 && CLASSTYPE_NON_AGGREGATE (type)
2291 && TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
2292 init = void_type_node;
2293 }
2294
2295 /* If an explicit -- but empty -- initializer list was present,
2296 that's value-initialization. */
2297 if (init == void_type_node)
2298 {
2299 /* If the type has data but no user-provided default ctor, we need to zero
2300 out the object. */
2301 if (type_has_non_user_provided_default_constructor (type)
2302 && !is_really_empty_class (type, /*ignore_vptr*/true))
2303 {
2304 tree field_size = NULL_TREE;
2305 if (exp != true_exp && CLASSTYPE_AS_BASE (type) != type)
2306 /* Don't clobber already initialized virtual bases. */
2307 field_size = TYPE_SIZE (CLASSTYPE_AS_BASE (type));
2308 init = build_zero_init_1 (type, NULL_TREE, /*static_storage_p=*/false,
2309 field_size);
2310 init = build2 (INIT_EXPR, type, exp, init);
2311 finish_expr_stmt (init);
2312 }
2313
2314 /* If we don't need to mess with the constructor at all,
2315 then we're done. */
2316 if (! type_build_ctor_call (type))
2317 return true;
2318
2319 /* Otherwise fall through and call the constructor. */
2320 init = NULL_TREE;
2321 }
2322
2323 /* We know that expand_default_init can handle everything we want
2324 at this point. */
2325 return expand_default_init (binfo, true_exp, exp, init, flags, complain);
2326 }
2327
2328 /* Report an error if TYPE is not a user-defined, class type. If
2329 OR_ELSE is nonzero, give an error message. */
2330
2331 int
is_class_type(tree type,int or_else)2332 is_class_type (tree type, int or_else)
2333 {
2334 if (type == error_mark_node)
2335 return 0;
2336
2337 if (! CLASS_TYPE_P (type))
2338 {
2339 if (or_else)
2340 error ("%qT is not a class type", type);
2341 return 0;
2342 }
2343 return 1;
2344 }
2345
2346 /* Returns true iff the initializer INIT represents copy-initialization
2347 (and therefore we must set LOOKUP_ONLYCONVERTING when processing it). */
2348
2349 bool
is_copy_initialization(tree init)2350 is_copy_initialization (tree init)
2351 {
2352 return (init && init != void_type_node
2353 && TREE_CODE (init) != TREE_LIST
2354 && !(TREE_CODE (init) == TARGET_EXPR
2355 && TARGET_EXPR_DIRECT_INIT_P (init))
2356 && !DIRECT_LIST_INIT_P (init));
2357 }
2358
2359 /* Build a reference to a member of an aggregate. This is not a C++
2360 `&', but really something which can have its address taken, and
2361 then act as a pointer to member, for example TYPE :: FIELD can have
2362 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
2363 this expression is the operand of "&".
2364
2365 @@ Prints out lousy diagnostics for operator <typename>
2366 @@ fields.
2367
2368 @@ This function should be rewritten and placed in search.cc. */
2369
2370 tree
build_offset_ref(tree type,tree member,bool address_p,tsubst_flags_t complain)2371 build_offset_ref (tree type, tree member, bool address_p,
2372 tsubst_flags_t complain)
2373 {
2374 tree decl;
2375 tree basebinfo = NULL_TREE;
2376
2377 /* class templates can come in as TEMPLATE_DECLs here. */
2378 if (TREE_CODE (member) == TEMPLATE_DECL)
2379 return member;
2380
2381 if (dependent_scope_p (type) || type_dependent_expression_p (member))
2382 return build_qualified_name (NULL_TREE, type, member,
2383 /*template_p=*/false);
2384
2385 gcc_assert (TYPE_P (type));
2386 if (! is_class_type (type, 1))
2387 return error_mark_node;
2388
2389 gcc_assert (DECL_P (member) || BASELINK_P (member));
2390 /* Callers should call mark_used before this point, except for functions. */
2391 gcc_assert (!DECL_P (member) || TREE_USED (member)
2392 || TREE_CODE (member) == FUNCTION_DECL);
2393
2394 type = TYPE_MAIN_VARIANT (type);
2395 if (!COMPLETE_OR_OPEN_TYPE_P (complete_type (type)))
2396 {
2397 if (complain & tf_error)
2398 error ("incomplete type %qT does not have member %qD", type, member);
2399 return error_mark_node;
2400 }
2401
2402 /* Entities other than non-static members need no further
2403 processing. */
2404 if (TREE_CODE (member) == TYPE_DECL)
2405 return member;
2406 if (VAR_P (member) || TREE_CODE (member) == CONST_DECL)
2407 return convert_from_reference (member);
2408
2409 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
2410 {
2411 if (complain & tf_error)
2412 error ("invalid pointer to bit-field %qD", member);
2413 return error_mark_node;
2414 }
2415
2416 /* Set up BASEBINFO for member lookup. */
2417 decl = maybe_dummy_object (type, &basebinfo);
2418
2419 /* A lot of this logic is now handled in lookup_member. */
2420 if (BASELINK_P (member))
2421 {
2422 /* Go from the TREE_BASELINK to the member function info. */
2423 tree t = BASELINK_FUNCTIONS (member);
2424
2425 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
2426 {
2427 /* Get rid of a potential OVERLOAD around it. */
2428 t = OVL_FIRST (t);
2429
2430 /* Unique functions are handled easily. */
2431
2432 /* For non-static member of base class, we need a special rule
2433 for access checking [class.protected]:
2434
2435 If the access is to form a pointer to member, the
2436 nested-name-specifier shall name the derived class
2437 (or any class derived from that class). */
2438 bool ok;
2439 if (address_p && DECL_P (t)
2440 && DECL_NONSTATIC_MEMBER_P (t))
2441 ok = perform_or_defer_access_check (TYPE_BINFO (type), t, t,
2442 complain);
2443 else
2444 ok = perform_or_defer_access_check (basebinfo, t, t,
2445 complain);
2446 if (!ok)
2447 return error_mark_node;
2448 if (DECL_STATIC_FUNCTION_P (t))
2449 return member;
2450 member = t;
2451 }
2452 else
2453 TREE_TYPE (member) = unknown_type_node;
2454 }
2455 else if (address_p && TREE_CODE (member) == FIELD_DECL)
2456 {
2457 /* We need additional test besides the one in
2458 check_accessibility_of_qualified_id in case it is
2459 a pointer to non-static member. */
2460 if (!perform_or_defer_access_check (TYPE_BINFO (type), member, member,
2461 complain))
2462 return error_mark_node;
2463 }
2464
2465 if (!address_p)
2466 {
2467 /* If MEMBER is non-static, then the program has fallen afoul of
2468 [expr.prim]:
2469
2470 An id-expression that denotes a non-static data member or
2471 non-static member function of a class can only be used:
2472
2473 -- as part of a class member access (_expr.ref_) in which the
2474 object-expression refers to the member's class or a class
2475 derived from that class, or
2476
2477 -- to form a pointer to member (_expr.unary.op_), or
2478
2479 -- in the body of a non-static member function of that class or
2480 of a class derived from that class (_class.mfct.non-static_), or
2481
2482 -- in a mem-initializer for a constructor for that class or for
2483 a class derived from that class (_class.base.init_). */
2484 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
2485 {
2486 /* Build a representation of the qualified name suitable
2487 for use as the operand to "&" -- even though the "&" is
2488 not actually present. */
2489 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
2490 /* In Microsoft mode, treat a non-static member function as if
2491 it were a pointer-to-member. */
2492 if (flag_ms_extensions)
2493 {
2494 PTRMEM_OK_P (member) = 1;
2495 return cp_build_addr_expr (member, complain);
2496 }
2497 if (complain & tf_error)
2498 error ("invalid use of non-static member function %qD",
2499 TREE_OPERAND (member, 1));
2500 return error_mark_node;
2501 }
2502 else if (TREE_CODE (member) == FIELD_DECL)
2503 {
2504 if (complain & tf_error)
2505 error ("invalid use of non-static data member %qD", member);
2506 return error_mark_node;
2507 }
2508 return member;
2509 }
2510
2511 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
2512 PTRMEM_OK_P (member) = 1;
2513 return member;
2514 }
2515
2516 /* If DECL is a scalar enumeration constant or variable with a
2517 constant initializer, return the initializer (or, its initializers,
2518 recursively); otherwise, return DECL. If STRICT_P, the
2519 initializer is only returned if DECL is a
2520 constant-expression. If RETURN_AGGREGATE_CST_OK_P, it is ok to
2521 return an aggregate constant. If UNSHARE_P, return an unshared
2522 copy of the initializer. */
2523
2524 static tree
constant_value_1(tree decl,bool strict_p,bool return_aggregate_cst_ok_p,bool unshare_p)2525 constant_value_1 (tree decl, bool strict_p, bool return_aggregate_cst_ok_p,
2526 bool unshare_p)
2527 {
2528 while (TREE_CODE (decl) == CONST_DECL
2529 || decl_constant_var_p (decl)
2530 || (!strict_p && VAR_P (decl)
2531 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl))))
2532 {
2533 tree init;
2534 /* If DECL is a static data member in a template
2535 specialization, we must instantiate it here. The
2536 initializer for the static data member is not processed
2537 until needed; we need it now. */
2538 mark_used (decl, tf_none);
2539 init = DECL_INITIAL (decl);
2540 if (init == error_mark_node)
2541 {
2542 if (TREE_CODE (decl) == CONST_DECL
2543 || DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
2544 /* Treat the error as a constant to avoid cascading errors on
2545 excessively recursive template instantiation (c++/9335). */
2546 return init;
2547 else
2548 return decl;
2549 }
2550 /* Initializers in templates are generally expanded during
2551 instantiation, so before that for const int i(2)
2552 INIT is a TREE_LIST with the actual initializer as
2553 TREE_VALUE. */
2554 if (processing_template_decl
2555 && init
2556 && TREE_CODE (init) == TREE_LIST
2557 && TREE_CHAIN (init) == NULL_TREE)
2558 init = TREE_VALUE (init);
2559 /* Instantiate a non-dependent initializer for user variables. We
2560 mustn't do this for the temporary for an array compound literal;
2561 trying to instatiate the initializer will keep creating new
2562 temporaries until we crash. Probably it's not useful to do it for
2563 other artificial variables, either. */
2564 if (!DECL_ARTIFICIAL (decl))
2565 init = instantiate_non_dependent_or_null (init);
2566 if (!init
2567 || !TREE_TYPE (init)
2568 || !TREE_CONSTANT (init)
2569 || (!return_aggregate_cst_ok_p
2570 /* Unless RETURN_AGGREGATE_CST_OK_P is true, do not
2571 return an aggregate constant (of which string
2572 literals are a special case), as we do not want
2573 to make inadvertent copies of such entities, and
2574 we must be sure that their addresses are the
2575 same everywhere. */
2576 && (TREE_CODE (init) == CONSTRUCTOR
2577 || TREE_CODE (init) == STRING_CST)))
2578 break;
2579 /* Don't return a CONSTRUCTOR for a variable with partial run-time
2580 initialization, since it doesn't represent the entire value.
2581 Similarly for VECTOR_CSTs created by cp_folding those
2582 CONSTRUCTORs. */
2583 if ((TREE_CODE (init) == CONSTRUCTOR
2584 || TREE_CODE (init) == VECTOR_CST)
2585 && !DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
2586 break;
2587 /* If the variable has a dynamic initializer, don't use its
2588 DECL_INITIAL which doesn't reflect the real value. */
2589 if (VAR_P (decl)
2590 && TREE_STATIC (decl)
2591 && !DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl)
2592 && DECL_NONTRIVIALLY_INITIALIZED_P (decl))
2593 break;
2594 decl = init;
2595 }
2596 return unshare_p ? unshare_expr (decl) : decl;
2597 }
2598
2599 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by constant
2600 of integral or enumeration type, or a constexpr variable of scalar type,
2601 then return that value. These are those variables permitted in constant
2602 expressions by [5.19/1]. */
2603
2604 tree
scalar_constant_value(tree decl)2605 scalar_constant_value (tree decl)
2606 {
2607 return constant_value_1 (decl, /*strict_p=*/true,
2608 /*return_aggregate_cst_ok_p=*/false,
2609 /*unshare_p=*/true);
2610 }
2611
2612 /* Like scalar_constant_value, but can also return aggregate initializers.
2613 If UNSHARE_P, return an unshared copy of the initializer. */
2614
2615 tree
decl_really_constant_value(tree decl,bool unshare_p)2616 decl_really_constant_value (tree decl, bool unshare_p /*= true*/)
2617 {
2618 return constant_value_1 (decl, /*strict_p=*/true,
2619 /*return_aggregate_cst_ok_p=*/true,
2620 /*unshare_p=*/unshare_p);
2621 }
2622
2623 /* A more relaxed version of decl_really_constant_value, used by the
2624 common C/C++ code. */
2625
2626 tree
decl_constant_value(tree decl,bool unshare_p)2627 decl_constant_value (tree decl, bool unshare_p)
2628 {
2629 return constant_value_1 (decl, /*strict_p=*/processing_template_decl,
2630 /*return_aggregate_cst_ok_p=*/true,
2631 /*unshare_p=*/unshare_p);
2632 }
2633
2634 tree
decl_constant_value(tree decl)2635 decl_constant_value (tree decl)
2636 {
2637 return decl_constant_value (decl, /*unshare_p=*/true);
2638 }
2639
2640 /* Common subroutines of build_new and build_vec_delete. */
2641
2642 /* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
2643 the type of the object being allocated; otherwise, it's just TYPE.
2644 INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
2645 user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
2646 a vector of arguments to be provided as arguments to a placement
2647 new operator. This routine performs no semantic checks; it just
2648 creates and returns a NEW_EXPR. */
2649
2650 static tree
build_raw_new_expr(location_t loc,vec<tree,va_gc> * placement,tree type,tree nelts,vec<tree,va_gc> * init,int use_global_new)2651 build_raw_new_expr (location_t loc, vec<tree, va_gc> *placement, tree type,
2652 tree nelts, vec<tree, va_gc> *init, int use_global_new)
2653 {
2654 tree init_list;
2655 tree new_expr;
2656
2657 /* If INIT is NULL, the we want to store NULL_TREE in the NEW_EXPR.
2658 If INIT is not NULL, then we want to store VOID_ZERO_NODE. This
2659 permits us to distinguish the case of a missing initializer "new
2660 int" from an empty initializer "new int()". */
2661 if (init == NULL)
2662 init_list = NULL_TREE;
2663 else if (init->is_empty ())
2664 init_list = void_node;
2665 else
2666 init_list = build_tree_list_vec (init);
2667
2668 new_expr = build4_loc (loc, NEW_EXPR, build_pointer_type (type),
2669 build_tree_list_vec (placement), type, nelts,
2670 init_list);
2671 NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
2672 TREE_SIDE_EFFECTS (new_expr) = 1;
2673
2674 return new_expr;
2675 }
2676
2677 /* Diagnose uninitialized const members or reference members of type
2678 TYPE. USING_NEW is used to disambiguate the diagnostic between a
2679 new expression without a new-initializer and a declaration. Returns
2680 the error count. */
2681
2682 static int
diagnose_uninitialized_cst_or_ref_member_1(tree type,tree origin,bool using_new,bool complain)2683 diagnose_uninitialized_cst_or_ref_member_1 (tree type, tree origin,
2684 bool using_new, bool complain)
2685 {
2686 tree field;
2687 int error_count = 0;
2688
2689 if (type_has_user_provided_constructor (type))
2690 return 0;
2691
2692 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2693 {
2694 tree field_type;
2695
2696 if (TREE_CODE (field) != FIELD_DECL)
2697 continue;
2698
2699 field_type = strip_array_types (TREE_TYPE (field));
2700
2701 if (type_has_user_provided_constructor (field_type))
2702 continue;
2703
2704 if (TYPE_REF_P (field_type))
2705 {
2706 ++ error_count;
2707 if (complain)
2708 {
2709 if (DECL_CONTEXT (field) == origin)
2710 {
2711 if (using_new)
2712 error ("uninitialized reference member in %q#T "
2713 "using %<new%> without new-initializer", origin);
2714 else
2715 error ("uninitialized reference member in %q#T", origin);
2716 }
2717 else
2718 {
2719 if (using_new)
2720 error ("uninitialized reference member in base %q#T "
2721 "of %q#T using %<new%> without new-initializer",
2722 DECL_CONTEXT (field), origin);
2723 else
2724 error ("uninitialized reference member in base %q#T "
2725 "of %q#T", DECL_CONTEXT (field), origin);
2726 }
2727 inform (DECL_SOURCE_LOCATION (field),
2728 "%q#D should be initialized", field);
2729 }
2730 }
2731
2732 if (CP_TYPE_CONST_P (field_type))
2733 {
2734 ++ error_count;
2735 if (complain)
2736 {
2737 if (DECL_CONTEXT (field) == origin)
2738 {
2739 if (using_new)
2740 error ("uninitialized const member in %q#T "
2741 "using %<new%> without new-initializer", origin);
2742 else
2743 error ("uninitialized const member in %q#T", origin);
2744 }
2745 else
2746 {
2747 if (using_new)
2748 error ("uninitialized const member in base %q#T "
2749 "of %q#T using %<new%> without new-initializer",
2750 DECL_CONTEXT (field), origin);
2751 else
2752 error ("uninitialized const member in base %q#T "
2753 "of %q#T", DECL_CONTEXT (field), origin);
2754 }
2755 inform (DECL_SOURCE_LOCATION (field),
2756 "%q#D should be initialized", field);
2757 }
2758 }
2759
2760 if (CLASS_TYPE_P (field_type))
2761 error_count
2762 += diagnose_uninitialized_cst_or_ref_member_1 (field_type, origin,
2763 using_new, complain);
2764 }
2765 return error_count;
2766 }
2767
2768 int
diagnose_uninitialized_cst_or_ref_member(tree type,bool using_new,bool complain)2769 diagnose_uninitialized_cst_or_ref_member (tree type, bool using_new, bool complain)
2770 {
2771 return diagnose_uninitialized_cst_or_ref_member_1 (type, type, using_new, complain);
2772 }
2773
2774 /* Call __cxa_bad_array_new_length to indicate that the size calculation
2775 overflowed. Pretend it returns sizetype so that it plays nicely in the
2776 COND_EXPR. */
2777
2778 tree
throw_bad_array_new_length(void)2779 throw_bad_array_new_length (void)
2780 {
2781 if (!fn)
2782 {
2783 tree name = get_identifier ("__cxa_throw_bad_array_new_length");
2784
2785 fn = get_global_binding (name);
2786 if (!fn)
2787 fn = push_throw_library_fn
2788 (name, build_function_type_list (sizetype, NULL_TREE));
2789 }
2790
2791 return build_cxx_call (fn, 0, NULL, tf_warning_or_error);
2792 }
2793
2794 /* Attempt to verify that the argument, OPER, of a placement new expression
2795 refers to an object sufficiently large for an object of TYPE or an array
2796 of NELTS of such objects when NELTS is non-null, and issue a warning when
2797 it does not. SIZE specifies the size needed to construct the object or
2798 array and captures the result of NELTS * sizeof (TYPE). (SIZE could be
2799 greater when the array under construction requires a cookie to store
2800 NELTS. GCC's placement new expression stores the cookie when invoking
2801 a user-defined placement new operator function but not the default one.
2802 Placement new expressions with user-defined placement new operator are
2803 not diagnosed since we don't know how they use the buffer (this could
2804 be a future extension). */
2805 static void
warn_placement_new_too_small(tree type,tree nelts,tree size,tree oper)2806 warn_placement_new_too_small (tree type, tree nelts, tree size, tree oper)
2807 {
2808 location_t loc = cp_expr_loc_or_input_loc (oper);
2809
2810 STRIP_NOPS (oper);
2811
2812 /* Using a function argument or a (non-array) variable as an argument
2813 to placement new is not checked since it's unknown what it might
2814 point to. */
2815 if (TREE_CODE (oper) == PARM_DECL
2816 || VAR_P (oper)
2817 || TREE_CODE (oper) == COMPONENT_REF)
2818 return;
2819
2820 /* Evaluate any constant expressions. */
2821 size = fold_non_dependent_expr (size);
2822
2823 access_ref ref;
2824 ref.eval = [](tree x){ return fold_non_dependent_expr (x); };
2825 ref.trail1special = warn_placement_new < 2;
2826 tree objsize = compute_objsize (oper, 1, &ref);
2827 if (!objsize)
2828 return;
2829
2830 /* We can only draw conclusions if ref.deref == -1,
2831 i.e. oper is the address of the object. */
2832 if (ref.deref != -1)
2833 return;
2834
2835 offset_int bytes_avail = wi::to_offset (objsize);
2836 offset_int bytes_need;
2837
2838 if (CONSTANT_CLASS_P (size))
2839 bytes_need = wi::to_offset (size);
2840 else if (nelts && CONSTANT_CLASS_P (nelts))
2841 bytes_need = (wi::to_offset (nelts)
2842 * wi::to_offset (TYPE_SIZE_UNIT (type)));
2843 else if (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type)))
2844 bytes_need = wi::to_offset (TYPE_SIZE_UNIT (type));
2845 else
2846 {
2847 /* The type is a VLA. */
2848 return;
2849 }
2850
2851 if (bytes_avail >= bytes_need)
2852 return;
2853
2854 /* True when the size to mention in the warning is exact as opposed
2855 to "at least N". */
2856 const bool exact_size = (ref.offrng[0] == ref.offrng[1]
2857 || ref.sizrng[1] - ref.offrng[0] == 0);
2858
2859 tree opertype = ref.ref ? TREE_TYPE (ref.ref) : TREE_TYPE (oper);
2860 bool warned = false;
2861 if (nelts)
2862 nelts = fold_for_warn (nelts);
2863 if (nelts)
2864 if (CONSTANT_CLASS_P (nelts))
2865 warned = warning_at (loc, OPT_Wplacement_new_,
2866 (exact_size
2867 ? G_("placement new constructing an object "
2868 "of type %<%T [%wu]%> and size %qwu "
2869 "in a region of type %qT and size %qwi")
2870 : G_("placement new constructing an object "
2871 "of type %<%T [%wu]%> and size %qwu "
2872 "in a region of type %qT and size "
2873 "at most %qwu")),
2874 type, tree_to_uhwi (nelts),
2875 bytes_need.to_uhwi (),
2876 opertype, bytes_avail.to_uhwi ());
2877 else
2878 warned = warning_at (loc, OPT_Wplacement_new_,
2879 (exact_size
2880 ? G_("placement new constructing an array "
2881 "of objects of type %qT and size %qwu "
2882 "in a region of type %qT and size %qwi")
2883 : G_("placement new constructing an array "
2884 "of objects of type %qT and size %qwu "
2885 "in a region of type %qT and size "
2886 "at most %qwu")),
2887 type, bytes_need.to_uhwi (), opertype,
2888 bytes_avail.to_uhwi ());
2889 else
2890 warned = warning_at (loc, OPT_Wplacement_new_,
2891 (exact_size
2892 ? G_("placement new constructing an object "
2893 "of type %qT and size %qwu in a region "
2894 "of type %qT and size %qwi")
2895 : G_("placement new constructing an object "
2896 "of type %qT "
2897 "and size %qwu in a region of type %qT "
2898 "and size at most %qwu")),
2899 type, bytes_need.to_uhwi (), opertype,
2900 bytes_avail.to_uhwi ());
2901
2902 if (!warned || !ref.ref)
2903 return;
2904
2905 if (ref.offrng[0] == 0 || !ref.offset_bounded ())
2906 /* Avoid mentioning the offset when its lower bound is zero
2907 or when it's impossibly large. */
2908 inform (DECL_SOURCE_LOCATION (ref.ref),
2909 "%qD declared here", ref.ref);
2910 else if (ref.offrng[0] == ref.offrng[1])
2911 inform (DECL_SOURCE_LOCATION (ref.ref),
2912 "at offset %wi from %qD declared here",
2913 ref.offrng[0].to_shwi (), ref.ref);
2914 else
2915 inform (DECL_SOURCE_LOCATION (ref.ref),
2916 "at offset [%wi, %wi] from %qD declared here",
2917 ref.offrng[0].to_shwi (), ref.offrng[1].to_shwi (), ref.ref);
2918 }
2919
2920 /* True if alignof(T) > __STDCPP_DEFAULT_NEW_ALIGNMENT__. */
2921
2922 bool
type_has_new_extended_alignment(tree t)2923 type_has_new_extended_alignment (tree t)
2924 {
2925 return (aligned_new_threshold
2926 && TYPE_ALIGN_UNIT (t) > (unsigned)aligned_new_threshold);
2927 }
2928
2929 /* Return the alignment we expect malloc to guarantee. This should just be
2930 MALLOC_ABI_ALIGNMENT, but that macro defaults to only BITS_PER_WORD for some
2931 reason, so don't let the threshold be smaller than max_align_t_align. */
2932
2933 unsigned
malloc_alignment()2934 malloc_alignment ()
2935 {
2936 return MAX (max_align_t_align(), MALLOC_ABI_ALIGNMENT);
2937 }
2938
2939 /* Determine whether an allocation function is a namespace-scope
2940 non-replaceable placement new function. See DR 1748. */
2941 static bool
std_placement_new_fn_p(tree alloc_fn)2942 std_placement_new_fn_p (tree alloc_fn)
2943 {
2944 if (DECL_NAMESPACE_SCOPE_P (alloc_fn))
2945 {
2946 tree first_arg = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (alloc_fn)));
2947 if ((TREE_VALUE (first_arg) == ptr_type_node)
2948 && TREE_CHAIN (first_arg) == void_list_node)
2949 return true;
2950 }
2951 return false;
2952 }
2953
2954 /* For element type ELT_TYPE, return the appropriate type of the heap object
2955 containing such element(s). COOKIE_SIZE is the size of cookie in bytes.
2956 Return
2957 struct { size_t[COOKIE_SIZE/sizeof(size_t)]; ELT_TYPE[N]; }
2958 where N is nothing (flexible array member) if ITYPE2 is NULL, otherwise
2959 the array has ITYPE2 as its TYPE_DOMAIN. */
2960
2961 tree
build_new_constexpr_heap_type(tree elt_type,tree cookie_size,tree itype2)2962 build_new_constexpr_heap_type (tree elt_type, tree cookie_size, tree itype2)
2963 {
2964 gcc_assert (tree_fits_uhwi_p (cookie_size));
2965 unsigned HOST_WIDE_INT csz = tree_to_uhwi (cookie_size);
2966 csz /= int_size_in_bytes (sizetype);
2967 tree itype1 = build_index_type (size_int (csz - 1));
2968 tree atype1 = build_cplus_array_type (sizetype, itype1);
2969 tree atype2 = build_cplus_array_type (elt_type, itype2);
2970 tree rtype = cxx_make_type (RECORD_TYPE);
2971 TYPE_NAME (rtype) = heap_identifier;
2972 tree fld1 = build_decl (UNKNOWN_LOCATION, FIELD_DECL, NULL_TREE, atype1);
2973 tree fld2 = build_decl (UNKNOWN_LOCATION, FIELD_DECL, NULL_TREE, atype2);
2974 DECL_FIELD_CONTEXT (fld1) = rtype;
2975 DECL_FIELD_CONTEXT (fld2) = rtype;
2976 DECL_ARTIFICIAL (fld1) = true;
2977 DECL_ARTIFICIAL (fld2) = true;
2978 TYPE_FIELDS (rtype) = fld1;
2979 DECL_CHAIN (fld1) = fld2;
2980 layout_type (rtype);
2981 return rtype;
2982 }
2983
2984 /* Help the constexpr code to find the right type for the heap variable
2985 by adding a NOP_EXPR around ALLOC_CALL if needed for cookie_size.
2986 Return ALLOC_CALL or ALLOC_CALL cast to a pointer to
2987 struct { size_t[cookie_size/sizeof(size_t)]; elt_type[]; }. */
2988
2989 static tree
maybe_wrap_new_for_constexpr(tree alloc_call,tree elt_type,tree cookie_size)2990 maybe_wrap_new_for_constexpr (tree alloc_call, tree elt_type, tree cookie_size)
2991 {
2992 if (cxx_dialect < cxx20)
2993 return alloc_call;
2994
2995 if (current_function_decl != NULL_TREE
2996 && !DECL_DECLARED_CONSTEXPR_P (current_function_decl))
2997 return alloc_call;
2998
2999 tree call_expr = extract_call_expr (alloc_call);
3000 if (call_expr == error_mark_node)
3001 return alloc_call;
3002
3003 tree alloc_call_fndecl = cp_get_callee_fndecl_nofold (call_expr);
3004 if (alloc_call_fndecl == NULL_TREE
3005 || !IDENTIFIER_NEW_OP_P (DECL_NAME (alloc_call_fndecl))
3006 || CP_DECL_CONTEXT (alloc_call_fndecl) != global_namespace)
3007 return alloc_call;
3008
3009 tree rtype = build_new_constexpr_heap_type (elt_type, cookie_size,
3010 NULL_TREE);
3011 return build_nop (build_pointer_type (rtype), alloc_call);
3012 }
3013
3014 /* Generate code for a new-expression, including calling the "operator
3015 new" function, initializing the object, and, if an exception occurs
3016 during construction, cleaning up. The arguments are as for
3017 build_raw_new_expr. This may change PLACEMENT and INIT.
3018 TYPE is the type of the object being constructed, possibly an array
3019 of NELTS elements when NELTS is non-null (in "new T[NELTS]", T may
3020 be an array of the form U[inner], with the whole expression being
3021 "new U[NELTS][inner]"). */
3022
3023 static tree
build_new_1(vec<tree,va_gc> ** placement,tree type,tree nelts,vec<tree,va_gc> ** init,bool globally_qualified_p,tsubst_flags_t complain)3024 build_new_1 (vec<tree, va_gc> **placement, tree type, tree nelts,
3025 vec<tree, va_gc> **init, bool globally_qualified_p,
3026 tsubst_flags_t complain)
3027 {
3028 tree size, rval;
3029 /* True iff this is a call to "operator new[]" instead of just
3030 "operator new". */
3031 bool array_p = false;
3032 /* If ARRAY_P is true, the element type of the array. This is never
3033 an ARRAY_TYPE; for something like "new int[3][4]", the
3034 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
3035 TYPE. */
3036 tree elt_type;
3037 /* The type of the new-expression. (This type is always a pointer
3038 type.) */
3039 tree pointer_type;
3040 tree non_const_pointer_type;
3041 /* The most significant array bound in int[OUTER_NELTS][inner]. */
3042 tree outer_nelts = NULL_TREE;
3043 /* For arrays with a non-constant number of elements, a bounds checks
3044 on the NELTS parameter to avoid integer overflow at runtime. */
3045 tree outer_nelts_check = NULL_TREE;
3046 bool outer_nelts_from_type = false;
3047 /* Number of the "inner" elements in "new T[OUTER_NELTS][inner]". */
3048 offset_int inner_nelts_count = 1;
3049 tree alloc_call, alloc_expr;
3050 /* Size of the inner array elements (those with constant dimensions). */
3051 offset_int inner_size;
3052 /* The address returned by the call to "operator new". This node is
3053 a VAR_DECL and is therefore reusable. */
3054 tree alloc_node;
3055 tree alloc_fn;
3056 tree cookie_expr, init_expr;
3057 int nothrow, check_new;
3058 /* If non-NULL, the number of extra bytes to allocate at the
3059 beginning of the storage allocated for an array-new expression in
3060 order to store the number of elements. */
3061 tree cookie_size = NULL_TREE;
3062 tree placement_first;
3063 tree placement_expr = NULL_TREE;
3064 /* True if the function we are calling is a placement allocation
3065 function. */
3066 bool placement_allocation_fn_p;
3067 /* True if the storage must be initialized, either by a constructor
3068 or due to an explicit new-initializer. */
3069 bool is_initialized;
3070 /* The address of the thing allocated, not including any cookie. In
3071 particular, if an array cookie is in use, DATA_ADDR is the
3072 address of the first array element. This node is a VAR_DECL, and
3073 is therefore reusable. */
3074 tree data_addr;
3075 tree orig_type = type;
3076
3077 if (nelts)
3078 {
3079 outer_nelts = nelts;
3080 array_p = true;
3081 }
3082 else if (TREE_CODE (type) == ARRAY_TYPE)
3083 {
3084 /* Transforms new (T[N]) to new T[N]. The former is a GNU
3085 extension for variable N. (This also covers new T where T is
3086 a VLA typedef.) */
3087 array_p = true;
3088 nelts = array_type_nelts_top (type);
3089 outer_nelts = nelts;
3090 type = TREE_TYPE (type);
3091 outer_nelts_from_type = true;
3092 }
3093
3094 /* Lots of logic below depends on whether we have a constant number of
3095 elements, so go ahead and fold it now. */
3096 const_tree cst_outer_nelts = fold_non_dependent_expr (outer_nelts, complain);
3097
3098 /* If our base type is an array, then make sure we know how many elements
3099 it has. */
3100 for (elt_type = type;
3101 TREE_CODE (elt_type) == ARRAY_TYPE;
3102 elt_type = TREE_TYPE (elt_type))
3103 {
3104 tree inner_nelts = array_type_nelts_top (elt_type);
3105 tree inner_nelts_cst = maybe_constant_value (inner_nelts);
3106 if (TREE_CODE (inner_nelts_cst) == INTEGER_CST)
3107 {
3108 wi::overflow_type overflow;
3109 offset_int result = wi::mul (wi::to_offset (inner_nelts_cst),
3110 inner_nelts_count, SIGNED, &overflow);
3111 if (overflow)
3112 {
3113 if (complain & tf_error)
3114 error ("integer overflow in array size");
3115 nelts = error_mark_node;
3116 }
3117 inner_nelts_count = result;
3118 }
3119 else
3120 {
3121 if (complain & tf_error)
3122 {
3123 error_at (cp_expr_loc_or_input_loc (inner_nelts),
3124 "array size in new-expression must be constant");
3125 cxx_constant_value(inner_nelts);
3126 }
3127 nelts = error_mark_node;
3128 }
3129 if (nelts != error_mark_node)
3130 nelts = cp_build_binary_op (input_location,
3131 MULT_EXPR, nelts,
3132 inner_nelts_cst,
3133 complain);
3134 }
3135
3136 if (!verify_type_context (input_location, TCTX_ALLOCATION, elt_type,
3137 !(complain & tf_error)))
3138 return error_mark_node;
3139
3140 if (variably_modified_type_p (elt_type, NULL_TREE) && (complain & tf_error))
3141 {
3142 error ("variably modified type not allowed in new-expression");
3143 return error_mark_node;
3144 }
3145
3146 if (nelts == error_mark_node)
3147 return error_mark_node;
3148
3149 /* Warn if we performed the (T[N]) to T[N] transformation and N is
3150 variable. */
3151 if (outer_nelts_from_type
3152 && !TREE_CONSTANT (cst_outer_nelts))
3153 {
3154 if (complain & tf_warning_or_error)
3155 {
3156 pedwarn (cp_expr_loc_or_input_loc (outer_nelts), OPT_Wvla,
3157 typedef_variant_p (orig_type)
3158 ? G_("non-constant array new length must be specified "
3159 "directly, not by %<typedef%>")
3160 : G_("non-constant array new length must be specified "
3161 "without parentheses around the type-id"));
3162 }
3163 else
3164 return error_mark_node;
3165 }
3166
3167 if (VOID_TYPE_P (elt_type))
3168 {
3169 if (complain & tf_error)
3170 error ("invalid type %<void%> for %<new%>");
3171 return error_mark_node;
3172 }
3173
3174 if (is_std_init_list (elt_type) && !cp_unevaluated_operand)
3175 warning (OPT_Winit_list_lifetime,
3176 "%<new%> of %<initializer_list%> does not "
3177 "extend the lifetime of the underlying array");
3178
3179 if (abstract_virtuals_error_sfinae (ACU_NEW, elt_type, complain))
3180 return error_mark_node;
3181
3182 is_initialized = (type_build_ctor_call (elt_type) || *init != NULL);
3183
3184 if (*init == NULL && cxx_dialect < cxx11)
3185 {
3186 bool maybe_uninitialized_error = false;
3187 /* A program that calls for default-initialization [...] of an
3188 entity of reference type is ill-formed. */
3189 if (CLASSTYPE_REF_FIELDS_NEED_INIT (elt_type))
3190 maybe_uninitialized_error = true;
3191
3192 /* A new-expression that creates an object of type T initializes
3193 that object as follows:
3194 - If the new-initializer is omitted:
3195 -- If T is a (possibly cv-qualified) non-POD class type
3196 (or array thereof), the object is default-initialized (8.5).
3197 [...]
3198 -- Otherwise, the object created has indeterminate
3199 value. If T is a const-qualified type, or a (possibly
3200 cv-qualified) POD class type (or array thereof)
3201 containing (directly or indirectly) a member of
3202 const-qualified type, the program is ill-formed; */
3203
3204 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (elt_type))
3205 maybe_uninitialized_error = true;
3206
3207 if (maybe_uninitialized_error
3208 && diagnose_uninitialized_cst_or_ref_member (elt_type,
3209 /*using_new=*/true,
3210 complain & tf_error))
3211 return error_mark_node;
3212 }
3213
3214 if (CP_TYPE_CONST_P (elt_type) && *init == NULL
3215 && default_init_uninitialized_part (elt_type))
3216 {
3217 if (complain & tf_error)
3218 error ("uninitialized const in %<new%> of %q#T", elt_type);
3219 return error_mark_node;
3220 }
3221
3222 size = size_in_bytes (elt_type);
3223 if (array_p)
3224 {
3225 /* Maximum available size in bytes. Half of the address space
3226 minus the cookie size. */
3227 offset_int max_size
3228 = wi::set_bit_in_zero <offset_int> (TYPE_PRECISION (sizetype) - 1);
3229 /* Maximum number of outer elements which can be allocated. */
3230 offset_int max_outer_nelts;
3231 tree max_outer_nelts_tree;
3232
3233 gcc_assert (TREE_CODE (size) == INTEGER_CST);
3234 cookie_size = targetm.cxx.get_cookie_size (elt_type);
3235 gcc_assert (TREE_CODE (cookie_size) == INTEGER_CST);
3236 gcc_checking_assert (wi::ltu_p (wi::to_offset (cookie_size), max_size));
3237 /* Unconditionally subtract the cookie size. This decreases the
3238 maximum object size and is safe even if we choose not to use
3239 a cookie after all. */
3240 max_size -= wi::to_offset (cookie_size);
3241 wi::overflow_type overflow;
3242 inner_size = wi::mul (wi::to_offset (size), inner_nelts_count, SIGNED,
3243 &overflow);
3244 if (overflow || wi::gtu_p (inner_size, max_size))
3245 {
3246 if (complain & tf_error)
3247 {
3248 cst_size_error error;
3249 if (overflow)
3250 error = cst_size_overflow;
3251 else
3252 {
3253 error = cst_size_too_big;
3254 size = size_binop (MULT_EXPR, size,
3255 wide_int_to_tree (sizetype,
3256 inner_nelts_count));
3257 size = cp_fully_fold (size);
3258 }
3259 invalid_array_size_error (input_location, error, size,
3260 /*name=*/NULL_TREE);
3261 }
3262 return error_mark_node;
3263 }
3264
3265 max_outer_nelts = wi::udiv_trunc (max_size, inner_size);
3266 max_outer_nelts_tree = wide_int_to_tree (sizetype, max_outer_nelts);
3267
3268 size = size_binop (MULT_EXPR, size, fold_convert (sizetype, nelts));
3269
3270 if (TREE_CODE (cst_outer_nelts) == INTEGER_CST)
3271 {
3272 if (tree_int_cst_lt (max_outer_nelts_tree, cst_outer_nelts))
3273 {
3274 /* When the array size is constant, check it at compile time
3275 to make sure it doesn't exceed the implementation-defined
3276 maximum, as required by C++ 14 (in C++ 11 this requirement
3277 isn't explicitly stated but it's enforced anyway -- see
3278 grokdeclarator in cp/decl.cc). */
3279 if (complain & tf_error)
3280 {
3281 size = cp_fully_fold (size);
3282 invalid_array_size_error (input_location, cst_size_too_big,
3283 size, NULL_TREE);
3284 }
3285 return error_mark_node;
3286 }
3287 }
3288 else
3289 {
3290 /* When a runtime check is necessary because the array size
3291 isn't constant, keep only the top-most seven bits (starting
3292 with the most significant non-zero bit) of the maximum size
3293 to compare the array size against, to simplify encoding the
3294 constant maximum size in the instruction stream. */
3295
3296 unsigned shift = (max_outer_nelts.get_precision ()) - 7
3297 - wi::clz (max_outer_nelts);
3298 max_outer_nelts = (max_outer_nelts >> shift) << shift;
3299
3300 outer_nelts_check = fold_build2 (LE_EXPR, boolean_type_node,
3301 outer_nelts,
3302 max_outer_nelts_tree);
3303 }
3304 }
3305
3306 tree align_arg = NULL_TREE;
3307 if (type_has_new_extended_alignment (elt_type))
3308 {
3309 unsigned align = TYPE_ALIGN_UNIT (elt_type);
3310 /* Also consider the alignment of the cookie, if any. */
3311 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
3312 align = MAX (align, TYPE_ALIGN_UNIT (size_type_node));
3313 align_arg = build_int_cst (align_type_node, align);
3314 }
3315
3316 alloc_fn = NULL_TREE;
3317
3318 /* If PLACEMENT is a single simple pointer type not passed by
3319 reference, prepare to capture it in a temporary variable. Do
3320 this now, since PLACEMENT will change in the calls below. */
3321 placement_first = NULL_TREE;
3322 if (vec_safe_length (*placement) == 1
3323 && (TYPE_PTR_P (TREE_TYPE ((**placement)[0]))))
3324 placement_first = (**placement)[0];
3325
3326 bool member_new_p = false;
3327
3328 /* Allocate the object. */
3329 tree fnname;
3330 tree fns;
3331
3332 fnname = ovl_op_identifier (false, array_p ? VEC_NEW_EXPR : NEW_EXPR);
3333
3334 member_new_p = !globally_qualified_p
3335 && CLASS_TYPE_P (elt_type)
3336 && (array_p
3337 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
3338 : TYPE_HAS_NEW_OPERATOR (elt_type));
3339
3340 bool member_delete_p = (!globally_qualified_p
3341 && CLASS_TYPE_P (elt_type)
3342 && (array_p
3343 ? TYPE_GETS_VEC_DELETE (elt_type)
3344 : TYPE_GETS_REG_DELETE (elt_type)));
3345
3346 if (member_new_p)
3347 {
3348 /* Use a class-specific operator new. */
3349 /* If a cookie is required, add some extra space. */
3350 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
3351 size = size_binop (PLUS_EXPR, size, cookie_size);
3352 else
3353 {
3354 cookie_size = NULL_TREE;
3355 /* No size arithmetic necessary, so the size check is
3356 not needed. */
3357 if (outer_nelts_check != NULL && inner_size == 1)
3358 outer_nelts_check = NULL_TREE;
3359 }
3360 /* Perform the overflow check. */
3361 tree errval = TYPE_MAX_VALUE (sizetype);
3362 if (cxx_dialect >= cxx11 && flag_exceptions)
3363 errval = throw_bad_array_new_length ();
3364 if (outer_nelts_check != NULL_TREE)
3365 size = fold_build3 (COND_EXPR, sizetype, outer_nelts_check,
3366 size, errval);
3367 /* Create the argument list. */
3368 vec_safe_insert (*placement, 0, size);
3369 /* Do name-lookup to find the appropriate operator. */
3370 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2, complain);
3371 if (fns == NULL_TREE)
3372 {
3373 if (complain & tf_error)
3374 error ("no suitable %qD found in class %qT", fnname, elt_type);
3375 return error_mark_node;
3376 }
3377 if (TREE_CODE (fns) == TREE_LIST)
3378 {
3379 if (complain & tf_error)
3380 {
3381 error ("request for member %qD is ambiguous", fnname);
3382 print_candidates (fns);
3383 }
3384 return error_mark_node;
3385 }
3386 tree dummy = build_dummy_object (elt_type);
3387 alloc_call = NULL_TREE;
3388 if (align_arg)
3389 {
3390 vec<tree, va_gc> *align_args
3391 = vec_copy_and_insert (*placement, align_arg, 1);
3392 alloc_call
3393 = build_new_method_call (dummy, fns, &align_args,
3394 /*conversion_path=*/NULL_TREE,
3395 LOOKUP_NORMAL, &alloc_fn, tf_none);
3396 /* If no matching function is found and the allocated object type
3397 has new-extended alignment, the alignment argument is removed
3398 from the argument list, and overload resolution is performed
3399 again. */
3400 if (alloc_call == error_mark_node)
3401 alloc_call = NULL_TREE;
3402 }
3403 if (!alloc_call)
3404 alloc_call = build_new_method_call (dummy, fns, placement,
3405 /*conversion_path=*/NULL_TREE,
3406 LOOKUP_NORMAL,
3407 &alloc_fn, complain);
3408 }
3409 else
3410 {
3411 /* Use a global operator new. */
3412 /* See if a cookie might be required. */
3413 if (!(array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type)))
3414 {
3415 cookie_size = NULL_TREE;
3416 /* No size arithmetic necessary, so the size check is
3417 not needed. */
3418 if (outer_nelts_check != NULL && inner_size == 1)
3419 outer_nelts_check = NULL_TREE;
3420 }
3421
3422 /* If size is zero e.g. due to type having zero size, try to
3423 preserve outer_nelts for constant expression evaluation
3424 purposes. */
3425 if (integer_zerop (size) && outer_nelts)
3426 size = build2 (MULT_EXPR, TREE_TYPE (size), size, outer_nelts);
3427
3428 alloc_call = build_operator_new_call (fnname, placement,
3429 &size, &cookie_size,
3430 align_arg, outer_nelts_check,
3431 &alloc_fn, complain);
3432 }
3433
3434 if (alloc_call == error_mark_node)
3435 return error_mark_node;
3436
3437 gcc_assert (alloc_fn != NULL_TREE);
3438
3439 /* Now, check to see if this function is actually a placement
3440 allocation function. This can happen even when PLACEMENT is NULL
3441 because we might have something like:
3442
3443 struct S { void* operator new (size_t, int i = 0); };
3444
3445 A call to `new S' will get this allocation function, even though
3446 there is no explicit placement argument. If there is more than
3447 one argument, or there are variable arguments, then this is a
3448 placement allocation function. */
3449 placement_allocation_fn_p
3450 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
3451 || varargs_function_p (alloc_fn));
3452
3453 if (complain & tf_warning_or_error
3454 && warn_aligned_new
3455 && !placement_allocation_fn_p
3456 && TYPE_ALIGN (elt_type) > malloc_alignment ()
3457 && (warn_aligned_new > 1
3458 || CP_DECL_CONTEXT (alloc_fn) == global_namespace)
3459 && !aligned_allocation_fn_p (alloc_fn))
3460 {
3461 auto_diagnostic_group d;
3462 if (warning (OPT_Waligned_new_, "%<new%> of type %qT with extended "
3463 "alignment %d", elt_type, TYPE_ALIGN_UNIT (elt_type)))
3464 {
3465 inform (input_location, "uses %qD, which does not have an alignment "
3466 "parameter", alloc_fn);
3467 if (!aligned_new_threshold)
3468 inform (input_location, "use %<-faligned-new%> to enable C++17 "
3469 "over-aligned new support");
3470 }
3471 }
3472
3473 /* If we found a simple case of PLACEMENT_EXPR above, then copy it
3474 into a temporary variable. */
3475 if (!processing_template_decl
3476 && TREE_CODE (alloc_call) == CALL_EXPR
3477 && call_expr_nargs (alloc_call) == 2
3478 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE
3479 && TYPE_PTR_P (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))))
3480 {
3481 tree placement = CALL_EXPR_ARG (alloc_call, 1);
3482
3483 if (placement_first != NULL_TREE
3484 && (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (TREE_TYPE (placement)))
3485 || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement)))))
3486 {
3487 placement_expr = get_target_expr (placement_first);
3488 CALL_EXPR_ARG (alloc_call, 1)
3489 = fold_convert (TREE_TYPE (placement), placement_expr);
3490 }
3491
3492 if (!member_new_p
3493 && VOID_TYPE_P (TREE_TYPE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1)))))
3494 {
3495 /* Attempt to make the warning point at the operator new argument. */
3496 if (placement_first)
3497 placement = placement_first;
3498
3499 warn_placement_new_too_small (orig_type, nelts, size, placement);
3500 }
3501 }
3502
3503 alloc_expr = alloc_call;
3504 if (cookie_size)
3505 alloc_expr = maybe_wrap_new_for_constexpr (alloc_expr, type,
3506 cookie_size);
3507
3508 /* In the simple case, we can stop now. */
3509 pointer_type = build_pointer_type (type);
3510 if (!cookie_size && !is_initialized && !member_delete_p)
3511 return build_nop (pointer_type, alloc_expr);
3512
3513 /* Store the result of the allocation call in a variable so that we can
3514 use it more than once. */
3515 alloc_expr = get_target_expr (alloc_expr);
3516 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
3517
3518 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
3519 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
3520 alloc_call = TREE_OPERAND (alloc_call, 1);
3521
3522 /* Preevaluate the placement args so that we don't reevaluate them for a
3523 placement delete. */
3524 if (placement_allocation_fn_p)
3525 {
3526 tree inits;
3527 stabilize_call (alloc_call, &inits);
3528 if (inits)
3529 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
3530 alloc_expr);
3531 }
3532
3533 /* unless an allocation function is declared with an empty excep-
3534 tion-specification (_except.spec_), throw(), it indicates failure to
3535 allocate storage by throwing a bad_alloc exception (clause _except_,
3536 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
3537 cation function is declared with an empty exception-specification,
3538 throw(), it returns null to indicate failure to allocate storage and a
3539 non-null pointer otherwise.
3540
3541 So check for a null exception spec on the op new we just called. */
3542
3543 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
3544 check_new
3545 = flag_check_new || (nothrow && !std_placement_new_fn_p (alloc_fn));
3546
3547 if (cookie_size)
3548 {
3549 tree cookie;
3550 tree cookie_ptr;
3551 tree size_ptr_type;
3552
3553 /* Adjust so we're pointing to the start of the object. */
3554 data_addr = fold_build_pointer_plus (alloc_node, cookie_size);
3555
3556 /* Store the number of bytes allocated so that we can know how
3557 many elements to destroy later. We use the last sizeof
3558 (size_t) bytes to store the number of elements. */
3559 cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype));
3560 cookie_ptr = fold_build_pointer_plus_loc (input_location,
3561 alloc_node, cookie_ptr);
3562 size_ptr_type = build_pointer_type (sizetype);
3563 cookie_ptr = fold_convert (size_ptr_type, cookie_ptr);
3564 cookie = cp_build_fold_indirect_ref (cookie_ptr);
3565
3566 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
3567
3568 if (targetm.cxx.cookie_has_size ())
3569 {
3570 /* Also store the element size. */
3571 cookie_ptr = fold_build_pointer_plus (cookie_ptr,
3572 fold_build1_loc (input_location,
3573 NEGATE_EXPR, sizetype,
3574 size_in_bytes (sizetype)));
3575
3576 cookie = cp_build_fold_indirect_ref (cookie_ptr);
3577 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
3578 size_in_bytes (elt_type));
3579 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
3580 cookie, cookie_expr);
3581 }
3582 }
3583 else
3584 {
3585 cookie_expr = NULL_TREE;
3586 data_addr = alloc_node;
3587 }
3588
3589 /* Now use a pointer to the type we've actually allocated. */
3590
3591 /* But we want to operate on a non-const version to start with,
3592 since we'll be modifying the elements. */
3593 non_const_pointer_type = build_pointer_type
3594 (cp_build_qualified_type (type, cp_type_quals (type) & ~TYPE_QUAL_CONST));
3595
3596 data_addr = fold_convert (non_const_pointer_type, data_addr);
3597 /* Any further uses of alloc_node will want this type, too. */
3598 alloc_node = fold_convert (non_const_pointer_type, alloc_node);
3599
3600 /* Now initialize the allocated object. Note that we preevaluate the
3601 initialization expression, apart from the actual constructor call or
3602 assignment--we do this because we want to delay the allocation as long
3603 as possible in order to minimize the size of the exception region for
3604 placement delete. */
3605 if (is_initialized)
3606 {
3607 bool explicit_value_init_p = false;
3608
3609 if (*init != NULL && (*init)->is_empty ())
3610 {
3611 *init = NULL;
3612 explicit_value_init_p = true;
3613 }
3614
3615 if (processing_template_decl)
3616 {
3617 /* Avoid an ICE when converting to a base in build_simple_base_path.
3618 We'll throw this all away anyway, and build_new will create
3619 a NEW_EXPR. */
3620 tree t = fold_convert (build_pointer_type (elt_type), data_addr);
3621 /* build_value_init doesn't work in templates, and we don't need
3622 the initializer anyway since we're going to throw it away and
3623 rebuild it at instantiation time, so just build up a single
3624 constructor call to get any appropriate diagnostics. */
3625 init_expr = cp_build_fold_indirect_ref (t);
3626 if (type_build_ctor_call (elt_type))
3627 init_expr = build_special_member_call (init_expr,
3628 complete_ctor_identifier,
3629 init, elt_type,
3630 LOOKUP_NORMAL,
3631 complain);
3632 }
3633 else if (array_p)
3634 {
3635 tree vecinit = NULL_TREE;
3636 const size_t len = vec_safe_length (*init);
3637 if (len == 1 && DIRECT_LIST_INIT_P ((**init)[0]))
3638 {
3639 vecinit = (**init)[0];
3640 if (CONSTRUCTOR_NELTS (vecinit) == 0)
3641 /* List-value-initialization, leave it alone. */;
3642 else
3643 {
3644 tree arraytype, domain;
3645 if (TREE_CONSTANT (nelts))
3646 domain = compute_array_index_type (NULL_TREE, nelts,
3647 complain);
3648 else
3649 /* We'll check the length at runtime. */
3650 domain = NULL_TREE;
3651 arraytype = build_cplus_array_type (type, domain);
3652 /* If we have new char[4]{"foo"}, we have to reshape
3653 so that the STRING_CST isn't wrapped in { }. */
3654 vecinit = reshape_init (arraytype, vecinit, complain);
3655 /* The middle end doesn't cope with the location wrapper
3656 around a STRING_CST. */
3657 STRIP_ANY_LOCATION_WRAPPER (vecinit);
3658 vecinit = digest_init (arraytype, vecinit, complain);
3659 }
3660 }
3661 else if (*init)
3662 {
3663 if (complain & tf_error)
3664 error ("parenthesized initializer in array new");
3665 return error_mark_node;
3666 }
3667 init_expr
3668 = build_vec_init (data_addr,
3669 cp_build_binary_op (input_location,
3670 MINUS_EXPR, outer_nelts,
3671 integer_one_node,
3672 complain),
3673 vecinit,
3674 explicit_value_init_p,
3675 /*from_array=*/0,
3676 complain);
3677 }
3678 else
3679 {
3680 init_expr = cp_build_fold_indirect_ref (data_addr);
3681
3682 if (type_build_ctor_call (type) && !explicit_value_init_p)
3683 {
3684 init_expr = build_special_member_call (init_expr,
3685 complete_ctor_identifier,
3686 init, elt_type,
3687 LOOKUP_NORMAL,
3688 complain|tf_no_cleanup);
3689 }
3690 else if (explicit_value_init_p)
3691 {
3692 /* Something like `new int()'. NO_CLEANUP is needed so
3693 we don't try and build a (possibly ill-formed)
3694 destructor. */
3695 tree val = build_value_init (type, complain | tf_no_cleanup);
3696 if (val == error_mark_node)
3697 return error_mark_node;
3698 init_expr = build2 (INIT_EXPR, type, init_expr, val);
3699 }
3700 else
3701 {
3702 tree ie;
3703
3704 /* We are processing something like `new int (10)', which
3705 means allocate an int, and initialize it with 10.
3706
3707 In C++20, also handle `new A(1, 2)'. */
3708 if (cxx_dialect >= cxx20
3709 && AGGREGATE_TYPE_P (type)
3710 && (*init)->length () > 1)
3711 {
3712 ie = build_constructor_from_vec (init_list_type_node, *init);
3713 CONSTRUCTOR_IS_DIRECT_INIT (ie) = true;
3714 CONSTRUCTOR_IS_PAREN_INIT (ie) = true;
3715 ie = digest_init (type, ie, complain);
3716 }
3717 else
3718 ie = build_x_compound_expr_from_vec (*init, "new initializer",
3719 complain);
3720 init_expr = cp_build_modify_expr (input_location, init_expr,
3721 INIT_EXPR, ie, complain);
3722 }
3723 /* If the initializer uses C++14 aggregate NSDMI that refer to the
3724 object being initialized, replace them now and don't try to
3725 preevaluate. */
3726 bool had_placeholder = false;
3727 if (!processing_template_decl
3728 && TREE_CODE (init_expr) == INIT_EXPR)
3729 TREE_OPERAND (init_expr, 1)
3730 = replace_placeholders (TREE_OPERAND (init_expr, 1),
3731 TREE_OPERAND (init_expr, 0),
3732 &had_placeholder);
3733 }
3734
3735 if (init_expr == error_mark_node)
3736 return error_mark_node;
3737 }
3738 else
3739 init_expr = NULL_TREE;
3740
3741 /* If any part of the object initialization terminates by throwing an
3742 exception and a suitable deallocation function can be found, the
3743 deallocation function is called to free the memory in which the
3744 object was being constructed, after which the exception continues
3745 to propagate in the context of the new-expression. If no
3746 unambiguous matching deallocation function can be found,
3747 propagating the exception does not cause the object's memory to be
3748 freed. */
3749 if (flag_exceptions && (init_expr || member_delete_p))
3750 {
3751 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
3752 tree cleanup;
3753
3754 /* The Standard is unclear here, but the right thing to do
3755 is to use the same method for finding deallocation
3756 functions that we use for finding allocation functions. */
3757 cleanup = (build_op_delete_call
3758 (dcode,
3759 alloc_node,
3760 size,
3761 globally_qualified_p,
3762 placement_allocation_fn_p ? alloc_call : NULL_TREE,
3763 alloc_fn,
3764 complain));
3765
3766 if (cleanup && init_expr && !processing_template_decl)
3767 /* Ack! First we allocate the memory. Then we set our sentry
3768 variable to true, and expand a cleanup that deletes the
3769 memory if sentry is true. Then we run the constructor, and
3770 finally clear the sentry.
3771
3772 We need to do this because we allocate the space first, so
3773 if there are any temporaries with cleanups in the
3774 constructor args, we need this EH region to extend until
3775 end of full-expression to preserve nesting.
3776
3777 We used to try to evaluate the args first to avoid this, but
3778 since C++17 [expr.new] says that "The invocation of the
3779 allocation function is sequenced before the evaluations of
3780 expressions in the new-initializer." */
3781 {
3782 tree end, sentry, begin;
3783
3784 begin = get_target_expr (boolean_true_node);
3785 CLEANUP_EH_ONLY (begin) = 1;
3786
3787 sentry = TARGET_EXPR_SLOT (begin);
3788
3789 /* CLEANUP is compiler-generated, so no diagnostics. */
3790 suppress_warning (cleanup);
3791
3792 TARGET_EXPR_CLEANUP (begin)
3793 = build3 (COND_EXPR, void_type_node, sentry,
3794 cleanup, void_node);
3795
3796 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
3797 sentry, boolean_false_node);
3798
3799 init_expr
3800 = build2 (COMPOUND_EXPR, void_type_node, begin,
3801 build2 (COMPOUND_EXPR, void_type_node, init_expr,
3802 end));
3803 /* Likewise, this is compiler-generated. */
3804 suppress_warning (init_expr);
3805 }
3806 }
3807
3808 /* Now build up the return value in reverse order. */
3809
3810 rval = data_addr;
3811
3812 if (init_expr)
3813 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
3814 if (cookie_expr)
3815 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
3816
3817 if (rval == data_addr && TREE_CODE (alloc_expr) == TARGET_EXPR)
3818 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
3819 and return the call (which doesn't need to be adjusted). */
3820 rval = TARGET_EXPR_INITIAL (alloc_expr);
3821 else
3822 {
3823 if (check_new)
3824 {
3825 tree ifexp = cp_build_binary_op (input_location,
3826 NE_EXPR, alloc_node,
3827 nullptr_node,
3828 complain);
3829 rval = build_conditional_expr (input_location, ifexp, rval,
3830 alloc_node, complain);
3831 }
3832
3833 /* Perform the allocation before anything else, so that ALLOC_NODE
3834 has been initialized before we start using it. */
3835 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
3836 }
3837
3838 /* A new-expression is never an lvalue. */
3839 gcc_assert (!obvalue_p (rval));
3840
3841 return convert (pointer_type, rval);
3842 }
3843
3844 /* Generate a representation for a C++ "new" expression. *PLACEMENT
3845 is a vector of placement-new arguments (or NULL if none). If NELTS
3846 is NULL, TYPE is the type of the storage to be allocated. If NELTS
3847 is not NULL, then this is an array-new allocation; TYPE is the type
3848 of the elements in the array and NELTS is the number of elements in
3849 the array. *INIT, if non-NULL, is the initializer for the new
3850 object, or an empty vector to indicate an initializer of "()". If
3851 USE_GLOBAL_NEW is true, then the user explicitly wrote "::new"
3852 rather than just "new". This may change PLACEMENT and INIT. */
3853
3854 tree
build_new(location_t loc,vec<tree,va_gc> ** placement,tree type,tree nelts,vec<tree,va_gc> ** init,int use_global_new,tsubst_flags_t complain)3855 build_new (location_t loc, vec<tree, va_gc> **placement, tree type,
3856 tree nelts, vec<tree, va_gc> **init, int use_global_new,
3857 tsubst_flags_t complain)
3858 {
3859 tree rval;
3860 vec<tree, va_gc> *orig_placement = NULL;
3861 tree orig_nelts = NULL_TREE;
3862 vec<tree, va_gc> *orig_init = NULL;
3863
3864 if (type == error_mark_node)
3865 return error_mark_node;
3866
3867 if (nelts == NULL_TREE
3868 /* Don't do auto deduction where it might affect mangling. */
3869 && (!processing_template_decl || at_function_scope_p ()))
3870 {
3871 tree auto_node = type_uses_auto (type);
3872 if (auto_node)
3873 {
3874 tree d_init = NULL_TREE;
3875 const size_t len = vec_safe_length (*init);
3876 /* E.g. new auto(x) must have exactly one element, or
3877 a {} initializer will have one element. */
3878 if (len == 1)
3879 {
3880 d_init = (**init)[0];
3881 d_init = resolve_nondeduced_context (d_init, complain);
3882 }
3883 /* For the rest, e.g. new A(1, 2, 3), create a list. */
3884 else if (len > 1)
3885 {
3886 unsigned int n;
3887 tree t;
3888 tree *pp = &d_init;
3889 FOR_EACH_VEC_ELT (**init, n, t)
3890 {
3891 t = resolve_nondeduced_context (t, complain);
3892 *pp = build_tree_list (NULL_TREE, t);
3893 pp = &TREE_CHAIN (*pp);
3894 }
3895 }
3896 type = do_auto_deduction (type, d_init, auto_node, complain);
3897 }
3898 }
3899
3900 if (processing_template_decl)
3901 {
3902 if (dependent_type_p (type)
3903 || any_type_dependent_arguments_p (*placement)
3904 || (nelts && type_dependent_expression_p (nelts))
3905 || (nelts && *init)
3906 || any_type_dependent_arguments_p (*init))
3907 return build_raw_new_expr (loc, *placement, type, nelts, *init,
3908 use_global_new);
3909
3910 orig_placement = make_tree_vector_copy (*placement);
3911 orig_nelts = nelts;
3912 if (*init)
3913 {
3914 orig_init = make_tree_vector_copy (*init);
3915 /* Also copy any CONSTRUCTORs in *init, since reshape_init and
3916 digest_init clobber them in place. */
3917 for (unsigned i = 0; i < orig_init->length(); ++i)
3918 {
3919 tree e = (**init)[i];
3920 if (TREE_CODE (e) == CONSTRUCTOR)
3921 (**init)[i] = copy_node (e);
3922 }
3923 }
3924
3925 make_args_non_dependent (*placement);
3926 if (nelts)
3927 nelts = build_non_dependent_expr (nelts);
3928 make_args_non_dependent (*init);
3929 }
3930
3931 if (nelts)
3932 {
3933 location_t nelts_loc = cp_expr_loc_or_loc (nelts, loc);
3934 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
3935 {
3936 if (complain & tf_error)
3937 permerror (nelts_loc,
3938 "size in array new must have integral type");
3939 else
3940 return error_mark_node;
3941 }
3942
3943 /* Try to determine the constant value only for the purposes
3944 of the diagnostic below but continue to use the original
3945 value and handle const folding later. */
3946 const_tree cst_nelts = fold_non_dependent_expr (nelts, complain);
3947
3948 /* The expression in a noptr-new-declarator is erroneous if it's of
3949 non-class type and its value before converting to std::size_t is
3950 less than zero. ... If the expression is a constant expression,
3951 the program is ill-fomed. */
3952 if (TREE_CODE (cst_nelts) == INTEGER_CST
3953 && !valid_array_size_p (nelts_loc, cst_nelts, NULL_TREE,
3954 complain & tf_error))
3955 return error_mark_node;
3956
3957 nelts = mark_rvalue_use (nelts);
3958 nelts = cp_save_expr (cp_convert (sizetype, nelts, complain));
3959 }
3960
3961 /* ``A reference cannot be created by the new operator. A reference
3962 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
3963 returned by new.'' ARM 5.3.3 */
3964 if (TYPE_REF_P (type))
3965 {
3966 if (complain & tf_error)
3967 error_at (loc, "new cannot be applied to a reference type");
3968 else
3969 return error_mark_node;
3970 type = TREE_TYPE (type);
3971 }
3972
3973 if (TREE_CODE (type) == FUNCTION_TYPE)
3974 {
3975 if (complain & tf_error)
3976 error_at (loc, "new cannot be applied to a function type");
3977 return error_mark_node;
3978 }
3979
3980 /* P1009: Array size deduction in new-expressions. */
3981 const bool array_p = TREE_CODE (type) == ARRAY_TYPE;
3982 if (*init
3983 /* If ARRAY_P, we have to deduce the array bound. For C++20 paren-init,
3984 we have to process the parenthesized-list. But don't do it for (),
3985 which is value-initialization, and INIT should stay empty. */
3986 && (array_p || (cxx_dialect >= cxx20 && nelts && !(*init)->is_empty ())))
3987 {
3988 /* This means we have 'new T[]()'. */
3989 if ((*init)->is_empty ())
3990 {
3991 tree ctor = build_constructor (init_list_type_node, NULL);
3992 CONSTRUCTOR_IS_DIRECT_INIT (ctor) = true;
3993 vec_safe_push (*init, ctor);
3994 }
3995 tree &elt = (**init)[0];
3996 /* The C++20 'new T[](e_0, ..., e_k)' case allowed by P0960. */
3997 if (!DIRECT_LIST_INIT_P (elt) && cxx_dialect >= cxx20)
3998 {
3999 tree ctor = build_constructor_from_vec (init_list_type_node, *init);
4000 CONSTRUCTOR_IS_DIRECT_INIT (ctor) = true;
4001 CONSTRUCTOR_IS_PAREN_INIT (ctor) = true;
4002 elt = ctor;
4003 /* We've squashed all the vector elements into the first one;
4004 truncate the rest. */
4005 (*init)->truncate (1);
4006 }
4007 /* Otherwise we should have 'new T[]{e_0, ..., e_k}'. */
4008 if (array_p && !TYPE_DOMAIN (type))
4009 {
4010 /* We need to reshape before deducing the bounds to handle code like
4011
4012 struct S { int x, y; };
4013 new S[]{1, 2, 3, 4};
4014
4015 which should deduce S[2]. But don't change ELT itself: we want to
4016 pass a list-initializer to build_new_1, even for STRING_CSTs. */
4017 tree e = elt;
4018 if (BRACE_ENCLOSED_INITIALIZER_P (e))
4019 e = reshape_init (type, e, complain);
4020 cp_complete_array_type (&type, e, /*do_default*/false);
4021 }
4022 }
4023
4024 /* The type allocated must be complete. If the new-type-id was
4025 "T[N]" then we are just checking that "T" is complete here, but
4026 that is equivalent, since the value of "N" doesn't matter. */
4027 if (!complete_type_or_maybe_complain (type, NULL_TREE, complain))
4028 return error_mark_node;
4029
4030 rval = build_new_1 (placement, type, nelts, init, use_global_new, complain);
4031 if (rval == error_mark_node)
4032 return error_mark_node;
4033
4034 if (processing_template_decl)
4035 {
4036 tree ret = build_raw_new_expr (loc, orig_placement, type, orig_nelts,
4037 orig_init, use_global_new);
4038 release_tree_vector (orig_placement);
4039 release_tree_vector (orig_init);
4040 return ret;
4041 }
4042
4043 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
4044 rval = build1_loc (loc, NOP_EXPR, TREE_TYPE (rval), rval);
4045 suppress_warning (rval, OPT_Wunused_value);
4046
4047 return rval;
4048 }
4049
4050 static tree
build_vec_delete_1(location_t loc,tree base,tree maxindex,tree type,special_function_kind auto_delete_vec,int use_global_delete,tsubst_flags_t complain,bool in_cleanup=false)4051 build_vec_delete_1 (location_t loc, tree base, tree maxindex, tree type,
4052 special_function_kind auto_delete_vec,
4053 int use_global_delete, tsubst_flags_t complain,
4054 bool in_cleanup = false)
4055 {
4056 tree virtual_size;
4057 tree ptype = build_pointer_type (type = complete_type (type));
4058 tree size_exp;
4059
4060 /* Temporary variables used by the loop. */
4061 tree tbase, tbase_init;
4062
4063 /* This is the body of the loop that implements the deletion of a
4064 single element, and moves temp variables to next elements. */
4065 tree body;
4066
4067 /* This is the LOOP_EXPR that governs the deletion of the elements. */
4068 tree loop = 0;
4069
4070 /* This is the thing that governs what to do after the loop has run. */
4071 tree deallocate_expr = 0;
4072
4073 /* This is the BIND_EXPR which holds the outermost iterator of the
4074 loop. It is convenient to set this variable up and test it before
4075 executing any other code in the loop.
4076 This is also the containing expression returned by this function. */
4077 tree controller = NULL_TREE;
4078 tree tmp;
4079
4080 /* We should only have 1-D arrays here. */
4081 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
4082
4083 if (base == error_mark_node || maxindex == error_mark_node)
4084 return error_mark_node;
4085
4086 if (!verify_type_context (loc, TCTX_DEALLOCATION, type,
4087 !(complain & tf_error)))
4088 return error_mark_node;
4089
4090 if (!COMPLETE_TYPE_P (type))
4091 {
4092 if (complain & tf_warning)
4093 {
4094 auto_diagnostic_group d;
4095 if (warning_at (loc, OPT_Wdelete_incomplete,
4096 "possible problem detected in invocation of "
4097 "operator %<delete []%>"))
4098 {
4099 cxx_incomplete_type_diagnostic (base, type, DK_WARNING);
4100 inform (loc, "neither the destructor nor the "
4101 "class-specific operator %<delete []%> will be called, "
4102 "even if they are declared when the class is defined");
4103 }
4104 }
4105 /* This size won't actually be used. */
4106 size_exp = size_one_node;
4107 goto no_destructor;
4108 }
4109
4110 size_exp = size_in_bytes (type);
4111
4112 if (! MAYBE_CLASS_TYPE_P (type))
4113 goto no_destructor;
4114 else if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
4115 {
4116 /* Make sure the destructor is callable. */
4117 if (type_build_dtor_call (type))
4118 {
4119 tmp = build_delete (loc, ptype, base, sfk_complete_destructor,
4120 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
4121 complain);
4122 if (tmp == error_mark_node)
4123 return error_mark_node;
4124 }
4125 goto no_destructor;
4126 }
4127
4128 /* The below is short by the cookie size. */
4129 virtual_size = size_binop (MULT_EXPR, size_exp,
4130 fold_convert (sizetype, maxindex));
4131
4132 tbase = create_temporary_var (ptype);
4133 DECL_INITIAL (tbase)
4134 = fold_build_pointer_plus_loc (loc, fold_convert (ptype, base),
4135 virtual_size);
4136 tbase_init = build_stmt (loc, DECL_EXPR, tbase);
4137 controller = build3 (BIND_EXPR, void_type_node, tbase, NULL_TREE, NULL_TREE);
4138 TREE_SIDE_EFFECTS (controller) = 1;
4139 BIND_EXPR_VEC_DTOR (controller) = true;
4140
4141 body = build1 (EXIT_EXPR, void_type_node,
4142 build2 (EQ_EXPR, boolean_type_node, tbase,
4143 fold_convert (ptype, base)));
4144 tmp = fold_build1_loc (loc, NEGATE_EXPR, sizetype, size_exp);
4145 tmp = fold_build_pointer_plus (tbase, tmp);
4146 tmp = cp_build_modify_expr (loc, tbase, NOP_EXPR, tmp, complain);
4147 if (tmp == error_mark_node)
4148 return error_mark_node;
4149 body = build_compound_expr (loc, body, tmp);
4150 tmp = build_delete (loc, ptype, tbase, sfk_complete_destructor,
4151 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
4152 complain);
4153 if (tmp == error_mark_node)
4154 return error_mark_node;
4155 body = build_compound_expr (loc, body, tmp);
4156
4157 loop = build1 (LOOP_EXPR, void_type_node, body);
4158
4159 /* If one destructor throws, keep trying to clean up the rest, unless we're
4160 already in a build_vec_init cleanup. */
4161 if (flag_exceptions && !in_cleanup && !processing_template_decl
4162 && !expr_noexcept_p (tmp, tf_none))
4163 {
4164 loop = build2 (TRY_CATCH_EXPR, void_type_node, loop,
4165 unshare_expr (loop));
4166 /* Tell honor_protect_cleanup_actions to discard this on the
4167 exceptional path. */
4168 TRY_CATCH_IS_CLEANUP (loop) = true;
4169 }
4170
4171 loop = build_compound_expr (loc, tbase_init, loop);
4172
4173 no_destructor:
4174 /* Delete the storage if appropriate. */
4175 if (auto_delete_vec == sfk_deleting_destructor)
4176 {
4177 tree base_tbd;
4178
4179 /* The below is short by the cookie size. */
4180 virtual_size = size_binop (MULT_EXPR, size_exp,
4181 fold_convert (sizetype, maxindex));
4182
4183 if (! TYPE_VEC_NEW_USES_COOKIE (type))
4184 /* no header */
4185 base_tbd = base;
4186 else
4187 {
4188 tree cookie_size;
4189
4190 cookie_size = targetm.cxx.get_cookie_size (type);
4191 base_tbd = cp_build_binary_op (loc,
4192 MINUS_EXPR,
4193 cp_convert (string_type_node,
4194 base, complain),
4195 cookie_size,
4196 complain);
4197 if (base_tbd == error_mark_node)
4198 return error_mark_node;
4199 base_tbd = cp_convert (ptype, base_tbd, complain);
4200 /* True size with header. */
4201 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
4202 }
4203
4204 deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
4205 base_tbd, virtual_size,
4206 use_global_delete & 1,
4207 /*placement=*/NULL_TREE,
4208 /*alloc_fn=*/NULL_TREE,
4209 complain);
4210 }
4211
4212 body = loop;
4213 if (deallocate_expr == error_mark_node)
4214 return error_mark_node;
4215 else if (!deallocate_expr)
4216 ;
4217 else if (!body)
4218 body = deallocate_expr;
4219 else
4220 /* The delete operator must be called, even if a destructor
4221 throws. */
4222 body = build2 (TRY_FINALLY_EXPR, void_type_node, body, deallocate_expr);
4223
4224 if (!body)
4225 body = integer_zero_node;
4226
4227 /* Outermost wrapper: If pointer is null, punt. */
4228 tree cond = build2_loc (loc, NE_EXPR, boolean_type_node, base,
4229 fold_convert (TREE_TYPE (base), nullptr_node));
4230 /* This is a compiler generated comparison, don't emit
4231 e.g. -Wnonnull-compare warning for it. */
4232 suppress_warning (cond, OPT_Wnonnull_compare);
4233 body = build3_loc (loc, COND_EXPR, void_type_node,
4234 cond, body, integer_zero_node);
4235 COND_EXPR_IS_VEC_DELETE (body) = true;
4236 body = build1 (NOP_EXPR, void_type_node, body);
4237
4238 if (controller)
4239 {
4240 TREE_OPERAND (controller, 1) = body;
4241 body = controller;
4242 }
4243
4244 if (TREE_CODE (base) == SAVE_EXPR)
4245 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
4246 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
4247
4248 return convert_to_void (body, ICV_CAST, complain);
4249 }
4250
4251 /* Create an unnamed variable of the indicated TYPE. */
4252
4253 tree
create_temporary_var(tree type)4254 create_temporary_var (tree type)
4255 {
4256 tree decl;
4257
4258 decl = build_decl (input_location,
4259 VAR_DECL, NULL_TREE, type);
4260 TREE_USED (decl) = 1;
4261 DECL_ARTIFICIAL (decl) = 1;
4262 DECL_IGNORED_P (decl) = 1;
4263 DECL_CONTEXT (decl) = current_function_decl;
4264
4265 return decl;
4266 }
4267
4268 /* Create a new temporary variable of the indicated TYPE, initialized
4269 to INIT.
4270
4271 It is not entered into current_binding_level, because that breaks
4272 things when it comes time to do final cleanups (which take place
4273 "outside" the binding contour of the function). */
4274
4275 tree
get_temp_regvar(tree type,tree init)4276 get_temp_regvar (tree type, tree init)
4277 {
4278 tree decl;
4279
4280 decl = create_temporary_var (type);
4281 add_decl_expr (decl);
4282
4283 finish_expr_stmt (cp_build_modify_expr (input_location, decl, INIT_EXPR,
4284 init, tf_warning_or_error));
4285
4286 return decl;
4287 }
4288
4289 /* Subroutine of build_vec_init. Returns true if assigning to an array of
4290 INNER_ELT_TYPE from INIT is trivial. */
4291
4292 static bool
vec_copy_assign_is_trivial(tree inner_elt_type,tree init)4293 vec_copy_assign_is_trivial (tree inner_elt_type, tree init)
4294 {
4295 tree fromtype = inner_elt_type;
4296 if (lvalue_p (init))
4297 fromtype = cp_build_reference_type (fromtype, /*rval*/false);
4298 return is_trivially_xible (MODIFY_EXPR, inner_elt_type, fromtype);
4299 }
4300
4301 /* Subroutine of build_vec_init: Check that the array has at least N
4302 elements. Other parameters are local variables in build_vec_init. */
4303
4304 void
finish_length_check(tree atype,tree iterator,tree obase,unsigned n)4305 finish_length_check (tree atype, tree iterator, tree obase, unsigned n)
4306 {
4307 tree nelts = build_int_cst (ptrdiff_type_node, n - 1);
4308 if (TREE_CODE (atype) != ARRAY_TYPE)
4309 {
4310 if (flag_exceptions)
4311 {
4312 tree c = fold_build2 (LT_EXPR, boolean_type_node, iterator,
4313 nelts);
4314 c = build3 (COND_EXPR, void_type_node, c,
4315 throw_bad_array_new_length (), void_node);
4316 finish_expr_stmt (c);
4317 }
4318 /* Don't check an array new when -fno-exceptions. */
4319 }
4320 else if (sanitize_flags_p (SANITIZE_BOUNDS)
4321 && current_function_decl != NULL_TREE)
4322 {
4323 /* Make sure the last element of the initializer is in bounds. */
4324 finish_expr_stmt
4325 (ubsan_instrument_bounds
4326 (input_location, obase, &nelts, /*ignore_off_by_one*/false));
4327 }
4328 }
4329
4330 /* `build_vec_init' returns tree structure that performs
4331 initialization of a vector of aggregate types.
4332
4333 BASE is a reference to the vector, of ARRAY_TYPE, or a pointer
4334 to the first element, of POINTER_TYPE.
4335 MAXINDEX is the maximum index of the array (one less than the
4336 number of elements). It is only used if BASE is a pointer or
4337 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
4338
4339 INIT is the (possibly NULL) initializer.
4340
4341 If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL. All
4342 elements in the array are value-initialized.
4343
4344 FROM_ARRAY is 0 if we should init everything with INIT
4345 (i.e., every element initialized from INIT).
4346 FROM_ARRAY is 1 if we should index into INIT in parallel
4347 with initialization of DECL.
4348 FROM_ARRAY is 2 if we should index into INIT in parallel,
4349 but use assignment instead of initialization. */
4350
4351 tree
build_vec_init(tree base,tree maxindex,tree init,bool explicit_value_init_p,int from_array,tsubst_flags_t complain,vec<tree,va_gc> ** flags)4352 build_vec_init (tree base, tree maxindex, tree init,
4353 bool explicit_value_init_p,
4354 int from_array,
4355 tsubst_flags_t complain,
4356 vec<tree, va_gc>** flags /* = nullptr */)
4357 {
4358 tree rval;
4359 tree base2 = NULL_TREE;
4360 tree itype = NULL_TREE;
4361 tree iterator;
4362 /* The type of BASE. */
4363 tree atype = TREE_TYPE (base);
4364 /* The type of an element in the array. */
4365 tree type = TREE_TYPE (atype);
4366 /* The element type reached after removing all outer array
4367 types. */
4368 tree inner_elt_type;
4369 /* The type of a pointer to an element in the array. */
4370 tree ptype;
4371 tree stmt_expr;
4372 tree compound_stmt;
4373 int destroy_temps;
4374 HOST_WIDE_INT num_initialized_elts = 0;
4375 bool is_global;
4376 tree obase = base;
4377 bool xvalue = false;
4378 bool errors = false;
4379 location_t loc = (init ? cp_expr_loc_or_input_loc (init)
4380 : location_of (base));
4381
4382 if (TREE_CODE (atype) == ARRAY_TYPE && TYPE_DOMAIN (atype))
4383 maxindex = array_type_nelts (atype);
4384
4385 if (maxindex == NULL_TREE || maxindex == error_mark_node)
4386 return error_mark_node;
4387
4388 maxindex = maybe_constant_value (maxindex);
4389 if (explicit_value_init_p)
4390 gcc_assert (!init);
4391
4392 inner_elt_type = strip_array_types (type);
4393
4394 /* Look through the TARGET_EXPR around a compound literal. */
4395 if (init && TREE_CODE (init) == TARGET_EXPR
4396 && TREE_CODE (TARGET_EXPR_INITIAL (init)) == CONSTRUCTOR
4397 && from_array != 2)
4398 init = TARGET_EXPR_INITIAL (init);
4399
4400 if (tree vi = get_vec_init_expr (init))
4401 init = VEC_INIT_EXPR_INIT (vi);
4402
4403 bool direct_init = false;
4404 if (from_array && init && BRACE_ENCLOSED_INITIALIZER_P (init)
4405 && CONSTRUCTOR_NELTS (init) == 1)
4406 {
4407 tree elt = CONSTRUCTOR_ELT (init, 0)->value;
4408 if (TREE_CODE (TREE_TYPE (elt)) == ARRAY_TYPE
4409 && TREE_CODE (elt) != VEC_INIT_EXPR)
4410 {
4411 direct_init = DIRECT_LIST_INIT_P (init);
4412 init = elt;
4413 }
4414 }
4415
4416 /* If we have a braced-init-list or string constant, make sure that the array
4417 is big enough for all the initializers. */
4418 bool length_check = (init
4419 && (TREE_CODE (init) == STRING_CST
4420 || (TREE_CODE (init) == CONSTRUCTOR
4421 && CONSTRUCTOR_NELTS (init) > 0))
4422 && !TREE_CONSTANT (maxindex));
4423
4424 if (init
4425 && TREE_CODE (atype) == ARRAY_TYPE
4426 && TREE_CONSTANT (maxindex)
4427 && !vla_type_p (type)
4428 && (from_array == 2
4429 ? vec_copy_assign_is_trivial (inner_elt_type, init)
4430 : !TYPE_NEEDS_CONSTRUCTING (type))
4431 && ((TREE_CODE (init) == CONSTRUCTOR
4432 && (BRACE_ENCLOSED_INITIALIZER_P (init)
4433 || (same_type_ignoring_top_level_qualifiers_p
4434 (atype, TREE_TYPE (init))))
4435 /* Don't do this if the CONSTRUCTOR might contain something
4436 that might throw and require us to clean up. */
4437 && (vec_safe_is_empty (CONSTRUCTOR_ELTS (init))
4438 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
4439 || from_array))
4440 {
4441 /* Do non-default initialization of trivial arrays resulting from
4442 brace-enclosed initializers. In this case, digest_init and
4443 store_constructor will handle the semantics for us. */
4444
4445 if (BRACE_ENCLOSED_INITIALIZER_P (init))
4446 init = digest_init (atype, init, complain);
4447 stmt_expr = build2 (INIT_EXPR, atype, base, init);
4448 return stmt_expr;
4449 }
4450
4451 maxindex = cp_convert (ptrdiff_type_node, maxindex, complain);
4452 maxindex = fold_simple (maxindex);
4453
4454 if (TREE_CODE (atype) == ARRAY_TYPE)
4455 {
4456 ptype = build_pointer_type (type);
4457 base = decay_conversion (base, complain);
4458 if (base == error_mark_node)
4459 return error_mark_node;
4460 base = cp_convert (ptype, base, complain);
4461 }
4462 else
4463 ptype = atype;
4464
4465 if (integer_all_onesp (maxindex))
4466 {
4467 /* Shortcut zero element case to avoid unneeded constructor synthesis. */
4468 if (init && TREE_SIDE_EFFECTS (init))
4469 base = build2 (COMPOUND_EXPR, ptype, init, base);
4470 return base;
4471 }
4472
4473 /* The code we are generating looks like:
4474 ({
4475 T* t1 = (T*) base;
4476 T* rval = t1;
4477 ptrdiff_t iterator = maxindex;
4478 try {
4479 for (; iterator != -1; --iterator) {
4480 ... initialize *t1 ...
4481 ++t1;
4482 }
4483 } catch (...) {
4484 ... destroy elements that were constructed ...
4485 }
4486 rval;
4487 })
4488
4489 We can omit the try and catch blocks if we know that the
4490 initialization will never throw an exception, or if the array
4491 elements do not have destructors. We can omit the loop completely if
4492 the elements of the array do not have constructors.
4493
4494 We actually wrap the entire body of the above in a STMT_EXPR, for
4495 tidiness.
4496
4497 When copying from array to another, when the array elements have
4498 only trivial copy constructors, we should use __builtin_memcpy
4499 rather than generating a loop. That way, we could take advantage
4500 of whatever cleverness the back end has for dealing with copies
4501 of blocks of memory. */
4502
4503 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
4504 destroy_temps = stmts_are_full_exprs_p ();
4505 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
4506 rval = get_temp_regvar (ptype, base);
4507 base = get_temp_regvar (ptype, rval);
4508 tree iterator_targ = get_target_expr (maxindex);
4509 add_stmt (iterator_targ);
4510 iterator = TARGET_EXPR_SLOT (iterator_targ);
4511
4512 /* If initializing one array from another, initialize element by
4513 element. We rely upon the below calls to do the argument
4514 checking. Evaluate the initializer before entering the try block. */
4515 if (from_array && init && TREE_CODE (init) != CONSTRUCTOR)
4516 {
4517 if (lvalue_kind (init) & clk_rvalueref)
4518 xvalue = true;
4519 base2 = decay_conversion (init, complain);
4520 if (base2 == error_mark_node)
4521 return error_mark_node;
4522 itype = TREE_TYPE (base2);
4523 base2 = get_temp_regvar (itype, base2);
4524 itype = TREE_TYPE (itype);
4525 }
4526
4527 /* Protect the entire array initialization so that we can destroy
4528 the partially constructed array if an exception is thrown.
4529 But don't do this if we're assigning. */
4530 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
4531 && from_array != 2)
4532 {
4533 tree e;
4534 tree m = cp_build_binary_op (input_location,
4535 MINUS_EXPR, maxindex, iterator,
4536 complain);
4537
4538 /* Flatten multi-dimensional array since build_vec_delete only
4539 expects one-dimensional array. */
4540 if (TREE_CODE (type) == ARRAY_TYPE)
4541 m = cp_build_binary_op (input_location,
4542 MULT_EXPR, m,
4543 /* Avoid mixing signed and unsigned. */
4544 convert (TREE_TYPE (m),
4545 array_type_nelts_total (type)),
4546 complain);
4547
4548 e = build_vec_delete_1 (input_location, rval, m,
4549 inner_elt_type, sfk_complete_destructor,
4550 /*use_global_delete=*/0, complain,
4551 /*in_cleanup*/true);
4552 if (e == error_mark_node)
4553 errors = true;
4554 TARGET_EXPR_CLEANUP (iterator_targ) = e;
4555 CLEANUP_EH_ONLY (iterator_targ) = true;
4556
4557 /* Since we push this cleanup before doing any initialization, cleanups
4558 for any temporaries in the initialization are naturally within our
4559 cleanup region, so we don't want wrap_temporary_cleanups to do
4560 anything for arrays. But if the array is a subobject, we need to
4561 tell split_nonconstant_init how to turn off this cleanup in favor of
4562 the cleanup for the complete object. */
4563 if (flags)
4564 vec_safe_push (*flags, build_tree_list (iterator, maxindex));
4565 }
4566
4567 /* Should we try to create a constant initializer? */
4568 bool try_const = (TREE_CODE (atype) == ARRAY_TYPE
4569 && TREE_CONSTANT (maxindex)
4570 && (init ? TREE_CODE (init) == CONSTRUCTOR
4571 : (type_has_constexpr_default_constructor
4572 (inner_elt_type)))
4573 && (literal_type_p (inner_elt_type)
4574 || TYPE_HAS_CONSTEXPR_CTOR (inner_elt_type)));
4575 vec<constructor_elt, va_gc> *const_vec = NULL;
4576 bool saw_non_const = false;
4577 /* If we're initializing a static array, we want to do static
4578 initialization of any elements with constant initializers even if
4579 some are non-constant. */
4580 bool do_static_init = (DECL_P (obase) && TREE_STATIC (obase));
4581
4582 bool empty_list = false;
4583 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
4584 && CONSTRUCTOR_NELTS (init) == 0)
4585 /* Skip over the handling of non-empty init lists. */
4586 empty_list = true;
4587
4588 /* Maybe pull out constant value when from_array? */
4589
4590 else if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
4591 {
4592 /* Do non-default initialization of non-trivial arrays resulting from
4593 brace-enclosed initializers. */
4594 unsigned HOST_WIDE_INT idx;
4595 tree field, elt;
4596 /* If the constructor already has the array type, it's been through
4597 digest_init, so we shouldn't try to do anything more. */
4598 bool digested = same_type_p (atype, TREE_TYPE (init));
4599 from_array = 0;
4600
4601 if (length_check)
4602 finish_length_check (atype, iterator, obase, CONSTRUCTOR_NELTS (init));
4603
4604 if (try_const)
4605 vec_alloc (const_vec, CONSTRUCTOR_NELTS (init));
4606
4607 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, field, elt)
4608 {
4609 tree baseref = build1 (INDIRECT_REF, type, base);
4610 tree one_init;
4611
4612 num_initialized_elts++;
4613
4614 /* We need to see sub-array TARGET_EXPR before cp_fold_r so we can
4615 handle cleanup flags properly. */
4616 gcc_checking_assert (!target_expr_needs_replace (elt));
4617
4618 if (digested)
4619 one_init = build2 (INIT_EXPR, type, baseref, elt);
4620 else if (tree vi = get_vec_init_expr (elt))
4621 one_init = expand_vec_init_expr (baseref, vi, complain, flags);
4622 else if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
4623 one_init = build_aggr_init (baseref, elt, 0, complain);
4624 else
4625 one_init = cp_build_modify_expr (input_location, baseref,
4626 NOP_EXPR, elt, complain);
4627 if (one_init == error_mark_node)
4628 errors = true;
4629 if (try_const)
4630 {
4631 if (!field)
4632 field = size_int (idx);
4633 tree e = maybe_constant_init (one_init);
4634 if (reduced_constant_expression_p (e))
4635 {
4636 CONSTRUCTOR_APPEND_ELT (const_vec, field, e);
4637 if (do_static_init)
4638 one_init = NULL_TREE;
4639 else
4640 one_init = build2 (INIT_EXPR, type, baseref, e);
4641 }
4642 else
4643 {
4644 if (do_static_init)
4645 {
4646 tree value = build_zero_init (TREE_TYPE (e), NULL_TREE,
4647 true);
4648 if (value)
4649 CONSTRUCTOR_APPEND_ELT (const_vec, field, value);
4650 }
4651 saw_non_const = true;
4652 }
4653 }
4654
4655 if (one_init)
4656 finish_expr_stmt (one_init);
4657
4658 one_init = cp_build_unary_op (PREINCREMENT_EXPR, base, false,
4659 complain);
4660 if (one_init == error_mark_node)
4661 errors = true;
4662 else
4663 finish_expr_stmt (one_init);
4664
4665 one_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, false,
4666 complain);
4667 if (one_init == error_mark_node)
4668 errors = true;
4669 else
4670 finish_expr_stmt (one_init);
4671 }
4672
4673 /* Any elements without explicit initializers get T{}. */
4674 empty_list = true;
4675 }
4676 else if (init && TREE_CODE (init) == STRING_CST)
4677 {
4678 /* Check that the array is at least as long as the string. */
4679 if (length_check)
4680 finish_length_check (atype, iterator, obase,
4681 TREE_STRING_LENGTH (init));
4682 tree length = build_int_cst (ptrdiff_type_node,
4683 TREE_STRING_LENGTH (init));
4684
4685 /* Copy the string to the first part of the array. */
4686 tree alias_set = build_int_cst (build_pointer_type (type), 0);
4687 tree lhs = build2 (MEM_REF, TREE_TYPE (init), base, alias_set);
4688 tree stmt = build2 (MODIFY_EXPR, void_type_node, lhs, init);
4689 finish_expr_stmt (stmt);
4690
4691 /* Adjust the counter and pointer. */
4692 stmt = cp_build_binary_op (loc, MINUS_EXPR, iterator, length, complain);
4693 stmt = build2 (MODIFY_EXPR, void_type_node, iterator, stmt);
4694 finish_expr_stmt (stmt);
4695
4696 stmt = cp_build_binary_op (loc, PLUS_EXPR, base, length, complain);
4697 stmt = build2 (MODIFY_EXPR, void_type_node, base, stmt);
4698 finish_expr_stmt (stmt);
4699
4700 /* And set the rest of the array to NUL. */
4701 from_array = 0;
4702 explicit_value_init_p = true;
4703 }
4704 else if (from_array)
4705 {
4706 if (init)
4707 /* OK, we set base2 above. */;
4708 else if (CLASS_TYPE_P (type)
4709 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
4710 {
4711 if (complain & tf_error)
4712 error ("initializer ends prematurely");
4713 errors = true;
4714 }
4715 }
4716
4717 /* Now, default-initialize any remaining elements. We don't need to
4718 do that if a) the type does not need constructing, or b) we've
4719 already initialized all the elements.
4720
4721 We do need to keep going if we're copying an array. */
4722
4723 if (try_const && !init
4724 && (cxx_dialect < cxx20
4725 || !default_init_uninitialized_part (inner_elt_type)))
4726 /* With a constexpr default constructor, which we checked for when
4727 setting try_const above, default-initialization is equivalent to
4728 value-initialization, and build_value_init gives us something more
4729 friendly to maybe_constant_init. Except in C++20 and up a constexpr
4730 constructor need not initialize all the members. */
4731 explicit_value_init_p = true;
4732 if (from_array
4733 || ((type_build_ctor_call (type) || init || explicit_value_init_p)
4734 && ! (tree_fits_shwi_p (maxindex)
4735 && (num_initialized_elts
4736 == tree_to_shwi (maxindex) + 1))))
4737 {
4738 /* If the ITERATOR is lesser or equal to -1, then we don't have to loop;
4739 we've already initialized all the elements. */
4740 tree for_stmt;
4741 tree elt_init;
4742 tree to;
4743
4744 for_stmt = begin_for_stmt (NULL_TREE, NULL_TREE);
4745 finish_init_stmt (for_stmt);
4746 finish_for_cond (build2 (GT_EXPR, boolean_type_node, iterator,
4747 build_int_cst (TREE_TYPE (iterator), -1)),
4748 for_stmt, false, 0);
4749 /* We used to pass this decrement to finish_for_expr; now we add it to
4750 elt_init below so it's part of the same full-expression as the
4751 initialization, and thus happens before any potentially throwing
4752 temporary cleanups. */
4753 tree decr = cp_build_unary_op (PREDECREMENT_EXPR, iterator, false,
4754 complain);
4755
4756
4757 to = build1 (INDIRECT_REF, type, base);
4758
4759 /* If the initializer is {}, then all elements are initialized from T{}.
4760 But for non-classes, that's the same as value-initialization. */
4761 if (empty_list)
4762 {
4763 if (cxx_dialect >= cxx11
4764 && (CLASS_TYPE_P (type)
4765 || TREE_CODE (type) == ARRAY_TYPE))
4766 {
4767 init = build_constructor (init_list_type_node, NULL);
4768 }
4769 else
4770 {
4771 init = NULL_TREE;
4772 explicit_value_init_p = true;
4773 }
4774 }
4775
4776 if (from_array)
4777 {
4778 tree from;
4779
4780 if (base2)
4781 {
4782 from = build1 (INDIRECT_REF, itype, base2);
4783 if (xvalue)
4784 from = move (from);
4785 if (direct_init)
4786 from = build_tree_list (NULL_TREE, from);
4787 }
4788 else
4789 from = NULL_TREE;
4790
4791 if (TREE_CODE (type) == ARRAY_TYPE)
4792 elt_init = build_vec_init (to, NULL_TREE, from, /*val_init*/false,
4793 from_array, complain);
4794 else if (from_array == 2)
4795 elt_init = cp_build_modify_expr (input_location, to, NOP_EXPR,
4796 from, complain);
4797 else if (type_build_ctor_call (type))
4798 elt_init = build_aggr_init (to, from, 0, complain);
4799 else if (from)
4800 elt_init = cp_build_modify_expr (input_location, to, NOP_EXPR, from,
4801 complain);
4802 else
4803 gcc_unreachable ();
4804 }
4805 else if (TREE_CODE (type) == ARRAY_TYPE)
4806 {
4807 if (init && !BRACE_ENCLOSED_INITIALIZER_P (init))
4808 {
4809 if ((complain & tf_error))
4810 error_at (loc, "array must be initialized "
4811 "with a brace-enclosed initializer");
4812 elt_init = error_mark_node;
4813 }
4814 else
4815 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
4816 0, init,
4817 explicit_value_init_p,
4818 0, complain);
4819 }
4820 else if (explicit_value_init_p)
4821 {
4822 elt_init = build_value_init (type, complain);
4823 if (elt_init != error_mark_node)
4824 elt_init = build2 (INIT_EXPR, type, to, elt_init);
4825 }
4826 else
4827 {
4828 gcc_assert (type_build_ctor_call (type) || init);
4829 if (CLASS_TYPE_P (type))
4830 elt_init = build_aggr_init (to, init, 0, complain);
4831 else
4832 {
4833 if (TREE_CODE (init) == TREE_LIST)
4834 init = build_x_compound_expr_from_list (init, ELK_INIT,
4835 complain);
4836 elt_init = (init == error_mark_node
4837 ? error_mark_node
4838 : build2 (INIT_EXPR, type, to, init));
4839 }
4840 }
4841
4842 if (elt_init == error_mark_node)
4843 errors = true;
4844
4845 if (try_const)
4846 {
4847 /* FIXME refs to earlier elts */
4848 tree e = maybe_constant_init (elt_init);
4849 if (reduced_constant_expression_p (e))
4850 {
4851 if (initializer_zerop (e))
4852 /* Don't fill the CONSTRUCTOR with zeros. */
4853 e = NULL_TREE;
4854 if (do_static_init)
4855 elt_init = NULL_TREE;
4856 }
4857 else
4858 {
4859 saw_non_const = true;
4860 if (do_static_init)
4861 e = build_zero_init (TREE_TYPE (e), NULL_TREE, true);
4862 else
4863 e = NULL_TREE;
4864 }
4865
4866 if (e)
4867 {
4868 HOST_WIDE_INT last = tree_to_shwi (maxindex);
4869 if (num_initialized_elts <= last)
4870 {
4871 tree field = size_int (num_initialized_elts);
4872 if (num_initialized_elts != last)
4873 field = build2 (RANGE_EXPR, sizetype, field,
4874 size_int (last));
4875 CONSTRUCTOR_APPEND_ELT (const_vec, field, e);
4876 }
4877 }
4878 }
4879
4880 /* [class.temporary]: "There are three contexts in which temporaries are
4881 destroyed at a different point than the end of the full-
4882 expression. The first context is when a default constructor is called
4883 to initialize an element of an array with no corresponding
4884 initializer. The second context is when a copy constructor is called
4885 to copy an element of an array while the entire array is copied. In
4886 either case, if the constructor has one or more default arguments, the
4887 destruction of every temporary created in a default argument is
4888 sequenced before the construction of the next array element, if any."
4889
4890 So, for this loop, statements are full-expressions. */
4891 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
4892 if (elt_init && !errors)
4893 elt_init = build2 (COMPOUND_EXPR, void_type_node, elt_init, decr);
4894 else
4895 elt_init = decr;
4896 finish_expr_stmt (elt_init);
4897 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
4898
4899 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, false,
4900 complain));
4901 if (base2)
4902 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, false,
4903 complain));
4904
4905 finish_for_stmt (for_stmt);
4906 }
4907
4908 /* The value of the array initialization is the array itself, RVAL
4909 is a pointer to the first element. */
4910 finish_stmt_expr_expr (rval, stmt_expr);
4911
4912 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
4913
4914 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
4915
4916 if (errors)
4917 return error_mark_node;
4918
4919 if (try_const)
4920 {
4921 if (!saw_non_const)
4922 {
4923 tree const_init = build_constructor (atype, const_vec);
4924 return build2 (INIT_EXPR, atype, obase, const_init);
4925 }
4926 else if (do_static_init && !vec_safe_is_empty (const_vec))
4927 DECL_INITIAL (obase) = build_constructor (atype, const_vec);
4928 else
4929 vec_free (const_vec);
4930 }
4931
4932 /* Now make the result have the correct type. */
4933 if (TREE_CODE (atype) == ARRAY_TYPE)
4934 {
4935 atype = build_reference_type (atype);
4936 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
4937 stmt_expr = convert_from_reference (stmt_expr);
4938 }
4939
4940 return stmt_expr;
4941 }
4942
4943 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
4944 build_delete. */
4945
4946 static tree
build_dtor_call(tree exp,special_function_kind dtor_kind,int flags,tsubst_flags_t complain)4947 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags,
4948 tsubst_flags_t complain)
4949 {
4950 tree name;
4951 switch (dtor_kind)
4952 {
4953 case sfk_complete_destructor:
4954 name = complete_dtor_identifier;
4955 break;
4956
4957 case sfk_base_destructor:
4958 name = base_dtor_identifier;
4959 break;
4960
4961 case sfk_deleting_destructor:
4962 name = deleting_dtor_identifier;
4963 break;
4964
4965 default:
4966 gcc_unreachable ();
4967 }
4968
4969 return build_special_member_call (exp, name,
4970 /*args=*/NULL,
4971 /*binfo=*/TREE_TYPE (exp),
4972 flags,
4973 complain);
4974 }
4975
4976 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
4977 ADDR is an expression which yields the store to be destroyed.
4978 AUTO_DELETE is the name of the destructor to call, i.e., either
4979 sfk_complete_destructor, sfk_base_destructor, or
4980 sfk_deleting_destructor.
4981
4982 FLAGS is the logical disjunction of zero or more LOOKUP_
4983 flags. See cp-tree.h for more info. */
4984
4985 tree
build_delete(location_t loc,tree otype,tree addr,special_function_kind auto_delete,int flags,int use_global_delete,tsubst_flags_t complain)4986 build_delete (location_t loc, tree otype, tree addr,
4987 special_function_kind auto_delete,
4988 int flags, int use_global_delete, tsubst_flags_t complain)
4989 {
4990 tree expr;
4991
4992 if (addr == error_mark_node)
4993 return error_mark_node;
4994
4995 tree type = TYPE_MAIN_VARIANT (otype);
4996
4997 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
4998 set to `error_mark_node' before it gets properly cleaned up. */
4999 if (type == error_mark_node)
5000 return error_mark_node;
5001
5002 if (TYPE_PTR_P (type))
5003 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
5004
5005 if (TREE_CODE (type) == ARRAY_TYPE)
5006 {
5007 if (TYPE_DOMAIN (type) == NULL_TREE)
5008 {
5009 if (complain & tf_error)
5010 error_at (loc, "unknown array size in delete");
5011 return error_mark_node;
5012 }
5013 return build_vec_delete (loc, addr, array_type_nelts (type),
5014 auto_delete, use_global_delete, complain);
5015 }
5016
5017 bool deleting = (auto_delete == sfk_deleting_destructor);
5018 gcc_assert (deleting == !(flags & LOOKUP_DESTRUCTOR));
5019
5020 if (TYPE_PTR_P (otype))
5021 {
5022 addr = mark_rvalue_use (addr);
5023
5024 /* We don't want to warn about delete of void*, only other
5025 incomplete types. Deleting other incomplete types
5026 invokes undefined behavior, but it is not ill-formed, so
5027 compile to something that would even do The Right Thing
5028 (TM) should the type have a trivial dtor and no delete
5029 operator. */
5030 if (!VOID_TYPE_P (type))
5031 {
5032 complete_type (type);
5033 if (deleting
5034 && !verify_type_context (loc, TCTX_DEALLOCATION, type,
5035 !(complain & tf_error)))
5036 return error_mark_node;
5037
5038 if (!COMPLETE_TYPE_P (type))
5039 {
5040 if (complain & tf_warning)
5041 {
5042 auto_diagnostic_group d;
5043 if (warning_at (loc, OPT_Wdelete_incomplete,
5044 "possible problem detected in invocation of "
5045 "%<operator delete%>"))
5046 {
5047 cxx_incomplete_type_diagnostic (addr, type, DK_WARNING);
5048 inform (loc,
5049 "neither the destructor nor the class-specific "
5050 "%<operator delete%> will be called, even if "
5051 "they are declared when the class is defined");
5052 }
5053 }
5054 }
5055 else if (deleting && warn_delnonvdtor
5056 && MAYBE_CLASS_TYPE_P (type) && !CLASSTYPE_FINAL (type)
5057 && TYPE_POLYMORPHIC_P (type))
5058 {
5059 tree dtor = CLASSTYPE_DESTRUCTOR (type);
5060 if (!dtor || !DECL_VINDEX (dtor))
5061 {
5062 if (CLASSTYPE_PURE_VIRTUALS (type))
5063 warning_at (loc, OPT_Wdelete_non_virtual_dtor,
5064 "deleting object of abstract class type %qT"
5065 " which has non-virtual destructor"
5066 " will cause undefined behavior", type);
5067 else
5068 warning_at (loc, OPT_Wdelete_non_virtual_dtor,
5069 "deleting object of polymorphic class type %qT"
5070 " which has non-virtual destructor"
5071 " might cause undefined behavior", type);
5072 }
5073 }
5074 }
5075
5076 /* Throw away const and volatile on target type of addr. */
5077 addr = convert_force (build_pointer_type (type), addr, 0, complain);
5078 }
5079 else
5080 {
5081 /* Don't check PROTECT here; leave that decision to the
5082 destructor. If the destructor is accessible, call it,
5083 else report error. */
5084 addr = cp_build_addr_expr (addr, complain);
5085 if (addr == error_mark_node)
5086 return error_mark_node;
5087
5088 addr = convert_force (build_pointer_type (type), addr, 0, complain);
5089 }
5090
5091 if (deleting)
5092 /* We will use ADDR multiple times so we must save it. */
5093 addr = save_expr (addr);
5094
5095 bool virtual_p = false;
5096 if (type_build_dtor_call (type))
5097 {
5098 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
5099 lazily_declare_fn (sfk_destructor, type);
5100 virtual_p = DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTOR (type));
5101 }
5102
5103 tree head = NULL_TREE;
5104 tree do_delete = NULL_TREE;
5105 bool destroying_delete = false;
5106
5107 if (!deleting)
5108 {
5109 /* Leave do_delete null. */
5110 }
5111 /* For `::delete x', we must not use the deleting destructor
5112 since then we would not be sure to get the global `operator
5113 delete'. */
5114 else if (use_global_delete)
5115 {
5116 head = get_target_expr (build_headof (addr));
5117 /* Delete the object. */
5118 do_delete = build_op_delete_call (DELETE_EXPR,
5119 head,
5120 cxx_sizeof_nowarn (type),
5121 /*global_p=*/true,
5122 /*placement=*/NULL_TREE,
5123 /*alloc_fn=*/NULL_TREE,
5124 complain);
5125 /* Otherwise, treat this like a complete object destructor
5126 call. */
5127 auto_delete = sfk_complete_destructor;
5128 }
5129 /* If the destructor is non-virtual, there is no deleting
5130 variant. Instead, we must explicitly call the appropriate
5131 `operator delete' here. */
5132 else if (!virtual_p)
5133 {
5134 /* Build the call. */
5135 do_delete = build_op_delete_call (DELETE_EXPR,
5136 addr,
5137 cxx_sizeof_nowarn (type),
5138 /*global_p=*/false,
5139 /*placement=*/NULL_TREE,
5140 /*alloc_fn=*/NULL_TREE,
5141 complain);
5142 /* Call the complete object destructor. */
5143 auto_delete = sfk_complete_destructor;
5144 if (do_delete != error_mark_node)
5145 {
5146 tree fn = get_callee_fndecl (do_delete);
5147 destroying_delete = destroying_delete_p (fn);
5148 }
5149 }
5150 else if (TYPE_GETS_REG_DELETE (type))
5151 {
5152 /* Make sure we have access to the member op delete, even though
5153 we'll actually be calling it from the destructor. */
5154 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
5155 /*global_p=*/false,
5156 /*placement=*/NULL_TREE,
5157 /*alloc_fn=*/NULL_TREE,
5158 complain);
5159 }
5160
5161 if (destroying_delete)
5162 /* The operator delete will call the destructor. */
5163 expr = addr;
5164 else if (type_build_dtor_call (type))
5165 expr = build_dtor_call (cp_build_fold_indirect_ref (addr),
5166 auto_delete, flags, complain);
5167 else
5168 expr = build_trivial_dtor_call (addr);
5169 if (expr == error_mark_node)
5170 return error_mark_node;
5171
5172 if (!deleting)
5173 {
5174 protected_set_expr_location (expr, loc);
5175 return expr;
5176 }
5177
5178 if (do_delete == error_mark_node)
5179 return error_mark_node;
5180
5181 if (do_delete && !TREE_SIDE_EFFECTS (expr))
5182 expr = do_delete;
5183 else if (do_delete)
5184 /* The delete operator must be called, regardless of whether
5185 the destructor throws.
5186
5187 [expr.delete]/7 The deallocation function is called
5188 regardless of whether the destructor for the object or some
5189 element of the array throws an exception. */
5190 expr = build2 (TRY_FINALLY_EXPR, void_type_node, expr, do_delete);
5191
5192 /* We need to calculate this before the dtor changes the vptr. */
5193 if (head)
5194 expr = build2 (COMPOUND_EXPR, void_type_node, head, expr);
5195
5196 /* Handle deleting a null pointer. */
5197 warning_sentinel s (warn_address);
5198 tree ifexp = cp_build_binary_op (loc, NE_EXPR, addr,
5199 nullptr_node, complain);
5200 ifexp = cp_fully_fold (ifexp);
5201
5202 if (ifexp == error_mark_node)
5203 return error_mark_node;
5204 /* This is a compiler generated comparison, don't emit
5205 e.g. -Wnonnull-compare warning for it. */
5206 else if (TREE_CODE (ifexp) == NE_EXPR)
5207 suppress_warning (ifexp, OPT_Wnonnull_compare);
5208
5209 if (!integer_nonzerop (ifexp))
5210 expr = build3 (COND_EXPR, void_type_node, ifexp, expr, void_node);
5211
5212 protected_set_expr_location (expr, loc);
5213 return expr;
5214 }
5215
5216 /* At the beginning of a destructor, push cleanups that will call the
5217 destructors for our base classes and members.
5218
5219 Called from begin_destructor_body. */
5220
5221 void
push_base_cleanups(void)5222 push_base_cleanups (void)
5223 {
5224 tree binfo, base_binfo;
5225 int i;
5226 tree member;
5227 tree expr;
5228 vec<tree, va_gc> *vbases;
5229
5230 /* Run destructors for all virtual baseclasses. */
5231 if (!ABSTRACT_CLASS_TYPE_P (current_class_type)
5232 && CLASSTYPE_VBASECLASSES (current_class_type))
5233 {
5234 tree cond = (condition_conversion
5235 (build2 (BIT_AND_EXPR, integer_type_node,
5236 current_in_charge_parm,
5237 integer_two_node)));
5238
5239 /* The CLASSTYPE_VBASECLASSES vector is in initialization
5240 order, which is also the right order for pushing cleanups. */
5241 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
5242 vec_safe_iterate (vbases, i, &base_binfo); i++)
5243 {
5244 if (type_build_dtor_call (BINFO_TYPE (base_binfo)))
5245 {
5246 expr = build_special_member_call (current_class_ref,
5247 base_dtor_identifier,
5248 NULL,
5249 base_binfo,
5250 (LOOKUP_NORMAL
5251 | LOOKUP_NONVIRTUAL),
5252 tf_warning_or_error);
5253 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
5254 {
5255 expr = build3 (COND_EXPR, void_type_node, cond,
5256 expr, void_node);
5257 finish_decl_cleanup (NULL_TREE, expr);
5258 }
5259 }
5260 }
5261 }
5262
5263 /* Take care of the remaining baseclasses. */
5264 for (binfo = TYPE_BINFO (current_class_type), i = 0;
5265 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
5266 {
5267 if (BINFO_VIRTUAL_P (base_binfo)
5268 || !type_build_dtor_call (BINFO_TYPE (base_binfo)))
5269 continue;
5270
5271 expr = build_special_member_call (current_class_ref,
5272 base_dtor_identifier,
5273 NULL, base_binfo,
5274 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
5275 tf_warning_or_error);
5276 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
5277 finish_decl_cleanup (NULL_TREE, expr);
5278 }
5279
5280 /* Don't automatically destroy union members. */
5281 if (TREE_CODE (current_class_type) == UNION_TYPE)
5282 return;
5283
5284 for (member = TYPE_FIELDS (current_class_type); member;
5285 member = DECL_CHAIN (member))
5286 {
5287 tree this_type = TREE_TYPE (member);
5288 if (this_type == error_mark_node
5289 || TREE_CODE (member) != FIELD_DECL
5290 || DECL_ARTIFICIAL (member))
5291 continue;
5292 if (ANON_AGGR_TYPE_P (this_type))
5293 continue;
5294 if (type_build_dtor_call (this_type))
5295 {
5296 tree this_member = (build_class_member_access_expr
5297 (current_class_ref, member,
5298 /*access_path=*/NULL_TREE,
5299 /*preserve_reference=*/false,
5300 tf_warning_or_error));
5301 expr = build_delete (input_location, this_type, this_member,
5302 sfk_complete_destructor,
5303 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
5304 0, tf_warning_or_error);
5305 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (this_type))
5306 finish_decl_cleanup (NULL_TREE, expr);
5307 }
5308 }
5309 }
5310
5311 /* Build a C++ vector delete expression.
5312 MAXINDEX is the number of elements to be deleted.
5313 ELT_SIZE is the nominal size of each element in the vector.
5314 BASE is the expression that should yield the store to be deleted.
5315 This function expands (or synthesizes) these calls itself.
5316 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
5317
5318 This also calls delete for virtual baseclasses of elements of the vector.
5319
5320 Update: MAXINDEX is no longer needed. The size can be extracted from the
5321 start of the vector for pointers, and from the type for arrays. We still
5322 use MAXINDEX for arrays because it happens to already have one of the
5323 values we'd have to extract. (We could use MAXINDEX with pointers to
5324 confirm the size, and trap if the numbers differ; not clear that it'd
5325 be worth bothering.) */
5326
5327 tree
build_vec_delete(location_t loc,tree base,tree maxindex,special_function_kind auto_delete_vec,int use_global_delete,tsubst_flags_t complain)5328 build_vec_delete (location_t loc, tree base, tree maxindex,
5329 special_function_kind auto_delete_vec,
5330 int use_global_delete, tsubst_flags_t complain)
5331 {
5332 tree type;
5333 tree rval;
5334 tree base_init = NULL_TREE;
5335
5336 type = TREE_TYPE (base);
5337
5338 if (TYPE_PTR_P (type))
5339 {
5340 /* Step back one from start of vector, and read dimension. */
5341 tree cookie_addr;
5342 tree size_ptr_type = build_pointer_type (sizetype);
5343
5344 base = mark_rvalue_use (base);
5345 if (TREE_SIDE_EFFECTS (base))
5346 {
5347 base_init = get_target_expr (base);
5348 base = TARGET_EXPR_SLOT (base_init);
5349 }
5350 type = strip_array_types (TREE_TYPE (type));
5351 cookie_addr = fold_build1_loc (loc, NEGATE_EXPR,
5352 sizetype, TYPE_SIZE_UNIT (sizetype));
5353 cookie_addr = fold_build_pointer_plus (fold_convert (size_ptr_type, base),
5354 cookie_addr);
5355 maxindex = cp_build_fold_indirect_ref (cookie_addr);
5356 }
5357 else if (TREE_CODE (type) == ARRAY_TYPE)
5358 {
5359 /* Get the total number of things in the array, maxindex is a
5360 bad name. */
5361 maxindex = array_type_nelts_total (type);
5362 type = strip_array_types (type);
5363 base = decay_conversion (base, complain);
5364 if (base == error_mark_node)
5365 return error_mark_node;
5366 if (TREE_SIDE_EFFECTS (base))
5367 {
5368 base_init = get_target_expr (base);
5369 base = TARGET_EXPR_SLOT (base_init);
5370 }
5371 }
5372 else
5373 {
5374 if (base != error_mark_node && !(complain & tf_error))
5375 error_at (loc,
5376 "type to vector delete is neither pointer or array type");
5377 return error_mark_node;
5378 }
5379
5380 rval = build_vec_delete_1 (loc, base, maxindex, type, auto_delete_vec,
5381 use_global_delete, complain);
5382 if (base_init && rval != error_mark_node)
5383 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
5384
5385 protected_set_expr_location (rval, loc);
5386 return rval;
5387 }
5388
5389 #include "gt-cp-init.h"
5390