xref: /llvm-project/clang/lib/Sema/SemaLookup.cpp (revision 6bb6c305752adef5a0034e4a039df19487ce8945)
1 //===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements name lookup for C, C++, Objective-C, and
10 //  Objective-C++.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/CXXInheritance.h"
16 #include "clang/AST/Decl.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclLookups.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/Basic/Builtins.h"
24 #include "clang/Basic/LangOptions.h"
25 #include "clang/Lex/HeaderSearch.h"
26 #include "clang/Lex/ModuleLoader.h"
27 #include "clang/Lex/Preprocessor.h"
28 #include "clang/Sema/DeclSpec.h"
29 #include "clang/Sema/Lookup.h"
30 #include "clang/Sema/Overload.h"
31 #include "clang/Sema/RISCVIntrinsicManager.h"
32 #include "clang/Sema/Scope.h"
33 #include "clang/Sema/ScopeInfo.h"
34 #include "clang/Sema/Sema.h"
35 #include "clang/Sema/SemaInternal.h"
36 #include "clang/Sema/SemaRISCV.h"
37 #include "clang/Sema/TemplateDeduction.h"
38 #include "clang/Sema/TypoCorrection.h"
39 #include "llvm/ADT/STLExtras.h"
40 #include "llvm/ADT/STLForwardCompat.h"
41 #include "llvm/ADT/SmallPtrSet.h"
42 #include "llvm/ADT/TinyPtrVector.h"
43 #include "llvm/ADT/edit_distance.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include <algorithm>
47 #include <iterator>
48 #include <list>
49 #include <optional>
50 #include <set>
51 #include <utility>
52 #include <vector>
53 
54 #include "OpenCLBuiltins.inc"
55 
56 using namespace clang;
57 using namespace sema;
58 
59 namespace {
60   class UnqualUsingEntry {
61     const DeclContext *Nominated;
62     const DeclContext *CommonAncestor;
63 
64   public:
65     UnqualUsingEntry(const DeclContext *Nominated,
66                      const DeclContext *CommonAncestor)
67       : Nominated(Nominated), CommonAncestor(CommonAncestor) {
68     }
69 
70     const DeclContext *getCommonAncestor() const {
71       return CommonAncestor;
72     }
73 
74     const DeclContext *getNominatedNamespace() const {
75       return Nominated;
76     }
77 
78     // Sort by the pointer value of the common ancestor.
79     struct Comparator {
80       bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
81         return L.getCommonAncestor() < R.getCommonAncestor();
82       }
83 
84       bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
85         return E.getCommonAncestor() < DC;
86       }
87 
88       bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
89         return DC < E.getCommonAncestor();
90       }
91     };
92   };
93 
94   /// A collection of using directives, as used by C++ unqualified
95   /// lookup.
96   class UnqualUsingDirectiveSet {
97     Sema &SemaRef;
98 
99     typedef SmallVector<UnqualUsingEntry, 8> ListTy;
100 
101     ListTy list;
102     llvm::SmallPtrSet<DeclContext*, 8> visited;
103 
104   public:
105     UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {}
106 
107     void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
108       // C++ [namespace.udir]p1:
109       //   During unqualified name lookup, the names appear as if they
110       //   were declared in the nearest enclosing namespace which contains
111       //   both the using-directive and the nominated namespace.
112       DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
113       assert(InnermostFileDC && InnermostFileDC->isFileContext());
114 
115       for (; S; S = S->getParent()) {
116         // C++ [namespace.udir]p1:
117         //   A using-directive shall not appear in class scope, but may
118         //   appear in namespace scope or in block scope.
119         DeclContext *Ctx = S->getEntity();
120         if (Ctx && Ctx->isFileContext()) {
121           visit(Ctx, Ctx);
122         } else if (!Ctx || Ctx->isFunctionOrMethod()) {
123           for (auto *I : S->using_directives())
124             if (SemaRef.isVisible(I))
125               visit(I, InnermostFileDC);
126         }
127       }
128     }
129 
130     // Visits a context and collect all of its using directives
131     // recursively.  Treats all using directives as if they were
132     // declared in the context.
133     //
134     // A given context is only every visited once, so it is important
135     // that contexts be visited from the inside out in order to get
136     // the effective DCs right.
137     void visit(DeclContext *DC, DeclContext *EffectiveDC) {
138       if (!visited.insert(DC).second)
139         return;
140 
141       addUsingDirectives(DC, EffectiveDC);
142     }
143 
144     // Visits a using directive and collects all of its using
145     // directives recursively.  Treats all using directives as if they
146     // were declared in the effective DC.
147     void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
148       DeclContext *NS = UD->getNominatedNamespace();
149       if (!visited.insert(NS).second)
150         return;
151 
152       addUsingDirective(UD, EffectiveDC);
153       addUsingDirectives(NS, EffectiveDC);
154     }
155 
156     // Adds all the using directives in a context (and those nominated
157     // by its using directives, transitively) as if they appeared in
158     // the given effective context.
159     void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
160       SmallVector<DeclContext*, 4> queue;
161       while (true) {
162         for (auto *UD : DC->using_directives()) {
163           DeclContext *NS = UD->getNominatedNamespace();
164           if (SemaRef.isVisible(UD) && visited.insert(NS).second) {
165             addUsingDirective(UD, EffectiveDC);
166             queue.push_back(NS);
167           }
168         }
169 
170         if (queue.empty())
171           return;
172 
173         DC = queue.pop_back_val();
174       }
175     }
176 
177     // Add a using directive as if it had been declared in the given
178     // context.  This helps implement C++ [namespace.udir]p3:
179     //   The using-directive is transitive: if a scope contains a
180     //   using-directive that nominates a second namespace that itself
181     //   contains using-directives, the effect is as if the
182     //   using-directives from the second namespace also appeared in
183     //   the first.
184     void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
185       // Find the common ancestor between the effective context and
186       // the nominated namespace.
187       DeclContext *Common = UD->getNominatedNamespace();
188       while (!Common->Encloses(EffectiveDC))
189         Common = Common->getParent();
190       Common = Common->getPrimaryContext();
191 
192       list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
193     }
194 
195     void done() { llvm::sort(list, UnqualUsingEntry::Comparator()); }
196 
197     typedef ListTy::const_iterator const_iterator;
198 
199     const_iterator begin() const { return list.begin(); }
200     const_iterator end() const { return list.end(); }
201 
202     llvm::iterator_range<const_iterator>
203     getNamespacesFor(const DeclContext *DC) const {
204       return llvm::make_range(std::equal_range(begin(), end(),
205                                                DC->getPrimaryContext(),
206                                                UnqualUsingEntry::Comparator()));
207     }
208   };
209 } // end anonymous namespace
210 
211 // Retrieve the set of identifier namespaces that correspond to a
212 // specific kind of name lookup.
213 static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
214                                bool CPlusPlus,
215                                bool Redeclaration) {
216   unsigned IDNS = 0;
217   switch (NameKind) {
218   case Sema::LookupObjCImplicitSelfParam:
219   case Sema::LookupOrdinaryName:
220   case Sema::LookupRedeclarationWithLinkage:
221   case Sema::LookupLocalFriendName:
222   case Sema::LookupDestructorName:
223     IDNS = Decl::IDNS_Ordinary;
224     if (CPlusPlus) {
225       IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
226       if (Redeclaration)
227         IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
228     }
229     if (Redeclaration)
230       IDNS |= Decl::IDNS_LocalExtern;
231     break;
232 
233   case Sema::LookupOperatorName:
234     // Operator lookup is its own crazy thing;  it is not the same
235     // as (e.g.) looking up an operator name for redeclaration.
236     assert(!Redeclaration && "cannot do redeclaration operator lookup");
237     IDNS = Decl::IDNS_NonMemberOperator;
238     break;
239 
240   case Sema::LookupTagName:
241     if (CPlusPlus) {
242       IDNS = Decl::IDNS_Type;
243 
244       // When looking for a redeclaration of a tag name, we add:
245       // 1) TagFriend to find undeclared friend decls
246       // 2) Namespace because they can't "overload" with tag decls.
247       // 3) Tag because it includes class templates, which can't
248       //    "overload" with tag decls.
249       if (Redeclaration)
250         IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
251     } else {
252       IDNS = Decl::IDNS_Tag;
253     }
254     break;
255 
256   case Sema::LookupLabel:
257     IDNS = Decl::IDNS_Label;
258     break;
259 
260   case Sema::LookupMemberName:
261     IDNS = Decl::IDNS_Member;
262     if (CPlusPlus)
263       IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
264     break;
265 
266   case Sema::LookupNestedNameSpecifierName:
267     IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
268     break;
269 
270   case Sema::LookupNamespaceName:
271     IDNS = Decl::IDNS_Namespace;
272     break;
273 
274   case Sema::LookupUsingDeclName:
275     assert(Redeclaration && "should only be used for redecl lookup");
276     IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
277            Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
278            Decl::IDNS_LocalExtern;
279     break;
280 
281   case Sema::LookupObjCProtocolName:
282     IDNS = Decl::IDNS_ObjCProtocol;
283     break;
284 
285   case Sema::LookupOMPReductionName:
286     IDNS = Decl::IDNS_OMPReduction;
287     break;
288 
289   case Sema::LookupOMPMapperName:
290     IDNS = Decl::IDNS_OMPMapper;
291     break;
292 
293   case Sema::LookupAnyName:
294     IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
295       | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
296       | Decl::IDNS_Type;
297     break;
298   }
299   return IDNS;
300 }
301 
302 void LookupResult::configure() {
303   IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
304                  isForRedeclaration());
305 
306   // If we're looking for one of the allocation or deallocation
307   // operators, make sure that the implicitly-declared new and delete
308   // operators can be found.
309   switch (NameInfo.getName().getCXXOverloadedOperator()) {
310   case OO_New:
311   case OO_Delete:
312   case OO_Array_New:
313   case OO_Array_Delete:
314     getSema().DeclareGlobalNewDelete();
315     break;
316 
317   default:
318     break;
319   }
320 
321   // Compiler builtins are always visible, regardless of where they end
322   // up being declared.
323   if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
324     if (unsigned BuiltinID = Id->getBuiltinID()) {
325       if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
326         AllowHidden = true;
327     }
328   }
329 }
330 
331 bool LookupResult::checkDebugAssumptions() const {
332   // This function is never called by NDEBUG builds.
333   assert(ResultKind != NotFound || Decls.size() == 0);
334   assert(ResultKind != Found || Decls.size() == 1);
335   assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
336          (Decls.size() == 1 &&
337           isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
338   assert(ResultKind != FoundUnresolvedValue || checkUnresolved());
339   assert(ResultKind != Ambiguous || Decls.size() > 1 ||
340          (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
341                                 Ambiguity == AmbiguousBaseSubobjectTypes)));
342   assert((Paths != nullptr) == (ResultKind == Ambiguous &&
343                                 (Ambiguity == AmbiguousBaseSubobjectTypes ||
344                                  Ambiguity == AmbiguousBaseSubobjects)));
345   return true;
346 }
347 
348 // Necessary because CXXBasePaths is not complete in Sema.h
349 void LookupResult::deletePaths(CXXBasePaths *Paths) {
350   delete Paths;
351 }
352 
353 /// Get a representative context for a declaration such that two declarations
354 /// will have the same context if they were found within the same scope.
355 static const DeclContext *getContextForScopeMatching(const Decl *D) {
356   // For function-local declarations, use that function as the context. This
357   // doesn't account for scopes within the function; the caller must deal with
358   // those.
359   if (const DeclContext *DC = D->getLexicalDeclContext();
360       DC->isFunctionOrMethod())
361     return DC;
362 
363   // Otherwise, look at the semantic context of the declaration. The
364   // declaration must have been found there.
365   return D->getDeclContext()->getRedeclContext();
366 }
367 
368 /// Determine whether \p D is a better lookup result than \p Existing,
369 /// given that they declare the same entity.
370 static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind,
371                                     const NamedDecl *D,
372                                     const NamedDecl *Existing) {
373   // When looking up redeclarations of a using declaration, prefer a using
374   // shadow declaration over any other declaration of the same entity.
375   if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) &&
376       !isa<UsingShadowDecl>(Existing))
377     return true;
378 
379   const auto *DUnderlying = D->getUnderlyingDecl();
380   const auto *EUnderlying = Existing->getUnderlyingDecl();
381 
382   // If they have different underlying declarations, prefer a typedef over the
383   // original type (this happens when two type declarations denote the same
384   // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef
385   // might carry additional semantic information, such as an alignment override.
386   // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag
387   // declaration over a typedef. Also prefer a tag over a typedef for
388   // destructor name lookup because in some contexts we only accept a
389   // class-name in a destructor declaration.
390   if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) {
391     assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying));
392     bool HaveTag = isa<TagDecl>(EUnderlying);
393     bool WantTag =
394         Kind == Sema::LookupTagName || Kind == Sema::LookupDestructorName;
395     return HaveTag != WantTag;
396   }
397 
398   // Pick the function with more default arguments.
399   // FIXME: In the presence of ambiguous default arguments, we should keep both,
400   //        so we can diagnose the ambiguity if the default argument is needed.
401   //        See C++ [over.match.best]p3.
402   if (const auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) {
403     const auto *EFD = cast<FunctionDecl>(EUnderlying);
404     unsigned DMin = DFD->getMinRequiredArguments();
405     unsigned EMin = EFD->getMinRequiredArguments();
406     // If D has more default arguments, it is preferred.
407     if (DMin != EMin)
408       return DMin < EMin;
409     // FIXME: When we track visibility for default function arguments, check
410     // that we pick the declaration with more visible default arguments.
411   }
412 
413   // Pick the template with more default template arguments.
414   if (const auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) {
415     const auto *ETD = cast<TemplateDecl>(EUnderlying);
416     unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments();
417     unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments();
418     // If D has more default arguments, it is preferred. Note that default
419     // arguments (and their visibility) is monotonically increasing across the
420     // redeclaration chain, so this is a quick proxy for "is more recent".
421     if (DMin != EMin)
422       return DMin < EMin;
423     // If D has more *visible* default arguments, it is preferred. Note, an
424     // earlier default argument being visible does not imply that a later
425     // default argument is visible, so we can't just check the first one.
426     for (unsigned I = DMin, N = DTD->getTemplateParameters()->size();
427         I != N; ++I) {
428       if (!S.hasVisibleDefaultArgument(
429               ETD->getTemplateParameters()->getParam(I)) &&
430           S.hasVisibleDefaultArgument(
431               DTD->getTemplateParameters()->getParam(I)))
432         return true;
433     }
434   }
435 
436   // VarDecl can have incomplete array types, prefer the one with more complete
437   // array type.
438   if (const auto *DVD = dyn_cast<VarDecl>(DUnderlying)) {
439     const auto *EVD = cast<VarDecl>(EUnderlying);
440     if (EVD->getType()->isIncompleteType() &&
441         !DVD->getType()->isIncompleteType()) {
442       // Prefer the decl with a more complete type if visible.
443       return S.isVisible(DVD);
444     }
445     return false; // Avoid picking up a newer decl, just because it was newer.
446   }
447 
448   // For most kinds of declaration, it doesn't really matter which one we pick.
449   if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) {
450     // If the existing declaration is hidden, prefer the new one. Otherwise,
451     // keep what we've got.
452     return !S.isVisible(Existing);
453   }
454 
455   // Pick the newer declaration; it might have a more precise type.
456   for (const Decl *Prev = DUnderlying->getPreviousDecl(); Prev;
457        Prev = Prev->getPreviousDecl())
458     if (Prev == EUnderlying)
459       return true;
460   return false;
461 }
462 
463 /// Determine whether \p D can hide a tag declaration.
464 static bool canHideTag(const NamedDecl *D) {
465   // C++ [basic.scope.declarative]p4:
466   //   Given a set of declarations in a single declarative region [...]
467   //   exactly one declaration shall declare a class name or enumeration name
468   //   that is not a typedef name and the other declarations shall all refer to
469   //   the same variable, non-static data member, or enumerator, or all refer
470   //   to functions and function templates; in this case the class name or
471   //   enumeration name is hidden.
472   // C++ [basic.scope.hiding]p2:
473   //   A class name or enumeration name can be hidden by the name of a
474   //   variable, data member, function, or enumerator declared in the same
475   //   scope.
476   // An UnresolvedUsingValueDecl always instantiates to one of these.
477   D = D->getUnderlyingDecl();
478   return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) ||
479          isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) ||
480          isa<UnresolvedUsingValueDecl>(D);
481 }
482 
483 /// Resolves the result kind of this lookup.
484 void LookupResult::resolveKind() {
485   unsigned N = Decls.size();
486 
487   // Fast case: no possible ambiguity.
488   if (N == 0) {
489     assert(ResultKind == NotFound ||
490            ResultKind == NotFoundInCurrentInstantiation);
491     return;
492   }
493 
494   // If there's a single decl, we need to examine it to decide what
495   // kind of lookup this is.
496   if (N == 1) {
497     const NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
498     if (isa<FunctionTemplateDecl>(D))
499       ResultKind = FoundOverloaded;
500     else if (isa<UnresolvedUsingValueDecl>(D))
501       ResultKind = FoundUnresolvedValue;
502     return;
503   }
504 
505   // Don't do any extra resolution if we've already resolved as ambiguous.
506   if (ResultKind == Ambiguous) return;
507 
508   llvm::SmallDenseMap<const NamedDecl *, unsigned, 16> Unique;
509   llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes;
510 
511   bool Ambiguous = false;
512   bool ReferenceToPlaceHolderVariable = false;
513   bool HasTag = false, HasFunction = false;
514   bool HasFunctionTemplate = false, HasUnresolved = false;
515   const NamedDecl *HasNonFunction = nullptr;
516 
517   llvm::SmallVector<const NamedDecl *, 4> EquivalentNonFunctions;
518   llvm::BitVector RemovedDecls(N);
519 
520   for (unsigned I = 0; I < N; I++) {
521     const NamedDecl *D = Decls[I]->getUnderlyingDecl();
522     D = cast<NamedDecl>(D->getCanonicalDecl());
523 
524     // Ignore an invalid declaration unless it's the only one left.
525     // Also ignore HLSLBufferDecl which not have name conflict with other Decls.
526     if ((D->isInvalidDecl() || isa<HLSLBufferDecl>(D)) &&
527         N - RemovedDecls.count() > 1) {
528       RemovedDecls.set(I);
529       continue;
530     }
531 
532     // C++ [basic.scope.hiding]p2:
533     //   A class name or enumeration name can be hidden by the name of
534     //   an object, function, or enumerator declared in the same
535     //   scope. If a class or enumeration name and an object, function,
536     //   or enumerator are declared in the same scope (in any order)
537     //   with the same name, the class or enumeration name is hidden
538     //   wherever the object, function, or enumerator name is visible.
539     if (HideTags && isa<TagDecl>(D)) {
540       bool Hidden = false;
541       for (auto *OtherDecl : Decls) {
542         if (canHideTag(OtherDecl) && !OtherDecl->isInvalidDecl() &&
543             getContextForScopeMatching(OtherDecl)->Equals(
544                 getContextForScopeMatching(Decls[I]))) {
545           RemovedDecls.set(I);
546           Hidden = true;
547           break;
548         }
549       }
550       if (Hidden)
551         continue;
552     }
553 
554     std::optional<unsigned> ExistingI;
555 
556     // Redeclarations of types via typedef can occur both within a scope
557     // and, through using declarations and directives, across scopes. There is
558     // no ambiguity if they all refer to the same type, so unique based on the
559     // canonical type.
560     if (const auto *TD = dyn_cast<TypeDecl>(D)) {
561       QualType T = getSema().Context.getTypeDeclType(TD);
562       auto UniqueResult = UniqueTypes.insert(
563           std::make_pair(getSema().Context.getCanonicalType(T), I));
564       if (!UniqueResult.second) {
565         // The type is not unique.
566         ExistingI = UniqueResult.first->second;
567       }
568     }
569 
570     // For non-type declarations, check for a prior lookup result naming this
571     // canonical declaration.
572     if (!ExistingI) {
573       auto UniqueResult = Unique.insert(std::make_pair(D, I));
574       if (!UniqueResult.second) {
575         // We've seen this entity before.
576         ExistingI = UniqueResult.first->second;
577       }
578     }
579 
580     if (ExistingI) {
581       // This is not a unique lookup result. Pick one of the results and
582       // discard the other.
583       if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I],
584                                   Decls[*ExistingI]))
585         Decls[*ExistingI] = Decls[I];
586       RemovedDecls.set(I);
587       continue;
588     }
589 
590     // Otherwise, do some decl type analysis and then continue.
591 
592     if (isa<UnresolvedUsingValueDecl>(D)) {
593       HasUnresolved = true;
594     } else if (isa<TagDecl>(D)) {
595       if (HasTag)
596         Ambiguous = true;
597       HasTag = true;
598     } else if (isa<FunctionTemplateDecl>(D)) {
599       HasFunction = true;
600       HasFunctionTemplate = true;
601     } else if (isa<FunctionDecl>(D)) {
602       HasFunction = true;
603     } else {
604       if (HasNonFunction) {
605         // If we're about to create an ambiguity between two declarations that
606         // are equivalent, but one is an internal linkage declaration from one
607         // module and the other is an internal linkage declaration from another
608         // module, just skip it.
609         if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction,
610                                                              D)) {
611           EquivalentNonFunctions.push_back(D);
612           RemovedDecls.set(I);
613           continue;
614         }
615         if (D->isPlaceholderVar(getSema().getLangOpts()) &&
616             getContextForScopeMatching(D) ==
617                 getContextForScopeMatching(Decls[I])) {
618           ReferenceToPlaceHolderVariable = true;
619         }
620         Ambiguous = true;
621       }
622       HasNonFunction = D;
623     }
624   }
625 
626   // FIXME: This diagnostic should really be delayed until we're done with
627   // the lookup result, in case the ambiguity is resolved by the caller.
628   if (!EquivalentNonFunctions.empty() && !Ambiguous)
629     getSema().diagnoseEquivalentInternalLinkageDeclarations(
630         getNameLoc(), HasNonFunction, EquivalentNonFunctions);
631 
632   // Remove decls by replacing them with decls from the end (which
633   // means that we need to iterate from the end) and then truncating
634   // to the new size.
635   for (int I = RemovedDecls.find_last(); I >= 0; I = RemovedDecls.find_prev(I))
636     Decls[I] = Decls[--N];
637   Decls.truncate(N);
638 
639   if ((HasNonFunction && (HasFunction || HasUnresolved)) ||
640       (HideTags && HasTag && (HasFunction || HasNonFunction || HasUnresolved)))
641     Ambiguous = true;
642 
643   if (Ambiguous && ReferenceToPlaceHolderVariable)
644     setAmbiguous(LookupResult::AmbiguousReferenceToPlaceholderVariable);
645   else if (Ambiguous)
646     setAmbiguous(LookupResult::AmbiguousReference);
647   else if (HasUnresolved)
648     ResultKind = LookupResult::FoundUnresolvedValue;
649   else if (N > 1 || HasFunctionTemplate)
650     ResultKind = LookupResult::FoundOverloaded;
651   else
652     ResultKind = LookupResult::Found;
653 }
654 
655 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
656   CXXBasePaths::const_paths_iterator I, E;
657   for (I = P.begin(), E = P.end(); I != E; ++I)
658     for (DeclContext::lookup_iterator DI = I->Decls, DE = DI.end(); DI != DE;
659          ++DI)
660       addDecl(*DI);
661 }
662 
663 void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
664   Paths = new CXXBasePaths;
665   Paths->swap(P);
666   addDeclsFromBasePaths(*Paths);
667   resolveKind();
668   setAmbiguous(AmbiguousBaseSubobjects);
669 }
670 
671 void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
672   Paths = new CXXBasePaths;
673   Paths->swap(P);
674   addDeclsFromBasePaths(*Paths);
675   resolveKind();
676   setAmbiguous(AmbiguousBaseSubobjectTypes);
677 }
678 
679 void LookupResult::print(raw_ostream &Out) {
680   Out << Decls.size() << " result(s)";
681   if (isAmbiguous()) Out << ", ambiguous";
682   if (Paths) Out << ", base paths present";
683 
684   for (iterator I = begin(), E = end(); I != E; ++I) {
685     Out << "\n";
686     (*I)->print(Out, 2);
687   }
688 }
689 
690 LLVM_DUMP_METHOD void LookupResult::dump() {
691   llvm::errs() << "lookup results for " << getLookupName().getAsString()
692                << ":\n";
693   for (NamedDecl *D : *this)
694     D->dump();
695 }
696 
697 /// Diagnose a missing builtin type.
698 static QualType diagOpenCLBuiltinTypeError(Sema &S, llvm::StringRef TypeClass,
699                                            llvm::StringRef Name) {
700   S.Diag(SourceLocation(), diag::err_opencl_type_not_found)
701       << TypeClass << Name;
702   return S.Context.VoidTy;
703 }
704 
705 /// Lookup an OpenCL enum type.
706 static QualType getOpenCLEnumType(Sema &S, llvm::StringRef Name) {
707   LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(),
708                       Sema::LookupTagName);
709   S.LookupName(Result, S.TUScope);
710   if (Result.empty())
711     return diagOpenCLBuiltinTypeError(S, "enum", Name);
712   EnumDecl *Decl = Result.getAsSingle<EnumDecl>();
713   if (!Decl)
714     return diagOpenCLBuiltinTypeError(S, "enum", Name);
715   return S.Context.getEnumType(Decl);
716 }
717 
718 /// Lookup an OpenCL typedef type.
719 static QualType getOpenCLTypedefType(Sema &S, llvm::StringRef Name) {
720   LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(),
721                       Sema::LookupOrdinaryName);
722   S.LookupName(Result, S.TUScope);
723   if (Result.empty())
724     return diagOpenCLBuiltinTypeError(S, "typedef", Name);
725   TypedefNameDecl *Decl = Result.getAsSingle<TypedefNameDecl>();
726   if (!Decl)
727     return diagOpenCLBuiltinTypeError(S, "typedef", Name);
728   return S.Context.getTypedefType(Decl);
729 }
730 
731 /// Get the QualType instances of the return type and arguments for an OpenCL
732 /// builtin function signature.
733 /// \param S (in) The Sema instance.
734 /// \param OpenCLBuiltin (in) The signature currently handled.
735 /// \param GenTypeMaxCnt (out) Maximum number of types contained in a generic
736 ///        type used as return type or as argument.
737 ///        Only meaningful for generic types, otherwise equals 1.
738 /// \param RetTypes (out) List of the possible return types.
739 /// \param ArgTypes (out) List of the possible argument types.  For each
740 ///        argument, ArgTypes contains QualTypes for the Cartesian product
741 ///        of (vector sizes) x (types) .
742 static void GetQualTypesForOpenCLBuiltin(
743     Sema &S, const OpenCLBuiltinStruct &OpenCLBuiltin, unsigned &GenTypeMaxCnt,
744     SmallVector<QualType, 1> &RetTypes,
745     SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
746   // Get the QualType instances of the return types.
747   unsigned Sig = SignatureTable[OpenCLBuiltin.SigTableIndex];
748   OCL2Qual(S, TypeTable[Sig], RetTypes);
749   GenTypeMaxCnt = RetTypes.size();
750 
751   // Get the QualType instances of the arguments.
752   // First type is the return type, skip it.
753   for (unsigned Index = 1; Index < OpenCLBuiltin.NumTypes; Index++) {
754     SmallVector<QualType, 1> Ty;
755     OCL2Qual(S, TypeTable[SignatureTable[OpenCLBuiltin.SigTableIndex + Index]],
756              Ty);
757     GenTypeMaxCnt = (Ty.size() > GenTypeMaxCnt) ? Ty.size() : GenTypeMaxCnt;
758     ArgTypes.push_back(std::move(Ty));
759   }
760 }
761 
762 /// Create a list of the candidate function overloads for an OpenCL builtin
763 /// function.
764 /// \param Context (in) The ASTContext instance.
765 /// \param GenTypeMaxCnt (in) Maximum number of types contained in a generic
766 ///        type used as return type or as argument.
767 ///        Only meaningful for generic types, otherwise equals 1.
768 /// \param FunctionList (out) List of FunctionTypes.
769 /// \param RetTypes (in) List of the possible return types.
770 /// \param ArgTypes (in) List of the possible types for the arguments.
771 static void GetOpenCLBuiltinFctOverloads(
772     ASTContext &Context, unsigned GenTypeMaxCnt,
773     std::vector<QualType> &FunctionList, SmallVector<QualType, 1> &RetTypes,
774     SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
775   FunctionProtoType::ExtProtoInfo PI(
776       Context.getDefaultCallingConvention(false, false, true));
777   PI.Variadic = false;
778 
779   // Do not attempt to create any FunctionTypes if there are no return types,
780   // which happens when a type belongs to a disabled extension.
781   if (RetTypes.size() == 0)
782     return;
783 
784   // Create FunctionTypes for each (gen)type.
785   for (unsigned IGenType = 0; IGenType < GenTypeMaxCnt; IGenType++) {
786     SmallVector<QualType, 5> ArgList;
787 
788     for (unsigned A = 0; A < ArgTypes.size(); A++) {
789       // Bail out if there is an argument that has no available types.
790       if (ArgTypes[A].size() == 0)
791         return;
792 
793       // Builtins such as "max" have an "sgentype" argument that represents
794       // the corresponding scalar type of a gentype.  The number of gentypes
795       // must be a multiple of the number of sgentypes.
796       assert(GenTypeMaxCnt % ArgTypes[A].size() == 0 &&
797              "argument type count not compatible with gentype type count");
798       unsigned Idx = IGenType % ArgTypes[A].size();
799       ArgList.push_back(ArgTypes[A][Idx]);
800     }
801 
802     FunctionList.push_back(Context.getFunctionType(
803         RetTypes[(RetTypes.size() != 1) ? IGenType : 0], ArgList, PI));
804   }
805 }
806 
807 /// When trying to resolve a function name, if isOpenCLBuiltin() returns a
808 /// non-null <Index, Len> pair, then the name is referencing an OpenCL
809 /// builtin function.  Add all candidate signatures to the LookUpResult.
810 ///
811 /// \param S (in) The Sema instance.
812 /// \param LR (inout) The LookupResult instance.
813 /// \param II (in) The identifier being resolved.
814 /// \param FctIndex (in) Starting index in the BuiltinTable.
815 /// \param Len (in) The signature list has Len elements.
816 static void InsertOCLBuiltinDeclarationsFromTable(Sema &S, LookupResult &LR,
817                                                   IdentifierInfo *II,
818                                                   const unsigned FctIndex,
819                                                   const unsigned Len) {
820   // The builtin function declaration uses generic types (gentype).
821   bool HasGenType = false;
822 
823   // Maximum number of types contained in a generic type used as return type or
824   // as argument.  Only meaningful for generic types, otherwise equals 1.
825   unsigned GenTypeMaxCnt;
826 
827   ASTContext &Context = S.Context;
828 
829   for (unsigned SignatureIndex = 0; SignatureIndex < Len; SignatureIndex++) {
830     const OpenCLBuiltinStruct &OpenCLBuiltin =
831         BuiltinTable[FctIndex + SignatureIndex];
832 
833     // Ignore this builtin function if it is not available in the currently
834     // selected language version.
835     if (!isOpenCLVersionContainedInMask(Context.getLangOpts(),
836                                         OpenCLBuiltin.Versions))
837       continue;
838 
839     // Ignore this builtin function if it carries an extension macro that is
840     // not defined. This indicates that the extension is not supported by the
841     // target, so the builtin function should not be available.
842     StringRef Extensions = FunctionExtensionTable[OpenCLBuiltin.Extension];
843     if (!Extensions.empty()) {
844       SmallVector<StringRef, 2> ExtVec;
845       Extensions.split(ExtVec, " ");
846       bool AllExtensionsDefined = true;
847       for (StringRef Ext : ExtVec) {
848         if (!S.getPreprocessor().isMacroDefined(Ext)) {
849           AllExtensionsDefined = false;
850           break;
851         }
852       }
853       if (!AllExtensionsDefined)
854         continue;
855     }
856 
857     SmallVector<QualType, 1> RetTypes;
858     SmallVector<SmallVector<QualType, 1>, 5> ArgTypes;
859 
860     // Obtain QualType lists for the function signature.
861     GetQualTypesForOpenCLBuiltin(S, OpenCLBuiltin, GenTypeMaxCnt, RetTypes,
862                                  ArgTypes);
863     if (GenTypeMaxCnt > 1) {
864       HasGenType = true;
865     }
866 
867     // Create function overload for each type combination.
868     std::vector<QualType> FunctionList;
869     GetOpenCLBuiltinFctOverloads(Context, GenTypeMaxCnt, FunctionList, RetTypes,
870                                  ArgTypes);
871 
872     SourceLocation Loc = LR.getNameLoc();
873     DeclContext *Parent = Context.getTranslationUnitDecl();
874     FunctionDecl *NewOpenCLBuiltin;
875 
876     for (const auto &FTy : FunctionList) {
877       NewOpenCLBuiltin = FunctionDecl::Create(
878           Context, Parent, Loc, Loc, II, FTy, /*TInfo=*/nullptr, SC_Extern,
879           S.getCurFPFeatures().isFPConstrained(), false,
880           FTy->isFunctionProtoType());
881       NewOpenCLBuiltin->setImplicit();
882 
883       // Create Decl objects for each parameter, adding them to the
884       // FunctionDecl.
885       const auto *FP = cast<FunctionProtoType>(FTy);
886       SmallVector<ParmVarDecl *, 4> ParmList;
887       for (unsigned IParm = 0, e = FP->getNumParams(); IParm != e; ++IParm) {
888         ParmVarDecl *Parm = ParmVarDecl::Create(
889             Context, NewOpenCLBuiltin, SourceLocation(), SourceLocation(),
890             nullptr, FP->getParamType(IParm), nullptr, SC_None, nullptr);
891         Parm->setScopeInfo(0, IParm);
892         ParmList.push_back(Parm);
893       }
894       NewOpenCLBuiltin->setParams(ParmList);
895 
896       // Add function attributes.
897       if (OpenCLBuiltin.IsPure)
898         NewOpenCLBuiltin->addAttr(PureAttr::CreateImplicit(Context));
899       if (OpenCLBuiltin.IsConst)
900         NewOpenCLBuiltin->addAttr(ConstAttr::CreateImplicit(Context));
901       if (OpenCLBuiltin.IsConv)
902         NewOpenCLBuiltin->addAttr(ConvergentAttr::CreateImplicit(Context));
903 
904       if (!S.getLangOpts().OpenCLCPlusPlus)
905         NewOpenCLBuiltin->addAttr(OverloadableAttr::CreateImplicit(Context));
906 
907       LR.addDecl(NewOpenCLBuiltin);
908     }
909   }
910 
911   // If we added overloads, need to resolve the lookup result.
912   if (Len > 1 || HasGenType)
913     LR.resolveKind();
914 }
915 
916 bool Sema::LookupBuiltin(LookupResult &R) {
917   Sema::LookupNameKind NameKind = R.getLookupKind();
918 
919   // If we didn't find a use of this identifier, and if the identifier
920   // corresponds to a compiler builtin, create the decl object for the builtin
921   // now, injecting it into translation unit scope, and return it.
922   if (NameKind == Sema::LookupOrdinaryName ||
923       NameKind == Sema::LookupRedeclarationWithLinkage) {
924     IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
925     if (II) {
926       if (getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) {
927         if (II == getASTContext().getMakeIntegerSeqName()) {
928           R.addDecl(getASTContext().getMakeIntegerSeqDecl());
929           return true;
930         }
931         if (II == getASTContext().getTypePackElementName()) {
932           R.addDecl(getASTContext().getTypePackElementDecl());
933           return true;
934         }
935         if (II == getASTContext().getBuiltinCommonTypeName()) {
936           R.addDecl(getASTContext().getBuiltinCommonTypeDecl());
937           return true;
938         }
939       }
940 
941       // Check if this is an OpenCL Builtin, and if so, insert its overloads.
942       if (getLangOpts().OpenCL && getLangOpts().DeclareOpenCLBuiltins) {
943         auto Index = isOpenCLBuiltin(II->getName());
944         if (Index.first) {
945           InsertOCLBuiltinDeclarationsFromTable(*this, R, II, Index.first - 1,
946                                                 Index.second);
947           return true;
948         }
949       }
950 
951       if (RISCV().DeclareRVVBuiltins || RISCV().DeclareSiFiveVectorBuiltins) {
952         if (!RISCV().IntrinsicManager)
953           RISCV().IntrinsicManager = CreateRISCVIntrinsicManager(*this);
954 
955         RISCV().IntrinsicManager->InitIntrinsicList();
956 
957         if (RISCV().IntrinsicManager->CreateIntrinsicIfFound(R, II, PP))
958           return true;
959       }
960 
961       // If this is a builtin on this (or all) targets, create the decl.
962       if (unsigned BuiltinID = II->getBuiltinID()) {
963         // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined
964         // library functions like 'malloc'. Instead, we'll just error.
965         if ((getLangOpts().CPlusPlus || getLangOpts().OpenCL) &&
966             Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
967           return false;
968 
969         if (NamedDecl *D =
970                 LazilyCreateBuiltin(II, BuiltinID, TUScope,
971                                     R.isForRedeclaration(), R.getNameLoc())) {
972           R.addDecl(D);
973           return true;
974         }
975       }
976     }
977   }
978 
979   return false;
980 }
981 
982 /// Looks up the declaration of "struct objc_super" and
983 /// saves it for later use in building builtin declaration of
984 /// objc_msgSendSuper and objc_msgSendSuper_stret.
985 static void LookupPredefedObjCSuperType(Sema &Sema, Scope *S) {
986   ASTContext &Context = Sema.Context;
987   LookupResult Result(Sema, &Context.Idents.get("objc_super"), SourceLocation(),
988                       Sema::LookupTagName);
989   Sema.LookupName(Result, S);
990   if (Result.getResultKind() == LookupResult::Found)
991     if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
992       Context.setObjCSuperType(Context.getTagDeclType(TD));
993 }
994 
995 void Sema::LookupNecessaryTypesForBuiltin(Scope *S, unsigned ID) {
996   if (ID == Builtin::BIobjc_msgSendSuper)
997     LookupPredefedObjCSuperType(*this, S);
998 }
999 
1000 /// Determine whether we can declare a special member function within
1001 /// the class at this point.
1002 static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
1003   // We need to have a definition for the class.
1004   if (!Class->getDefinition() || Class->isDependentContext())
1005     return false;
1006 
1007   // We can't be in the middle of defining the class.
1008   return !Class->isBeingDefined();
1009 }
1010 
1011 void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
1012   if (!CanDeclareSpecialMemberFunction(Class))
1013     return;
1014 
1015   // If the default constructor has not yet been declared, do so now.
1016   if (Class->needsImplicitDefaultConstructor())
1017     DeclareImplicitDefaultConstructor(Class);
1018 
1019   // If the copy constructor has not yet been declared, do so now.
1020   if (Class->needsImplicitCopyConstructor())
1021     DeclareImplicitCopyConstructor(Class);
1022 
1023   // If the copy assignment operator has not yet been declared, do so now.
1024   if (Class->needsImplicitCopyAssignment())
1025     DeclareImplicitCopyAssignment(Class);
1026 
1027   if (getLangOpts().CPlusPlus11) {
1028     // If the move constructor has not yet been declared, do so now.
1029     if (Class->needsImplicitMoveConstructor())
1030       DeclareImplicitMoveConstructor(Class);
1031 
1032     // If the move assignment operator has not yet been declared, do so now.
1033     if (Class->needsImplicitMoveAssignment())
1034       DeclareImplicitMoveAssignment(Class);
1035   }
1036 
1037   // If the destructor has not yet been declared, do so now.
1038   if (Class->needsImplicitDestructor())
1039     DeclareImplicitDestructor(Class);
1040 }
1041 
1042 /// Determine whether this is the name of an implicitly-declared
1043 /// special member function.
1044 static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
1045   switch (Name.getNameKind()) {
1046   case DeclarationName::CXXConstructorName:
1047   case DeclarationName::CXXDestructorName:
1048     return true;
1049 
1050   case DeclarationName::CXXOperatorName:
1051     return Name.getCXXOverloadedOperator() == OO_Equal;
1052 
1053   default:
1054     break;
1055   }
1056 
1057   return false;
1058 }
1059 
1060 /// If there are any implicit member functions with the given name
1061 /// that need to be declared in the given declaration context, do so.
1062 static void DeclareImplicitMemberFunctionsWithName(Sema &S,
1063                                                    DeclarationName Name,
1064                                                    SourceLocation Loc,
1065                                                    const DeclContext *DC) {
1066   if (!DC)
1067     return;
1068 
1069   switch (Name.getNameKind()) {
1070   case DeclarationName::CXXConstructorName:
1071     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
1072       if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
1073         CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
1074         if (Record->needsImplicitDefaultConstructor())
1075           S.DeclareImplicitDefaultConstructor(Class);
1076         if (Record->needsImplicitCopyConstructor())
1077           S.DeclareImplicitCopyConstructor(Class);
1078         if (S.getLangOpts().CPlusPlus11 &&
1079             Record->needsImplicitMoveConstructor())
1080           S.DeclareImplicitMoveConstructor(Class);
1081       }
1082     break;
1083 
1084   case DeclarationName::CXXDestructorName:
1085     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
1086       if (Record->getDefinition() && Record->needsImplicitDestructor() &&
1087           CanDeclareSpecialMemberFunction(Record))
1088         S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
1089     break;
1090 
1091   case DeclarationName::CXXOperatorName:
1092     if (Name.getCXXOverloadedOperator() != OO_Equal)
1093       break;
1094 
1095     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
1096       if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
1097         CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
1098         if (Record->needsImplicitCopyAssignment())
1099           S.DeclareImplicitCopyAssignment(Class);
1100         if (S.getLangOpts().CPlusPlus11 &&
1101             Record->needsImplicitMoveAssignment())
1102           S.DeclareImplicitMoveAssignment(Class);
1103       }
1104     }
1105     break;
1106 
1107   case DeclarationName::CXXDeductionGuideName:
1108     S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc);
1109     break;
1110 
1111   default:
1112     break;
1113   }
1114 }
1115 
1116 // Adds all qualifying matches for a name within a decl context to the
1117 // given lookup result.  Returns true if any matches were found.
1118 static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
1119   bool Found = false;
1120 
1121   // Lazily declare C++ special member functions.
1122   if (S.getLangOpts().CPlusPlus)
1123     DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(),
1124                                            DC);
1125 
1126   // Perform lookup into this declaration context.
1127   DeclContext::lookup_result DR = DC->lookup(R.getLookupName());
1128   for (NamedDecl *D : DR) {
1129     if ((D = R.getAcceptableDecl(D))) {
1130       R.addDecl(D);
1131       Found = true;
1132     }
1133   }
1134 
1135   if (!Found && DC->isTranslationUnit() && S.LookupBuiltin(R))
1136     return true;
1137 
1138   if (R.getLookupName().getNameKind()
1139         != DeclarationName::CXXConversionFunctionName ||
1140       R.getLookupName().getCXXNameType()->isDependentType() ||
1141       !isa<CXXRecordDecl>(DC))
1142     return Found;
1143 
1144   // C++ [temp.mem]p6:
1145   //   A specialization of a conversion function template is not found by
1146   //   name lookup. Instead, any conversion function templates visible in the
1147   //   context of the use are considered. [...]
1148   const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
1149   if (!Record->isCompleteDefinition())
1150     return Found;
1151 
1152   // For conversion operators, 'operator auto' should only match
1153   // 'operator auto'.  Since 'auto' is not a type, it shouldn't be considered
1154   // as a candidate for template substitution.
1155   auto *ContainedDeducedType =
1156       R.getLookupName().getCXXNameType()->getContainedDeducedType();
1157   if (R.getLookupName().getNameKind() ==
1158           DeclarationName::CXXConversionFunctionName &&
1159       ContainedDeducedType && ContainedDeducedType->isUndeducedType())
1160     return Found;
1161 
1162   for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
1163          UEnd = Record->conversion_end(); U != UEnd; ++U) {
1164     FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
1165     if (!ConvTemplate)
1166       continue;
1167 
1168     // When we're performing lookup for the purposes of redeclaration, just
1169     // add the conversion function template. When we deduce template
1170     // arguments for specializations, we'll end up unifying the return
1171     // type of the new declaration with the type of the function template.
1172     if (R.isForRedeclaration()) {
1173       R.addDecl(ConvTemplate);
1174       Found = true;
1175       continue;
1176     }
1177 
1178     // C++ [temp.mem]p6:
1179     //   [...] For each such operator, if argument deduction succeeds
1180     //   (14.9.2.3), the resulting specialization is used as if found by
1181     //   name lookup.
1182     //
1183     // When referencing a conversion function for any purpose other than
1184     // a redeclaration (such that we'll be building an expression with the
1185     // result), perform template argument deduction and place the
1186     // specialization into the result set. We do this to avoid forcing all
1187     // callers to perform special deduction for conversion functions.
1188     TemplateDeductionInfo Info(R.getNameLoc());
1189     FunctionDecl *Specialization = nullptr;
1190 
1191     const FunctionProtoType *ConvProto
1192       = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
1193     assert(ConvProto && "Nonsensical conversion function template type");
1194 
1195     // Compute the type of the function that we would expect the conversion
1196     // function to have, if it were to match the name given.
1197     // FIXME: Calling convention!
1198     FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
1199     EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
1200     EPI.ExceptionSpec = EST_None;
1201     QualType ExpectedType = R.getSema().Context.getFunctionType(
1202         R.getLookupName().getCXXNameType(), {}, EPI);
1203 
1204     // Perform template argument deduction against the type that we would
1205     // expect the function to have.
1206     if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
1207                                             Specialization, Info) ==
1208         TemplateDeductionResult::Success) {
1209       R.addDecl(Specialization);
1210       Found = true;
1211     }
1212   }
1213 
1214   return Found;
1215 }
1216 
1217 // Performs C++ unqualified lookup into the given file context.
1218 static bool CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
1219                                const DeclContext *NS,
1220                                UnqualUsingDirectiveSet &UDirs) {
1221 
1222   assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
1223 
1224   // Perform direct name lookup into the LookupCtx.
1225   bool Found = LookupDirect(S, R, NS);
1226 
1227   // Perform direct name lookup into the namespaces nominated by the
1228   // using directives whose common ancestor is this namespace.
1229   for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
1230     if (LookupDirect(S, R, UUE.getNominatedNamespace()))
1231       Found = true;
1232 
1233   R.resolveKind();
1234 
1235   return Found;
1236 }
1237 
1238 static bool isNamespaceOrTranslationUnitScope(Scope *S) {
1239   if (DeclContext *Ctx = S->getEntity())
1240     return Ctx->isFileContext();
1241   return false;
1242 }
1243 
1244 /// Find the outer declaration context from this scope. This indicates the
1245 /// context that we should search up to (exclusive) before considering the
1246 /// parent of the specified scope.
1247 static DeclContext *findOuterContext(Scope *S) {
1248   for (Scope *OuterS = S->getParent(); OuterS; OuterS = OuterS->getParent())
1249     if (DeclContext *DC = OuterS->getLookupEntity())
1250       return DC;
1251   return nullptr;
1252 }
1253 
1254 namespace {
1255 /// An RAII object to specify that we want to find block scope extern
1256 /// declarations.
1257 struct FindLocalExternScope {
1258   FindLocalExternScope(LookupResult &R)
1259       : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
1260                                  Decl::IDNS_LocalExtern) {
1261     R.setFindLocalExtern(R.getIdentifierNamespace() &
1262                          (Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator));
1263   }
1264   void restore() {
1265     R.setFindLocalExtern(OldFindLocalExtern);
1266   }
1267   ~FindLocalExternScope() {
1268     restore();
1269   }
1270   LookupResult &R;
1271   bool OldFindLocalExtern;
1272 };
1273 } // end anonymous namespace
1274 
1275 bool Sema::CppLookupName(LookupResult &R, Scope *S) {
1276   assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
1277 
1278   DeclarationName Name = R.getLookupName();
1279   Sema::LookupNameKind NameKind = R.getLookupKind();
1280 
1281   // If this is the name of an implicitly-declared special member function,
1282   // go through the scope stack to implicitly declare
1283   if (isImplicitlyDeclaredMemberFunctionName(Name)) {
1284     for (Scope *PreS = S; PreS; PreS = PreS->getParent())
1285       if (DeclContext *DC = PreS->getEntity())
1286         DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC);
1287   }
1288 
1289   // C++23 [temp.dep.general]p2:
1290   //   The component name of an unqualified-id is dependent if
1291   //   - it is a conversion-function-id whose conversion-type-id
1292   //     is dependent, or
1293   //   - it is operator= and the current class is a templated entity, or
1294   //   - the unqualified-id is the postfix-expression in a dependent call.
1295   if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1296       Name.getCXXNameType()->isDependentType()) {
1297     R.setNotFoundInCurrentInstantiation();
1298     return false;
1299   }
1300 
1301   // Implicitly declare member functions with the name we're looking for, if in
1302   // fact we are in a scope where it matters.
1303 
1304   Scope *Initial = S;
1305   IdentifierResolver::iterator
1306     I = IdResolver.begin(Name),
1307     IEnd = IdResolver.end();
1308 
1309   // First we lookup local scope.
1310   // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
1311   // ...During unqualified name lookup (3.4.1), the names appear as if
1312   // they were declared in the nearest enclosing namespace which contains
1313   // both the using-directive and the nominated namespace.
1314   // [Note: in this context, "contains" means "contains directly or
1315   // indirectly".
1316   //
1317   // For example:
1318   // namespace A { int i; }
1319   // void foo() {
1320   //   int i;
1321   //   {
1322   //     using namespace A;
1323   //     ++i; // finds local 'i', A::i appears at global scope
1324   //   }
1325   // }
1326   //
1327   UnqualUsingDirectiveSet UDirs(*this);
1328   bool VisitedUsingDirectives = false;
1329   bool LeftStartingScope = false;
1330 
1331   // When performing a scope lookup, we want to find local extern decls.
1332   FindLocalExternScope FindLocals(R);
1333 
1334   for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
1335     bool SearchNamespaceScope = true;
1336     // Check whether the IdResolver has anything in this scope.
1337     for (; I != IEnd && S->isDeclScope(*I); ++I) {
1338       if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1339         if (NameKind == LookupRedeclarationWithLinkage &&
1340             !(*I)->isTemplateParameter()) {
1341           // If it's a template parameter, we still find it, so we can diagnose
1342           // the invalid redeclaration.
1343 
1344           // Determine whether this (or a previous) declaration is
1345           // out-of-scope.
1346           if (!LeftStartingScope && !Initial->isDeclScope(*I))
1347             LeftStartingScope = true;
1348 
1349           // If we found something outside of our starting scope that
1350           // does not have linkage, skip it.
1351           if (LeftStartingScope && !((*I)->hasLinkage())) {
1352             R.setShadowed();
1353             continue;
1354           }
1355         } else {
1356           // We found something in this scope, we should not look at the
1357           // namespace scope
1358           SearchNamespaceScope = false;
1359         }
1360         R.addDecl(ND);
1361       }
1362     }
1363     if (!SearchNamespaceScope) {
1364       R.resolveKind();
1365       if (S->isClassScope())
1366         if (auto *Record = dyn_cast_if_present<CXXRecordDecl>(S->getEntity()))
1367           R.setNamingClass(Record);
1368       return true;
1369     }
1370 
1371     if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
1372       // C++11 [class.friend]p11:
1373       //   If a friend declaration appears in a local class and the name
1374       //   specified is an unqualified name, a prior declaration is
1375       //   looked up without considering scopes that are outside the
1376       //   innermost enclosing non-class scope.
1377       return false;
1378     }
1379 
1380     if (DeclContext *Ctx = S->getLookupEntity()) {
1381       DeclContext *OuterCtx = findOuterContext(S);
1382       for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1383         // We do not directly look into transparent contexts, since
1384         // those entities will be found in the nearest enclosing
1385         // non-transparent context.
1386         if (Ctx->isTransparentContext())
1387           continue;
1388 
1389         // We do not look directly into function or method contexts,
1390         // since all of the local variables and parameters of the
1391         // function/method are present within the Scope.
1392         if (Ctx->isFunctionOrMethod()) {
1393           // If we have an Objective-C instance method, look for ivars
1394           // in the corresponding interface.
1395           if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
1396             if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
1397               if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
1398                 ObjCInterfaceDecl *ClassDeclared;
1399                 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
1400                                                  Name.getAsIdentifierInfo(),
1401                                                              ClassDeclared)) {
1402                   if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
1403                     R.addDecl(ND);
1404                     R.resolveKind();
1405                     return true;
1406                   }
1407                 }
1408               }
1409           }
1410 
1411           continue;
1412         }
1413 
1414         // If this is a file context, we need to perform unqualified name
1415         // lookup considering using directives.
1416         if (Ctx->isFileContext()) {
1417           // If we haven't handled using directives yet, do so now.
1418           if (!VisitedUsingDirectives) {
1419             // Add using directives from this context up to the top level.
1420             for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
1421               if (UCtx->isTransparentContext())
1422                 continue;
1423 
1424               UDirs.visit(UCtx, UCtx);
1425             }
1426 
1427             // Find the innermost file scope, so we can add using directives
1428             // from local scopes.
1429             Scope *InnermostFileScope = S;
1430             while (InnermostFileScope &&
1431                    !isNamespaceOrTranslationUnitScope(InnermostFileScope))
1432               InnermostFileScope = InnermostFileScope->getParent();
1433             UDirs.visitScopeChain(Initial, InnermostFileScope);
1434 
1435             UDirs.done();
1436 
1437             VisitedUsingDirectives = true;
1438           }
1439 
1440           if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
1441             R.resolveKind();
1442             return true;
1443           }
1444 
1445           continue;
1446         }
1447 
1448         // Perform qualified name lookup into this context.
1449         // FIXME: In some cases, we know that every name that could be found by
1450         // this qualified name lookup will also be on the identifier chain. For
1451         // example, inside a class without any base classes, we never need to
1452         // perform qualified lookup because all of the members are on top of the
1453         // identifier chain.
1454         if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
1455           return true;
1456       }
1457     }
1458   }
1459 
1460   // Stop if we ran out of scopes.
1461   // FIXME:  This really, really shouldn't be happening.
1462   if (!S) return false;
1463 
1464   // If we are looking for members, no need to look into global/namespace scope.
1465   if (NameKind == LookupMemberName)
1466     return false;
1467 
1468   // Collect UsingDirectiveDecls in all scopes, and recursively all
1469   // nominated namespaces by those using-directives.
1470   //
1471   // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
1472   // don't build it for each lookup!
1473   if (!VisitedUsingDirectives) {
1474     UDirs.visitScopeChain(Initial, S);
1475     UDirs.done();
1476   }
1477 
1478   // If we're not performing redeclaration lookup, do not look for local
1479   // extern declarations outside of a function scope.
1480   if (!R.isForRedeclaration())
1481     FindLocals.restore();
1482 
1483   // Lookup namespace scope, and global scope.
1484   // Unqualified name lookup in C++ requires looking into scopes
1485   // that aren't strictly lexical, and therefore we walk through the
1486   // context as well as walking through the scopes.
1487   for (; S; S = S->getParent()) {
1488     // Check whether the IdResolver has anything in this scope.
1489     bool Found = false;
1490     for (; I != IEnd && S->isDeclScope(*I); ++I) {
1491       if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1492         // We found something.  Look for anything else in our scope
1493         // with this same name and in an acceptable identifier
1494         // namespace, so that we can construct an overload set if we
1495         // need to.
1496         Found = true;
1497         R.addDecl(ND);
1498       }
1499     }
1500 
1501     if (Found && S->isTemplateParamScope()) {
1502       R.resolveKind();
1503       return true;
1504     }
1505 
1506     DeclContext *Ctx = S->getLookupEntity();
1507     if (Ctx) {
1508       DeclContext *OuterCtx = findOuterContext(S);
1509       for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1510         // We do not directly look into transparent contexts, since
1511         // those entities will be found in the nearest enclosing
1512         // non-transparent context.
1513         if (Ctx->isTransparentContext())
1514           continue;
1515 
1516         // If we have a context, and it's not a context stashed in the
1517         // template parameter scope for an out-of-line definition, also
1518         // look into that context.
1519         if (!(Found && S->isTemplateParamScope())) {
1520           assert(Ctx->isFileContext() &&
1521               "We should have been looking only at file context here already.");
1522 
1523           // Look into context considering using-directives.
1524           if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1525             Found = true;
1526         }
1527 
1528         if (Found) {
1529           R.resolveKind();
1530           return true;
1531         }
1532 
1533         if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1534           return false;
1535       }
1536     }
1537 
1538     if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1539       return false;
1540   }
1541 
1542   return !R.empty();
1543 }
1544 
1545 void Sema::makeMergedDefinitionVisible(NamedDecl *ND) {
1546   if (auto *M = getCurrentModule())
1547     Context.mergeDefinitionIntoModule(ND, M);
1548   else
1549     // We're not building a module; just make the definition visible.
1550     ND->setVisibleDespiteOwningModule();
1551 
1552   // If ND is a template declaration, make the template parameters
1553   // visible too. They're not (necessarily) within a mergeable DeclContext.
1554   if (auto *TD = dyn_cast<TemplateDecl>(ND))
1555     for (auto *Param : *TD->getTemplateParameters())
1556       makeMergedDefinitionVisible(Param);
1557 }
1558 
1559 /// Find the module in which the given declaration was defined.
1560 static Module *getDefiningModule(Sema &S, Decl *Entity) {
1561   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
1562     // If this function was instantiated from a template, the defining module is
1563     // the module containing the pattern.
1564     if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
1565       Entity = Pattern;
1566   } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
1567     if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
1568       Entity = Pattern;
1569   } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
1570     if (auto *Pattern = ED->getTemplateInstantiationPattern())
1571       Entity = Pattern;
1572   } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
1573     if (VarDecl *Pattern = VD->getTemplateInstantiationPattern())
1574       Entity = Pattern;
1575   }
1576 
1577   // Walk up to the containing context. That might also have been instantiated
1578   // from a template.
1579   DeclContext *Context = Entity->getLexicalDeclContext();
1580   if (Context->isFileContext())
1581     return S.getOwningModule(Entity);
1582   return getDefiningModule(S, cast<Decl>(Context));
1583 }
1584 
1585 llvm::DenseSet<Module*> &Sema::getLookupModules() {
1586   unsigned N = CodeSynthesisContexts.size();
1587   for (unsigned I = CodeSynthesisContextLookupModules.size();
1588        I != N; ++I) {
1589     Module *M = CodeSynthesisContexts[I].Entity ?
1590                 getDefiningModule(*this, CodeSynthesisContexts[I].Entity) :
1591                 nullptr;
1592     if (M && !LookupModulesCache.insert(M).second)
1593       M = nullptr;
1594     CodeSynthesisContextLookupModules.push_back(M);
1595   }
1596   return LookupModulesCache;
1597 }
1598 
1599 bool Sema::isUsableModule(const Module *M) {
1600   assert(M && "We shouldn't check nullness for module here");
1601   // Return quickly if we cached the result.
1602   if (UsableModuleUnitsCache.count(M))
1603     return true;
1604 
1605   // If M is the global module fragment of the current translation unit. So it
1606   // should be usable.
1607   // [module.global.frag]p1:
1608   //   The global module fragment can be used to provide declarations that are
1609   //   attached to the global module and usable within the module unit.
1610   if (M == TheGlobalModuleFragment || M == TheImplicitGlobalModuleFragment) {
1611     UsableModuleUnitsCache.insert(M);
1612     return true;
1613   }
1614 
1615   // Otherwise, the global module fragment from other translation unit is not
1616   // directly usable.
1617   if (M->isExplicitGlobalModule())
1618     return false;
1619 
1620   Module *Current = getCurrentModule();
1621 
1622   // If we're not parsing a module, we can't use all the declarations from
1623   // another module easily.
1624   if (!Current)
1625     return false;
1626 
1627   // For implicit global module, the decls in the same modules with the parent
1628   // module should be visible to the decls in the implicit global module.
1629   if (Current->isImplicitGlobalModule())
1630     Current = Current->getTopLevelModule();
1631   if (M->isImplicitGlobalModule())
1632     M = M->getTopLevelModule();
1633 
1634   // If M is the module we're parsing or M and the current module unit lives in
1635   // the same module, M should be usable.
1636   //
1637   // Note: It should be fine to search the vector `ModuleScopes` linearly since
1638   // it should be generally small enough. There should be rare module fragments
1639   // in a named module unit.
1640   if (llvm::count_if(ModuleScopes,
1641                      [&M](const ModuleScope &MS) { return MS.Module == M; }) ||
1642       getASTContext().isInSameModule(M, Current)) {
1643     UsableModuleUnitsCache.insert(M);
1644     return true;
1645   }
1646 
1647   return false;
1648 }
1649 
1650 bool Sema::hasVisibleMergedDefinition(const NamedDecl *Def) {
1651   for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1652     if (isModuleVisible(Merged))
1653       return true;
1654   return false;
1655 }
1656 
1657 bool Sema::hasMergedDefinitionInCurrentModule(const NamedDecl *Def) {
1658   for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1659     if (isUsableModule(Merged))
1660       return true;
1661   return false;
1662 }
1663 
1664 template <typename ParmDecl>
1665 static bool
1666 hasAcceptableDefaultArgument(Sema &S, const ParmDecl *D,
1667                              llvm::SmallVectorImpl<Module *> *Modules,
1668                              Sema::AcceptableKind Kind) {
1669   if (!D->hasDefaultArgument())
1670     return false;
1671 
1672   llvm::SmallPtrSet<const ParmDecl *, 4> Visited;
1673   while (D && Visited.insert(D).second) {
1674     auto &DefaultArg = D->getDefaultArgStorage();
1675     if (!DefaultArg.isInherited() && S.isAcceptable(D, Kind))
1676       return true;
1677 
1678     if (!DefaultArg.isInherited() && Modules) {
1679       auto *NonConstD = const_cast<ParmDecl*>(D);
1680       Modules->push_back(S.getOwningModule(NonConstD));
1681     }
1682 
1683     // If there was a previous default argument, maybe its parameter is
1684     // acceptable.
1685     D = DefaultArg.getInheritedFrom();
1686   }
1687   return false;
1688 }
1689 
1690 bool Sema::hasAcceptableDefaultArgument(
1691     const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules,
1692     Sema::AcceptableKind Kind) {
1693   if (auto *P = dyn_cast<TemplateTypeParmDecl>(D))
1694     return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind);
1695 
1696   if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D))
1697     return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind);
1698 
1699   return ::hasAcceptableDefaultArgument(
1700       *this, cast<TemplateTemplateParmDecl>(D), Modules, Kind);
1701 }
1702 
1703 bool Sema::hasVisibleDefaultArgument(const NamedDecl *D,
1704                                      llvm::SmallVectorImpl<Module *> *Modules) {
1705   return hasAcceptableDefaultArgument(D, Modules,
1706                                       Sema::AcceptableKind::Visible);
1707 }
1708 
1709 bool Sema::hasReachableDefaultArgument(
1710     const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1711   return hasAcceptableDefaultArgument(D, Modules,
1712                                       Sema::AcceptableKind::Reachable);
1713 }
1714 
1715 template <typename Filter>
1716 static bool
1717 hasAcceptableDeclarationImpl(Sema &S, const NamedDecl *D,
1718                              llvm::SmallVectorImpl<Module *> *Modules, Filter F,
1719                              Sema::AcceptableKind Kind) {
1720   bool HasFilteredRedecls = false;
1721 
1722   for (auto *Redecl : D->redecls()) {
1723     auto *R = cast<NamedDecl>(Redecl);
1724     if (!F(R))
1725       continue;
1726 
1727     if (S.isAcceptable(R, Kind))
1728       return true;
1729 
1730     HasFilteredRedecls = true;
1731 
1732     if (Modules)
1733       Modules->push_back(R->getOwningModule());
1734   }
1735 
1736   // Only return false if there is at least one redecl that is not filtered out.
1737   if (HasFilteredRedecls)
1738     return false;
1739 
1740   return true;
1741 }
1742 
1743 static bool
1744 hasAcceptableExplicitSpecialization(Sema &S, const NamedDecl *D,
1745                                     llvm::SmallVectorImpl<Module *> *Modules,
1746                                     Sema::AcceptableKind Kind) {
1747   return hasAcceptableDeclarationImpl(
1748       S, D, Modules,
1749       [](const NamedDecl *D) {
1750         if (auto *RD = dyn_cast<CXXRecordDecl>(D))
1751           return RD->getTemplateSpecializationKind() ==
1752                  TSK_ExplicitSpecialization;
1753         if (auto *FD = dyn_cast<FunctionDecl>(D))
1754           return FD->getTemplateSpecializationKind() ==
1755                  TSK_ExplicitSpecialization;
1756         if (auto *VD = dyn_cast<VarDecl>(D))
1757           return VD->getTemplateSpecializationKind() ==
1758                  TSK_ExplicitSpecialization;
1759         llvm_unreachable("unknown explicit specialization kind");
1760       },
1761       Kind);
1762 }
1763 
1764 bool Sema::hasVisibleExplicitSpecialization(
1765     const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1766   return ::hasAcceptableExplicitSpecialization(*this, D, Modules,
1767                                                Sema::AcceptableKind::Visible);
1768 }
1769 
1770 bool Sema::hasReachableExplicitSpecialization(
1771     const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1772   return ::hasAcceptableExplicitSpecialization(*this, D, Modules,
1773                                                Sema::AcceptableKind::Reachable);
1774 }
1775 
1776 static bool
1777 hasAcceptableMemberSpecialization(Sema &S, const NamedDecl *D,
1778                                   llvm::SmallVectorImpl<Module *> *Modules,
1779                                   Sema::AcceptableKind Kind) {
1780   assert(isa<CXXRecordDecl>(D->getDeclContext()) &&
1781          "not a member specialization");
1782   return hasAcceptableDeclarationImpl(
1783       S, D, Modules,
1784       [](const NamedDecl *D) {
1785         // If the specialization is declared at namespace scope, then it's a
1786         // member specialization declaration. If it's lexically inside the class
1787         // definition then it was instantiated.
1788         //
1789         // FIXME: This is a hack. There should be a better way to determine
1790         // this.
1791         // FIXME: What about MS-style explicit specializations declared within a
1792         //        class definition?
1793         return D->getLexicalDeclContext()->isFileContext();
1794       },
1795       Kind);
1796 }
1797 
1798 bool Sema::hasVisibleMemberSpecialization(
1799     const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1800   return hasAcceptableMemberSpecialization(*this, D, Modules,
1801                                            Sema::AcceptableKind::Visible);
1802 }
1803 
1804 bool Sema::hasReachableMemberSpecialization(
1805     const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1806   return hasAcceptableMemberSpecialization(*this, D, Modules,
1807                                            Sema::AcceptableKind::Reachable);
1808 }
1809 
1810 /// Determine whether a declaration is acceptable to name lookup.
1811 ///
1812 /// This routine determines whether the declaration D is acceptable in the
1813 /// current lookup context, taking into account the current template
1814 /// instantiation stack. During template instantiation, a declaration is
1815 /// acceptable if it is acceptable from a module containing any entity on the
1816 /// template instantiation path (by instantiating a template, you allow it to
1817 /// see the declarations that your module can see, including those later on in
1818 /// your module).
1819 bool LookupResult::isAcceptableSlow(Sema &SemaRef, NamedDecl *D,
1820                                     Sema::AcceptableKind Kind) {
1821   assert(!D->isUnconditionallyVisible() &&
1822          "should not call this: not in slow case");
1823 
1824   Module *DeclModule = SemaRef.getOwningModule(D);
1825   assert(DeclModule && "hidden decl has no owning module");
1826 
1827   // If the owning module is visible, the decl is acceptable.
1828   if (SemaRef.isModuleVisible(DeclModule,
1829                               D->isInvisibleOutsideTheOwningModule()))
1830     return true;
1831 
1832   // Determine whether a decl context is a file context for the purpose of
1833   // visibility/reachability. This looks through some (export and linkage spec)
1834   // transparent contexts, but not others (enums).
1835   auto IsEffectivelyFileContext = [](const DeclContext *DC) {
1836     return DC->isFileContext() || isa<LinkageSpecDecl>(DC) ||
1837            isa<ExportDecl>(DC);
1838   };
1839 
1840   // If this declaration is not at namespace scope
1841   // then it is acceptable if its lexical parent has a acceptable definition.
1842   DeclContext *DC = D->getLexicalDeclContext();
1843   if (DC && !IsEffectivelyFileContext(DC)) {
1844     // For a parameter, check whether our current template declaration's
1845     // lexical context is acceptable, not whether there's some other acceptable
1846     // definition of it, because parameters aren't "within" the definition.
1847     //
1848     // In C++ we need to check for a acceptable definition due to ODR merging,
1849     // and in C we must not because each declaration of a function gets its own
1850     // set of declarations for tags in prototype scope.
1851     bool AcceptableWithinParent;
1852     if (D->isTemplateParameter()) {
1853       bool SearchDefinitions = true;
1854       if (const auto *DCD = dyn_cast<Decl>(DC)) {
1855         if (const auto *TD = DCD->getDescribedTemplate()) {
1856           TemplateParameterList *TPL = TD->getTemplateParameters();
1857           auto Index = getDepthAndIndex(D).second;
1858           SearchDefinitions = Index >= TPL->size() || TPL->getParam(Index) != D;
1859         }
1860       }
1861       if (SearchDefinitions)
1862         AcceptableWithinParent =
1863             SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind);
1864       else
1865         AcceptableWithinParent =
1866             isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind);
1867     } else if (isa<ParmVarDecl>(D) ||
1868                (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus))
1869       AcceptableWithinParent = isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind);
1870     else if (D->isModulePrivate()) {
1871       // A module-private declaration is only acceptable if an enclosing lexical
1872       // parent was merged with another definition in the current module.
1873       AcceptableWithinParent = false;
1874       do {
1875         if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) {
1876           AcceptableWithinParent = true;
1877           break;
1878         }
1879         DC = DC->getLexicalParent();
1880       } while (!IsEffectivelyFileContext(DC));
1881     } else {
1882       AcceptableWithinParent =
1883           SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind);
1884     }
1885 
1886     if (AcceptableWithinParent && SemaRef.CodeSynthesisContexts.empty() &&
1887         Kind == Sema::AcceptableKind::Visible &&
1888         // FIXME: Do something better in this case.
1889         !SemaRef.getLangOpts().ModulesLocalVisibility) {
1890       // Cache the fact that this declaration is implicitly visible because
1891       // its parent has a visible definition.
1892       D->setVisibleDespiteOwningModule();
1893     }
1894     return AcceptableWithinParent;
1895   }
1896 
1897   if (Kind == Sema::AcceptableKind::Visible)
1898     return false;
1899 
1900   assert(Kind == Sema::AcceptableKind::Reachable &&
1901          "Additional Sema::AcceptableKind?");
1902   return isReachableSlow(SemaRef, D);
1903 }
1904 
1905 bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) {
1906   // The module might be ordinarily visible. For a module-private query, that
1907   // means it is part of the current module.
1908   if (ModulePrivate && isUsableModule(M))
1909     return true;
1910 
1911   // For a query which is not module-private, that means it is in our visible
1912   // module set.
1913   if (!ModulePrivate && VisibleModules.isVisible(M))
1914     return true;
1915 
1916   // Otherwise, it might be visible by virtue of the query being within a
1917   // template instantiation or similar that is permitted to look inside M.
1918 
1919   // Find the extra places where we need to look.
1920   const auto &LookupModules = getLookupModules();
1921   if (LookupModules.empty())
1922     return false;
1923 
1924   // If our lookup set contains the module, it's visible.
1925   if (LookupModules.count(M))
1926     return true;
1927 
1928   // The global module fragments are visible to its corresponding module unit.
1929   // So the global module fragment should be visible if the its corresponding
1930   // module unit is visible.
1931   if (M->isGlobalModule() && LookupModules.count(M->getTopLevelModule()))
1932     return true;
1933 
1934   // For a module-private query, that's everywhere we get to look.
1935   if (ModulePrivate)
1936     return false;
1937 
1938   // Check whether M is transitively exported to an import of the lookup set.
1939   return llvm::any_of(LookupModules, [&](const Module *LookupM) {
1940     return LookupM->isModuleVisible(M);
1941   });
1942 }
1943 
1944 // FIXME: Return false directly if we don't have an interface dependency on the
1945 // translation unit containing D.
1946 bool LookupResult::isReachableSlow(Sema &SemaRef, NamedDecl *D) {
1947   assert(!isVisible(SemaRef, D) && "Shouldn't call the slow case.\n");
1948 
1949   Module *DeclModule = SemaRef.getOwningModule(D);
1950   assert(DeclModule && "hidden decl has no owning module");
1951 
1952   // Entities in header like modules are reachable only if they're visible.
1953   if (DeclModule->isHeaderLikeModule())
1954     return false;
1955 
1956   if (!D->isInAnotherModuleUnit())
1957     return true;
1958 
1959   // [module.reach]/p3:
1960   // A declaration D is reachable from a point P if:
1961   // ...
1962   // - D is not discarded ([module.global.frag]), appears in a translation unit
1963   //   that is reachable from P, and does not appear within a private module
1964   //   fragment.
1965   //
1966   // A declaration that's discarded in the GMF should be module-private.
1967   if (D->isModulePrivate())
1968     return false;
1969 
1970   // [module.reach]/p1
1971   //   A translation unit U is necessarily reachable from a point P if U is a
1972   //   module interface unit on which the translation unit containing P has an
1973   //   interface dependency, or the translation unit containing P imports U, in
1974   //   either case prior to P ([module.import]).
1975   //
1976   // [module.import]/p10
1977   //   A translation unit has an interface dependency on a translation unit U if
1978   //   it contains a declaration (possibly a module-declaration) that imports U
1979   //   or if it has an interface dependency on a translation unit that has an
1980   //   interface dependency on U.
1981   //
1982   // So we could conclude the module unit U is necessarily reachable if:
1983   // (1) The module unit U is module interface unit.
1984   // (2) The current unit has an interface dependency on the module unit U.
1985   //
1986   // Here we only check for the first condition. Since we couldn't see
1987   // DeclModule if it isn't (transitively) imported.
1988   if (DeclModule->getTopLevelModule()->isModuleInterfaceUnit())
1989     return true;
1990 
1991   // [module.reach]/p2
1992   //   Additional translation units on
1993   //   which the point within the program has an interface dependency may be
1994   //   considered reachable, but it is unspecified which are and under what
1995   //   circumstances.
1996   //
1997   // The decision here is to treat all additional tranditional units as
1998   // unreachable.
1999   return false;
2000 }
2001 
2002 bool Sema::isAcceptableSlow(const NamedDecl *D, Sema::AcceptableKind Kind) {
2003   return LookupResult::isAcceptable(*this, const_cast<NamedDecl *>(D), Kind);
2004 }
2005 
2006 bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) {
2007   // FIXME: If there are both visible and hidden declarations, we need to take
2008   // into account whether redeclaration is possible. Example:
2009   //
2010   // Non-imported module:
2011   //   int f(T);        // #1
2012   // Some TU:
2013   //   static int f(U); // #2, not a redeclaration of #1
2014   //   int f(T);        // #3, finds both, should link with #1 if T != U, but
2015   //                    // with #2 if T == U; neither should be ambiguous.
2016   for (auto *D : R) {
2017     if (isVisible(D))
2018       return true;
2019     assert(D->isExternallyDeclarable() &&
2020            "should not have hidden, non-externally-declarable result here");
2021   }
2022 
2023   // This function is called once "New" is essentially complete, but before a
2024   // previous declaration is attached. We can't query the linkage of "New" in
2025   // general, because attaching the previous declaration can change the
2026   // linkage of New to match the previous declaration.
2027   //
2028   // However, because we've just determined that there is no *visible* prior
2029   // declaration, we can compute the linkage here. There are two possibilities:
2030   //
2031   //  * This is not a redeclaration; it's safe to compute the linkage now.
2032   //
2033   //  * This is a redeclaration of a prior declaration that is externally
2034   //    redeclarable. In that case, the linkage of the declaration is not
2035   //    changed by attaching the prior declaration, because both are externally
2036   //    declarable (and thus ExternalLinkage or VisibleNoLinkage).
2037   //
2038   // FIXME: This is subtle and fragile.
2039   return New->isExternallyDeclarable();
2040 }
2041 
2042 /// Retrieve the visible declaration corresponding to D, if any.
2043 ///
2044 /// This routine determines whether the declaration D is visible in the current
2045 /// module, with the current imports. If not, it checks whether any
2046 /// redeclaration of D is visible, and if so, returns that declaration.
2047 ///
2048 /// \returns D, or a visible previous declaration of D, whichever is more recent
2049 /// and visible. If no declaration of D is visible, returns null.
2050 static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D,
2051                                      unsigned IDNS) {
2052   assert(!LookupResult::isAvailableForLookup(SemaRef, D) && "not in slow case");
2053 
2054   for (auto *RD : D->redecls()) {
2055     // Don't bother with extra checks if we already know this one isn't visible.
2056     if (RD == D)
2057       continue;
2058 
2059     auto ND = cast<NamedDecl>(RD);
2060     // FIXME: This is wrong in the case where the previous declaration is not
2061     // visible in the same scope as D. This needs to be done much more
2062     // carefully.
2063     if (ND->isInIdentifierNamespace(IDNS) &&
2064         LookupResult::isAvailableForLookup(SemaRef, ND))
2065       return ND;
2066   }
2067 
2068   return nullptr;
2069 }
2070 
2071 bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D,
2072                                      llvm::SmallVectorImpl<Module *> *Modules) {
2073   assert(!isVisible(D) && "not in slow case");
2074   return hasAcceptableDeclarationImpl(
2075       *this, D, Modules, [](const NamedDecl *) { return true; },
2076       Sema::AcceptableKind::Visible);
2077 }
2078 
2079 bool Sema::hasReachableDeclarationSlow(
2080     const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
2081   assert(!isReachable(D) && "not in slow case");
2082   return hasAcceptableDeclarationImpl(
2083       *this, D, Modules, [](const NamedDecl *) { return true; },
2084       Sema::AcceptableKind::Reachable);
2085 }
2086 
2087 NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
2088   if (auto *ND = dyn_cast<NamespaceDecl>(D)) {
2089     // Namespaces are a bit of a special case: we expect there to be a lot of
2090     // redeclarations of some namespaces, all declarations of a namespace are
2091     // essentially interchangeable, all declarations are found by name lookup
2092     // if any is, and namespaces are never looked up during template
2093     // instantiation. So we benefit from caching the check in this case, and
2094     // it is correct to do so.
2095     auto *Key = ND->getCanonicalDecl();
2096     if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key))
2097       return Acceptable;
2098     auto *Acceptable = isVisible(getSema(), Key)
2099                            ? Key
2100                            : findAcceptableDecl(getSema(), Key, IDNS);
2101     if (Acceptable)
2102       getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable));
2103     return Acceptable;
2104   }
2105 
2106   return findAcceptableDecl(getSema(), D, IDNS);
2107 }
2108 
2109 bool LookupResult::isVisible(Sema &SemaRef, NamedDecl *D) {
2110   // If this declaration is already visible, return it directly.
2111   if (D->isUnconditionallyVisible())
2112     return true;
2113 
2114   // During template instantiation, we can refer to hidden declarations, if
2115   // they were visible in any module along the path of instantiation.
2116   return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Visible);
2117 }
2118 
2119 bool LookupResult::isReachable(Sema &SemaRef, NamedDecl *D) {
2120   if (D->isUnconditionallyVisible())
2121     return true;
2122 
2123   return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Reachable);
2124 }
2125 
2126 bool LookupResult::isAvailableForLookup(Sema &SemaRef, NamedDecl *ND) {
2127   // We should check the visibility at the callsite already.
2128   if (isVisible(SemaRef, ND))
2129     return true;
2130 
2131   // Deduction guide lives in namespace scope generally, but it is just a
2132   // hint to the compilers. What we actually lookup for is the generated member
2133   // of the corresponding template. So it is sufficient to check the
2134   // reachability of the template decl.
2135   if (auto *DeductionGuide = ND->getDeclName().getCXXDeductionGuideTemplate())
2136     return SemaRef.hasReachableDefinition(DeductionGuide);
2137 
2138   // FIXME: The lookup for allocation function is a standalone process.
2139   // (We can find the logics in Sema::FindAllocationFunctions)
2140   //
2141   // Such structure makes it a problem when we instantiate a template
2142   // declaration using placement allocation function if the placement
2143   // allocation function is invisible.
2144   // (See https://github.com/llvm/llvm-project/issues/59601)
2145   //
2146   // Here we workaround it by making the placement allocation functions
2147   // always acceptable. The downside is that we can't diagnose the direct
2148   // use of the invisible placement allocation functions. (Although such uses
2149   // should be rare).
2150   if (auto *FD = dyn_cast<FunctionDecl>(ND);
2151       FD && FD->isReservedGlobalPlacementOperator())
2152     return true;
2153 
2154   auto *DC = ND->getDeclContext();
2155   // If ND is not visible and it is at namespace scope, it shouldn't be found
2156   // by name lookup.
2157   if (DC->isFileContext())
2158     return false;
2159 
2160   // [module.interface]p7
2161   // Class and enumeration member names can be found by name lookup in any
2162   // context in which a definition of the type is reachable.
2163   //
2164   // FIXME: The current implementation didn't consider about scope. For example,
2165   // ```
2166   // // m.cppm
2167   // export module m;
2168   // enum E1 { e1 };
2169   // // Use.cpp
2170   // import m;
2171   // void test() {
2172   //   auto a = E1::e1; // Error as expected.
2173   //   auto b = e1; // Should be error. namespace-scope name e1 is not visible
2174   // }
2175   // ```
2176   // For the above example, the current implementation would emit error for `a`
2177   // correctly. However, the implementation wouldn't diagnose about `b` now.
2178   // Since we only check the reachability for the parent only.
2179   // See clang/test/CXX/module/module.interface/p7.cpp for example.
2180   if (auto *TD = dyn_cast<TagDecl>(DC))
2181     return SemaRef.hasReachableDefinition(TD);
2182 
2183   return false;
2184 }
2185 
2186 bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation,
2187                       bool ForceNoCPlusPlus) {
2188   DeclarationName Name = R.getLookupName();
2189   if (!Name) return false;
2190 
2191   LookupNameKind NameKind = R.getLookupKind();
2192 
2193   if (!getLangOpts().CPlusPlus || ForceNoCPlusPlus) {
2194     // Unqualified name lookup in C/Objective-C is purely lexical, so
2195     // search in the declarations attached to the name.
2196     if (NameKind == Sema::LookupRedeclarationWithLinkage) {
2197       // Find the nearest non-transparent declaration scope.
2198       while (!(S->getFlags() & Scope::DeclScope) ||
2199              (S->getEntity() && S->getEntity()->isTransparentContext()))
2200         S = S->getParent();
2201     }
2202 
2203     // When performing a scope lookup, we want to find local extern decls.
2204     FindLocalExternScope FindLocals(R);
2205 
2206     // Scan up the scope chain looking for a decl that matches this
2207     // identifier that is in the appropriate namespace.  This search
2208     // should not take long, as shadowing of names is uncommon, and
2209     // deep shadowing is extremely uncommon.
2210     bool LeftStartingScope = false;
2211 
2212     for (IdentifierResolver::iterator I = IdResolver.begin(Name),
2213                                    IEnd = IdResolver.end();
2214          I != IEnd; ++I)
2215       if (NamedDecl *D = R.getAcceptableDecl(*I)) {
2216         if (NameKind == LookupRedeclarationWithLinkage) {
2217           // Determine whether this (or a previous) declaration is
2218           // out-of-scope.
2219           if (!LeftStartingScope && !S->isDeclScope(*I))
2220             LeftStartingScope = true;
2221 
2222           // If we found something outside of our starting scope that
2223           // does not have linkage, skip it.
2224           if (LeftStartingScope && !((*I)->hasLinkage())) {
2225             R.setShadowed();
2226             continue;
2227           }
2228         }
2229         else if (NameKind == LookupObjCImplicitSelfParam &&
2230                  !isa<ImplicitParamDecl>(*I))
2231           continue;
2232 
2233         R.addDecl(D);
2234 
2235         // Check whether there are any other declarations with the same name
2236         // and in the same scope.
2237         if (I != IEnd) {
2238           // Find the scope in which this declaration was declared (if it
2239           // actually exists in a Scope).
2240           while (S && !S->isDeclScope(D))
2241             S = S->getParent();
2242 
2243           // If the scope containing the declaration is the translation unit,
2244           // then we'll need to perform our checks based on the matching
2245           // DeclContexts rather than matching scopes.
2246           if (S && isNamespaceOrTranslationUnitScope(S))
2247             S = nullptr;
2248 
2249           // Compute the DeclContext, if we need it.
2250           DeclContext *DC = nullptr;
2251           if (!S)
2252             DC = (*I)->getDeclContext()->getRedeclContext();
2253 
2254           IdentifierResolver::iterator LastI = I;
2255           for (++LastI; LastI != IEnd; ++LastI) {
2256             if (S) {
2257               // Match based on scope.
2258               if (!S->isDeclScope(*LastI))
2259                 break;
2260             } else {
2261               // Match based on DeclContext.
2262               DeclContext *LastDC
2263                 = (*LastI)->getDeclContext()->getRedeclContext();
2264               if (!LastDC->Equals(DC))
2265                 break;
2266             }
2267 
2268             // If the declaration is in the right namespace and visible, add it.
2269             if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
2270               R.addDecl(LastD);
2271           }
2272 
2273           R.resolveKind();
2274         }
2275 
2276         return true;
2277       }
2278   } else {
2279     // Perform C++ unqualified name lookup.
2280     if (CppLookupName(R, S))
2281       return true;
2282   }
2283 
2284   // If we didn't find a use of this identifier, and if the identifier
2285   // corresponds to a compiler builtin, create the decl object for the builtin
2286   // now, injecting it into translation unit scope, and return it.
2287   if (AllowBuiltinCreation && LookupBuiltin(R))
2288     return true;
2289 
2290   // If we didn't find a use of this identifier, the ExternalSource
2291   // may be able to handle the situation.
2292   // Note: some lookup failures are expected!
2293   // See e.g. R.isForRedeclaration().
2294   return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
2295 }
2296 
2297 /// Perform qualified name lookup in the namespaces nominated by
2298 /// using directives by the given context.
2299 ///
2300 /// C++98 [namespace.qual]p2:
2301 ///   Given X::m (where X is a user-declared namespace), or given \::m
2302 ///   (where X is the global namespace), let S be the set of all
2303 ///   declarations of m in X and in the transitive closure of all
2304 ///   namespaces nominated by using-directives in X and its used
2305 ///   namespaces, except that using-directives are ignored in any
2306 ///   namespace, including X, directly containing one or more
2307 ///   declarations of m. No namespace is searched more than once in
2308 ///   the lookup of a name. If S is the empty set, the program is
2309 ///   ill-formed. Otherwise, if S has exactly one member, or if the
2310 ///   context of the reference is a using-declaration
2311 ///   (namespace.udecl), S is the required set of declarations of
2312 ///   m. Otherwise if the use of m is not one that allows a unique
2313 ///   declaration to be chosen from S, the program is ill-formed.
2314 ///
2315 /// C++98 [namespace.qual]p5:
2316 ///   During the lookup of a qualified namespace member name, if the
2317 ///   lookup finds more than one declaration of the member, and if one
2318 ///   declaration introduces a class name or enumeration name and the
2319 ///   other declarations either introduce the same object, the same
2320 ///   enumerator or a set of functions, the non-type name hides the
2321 ///   class or enumeration name if and only if the declarations are
2322 ///   from the same namespace; otherwise (the declarations are from
2323 ///   different namespaces), the program is ill-formed.
2324 static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
2325                                                  DeclContext *StartDC) {
2326   assert(StartDC->isFileContext() && "start context is not a file context");
2327 
2328   // We have not yet looked into these namespaces, much less added
2329   // their "using-children" to the queue.
2330   SmallVector<NamespaceDecl*, 8> Queue;
2331 
2332   // We have at least added all these contexts to the queue.
2333   llvm::SmallPtrSet<DeclContext*, 8> Visited;
2334   Visited.insert(StartDC);
2335 
2336   // We have already looked into the initial namespace; seed the queue
2337   // with its using-children.
2338   for (auto *I : StartDC->using_directives()) {
2339     NamespaceDecl *ND = I->getNominatedNamespace()->getFirstDecl();
2340     if (S.isVisible(I) && Visited.insert(ND).second)
2341       Queue.push_back(ND);
2342   }
2343 
2344   // The easiest way to implement the restriction in [namespace.qual]p5
2345   // is to check whether any of the individual results found a tag
2346   // and, if so, to declare an ambiguity if the final result is not
2347   // a tag.
2348   bool FoundTag = false;
2349   bool FoundNonTag = false;
2350 
2351   LookupResult LocalR(LookupResult::Temporary, R);
2352 
2353   bool Found = false;
2354   while (!Queue.empty()) {
2355     NamespaceDecl *ND = Queue.pop_back_val();
2356 
2357     // We go through some convolutions here to avoid copying results
2358     // between LookupResults.
2359     bool UseLocal = !R.empty();
2360     LookupResult &DirectR = UseLocal ? LocalR : R;
2361     bool FoundDirect = LookupDirect(S, DirectR, ND);
2362 
2363     if (FoundDirect) {
2364       // First do any local hiding.
2365       DirectR.resolveKind();
2366 
2367       // If the local result is a tag, remember that.
2368       if (DirectR.isSingleTagDecl())
2369         FoundTag = true;
2370       else
2371         FoundNonTag = true;
2372 
2373       // Append the local results to the total results if necessary.
2374       if (UseLocal) {
2375         R.addAllDecls(LocalR);
2376         LocalR.clear();
2377       }
2378     }
2379 
2380     // If we find names in this namespace, ignore its using directives.
2381     if (FoundDirect) {
2382       Found = true;
2383       continue;
2384     }
2385 
2386     for (auto *I : ND->using_directives()) {
2387       NamespaceDecl *Nom = I->getNominatedNamespace();
2388       if (S.isVisible(I) && Visited.insert(Nom).second)
2389         Queue.push_back(Nom);
2390     }
2391   }
2392 
2393   if (Found) {
2394     if (FoundTag && FoundNonTag)
2395       R.setAmbiguousQualifiedTagHiding();
2396     else
2397       R.resolveKind();
2398   }
2399 
2400   return Found;
2401 }
2402 
2403 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2404                                bool InUnqualifiedLookup) {
2405   assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
2406 
2407   if (!R.getLookupName())
2408     return false;
2409 
2410   // Make sure that the declaration context is complete.
2411   assert((!isa<TagDecl>(LookupCtx) ||
2412           LookupCtx->isDependentContext() ||
2413           cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
2414           cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
2415          "Declaration context must already be complete!");
2416 
2417   struct QualifiedLookupInScope {
2418     bool oldVal;
2419     DeclContext *Context;
2420     // Set flag in DeclContext informing debugger that we're looking for qualified name
2421     QualifiedLookupInScope(DeclContext *ctx)
2422         : oldVal(ctx->shouldUseQualifiedLookup()), Context(ctx) {
2423       ctx->setUseQualifiedLookup();
2424     }
2425     ~QualifiedLookupInScope() {
2426       Context->setUseQualifiedLookup(oldVal);
2427     }
2428   } QL(LookupCtx);
2429 
2430   CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
2431   // FIXME: Per [temp.dep.general]p2, an unqualified name is also dependent
2432   // if it's a dependent conversion-function-id or operator= where the current
2433   // class is a templated entity. This should be handled in LookupName.
2434   if (!InUnqualifiedLookup && !R.isForRedeclaration()) {
2435     // C++23 [temp.dep.type]p5:
2436     //   A qualified name is dependent if
2437     //   - it is a conversion-function-id whose conversion-type-id
2438     //     is dependent, or
2439     //   - [...]
2440     //   - its lookup context is the current instantiation and it
2441     //     is operator=, or
2442     //   - [...]
2443     if (DeclarationName Name = R.getLookupName();
2444         Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
2445         Name.getCXXNameType()->isDependentType()) {
2446       R.setNotFoundInCurrentInstantiation();
2447       return false;
2448     }
2449   }
2450 
2451   if (LookupDirect(*this, R, LookupCtx)) {
2452     R.resolveKind();
2453     if (LookupRec)
2454       R.setNamingClass(LookupRec);
2455     return true;
2456   }
2457 
2458   // Don't descend into implied contexts for redeclarations.
2459   // C++98 [namespace.qual]p6:
2460   //   In a declaration for a namespace member in which the
2461   //   declarator-id is a qualified-id, given that the qualified-id
2462   //   for the namespace member has the form
2463   //     nested-name-specifier unqualified-id
2464   //   the unqualified-id shall name a member of the namespace
2465   //   designated by the nested-name-specifier.
2466   // See also [class.mfct]p5 and [class.static.data]p2.
2467   if (R.isForRedeclaration())
2468     return false;
2469 
2470   // If this is a namespace, look it up in the implied namespaces.
2471   if (LookupCtx->isFileContext())
2472     return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
2473 
2474   // If this isn't a C++ class, we aren't allowed to look into base
2475   // classes, we're done.
2476   if (!LookupRec || !LookupRec->getDefinition())
2477     return false;
2478 
2479   // We're done for lookups that can never succeed for C++ classes.
2480   if (R.getLookupKind() == LookupOperatorName ||
2481       R.getLookupKind() == LookupNamespaceName ||
2482       R.getLookupKind() == LookupObjCProtocolName ||
2483       R.getLookupKind() == LookupLabel)
2484     return false;
2485 
2486   // If we're performing qualified name lookup into a dependent class,
2487   // then we are actually looking into a current instantiation. If we have any
2488   // dependent base classes, then we either have to delay lookup until
2489   // template instantiation time (at which point all bases will be available)
2490   // or we have to fail.
2491   if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
2492       LookupRec->hasAnyDependentBases()) {
2493     R.setNotFoundInCurrentInstantiation();
2494     return false;
2495   }
2496 
2497   // Perform lookup into our base classes.
2498 
2499   DeclarationName Name = R.getLookupName();
2500   unsigned IDNS = R.getIdentifierNamespace();
2501 
2502   // Look for this member in our base classes.
2503   auto BaseCallback = [Name, IDNS](const CXXBaseSpecifier *Specifier,
2504                                    CXXBasePath &Path) -> bool {
2505     CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl();
2506     // Drop leading non-matching lookup results from the declaration list so
2507     // we don't need to consider them again below.
2508     for (Path.Decls = BaseRecord->lookup(Name).begin();
2509          Path.Decls != Path.Decls.end(); ++Path.Decls) {
2510       if ((*Path.Decls)->isInIdentifierNamespace(IDNS))
2511         return true;
2512     }
2513     return false;
2514   };
2515 
2516   CXXBasePaths Paths;
2517   Paths.setOrigin(LookupRec);
2518   if (!LookupRec->lookupInBases(BaseCallback, Paths))
2519     return false;
2520 
2521   R.setNamingClass(LookupRec);
2522 
2523   // C++ [class.member.lookup]p2:
2524   //   [...] If the resulting set of declarations are not all from
2525   //   sub-objects of the same type, or the set has a nonstatic member
2526   //   and includes members from distinct sub-objects, there is an
2527   //   ambiguity and the program is ill-formed. Otherwise that set is
2528   //   the result of the lookup.
2529   QualType SubobjectType;
2530   int SubobjectNumber = 0;
2531   AccessSpecifier SubobjectAccess = AS_none;
2532 
2533   // Check whether the given lookup result contains only static members.
2534   auto HasOnlyStaticMembers = [&](DeclContext::lookup_iterator Result) {
2535     for (DeclContext::lookup_iterator I = Result, E = I.end(); I != E; ++I)
2536       if ((*I)->isInIdentifierNamespace(IDNS) && (*I)->isCXXInstanceMember())
2537         return false;
2538     return true;
2539   };
2540 
2541   bool TemplateNameLookup = R.isTemplateNameLookup();
2542 
2543   // Determine whether two sets of members contain the same members, as
2544   // required by C++ [class.member.lookup]p6.
2545   auto HasSameDeclarations = [&](DeclContext::lookup_iterator A,
2546                                  DeclContext::lookup_iterator B) {
2547     using Iterator = DeclContextLookupResult::iterator;
2548     using Result = const void *;
2549 
2550     auto Next = [&](Iterator &It, Iterator End) -> Result {
2551       while (It != End) {
2552         NamedDecl *ND = *It++;
2553         if (!ND->isInIdentifierNamespace(IDNS))
2554           continue;
2555 
2556         // C++ [temp.local]p3:
2557         //   A lookup that finds an injected-class-name (10.2) can result in
2558         //   an ambiguity in certain cases (for example, if it is found in
2559         //   more than one base class). If all of the injected-class-names
2560         //   that are found refer to specializations of the same class
2561         //   template, and if the name is used as a template-name, the
2562         //   reference refers to the class template itself and not a
2563         //   specialization thereof, and is not ambiguous.
2564         if (TemplateNameLookup)
2565           if (auto *TD = getAsTemplateNameDecl(ND))
2566             ND = TD;
2567 
2568         // C++ [class.member.lookup]p3:
2569         //   type declarations (including injected-class-names) are replaced by
2570         //   the types they designate
2571         if (const TypeDecl *TD = dyn_cast<TypeDecl>(ND->getUnderlyingDecl())) {
2572           QualType T = Context.getTypeDeclType(TD);
2573           return T.getCanonicalType().getAsOpaquePtr();
2574         }
2575 
2576         return ND->getUnderlyingDecl()->getCanonicalDecl();
2577       }
2578       return nullptr;
2579     };
2580 
2581     // We'll often find the declarations are in the same order. Handle this
2582     // case (and the special case of only one declaration) efficiently.
2583     Iterator AIt = A, BIt = B, AEnd, BEnd;
2584     while (true) {
2585       Result AResult = Next(AIt, AEnd);
2586       Result BResult = Next(BIt, BEnd);
2587       if (!AResult && !BResult)
2588         return true;
2589       if (!AResult || !BResult)
2590         return false;
2591       if (AResult != BResult) {
2592         // Found a mismatch; carefully check both lists, accounting for the
2593         // possibility of declarations appearing more than once.
2594         llvm::SmallDenseMap<Result, bool, 32> AResults;
2595         for (; AResult; AResult = Next(AIt, AEnd))
2596           AResults.insert({AResult, /*FoundInB*/false});
2597         unsigned Found = 0;
2598         for (; BResult; BResult = Next(BIt, BEnd)) {
2599           auto It = AResults.find(BResult);
2600           if (It == AResults.end())
2601             return false;
2602           if (!It->second) {
2603             It->second = true;
2604             ++Found;
2605           }
2606         }
2607         return AResults.size() == Found;
2608       }
2609     }
2610   };
2611 
2612   for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
2613        Path != PathEnd; ++Path) {
2614     const CXXBasePathElement &PathElement = Path->back();
2615 
2616     // Pick the best (i.e. most permissive i.e. numerically lowest) access
2617     // across all paths.
2618     SubobjectAccess = std::min(SubobjectAccess, Path->Access);
2619 
2620     // Determine whether we're looking at a distinct sub-object or not.
2621     if (SubobjectType.isNull()) {
2622       // This is the first subobject we've looked at. Record its type.
2623       SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
2624       SubobjectNumber = PathElement.SubobjectNumber;
2625       continue;
2626     }
2627 
2628     if (SubobjectType !=
2629         Context.getCanonicalType(PathElement.Base->getType())) {
2630       // We found members of the given name in two subobjects of
2631       // different types. If the declaration sets aren't the same, this
2632       // lookup is ambiguous.
2633       //
2634       // FIXME: The language rule says that this applies irrespective of
2635       // whether the sets contain only static members.
2636       if (HasOnlyStaticMembers(Path->Decls) &&
2637           HasSameDeclarations(Paths.begin()->Decls, Path->Decls))
2638         continue;
2639 
2640       R.setAmbiguousBaseSubobjectTypes(Paths);
2641       return true;
2642     }
2643 
2644     // FIXME: This language rule no longer exists. Checking for ambiguous base
2645     // subobjects should be done as part of formation of a class member access
2646     // expression (when converting the object parameter to the member's type).
2647     if (SubobjectNumber != PathElement.SubobjectNumber) {
2648       // We have a different subobject of the same type.
2649 
2650       // C++ [class.member.lookup]p5:
2651       //   A static member, a nested type or an enumerator defined in
2652       //   a base class T can unambiguously be found even if an object
2653       //   has more than one base class subobject of type T.
2654       if (HasOnlyStaticMembers(Path->Decls))
2655         continue;
2656 
2657       // We have found a nonstatic member name in multiple, distinct
2658       // subobjects. Name lookup is ambiguous.
2659       R.setAmbiguousBaseSubobjects(Paths);
2660       return true;
2661     }
2662   }
2663 
2664   // Lookup in a base class succeeded; return these results.
2665 
2666   for (DeclContext::lookup_iterator I = Paths.front().Decls, E = I.end();
2667        I != E; ++I) {
2668     AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
2669                                                     (*I)->getAccess());
2670     if (NamedDecl *ND = R.getAcceptableDecl(*I))
2671       R.addDecl(ND, AS);
2672   }
2673   R.resolveKind();
2674   return true;
2675 }
2676 
2677 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2678                                CXXScopeSpec &SS) {
2679   auto *NNS = SS.getScopeRep();
2680   if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
2681     return LookupInSuper(R, NNS->getAsRecordDecl());
2682   else
2683 
2684     return LookupQualifiedName(R, LookupCtx);
2685 }
2686 
2687 bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
2688                             QualType ObjectType, bool AllowBuiltinCreation,
2689                             bool EnteringContext) {
2690   // When the scope specifier is invalid, don't even look for anything.
2691   if (SS && SS->isInvalid())
2692     return false;
2693 
2694   // Determine where to perform name lookup
2695   DeclContext *DC = nullptr;
2696   bool IsDependent = false;
2697   if (!ObjectType.isNull()) {
2698     // This nested-name-specifier occurs in a member access expression, e.g.,
2699     // x->B::f, and we are looking into the type of the object.
2700     assert((!SS || SS->isEmpty()) &&
2701            "ObjectType and scope specifier cannot coexist");
2702     DC = computeDeclContext(ObjectType);
2703     IsDependent = !DC && ObjectType->isDependentType();
2704     assert(((!DC && ObjectType->isDependentType()) ||
2705             !ObjectType->isIncompleteType() || !ObjectType->getAs<TagType>() ||
2706             ObjectType->castAs<TagType>()->isBeingDefined()) &&
2707            "Caller should have completed object type");
2708   } else if (SS && SS->isNotEmpty()) {
2709     // This nested-name-specifier occurs after another nested-name-specifier,
2710     // so long into the context associated with the prior nested-name-specifier.
2711     if ((DC = computeDeclContext(*SS, EnteringContext))) {
2712       // The declaration context must be complete.
2713       if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
2714         return false;
2715       R.setContextRange(SS->getRange());
2716       // FIXME: '__super' lookup semantics could be implemented by a
2717       // LookupResult::isSuperLookup flag which skips the initial search of
2718       // the lookup context in LookupQualified.
2719       if (NestedNameSpecifier *NNS = SS->getScopeRep();
2720           NNS->getKind() == NestedNameSpecifier::Super)
2721         return LookupInSuper(R, NNS->getAsRecordDecl());
2722     }
2723     IsDependent = !DC && isDependentScopeSpecifier(*SS);
2724   } else {
2725     // Perform unqualified name lookup starting in the given scope.
2726     return LookupName(R, S, AllowBuiltinCreation);
2727   }
2728 
2729   // If we were able to compute a declaration context, perform qualified name
2730   // lookup in that context.
2731   if (DC)
2732     return LookupQualifiedName(R, DC);
2733   else if (IsDependent)
2734     // We could not resolve the scope specified to a specific declaration
2735     // context, which means that SS refers to an unknown specialization.
2736     // Name lookup can't find anything in this case.
2737     R.setNotFoundInCurrentInstantiation();
2738   return false;
2739 }
2740 
2741 bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) {
2742   // The access-control rules we use here are essentially the rules for
2743   // doing a lookup in Class that just magically skipped the direct
2744   // members of Class itself.  That is, the naming class is Class, and the
2745   // access includes the access of the base.
2746   for (const auto &BaseSpec : Class->bases()) {
2747     CXXRecordDecl *RD = cast<CXXRecordDecl>(
2748         BaseSpec.getType()->castAs<RecordType>()->getDecl());
2749     LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
2750     Result.setBaseObjectType(Context.getRecordType(Class));
2751     LookupQualifiedName(Result, RD);
2752 
2753     // Copy the lookup results into the target, merging the base's access into
2754     // the path access.
2755     for (auto I = Result.begin(), E = Result.end(); I != E; ++I) {
2756       R.addDecl(I.getDecl(),
2757                 CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(),
2758                                            I.getAccess()));
2759     }
2760 
2761     Result.suppressDiagnostics();
2762   }
2763 
2764   R.resolveKind();
2765   R.setNamingClass(Class);
2766 
2767   return !R.empty();
2768 }
2769 
2770 void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
2771   assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
2772 
2773   DeclarationName Name = Result.getLookupName();
2774   SourceLocation NameLoc = Result.getNameLoc();
2775   SourceRange LookupRange = Result.getContextRange();
2776 
2777   switch (Result.getAmbiguityKind()) {
2778   case LookupResult::AmbiguousBaseSubobjects: {
2779     CXXBasePaths *Paths = Result.getBasePaths();
2780     QualType SubobjectType = Paths->front().back().Base->getType();
2781     Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
2782       << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
2783       << LookupRange;
2784 
2785     DeclContext::lookup_iterator Found = Paths->front().Decls;
2786     while (isa<CXXMethodDecl>(*Found) &&
2787            cast<CXXMethodDecl>(*Found)->isStatic())
2788       ++Found;
2789 
2790     Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
2791     break;
2792   }
2793 
2794   case LookupResult::AmbiguousBaseSubobjectTypes: {
2795     Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
2796       << Name << LookupRange;
2797 
2798     CXXBasePaths *Paths = Result.getBasePaths();
2799     std::set<const NamedDecl *> DeclsPrinted;
2800     for (CXXBasePaths::paths_iterator Path = Paths->begin(),
2801                                       PathEnd = Paths->end();
2802          Path != PathEnd; ++Path) {
2803       const NamedDecl *D = *Path->Decls;
2804       if (!D->isInIdentifierNamespace(Result.getIdentifierNamespace()))
2805         continue;
2806       if (DeclsPrinted.insert(D).second) {
2807         if (const auto *TD = dyn_cast<TypedefNameDecl>(D->getUnderlyingDecl()))
2808           Diag(D->getLocation(), diag::note_ambiguous_member_type_found)
2809               << TD->getUnderlyingType();
2810         else if (const auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
2811           Diag(D->getLocation(), diag::note_ambiguous_member_type_found)
2812               << Context.getTypeDeclType(TD);
2813         else
2814           Diag(D->getLocation(), diag::note_ambiguous_member_found);
2815       }
2816     }
2817     break;
2818   }
2819 
2820   case LookupResult::AmbiguousTagHiding: {
2821     Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
2822 
2823     llvm::SmallPtrSet<NamedDecl*, 8> TagDecls;
2824 
2825     for (auto *D : Result)
2826       if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
2827         TagDecls.insert(TD);
2828         Diag(TD->getLocation(), diag::note_hidden_tag);
2829       }
2830 
2831     for (auto *D : Result)
2832       if (!isa<TagDecl>(D))
2833         Diag(D->getLocation(), diag::note_hiding_object);
2834 
2835     // For recovery purposes, go ahead and implement the hiding.
2836     LookupResult::Filter F = Result.makeFilter();
2837     while (F.hasNext()) {
2838       if (TagDecls.count(F.next()))
2839         F.erase();
2840     }
2841     F.done();
2842     break;
2843   }
2844 
2845   case LookupResult::AmbiguousReferenceToPlaceholderVariable: {
2846     Diag(NameLoc, diag::err_using_placeholder_variable) << Name << LookupRange;
2847     DeclContext *DC = nullptr;
2848     for (auto *D : Result) {
2849       Diag(D->getLocation(), diag::note_reference_placeholder) << D;
2850       if (DC != nullptr && DC != D->getDeclContext())
2851         break;
2852       DC = D->getDeclContext();
2853     }
2854     break;
2855   }
2856 
2857   case LookupResult::AmbiguousReference: {
2858     Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
2859 
2860     for (auto *D : Result)
2861       Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
2862     break;
2863   }
2864   }
2865 }
2866 
2867 namespace {
2868   struct AssociatedLookup {
2869     AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
2870                      Sema::AssociatedNamespaceSet &Namespaces,
2871                      Sema::AssociatedClassSet &Classes)
2872       : S(S), Namespaces(Namespaces), Classes(Classes),
2873         InstantiationLoc(InstantiationLoc) {
2874     }
2875 
2876     bool addClassTransitive(CXXRecordDecl *RD) {
2877       Classes.insert(RD);
2878       return ClassesTransitive.insert(RD);
2879     }
2880 
2881     Sema &S;
2882     Sema::AssociatedNamespaceSet &Namespaces;
2883     Sema::AssociatedClassSet &Classes;
2884     SourceLocation InstantiationLoc;
2885 
2886   private:
2887     Sema::AssociatedClassSet ClassesTransitive;
2888   };
2889 } // end anonymous namespace
2890 
2891 static void
2892 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
2893 
2894 // Given the declaration context \param Ctx of a class, class template or
2895 // enumeration, add the associated namespaces to \param Namespaces as described
2896 // in [basic.lookup.argdep]p2.
2897 static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
2898                                       DeclContext *Ctx) {
2899   // The exact wording has been changed in C++14 as a result of
2900   // CWG 1691 (see also CWG 1690 and CWG 1692). We apply it unconditionally
2901   // to all language versions since it is possible to return a local type
2902   // from a lambda in C++11.
2903   //
2904   // C++14 [basic.lookup.argdep]p2:
2905   //   If T is a class type [...]. Its associated namespaces are the innermost
2906   //   enclosing namespaces of its associated classes. [...]
2907   //
2908   //   If T is an enumeration type, its associated namespace is the innermost
2909   //   enclosing namespace of its declaration. [...]
2910 
2911   // We additionally skip inline namespaces. The innermost non-inline namespace
2912   // contains all names of all its nested inline namespaces anyway, so we can
2913   // replace the entire inline namespace tree with its root.
2914   while (!Ctx->isFileContext() || Ctx->isInlineNamespace())
2915     Ctx = Ctx->getParent();
2916 
2917   // Actually it is fine to always do `Namespaces.insert(Ctx);` simply. But it
2918   // may cause more allocations in Namespaces and more unnecessary lookups. So
2919   // we'd like to insert the representative namespace only.
2920   DeclContext *PrimaryCtx = Ctx->getPrimaryContext();
2921   Decl *PrimaryD = cast<Decl>(PrimaryCtx);
2922   Decl *D = cast<Decl>(Ctx);
2923   ASTContext &AST = D->getASTContext();
2924 
2925   // TODO: Technically it is better to insert one namespace per module. e.g.,
2926   //
2927   // ```
2928   // //--- first.cppm
2929   // export module first;
2930   // namespace ns { ... } // first namespace
2931   //
2932   // //--- m-partA.cppm
2933   // export module m:partA;
2934   // import first;
2935   //
2936   // namespace ns { ... }
2937   // namespace ns { ... }
2938   //
2939   // //--- m-partB.cppm
2940   // export module m:partB;
2941   // import first;
2942   // import :partA;
2943   //
2944   // namespace ns { ... }
2945   // namespace ns { ... }
2946   //
2947   // ...
2948   //
2949   // //--- m-partN.cppm
2950   // export module m:partN;
2951   // import first;
2952   // import :partA;
2953   // ...
2954   // import :part$(N-1);
2955   //
2956   // namespace ns { ... }
2957   // namespace ns { ... }
2958   //
2959   // consume(ns::any_decl); // the lookup
2960   // ```
2961   //
2962   // We should only insert once for all namespaces in module m.
2963   if (D->isInNamedModule() &&
2964       !AST.isInSameModule(D->getOwningModule(), PrimaryD->getOwningModule()))
2965     Namespaces.insert(Ctx);
2966   else
2967     Namespaces.insert(PrimaryCtx);
2968 }
2969 
2970 // Add the associated classes and namespaces for argument-dependent
2971 // lookup that involves a template argument (C++ [basic.lookup.argdep]p2).
2972 static void
2973 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2974                                   const TemplateArgument &Arg) {
2975   // C++ [basic.lookup.argdep]p2, last bullet:
2976   //   -- [...] ;
2977   switch (Arg.getKind()) {
2978     case TemplateArgument::Null:
2979       break;
2980 
2981     case TemplateArgument::Type:
2982       // [...] the namespaces and classes associated with the types of the
2983       // template arguments provided for template type parameters (excluding
2984       // template template parameters)
2985       addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
2986       break;
2987 
2988     case TemplateArgument::Template:
2989     case TemplateArgument::TemplateExpansion: {
2990       // [...] the namespaces in which any template template arguments are
2991       // defined; and the classes in which any member templates used as
2992       // template template arguments are defined.
2993       TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
2994       if (ClassTemplateDecl *ClassTemplate
2995                  = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
2996         DeclContext *Ctx = ClassTemplate->getDeclContext();
2997         if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2998           Result.Classes.insert(EnclosingClass);
2999         // Add the associated namespace for this class.
3000         CollectEnclosingNamespace(Result.Namespaces, Ctx);
3001       }
3002       break;
3003     }
3004 
3005     case TemplateArgument::Declaration:
3006     case TemplateArgument::Integral:
3007     case TemplateArgument::Expression:
3008     case TemplateArgument::NullPtr:
3009     case TemplateArgument::StructuralValue:
3010       // [Note: non-type template arguments do not contribute to the set of
3011       //  associated namespaces. ]
3012       break;
3013 
3014     case TemplateArgument::Pack:
3015       for (const auto &P : Arg.pack_elements())
3016         addAssociatedClassesAndNamespaces(Result, P);
3017       break;
3018   }
3019 }
3020 
3021 // Add the associated classes and namespaces for argument-dependent lookup
3022 // with an argument of class type (C++ [basic.lookup.argdep]p2).
3023 static void
3024 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
3025                                   CXXRecordDecl *Class) {
3026 
3027   // Just silently ignore anything whose name is __va_list_tag.
3028   if (Class->getDeclName() == Result.S.VAListTagName)
3029     return;
3030 
3031   // C++ [basic.lookup.argdep]p2:
3032   //   [...]
3033   //     -- If T is a class type (including unions), its associated
3034   //        classes are: the class itself; the class of which it is a
3035   //        member, if any; and its direct and indirect base classes.
3036   //        Its associated namespaces are the innermost enclosing
3037   //        namespaces of its associated classes.
3038 
3039   // Add the class of which it is a member, if any.
3040   DeclContext *Ctx = Class->getDeclContext();
3041   if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
3042     Result.Classes.insert(EnclosingClass);
3043 
3044   // Add the associated namespace for this class.
3045   CollectEnclosingNamespace(Result.Namespaces, Ctx);
3046 
3047   // -- If T is a template-id, its associated namespaces and classes are
3048   //    the namespace in which the template is defined; for member
3049   //    templates, the member template's class; the namespaces and classes
3050   //    associated with the types of the template arguments provided for
3051   //    template type parameters (excluding template template parameters); the
3052   //    namespaces in which any template template arguments are defined; and
3053   //    the classes in which any member templates used as template template
3054   //    arguments are defined. [Note: non-type template arguments do not
3055   //    contribute to the set of associated namespaces. ]
3056   if (ClassTemplateSpecializationDecl *Spec
3057         = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
3058     DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
3059     if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
3060       Result.Classes.insert(EnclosingClass);
3061     // Add the associated namespace for this class.
3062     CollectEnclosingNamespace(Result.Namespaces, Ctx);
3063 
3064     const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
3065     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
3066       addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
3067   }
3068 
3069   // Add the class itself. If we've already transitively visited this class,
3070   // we don't need to visit base classes.
3071   if (!Result.addClassTransitive(Class))
3072     return;
3073 
3074   // Only recurse into base classes for complete types.
3075   if (!Result.S.isCompleteType(Result.InstantiationLoc,
3076                                Result.S.Context.getRecordType(Class)))
3077     return;
3078 
3079   // Add direct and indirect base classes along with their associated
3080   // namespaces.
3081   SmallVector<CXXRecordDecl *, 32> Bases;
3082   Bases.push_back(Class);
3083   while (!Bases.empty()) {
3084     // Pop this class off the stack.
3085     Class = Bases.pop_back_val();
3086 
3087     // Visit the base classes.
3088     for (const auto &Base : Class->bases()) {
3089       const RecordType *BaseType = Base.getType()->getAs<RecordType>();
3090       // In dependent contexts, we do ADL twice, and the first time around,
3091       // the base type might be a dependent TemplateSpecializationType, or a
3092       // TemplateTypeParmType. If that happens, simply ignore it.
3093       // FIXME: If we want to support export, we probably need to add the
3094       // namespace of the template in a TemplateSpecializationType, or even
3095       // the classes and namespaces of known non-dependent arguments.
3096       if (!BaseType)
3097         continue;
3098       CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
3099       if (Result.addClassTransitive(BaseDecl)) {
3100         // Find the associated namespace for this base class.
3101         DeclContext *BaseCtx = BaseDecl->getDeclContext();
3102         CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
3103 
3104         // Make sure we visit the bases of this base class.
3105         if (BaseDecl->bases_begin() != BaseDecl->bases_end())
3106           Bases.push_back(BaseDecl);
3107       }
3108     }
3109   }
3110 }
3111 
3112 // Add the associated classes and namespaces for
3113 // argument-dependent lookup with an argument of type T
3114 // (C++ [basic.lookup.koenig]p2).
3115 static void
3116 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
3117   // C++ [basic.lookup.koenig]p2:
3118   //
3119   //   For each argument type T in the function call, there is a set
3120   //   of zero or more associated namespaces and a set of zero or more
3121   //   associated classes to be considered. The sets of namespaces and
3122   //   classes is determined entirely by the types of the function
3123   //   arguments (and the namespace of any template template
3124   //   argument). Typedef names and using-declarations used to specify
3125   //   the types do not contribute to this set. The sets of namespaces
3126   //   and classes are determined in the following way:
3127 
3128   SmallVector<const Type *, 16> Queue;
3129   const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
3130 
3131   while (true) {
3132     switch (T->getTypeClass()) {
3133 
3134 #define TYPE(Class, Base)
3135 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
3136 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3137 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
3138 #define ABSTRACT_TYPE(Class, Base)
3139 #include "clang/AST/TypeNodes.inc"
3140       // T is canonical.  We can also ignore dependent types because
3141       // we don't need to do ADL at the definition point, but if we
3142       // wanted to implement template export (or if we find some other
3143       // use for associated classes and namespaces...) this would be
3144       // wrong.
3145       break;
3146 
3147     //    -- If T is a pointer to U or an array of U, its associated
3148     //       namespaces and classes are those associated with U.
3149     case Type::Pointer:
3150       T = cast<PointerType>(T)->getPointeeType().getTypePtr();
3151       continue;
3152     case Type::ConstantArray:
3153     case Type::IncompleteArray:
3154     case Type::VariableArray:
3155       T = cast<ArrayType>(T)->getElementType().getTypePtr();
3156       continue;
3157 
3158     //     -- If T is a fundamental type, its associated sets of
3159     //        namespaces and classes are both empty.
3160     case Type::Builtin:
3161       break;
3162 
3163     //     -- If T is a class type (including unions), its associated
3164     //        classes are: the class itself; the class of which it is
3165     //        a member, if any; and its direct and indirect base classes.
3166     //        Its associated namespaces are the innermost enclosing
3167     //        namespaces of its associated classes.
3168     case Type::Record: {
3169       CXXRecordDecl *Class =
3170           cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
3171       addAssociatedClassesAndNamespaces(Result, Class);
3172       break;
3173     }
3174 
3175     //     -- If T is an enumeration type, its associated namespace
3176     //        is the innermost enclosing namespace of its declaration.
3177     //        If it is a class member, its associated class is the
3178     //        member’s class; else it has no associated class.
3179     case Type::Enum: {
3180       EnumDecl *Enum = cast<EnumType>(T)->getDecl();
3181 
3182       DeclContext *Ctx = Enum->getDeclContext();
3183       if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
3184         Result.Classes.insert(EnclosingClass);
3185 
3186       // Add the associated namespace for this enumeration.
3187       CollectEnclosingNamespace(Result.Namespaces, Ctx);
3188 
3189       break;
3190     }
3191 
3192     //     -- If T is a function type, its associated namespaces and
3193     //        classes are those associated with the function parameter
3194     //        types and those associated with the return type.
3195     case Type::FunctionProto: {
3196       const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
3197       for (const auto &Arg : Proto->param_types())
3198         Queue.push_back(Arg.getTypePtr());
3199       // fallthrough
3200       [[fallthrough]];
3201     }
3202     case Type::FunctionNoProto: {
3203       const FunctionType *FnType = cast<FunctionType>(T);
3204       T = FnType->getReturnType().getTypePtr();
3205       continue;
3206     }
3207 
3208     //     -- If T is a pointer to a member function of a class X, its
3209     //        associated namespaces and classes are those associated
3210     //        with the function parameter types and return type,
3211     //        together with those associated with X.
3212     //
3213     //     -- If T is a pointer to a data member of class X, its
3214     //        associated namespaces and classes are those associated
3215     //        with the member type together with those associated with
3216     //        X.
3217     case Type::MemberPointer: {
3218       const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
3219 
3220       // Queue up the class type into which this points.
3221       Queue.push_back(MemberPtr->getClass());
3222 
3223       // And directly continue with the pointee type.
3224       T = MemberPtr->getPointeeType().getTypePtr();
3225       continue;
3226     }
3227 
3228     // As an extension, treat this like a normal pointer.
3229     case Type::BlockPointer:
3230       T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
3231       continue;
3232 
3233     // References aren't covered by the standard, but that's such an
3234     // obvious defect that we cover them anyway.
3235     case Type::LValueReference:
3236     case Type::RValueReference:
3237       T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
3238       continue;
3239 
3240     // These are fundamental types.
3241     case Type::Vector:
3242     case Type::ExtVector:
3243     case Type::ConstantMatrix:
3244     case Type::Complex:
3245     case Type::BitInt:
3246       break;
3247 
3248     // Non-deduced auto types only get here for error cases.
3249     case Type::Auto:
3250     case Type::DeducedTemplateSpecialization:
3251       break;
3252 
3253     // If T is an Objective-C object or interface type, or a pointer to an
3254     // object or interface type, the associated namespace is the global
3255     // namespace.
3256     case Type::ObjCObject:
3257     case Type::ObjCInterface:
3258     case Type::ObjCObjectPointer:
3259       Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
3260       break;
3261 
3262     // Atomic types are just wrappers; use the associations of the
3263     // contained type.
3264     case Type::Atomic:
3265       T = cast<AtomicType>(T)->getValueType().getTypePtr();
3266       continue;
3267     case Type::Pipe:
3268       T = cast<PipeType>(T)->getElementType().getTypePtr();
3269       continue;
3270 
3271     // Array parameter types are treated as fundamental types.
3272     case Type::ArrayParameter:
3273       break;
3274 
3275     case Type::HLSLAttributedResource:
3276       T = cast<HLSLAttributedResourceType>(T)->getWrappedType().getTypePtr();
3277     }
3278 
3279     if (Queue.empty())
3280       break;
3281     T = Queue.pop_back_val();
3282   }
3283 }
3284 
3285 void Sema::FindAssociatedClassesAndNamespaces(
3286     SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
3287     AssociatedNamespaceSet &AssociatedNamespaces,
3288     AssociatedClassSet &AssociatedClasses) {
3289   AssociatedNamespaces.clear();
3290   AssociatedClasses.clear();
3291 
3292   AssociatedLookup Result(*this, InstantiationLoc,
3293                           AssociatedNamespaces, AssociatedClasses);
3294 
3295   // C++ [basic.lookup.koenig]p2:
3296   //   For each argument type T in the function call, there is a set
3297   //   of zero or more associated namespaces and a set of zero or more
3298   //   associated classes to be considered. The sets of namespaces and
3299   //   classes is determined entirely by the types of the function
3300   //   arguments (and the namespace of any template template
3301   //   argument).
3302   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
3303     Expr *Arg = Args[ArgIdx];
3304 
3305     if (Arg->getType() != Context.OverloadTy) {
3306       addAssociatedClassesAndNamespaces(Result, Arg->getType());
3307       continue;
3308     }
3309 
3310     // [...] In addition, if the argument is the name or address of a
3311     // set of overloaded functions and/or function templates, its
3312     // associated classes and namespaces are the union of those
3313     // associated with each of the members of the set: the namespace
3314     // in which the function or function template is defined and the
3315     // classes and namespaces associated with its (non-dependent)
3316     // parameter types and return type.
3317     OverloadExpr *OE = OverloadExpr::find(Arg).Expression;
3318 
3319     for (const NamedDecl *D : OE->decls()) {
3320       // Look through any using declarations to find the underlying function.
3321       const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
3322 
3323       // Add the classes and namespaces associated with the parameter
3324       // types and return type of this function.
3325       addAssociatedClassesAndNamespaces(Result, FDecl->getType());
3326     }
3327   }
3328 }
3329 
3330 NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
3331                                   SourceLocation Loc,
3332                                   LookupNameKind NameKind,
3333                                   RedeclarationKind Redecl) {
3334   LookupResult R(*this, Name, Loc, NameKind, Redecl);
3335   LookupName(R, S);
3336   return R.getAsSingle<NamedDecl>();
3337 }
3338 
3339 void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
3340                                         UnresolvedSetImpl &Functions) {
3341   // C++ [over.match.oper]p3:
3342   //     -- The set of non-member candidates is the result of the
3343   //        unqualified lookup of operator@ in the context of the
3344   //        expression according to the usual rules for name lookup in
3345   //        unqualified function calls (3.4.2) except that all member
3346   //        functions are ignored.
3347   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3348   LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
3349   LookupName(Operators, S);
3350 
3351   assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
3352   Functions.append(Operators.begin(), Operators.end());
3353 }
3354 
3355 Sema::SpecialMemberOverloadResult
3356 Sema::LookupSpecialMember(CXXRecordDecl *RD, CXXSpecialMemberKind SM,
3357                           bool ConstArg, bool VolatileArg, bool RValueThis,
3358                           bool ConstThis, bool VolatileThis) {
3359   assert(CanDeclareSpecialMemberFunction(RD) &&
3360          "doing special member lookup into record that isn't fully complete");
3361   RD = RD->getDefinition();
3362   if (RValueThis || ConstThis || VolatileThis)
3363     assert((SM == CXXSpecialMemberKind::CopyAssignment ||
3364             SM == CXXSpecialMemberKind::MoveAssignment) &&
3365            "constructors and destructors always have unqualified lvalue this");
3366   if (ConstArg || VolatileArg)
3367     assert((SM != CXXSpecialMemberKind::DefaultConstructor &&
3368             SM != CXXSpecialMemberKind::Destructor) &&
3369            "parameter-less special members can't have qualified arguments");
3370 
3371   // FIXME: Get the caller to pass in a location for the lookup.
3372   SourceLocation LookupLoc = RD->getLocation();
3373 
3374   llvm::FoldingSetNodeID ID;
3375   ID.AddPointer(RD);
3376   ID.AddInteger(llvm::to_underlying(SM));
3377   ID.AddInteger(ConstArg);
3378   ID.AddInteger(VolatileArg);
3379   ID.AddInteger(RValueThis);
3380   ID.AddInteger(ConstThis);
3381   ID.AddInteger(VolatileThis);
3382 
3383   void *InsertPoint;
3384   SpecialMemberOverloadResultEntry *Result =
3385     SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
3386 
3387   // This was already cached
3388   if (Result)
3389     return *Result;
3390 
3391   Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>();
3392   Result = new (Result) SpecialMemberOverloadResultEntry(ID);
3393   SpecialMemberCache.InsertNode(Result, InsertPoint);
3394 
3395   if (SM == CXXSpecialMemberKind::Destructor) {
3396     if (RD->needsImplicitDestructor()) {
3397       runWithSufficientStackSpace(RD->getLocation(), [&] {
3398         DeclareImplicitDestructor(RD);
3399       });
3400     }
3401     CXXDestructorDecl *DD = RD->getDestructor();
3402     Result->setMethod(DD);
3403     Result->setKind(DD && !DD->isDeleted()
3404                         ? SpecialMemberOverloadResult::Success
3405                         : SpecialMemberOverloadResult::NoMemberOrDeleted);
3406     return *Result;
3407   }
3408 
3409   // Prepare for overload resolution. Here we construct a synthetic argument
3410   // if necessary and make sure that implicit functions are declared.
3411   CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
3412   DeclarationName Name;
3413   Expr *Arg = nullptr;
3414   unsigned NumArgs;
3415 
3416   QualType ArgType = CanTy;
3417   ExprValueKind VK = VK_LValue;
3418 
3419   if (SM == CXXSpecialMemberKind::DefaultConstructor) {
3420     Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3421     NumArgs = 0;
3422     if (RD->needsImplicitDefaultConstructor()) {
3423       runWithSufficientStackSpace(RD->getLocation(), [&] {
3424         DeclareImplicitDefaultConstructor(RD);
3425       });
3426     }
3427   } else {
3428     if (SM == CXXSpecialMemberKind::CopyConstructor ||
3429         SM == CXXSpecialMemberKind::MoveConstructor) {
3430       Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3431       if (RD->needsImplicitCopyConstructor()) {
3432         runWithSufficientStackSpace(RD->getLocation(), [&] {
3433           DeclareImplicitCopyConstructor(RD);
3434         });
3435       }
3436       if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor()) {
3437         runWithSufficientStackSpace(RD->getLocation(), [&] {
3438           DeclareImplicitMoveConstructor(RD);
3439         });
3440       }
3441     } else {
3442       Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
3443       if (RD->needsImplicitCopyAssignment()) {
3444         runWithSufficientStackSpace(RD->getLocation(), [&] {
3445           DeclareImplicitCopyAssignment(RD);
3446         });
3447       }
3448       if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment()) {
3449         runWithSufficientStackSpace(RD->getLocation(), [&] {
3450           DeclareImplicitMoveAssignment(RD);
3451         });
3452       }
3453     }
3454 
3455     if (ConstArg)
3456       ArgType.addConst();
3457     if (VolatileArg)
3458       ArgType.addVolatile();
3459 
3460     // This isn't /really/ specified by the standard, but it's implied
3461     // we should be working from a PRValue in the case of move to ensure
3462     // that we prefer to bind to rvalue references, and an LValue in the
3463     // case of copy to ensure we don't bind to rvalue references.
3464     // Possibly an XValue is actually correct in the case of move, but
3465     // there is no semantic difference for class types in this restricted
3466     // case.
3467     if (SM == CXXSpecialMemberKind::CopyConstructor ||
3468         SM == CXXSpecialMemberKind::CopyAssignment)
3469       VK = VK_LValue;
3470     else
3471       VK = VK_PRValue;
3472   }
3473 
3474   OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK);
3475 
3476   if (SM != CXXSpecialMemberKind::DefaultConstructor) {
3477     NumArgs = 1;
3478     Arg = &FakeArg;
3479   }
3480 
3481   // Create the object argument
3482   QualType ThisTy = CanTy;
3483   if (ConstThis)
3484     ThisTy.addConst();
3485   if (VolatileThis)
3486     ThisTy.addVolatile();
3487   Expr::Classification Classification =
3488       OpaqueValueExpr(LookupLoc, ThisTy, RValueThis ? VK_PRValue : VK_LValue)
3489           .Classify(Context);
3490 
3491   // Now we perform lookup on the name we computed earlier and do overload
3492   // resolution. Lookup is only performed directly into the class since there
3493   // will always be a (possibly implicit) declaration to shadow any others.
3494   OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal);
3495   DeclContext::lookup_result R = RD->lookup(Name);
3496 
3497   if (R.empty()) {
3498     // We might have no default constructor because we have a lambda's closure
3499     // type, rather than because there's some other declared constructor.
3500     // Every class has a copy/move constructor, copy/move assignment, and
3501     // destructor.
3502     assert(SM == CXXSpecialMemberKind::DefaultConstructor &&
3503            "lookup for a constructor or assignment operator was empty");
3504     Result->setMethod(nullptr);
3505     Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3506     return *Result;
3507   }
3508 
3509   // Copy the candidates as our processing of them may load new declarations
3510   // from an external source and invalidate lookup_result.
3511   SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
3512 
3513   for (NamedDecl *CandDecl : Candidates) {
3514     if (CandDecl->isInvalidDecl())
3515       continue;
3516 
3517     DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public);
3518     auto CtorInfo = getConstructorInfo(Cand);
3519     if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) {
3520       if (SM == CXXSpecialMemberKind::CopyAssignment ||
3521           SM == CXXSpecialMemberKind::MoveAssignment)
3522         AddMethodCandidate(M, Cand, RD, ThisTy, Classification,
3523                            llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3524       else if (CtorInfo)
3525         AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl,
3526                              llvm::ArrayRef(&Arg, NumArgs), OCS,
3527                              /*SuppressUserConversions*/ true);
3528       else
3529         AddOverloadCandidate(M, Cand, llvm::ArrayRef(&Arg, NumArgs), OCS,
3530                              /*SuppressUserConversions*/ true);
3531     } else if (FunctionTemplateDecl *Tmpl =
3532                  dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) {
3533       if (SM == CXXSpecialMemberKind::CopyAssignment ||
3534           SM == CXXSpecialMemberKind::MoveAssignment)
3535         AddMethodTemplateCandidate(Tmpl, Cand, RD, nullptr, ThisTy,
3536                                    Classification,
3537                                    llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3538       else if (CtorInfo)
3539         AddTemplateOverloadCandidate(CtorInfo.ConstructorTmpl,
3540                                      CtorInfo.FoundDecl, nullptr,
3541                                      llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3542       else
3543         AddTemplateOverloadCandidate(Tmpl, Cand, nullptr,
3544                                      llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3545     } else {
3546       assert(isa<UsingDecl>(Cand.getDecl()) &&
3547              "illegal Kind of operator = Decl");
3548     }
3549   }
3550 
3551   OverloadCandidateSet::iterator Best;
3552   switch (OCS.BestViableFunction(*this, LookupLoc, Best)) {
3553     case OR_Success:
3554       Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3555       Result->setKind(SpecialMemberOverloadResult::Success);
3556       break;
3557 
3558     case OR_Deleted:
3559       Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3560       Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3561       break;
3562 
3563     case OR_Ambiguous:
3564       Result->setMethod(nullptr);
3565       Result->setKind(SpecialMemberOverloadResult::Ambiguous);
3566       break;
3567 
3568     case OR_No_Viable_Function:
3569       Result->setMethod(nullptr);
3570       Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3571       break;
3572   }
3573 
3574   return *Result;
3575 }
3576 
3577 CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
3578   SpecialMemberOverloadResult Result =
3579       LookupSpecialMember(Class, CXXSpecialMemberKind::DefaultConstructor,
3580                           false, false, false, false, false);
3581 
3582   return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3583 }
3584 
3585 CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
3586                                                    unsigned Quals) {
3587   assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3588          "non-const, non-volatile qualifiers for copy ctor arg");
3589   SpecialMemberOverloadResult Result = LookupSpecialMember(
3590       Class, CXXSpecialMemberKind::CopyConstructor, Quals & Qualifiers::Const,
3591       Quals & Qualifiers::Volatile, false, false, false);
3592 
3593   return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3594 }
3595 
3596 CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
3597                                                   unsigned Quals) {
3598   SpecialMemberOverloadResult Result = LookupSpecialMember(
3599       Class, CXXSpecialMemberKind::MoveConstructor, Quals & Qualifiers::Const,
3600       Quals & Qualifiers::Volatile, false, false, false);
3601 
3602   return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3603 }
3604 
3605 DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
3606   // If the implicit constructors have not yet been declared, do so now.
3607   if (CanDeclareSpecialMemberFunction(Class)) {
3608     runWithSufficientStackSpace(Class->getLocation(), [&] {
3609       if (Class->needsImplicitDefaultConstructor())
3610         DeclareImplicitDefaultConstructor(Class);
3611       if (Class->needsImplicitCopyConstructor())
3612         DeclareImplicitCopyConstructor(Class);
3613       if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
3614         DeclareImplicitMoveConstructor(Class);
3615     });
3616   }
3617 
3618   CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
3619   DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
3620   return Class->lookup(Name);
3621 }
3622 
3623 CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
3624                                              unsigned Quals, bool RValueThis,
3625                                              unsigned ThisQuals) {
3626   assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3627          "non-const, non-volatile qualifiers for copy assignment arg");
3628   assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3629          "non-const, non-volatile qualifiers for copy assignment this");
3630   SpecialMemberOverloadResult Result = LookupSpecialMember(
3631       Class, CXXSpecialMemberKind::CopyAssignment, Quals & Qualifiers::Const,
3632       Quals & Qualifiers::Volatile, RValueThis, ThisQuals & Qualifiers::Const,
3633       ThisQuals & Qualifiers::Volatile);
3634 
3635   return Result.getMethod();
3636 }
3637 
3638 CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
3639                                             unsigned Quals,
3640                                             bool RValueThis,
3641                                             unsigned ThisQuals) {
3642   assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3643          "non-const, non-volatile qualifiers for copy assignment this");
3644   SpecialMemberOverloadResult Result = LookupSpecialMember(
3645       Class, CXXSpecialMemberKind::MoveAssignment, Quals & Qualifiers::Const,
3646       Quals & Qualifiers::Volatile, RValueThis, ThisQuals & Qualifiers::Const,
3647       ThisQuals & Qualifiers::Volatile);
3648 
3649   return Result.getMethod();
3650 }
3651 
3652 CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
3653   return cast_or_null<CXXDestructorDecl>(
3654       LookupSpecialMember(Class, CXXSpecialMemberKind::Destructor, false, false,
3655                           false, false, false)
3656           .getMethod());
3657 }
3658 
3659 Sema::LiteralOperatorLookupResult
3660 Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
3661                             ArrayRef<QualType> ArgTys, bool AllowRaw,
3662                             bool AllowTemplate, bool AllowStringTemplatePack,
3663                             bool DiagnoseMissing, StringLiteral *StringLit) {
3664   LookupName(R, S);
3665   assert(R.getResultKind() != LookupResult::Ambiguous &&
3666          "literal operator lookup can't be ambiguous");
3667 
3668   // Filter the lookup results appropriately.
3669   LookupResult::Filter F = R.makeFilter();
3670 
3671   bool AllowCooked = true;
3672   bool FoundRaw = false;
3673   bool FoundTemplate = false;
3674   bool FoundStringTemplatePack = false;
3675   bool FoundCooked = false;
3676 
3677   while (F.hasNext()) {
3678     Decl *D = F.next();
3679     if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
3680       D = USD->getTargetDecl();
3681 
3682     // If the declaration we found is invalid, skip it.
3683     if (D->isInvalidDecl()) {
3684       F.erase();
3685       continue;
3686     }
3687 
3688     bool IsRaw = false;
3689     bool IsTemplate = false;
3690     bool IsStringTemplatePack = false;
3691     bool IsCooked = false;
3692 
3693     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3694       if (FD->getNumParams() == 1 &&
3695           FD->getParamDecl(0)->getType()->getAs<PointerType>())
3696         IsRaw = true;
3697       else if (FD->getNumParams() == ArgTys.size()) {
3698         IsCooked = true;
3699         for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
3700           QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
3701           if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
3702             IsCooked = false;
3703             break;
3704           }
3705         }
3706       }
3707     }
3708     if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
3709       TemplateParameterList *Params = FD->getTemplateParameters();
3710       if (Params->size() == 1) {
3711         IsTemplate = true;
3712         if (!Params->getParam(0)->isTemplateParameterPack() && !StringLit) {
3713           // Implied but not stated: user-defined integer and floating literals
3714           // only ever use numeric literal operator templates, not templates
3715           // taking a parameter of class type.
3716           F.erase();
3717           continue;
3718         }
3719 
3720         // A string literal template is only considered if the string literal
3721         // is a well-formed template argument for the template parameter.
3722         if (StringLit) {
3723           SFINAETrap Trap(*this);
3724           CheckTemplateArgumentInfo CTAI;
3725           TemplateArgumentLoc Arg(TemplateArgument(StringLit), StringLit);
3726           if (CheckTemplateArgument(
3727                   Params->getParam(0), Arg, FD, R.getNameLoc(), R.getNameLoc(),
3728                   /*ArgumentPackIndex=*/0, CTAI, CTAK_Specified) ||
3729               Trap.hasErrorOccurred())
3730             IsTemplate = false;
3731         }
3732       } else {
3733         IsStringTemplatePack = true;
3734       }
3735     }
3736 
3737     if (AllowTemplate && StringLit && IsTemplate) {
3738       FoundTemplate = true;
3739       AllowRaw = false;
3740       AllowCooked = false;
3741       AllowStringTemplatePack = false;
3742       if (FoundRaw || FoundCooked || FoundStringTemplatePack) {
3743         F.restart();
3744         FoundRaw = FoundCooked = FoundStringTemplatePack = false;
3745       }
3746     } else if (AllowCooked && IsCooked) {
3747       FoundCooked = true;
3748       AllowRaw = false;
3749       AllowTemplate = StringLit;
3750       AllowStringTemplatePack = false;
3751       if (FoundRaw || FoundTemplate || FoundStringTemplatePack) {
3752         // Go through again and remove the raw and template decls we've
3753         // already found.
3754         F.restart();
3755         FoundRaw = FoundTemplate = FoundStringTemplatePack = false;
3756       }
3757     } else if (AllowRaw && IsRaw) {
3758       FoundRaw = true;
3759     } else if (AllowTemplate && IsTemplate) {
3760       FoundTemplate = true;
3761     } else if (AllowStringTemplatePack && IsStringTemplatePack) {
3762       FoundStringTemplatePack = true;
3763     } else {
3764       F.erase();
3765     }
3766   }
3767 
3768   F.done();
3769 
3770   // Per C++20 [lex.ext]p5, we prefer the template form over the non-template
3771   // form for string literal operator templates.
3772   if (StringLit && FoundTemplate)
3773     return LOLR_Template;
3774 
3775   // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
3776   // parameter type, that is used in preference to a raw literal operator
3777   // or literal operator template.
3778   if (FoundCooked)
3779     return LOLR_Cooked;
3780 
3781   // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
3782   // operator template, but not both.
3783   if (FoundRaw && FoundTemplate) {
3784     Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
3785     for (const NamedDecl *D : R)
3786       NoteOverloadCandidate(D, D->getUnderlyingDecl()->getAsFunction());
3787     return LOLR_Error;
3788   }
3789 
3790   if (FoundRaw)
3791     return LOLR_Raw;
3792 
3793   if (FoundTemplate)
3794     return LOLR_Template;
3795 
3796   if (FoundStringTemplatePack)
3797     return LOLR_StringTemplatePack;
3798 
3799   // Didn't find anything we could use.
3800   if (DiagnoseMissing) {
3801     Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
3802         << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
3803         << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
3804         << (AllowTemplate || AllowStringTemplatePack);
3805     return LOLR_Error;
3806   }
3807 
3808   return LOLR_ErrorNoDiagnostic;
3809 }
3810 
3811 void ADLResult::insert(NamedDecl *New) {
3812   NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
3813 
3814   // If we haven't yet seen a decl for this key, or the last decl
3815   // was exactly this one, we're done.
3816   if (Old == nullptr || Old == New) {
3817     Old = New;
3818     return;
3819   }
3820 
3821   // Otherwise, decide which is a more recent redeclaration.
3822   FunctionDecl *OldFD = Old->getAsFunction();
3823   FunctionDecl *NewFD = New->getAsFunction();
3824 
3825   FunctionDecl *Cursor = NewFD;
3826   while (true) {
3827     Cursor = Cursor->getPreviousDecl();
3828 
3829     // If we got to the end without finding OldFD, OldFD is the newer
3830     // declaration;  leave things as they are.
3831     if (!Cursor) return;
3832 
3833     // If we do find OldFD, then NewFD is newer.
3834     if (Cursor == OldFD) break;
3835 
3836     // Otherwise, keep looking.
3837   }
3838 
3839   Old = New;
3840 }
3841 
3842 void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
3843                                    ArrayRef<Expr *> Args, ADLResult &Result) {
3844   // Find all of the associated namespaces and classes based on the
3845   // arguments we have.
3846   AssociatedNamespaceSet AssociatedNamespaces;
3847   AssociatedClassSet AssociatedClasses;
3848   FindAssociatedClassesAndNamespaces(Loc, Args,
3849                                      AssociatedNamespaces,
3850                                      AssociatedClasses);
3851 
3852   // C++ [basic.lookup.argdep]p3:
3853   //   Let X be the lookup set produced by unqualified lookup (3.4.1)
3854   //   and let Y be the lookup set produced by argument dependent
3855   //   lookup (defined as follows). If X contains [...] then Y is
3856   //   empty. Otherwise Y is the set of declarations found in the
3857   //   namespaces associated with the argument types as described
3858   //   below. The set of declarations found by the lookup of the name
3859   //   is the union of X and Y.
3860   //
3861   // Here, we compute Y and add its members to the overloaded
3862   // candidate set.
3863   for (auto *NS : AssociatedNamespaces) {
3864     //   When considering an associated namespace, the lookup is the
3865     //   same as the lookup performed when the associated namespace is
3866     //   used as a qualifier (3.4.3.2) except that:
3867     //
3868     //     -- Any using-directives in the associated namespace are
3869     //        ignored.
3870     //
3871     //     -- Any namespace-scope friend functions declared in
3872     //        associated classes are visible within their respective
3873     //        namespaces even if they are not visible during an ordinary
3874     //        lookup (11.4).
3875     //
3876     // C++20 [basic.lookup.argdep] p4.3
3877     //     -- are exported, are attached to a named module M, do not appear
3878     //        in the translation unit containing the point of the lookup, and
3879     //        have the same innermost enclosing non-inline namespace scope as
3880     //        a declaration of an associated entity attached to M.
3881     DeclContext::lookup_result R = NS->lookup(Name);
3882     for (auto *D : R) {
3883       auto *Underlying = D;
3884       if (auto *USD = dyn_cast<UsingShadowDecl>(D))
3885         Underlying = USD->getTargetDecl();
3886 
3887       if (!isa<FunctionDecl>(Underlying) &&
3888           !isa<FunctionTemplateDecl>(Underlying))
3889         continue;
3890 
3891       // The declaration is visible to argument-dependent lookup if either
3892       // it's ordinarily visible or declared as a friend in an associated
3893       // class.
3894       bool Visible = false;
3895       for (D = D->getMostRecentDecl(); D;
3896            D = cast_or_null<NamedDecl>(D->getPreviousDecl())) {
3897         if (D->getIdentifierNamespace() & Decl::IDNS_Ordinary) {
3898           if (isVisible(D)) {
3899             Visible = true;
3900             break;
3901           }
3902 
3903           if (!getLangOpts().CPlusPlusModules)
3904             continue;
3905 
3906           if (D->isInExportDeclContext()) {
3907             Module *FM = D->getOwningModule();
3908             // C++20 [basic.lookup.argdep] p4.3 .. are exported ...
3909             // exports are only valid in module purview and outside of any
3910             // PMF (although a PMF should not even be present in a module
3911             // with an import).
3912             assert(FM &&
3913                    (FM->isNamedModule() || FM->isImplicitGlobalModule()) &&
3914                    !FM->isPrivateModule() && "bad export context");
3915             // .. are attached to a named module M, do not appear in the
3916             // translation unit containing the point of the lookup..
3917             if (D->isInAnotherModuleUnit() &&
3918                 llvm::any_of(AssociatedClasses, [&](auto *E) {
3919                   // ... and have the same innermost enclosing non-inline
3920                   // namespace scope as a declaration of an associated entity
3921                   // attached to M
3922                   if (E->getOwningModule() != FM)
3923                     return false;
3924                   // TODO: maybe this could be cached when generating the
3925                   // associated namespaces / entities.
3926                   DeclContext *Ctx = E->getDeclContext();
3927                   while (!Ctx->isFileContext() || Ctx->isInlineNamespace())
3928                     Ctx = Ctx->getParent();
3929                   return Ctx == NS;
3930                 })) {
3931               Visible = true;
3932               break;
3933             }
3934           }
3935         } else if (D->getFriendObjectKind()) {
3936           auto *RD = cast<CXXRecordDecl>(D->getLexicalDeclContext());
3937           // [basic.lookup.argdep]p4:
3938           //   Argument-dependent lookup finds all declarations of functions and
3939           //   function templates that
3940           //  - ...
3941           //  - are declared as a friend ([class.friend]) of any class with a
3942           //  reachable definition in the set of associated entities,
3943           //
3944           // FIXME: If there's a merged definition of D that is reachable, then
3945           // the friend declaration should be considered.
3946           if (AssociatedClasses.count(RD) && isReachable(D)) {
3947             Visible = true;
3948             break;
3949           }
3950         }
3951       }
3952 
3953       // FIXME: Preserve D as the FoundDecl.
3954       if (Visible)
3955         Result.insert(Underlying);
3956     }
3957   }
3958 }
3959 
3960 //----------------------------------------------------------------------------
3961 // Search for all visible declarations.
3962 //----------------------------------------------------------------------------
3963 VisibleDeclConsumer::~VisibleDeclConsumer() { }
3964 
3965 bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
3966 
3967 namespace {
3968 
3969 class ShadowContextRAII;
3970 
3971 class VisibleDeclsRecord {
3972 public:
3973   /// An entry in the shadow map, which is optimized to store a
3974   /// single declaration (the common case) but can also store a list
3975   /// of declarations.
3976   typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
3977 
3978 private:
3979   /// A mapping from declaration names to the declarations that have
3980   /// this name within a particular scope.
3981   typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
3982 
3983   /// A list of shadow maps, which is used to model name hiding.
3984   std::list<ShadowMap> ShadowMaps;
3985 
3986   /// The declaration contexts we have already visited.
3987   llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
3988 
3989   friend class ShadowContextRAII;
3990 
3991 public:
3992   /// Determine whether we have already visited this context
3993   /// (and, if not, note that we are going to visit that context now).
3994   bool visitedContext(DeclContext *Ctx) {
3995     return !VisitedContexts.insert(Ctx).second;
3996   }
3997 
3998   bool alreadyVisitedContext(DeclContext *Ctx) {
3999     return VisitedContexts.count(Ctx);
4000   }
4001 
4002   /// Determine whether the given declaration is hidden in the
4003   /// current scope.
4004   ///
4005   /// \returns the declaration that hides the given declaration, or
4006   /// NULL if no such declaration exists.
4007   NamedDecl *checkHidden(NamedDecl *ND);
4008 
4009   /// Add a declaration to the current shadow map.
4010   void add(NamedDecl *ND) {
4011     ShadowMaps.back()[ND->getDeclName()].push_back(ND);
4012   }
4013 };
4014 
4015 /// RAII object that records when we've entered a shadow context.
4016 class ShadowContextRAII {
4017   VisibleDeclsRecord &Visible;
4018 
4019   typedef VisibleDeclsRecord::ShadowMap ShadowMap;
4020 
4021 public:
4022   ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
4023     Visible.ShadowMaps.emplace_back();
4024   }
4025 
4026   ~ShadowContextRAII() {
4027     Visible.ShadowMaps.pop_back();
4028   }
4029 };
4030 
4031 } // end anonymous namespace
4032 
4033 NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
4034   unsigned IDNS = ND->getIdentifierNamespace();
4035   std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
4036   for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
4037        SM != SMEnd; ++SM) {
4038     ShadowMap::iterator Pos = SM->find(ND->getDeclName());
4039     if (Pos == SM->end())
4040       continue;
4041 
4042     for (auto *D : Pos->second) {
4043       // A tag declaration does not hide a non-tag declaration.
4044       if (D->hasTagIdentifierNamespace() &&
4045           (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
4046                    Decl::IDNS_ObjCProtocol)))
4047         continue;
4048 
4049       // Protocols are in distinct namespaces from everything else.
4050       if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
4051            || (IDNS & Decl::IDNS_ObjCProtocol)) &&
4052           D->getIdentifierNamespace() != IDNS)
4053         continue;
4054 
4055       // Functions and function templates in the same scope overload
4056       // rather than hide.  FIXME: Look for hiding based on function
4057       // signatures!
4058       if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
4059           ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
4060           SM == ShadowMaps.rbegin())
4061         continue;
4062 
4063       // A shadow declaration that's created by a resolved using declaration
4064       // is not hidden by the same using declaration.
4065       if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) &&
4066           cast<UsingShadowDecl>(ND)->getIntroducer() == D)
4067         continue;
4068 
4069       // We've found a declaration that hides this one.
4070       return D;
4071     }
4072   }
4073 
4074   return nullptr;
4075 }
4076 
4077 namespace {
4078 class LookupVisibleHelper {
4079 public:
4080   LookupVisibleHelper(VisibleDeclConsumer &Consumer, bool IncludeDependentBases,
4081                       bool LoadExternal)
4082       : Consumer(Consumer), IncludeDependentBases(IncludeDependentBases),
4083         LoadExternal(LoadExternal) {}
4084 
4085   void lookupVisibleDecls(Sema &SemaRef, Scope *S, Sema::LookupNameKind Kind,
4086                           bool IncludeGlobalScope) {
4087     // Determine the set of using directives available during
4088     // unqualified name lookup.
4089     Scope *Initial = S;
4090     UnqualUsingDirectiveSet UDirs(SemaRef);
4091     if (SemaRef.getLangOpts().CPlusPlus) {
4092       // Find the first namespace or translation-unit scope.
4093       while (S && !isNamespaceOrTranslationUnitScope(S))
4094         S = S->getParent();
4095 
4096       UDirs.visitScopeChain(Initial, S);
4097     }
4098     UDirs.done();
4099 
4100     // Look for visible declarations.
4101     LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
4102     Result.setAllowHidden(Consumer.includeHiddenDecls());
4103     if (!IncludeGlobalScope)
4104       Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
4105     ShadowContextRAII Shadow(Visited);
4106     lookupInScope(Initial, Result, UDirs);
4107   }
4108 
4109   void lookupVisibleDecls(Sema &SemaRef, DeclContext *Ctx,
4110                           Sema::LookupNameKind Kind, bool IncludeGlobalScope) {
4111     LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
4112     Result.setAllowHidden(Consumer.includeHiddenDecls());
4113     if (!IncludeGlobalScope)
4114       Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
4115 
4116     ShadowContextRAII Shadow(Visited);
4117     lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/true,
4118                         /*InBaseClass=*/false);
4119   }
4120 
4121 private:
4122   void lookupInDeclContext(DeclContext *Ctx, LookupResult &Result,
4123                            bool QualifiedNameLookup, bool InBaseClass) {
4124     if (!Ctx)
4125       return;
4126 
4127     // Make sure we don't visit the same context twice.
4128     if (Visited.visitedContext(Ctx->getPrimaryContext()))
4129       return;
4130 
4131     Consumer.EnteredContext(Ctx);
4132 
4133     // Outside C++, lookup results for the TU live on identifiers.
4134     if (isa<TranslationUnitDecl>(Ctx) &&
4135         !Result.getSema().getLangOpts().CPlusPlus) {
4136       auto &S = Result.getSema();
4137       auto &Idents = S.Context.Idents;
4138 
4139       // Ensure all external identifiers are in the identifier table.
4140       if (LoadExternal)
4141         if (IdentifierInfoLookup *External =
4142                 Idents.getExternalIdentifierLookup()) {
4143           std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
4144           for (StringRef Name = Iter->Next(); !Name.empty();
4145                Name = Iter->Next())
4146             Idents.get(Name);
4147         }
4148 
4149       // Walk all lookup results in the TU for each identifier.
4150       for (const auto &Ident : Idents) {
4151         for (auto I = S.IdResolver.begin(Ident.getValue()),
4152                   E = S.IdResolver.end();
4153              I != E; ++I) {
4154           if (S.IdResolver.isDeclInScope(*I, Ctx)) {
4155             if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
4156               Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
4157               Visited.add(ND);
4158             }
4159           }
4160         }
4161       }
4162 
4163       return;
4164     }
4165 
4166     if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
4167       Result.getSema().ForceDeclarationOfImplicitMembers(Class);
4168 
4169     llvm::SmallVector<NamedDecl *, 4> DeclsToVisit;
4170     // We sometimes skip loading namespace-level results (they tend to be huge).
4171     bool Load = LoadExternal ||
4172                 !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx));
4173     // Enumerate all of the results in this context.
4174     for (DeclContextLookupResult R :
4175          Load ? Ctx->lookups()
4176               : Ctx->noload_lookups(/*PreserveInternalState=*/false))
4177       for (auto *D : R)
4178         // Rather than visit immediately, we put ND into a vector and visit
4179         // all decls, in order, outside of this loop. The reason is that
4180         // Consumer.FoundDecl() and LookupResult::getAcceptableDecl(D)
4181         // may invalidate the iterators used in the two
4182         // loops above.
4183         DeclsToVisit.push_back(D);
4184 
4185     for (auto *D : DeclsToVisit)
4186       if (auto *ND = Result.getAcceptableDecl(D)) {
4187         Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
4188         Visited.add(ND);
4189       }
4190 
4191     DeclsToVisit.clear();
4192 
4193     // Traverse using directives for qualified name lookup.
4194     if (QualifiedNameLookup) {
4195       ShadowContextRAII Shadow(Visited);
4196       for (auto *I : Ctx->using_directives()) {
4197         if (!Result.getSema().isVisible(I))
4198           continue;
4199         lookupInDeclContext(I->getNominatedNamespace(), Result,
4200                             QualifiedNameLookup, InBaseClass);
4201       }
4202     }
4203 
4204     // Traverse the contexts of inherited C++ classes.
4205     if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
4206       if (!Record->hasDefinition())
4207         return;
4208 
4209       for (const auto &B : Record->bases()) {
4210         QualType BaseType = B.getType();
4211 
4212         RecordDecl *RD;
4213         if (BaseType->isDependentType()) {
4214           if (!IncludeDependentBases) {
4215             // Don't look into dependent bases, because name lookup can't look
4216             // there anyway.
4217             continue;
4218           }
4219           const auto *TST = BaseType->getAs<TemplateSpecializationType>();
4220           if (!TST)
4221             continue;
4222           TemplateName TN = TST->getTemplateName();
4223           const auto *TD =
4224               dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl());
4225           if (!TD)
4226             continue;
4227           RD = TD->getTemplatedDecl();
4228         } else {
4229           const auto *Record = BaseType->getAs<RecordType>();
4230           if (!Record)
4231             continue;
4232           RD = Record->getDecl();
4233         }
4234 
4235         // FIXME: It would be nice to be able to determine whether referencing
4236         // a particular member would be ambiguous. For example, given
4237         //
4238         //   struct A { int member; };
4239         //   struct B { int member; };
4240         //   struct C : A, B { };
4241         //
4242         //   void f(C *c) { c->### }
4243         //
4244         // accessing 'member' would result in an ambiguity. However, we
4245         // could be smart enough to qualify the member with the base
4246         // class, e.g.,
4247         //
4248         //   c->B::member
4249         //
4250         // or
4251         //
4252         //   c->A::member
4253 
4254         // Find results in this base class (and its bases).
4255         ShadowContextRAII Shadow(Visited);
4256         lookupInDeclContext(RD, Result, QualifiedNameLookup,
4257                             /*InBaseClass=*/true);
4258       }
4259     }
4260 
4261     // Traverse the contexts of Objective-C classes.
4262     if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
4263       // Traverse categories.
4264       for (auto *Cat : IFace->visible_categories()) {
4265         ShadowContextRAII Shadow(Visited);
4266         lookupInDeclContext(Cat, Result, QualifiedNameLookup,
4267                             /*InBaseClass=*/false);
4268       }
4269 
4270       // Traverse protocols.
4271       for (auto *I : IFace->all_referenced_protocols()) {
4272         ShadowContextRAII Shadow(Visited);
4273         lookupInDeclContext(I, Result, QualifiedNameLookup,
4274                             /*InBaseClass=*/false);
4275       }
4276 
4277       // Traverse the superclass.
4278       if (IFace->getSuperClass()) {
4279         ShadowContextRAII Shadow(Visited);
4280         lookupInDeclContext(IFace->getSuperClass(), Result, QualifiedNameLookup,
4281                             /*InBaseClass=*/true);
4282       }
4283 
4284       // If there is an implementation, traverse it. We do this to find
4285       // synthesized ivars.
4286       if (IFace->getImplementation()) {
4287         ShadowContextRAII Shadow(Visited);
4288         lookupInDeclContext(IFace->getImplementation(), Result,
4289                             QualifiedNameLookup, InBaseClass);
4290       }
4291     } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
4292       for (auto *I : Protocol->protocols()) {
4293         ShadowContextRAII Shadow(Visited);
4294         lookupInDeclContext(I, Result, QualifiedNameLookup,
4295                             /*InBaseClass=*/false);
4296       }
4297     } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
4298       for (auto *I : Category->protocols()) {
4299         ShadowContextRAII Shadow(Visited);
4300         lookupInDeclContext(I, Result, QualifiedNameLookup,
4301                             /*InBaseClass=*/false);
4302       }
4303 
4304       // If there is an implementation, traverse it.
4305       if (Category->getImplementation()) {
4306         ShadowContextRAII Shadow(Visited);
4307         lookupInDeclContext(Category->getImplementation(), Result,
4308                             QualifiedNameLookup, /*InBaseClass=*/true);
4309       }
4310     }
4311   }
4312 
4313   void lookupInScope(Scope *S, LookupResult &Result,
4314                      UnqualUsingDirectiveSet &UDirs) {
4315     // No clients run in this mode and it's not supported. Please add tests and
4316     // remove the assertion if you start relying on it.
4317     assert(!IncludeDependentBases && "Unsupported flag for lookupInScope");
4318 
4319     if (!S)
4320       return;
4321 
4322     if (!S->getEntity() ||
4323         (!S->getParent() && !Visited.alreadyVisitedContext(S->getEntity())) ||
4324         (S->getEntity())->isFunctionOrMethod()) {
4325       FindLocalExternScope FindLocals(Result);
4326       // Walk through the declarations in this Scope. The consumer might add new
4327       // decls to the scope as part of deserialization, so make a copy first.
4328       SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end());
4329       for (Decl *D : ScopeDecls) {
4330         if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
4331           if ((ND = Result.getAcceptableDecl(ND))) {
4332             Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
4333             Visited.add(ND);
4334           }
4335       }
4336     }
4337 
4338     DeclContext *Entity = S->getLookupEntity();
4339     if (Entity) {
4340       // Look into this scope's declaration context, along with any of its
4341       // parent lookup contexts (e.g., enclosing classes), up to the point
4342       // where we hit the context stored in the next outer scope.
4343       DeclContext *OuterCtx = findOuterContext(S);
4344 
4345       for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
4346            Ctx = Ctx->getLookupParent()) {
4347         if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
4348           if (Method->isInstanceMethod()) {
4349             // For instance methods, look for ivars in the method's interface.
4350             LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
4351                                     Result.getNameLoc(),
4352                                     Sema::LookupMemberName);
4353             if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
4354               lookupInDeclContext(IFace, IvarResult,
4355                                   /*QualifiedNameLookup=*/false,
4356                                   /*InBaseClass=*/false);
4357             }
4358           }
4359 
4360           // We've already performed all of the name lookup that we need
4361           // to for Objective-C methods; the next context will be the
4362           // outer scope.
4363           break;
4364         }
4365 
4366         if (Ctx->isFunctionOrMethod())
4367           continue;
4368 
4369         lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/false,
4370                             /*InBaseClass=*/false);
4371       }
4372     } else if (!S->getParent()) {
4373       // Look into the translation unit scope. We walk through the translation
4374       // unit's declaration context, because the Scope itself won't have all of
4375       // the declarations if we loaded a precompiled header.
4376       // FIXME: We would like the translation unit's Scope object to point to
4377       // the translation unit, so we don't need this special "if" branch.
4378       // However, doing so would force the normal C++ name-lookup code to look
4379       // into the translation unit decl when the IdentifierInfo chains would
4380       // suffice. Once we fix that problem (which is part of a more general
4381       // "don't look in DeclContexts unless we have to" optimization), we can
4382       // eliminate this.
4383       Entity = Result.getSema().Context.getTranslationUnitDecl();
4384       lookupInDeclContext(Entity, Result, /*QualifiedNameLookup=*/false,
4385                           /*InBaseClass=*/false);
4386     }
4387 
4388     if (Entity) {
4389       // Lookup visible declarations in any namespaces found by using
4390       // directives.
4391       for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
4392         lookupInDeclContext(
4393             const_cast<DeclContext *>(UUE.getNominatedNamespace()), Result,
4394             /*QualifiedNameLookup=*/false,
4395             /*InBaseClass=*/false);
4396     }
4397 
4398     // Lookup names in the parent scope.
4399     ShadowContextRAII Shadow(Visited);
4400     lookupInScope(S->getParent(), Result, UDirs);
4401   }
4402 
4403 private:
4404   VisibleDeclsRecord Visited;
4405   VisibleDeclConsumer &Consumer;
4406   bool IncludeDependentBases;
4407   bool LoadExternal;
4408 };
4409 } // namespace
4410 
4411 void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
4412                               VisibleDeclConsumer &Consumer,
4413                               bool IncludeGlobalScope, bool LoadExternal) {
4414   LookupVisibleHelper H(Consumer, /*IncludeDependentBases=*/false,
4415                         LoadExternal);
4416   H.lookupVisibleDecls(*this, S, Kind, IncludeGlobalScope);
4417 }
4418 
4419 void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
4420                               VisibleDeclConsumer &Consumer,
4421                               bool IncludeGlobalScope,
4422                               bool IncludeDependentBases, bool LoadExternal) {
4423   LookupVisibleHelper H(Consumer, IncludeDependentBases, LoadExternal);
4424   H.lookupVisibleDecls(*this, Ctx, Kind, IncludeGlobalScope);
4425 }
4426 
4427 LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
4428                                      SourceLocation GnuLabelLoc) {
4429   // Do a lookup to see if we have a label with this name already.
4430   NamedDecl *Res = nullptr;
4431 
4432   if (GnuLabelLoc.isValid()) {
4433     // Local label definitions always shadow existing labels.
4434     Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
4435     Scope *S = CurScope;
4436     PushOnScopeChains(Res, S, true);
4437     return cast<LabelDecl>(Res);
4438   }
4439 
4440   // Not a GNU local label.
4441   Res = LookupSingleName(CurScope, II, Loc, LookupLabel,
4442                          RedeclarationKind::NotForRedeclaration);
4443   // If we found a label, check to see if it is in the same context as us.
4444   // When in a Block, we don't want to reuse a label in an enclosing function.
4445   if (Res && Res->getDeclContext() != CurContext)
4446     Res = nullptr;
4447   if (!Res) {
4448     // If not forward referenced or defined already, create the backing decl.
4449     Res = LabelDecl::Create(Context, CurContext, Loc, II);
4450     Scope *S = CurScope->getFnParent();
4451     assert(S && "Not in a function?");
4452     PushOnScopeChains(Res, S, true);
4453   }
4454   return cast<LabelDecl>(Res);
4455 }
4456 
4457 //===----------------------------------------------------------------------===//
4458 // Typo correction
4459 //===----------------------------------------------------------------------===//
4460 
4461 static bool isCandidateViable(CorrectionCandidateCallback &CCC,
4462                               TypoCorrection &Candidate) {
4463   Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
4464   return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
4465 }
4466 
4467 static void LookupPotentialTypoResult(Sema &SemaRef,
4468                                       LookupResult &Res,
4469                                       IdentifierInfo *Name,
4470                                       Scope *S, CXXScopeSpec *SS,
4471                                       DeclContext *MemberContext,
4472                                       bool EnteringContext,
4473                                       bool isObjCIvarLookup,
4474                                       bool FindHidden);
4475 
4476 /// Check whether the declarations found for a typo correction are
4477 /// visible. Set the correction's RequiresImport flag to true if none of the
4478 /// declarations are visible, false otherwise.
4479 static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
4480   TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
4481 
4482   for (/**/; DI != DE; ++DI)
4483     if (!LookupResult::isVisible(SemaRef, *DI))
4484       break;
4485   // No filtering needed if all decls are visible.
4486   if (DI == DE) {
4487     TC.setRequiresImport(false);
4488     return;
4489   }
4490 
4491   llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
4492   bool AnyVisibleDecls = !NewDecls.empty();
4493 
4494   for (/**/; DI != DE; ++DI) {
4495     if (LookupResult::isVisible(SemaRef, *DI)) {
4496       if (!AnyVisibleDecls) {
4497         // Found a visible decl, discard all hidden ones.
4498         AnyVisibleDecls = true;
4499         NewDecls.clear();
4500       }
4501       NewDecls.push_back(*DI);
4502     } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
4503       NewDecls.push_back(*DI);
4504   }
4505 
4506   if (NewDecls.empty())
4507     TC = TypoCorrection();
4508   else {
4509     TC.setCorrectionDecls(NewDecls);
4510     TC.setRequiresImport(!AnyVisibleDecls);
4511   }
4512 }
4513 
4514 // Fill the supplied vector with the IdentifierInfo pointers for each piece of
4515 // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
4516 // fill the vector with the IdentifierInfo pointers for "foo" and "bar").
4517 static void getNestedNameSpecifierIdentifiers(
4518     NestedNameSpecifier *NNS,
4519     SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
4520   if (NestedNameSpecifier *Prefix = NNS->getPrefix())
4521     getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
4522   else
4523     Identifiers.clear();
4524 
4525   const IdentifierInfo *II = nullptr;
4526 
4527   switch (NNS->getKind()) {
4528   case NestedNameSpecifier::Identifier:
4529     II = NNS->getAsIdentifier();
4530     break;
4531 
4532   case NestedNameSpecifier::Namespace:
4533     if (NNS->getAsNamespace()->isAnonymousNamespace())
4534       return;
4535     II = NNS->getAsNamespace()->getIdentifier();
4536     break;
4537 
4538   case NestedNameSpecifier::NamespaceAlias:
4539     II = NNS->getAsNamespaceAlias()->getIdentifier();
4540     break;
4541 
4542   case NestedNameSpecifier::TypeSpecWithTemplate:
4543   case NestedNameSpecifier::TypeSpec:
4544     II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
4545     break;
4546 
4547   case NestedNameSpecifier::Global:
4548   case NestedNameSpecifier::Super:
4549     return;
4550   }
4551 
4552   if (II)
4553     Identifiers.push_back(II);
4554 }
4555 
4556 void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
4557                                        DeclContext *Ctx, bool InBaseClass) {
4558   // Don't consider hidden names for typo correction.
4559   if (Hiding)
4560     return;
4561 
4562   // Only consider entities with identifiers for names, ignoring
4563   // special names (constructors, overloaded operators, selectors,
4564   // etc.).
4565   IdentifierInfo *Name = ND->getIdentifier();
4566   if (!Name)
4567     return;
4568 
4569   // Only consider visible declarations and declarations from modules with
4570   // names that exactly match.
4571   if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo)
4572     return;
4573 
4574   FoundName(Name->getName());
4575 }
4576 
4577 void TypoCorrectionConsumer::FoundName(StringRef Name) {
4578   // Compute the edit distance between the typo and the name of this
4579   // entity, and add the identifier to the list of results.
4580   addName(Name, nullptr);
4581 }
4582 
4583 void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
4584   // Compute the edit distance between the typo and this keyword,
4585   // and add the keyword to the list of results.
4586   addName(Keyword, nullptr, nullptr, true);
4587 }
4588 
4589 void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
4590                                      NestedNameSpecifier *NNS, bool isKeyword) {
4591   // Use a simple length-based heuristic to determine the minimum possible
4592   // edit distance. If the minimum isn't good enough, bail out early.
4593   StringRef TypoStr = Typo->getName();
4594   unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
4595   if (MinED && TypoStr.size() / MinED < 3)
4596     return;
4597 
4598   // Compute an upper bound on the allowable edit distance, so that the
4599   // edit-distance algorithm can short-circuit.
4600   unsigned UpperBound = (TypoStr.size() + 2) / 3;
4601   unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
4602   if (ED > UpperBound) return;
4603 
4604   TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
4605   if (isKeyword) TC.makeKeyword();
4606   TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
4607   addCorrection(TC);
4608 }
4609 
4610 static const unsigned MaxTypoDistanceResultSets = 5;
4611 
4612 void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
4613   StringRef TypoStr = Typo->getName();
4614   StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
4615 
4616   // For very short typos, ignore potential corrections that have a different
4617   // base identifier from the typo or which have a normalized edit distance
4618   // longer than the typo itself.
4619   if (TypoStr.size() < 3 &&
4620       (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
4621     return;
4622 
4623   // If the correction is resolved but is not viable, ignore it.
4624   if (Correction.isResolved()) {
4625     checkCorrectionVisibility(SemaRef, Correction);
4626     if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
4627       return;
4628   }
4629 
4630   TypoResultList &CList =
4631       CorrectionResults[Correction.getEditDistance(false)][Name];
4632 
4633   if (!CList.empty() && !CList.back().isResolved())
4634     CList.pop_back();
4635   if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
4636     auto RI = llvm::find_if(CList, [NewND](const TypoCorrection &TypoCorr) {
4637       return TypoCorr.getCorrectionDecl() == NewND;
4638     });
4639     if (RI != CList.end()) {
4640       // The Correction refers to a decl already in the list. No insertion is
4641       // necessary and all further cases will return.
4642 
4643       auto IsDeprecated = [](Decl *D) {
4644         while (D) {
4645           if (D->isDeprecated())
4646             return true;
4647           D = llvm::dyn_cast_or_null<NamespaceDecl>(D->getDeclContext());
4648         }
4649         return false;
4650       };
4651 
4652       // Prefer non deprecated Corrections over deprecated and only then
4653       // sort using an alphabetical order.
4654       std::pair<bool, std::string> NewKey = {
4655           IsDeprecated(Correction.getFoundDecl()),
4656           Correction.getAsString(SemaRef.getLangOpts())};
4657 
4658       std::pair<bool, std::string> PrevKey = {
4659           IsDeprecated(RI->getFoundDecl()),
4660           RI->getAsString(SemaRef.getLangOpts())};
4661 
4662       if (NewKey < PrevKey)
4663         *RI = Correction;
4664       return;
4665     }
4666   }
4667   if (CList.empty() || Correction.isResolved())
4668     CList.push_back(Correction);
4669 
4670   while (CorrectionResults.size() > MaxTypoDistanceResultSets)
4671     CorrectionResults.erase(std::prev(CorrectionResults.end()));
4672 }
4673 
4674 void TypoCorrectionConsumer::addNamespaces(
4675     const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
4676   SearchNamespaces = true;
4677 
4678   for (auto KNPair : KnownNamespaces)
4679     Namespaces.addNameSpecifier(KNPair.first);
4680 
4681   bool SSIsTemplate = false;
4682   if (NestedNameSpecifier *NNS =
4683           (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
4684     if (const Type *T = NNS->getAsType())
4685       SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
4686   }
4687   // Do not transform this into an iterator-based loop. The loop body can
4688   // trigger the creation of further types (through lazy deserialization) and
4689   // invalid iterators into this list.
4690   auto &Types = SemaRef.getASTContext().getTypes();
4691   for (unsigned I = 0; I != Types.size(); ++I) {
4692     const auto *TI = Types[I];
4693     if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
4694       CD = CD->getCanonicalDecl();
4695       if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
4696           !CD->isUnion() && CD->getIdentifier() &&
4697           (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
4698           (CD->isBeingDefined() || CD->isCompleteDefinition()))
4699         Namespaces.addNameSpecifier(CD);
4700     }
4701   }
4702 }
4703 
4704 const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() {
4705   if (++CurrentTCIndex < ValidatedCorrections.size())
4706     return ValidatedCorrections[CurrentTCIndex];
4707 
4708   CurrentTCIndex = ValidatedCorrections.size();
4709   while (!CorrectionResults.empty()) {
4710     auto DI = CorrectionResults.begin();
4711     if (DI->second.empty()) {
4712       CorrectionResults.erase(DI);
4713       continue;
4714     }
4715 
4716     auto RI = DI->second.begin();
4717     if (RI->second.empty()) {
4718       DI->second.erase(RI);
4719       performQualifiedLookups();
4720       continue;
4721     }
4722 
4723     TypoCorrection TC = RI->second.pop_back_val();
4724     if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
4725       ValidatedCorrections.push_back(TC);
4726       return ValidatedCorrections[CurrentTCIndex];
4727     }
4728   }
4729   return ValidatedCorrections[0];  // The empty correction.
4730 }
4731 
4732 bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
4733   IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
4734   DeclContext *TempMemberContext = MemberContext;
4735   CXXScopeSpec *TempSS = SS.get();
4736 retry_lookup:
4737   LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
4738                             EnteringContext,
4739                             CorrectionValidator->IsObjCIvarLookup,
4740                             Name == Typo && !Candidate.WillReplaceSpecifier());
4741   switch (Result.getResultKind()) {
4742   case LookupResult::NotFound:
4743   case LookupResult::NotFoundInCurrentInstantiation:
4744   case LookupResult::FoundUnresolvedValue:
4745     if (TempSS) {
4746       // Immediately retry the lookup without the given CXXScopeSpec
4747       TempSS = nullptr;
4748       Candidate.WillReplaceSpecifier(true);
4749       goto retry_lookup;
4750     }
4751     if (TempMemberContext) {
4752       if (SS && !TempSS)
4753         TempSS = SS.get();
4754       TempMemberContext = nullptr;
4755       goto retry_lookup;
4756     }
4757     if (SearchNamespaces)
4758       QualifiedResults.push_back(Candidate);
4759     break;
4760 
4761   case LookupResult::Ambiguous:
4762     // We don't deal with ambiguities.
4763     break;
4764 
4765   case LookupResult::Found:
4766   case LookupResult::FoundOverloaded:
4767     // Store all of the Decls for overloaded symbols
4768     for (auto *TRD : Result)
4769       Candidate.addCorrectionDecl(TRD);
4770     checkCorrectionVisibility(SemaRef, Candidate);
4771     if (!isCandidateViable(*CorrectionValidator, Candidate)) {
4772       if (SearchNamespaces)
4773         QualifiedResults.push_back(Candidate);
4774       break;
4775     }
4776     Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4777     return true;
4778   }
4779   return false;
4780 }
4781 
4782 void TypoCorrectionConsumer::performQualifiedLookups() {
4783   unsigned TypoLen = Typo->getName().size();
4784   for (const TypoCorrection &QR : QualifiedResults) {
4785     for (const auto &NSI : Namespaces) {
4786       DeclContext *Ctx = NSI.DeclCtx;
4787       const Type *NSType = NSI.NameSpecifier->getAsType();
4788 
4789       // If the current NestedNameSpecifier refers to a class and the
4790       // current correction candidate is the name of that class, then skip
4791       // it as it is unlikely a qualified version of the class' constructor
4792       // is an appropriate correction.
4793       if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() :
4794                                            nullptr) {
4795         if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
4796           continue;
4797       }
4798 
4799       TypoCorrection TC(QR);
4800       TC.ClearCorrectionDecls();
4801       TC.setCorrectionSpecifier(NSI.NameSpecifier);
4802       TC.setQualifierDistance(NSI.EditDistance);
4803       TC.setCallbackDistance(0); // Reset the callback distance
4804 
4805       // If the current correction candidate and namespace combination are
4806       // too far away from the original typo based on the normalized edit
4807       // distance, then skip performing a qualified name lookup.
4808       unsigned TmpED = TC.getEditDistance(true);
4809       if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
4810           TypoLen / TmpED < 3)
4811         continue;
4812 
4813       Result.clear();
4814       Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
4815       if (!SemaRef.LookupQualifiedName(Result, Ctx))
4816         continue;
4817 
4818       // Any corrections added below will be validated in subsequent
4819       // iterations of the main while() loop over the Consumer's contents.
4820       switch (Result.getResultKind()) {
4821       case LookupResult::Found:
4822       case LookupResult::FoundOverloaded: {
4823         if (SS && SS->isValid()) {
4824           std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
4825           std::string OldQualified;
4826           llvm::raw_string_ostream OldOStream(OldQualified);
4827           SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
4828           OldOStream << Typo->getName();
4829           // If correction candidate would be an identical written qualified
4830           // identifier, then the existing CXXScopeSpec probably included a
4831           // typedef that didn't get accounted for properly.
4832           if (OldOStream.str() == NewQualified)
4833             break;
4834         }
4835         for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
4836              TRD != TRDEnd; ++TRD) {
4837           if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
4838                                         NSType ? NSType->getAsCXXRecordDecl()
4839                                                : nullptr,
4840                                         TRD.getPair()) == Sema::AR_accessible)
4841             TC.addCorrectionDecl(*TRD);
4842         }
4843         if (TC.isResolved()) {
4844           TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4845           addCorrection(TC);
4846         }
4847         break;
4848       }
4849       case LookupResult::NotFound:
4850       case LookupResult::NotFoundInCurrentInstantiation:
4851       case LookupResult::Ambiguous:
4852       case LookupResult::FoundUnresolvedValue:
4853         break;
4854       }
4855     }
4856   }
4857   QualifiedResults.clear();
4858 }
4859 
4860 TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
4861     ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
4862     : Context(Context), CurContextChain(buildContextChain(CurContext)) {
4863   if (NestedNameSpecifier *NNS =
4864           CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
4865     llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
4866     NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4867 
4868     getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
4869   }
4870   // Build the list of identifiers that would be used for an absolute
4871   // (from the global context) NestedNameSpecifier referring to the current
4872   // context.
4873   for (DeclContext *C : llvm::reverse(CurContextChain)) {
4874     if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C))
4875       CurContextIdentifiers.push_back(ND->getIdentifier());
4876   }
4877 
4878   // Add the global context as a NestedNameSpecifier
4879   SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
4880                       NestedNameSpecifier::GlobalSpecifier(Context), 1};
4881   DistanceMap[1].push_back(SI);
4882 }
4883 
4884 auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
4885     DeclContext *Start) -> DeclContextList {
4886   assert(Start && "Building a context chain from a null context");
4887   DeclContextList Chain;
4888   for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
4889        DC = DC->getLookupParent()) {
4890     NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
4891     if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
4892         !(ND && ND->isAnonymousNamespace()))
4893       Chain.push_back(DC->getPrimaryContext());
4894   }
4895   return Chain;
4896 }
4897 
4898 unsigned
4899 TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
4900     DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
4901   unsigned NumSpecifiers = 0;
4902   for (DeclContext *C : llvm::reverse(DeclChain)) {
4903     if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) {
4904       NNS = NestedNameSpecifier::Create(Context, NNS, ND);
4905       ++NumSpecifiers;
4906     } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) {
4907       NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
4908                                         RD->getTypeForDecl());
4909       ++NumSpecifiers;
4910     }
4911   }
4912   return NumSpecifiers;
4913 }
4914 
4915 void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
4916     DeclContext *Ctx) {
4917   NestedNameSpecifier *NNS = nullptr;
4918   unsigned NumSpecifiers = 0;
4919   DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
4920   DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
4921 
4922   // Eliminate common elements from the two DeclContext chains.
4923   for (DeclContext *C : llvm::reverse(CurContextChain)) {
4924     if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C)
4925       break;
4926     NamespaceDeclChain.pop_back();
4927   }
4928 
4929   // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
4930   NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
4931 
4932   // Add an explicit leading '::' specifier if needed.
4933   if (NamespaceDeclChain.empty()) {
4934     // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4935     NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4936     NumSpecifiers =
4937         buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4938   } else if (NamedDecl *ND =
4939                  dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
4940     IdentifierInfo *Name = ND->getIdentifier();
4941     bool SameNameSpecifier = false;
4942     if (llvm::is_contained(CurNameSpecifierIdentifiers, Name)) {
4943       std::string NewNameSpecifier;
4944       llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
4945       SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
4946       getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4947       NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4948       SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
4949     }
4950     if (SameNameSpecifier || llvm::is_contained(CurContextIdentifiers, Name)) {
4951       // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4952       NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4953       NumSpecifiers =
4954           buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4955     }
4956   }
4957 
4958   // If the built NestedNameSpecifier would be replacing an existing
4959   // NestedNameSpecifier, use the number of component identifiers that
4960   // would need to be changed as the edit distance instead of the number
4961   // of components in the built NestedNameSpecifier.
4962   if (NNS && !CurNameSpecifierIdentifiers.empty()) {
4963     SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
4964     getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4965     NumSpecifiers =
4966         llvm::ComputeEditDistance(llvm::ArrayRef(CurNameSpecifierIdentifiers),
4967                                   llvm::ArrayRef(NewNameSpecifierIdentifiers));
4968   }
4969 
4970   SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
4971   DistanceMap[NumSpecifiers].push_back(SI);
4972 }
4973 
4974 /// Perform name lookup for a possible result for typo correction.
4975 static void LookupPotentialTypoResult(Sema &SemaRef,
4976                                       LookupResult &Res,
4977                                       IdentifierInfo *Name,
4978                                       Scope *S, CXXScopeSpec *SS,
4979                                       DeclContext *MemberContext,
4980                                       bool EnteringContext,
4981                                       bool isObjCIvarLookup,
4982                                       bool FindHidden) {
4983   Res.suppressDiagnostics();
4984   Res.clear();
4985   Res.setLookupName(Name);
4986   Res.setAllowHidden(FindHidden);
4987   if (MemberContext) {
4988     if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
4989       if (isObjCIvarLookup) {
4990         if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
4991           Res.addDecl(Ivar);
4992           Res.resolveKind();
4993           return;
4994         }
4995       }
4996 
4997       if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(
4998               Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
4999         Res.addDecl(Prop);
5000         Res.resolveKind();
5001         return;
5002       }
5003     }
5004 
5005     SemaRef.LookupQualifiedName(Res, MemberContext);
5006     return;
5007   }
5008 
5009   SemaRef.LookupParsedName(Res, S, SS,
5010                            /*ObjectType=*/QualType(),
5011                            /*AllowBuiltinCreation=*/false, EnteringContext);
5012 
5013   // Fake ivar lookup; this should really be part of
5014   // LookupParsedName.
5015   if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
5016     if (Method->isInstanceMethod() && Method->getClassInterface() &&
5017         (Res.empty() ||
5018          (Res.isSingleResult() &&
5019           Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
5020        if (ObjCIvarDecl *IV
5021              = Method->getClassInterface()->lookupInstanceVariable(Name)) {
5022          Res.addDecl(IV);
5023          Res.resolveKind();
5024        }
5025      }
5026   }
5027 }
5028 
5029 /// Add keywords to the consumer as possible typo corrections.
5030 static void AddKeywordsToConsumer(Sema &SemaRef,
5031                                   TypoCorrectionConsumer &Consumer,
5032                                   Scope *S, CorrectionCandidateCallback &CCC,
5033                                   bool AfterNestedNameSpecifier) {
5034   if (AfterNestedNameSpecifier) {
5035     // For 'X::', we know exactly which keywords can appear next.
5036     Consumer.addKeywordResult("template");
5037     if (CCC.WantExpressionKeywords)
5038       Consumer.addKeywordResult("operator");
5039     return;
5040   }
5041 
5042   if (CCC.WantObjCSuper)
5043     Consumer.addKeywordResult("super");
5044 
5045   if (CCC.WantTypeSpecifiers) {
5046     // Add type-specifier keywords to the set of results.
5047     static const char *const CTypeSpecs[] = {
5048       "char", "const", "double", "enum", "float", "int", "long", "short",
5049       "signed", "struct", "union", "unsigned", "void", "volatile",
5050       "_Complex",
5051       // storage-specifiers as well
5052       "extern", "inline", "static", "typedef"
5053     };
5054 
5055     for (const auto *CTS : CTypeSpecs)
5056       Consumer.addKeywordResult(CTS);
5057 
5058     if (SemaRef.getLangOpts().C99 && !SemaRef.getLangOpts().C2y)
5059       Consumer.addKeywordResult("_Imaginary");
5060 
5061     if (SemaRef.getLangOpts().C99)
5062       Consumer.addKeywordResult("restrict");
5063     if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
5064       Consumer.addKeywordResult("bool");
5065     else if (SemaRef.getLangOpts().C99)
5066       Consumer.addKeywordResult("_Bool");
5067 
5068     if (SemaRef.getLangOpts().CPlusPlus) {
5069       Consumer.addKeywordResult("class");
5070       Consumer.addKeywordResult("typename");
5071       Consumer.addKeywordResult("wchar_t");
5072 
5073       if (SemaRef.getLangOpts().CPlusPlus11) {
5074         Consumer.addKeywordResult("char16_t");
5075         Consumer.addKeywordResult("char32_t");
5076         Consumer.addKeywordResult("constexpr");
5077         Consumer.addKeywordResult("decltype");
5078         Consumer.addKeywordResult("thread_local");
5079       }
5080     }
5081 
5082     if (SemaRef.getLangOpts().GNUKeywords)
5083       Consumer.addKeywordResult("typeof");
5084   } else if (CCC.WantFunctionLikeCasts) {
5085     static const char *const CastableTypeSpecs[] = {
5086       "char", "double", "float", "int", "long", "short",
5087       "signed", "unsigned", "void"
5088     };
5089     for (auto *kw : CastableTypeSpecs)
5090       Consumer.addKeywordResult(kw);
5091   }
5092 
5093   if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
5094     Consumer.addKeywordResult("const_cast");
5095     Consumer.addKeywordResult("dynamic_cast");
5096     Consumer.addKeywordResult("reinterpret_cast");
5097     Consumer.addKeywordResult("static_cast");
5098   }
5099 
5100   if (CCC.WantExpressionKeywords) {
5101     Consumer.addKeywordResult("sizeof");
5102     if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
5103       Consumer.addKeywordResult("false");
5104       Consumer.addKeywordResult("true");
5105     }
5106 
5107     if (SemaRef.getLangOpts().CPlusPlus) {
5108       static const char *const CXXExprs[] = {
5109         "delete", "new", "operator", "throw", "typeid"
5110       };
5111       for (const auto *CE : CXXExprs)
5112         Consumer.addKeywordResult(CE);
5113 
5114       if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
5115           cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
5116         Consumer.addKeywordResult("this");
5117 
5118       if (SemaRef.getLangOpts().CPlusPlus11) {
5119         Consumer.addKeywordResult("alignof");
5120         Consumer.addKeywordResult("nullptr");
5121       }
5122     }
5123 
5124     if (SemaRef.getLangOpts().C11) {
5125       // FIXME: We should not suggest _Alignof if the alignof macro
5126       // is present.
5127       Consumer.addKeywordResult("_Alignof");
5128     }
5129   }
5130 
5131   if (CCC.WantRemainingKeywords) {
5132     if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
5133       // Statements.
5134       static const char *const CStmts[] = {
5135         "do", "else", "for", "goto", "if", "return", "switch", "while" };
5136       for (const auto *CS : CStmts)
5137         Consumer.addKeywordResult(CS);
5138 
5139       if (SemaRef.getLangOpts().CPlusPlus) {
5140         Consumer.addKeywordResult("catch");
5141         Consumer.addKeywordResult("try");
5142       }
5143 
5144       if (S && S->getBreakParent())
5145         Consumer.addKeywordResult("break");
5146 
5147       if (S && S->getContinueParent())
5148         Consumer.addKeywordResult("continue");
5149 
5150       if (SemaRef.getCurFunction() &&
5151           !SemaRef.getCurFunction()->SwitchStack.empty()) {
5152         Consumer.addKeywordResult("case");
5153         Consumer.addKeywordResult("default");
5154       }
5155     } else {
5156       if (SemaRef.getLangOpts().CPlusPlus) {
5157         Consumer.addKeywordResult("namespace");
5158         Consumer.addKeywordResult("template");
5159       }
5160 
5161       if (S && S->isClassScope()) {
5162         Consumer.addKeywordResult("explicit");
5163         Consumer.addKeywordResult("friend");
5164         Consumer.addKeywordResult("mutable");
5165         Consumer.addKeywordResult("private");
5166         Consumer.addKeywordResult("protected");
5167         Consumer.addKeywordResult("public");
5168         Consumer.addKeywordResult("virtual");
5169       }
5170     }
5171 
5172     if (SemaRef.getLangOpts().CPlusPlus) {
5173       Consumer.addKeywordResult("using");
5174 
5175       if (SemaRef.getLangOpts().CPlusPlus11)
5176         Consumer.addKeywordResult("static_assert");
5177     }
5178   }
5179 }
5180 
5181 std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
5182     const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
5183     Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
5184     DeclContext *MemberContext, bool EnteringContext,
5185     const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
5186 
5187   if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
5188       DisableTypoCorrection)
5189     return nullptr;
5190 
5191   // In Microsoft mode, don't perform typo correction in a template member
5192   // function dependent context because it interferes with the "lookup into
5193   // dependent bases of class templates" feature.
5194   if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
5195       isa<CXXMethodDecl>(CurContext))
5196     return nullptr;
5197 
5198   // We only attempt to correct typos for identifiers.
5199   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5200   if (!Typo)
5201     return nullptr;
5202 
5203   // If the scope specifier itself was invalid, don't try to correct
5204   // typos.
5205   if (SS && SS->isInvalid())
5206     return nullptr;
5207 
5208   // Never try to correct typos during any kind of code synthesis.
5209   if (!CodeSynthesisContexts.empty())
5210     return nullptr;
5211 
5212   // Don't try to correct 'super'.
5213   if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
5214     return nullptr;
5215 
5216   // Abort if typo correction already failed for this specific typo.
5217   IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
5218   if (locs != TypoCorrectionFailures.end() &&
5219       locs->second.count(TypoName.getLoc()))
5220     return nullptr;
5221 
5222   // Don't try to correct the identifier "vector" when in AltiVec mode.
5223   // TODO: Figure out why typo correction misbehaves in this case, fix it, and
5224   // remove this workaround.
5225   if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector"))
5226     return nullptr;
5227 
5228   // Provide a stop gap for files that are just seriously broken.  Trying
5229   // to correct all typos can turn into a HUGE performance penalty, causing
5230   // some files to take minutes to get rejected by the parser.
5231   unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
5232   if (Limit && TyposCorrected >= Limit)
5233     return nullptr;
5234   ++TyposCorrected;
5235 
5236   // If we're handling a missing symbol error, using modules, and the
5237   // special search all modules option is used, look for a missing import.
5238   if (ErrorRecovery && getLangOpts().Modules &&
5239       getLangOpts().ModulesSearchAll) {
5240     // The following has the side effect of loading the missing module.
5241     getModuleLoader().lookupMissingImports(Typo->getName(),
5242                                            TypoName.getBeginLoc());
5243   }
5244 
5245   // Extend the lifetime of the callback. We delayed this until here
5246   // to avoid allocations in the hot path (which is where no typo correction
5247   // occurs). Note that CorrectionCandidateCallback is polymorphic and
5248   // initially stack-allocated.
5249   std::unique_ptr<CorrectionCandidateCallback> ClonedCCC = CCC.clone();
5250   auto Consumer = std::make_unique<TypoCorrectionConsumer>(
5251       *this, TypoName, LookupKind, S, SS, std::move(ClonedCCC), MemberContext,
5252       EnteringContext);
5253 
5254   // Perform name lookup to find visible, similarly-named entities.
5255   bool IsUnqualifiedLookup = false;
5256   DeclContext *QualifiedDC = MemberContext;
5257   if (MemberContext) {
5258     LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
5259 
5260     // Look in qualified interfaces.
5261     if (OPT) {
5262       for (auto *I : OPT->quals())
5263         LookupVisibleDecls(I, LookupKind, *Consumer);
5264     }
5265   } else if (SS && SS->isSet()) {
5266     QualifiedDC = computeDeclContext(*SS, EnteringContext);
5267     if (!QualifiedDC)
5268       return nullptr;
5269 
5270     LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
5271   } else {
5272     IsUnqualifiedLookup = true;
5273   }
5274 
5275   // Determine whether we are going to search in the various namespaces for
5276   // corrections.
5277   bool SearchNamespaces
5278     = getLangOpts().CPlusPlus &&
5279       (IsUnqualifiedLookup || (SS && SS->isSet()));
5280 
5281   if (IsUnqualifiedLookup || SearchNamespaces) {
5282     // For unqualified lookup, look through all of the names that we have
5283     // seen in this translation unit.
5284     // FIXME: Re-add the ability to skip very unlikely potential corrections.
5285     for (const auto &I : Context.Idents)
5286       Consumer->FoundName(I.getKey());
5287 
5288     // Walk through identifiers in external identifier sources.
5289     // FIXME: Re-add the ability to skip very unlikely potential corrections.
5290     if (IdentifierInfoLookup *External
5291                             = Context.Idents.getExternalIdentifierLookup()) {
5292       std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
5293       do {
5294         StringRef Name = Iter->Next();
5295         if (Name.empty())
5296           break;
5297 
5298         Consumer->FoundName(Name);
5299       } while (true);
5300     }
5301   }
5302 
5303   AddKeywordsToConsumer(*this, *Consumer, S,
5304                         *Consumer->getCorrectionValidator(),
5305                         SS && SS->isNotEmpty());
5306 
5307   // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
5308   // to search those namespaces.
5309   if (SearchNamespaces) {
5310     // Load any externally-known namespaces.
5311     if (ExternalSource && !LoadedExternalKnownNamespaces) {
5312       SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
5313       LoadedExternalKnownNamespaces = true;
5314       ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
5315       for (auto *N : ExternalKnownNamespaces)
5316         KnownNamespaces[N] = true;
5317     }
5318 
5319     Consumer->addNamespaces(KnownNamespaces);
5320   }
5321 
5322   return Consumer;
5323 }
5324 
5325 TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
5326                                  Sema::LookupNameKind LookupKind,
5327                                  Scope *S, CXXScopeSpec *SS,
5328                                  CorrectionCandidateCallback &CCC,
5329                                  CorrectTypoKind Mode,
5330                                  DeclContext *MemberContext,
5331                                  bool EnteringContext,
5332                                  const ObjCObjectPointerType *OPT,
5333                                  bool RecordFailure) {
5334   // Always let the ExternalSource have the first chance at correction, even
5335   // if we would otherwise have given up.
5336   if (ExternalSource) {
5337     if (TypoCorrection Correction =
5338             ExternalSource->CorrectTypo(TypoName, LookupKind, S, SS, CCC,
5339                                         MemberContext, EnteringContext, OPT))
5340       return Correction;
5341   }
5342 
5343   // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
5344   // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
5345   // some instances of CTC_Unknown, while WantRemainingKeywords is true
5346   // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
5347   bool ObjCMessageReceiver = CCC.WantObjCSuper && !CCC.WantRemainingKeywords;
5348 
5349   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5350   auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
5351                                              MemberContext, EnteringContext,
5352                                              OPT, Mode == CTK_ErrorRecovery);
5353 
5354   if (!Consumer)
5355     return TypoCorrection();
5356 
5357   // If we haven't found anything, we're done.
5358   if (Consumer->empty())
5359     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5360 
5361   // Make sure the best edit distance (prior to adding any namespace qualifiers)
5362   // is not more that about a third of the length of the typo's identifier.
5363   unsigned ED = Consumer->getBestEditDistance(true);
5364   unsigned TypoLen = Typo->getName().size();
5365   if (ED > 0 && TypoLen / ED < 3)
5366     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5367 
5368   TypoCorrection BestTC = Consumer->getNextCorrection();
5369   TypoCorrection SecondBestTC = Consumer->getNextCorrection();
5370   if (!BestTC)
5371     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5372 
5373   ED = BestTC.getEditDistance();
5374 
5375   if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
5376     // If this was an unqualified lookup and we believe the callback
5377     // object wouldn't have filtered out possible corrections, note
5378     // that no correction was found.
5379     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5380   }
5381 
5382   // If only a single name remains, return that result.
5383   if (!SecondBestTC ||
5384       SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
5385     const TypoCorrection &Result = BestTC;
5386 
5387     // Don't correct to a keyword that's the same as the typo; the keyword
5388     // wasn't actually in scope.
5389     if (ED == 0 && Result.isKeyword())
5390       return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5391 
5392     TypoCorrection TC = Result;
5393     TC.setCorrectionRange(SS, TypoName);
5394     checkCorrectionVisibility(*this, TC);
5395     return TC;
5396   } else if (SecondBestTC && ObjCMessageReceiver) {
5397     // Prefer 'super' when we're completing in a message-receiver
5398     // context.
5399 
5400     if (BestTC.getCorrection().getAsString() != "super") {
5401       if (SecondBestTC.getCorrection().getAsString() == "super")
5402         BestTC = SecondBestTC;
5403       else if ((*Consumer)["super"].front().isKeyword())
5404         BestTC = (*Consumer)["super"].front();
5405     }
5406     // Don't correct to a keyword that's the same as the typo; the keyword
5407     // wasn't actually in scope.
5408     if (BestTC.getEditDistance() == 0 ||
5409         BestTC.getCorrection().getAsString() != "super")
5410       return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5411 
5412     BestTC.setCorrectionRange(SS, TypoName);
5413     return BestTC;
5414   }
5415 
5416   // Record the failure's location if needed and return an empty correction. If
5417   // this was an unqualified lookup and we believe the callback object did not
5418   // filter out possible corrections, also cache the failure for the typo.
5419   return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
5420 }
5421 
5422 TypoExpr *Sema::CorrectTypoDelayed(
5423     const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
5424     Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
5425     TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode,
5426     DeclContext *MemberContext, bool EnteringContext,
5427     const ObjCObjectPointerType *OPT) {
5428   auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
5429                                              MemberContext, EnteringContext,
5430                                              OPT, Mode == CTK_ErrorRecovery);
5431 
5432   // Give the external sema source a chance to correct the typo.
5433   TypoCorrection ExternalTypo;
5434   if (ExternalSource && Consumer) {
5435     ExternalTypo = ExternalSource->CorrectTypo(
5436         TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(),
5437         MemberContext, EnteringContext, OPT);
5438     if (ExternalTypo)
5439       Consumer->addCorrection(ExternalTypo);
5440   }
5441 
5442   if (!Consumer || Consumer->empty())
5443     return nullptr;
5444 
5445   // Make sure the best edit distance (prior to adding any namespace qualifiers)
5446   // is not more that about a third of the length of the typo's identifier.
5447   unsigned ED = Consumer->getBestEditDistance(true);
5448   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5449   if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3)
5450     return nullptr;
5451   ExprEvalContexts.back().NumTypos++;
5452   return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC),
5453                            TypoName.getLoc());
5454 }
5455 
5456 void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
5457   if (!CDecl) return;
5458 
5459   if (isKeyword())
5460     CorrectionDecls.clear();
5461 
5462   CorrectionDecls.push_back(CDecl);
5463 
5464   if (!CorrectionName)
5465     CorrectionName = CDecl->getDeclName();
5466 }
5467 
5468 std::string TypoCorrection::getAsString(const LangOptions &LO) const {
5469   if (CorrectionNameSpec) {
5470     std::string tmpBuffer;
5471     llvm::raw_string_ostream PrefixOStream(tmpBuffer);
5472     CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
5473     PrefixOStream << CorrectionName;
5474     return PrefixOStream.str();
5475   }
5476 
5477   return CorrectionName.getAsString();
5478 }
5479 
5480 bool CorrectionCandidateCallback::ValidateCandidate(
5481     const TypoCorrection &candidate) {
5482   if (!candidate.isResolved())
5483     return true;
5484 
5485   if (candidate.isKeyword())
5486     return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
5487            WantRemainingKeywords || WantObjCSuper;
5488 
5489   bool HasNonType = false;
5490   bool HasStaticMethod = false;
5491   bool HasNonStaticMethod = false;
5492   for (Decl *D : candidate) {
5493     if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
5494       D = FTD->getTemplatedDecl();
5495     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
5496       if (Method->isStatic())
5497         HasStaticMethod = true;
5498       else
5499         HasNonStaticMethod = true;
5500     }
5501     if (!isa<TypeDecl>(D))
5502       HasNonType = true;
5503   }
5504 
5505   if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
5506       !candidate.getCorrectionSpecifier())
5507     return false;
5508 
5509   return WantTypeSpecifiers || HasNonType;
5510 }
5511 
5512 FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
5513                                              bool HasExplicitTemplateArgs,
5514                                              MemberExpr *ME)
5515     : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
5516       CurContext(SemaRef.CurContext), MemberFn(ME) {
5517   WantTypeSpecifiers = false;
5518   WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus &&
5519                           !HasExplicitTemplateArgs && NumArgs == 1;
5520   WantCXXNamedCasts = HasExplicitTemplateArgs && NumArgs == 1;
5521   WantRemainingKeywords = false;
5522 }
5523 
5524 bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
5525   if (!candidate.getCorrectionDecl())
5526     return candidate.isKeyword();
5527 
5528   for (auto *C : candidate) {
5529     FunctionDecl *FD = nullptr;
5530     NamedDecl *ND = C->getUnderlyingDecl();
5531     if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
5532       FD = FTD->getTemplatedDecl();
5533     if (!HasExplicitTemplateArgs && !FD) {
5534       if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
5535         // If the Decl is neither a function nor a template function,
5536         // determine if it is a pointer or reference to a function. If so,
5537         // check against the number of arguments expected for the pointee.
5538         QualType ValType = cast<ValueDecl>(ND)->getType();
5539         if (ValType.isNull())
5540           continue;
5541         if (ValType->isAnyPointerType() || ValType->isReferenceType())
5542           ValType = ValType->getPointeeType();
5543         if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
5544           if (FPT->getNumParams() == NumArgs)
5545             return true;
5546       }
5547     }
5548 
5549     // A typo for a function-style cast can look like a function call in C++.
5550     if ((HasExplicitTemplateArgs ? getAsTypeTemplateDecl(ND) != nullptr
5551                                  : isa<TypeDecl>(ND)) &&
5552         CurContext->getParentASTContext().getLangOpts().CPlusPlus)
5553       // Only a class or class template can take two or more arguments.
5554       return NumArgs <= 1 || HasExplicitTemplateArgs || isa<CXXRecordDecl>(ND);
5555 
5556     // Skip the current candidate if it is not a FunctionDecl or does not accept
5557     // the current number of arguments.
5558     if (!FD || !(FD->getNumParams() >= NumArgs &&
5559                  FD->getMinRequiredArguments() <= NumArgs))
5560       continue;
5561 
5562     // If the current candidate is a non-static C++ method, skip the candidate
5563     // unless the method being corrected--or the current DeclContext, if the
5564     // function being corrected is not a method--is a method in the same class
5565     // or a descendent class of the candidate's parent class.
5566     if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
5567       if (MemberFn || !MD->isStatic()) {
5568         const auto *CurMD =
5569             MemberFn
5570                 ? dyn_cast_if_present<CXXMethodDecl>(MemberFn->getMemberDecl())
5571                 : dyn_cast_if_present<CXXMethodDecl>(CurContext);
5572         const CXXRecordDecl *CurRD =
5573             CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
5574         const CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
5575         if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
5576           continue;
5577       }
5578     }
5579     return true;
5580   }
5581   return false;
5582 }
5583 
5584 void Sema::diagnoseTypo(const TypoCorrection &Correction,
5585                         const PartialDiagnostic &TypoDiag,
5586                         bool ErrorRecovery) {
5587   diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
5588                ErrorRecovery);
5589 }
5590 
5591 /// Find which declaration we should import to provide the definition of
5592 /// the given declaration.
5593 static const NamedDecl *getDefinitionToImport(const NamedDecl *D) {
5594   if (const auto *VD = dyn_cast<VarDecl>(D))
5595     return VD->getDefinition();
5596   if (const auto *FD = dyn_cast<FunctionDecl>(D))
5597     return FD->getDefinition();
5598   if (const auto *TD = dyn_cast<TagDecl>(D))
5599     return TD->getDefinition();
5600   if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(D))
5601     return ID->getDefinition();
5602   if (const auto *PD = dyn_cast<ObjCProtocolDecl>(D))
5603     return PD->getDefinition();
5604   if (const auto *TD = dyn_cast<TemplateDecl>(D))
5605     if (const NamedDecl *TTD = TD->getTemplatedDecl())
5606       return getDefinitionToImport(TTD);
5607   return nullptr;
5608 }
5609 
5610 void Sema::diagnoseMissingImport(SourceLocation Loc, const NamedDecl *Decl,
5611                                  MissingImportKind MIK, bool Recover) {
5612   // Suggest importing a module providing the definition of this entity, if
5613   // possible.
5614   const NamedDecl *Def = getDefinitionToImport(Decl);
5615   if (!Def)
5616     Def = Decl;
5617 
5618   Module *Owner = getOwningModule(Def);
5619   assert(Owner && "definition of hidden declaration is not in a module");
5620 
5621   llvm::SmallVector<Module*, 8> OwningModules;
5622   OwningModules.push_back(Owner);
5623   auto Merged = Context.getModulesWithMergedDefinition(Def);
5624   OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end());
5625 
5626   diagnoseMissingImport(Loc, Def, Def->getLocation(), OwningModules, MIK,
5627                         Recover);
5628 }
5629 
5630 /// Get a "quoted.h" or <angled.h> include path to use in a diagnostic
5631 /// suggesting the addition of a #include of the specified file.
5632 static std::string getHeaderNameForHeader(Preprocessor &PP, FileEntryRef E,
5633                                           llvm::StringRef IncludingFile) {
5634   bool IsAngled = false;
5635   auto Path = PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics(
5636       E, IncludingFile, &IsAngled);
5637   return (IsAngled ? '<' : '"') + Path + (IsAngled ? '>' : '"');
5638 }
5639 
5640 void Sema::diagnoseMissingImport(SourceLocation UseLoc, const NamedDecl *Decl,
5641                                  SourceLocation DeclLoc,
5642                                  ArrayRef<Module *> Modules,
5643                                  MissingImportKind MIK, bool Recover) {
5644   assert(!Modules.empty());
5645 
5646   // See https://github.com/llvm/llvm-project/issues/73893. It is generally
5647   // confusing than helpful to show the namespace is not visible.
5648   if (isa<NamespaceDecl>(Decl))
5649     return;
5650 
5651   auto NotePrevious = [&] {
5652     // FIXME: Suppress the note backtrace even under
5653     // -fdiagnostics-show-note-include-stack. We don't care how this
5654     // declaration was previously reached.
5655     Diag(DeclLoc, diag::note_unreachable_entity) << (int)MIK;
5656   };
5657 
5658   // Weed out duplicates from module list.
5659   llvm::SmallVector<Module*, 8> UniqueModules;
5660   llvm::SmallDenseSet<Module*, 8> UniqueModuleSet;
5661   for (auto *M : Modules) {
5662     if (M->isExplicitGlobalModule() || M->isPrivateModule())
5663       continue;
5664     if (UniqueModuleSet.insert(M).second)
5665       UniqueModules.push_back(M);
5666   }
5667 
5668   // Try to find a suitable header-name to #include.
5669   std::string HeaderName;
5670   if (OptionalFileEntryRef Header =
5671           PP.getHeaderToIncludeForDiagnostics(UseLoc, DeclLoc)) {
5672     if (const FileEntry *FE =
5673             SourceMgr.getFileEntryForID(SourceMgr.getFileID(UseLoc)))
5674       HeaderName =
5675           getHeaderNameForHeader(PP, *Header, FE->tryGetRealPathName());
5676   }
5677 
5678   // If we have a #include we should suggest, or if all definition locations
5679   // were in global module fragments, don't suggest an import.
5680   if (!HeaderName.empty() || UniqueModules.empty()) {
5681     // FIXME: Find a smart place to suggest inserting a #include, and add
5682     // a FixItHint there.
5683     Diag(UseLoc, diag::err_module_unimported_use_header)
5684         << (int)MIK << Decl << !HeaderName.empty() << HeaderName;
5685     // Produce a note showing where the entity was declared.
5686     NotePrevious();
5687     if (Recover)
5688       createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5689     return;
5690   }
5691 
5692   Modules = UniqueModules;
5693 
5694   auto GetModuleNameForDiagnostic = [this](const Module *M) -> std::string {
5695     if (M->isModuleMapModule())
5696       return M->getFullModuleName();
5697 
5698     if (M->isImplicitGlobalModule())
5699       M = M->getTopLevelModule();
5700 
5701     // If the current module unit is in the same module with M, it is OK to show
5702     // the partition name. Otherwise, it'll be sufficient to show the primary
5703     // module name.
5704     if (getASTContext().isInSameModule(M, getCurrentModule()))
5705       return M->getTopLevelModuleName().str();
5706     else
5707       return M->getPrimaryModuleInterfaceName().str();
5708   };
5709 
5710   if (Modules.size() > 1) {
5711     std::string ModuleList;
5712     unsigned N = 0;
5713     for (const auto *M : Modules) {
5714       ModuleList += "\n        ";
5715       if (++N == 5 && N != Modules.size()) {
5716         ModuleList += "[...]";
5717         break;
5718       }
5719       ModuleList += GetModuleNameForDiagnostic(M);
5720     }
5721 
5722     Diag(UseLoc, diag::err_module_unimported_use_multiple)
5723       << (int)MIK << Decl << ModuleList;
5724   } else {
5725     // FIXME: Add a FixItHint that imports the corresponding module.
5726     Diag(UseLoc, diag::err_module_unimported_use)
5727         << (int)MIK << Decl << GetModuleNameForDiagnostic(Modules[0]);
5728   }
5729 
5730   NotePrevious();
5731 
5732   // Try to recover by implicitly importing this module.
5733   if (Recover)
5734     createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5735 }
5736 
5737 void Sema::diagnoseTypo(const TypoCorrection &Correction,
5738                         const PartialDiagnostic &TypoDiag,
5739                         const PartialDiagnostic &PrevNote,
5740                         bool ErrorRecovery) {
5741   std::string CorrectedStr = Correction.getAsString(getLangOpts());
5742   std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
5743   FixItHint FixTypo = FixItHint::CreateReplacement(
5744       Correction.getCorrectionRange(), CorrectedStr);
5745 
5746   // Maybe we're just missing a module import.
5747   if (Correction.requiresImport()) {
5748     NamedDecl *Decl = Correction.getFoundDecl();
5749     assert(Decl && "import required but no declaration to import");
5750 
5751     diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl,
5752                           MissingImportKind::Declaration, ErrorRecovery);
5753     return;
5754   }
5755 
5756   Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
5757     << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
5758 
5759   NamedDecl *ChosenDecl =
5760       Correction.isKeyword() ? nullptr : Correction.getFoundDecl();
5761 
5762   // For builtin functions which aren't declared anywhere in source,
5763   // don't emit the "declared here" note.
5764   if (const auto *FD = dyn_cast_if_present<FunctionDecl>(ChosenDecl);
5765       FD && FD->getBuiltinID() &&
5766       PrevNote.getDiagID() == diag::note_previous_decl &&
5767       Correction.getCorrectionRange().getBegin() == FD->getBeginLoc()) {
5768     ChosenDecl = nullptr;
5769   }
5770 
5771   if (PrevNote.getDiagID() && ChosenDecl)
5772     Diag(ChosenDecl->getLocation(), PrevNote)
5773       << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
5774 
5775   // Add any extra diagnostics.
5776   for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics())
5777     Diag(Correction.getCorrectionRange().getBegin(), PD);
5778 }
5779 
5780 TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
5781                                   TypoDiagnosticGenerator TDG,
5782                                   TypoRecoveryCallback TRC,
5783                                   SourceLocation TypoLoc) {
5784   assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer");
5785   auto TE = new (Context) TypoExpr(Context.DependentTy, TypoLoc);
5786   auto &State = DelayedTypos[TE];
5787   State.Consumer = std::move(TCC);
5788   State.DiagHandler = std::move(TDG);
5789   State.RecoveryHandler = std::move(TRC);
5790   if (TE)
5791     TypoExprs.push_back(TE);
5792   return TE;
5793 }
5794 
5795 const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
5796   auto Entry = DelayedTypos.find(TE);
5797   assert(Entry != DelayedTypos.end() &&
5798          "Failed to get the state for a TypoExpr!");
5799   return Entry->second;
5800 }
5801 
5802 void Sema::clearDelayedTypo(TypoExpr *TE) {
5803   DelayedTypos.erase(TE);
5804 }
5805 
5806 void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) {
5807   DeclarationNameInfo Name(II, IILoc);
5808   LookupResult R(*this, Name, LookupAnyName,
5809                  RedeclarationKind::NotForRedeclaration);
5810   R.suppressDiagnostics();
5811   R.setHideTags(false);
5812   LookupName(R, S);
5813   R.dump();
5814 }
5815 
5816 void Sema::ActOnPragmaDump(Expr *E) {
5817   E->dump();
5818 }
5819 
5820 RedeclarationKind Sema::forRedeclarationInCurContext() const {
5821   // A declaration with an owning module for linkage can never link against
5822   // anything that is not visible. We don't need to check linkage here; if
5823   // the context has internal linkage, redeclaration lookup won't find things
5824   // from other TUs, and we can't safely compute linkage yet in general.
5825   if (cast<Decl>(CurContext)->getOwningModuleForLinkage())
5826     return RedeclarationKind::ForVisibleRedeclaration;
5827   return RedeclarationKind::ForExternalRedeclaration;
5828 }
5829