1 //===--------------------- SemaLookup.cpp - Name Lookup ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements name lookup for C, C++, Objective-C, and 10 // Objective-C++. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/CXXInheritance.h" 16 #include "clang/AST/Decl.h" 17 #include "clang/AST/DeclCXX.h" 18 #include "clang/AST/DeclLookups.h" 19 #include "clang/AST/DeclObjC.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/Expr.h" 22 #include "clang/AST/ExprCXX.h" 23 #include "clang/Basic/Builtins.h" 24 #include "clang/Basic/LangOptions.h" 25 #include "clang/Lex/HeaderSearch.h" 26 #include "clang/Lex/ModuleLoader.h" 27 #include "clang/Lex/Preprocessor.h" 28 #include "clang/Sema/DeclSpec.h" 29 #include "clang/Sema/Lookup.h" 30 #include "clang/Sema/Overload.h" 31 #include "clang/Sema/RISCVIntrinsicManager.h" 32 #include "clang/Sema/Scope.h" 33 #include "clang/Sema/ScopeInfo.h" 34 #include "clang/Sema/Sema.h" 35 #include "clang/Sema/SemaInternal.h" 36 #include "clang/Sema/SemaRISCV.h" 37 #include "clang/Sema/TemplateDeduction.h" 38 #include "clang/Sema/TypoCorrection.h" 39 #include "llvm/ADT/STLExtras.h" 40 #include "llvm/ADT/STLForwardCompat.h" 41 #include "llvm/ADT/SmallPtrSet.h" 42 #include "llvm/ADT/TinyPtrVector.h" 43 #include "llvm/ADT/edit_distance.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include <algorithm> 47 #include <iterator> 48 #include <list> 49 #include <optional> 50 #include <set> 51 #include <utility> 52 #include <vector> 53 54 #include "OpenCLBuiltins.inc" 55 56 using namespace clang; 57 using namespace sema; 58 59 namespace { 60 class UnqualUsingEntry { 61 const DeclContext *Nominated; 62 const DeclContext *CommonAncestor; 63 64 public: 65 UnqualUsingEntry(const DeclContext *Nominated, 66 const DeclContext *CommonAncestor) 67 : Nominated(Nominated), CommonAncestor(CommonAncestor) { 68 } 69 70 const DeclContext *getCommonAncestor() const { 71 return CommonAncestor; 72 } 73 74 const DeclContext *getNominatedNamespace() const { 75 return Nominated; 76 } 77 78 // Sort by the pointer value of the common ancestor. 79 struct Comparator { 80 bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) { 81 return L.getCommonAncestor() < R.getCommonAncestor(); 82 } 83 84 bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) { 85 return E.getCommonAncestor() < DC; 86 } 87 88 bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) { 89 return DC < E.getCommonAncestor(); 90 } 91 }; 92 }; 93 94 /// A collection of using directives, as used by C++ unqualified 95 /// lookup. 96 class UnqualUsingDirectiveSet { 97 Sema &SemaRef; 98 99 typedef SmallVector<UnqualUsingEntry, 8> ListTy; 100 101 ListTy list; 102 llvm::SmallPtrSet<DeclContext*, 8> visited; 103 104 public: 105 UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {} 106 107 void visitScopeChain(Scope *S, Scope *InnermostFileScope) { 108 // C++ [namespace.udir]p1: 109 // During unqualified name lookup, the names appear as if they 110 // were declared in the nearest enclosing namespace which contains 111 // both the using-directive and the nominated namespace. 112 DeclContext *InnermostFileDC = InnermostFileScope->getEntity(); 113 assert(InnermostFileDC && InnermostFileDC->isFileContext()); 114 115 for (; S; S = S->getParent()) { 116 // C++ [namespace.udir]p1: 117 // A using-directive shall not appear in class scope, but may 118 // appear in namespace scope or in block scope. 119 DeclContext *Ctx = S->getEntity(); 120 if (Ctx && Ctx->isFileContext()) { 121 visit(Ctx, Ctx); 122 } else if (!Ctx || Ctx->isFunctionOrMethod()) { 123 for (auto *I : S->using_directives()) 124 if (SemaRef.isVisible(I)) 125 visit(I, InnermostFileDC); 126 } 127 } 128 } 129 130 // Visits a context and collect all of its using directives 131 // recursively. Treats all using directives as if they were 132 // declared in the context. 133 // 134 // A given context is only every visited once, so it is important 135 // that contexts be visited from the inside out in order to get 136 // the effective DCs right. 137 void visit(DeclContext *DC, DeclContext *EffectiveDC) { 138 if (!visited.insert(DC).second) 139 return; 140 141 addUsingDirectives(DC, EffectiveDC); 142 } 143 144 // Visits a using directive and collects all of its using 145 // directives recursively. Treats all using directives as if they 146 // were declared in the effective DC. 147 void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) { 148 DeclContext *NS = UD->getNominatedNamespace(); 149 if (!visited.insert(NS).second) 150 return; 151 152 addUsingDirective(UD, EffectiveDC); 153 addUsingDirectives(NS, EffectiveDC); 154 } 155 156 // Adds all the using directives in a context (and those nominated 157 // by its using directives, transitively) as if they appeared in 158 // the given effective context. 159 void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) { 160 SmallVector<DeclContext*, 4> queue; 161 while (true) { 162 for (auto *UD : DC->using_directives()) { 163 DeclContext *NS = UD->getNominatedNamespace(); 164 if (SemaRef.isVisible(UD) && visited.insert(NS).second) { 165 addUsingDirective(UD, EffectiveDC); 166 queue.push_back(NS); 167 } 168 } 169 170 if (queue.empty()) 171 return; 172 173 DC = queue.pop_back_val(); 174 } 175 } 176 177 // Add a using directive as if it had been declared in the given 178 // context. This helps implement C++ [namespace.udir]p3: 179 // The using-directive is transitive: if a scope contains a 180 // using-directive that nominates a second namespace that itself 181 // contains using-directives, the effect is as if the 182 // using-directives from the second namespace also appeared in 183 // the first. 184 void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) { 185 // Find the common ancestor between the effective context and 186 // the nominated namespace. 187 DeclContext *Common = UD->getNominatedNamespace(); 188 while (!Common->Encloses(EffectiveDC)) 189 Common = Common->getParent(); 190 Common = Common->getPrimaryContext(); 191 192 list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common)); 193 } 194 195 void done() { llvm::sort(list, UnqualUsingEntry::Comparator()); } 196 197 typedef ListTy::const_iterator const_iterator; 198 199 const_iterator begin() const { return list.begin(); } 200 const_iterator end() const { return list.end(); } 201 202 llvm::iterator_range<const_iterator> 203 getNamespacesFor(const DeclContext *DC) const { 204 return llvm::make_range(std::equal_range(begin(), end(), 205 DC->getPrimaryContext(), 206 UnqualUsingEntry::Comparator())); 207 } 208 }; 209 } // end anonymous namespace 210 211 // Retrieve the set of identifier namespaces that correspond to a 212 // specific kind of name lookup. 213 static inline unsigned getIDNS(Sema::LookupNameKind NameKind, 214 bool CPlusPlus, 215 bool Redeclaration) { 216 unsigned IDNS = 0; 217 switch (NameKind) { 218 case Sema::LookupObjCImplicitSelfParam: 219 case Sema::LookupOrdinaryName: 220 case Sema::LookupRedeclarationWithLinkage: 221 case Sema::LookupLocalFriendName: 222 case Sema::LookupDestructorName: 223 IDNS = Decl::IDNS_Ordinary; 224 if (CPlusPlus) { 225 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace; 226 if (Redeclaration) 227 IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend; 228 } 229 if (Redeclaration) 230 IDNS |= Decl::IDNS_LocalExtern; 231 break; 232 233 case Sema::LookupOperatorName: 234 // Operator lookup is its own crazy thing; it is not the same 235 // as (e.g.) looking up an operator name for redeclaration. 236 assert(!Redeclaration && "cannot do redeclaration operator lookup"); 237 IDNS = Decl::IDNS_NonMemberOperator; 238 break; 239 240 case Sema::LookupTagName: 241 if (CPlusPlus) { 242 IDNS = Decl::IDNS_Type; 243 244 // When looking for a redeclaration of a tag name, we add: 245 // 1) TagFriend to find undeclared friend decls 246 // 2) Namespace because they can't "overload" with tag decls. 247 // 3) Tag because it includes class templates, which can't 248 // "overload" with tag decls. 249 if (Redeclaration) 250 IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace; 251 } else { 252 IDNS = Decl::IDNS_Tag; 253 } 254 break; 255 256 case Sema::LookupLabel: 257 IDNS = Decl::IDNS_Label; 258 break; 259 260 case Sema::LookupMemberName: 261 IDNS = Decl::IDNS_Member; 262 if (CPlusPlus) 263 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary; 264 break; 265 266 case Sema::LookupNestedNameSpecifierName: 267 IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace; 268 break; 269 270 case Sema::LookupNamespaceName: 271 IDNS = Decl::IDNS_Namespace; 272 break; 273 274 case Sema::LookupUsingDeclName: 275 assert(Redeclaration && "should only be used for redecl lookup"); 276 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member | 277 Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend | 278 Decl::IDNS_LocalExtern; 279 break; 280 281 case Sema::LookupObjCProtocolName: 282 IDNS = Decl::IDNS_ObjCProtocol; 283 break; 284 285 case Sema::LookupOMPReductionName: 286 IDNS = Decl::IDNS_OMPReduction; 287 break; 288 289 case Sema::LookupOMPMapperName: 290 IDNS = Decl::IDNS_OMPMapper; 291 break; 292 293 case Sema::LookupAnyName: 294 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member 295 | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol 296 | Decl::IDNS_Type; 297 break; 298 } 299 return IDNS; 300 } 301 302 void LookupResult::configure() { 303 IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus, 304 isForRedeclaration()); 305 306 // If we're looking for one of the allocation or deallocation 307 // operators, make sure that the implicitly-declared new and delete 308 // operators can be found. 309 switch (NameInfo.getName().getCXXOverloadedOperator()) { 310 case OO_New: 311 case OO_Delete: 312 case OO_Array_New: 313 case OO_Array_Delete: 314 getSema().DeclareGlobalNewDelete(); 315 break; 316 317 default: 318 break; 319 } 320 321 // Compiler builtins are always visible, regardless of where they end 322 // up being declared. 323 if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) { 324 if (unsigned BuiltinID = Id->getBuiltinID()) { 325 if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 326 AllowHidden = true; 327 } 328 } 329 } 330 331 bool LookupResult::checkDebugAssumptions() const { 332 // This function is never called by NDEBUG builds. 333 assert(ResultKind != NotFound || Decls.size() == 0); 334 assert(ResultKind != Found || Decls.size() == 1); 335 assert(ResultKind != FoundOverloaded || Decls.size() > 1 || 336 (Decls.size() == 1 && 337 isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))); 338 assert(ResultKind != FoundUnresolvedValue || checkUnresolved()); 339 assert(ResultKind != Ambiguous || Decls.size() > 1 || 340 (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || 341 Ambiguity == AmbiguousBaseSubobjectTypes))); 342 assert((Paths != nullptr) == (ResultKind == Ambiguous && 343 (Ambiguity == AmbiguousBaseSubobjectTypes || 344 Ambiguity == AmbiguousBaseSubobjects))); 345 return true; 346 } 347 348 // Necessary because CXXBasePaths is not complete in Sema.h 349 void LookupResult::deletePaths(CXXBasePaths *Paths) { 350 delete Paths; 351 } 352 353 /// Get a representative context for a declaration such that two declarations 354 /// will have the same context if they were found within the same scope. 355 static const DeclContext *getContextForScopeMatching(const Decl *D) { 356 // For function-local declarations, use that function as the context. This 357 // doesn't account for scopes within the function; the caller must deal with 358 // those. 359 if (const DeclContext *DC = D->getLexicalDeclContext(); 360 DC->isFunctionOrMethod()) 361 return DC; 362 363 // Otherwise, look at the semantic context of the declaration. The 364 // declaration must have been found there. 365 return D->getDeclContext()->getRedeclContext(); 366 } 367 368 /// Determine whether \p D is a better lookup result than \p Existing, 369 /// given that they declare the same entity. 370 static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind, 371 const NamedDecl *D, 372 const NamedDecl *Existing) { 373 // When looking up redeclarations of a using declaration, prefer a using 374 // shadow declaration over any other declaration of the same entity. 375 if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) && 376 !isa<UsingShadowDecl>(Existing)) 377 return true; 378 379 const auto *DUnderlying = D->getUnderlyingDecl(); 380 const auto *EUnderlying = Existing->getUnderlyingDecl(); 381 382 // If they have different underlying declarations, prefer a typedef over the 383 // original type (this happens when two type declarations denote the same 384 // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef 385 // might carry additional semantic information, such as an alignment override. 386 // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag 387 // declaration over a typedef. Also prefer a tag over a typedef for 388 // destructor name lookup because in some contexts we only accept a 389 // class-name in a destructor declaration. 390 if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) { 391 assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying)); 392 bool HaveTag = isa<TagDecl>(EUnderlying); 393 bool WantTag = 394 Kind == Sema::LookupTagName || Kind == Sema::LookupDestructorName; 395 return HaveTag != WantTag; 396 } 397 398 // Pick the function with more default arguments. 399 // FIXME: In the presence of ambiguous default arguments, we should keep both, 400 // so we can diagnose the ambiguity if the default argument is needed. 401 // See C++ [over.match.best]p3. 402 if (const auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) { 403 const auto *EFD = cast<FunctionDecl>(EUnderlying); 404 unsigned DMin = DFD->getMinRequiredArguments(); 405 unsigned EMin = EFD->getMinRequiredArguments(); 406 // If D has more default arguments, it is preferred. 407 if (DMin != EMin) 408 return DMin < EMin; 409 // FIXME: When we track visibility for default function arguments, check 410 // that we pick the declaration with more visible default arguments. 411 } 412 413 // Pick the template with more default template arguments. 414 if (const auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) { 415 const auto *ETD = cast<TemplateDecl>(EUnderlying); 416 unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments(); 417 unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments(); 418 // If D has more default arguments, it is preferred. Note that default 419 // arguments (and their visibility) is monotonically increasing across the 420 // redeclaration chain, so this is a quick proxy for "is more recent". 421 if (DMin != EMin) 422 return DMin < EMin; 423 // If D has more *visible* default arguments, it is preferred. Note, an 424 // earlier default argument being visible does not imply that a later 425 // default argument is visible, so we can't just check the first one. 426 for (unsigned I = DMin, N = DTD->getTemplateParameters()->size(); 427 I != N; ++I) { 428 if (!S.hasVisibleDefaultArgument( 429 ETD->getTemplateParameters()->getParam(I)) && 430 S.hasVisibleDefaultArgument( 431 DTD->getTemplateParameters()->getParam(I))) 432 return true; 433 } 434 } 435 436 // VarDecl can have incomplete array types, prefer the one with more complete 437 // array type. 438 if (const auto *DVD = dyn_cast<VarDecl>(DUnderlying)) { 439 const auto *EVD = cast<VarDecl>(EUnderlying); 440 if (EVD->getType()->isIncompleteType() && 441 !DVD->getType()->isIncompleteType()) { 442 // Prefer the decl with a more complete type if visible. 443 return S.isVisible(DVD); 444 } 445 return false; // Avoid picking up a newer decl, just because it was newer. 446 } 447 448 // For most kinds of declaration, it doesn't really matter which one we pick. 449 if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) { 450 // If the existing declaration is hidden, prefer the new one. Otherwise, 451 // keep what we've got. 452 return !S.isVisible(Existing); 453 } 454 455 // Pick the newer declaration; it might have a more precise type. 456 for (const Decl *Prev = DUnderlying->getPreviousDecl(); Prev; 457 Prev = Prev->getPreviousDecl()) 458 if (Prev == EUnderlying) 459 return true; 460 return false; 461 } 462 463 /// Determine whether \p D can hide a tag declaration. 464 static bool canHideTag(const NamedDecl *D) { 465 // C++ [basic.scope.declarative]p4: 466 // Given a set of declarations in a single declarative region [...] 467 // exactly one declaration shall declare a class name or enumeration name 468 // that is not a typedef name and the other declarations shall all refer to 469 // the same variable, non-static data member, or enumerator, or all refer 470 // to functions and function templates; in this case the class name or 471 // enumeration name is hidden. 472 // C++ [basic.scope.hiding]p2: 473 // A class name or enumeration name can be hidden by the name of a 474 // variable, data member, function, or enumerator declared in the same 475 // scope. 476 // An UnresolvedUsingValueDecl always instantiates to one of these. 477 D = D->getUnderlyingDecl(); 478 return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) || 479 isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) || 480 isa<UnresolvedUsingValueDecl>(D); 481 } 482 483 /// Resolves the result kind of this lookup. 484 void LookupResult::resolveKind() { 485 unsigned N = Decls.size(); 486 487 // Fast case: no possible ambiguity. 488 if (N == 0) { 489 assert(ResultKind == NotFound || 490 ResultKind == NotFoundInCurrentInstantiation); 491 return; 492 } 493 494 // If there's a single decl, we need to examine it to decide what 495 // kind of lookup this is. 496 if (N == 1) { 497 const NamedDecl *D = (*Decls.begin())->getUnderlyingDecl(); 498 if (isa<FunctionTemplateDecl>(D)) 499 ResultKind = FoundOverloaded; 500 else if (isa<UnresolvedUsingValueDecl>(D)) 501 ResultKind = FoundUnresolvedValue; 502 return; 503 } 504 505 // Don't do any extra resolution if we've already resolved as ambiguous. 506 if (ResultKind == Ambiguous) return; 507 508 llvm::SmallDenseMap<const NamedDecl *, unsigned, 16> Unique; 509 llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes; 510 511 bool Ambiguous = false; 512 bool ReferenceToPlaceHolderVariable = false; 513 bool HasTag = false, HasFunction = false; 514 bool HasFunctionTemplate = false, HasUnresolved = false; 515 const NamedDecl *HasNonFunction = nullptr; 516 517 llvm::SmallVector<const NamedDecl *, 4> EquivalentNonFunctions; 518 llvm::BitVector RemovedDecls(N); 519 520 for (unsigned I = 0; I < N; I++) { 521 const NamedDecl *D = Decls[I]->getUnderlyingDecl(); 522 D = cast<NamedDecl>(D->getCanonicalDecl()); 523 524 // Ignore an invalid declaration unless it's the only one left. 525 // Also ignore HLSLBufferDecl which not have name conflict with other Decls. 526 if ((D->isInvalidDecl() || isa<HLSLBufferDecl>(D)) && 527 N - RemovedDecls.count() > 1) { 528 RemovedDecls.set(I); 529 continue; 530 } 531 532 // C++ [basic.scope.hiding]p2: 533 // A class name or enumeration name can be hidden by the name of 534 // an object, function, or enumerator declared in the same 535 // scope. If a class or enumeration name and an object, function, 536 // or enumerator are declared in the same scope (in any order) 537 // with the same name, the class or enumeration name is hidden 538 // wherever the object, function, or enumerator name is visible. 539 if (HideTags && isa<TagDecl>(D)) { 540 bool Hidden = false; 541 for (auto *OtherDecl : Decls) { 542 if (canHideTag(OtherDecl) && !OtherDecl->isInvalidDecl() && 543 getContextForScopeMatching(OtherDecl)->Equals( 544 getContextForScopeMatching(Decls[I]))) { 545 RemovedDecls.set(I); 546 Hidden = true; 547 break; 548 } 549 } 550 if (Hidden) 551 continue; 552 } 553 554 std::optional<unsigned> ExistingI; 555 556 // Redeclarations of types via typedef can occur both within a scope 557 // and, through using declarations and directives, across scopes. There is 558 // no ambiguity if they all refer to the same type, so unique based on the 559 // canonical type. 560 if (const auto *TD = dyn_cast<TypeDecl>(D)) { 561 QualType T = getSema().Context.getTypeDeclType(TD); 562 auto UniqueResult = UniqueTypes.insert( 563 std::make_pair(getSema().Context.getCanonicalType(T), I)); 564 if (!UniqueResult.second) { 565 // The type is not unique. 566 ExistingI = UniqueResult.first->second; 567 } 568 } 569 570 // For non-type declarations, check for a prior lookup result naming this 571 // canonical declaration. 572 if (!ExistingI) { 573 auto UniqueResult = Unique.insert(std::make_pair(D, I)); 574 if (!UniqueResult.second) { 575 // We've seen this entity before. 576 ExistingI = UniqueResult.first->second; 577 } 578 } 579 580 if (ExistingI) { 581 // This is not a unique lookup result. Pick one of the results and 582 // discard the other. 583 if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I], 584 Decls[*ExistingI])) 585 Decls[*ExistingI] = Decls[I]; 586 RemovedDecls.set(I); 587 continue; 588 } 589 590 // Otherwise, do some decl type analysis and then continue. 591 592 if (isa<UnresolvedUsingValueDecl>(D)) { 593 HasUnresolved = true; 594 } else if (isa<TagDecl>(D)) { 595 if (HasTag) 596 Ambiguous = true; 597 HasTag = true; 598 } else if (isa<FunctionTemplateDecl>(D)) { 599 HasFunction = true; 600 HasFunctionTemplate = true; 601 } else if (isa<FunctionDecl>(D)) { 602 HasFunction = true; 603 } else { 604 if (HasNonFunction) { 605 // If we're about to create an ambiguity between two declarations that 606 // are equivalent, but one is an internal linkage declaration from one 607 // module and the other is an internal linkage declaration from another 608 // module, just skip it. 609 if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction, 610 D)) { 611 EquivalentNonFunctions.push_back(D); 612 RemovedDecls.set(I); 613 continue; 614 } 615 if (D->isPlaceholderVar(getSema().getLangOpts()) && 616 getContextForScopeMatching(D) == 617 getContextForScopeMatching(Decls[I])) { 618 ReferenceToPlaceHolderVariable = true; 619 } 620 Ambiguous = true; 621 } 622 HasNonFunction = D; 623 } 624 } 625 626 // FIXME: This diagnostic should really be delayed until we're done with 627 // the lookup result, in case the ambiguity is resolved by the caller. 628 if (!EquivalentNonFunctions.empty() && !Ambiguous) 629 getSema().diagnoseEquivalentInternalLinkageDeclarations( 630 getNameLoc(), HasNonFunction, EquivalentNonFunctions); 631 632 // Remove decls by replacing them with decls from the end (which 633 // means that we need to iterate from the end) and then truncating 634 // to the new size. 635 for (int I = RemovedDecls.find_last(); I >= 0; I = RemovedDecls.find_prev(I)) 636 Decls[I] = Decls[--N]; 637 Decls.truncate(N); 638 639 if ((HasNonFunction && (HasFunction || HasUnresolved)) || 640 (HideTags && HasTag && (HasFunction || HasNonFunction || HasUnresolved))) 641 Ambiguous = true; 642 643 if (Ambiguous && ReferenceToPlaceHolderVariable) 644 setAmbiguous(LookupResult::AmbiguousReferenceToPlaceholderVariable); 645 else if (Ambiguous) 646 setAmbiguous(LookupResult::AmbiguousReference); 647 else if (HasUnresolved) 648 ResultKind = LookupResult::FoundUnresolvedValue; 649 else if (N > 1 || HasFunctionTemplate) 650 ResultKind = LookupResult::FoundOverloaded; 651 else 652 ResultKind = LookupResult::Found; 653 } 654 655 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) { 656 CXXBasePaths::const_paths_iterator I, E; 657 for (I = P.begin(), E = P.end(); I != E; ++I) 658 for (DeclContext::lookup_iterator DI = I->Decls, DE = DI.end(); DI != DE; 659 ++DI) 660 addDecl(*DI); 661 } 662 663 void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) { 664 Paths = new CXXBasePaths; 665 Paths->swap(P); 666 addDeclsFromBasePaths(*Paths); 667 resolveKind(); 668 setAmbiguous(AmbiguousBaseSubobjects); 669 } 670 671 void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) { 672 Paths = new CXXBasePaths; 673 Paths->swap(P); 674 addDeclsFromBasePaths(*Paths); 675 resolveKind(); 676 setAmbiguous(AmbiguousBaseSubobjectTypes); 677 } 678 679 void LookupResult::print(raw_ostream &Out) { 680 Out << Decls.size() << " result(s)"; 681 if (isAmbiguous()) Out << ", ambiguous"; 682 if (Paths) Out << ", base paths present"; 683 684 for (iterator I = begin(), E = end(); I != E; ++I) { 685 Out << "\n"; 686 (*I)->print(Out, 2); 687 } 688 } 689 690 LLVM_DUMP_METHOD void LookupResult::dump() { 691 llvm::errs() << "lookup results for " << getLookupName().getAsString() 692 << ":\n"; 693 for (NamedDecl *D : *this) 694 D->dump(); 695 } 696 697 /// Diagnose a missing builtin type. 698 static QualType diagOpenCLBuiltinTypeError(Sema &S, llvm::StringRef TypeClass, 699 llvm::StringRef Name) { 700 S.Diag(SourceLocation(), diag::err_opencl_type_not_found) 701 << TypeClass << Name; 702 return S.Context.VoidTy; 703 } 704 705 /// Lookup an OpenCL enum type. 706 static QualType getOpenCLEnumType(Sema &S, llvm::StringRef Name) { 707 LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(), 708 Sema::LookupTagName); 709 S.LookupName(Result, S.TUScope); 710 if (Result.empty()) 711 return diagOpenCLBuiltinTypeError(S, "enum", Name); 712 EnumDecl *Decl = Result.getAsSingle<EnumDecl>(); 713 if (!Decl) 714 return diagOpenCLBuiltinTypeError(S, "enum", Name); 715 return S.Context.getEnumType(Decl); 716 } 717 718 /// Lookup an OpenCL typedef type. 719 static QualType getOpenCLTypedefType(Sema &S, llvm::StringRef Name) { 720 LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(), 721 Sema::LookupOrdinaryName); 722 S.LookupName(Result, S.TUScope); 723 if (Result.empty()) 724 return diagOpenCLBuiltinTypeError(S, "typedef", Name); 725 TypedefNameDecl *Decl = Result.getAsSingle<TypedefNameDecl>(); 726 if (!Decl) 727 return diagOpenCLBuiltinTypeError(S, "typedef", Name); 728 return S.Context.getTypedefType(Decl); 729 } 730 731 /// Get the QualType instances of the return type and arguments for an OpenCL 732 /// builtin function signature. 733 /// \param S (in) The Sema instance. 734 /// \param OpenCLBuiltin (in) The signature currently handled. 735 /// \param GenTypeMaxCnt (out) Maximum number of types contained in a generic 736 /// type used as return type or as argument. 737 /// Only meaningful for generic types, otherwise equals 1. 738 /// \param RetTypes (out) List of the possible return types. 739 /// \param ArgTypes (out) List of the possible argument types. For each 740 /// argument, ArgTypes contains QualTypes for the Cartesian product 741 /// of (vector sizes) x (types) . 742 static void GetQualTypesForOpenCLBuiltin( 743 Sema &S, const OpenCLBuiltinStruct &OpenCLBuiltin, unsigned &GenTypeMaxCnt, 744 SmallVector<QualType, 1> &RetTypes, 745 SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) { 746 // Get the QualType instances of the return types. 747 unsigned Sig = SignatureTable[OpenCLBuiltin.SigTableIndex]; 748 OCL2Qual(S, TypeTable[Sig], RetTypes); 749 GenTypeMaxCnt = RetTypes.size(); 750 751 // Get the QualType instances of the arguments. 752 // First type is the return type, skip it. 753 for (unsigned Index = 1; Index < OpenCLBuiltin.NumTypes; Index++) { 754 SmallVector<QualType, 1> Ty; 755 OCL2Qual(S, TypeTable[SignatureTable[OpenCLBuiltin.SigTableIndex + Index]], 756 Ty); 757 GenTypeMaxCnt = (Ty.size() > GenTypeMaxCnt) ? Ty.size() : GenTypeMaxCnt; 758 ArgTypes.push_back(std::move(Ty)); 759 } 760 } 761 762 /// Create a list of the candidate function overloads for an OpenCL builtin 763 /// function. 764 /// \param Context (in) The ASTContext instance. 765 /// \param GenTypeMaxCnt (in) Maximum number of types contained in a generic 766 /// type used as return type or as argument. 767 /// Only meaningful for generic types, otherwise equals 1. 768 /// \param FunctionList (out) List of FunctionTypes. 769 /// \param RetTypes (in) List of the possible return types. 770 /// \param ArgTypes (in) List of the possible types for the arguments. 771 static void GetOpenCLBuiltinFctOverloads( 772 ASTContext &Context, unsigned GenTypeMaxCnt, 773 std::vector<QualType> &FunctionList, SmallVector<QualType, 1> &RetTypes, 774 SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) { 775 FunctionProtoType::ExtProtoInfo PI( 776 Context.getDefaultCallingConvention(false, false, true)); 777 PI.Variadic = false; 778 779 // Do not attempt to create any FunctionTypes if there are no return types, 780 // which happens when a type belongs to a disabled extension. 781 if (RetTypes.size() == 0) 782 return; 783 784 // Create FunctionTypes for each (gen)type. 785 for (unsigned IGenType = 0; IGenType < GenTypeMaxCnt; IGenType++) { 786 SmallVector<QualType, 5> ArgList; 787 788 for (unsigned A = 0; A < ArgTypes.size(); A++) { 789 // Bail out if there is an argument that has no available types. 790 if (ArgTypes[A].size() == 0) 791 return; 792 793 // Builtins such as "max" have an "sgentype" argument that represents 794 // the corresponding scalar type of a gentype. The number of gentypes 795 // must be a multiple of the number of sgentypes. 796 assert(GenTypeMaxCnt % ArgTypes[A].size() == 0 && 797 "argument type count not compatible with gentype type count"); 798 unsigned Idx = IGenType % ArgTypes[A].size(); 799 ArgList.push_back(ArgTypes[A][Idx]); 800 } 801 802 FunctionList.push_back(Context.getFunctionType( 803 RetTypes[(RetTypes.size() != 1) ? IGenType : 0], ArgList, PI)); 804 } 805 } 806 807 /// When trying to resolve a function name, if isOpenCLBuiltin() returns a 808 /// non-null <Index, Len> pair, then the name is referencing an OpenCL 809 /// builtin function. Add all candidate signatures to the LookUpResult. 810 /// 811 /// \param S (in) The Sema instance. 812 /// \param LR (inout) The LookupResult instance. 813 /// \param II (in) The identifier being resolved. 814 /// \param FctIndex (in) Starting index in the BuiltinTable. 815 /// \param Len (in) The signature list has Len elements. 816 static void InsertOCLBuiltinDeclarationsFromTable(Sema &S, LookupResult &LR, 817 IdentifierInfo *II, 818 const unsigned FctIndex, 819 const unsigned Len) { 820 // The builtin function declaration uses generic types (gentype). 821 bool HasGenType = false; 822 823 // Maximum number of types contained in a generic type used as return type or 824 // as argument. Only meaningful for generic types, otherwise equals 1. 825 unsigned GenTypeMaxCnt; 826 827 ASTContext &Context = S.Context; 828 829 for (unsigned SignatureIndex = 0; SignatureIndex < Len; SignatureIndex++) { 830 const OpenCLBuiltinStruct &OpenCLBuiltin = 831 BuiltinTable[FctIndex + SignatureIndex]; 832 833 // Ignore this builtin function if it is not available in the currently 834 // selected language version. 835 if (!isOpenCLVersionContainedInMask(Context.getLangOpts(), 836 OpenCLBuiltin.Versions)) 837 continue; 838 839 // Ignore this builtin function if it carries an extension macro that is 840 // not defined. This indicates that the extension is not supported by the 841 // target, so the builtin function should not be available. 842 StringRef Extensions = FunctionExtensionTable[OpenCLBuiltin.Extension]; 843 if (!Extensions.empty()) { 844 SmallVector<StringRef, 2> ExtVec; 845 Extensions.split(ExtVec, " "); 846 bool AllExtensionsDefined = true; 847 for (StringRef Ext : ExtVec) { 848 if (!S.getPreprocessor().isMacroDefined(Ext)) { 849 AllExtensionsDefined = false; 850 break; 851 } 852 } 853 if (!AllExtensionsDefined) 854 continue; 855 } 856 857 SmallVector<QualType, 1> RetTypes; 858 SmallVector<SmallVector<QualType, 1>, 5> ArgTypes; 859 860 // Obtain QualType lists for the function signature. 861 GetQualTypesForOpenCLBuiltin(S, OpenCLBuiltin, GenTypeMaxCnt, RetTypes, 862 ArgTypes); 863 if (GenTypeMaxCnt > 1) { 864 HasGenType = true; 865 } 866 867 // Create function overload for each type combination. 868 std::vector<QualType> FunctionList; 869 GetOpenCLBuiltinFctOverloads(Context, GenTypeMaxCnt, FunctionList, RetTypes, 870 ArgTypes); 871 872 SourceLocation Loc = LR.getNameLoc(); 873 DeclContext *Parent = Context.getTranslationUnitDecl(); 874 FunctionDecl *NewOpenCLBuiltin; 875 876 for (const auto &FTy : FunctionList) { 877 NewOpenCLBuiltin = FunctionDecl::Create( 878 Context, Parent, Loc, Loc, II, FTy, /*TInfo=*/nullptr, SC_Extern, 879 S.getCurFPFeatures().isFPConstrained(), false, 880 FTy->isFunctionProtoType()); 881 NewOpenCLBuiltin->setImplicit(); 882 883 // Create Decl objects for each parameter, adding them to the 884 // FunctionDecl. 885 const auto *FP = cast<FunctionProtoType>(FTy); 886 SmallVector<ParmVarDecl *, 4> ParmList; 887 for (unsigned IParm = 0, e = FP->getNumParams(); IParm != e; ++IParm) { 888 ParmVarDecl *Parm = ParmVarDecl::Create( 889 Context, NewOpenCLBuiltin, SourceLocation(), SourceLocation(), 890 nullptr, FP->getParamType(IParm), nullptr, SC_None, nullptr); 891 Parm->setScopeInfo(0, IParm); 892 ParmList.push_back(Parm); 893 } 894 NewOpenCLBuiltin->setParams(ParmList); 895 896 // Add function attributes. 897 if (OpenCLBuiltin.IsPure) 898 NewOpenCLBuiltin->addAttr(PureAttr::CreateImplicit(Context)); 899 if (OpenCLBuiltin.IsConst) 900 NewOpenCLBuiltin->addAttr(ConstAttr::CreateImplicit(Context)); 901 if (OpenCLBuiltin.IsConv) 902 NewOpenCLBuiltin->addAttr(ConvergentAttr::CreateImplicit(Context)); 903 904 if (!S.getLangOpts().OpenCLCPlusPlus) 905 NewOpenCLBuiltin->addAttr(OverloadableAttr::CreateImplicit(Context)); 906 907 LR.addDecl(NewOpenCLBuiltin); 908 } 909 } 910 911 // If we added overloads, need to resolve the lookup result. 912 if (Len > 1 || HasGenType) 913 LR.resolveKind(); 914 } 915 916 bool Sema::LookupBuiltin(LookupResult &R) { 917 Sema::LookupNameKind NameKind = R.getLookupKind(); 918 919 // If we didn't find a use of this identifier, and if the identifier 920 // corresponds to a compiler builtin, create the decl object for the builtin 921 // now, injecting it into translation unit scope, and return it. 922 if (NameKind == Sema::LookupOrdinaryName || 923 NameKind == Sema::LookupRedeclarationWithLinkage) { 924 IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo(); 925 if (II) { 926 if (getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) { 927 if (II == getASTContext().getMakeIntegerSeqName()) { 928 R.addDecl(getASTContext().getMakeIntegerSeqDecl()); 929 return true; 930 } 931 if (II == getASTContext().getTypePackElementName()) { 932 R.addDecl(getASTContext().getTypePackElementDecl()); 933 return true; 934 } 935 if (II == getASTContext().getBuiltinCommonTypeName()) { 936 R.addDecl(getASTContext().getBuiltinCommonTypeDecl()); 937 return true; 938 } 939 } 940 941 // Check if this is an OpenCL Builtin, and if so, insert its overloads. 942 if (getLangOpts().OpenCL && getLangOpts().DeclareOpenCLBuiltins) { 943 auto Index = isOpenCLBuiltin(II->getName()); 944 if (Index.first) { 945 InsertOCLBuiltinDeclarationsFromTable(*this, R, II, Index.first - 1, 946 Index.second); 947 return true; 948 } 949 } 950 951 if (RISCV().DeclareRVVBuiltins || RISCV().DeclareSiFiveVectorBuiltins) { 952 if (!RISCV().IntrinsicManager) 953 RISCV().IntrinsicManager = CreateRISCVIntrinsicManager(*this); 954 955 RISCV().IntrinsicManager->InitIntrinsicList(); 956 957 if (RISCV().IntrinsicManager->CreateIntrinsicIfFound(R, II, PP)) 958 return true; 959 } 960 961 // If this is a builtin on this (or all) targets, create the decl. 962 if (unsigned BuiltinID = II->getBuiltinID()) { 963 // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined 964 // library functions like 'malloc'. Instead, we'll just error. 965 if ((getLangOpts().CPlusPlus || getLangOpts().OpenCL) && 966 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 967 return false; 968 969 if (NamedDecl *D = 970 LazilyCreateBuiltin(II, BuiltinID, TUScope, 971 R.isForRedeclaration(), R.getNameLoc())) { 972 R.addDecl(D); 973 return true; 974 } 975 } 976 } 977 } 978 979 return false; 980 } 981 982 /// Looks up the declaration of "struct objc_super" and 983 /// saves it for later use in building builtin declaration of 984 /// objc_msgSendSuper and objc_msgSendSuper_stret. 985 static void LookupPredefedObjCSuperType(Sema &Sema, Scope *S) { 986 ASTContext &Context = Sema.Context; 987 LookupResult Result(Sema, &Context.Idents.get("objc_super"), SourceLocation(), 988 Sema::LookupTagName); 989 Sema.LookupName(Result, S); 990 if (Result.getResultKind() == LookupResult::Found) 991 if (const TagDecl *TD = Result.getAsSingle<TagDecl>()) 992 Context.setObjCSuperType(Context.getTagDeclType(TD)); 993 } 994 995 void Sema::LookupNecessaryTypesForBuiltin(Scope *S, unsigned ID) { 996 if (ID == Builtin::BIobjc_msgSendSuper) 997 LookupPredefedObjCSuperType(*this, S); 998 } 999 1000 /// Determine whether we can declare a special member function within 1001 /// the class at this point. 1002 static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) { 1003 // We need to have a definition for the class. 1004 if (!Class->getDefinition() || Class->isDependentContext()) 1005 return false; 1006 1007 // We can't be in the middle of defining the class. 1008 return !Class->isBeingDefined(); 1009 } 1010 1011 void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) { 1012 if (!CanDeclareSpecialMemberFunction(Class)) 1013 return; 1014 1015 // If the default constructor has not yet been declared, do so now. 1016 if (Class->needsImplicitDefaultConstructor()) 1017 DeclareImplicitDefaultConstructor(Class); 1018 1019 // If the copy constructor has not yet been declared, do so now. 1020 if (Class->needsImplicitCopyConstructor()) 1021 DeclareImplicitCopyConstructor(Class); 1022 1023 // If the copy assignment operator has not yet been declared, do so now. 1024 if (Class->needsImplicitCopyAssignment()) 1025 DeclareImplicitCopyAssignment(Class); 1026 1027 if (getLangOpts().CPlusPlus11) { 1028 // If the move constructor has not yet been declared, do so now. 1029 if (Class->needsImplicitMoveConstructor()) 1030 DeclareImplicitMoveConstructor(Class); 1031 1032 // If the move assignment operator has not yet been declared, do so now. 1033 if (Class->needsImplicitMoveAssignment()) 1034 DeclareImplicitMoveAssignment(Class); 1035 } 1036 1037 // If the destructor has not yet been declared, do so now. 1038 if (Class->needsImplicitDestructor()) 1039 DeclareImplicitDestructor(Class); 1040 } 1041 1042 /// Determine whether this is the name of an implicitly-declared 1043 /// special member function. 1044 static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) { 1045 switch (Name.getNameKind()) { 1046 case DeclarationName::CXXConstructorName: 1047 case DeclarationName::CXXDestructorName: 1048 return true; 1049 1050 case DeclarationName::CXXOperatorName: 1051 return Name.getCXXOverloadedOperator() == OO_Equal; 1052 1053 default: 1054 break; 1055 } 1056 1057 return false; 1058 } 1059 1060 /// If there are any implicit member functions with the given name 1061 /// that need to be declared in the given declaration context, do so. 1062 static void DeclareImplicitMemberFunctionsWithName(Sema &S, 1063 DeclarationName Name, 1064 SourceLocation Loc, 1065 const DeclContext *DC) { 1066 if (!DC) 1067 return; 1068 1069 switch (Name.getNameKind()) { 1070 case DeclarationName::CXXConstructorName: 1071 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) 1072 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) { 1073 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record); 1074 if (Record->needsImplicitDefaultConstructor()) 1075 S.DeclareImplicitDefaultConstructor(Class); 1076 if (Record->needsImplicitCopyConstructor()) 1077 S.DeclareImplicitCopyConstructor(Class); 1078 if (S.getLangOpts().CPlusPlus11 && 1079 Record->needsImplicitMoveConstructor()) 1080 S.DeclareImplicitMoveConstructor(Class); 1081 } 1082 break; 1083 1084 case DeclarationName::CXXDestructorName: 1085 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) 1086 if (Record->getDefinition() && Record->needsImplicitDestructor() && 1087 CanDeclareSpecialMemberFunction(Record)) 1088 S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record)); 1089 break; 1090 1091 case DeclarationName::CXXOperatorName: 1092 if (Name.getCXXOverloadedOperator() != OO_Equal) 1093 break; 1094 1095 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) { 1096 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) { 1097 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record); 1098 if (Record->needsImplicitCopyAssignment()) 1099 S.DeclareImplicitCopyAssignment(Class); 1100 if (S.getLangOpts().CPlusPlus11 && 1101 Record->needsImplicitMoveAssignment()) 1102 S.DeclareImplicitMoveAssignment(Class); 1103 } 1104 } 1105 break; 1106 1107 case DeclarationName::CXXDeductionGuideName: 1108 S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc); 1109 break; 1110 1111 default: 1112 break; 1113 } 1114 } 1115 1116 // Adds all qualifying matches for a name within a decl context to the 1117 // given lookup result. Returns true if any matches were found. 1118 static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) { 1119 bool Found = false; 1120 1121 // Lazily declare C++ special member functions. 1122 if (S.getLangOpts().CPlusPlus) 1123 DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(), 1124 DC); 1125 1126 // Perform lookup into this declaration context. 1127 DeclContext::lookup_result DR = DC->lookup(R.getLookupName()); 1128 for (NamedDecl *D : DR) { 1129 if ((D = R.getAcceptableDecl(D))) { 1130 R.addDecl(D); 1131 Found = true; 1132 } 1133 } 1134 1135 if (!Found && DC->isTranslationUnit() && S.LookupBuiltin(R)) 1136 return true; 1137 1138 if (R.getLookupName().getNameKind() 1139 != DeclarationName::CXXConversionFunctionName || 1140 R.getLookupName().getCXXNameType()->isDependentType() || 1141 !isa<CXXRecordDecl>(DC)) 1142 return Found; 1143 1144 // C++ [temp.mem]p6: 1145 // A specialization of a conversion function template is not found by 1146 // name lookup. Instead, any conversion function templates visible in the 1147 // context of the use are considered. [...] 1148 const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); 1149 if (!Record->isCompleteDefinition()) 1150 return Found; 1151 1152 // For conversion operators, 'operator auto' should only match 1153 // 'operator auto'. Since 'auto' is not a type, it shouldn't be considered 1154 // as a candidate for template substitution. 1155 auto *ContainedDeducedType = 1156 R.getLookupName().getCXXNameType()->getContainedDeducedType(); 1157 if (R.getLookupName().getNameKind() == 1158 DeclarationName::CXXConversionFunctionName && 1159 ContainedDeducedType && ContainedDeducedType->isUndeducedType()) 1160 return Found; 1161 1162 for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(), 1163 UEnd = Record->conversion_end(); U != UEnd; ++U) { 1164 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U); 1165 if (!ConvTemplate) 1166 continue; 1167 1168 // When we're performing lookup for the purposes of redeclaration, just 1169 // add the conversion function template. When we deduce template 1170 // arguments for specializations, we'll end up unifying the return 1171 // type of the new declaration with the type of the function template. 1172 if (R.isForRedeclaration()) { 1173 R.addDecl(ConvTemplate); 1174 Found = true; 1175 continue; 1176 } 1177 1178 // C++ [temp.mem]p6: 1179 // [...] For each such operator, if argument deduction succeeds 1180 // (14.9.2.3), the resulting specialization is used as if found by 1181 // name lookup. 1182 // 1183 // When referencing a conversion function for any purpose other than 1184 // a redeclaration (such that we'll be building an expression with the 1185 // result), perform template argument deduction and place the 1186 // specialization into the result set. We do this to avoid forcing all 1187 // callers to perform special deduction for conversion functions. 1188 TemplateDeductionInfo Info(R.getNameLoc()); 1189 FunctionDecl *Specialization = nullptr; 1190 1191 const FunctionProtoType *ConvProto 1192 = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>(); 1193 assert(ConvProto && "Nonsensical conversion function template type"); 1194 1195 // Compute the type of the function that we would expect the conversion 1196 // function to have, if it were to match the name given. 1197 // FIXME: Calling convention! 1198 FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo(); 1199 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C); 1200 EPI.ExceptionSpec = EST_None; 1201 QualType ExpectedType = R.getSema().Context.getFunctionType( 1202 R.getLookupName().getCXXNameType(), {}, EPI); 1203 1204 // Perform template argument deduction against the type that we would 1205 // expect the function to have. 1206 if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType, 1207 Specialization, Info) == 1208 TemplateDeductionResult::Success) { 1209 R.addDecl(Specialization); 1210 Found = true; 1211 } 1212 } 1213 1214 return Found; 1215 } 1216 1217 // Performs C++ unqualified lookup into the given file context. 1218 static bool CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context, 1219 const DeclContext *NS, 1220 UnqualUsingDirectiveSet &UDirs) { 1221 1222 assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!"); 1223 1224 // Perform direct name lookup into the LookupCtx. 1225 bool Found = LookupDirect(S, R, NS); 1226 1227 // Perform direct name lookup into the namespaces nominated by the 1228 // using directives whose common ancestor is this namespace. 1229 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS)) 1230 if (LookupDirect(S, R, UUE.getNominatedNamespace())) 1231 Found = true; 1232 1233 R.resolveKind(); 1234 1235 return Found; 1236 } 1237 1238 static bool isNamespaceOrTranslationUnitScope(Scope *S) { 1239 if (DeclContext *Ctx = S->getEntity()) 1240 return Ctx->isFileContext(); 1241 return false; 1242 } 1243 1244 /// Find the outer declaration context from this scope. This indicates the 1245 /// context that we should search up to (exclusive) before considering the 1246 /// parent of the specified scope. 1247 static DeclContext *findOuterContext(Scope *S) { 1248 for (Scope *OuterS = S->getParent(); OuterS; OuterS = OuterS->getParent()) 1249 if (DeclContext *DC = OuterS->getLookupEntity()) 1250 return DC; 1251 return nullptr; 1252 } 1253 1254 namespace { 1255 /// An RAII object to specify that we want to find block scope extern 1256 /// declarations. 1257 struct FindLocalExternScope { 1258 FindLocalExternScope(LookupResult &R) 1259 : R(R), OldFindLocalExtern(R.getIdentifierNamespace() & 1260 Decl::IDNS_LocalExtern) { 1261 R.setFindLocalExtern(R.getIdentifierNamespace() & 1262 (Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator)); 1263 } 1264 void restore() { 1265 R.setFindLocalExtern(OldFindLocalExtern); 1266 } 1267 ~FindLocalExternScope() { 1268 restore(); 1269 } 1270 LookupResult &R; 1271 bool OldFindLocalExtern; 1272 }; 1273 } // end anonymous namespace 1274 1275 bool Sema::CppLookupName(LookupResult &R, Scope *S) { 1276 assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup"); 1277 1278 DeclarationName Name = R.getLookupName(); 1279 Sema::LookupNameKind NameKind = R.getLookupKind(); 1280 1281 // If this is the name of an implicitly-declared special member function, 1282 // go through the scope stack to implicitly declare 1283 if (isImplicitlyDeclaredMemberFunctionName(Name)) { 1284 for (Scope *PreS = S; PreS; PreS = PreS->getParent()) 1285 if (DeclContext *DC = PreS->getEntity()) 1286 DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC); 1287 } 1288 1289 // C++23 [temp.dep.general]p2: 1290 // The component name of an unqualified-id is dependent if 1291 // - it is a conversion-function-id whose conversion-type-id 1292 // is dependent, or 1293 // - it is operator= and the current class is a templated entity, or 1294 // - the unqualified-id is the postfix-expression in a dependent call. 1295 if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName && 1296 Name.getCXXNameType()->isDependentType()) { 1297 R.setNotFoundInCurrentInstantiation(); 1298 return false; 1299 } 1300 1301 // Implicitly declare member functions with the name we're looking for, if in 1302 // fact we are in a scope where it matters. 1303 1304 Scope *Initial = S; 1305 IdentifierResolver::iterator 1306 I = IdResolver.begin(Name), 1307 IEnd = IdResolver.end(); 1308 1309 // First we lookup local scope. 1310 // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir] 1311 // ...During unqualified name lookup (3.4.1), the names appear as if 1312 // they were declared in the nearest enclosing namespace which contains 1313 // both the using-directive and the nominated namespace. 1314 // [Note: in this context, "contains" means "contains directly or 1315 // indirectly". 1316 // 1317 // For example: 1318 // namespace A { int i; } 1319 // void foo() { 1320 // int i; 1321 // { 1322 // using namespace A; 1323 // ++i; // finds local 'i', A::i appears at global scope 1324 // } 1325 // } 1326 // 1327 UnqualUsingDirectiveSet UDirs(*this); 1328 bool VisitedUsingDirectives = false; 1329 bool LeftStartingScope = false; 1330 1331 // When performing a scope lookup, we want to find local extern decls. 1332 FindLocalExternScope FindLocals(R); 1333 1334 for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) { 1335 bool SearchNamespaceScope = true; 1336 // Check whether the IdResolver has anything in this scope. 1337 for (; I != IEnd && S->isDeclScope(*I); ++I) { 1338 if (NamedDecl *ND = R.getAcceptableDecl(*I)) { 1339 if (NameKind == LookupRedeclarationWithLinkage && 1340 !(*I)->isTemplateParameter()) { 1341 // If it's a template parameter, we still find it, so we can diagnose 1342 // the invalid redeclaration. 1343 1344 // Determine whether this (or a previous) declaration is 1345 // out-of-scope. 1346 if (!LeftStartingScope && !Initial->isDeclScope(*I)) 1347 LeftStartingScope = true; 1348 1349 // If we found something outside of our starting scope that 1350 // does not have linkage, skip it. 1351 if (LeftStartingScope && !((*I)->hasLinkage())) { 1352 R.setShadowed(); 1353 continue; 1354 } 1355 } else { 1356 // We found something in this scope, we should not look at the 1357 // namespace scope 1358 SearchNamespaceScope = false; 1359 } 1360 R.addDecl(ND); 1361 } 1362 } 1363 if (!SearchNamespaceScope) { 1364 R.resolveKind(); 1365 if (S->isClassScope()) 1366 if (auto *Record = dyn_cast_if_present<CXXRecordDecl>(S->getEntity())) 1367 R.setNamingClass(Record); 1368 return true; 1369 } 1370 1371 if (NameKind == LookupLocalFriendName && !S->isClassScope()) { 1372 // C++11 [class.friend]p11: 1373 // If a friend declaration appears in a local class and the name 1374 // specified is an unqualified name, a prior declaration is 1375 // looked up without considering scopes that are outside the 1376 // innermost enclosing non-class scope. 1377 return false; 1378 } 1379 1380 if (DeclContext *Ctx = S->getLookupEntity()) { 1381 DeclContext *OuterCtx = findOuterContext(S); 1382 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) { 1383 // We do not directly look into transparent contexts, since 1384 // those entities will be found in the nearest enclosing 1385 // non-transparent context. 1386 if (Ctx->isTransparentContext()) 1387 continue; 1388 1389 // We do not look directly into function or method contexts, 1390 // since all of the local variables and parameters of the 1391 // function/method are present within the Scope. 1392 if (Ctx->isFunctionOrMethod()) { 1393 // If we have an Objective-C instance method, look for ivars 1394 // in the corresponding interface. 1395 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) { 1396 if (Method->isInstanceMethod() && Name.getAsIdentifierInfo()) 1397 if (ObjCInterfaceDecl *Class = Method->getClassInterface()) { 1398 ObjCInterfaceDecl *ClassDeclared; 1399 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable( 1400 Name.getAsIdentifierInfo(), 1401 ClassDeclared)) { 1402 if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) { 1403 R.addDecl(ND); 1404 R.resolveKind(); 1405 return true; 1406 } 1407 } 1408 } 1409 } 1410 1411 continue; 1412 } 1413 1414 // If this is a file context, we need to perform unqualified name 1415 // lookup considering using directives. 1416 if (Ctx->isFileContext()) { 1417 // If we haven't handled using directives yet, do so now. 1418 if (!VisitedUsingDirectives) { 1419 // Add using directives from this context up to the top level. 1420 for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) { 1421 if (UCtx->isTransparentContext()) 1422 continue; 1423 1424 UDirs.visit(UCtx, UCtx); 1425 } 1426 1427 // Find the innermost file scope, so we can add using directives 1428 // from local scopes. 1429 Scope *InnermostFileScope = S; 1430 while (InnermostFileScope && 1431 !isNamespaceOrTranslationUnitScope(InnermostFileScope)) 1432 InnermostFileScope = InnermostFileScope->getParent(); 1433 UDirs.visitScopeChain(Initial, InnermostFileScope); 1434 1435 UDirs.done(); 1436 1437 VisitedUsingDirectives = true; 1438 } 1439 1440 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) { 1441 R.resolveKind(); 1442 return true; 1443 } 1444 1445 continue; 1446 } 1447 1448 // Perform qualified name lookup into this context. 1449 // FIXME: In some cases, we know that every name that could be found by 1450 // this qualified name lookup will also be on the identifier chain. For 1451 // example, inside a class without any base classes, we never need to 1452 // perform qualified lookup because all of the members are on top of the 1453 // identifier chain. 1454 if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true)) 1455 return true; 1456 } 1457 } 1458 } 1459 1460 // Stop if we ran out of scopes. 1461 // FIXME: This really, really shouldn't be happening. 1462 if (!S) return false; 1463 1464 // If we are looking for members, no need to look into global/namespace scope. 1465 if (NameKind == LookupMemberName) 1466 return false; 1467 1468 // Collect UsingDirectiveDecls in all scopes, and recursively all 1469 // nominated namespaces by those using-directives. 1470 // 1471 // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we 1472 // don't build it for each lookup! 1473 if (!VisitedUsingDirectives) { 1474 UDirs.visitScopeChain(Initial, S); 1475 UDirs.done(); 1476 } 1477 1478 // If we're not performing redeclaration lookup, do not look for local 1479 // extern declarations outside of a function scope. 1480 if (!R.isForRedeclaration()) 1481 FindLocals.restore(); 1482 1483 // Lookup namespace scope, and global scope. 1484 // Unqualified name lookup in C++ requires looking into scopes 1485 // that aren't strictly lexical, and therefore we walk through the 1486 // context as well as walking through the scopes. 1487 for (; S; S = S->getParent()) { 1488 // Check whether the IdResolver has anything in this scope. 1489 bool Found = false; 1490 for (; I != IEnd && S->isDeclScope(*I); ++I) { 1491 if (NamedDecl *ND = R.getAcceptableDecl(*I)) { 1492 // We found something. Look for anything else in our scope 1493 // with this same name and in an acceptable identifier 1494 // namespace, so that we can construct an overload set if we 1495 // need to. 1496 Found = true; 1497 R.addDecl(ND); 1498 } 1499 } 1500 1501 if (Found && S->isTemplateParamScope()) { 1502 R.resolveKind(); 1503 return true; 1504 } 1505 1506 DeclContext *Ctx = S->getLookupEntity(); 1507 if (Ctx) { 1508 DeclContext *OuterCtx = findOuterContext(S); 1509 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) { 1510 // We do not directly look into transparent contexts, since 1511 // those entities will be found in the nearest enclosing 1512 // non-transparent context. 1513 if (Ctx->isTransparentContext()) 1514 continue; 1515 1516 // If we have a context, and it's not a context stashed in the 1517 // template parameter scope for an out-of-line definition, also 1518 // look into that context. 1519 if (!(Found && S->isTemplateParamScope())) { 1520 assert(Ctx->isFileContext() && 1521 "We should have been looking only at file context here already."); 1522 1523 // Look into context considering using-directives. 1524 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) 1525 Found = true; 1526 } 1527 1528 if (Found) { 1529 R.resolveKind(); 1530 return true; 1531 } 1532 1533 if (R.isForRedeclaration() && !Ctx->isTransparentContext()) 1534 return false; 1535 } 1536 } 1537 1538 if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext()) 1539 return false; 1540 } 1541 1542 return !R.empty(); 1543 } 1544 1545 void Sema::makeMergedDefinitionVisible(NamedDecl *ND) { 1546 if (auto *M = getCurrentModule()) 1547 Context.mergeDefinitionIntoModule(ND, M); 1548 else 1549 // We're not building a module; just make the definition visible. 1550 ND->setVisibleDespiteOwningModule(); 1551 1552 // If ND is a template declaration, make the template parameters 1553 // visible too. They're not (necessarily) within a mergeable DeclContext. 1554 if (auto *TD = dyn_cast<TemplateDecl>(ND)) 1555 for (auto *Param : *TD->getTemplateParameters()) 1556 makeMergedDefinitionVisible(Param); 1557 } 1558 1559 /// Find the module in which the given declaration was defined. 1560 static Module *getDefiningModule(Sema &S, Decl *Entity) { 1561 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) { 1562 // If this function was instantiated from a template, the defining module is 1563 // the module containing the pattern. 1564 if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern()) 1565 Entity = Pattern; 1566 } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) { 1567 if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern()) 1568 Entity = Pattern; 1569 } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) { 1570 if (auto *Pattern = ED->getTemplateInstantiationPattern()) 1571 Entity = Pattern; 1572 } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) { 1573 if (VarDecl *Pattern = VD->getTemplateInstantiationPattern()) 1574 Entity = Pattern; 1575 } 1576 1577 // Walk up to the containing context. That might also have been instantiated 1578 // from a template. 1579 DeclContext *Context = Entity->getLexicalDeclContext(); 1580 if (Context->isFileContext()) 1581 return S.getOwningModule(Entity); 1582 return getDefiningModule(S, cast<Decl>(Context)); 1583 } 1584 1585 llvm::DenseSet<Module*> &Sema::getLookupModules() { 1586 unsigned N = CodeSynthesisContexts.size(); 1587 for (unsigned I = CodeSynthesisContextLookupModules.size(); 1588 I != N; ++I) { 1589 Module *M = CodeSynthesisContexts[I].Entity ? 1590 getDefiningModule(*this, CodeSynthesisContexts[I].Entity) : 1591 nullptr; 1592 if (M && !LookupModulesCache.insert(M).second) 1593 M = nullptr; 1594 CodeSynthesisContextLookupModules.push_back(M); 1595 } 1596 return LookupModulesCache; 1597 } 1598 1599 bool Sema::isUsableModule(const Module *M) { 1600 assert(M && "We shouldn't check nullness for module here"); 1601 // Return quickly if we cached the result. 1602 if (UsableModuleUnitsCache.count(M)) 1603 return true; 1604 1605 // If M is the global module fragment of the current translation unit. So it 1606 // should be usable. 1607 // [module.global.frag]p1: 1608 // The global module fragment can be used to provide declarations that are 1609 // attached to the global module and usable within the module unit. 1610 if (M == TheGlobalModuleFragment || M == TheImplicitGlobalModuleFragment) { 1611 UsableModuleUnitsCache.insert(M); 1612 return true; 1613 } 1614 1615 // Otherwise, the global module fragment from other translation unit is not 1616 // directly usable. 1617 if (M->isExplicitGlobalModule()) 1618 return false; 1619 1620 Module *Current = getCurrentModule(); 1621 1622 // If we're not parsing a module, we can't use all the declarations from 1623 // another module easily. 1624 if (!Current) 1625 return false; 1626 1627 // For implicit global module, the decls in the same modules with the parent 1628 // module should be visible to the decls in the implicit global module. 1629 if (Current->isImplicitGlobalModule()) 1630 Current = Current->getTopLevelModule(); 1631 if (M->isImplicitGlobalModule()) 1632 M = M->getTopLevelModule(); 1633 1634 // If M is the module we're parsing or M and the current module unit lives in 1635 // the same module, M should be usable. 1636 // 1637 // Note: It should be fine to search the vector `ModuleScopes` linearly since 1638 // it should be generally small enough. There should be rare module fragments 1639 // in a named module unit. 1640 if (llvm::count_if(ModuleScopes, 1641 [&M](const ModuleScope &MS) { return MS.Module == M; }) || 1642 getASTContext().isInSameModule(M, Current)) { 1643 UsableModuleUnitsCache.insert(M); 1644 return true; 1645 } 1646 1647 return false; 1648 } 1649 1650 bool Sema::hasVisibleMergedDefinition(const NamedDecl *Def) { 1651 for (const Module *Merged : Context.getModulesWithMergedDefinition(Def)) 1652 if (isModuleVisible(Merged)) 1653 return true; 1654 return false; 1655 } 1656 1657 bool Sema::hasMergedDefinitionInCurrentModule(const NamedDecl *Def) { 1658 for (const Module *Merged : Context.getModulesWithMergedDefinition(Def)) 1659 if (isUsableModule(Merged)) 1660 return true; 1661 return false; 1662 } 1663 1664 template <typename ParmDecl> 1665 static bool 1666 hasAcceptableDefaultArgument(Sema &S, const ParmDecl *D, 1667 llvm::SmallVectorImpl<Module *> *Modules, 1668 Sema::AcceptableKind Kind) { 1669 if (!D->hasDefaultArgument()) 1670 return false; 1671 1672 llvm::SmallPtrSet<const ParmDecl *, 4> Visited; 1673 while (D && Visited.insert(D).second) { 1674 auto &DefaultArg = D->getDefaultArgStorage(); 1675 if (!DefaultArg.isInherited() && S.isAcceptable(D, Kind)) 1676 return true; 1677 1678 if (!DefaultArg.isInherited() && Modules) { 1679 auto *NonConstD = const_cast<ParmDecl*>(D); 1680 Modules->push_back(S.getOwningModule(NonConstD)); 1681 } 1682 1683 // If there was a previous default argument, maybe its parameter is 1684 // acceptable. 1685 D = DefaultArg.getInheritedFrom(); 1686 } 1687 return false; 1688 } 1689 1690 bool Sema::hasAcceptableDefaultArgument( 1691 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules, 1692 Sema::AcceptableKind Kind) { 1693 if (auto *P = dyn_cast<TemplateTypeParmDecl>(D)) 1694 return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind); 1695 1696 if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D)) 1697 return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind); 1698 1699 return ::hasAcceptableDefaultArgument( 1700 *this, cast<TemplateTemplateParmDecl>(D), Modules, Kind); 1701 } 1702 1703 bool Sema::hasVisibleDefaultArgument(const NamedDecl *D, 1704 llvm::SmallVectorImpl<Module *> *Modules) { 1705 return hasAcceptableDefaultArgument(D, Modules, 1706 Sema::AcceptableKind::Visible); 1707 } 1708 1709 bool Sema::hasReachableDefaultArgument( 1710 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { 1711 return hasAcceptableDefaultArgument(D, Modules, 1712 Sema::AcceptableKind::Reachable); 1713 } 1714 1715 template <typename Filter> 1716 static bool 1717 hasAcceptableDeclarationImpl(Sema &S, const NamedDecl *D, 1718 llvm::SmallVectorImpl<Module *> *Modules, Filter F, 1719 Sema::AcceptableKind Kind) { 1720 bool HasFilteredRedecls = false; 1721 1722 for (auto *Redecl : D->redecls()) { 1723 auto *R = cast<NamedDecl>(Redecl); 1724 if (!F(R)) 1725 continue; 1726 1727 if (S.isAcceptable(R, Kind)) 1728 return true; 1729 1730 HasFilteredRedecls = true; 1731 1732 if (Modules) 1733 Modules->push_back(R->getOwningModule()); 1734 } 1735 1736 // Only return false if there is at least one redecl that is not filtered out. 1737 if (HasFilteredRedecls) 1738 return false; 1739 1740 return true; 1741 } 1742 1743 static bool 1744 hasAcceptableExplicitSpecialization(Sema &S, const NamedDecl *D, 1745 llvm::SmallVectorImpl<Module *> *Modules, 1746 Sema::AcceptableKind Kind) { 1747 return hasAcceptableDeclarationImpl( 1748 S, D, Modules, 1749 [](const NamedDecl *D) { 1750 if (auto *RD = dyn_cast<CXXRecordDecl>(D)) 1751 return RD->getTemplateSpecializationKind() == 1752 TSK_ExplicitSpecialization; 1753 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1754 return FD->getTemplateSpecializationKind() == 1755 TSK_ExplicitSpecialization; 1756 if (auto *VD = dyn_cast<VarDecl>(D)) 1757 return VD->getTemplateSpecializationKind() == 1758 TSK_ExplicitSpecialization; 1759 llvm_unreachable("unknown explicit specialization kind"); 1760 }, 1761 Kind); 1762 } 1763 1764 bool Sema::hasVisibleExplicitSpecialization( 1765 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { 1766 return ::hasAcceptableExplicitSpecialization(*this, D, Modules, 1767 Sema::AcceptableKind::Visible); 1768 } 1769 1770 bool Sema::hasReachableExplicitSpecialization( 1771 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { 1772 return ::hasAcceptableExplicitSpecialization(*this, D, Modules, 1773 Sema::AcceptableKind::Reachable); 1774 } 1775 1776 static bool 1777 hasAcceptableMemberSpecialization(Sema &S, const NamedDecl *D, 1778 llvm::SmallVectorImpl<Module *> *Modules, 1779 Sema::AcceptableKind Kind) { 1780 assert(isa<CXXRecordDecl>(D->getDeclContext()) && 1781 "not a member specialization"); 1782 return hasAcceptableDeclarationImpl( 1783 S, D, Modules, 1784 [](const NamedDecl *D) { 1785 // If the specialization is declared at namespace scope, then it's a 1786 // member specialization declaration. If it's lexically inside the class 1787 // definition then it was instantiated. 1788 // 1789 // FIXME: This is a hack. There should be a better way to determine 1790 // this. 1791 // FIXME: What about MS-style explicit specializations declared within a 1792 // class definition? 1793 return D->getLexicalDeclContext()->isFileContext(); 1794 }, 1795 Kind); 1796 } 1797 1798 bool Sema::hasVisibleMemberSpecialization( 1799 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { 1800 return hasAcceptableMemberSpecialization(*this, D, Modules, 1801 Sema::AcceptableKind::Visible); 1802 } 1803 1804 bool Sema::hasReachableMemberSpecialization( 1805 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { 1806 return hasAcceptableMemberSpecialization(*this, D, Modules, 1807 Sema::AcceptableKind::Reachable); 1808 } 1809 1810 /// Determine whether a declaration is acceptable to name lookup. 1811 /// 1812 /// This routine determines whether the declaration D is acceptable in the 1813 /// current lookup context, taking into account the current template 1814 /// instantiation stack. During template instantiation, a declaration is 1815 /// acceptable if it is acceptable from a module containing any entity on the 1816 /// template instantiation path (by instantiating a template, you allow it to 1817 /// see the declarations that your module can see, including those later on in 1818 /// your module). 1819 bool LookupResult::isAcceptableSlow(Sema &SemaRef, NamedDecl *D, 1820 Sema::AcceptableKind Kind) { 1821 assert(!D->isUnconditionallyVisible() && 1822 "should not call this: not in slow case"); 1823 1824 Module *DeclModule = SemaRef.getOwningModule(D); 1825 assert(DeclModule && "hidden decl has no owning module"); 1826 1827 // If the owning module is visible, the decl is acceptable. 1828 if (SemaRef.isModuleVisible(DeclModule, 1829 D->isInvisibleOutsideTheOwningModule())) 1830 return true; 1831 1832 // Determine whether a decl context is a file context for the purpose of 1833 // visibility/reachability. This looks through some (export and linkage spec) 1834 // transparent contexts, but not others (enums). 1835 auto IsEffectivelyFileContext = [](const DeclContext *DC) { 1836 return DC->isFileContext() || isa<LinkageSpecDecl>(DC) || 1837 isa<ExportDecl>(DC); 1838 }; 1839 1840 // If this declaration is not at namespace scope 1841 // then it is acceptable if its lexical parent has a acceptable definition. 1842 DeclContext *DC = D->getLexicalDeclContext(); 1843 if (DC && !IsEffectivelyFileContext(DC)) { 1844 // For a parameter, check whether our current template declaration's 1845 // lexical context is acceptable, not whether there's some other acceptable 1846 // definition of it, because parameters aren't "within" the definition. 1847 // 1848 // In C++ we need to check for a acceptable definition due to ODR merging, 1849 // and in C we must not because each declaration of a function gets its own 1850 // set of declarations for tags in prototype scope. 1851 bool AcceptableWithinParent; 1852 if (D->isTemplateParameter()) { 1853 bool SearchDefinitions = true; 1854 if (const auto *DCD = dyn_cast<Decl>(DC)) { 1855 if (const auto *TD = DCD->getDescribedTemplate()) { 1856 TemplateParameterList *TPL = TD->getTemplateParameters(); 1857 auto Index = getDepthAndIndex(D).second; 1858 SearchDefinitions = Index >= TPL->size() || TPL->getParam(Index) != D; 1859 } 1860 } 1861 if (SearchDefinitions) 1862 AcceptableWithinParent = 1863 SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind); 1864 else 1865 AcceptableWithinParent = 1866 isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind); 1867 } else if (isa<ParmVarDecl>(D) || 1868 (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus)) 1869 AcceptableWithinParent = isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind); 1870 else if (D->isModulePrivate()) { 1871 // A module-private declaration is only acceptable if an enclosing lexical 1872 // parent was merged with another definition in the current module. 1873 AcceptableWithinParent = false; 1874 do { 1875 if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) { 1876 AcceptableWithinParent = true; 1877 break; 1878 } 1879 DC = DC->getLexicalParent(); 1880 } while (!IsEffectivelyFileContext(DC)); 1881 } else { 1882 AcceptableWithinParent = 1883 SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind); 1884 } 1885 1886 if (AcceptableWithinParent && SemaRef.CodeSynthesisContexts.empty() && 1887 Kind == Sema::AcceptableKind::Visible && 1888 // FIXME: Do something better in this case. 1889 !SemaRef.getLangOpts().ModulesLocalVisibility) { 1890 // Cache the fact that this declaration is implicitly visible because 1891 // its parent has a visible definition. 1892 D->setVisibleDespiteOwningModule(); 1893 } 1894 return AcceptableWithinParent; 1895 } 1896 1897 if (Kind == Sema::AcceptableKind::Visible) 1898 return false; 1899 1900 assert(Kind == Sema::AcceptableKind::Reachable && 1901 "Additional Sema::AcceptableKind?"); 1902 return isReachableSlow(SemaRef, D); 1903 } 1904 1905 bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) { 1906 // The module might be ordinarily visible. For a module-private query, that 1907 // means it is part of the current module. 1908 if (ModulePrivate && isUsableModule(M)) 1909 return true; 1910 1911 // For a query which is not module-private, that means it is in our visible 1912 // module set. 1913 if (!ModulePrivate && VisibleModules.isVisible(M)) 1914 return true; 1915 1916 // Otherwise, it might be visible by virtue of the query being within a 1917 // template instantiation or similar that is permitted to look inside M. 1918 1919 // Find the extra places where we need to look. 1920 const auto &LookupModules = getLookupModules(); 1921 if (LookupModules.empty()) 1922 return false; 1923 1924 // If our lookup set contains the module, it's visible. 1925 if (LookupModules.count(M)) 1926 return true; 1927 1928 // The global module fragments are visible to its corresponding module unit. 1929 // So the global module fragment should be visible if the its corresponding 1930 // module unit is visible. 1931 if (M->isGlobalModule() && LookupModules.count(M->getTopLevelModule())) 1932 return true; 1933 1934 // For a module-private query, that's everywhere we get to look. 1935 if (ModulePrivate) 1936 return false; 1937 1938 // Check whether M is transitively exported to an import of the lookup set. 1939 return llvm::any_of(LookupModules, [&](const Module *LookupM) { 1940 return LookupM->isModuleVisible(M); 1941 }); 1942 } 1943 1944 // FIXME: Return false directly if we don't have an interface dependency on the 1945 // translation unit containing D. 1946 bool LookupResult::isReachableSlow(Sema &SemaRef, NamedDecl *D) { 1947 assert(!isVisible(SemaRef, D) && "Shouldn't call the slow case.\n"); 1948 1949 Module *DeclModule = SemaRef.getOwningModule(D); 1950 assert(DeclModule && "hidden decl has no owning module"); 1951 1952 // Entities in header like modules are reachable only if they're visible. 1953 if (DeclModule->isHeaderLikeModule()) 1954 return false; 1955 1956 if (!D->isInAnotherModuleUnit()) 1957 return true; 1958 1959 // [module.reach]/p3: 1960 // A declaration D is reachable from a point P if: 1961 // ... 1962 // - D is not discarded ([module.global.frag]), appears in a translation unit 1963 // that is reachable from P, and does not appear within a private module 1964 // fragment. 1965 // 1966 // A declaration that's discarded in the GMF should be module-private. 1967 if (D->isModulePrivate()) 1968 return false; 1969 1970 // [module.reach]/p1 1971 // A translation unit U is necessarily reachable from a point P if U is a 1972 // module interface unit on which the translation unit containing P has an 1973 // interface dependency, or the translation unit containing P imports U, in 1974 // either case prior to P ([module.import]). 1975 // 1976 // [module.import]/p10 1977 // A translation unit has an interface dependency on a translation unit U if 1978 // it contains a declaration (possibly a module-declaration) that imports U 1979 // or if it has an interface dependency on a translation unit that has an 1980 // interface dependency on U. 1981 // 1982 // So we could conclude the module unit U is necessarily reachable if: 1983 // (1) The module unit U is module interface unit. 1984 // (2) The current unit has an interface dependency on the module unit U. 1985 // 1986 // Here we only check for the first condition. Since we couldn't see 1987 // DeclModule if it isn't (transitively) imported. 1988 if (DeclModule->getTopLevelModule()->isModuleInterfaceUnit()) 1989 return true; 1990 1991 // [module.reach]/p2 1992 // Additional translation units on 1993 // which the point within the program has an interface dependency may be 1994 // considered reachable, but it is unspecified which are and under what 1995 // circumstances. 1996 // 1997 // The decision here is to treat all additional tranditional units as 1998 // unreachable. 1999 return false; 2000 } 2001 2002 bool Sema::isAcceptableSlow(const NamedDecl *D, Sema::AcceptableKind Kind) { 2003 return LookupResult::isAcceptable(*this, const_cast<NamedDecl *>(D), Kind); 2004 } 2005 2006 bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) { 2007 // FIXME: If there are both visible and hidden declarations, we need to take 2008 // into account whether redeclaration is possible. Example: 2009 // 2010 // Non-imported module: 2011 // int f(T); // #1 2012 // Some TU: 2013 // static int f(U); // #2, not a redeclaration of #1 2014 // int f(T); // #3, finds both, should link with #1 if T != U, but 2015 // // with #2 if T == U; neither should be ambiguous. 2016 for (auto *D : R) { 2017 if (isVisible(D)) 2018 return true; 2019 assert(D->isExternallyDeclarable() && 2020 "should not have hidden, non-externally-declarable result here"); 2021 } 2022 2023 // This function is called once "New" is essentially complete, but before a 2024 // previous declaration is attached. We can't query the linkage of "New" in 2025 // general, because attaching the previous declaration can change the 2026 // linkage of New to match the previous declaration. 2027 // 2028 // However, because we've just determined that there is no *visible* prior 2029 // declaration, we can compute the linkage here. There are two possibilities: 2030 // 2031 // * This is not a redeclaration; it's safe to compute the linkage now. 2032 // 2033 // * This is a redeclaration of a prior declaration that is externally 2034 // redeclarable. In that case, the linkage of the declaration is not 2035 // changed by attaching the prior declaration, because both are externally 2036 // declarable (and thus ExternalLinkage or VisibleNoLinkage). 2037 // 2038 // FIXME: This is subtle and fragile. 2039 return New->isExternallyDeclarable(); 2040 } 2041 2042 /// Retrieve the visible declaration corresponding to D, if any. 2043 /// 2044 /// This routine determines whether the declaration D is visible in the current 2045 /// module, with the current imports. If not, it checks whether any 2046 /// redeclaration of D is visible, and if so, returns that declaration. 2047 /// 2048 /// \returns D, or a visible previous declaration of D, whichever is more recent 2049 /// and visible. If no declaration of D is visible, returns null. 2050 static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D, 2051 unsigned IDNS) { 2052 assert(!LookupResult::isAvailableForLookup(SemaRef, D) && "not in slow case"); 2053 2054 for (auto *RD : D->redecls()) { 2055 // Don't bother with extra checks if we already know this one isn't visible. 2056 if (RD == D) 2057 continue; 2058 2059 auto ND = cast<NamedDecl>(RD); 2060 // FIXME: This is wrong in the case where the previous declaration is not 2061 // visible in the same scope as D. This needs to be done much more 2062 // carefully. 2063 if (ND->isInIdentifierNamespace(IDNS) && 2064 LookupResult::isAvailableForLookup(SemaRef, ND)) 2065 return ND; 2066 } 2067 2068 return nullptr; 2069 } 2070 2071 bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D, 2072 llvm::SmallVectorImpl<Module *> *Modules) { 2073 assert(!isVisible(D) && "not in slow case"); 2074 return hasAcceptableDeclarationImpl( 2075 *this, D, Modules, [](const NamedDecl *) { return true; }, 2076 Sema::AcceptableKind::Visible); 2077 } 2078 2079 bool Sema::hasReachableDeclarationSlow( 2080 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { 2081 assert(!isReachable(D) && "not in slow case"); 2082 return hasAcceptableDeclarationImpl( 2083 *this, D, Modules, [](const NamedDecl *) { return true; }, 2084 Sema::AcceptableKind::Reachable); 2085 } 2086 2087 NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const { 2088 if (auto *ND = dyn_cast<NamespaceDecl>(D)) { 2089 // Namespaces are a bit of a special case: we expect there to be a lot of 2090 // redeclarations of some namespaces, all declarations of a namespace are 2091 // essentially interchangeable, all declarations are found by name lookup 2092 // if any is, and namespaces are never looked up during template 2093 // instantiation. So we benefit from caching the check in this case, and 2094 // it is correct to do so. 2095 auto *Key = ND->getCanonicalDecl(); 2096 if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key)) 2097 return Acceptable; 2098 auto *Acceptable = isVisible(getSema(), Key) 2099 ? Key 2100 : findAcceptableDecl(getSema(), Key, IDNS); 2101 if (Acceptable) 2102 getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable)); 2103 return Acceptable; 2104 } 2105 2106 return findAcceptableDecl(getSema(), D, IDNS); 2107 } 2108 2109 bool LookupResult::isVisible(Sema &SemaRef, NamedDecl *D) { 2110 // If this declaration is already visible, return it directly. 2111 if (D->isUnconditionallyVisible()) 2112 return true; 2113 2114 // During template instantiation, we can refer to hidden declarations, if 2115 // they were visible in any module along the path of instantiation. 2116 return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Visible); 2117 } 2118 2119 bool LookupResult::isReachable(Sema &SemaRef, NamedDecl *D) { 2120 if (D->isUnconditionallyVisible()) 2121 return true; 2122 2123 return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Reachable); 2124 } 2125 2126 bool LookupResult::isAvailableForLookup(Sema &SemaRef, NamedDecl *ND) { 2127 // We should check the visibility at the callsite already. 2128 if (isVisible(SemaRef, ND)) 2129 return true; 2130 2131 // Deduction guide lives in namespace scope generally, but it is just a 2132 // hint to the compilers. What we actually lookup for is the generated member 2133 // of the corresponding template. So it is sufficient to check the 2134 // reachability of the template decl. 2135 if (auto *DeductionGuide = ND->getDeclName().getCXXDeductionGuideTemplate()) 2136 return SemaRef.hasReachableDefinition(DeductionGuide); 2137 2138 // FIXME: The lookup for allocation function is a standalone process. 2139 // (We can find the logics in Sema::FindAllocationFunctions) 2140 // 2141 // Such structure makes it a problem when we instantiate a template 2142 // declaration using placement allocation function if the placement 2143 // allocation function is invisible. 2144 // (See https://github.com/llvm/llvm-project/issues/59601) 2145 // 2146 // Here we workaround it by making the placement allocation functions 2147 // always acceptable. The downside is that we can't diagnose the direct 2148 // use of the invisible placement allocation functions. (Although such uses 2149 // should be rare). 2150 if (auto *FD = dyn_cast<FunctionDecl>(ND); 2151 FD && FD->isReservedGlobalPlacementOperator()) 2152 return true; 2153 2154 auto *DC = ND->getDeclContext(); 2155 // If ND is not visible and it is at namespace scope, it shouldn't be found 2156 // by name lookup. 2157 if (DC->isFileContext()) 2158 return false; 2159 2160 // [module.interface]p7 2161 // Class and enumeration member names can be found by name lookup in any 2162 // context in which a definition of the type is reachable. 2163 // 2164 // FIXME: The current implementation didn't consider about scope. For example, 2165 // ``` 2166 // // m.cppm 2167 // export module m; 2168 // enum E1 { e1 }; 2169 // // Use.cpp 2170 // import m; 2171 // void test() { 2172 // auto a = E1::e1; // Error as expected. 2173 // auto b = e1; // Should be error. namespace-scope name e1 is not visible 2174 // } 2175 // ``` 2176 // For the above example, the current implementation would emit error for `a` 2177 // correctly. However, the implementation wouldn't diagnose about `b` now. 2178 // Since we only check the reachability for the parent only. 2179 // See clang/test/CXX/module/module.interface/p7.cpp for example. 2180 if (auto *TD = dyn_cast<TagDecl>(DC)) 2181 return SemaRef.hasReachableDefinition(TD); 2182 2183 return false; 2184 } 2185 2186 bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation, 2187 bool ForceNoCPlusPlus) { 2188 DeclarationName Name = R.getLookupName(); 2189 if (!Name) return false; 2190 2191 LookupNameKind NameKind = R.getLookupKind(); 2192 2193 if (!getLangOpts().CPlusPlus || ForceNoCPlusPlus) { 2194 // Unqualified name lookup in C/Objective-C is purely lexical, so 2195 // search in the declarations attached to the name. 2196 if (NameKind == Sema::LookupRedeclarationWithLinkage) { 2197 // Find the nearest non-transparent declaration scope. 2198 while (!(S->getFlags() & Scope::DeclScope) || 2199 (S->getEntity() && S->getEntity()->isTransparentContext())) 2200 S = S->getParent(); 2201 } 2202 2203 // When performing a scope lookup, we want to find local extern decls. 2204 FindLocalExternScope FindLocals(R); 2205 2206 // Scan up the scope chain looking for a decl that matches this 2207 // identifier that is in the appropriate namespace. This search 2208 // should not take long, as shadowing of names is uncommon, and 2209 // deep shadowing is extremely uncommon. 2210 bool LeftStartingScope = false; 2211 2212 for (IdentifierResolver::iterator I = IdResolver.begin(Name), 2213 IEnd = IdResolver.end(); 2214 I != IEnd; ++I) 2215 if (NamedDecl *D = R.getAcceptableDecl(*I)) { 2216 if (NameKind == LookupRedeclarationWithLinkage) { 2217 // Determine whether this (or a previous) declaration is 2218 // out-of-scope. 2219 if (!LeftStartingScope && !S->isDeclScope(*I)) 2220 LeftStartingScope = true; 2221 2222 // If we found something outside of our starting scope that 2223 // does not have linkage, skip it. 2224 if (LeftStartingScope && !((*I)->hasLinkage())) { 2225 R.setShadowed(); 2226 continue; 2227 } 2228 } 2229 else if (NameKind == LookupObjCImplicitSelfParam && 2230 !isa<ImplicitParamDecl>(*I)) 2231 continue; 2232 2233 R.addDecl(D); 2234 2235 // Check whether there are any other declarations with the same name 2236 // and in the same scope. 2237 if (I != IEnd) { 2238 // Find the scope in which this declaration was declared (if it 2239 // actually exists in a Scope). 2240 while (S && !S->isDeclScope(D)) 2241 S = S->getParent(); 2242 2243 // If the scope containing the declaration is the translation unit, 2244 // then we'll need to perform our checks based on the matching 2245 // DeclContexts rather than matching scopes. 2246 if (S && isNamespaceOrTranslationUnitScope(S)) 2247 S = nullptr; 2248 2249 // Compute the DeclContext, if we need it. 2250 DeclContext *DC = nullptr; 2251 if (!S) 2252 DC = (*I)->getDeclContext()->getRedeclContext(); 2253 2254 IdentifierResolver::iterator LastI = I; 2255 for (++LastI; LastI != IEnd; ++LastI) { 2256 if (S) { 2257 // Match based on scope. 2258 if (!S->isDeclScope(*LastI)) 2259 break; 2260 } else { 2261 // Match based on DeclContext. 2262 DeclContext *LastDC 2263 = (*LastI)->getDeclContext()->getRedeclContext(); 2264 if (!LastDC->Equals(DC)) 2265 break; 2266 } 2267 2268 // If the declaration is in the right namespace and visible, add it. 2269 if (NamedDecl *LastD = R.getAcceptableDecl(*LastI)) 2270 R.addDecl(LastD); 2271 } 2272 2273 R.resolveKind(); 2274 } 2275 2276 return true; 2277 } 2278 } else { 2279 // Perform C++ unqualified name lookup. 2280 if (CppLookupName(R, S)) 2281 return true; 2282 } 2283 2284 // If we didn't find a use of this identifier, and if the identifier 2285 // corresponds to a compiler builtin, create the decl object for the builtin 2286 // now, injecting it into translation unit scope, and return it. 2287 if (AllowBuiltinCreation && LookupBuiltin(R)) 2288 return true; 2289 2290 // If we didn't find a use of this identifier, the ExternalSource 2291 // may be able to handle the situation. 2292 // Note: some lookup failures are expected! 2293 // See e.g. R.isForRedeclaration(). 2294 return (ExternalSource && ExternalSource->LookupUnqualified(R, S)); 2295 } 2296 2297 /// Perform qualified name lookup in the namespaces nominated by 2298 /// using directives by the given context. 2299 /// 2300 /// C++98 [namespace.qual]p2: 2301 /// Given X::m (where X is a user-declared namespace), or given \::m 2302 /// (where X is the global namespace), let S be the set of all 2303 /// declarations of m in X and in the transitive closure of all 2304 /// namespaces nominated by using-directives in X and its used 2305 /// namespaces, except that using-directives are ignored in any 2306 /// namespace, including X, directly containing one or more 2307 /// declarations of m. No namespace is searched more than once in 2308 /// the lookup of a name. If S is the empty set, the program is 2309 /// ill-formed. Otherwise, if S has exactly one member, or if the 2310 /// context of the reference is a using-declaration 2311 /// (namespace.udecl), S is the required set of declarations of 2312 /// m. Otherwise if the use of m is not one that allows a unique 2313 /// declaration to be chosen from S, the program is ill-formed. 2314 /// 2315 /// C++98 [namespace.qual]p5: 2316 /// During the lookup of a qualified namespace member name, if the 2317 /// lookup finds more than one declaration of the member, and if one 2318 /// declaration introduces a class name or enumeration name and the 2319 /// other declarations either introduce the same object, the same 2320 /// enumerator or a set of functions, the non-type name hides the 2321 /// class or enumeration name if and only if the declarations are 2322 /// from the same namespace; otherwise (the declarations are from 2323 /// different namespaces), the program is ill-formed. 2324 static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R, 2325 DeclContext *StartDC) { 2326 assert(StartDC->isFileContext() && "start context is not a file context"); 2327 2328 // We have not yet looked into these namespaces, much less added 2329 // their "using-children" to the queue. 2330 SmallVector<NamespaceDecl*, 8> Queue; 2331 2332 // We have at least added all these contexts to the queue. 2333 llvm::SmallPtrSet<DeclContext*, 8> Visited; 2334 Visited.insert(StartDC); 2335 2336 // We have already looked into the initial namespace; seed the queue 2337 // with its using-children. 2338 for (auto *I : StartDC->using_directives()) { 2339 NamespaceDecl *ND = I->getNominatedNamespace()->getFirstDecl(); 2340 if (S.isVisible(I) && Visited.insert(ND).second) 2341 Queue.push_back(ND); 2342 } 2343 2344 // The easiest way to implement the restriction in [namespace.qual]p5 2345 // is to check whether any of the individual results found a tag 2346 // and, if so, to declare an ambiguity if the final result is not 2347 // a tag. 2348 bool FoundTag = false; 2349 bool FoundNonTag = false; 2350 2351 LookupResult LocalR(LookupResult::Temporary, R); 2352 2353 bool Found = false; 2354 while (!Queue.empty()) { 2355 NamespaceDecl *ND = Queue.pop_back_val(); 2356 2357 // We go through some convolutions here to avoid copying results 2358 // between LookupResults. 2359 bool UseLocal = !R.empty(); 2360 LookupResult &DirectR = UseLocal ? LocalR : R; 2361 bool FoundDirect = LookupDirect(S, DirectR, ND); 2362 2363 if (FoundDirect) { 2364 // First do any local hiding. 2365 DirectR.resolveKind(); 2366 2367 // If the local result is a tag, remember that. 2368 if (DirectR.isSingleTagDecl()) 2369 FoundTag = true; 2370 else 2371 FoundNonTag = true; 2372 2373 // Append the local results to the total results if necessary. 2374 if (UseLocal) { 2375 R.addAllDecls(LocalR); 2376 LocalR.clear(); 2377 } 2378 } 2379 2380 // If we find names in this namespace, ignore its using directives. 2381 if (FoundDirect) { 2382 Found = true; 2383 continue; 2384 } 2385 2386 for (auto *I : ND->using_directives()) { 2387 NamespaceDecl *Nom = I->getNominatedNamespace(); 2388 if (S.isVisible(I) && Visited.insert(Nom).second) 2389 Queue.push_back(Nom); 2390 } 2391 } 2392 2393 if (Found) { 2394 if (FoundTag && FoundNonTag) 2395 R.setAmbiguousQualifiedTagHiding(); 2396 else 2397 R.resolveKind(); 2398 } 2399 2400 return Found; 2401 } 2402 2403 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, 2404 bool InUnqualifiedLookup) { 2405 assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context"); 2406 2407 if (!R.getLookupName()) 2408 return false; 2409 2410 // Make sure that the declaration context is complete. 2411 assert((!isa<TagDecl>(LookupCtx) || 2412 LookupCtx->isDependentContext() || 2413 cast<TagDecl>(LookupCtx)->isCompleteDefinition() || 2414 cast<TagDecl>(LookupCtx)->isBeingDefined()) && 2415 "Declaration context must already be complete!"); 2416 2417 struct QualifiedLookupInScope { 2418 bool oldVal; 2419 DeclContext *Context; 2420 // Set flag in DeclContext informing debugger that we're looking for qualified name 2421 QualifiedLookupInScope(DeclContext *ctx) 2422 : oldVal(ctx->shouldUseQualifiedLookup()), Context(ctx) { 2423 ctx->setUseQualifiedLookup(); 2424 } 2425 ~QualifiedLookupInScope() { 2426 Context->setUseQualifiedLookup(oldVal); 2427 } 2428 } QL(LookupCtx); 2429 2430 CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx); 2431 // FIXME: Per [temp.dep.general]p2, an unqualified name is also dependent 2432 // if it's a dependent conversion-function-id or operator= where the current 2433 // class is a templated entity. This should be handled in LookupName. 2434 if (!InUnqualifiedLookup && !R.isForRedeclaration()) { 2435 // C++23 [temp.dep.type]p5: 2436 // A qualified name is dependent if 2437 // - it is a conversion-function-id whose conversion-type-id 2438 // is dependent, or 2439 // - [...] 2440 // - its lookup context is the current instantiation and it 2441 // is operator=, or 2442 // - [...] 2443 if (DeclarationName Name = R.getLookupName(); 2444 Name.getNameKind() == DeclarationName::CXXConversionFunctionName && 2445 Name.getCXXNameType()->isDependentType()) { 2446 R.setNotFoundInCurrentInstantiation(); 2447 return false; 2448 } 2449 } 2450 2451 if (LookupDirect(*this, R, LookupCtx)) { 2452 R.resolveKind(); 2453 if (LookupRec) 2454 R.setNamingClass(LookupRec); 2455 return true; 2456 } 2457 2458 // Don't descend into implied contexts for redeclarations. 2459 // C++98 [namespace.qual]p6: 2460 // In a declaration for a namespace member in which the 2461 // declarator-id is a qualified-id, given that the qualified-id 2462 // for the namespace member has the form 2463 // nested-name-specifier unqualified-id 2464 // the unqualified-id shall name a member of the namespace 2465 // designated by the nested-name-specifier. 2466 // See also [class.mfct]p5 and [class.static.data]p2. 2467 if (R.isForRedeclaration()) 2468 return false; 2469 2470 // If this is a namespace, look it up in the implied namespaces. 2471 if (LookupCtx->isFileContext()) 2472 return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx); 2473 2474 // If this isn't a C++ class, we aren't allowed to look into base 2475 // classes, we're done. 2476 if (!LookupRec || !LookupRec->getDefinition()) 2477 return false; 2478 2479 // We're done for lookups that can never succeed for C++ classes. 2480 if (R.getLookupKind() == LookupOperatorName || 2481 R.getLookupKind() == LookupNamespaceName || 2482 R.getLookupKind() == LookupObjCProtocolName || 2483 R.getLookupKind() == LookupLabel) 2484 return false; 2485 2486 // If we're performing qualified name lookup into a dependent class, 2487 // then we are actually looking into a current instantiation. If we have any 2488 // dependent base classes, then we either have to delay lookup until 2489 // template instantiation time (at which point all bases will be available) 2490 // or we have to fail. 2491 if (!InUnqualifiedLookup && LookupRec->isDependentContext() && 2492 LookupRec->hasAnyDependentBases()) { 2493 R.setNotFoundInCurrentInstantiation(); 2494 return false; 2495 } 2496 2497 // Perform lookup into our base classes. 2498 2499 DeclarationName Name = R.getLookupName(); 2500 unsigned IDNS = R.getIdentifierNamespace(); 2501 2502 // Look for this member in our base classes. 2503 auto BaseCallback = [Name, IDNS](const CXXBaseSpecifier *Specifier, 2504 CXXBasePath &Path) -> bool { 2505 CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl(); 2506 // Drop leading non-matching lookup results from the declaration list so 2507 // we don't need to consider them again below. 2508 for (Path.Decls = BaseRecord->lookup(Name).begin(); 2509 Path.Decls != Path.Decls.end(); ++Path.Decls) { 2510 if ((*Path.Decls)->isInIdentifierNamespace(IDNS)) 2511 return true; 2512 } 2513 return false; 2514 }; 2515 2516 CXXBasePaths Paths; 2517 Paths.setOrigin(LookupRec); 2518 if (!LookupRec->lookupInBases(BaseCallback, Paths)) 2519 return false; 2520 2521 R.setNamingClass(LookupRec); 2522 2523 // C++ [class.member.lookup]p2: 2524 // [...] If the resulting set of declarations are not all from 2525 // sub-objects of the same type, or the set has a nonstatic member 2526 // and includes members from distinct sub-objects, there is an 2527 // ambiguity and the program is ill-formed. Otherwise that set is 2528 // the result of the lookup. 2529 QualType SubobjectType; 2530 int SubobjectNumber = 0; 2531 AccessSpecifier SubobjectAccess = AS_none; 2532 2533 // Check whether the given lookup result contains only static members. 2534 auto HasOnlyStaticMembers = [&](DeclContext::lookup_iterator Result) { 2535 for (DeclContext::lookup_iterator I = Result, E = I.end(); I != E; ++I) 2536 if ((*I)->isInIdentifierNamespace(IDNS) && (*I)->isCXXInstanceMember()) 2537 return false; 2538 return true; 2539 }; 2540 2541 bool TemplateNameLookup = R.isTemplateNameLookup(); 2542 2543 // Determine whether two sets of members contain the same members, as 2544 // required by C++ [class.member.lookup]p6. 2545 auto HasSameDeclarations = [&](DeclContext::lookup_iterator A, 2546 DeclContext::lookup_iterator B) { 2547 using Iterator = DeclContextLookupResult::iterator; 2548 using Result = const void *; 2549 2550 auto Next = [&](Iterator &It, Iterator End) -> Result { 2551 while (It != End) { 2552 NamedDecl *ND = *It++; 2553 if (!ND->isInIdentifierNamespace(IDNS)) 2554 continue; 2555 2556 // C++ [temp.local]p3: 2557 // A lookup that finds an injected-class-name (10.2) can result in 2558 // an ambiguity in certain cases (for example, if it is found in 2559 // more than one base class). If all of the injected-class-names 2560 // that are found refer to specializations of the same class 2561 // template, and if the name is used as a template-name, the 2562 // reference refers to the class template itself and not a 2563 // specialization thereof, and is not ambiguous. 2564 if (TemplateNameLookup) 2565 if (auto *TD = getAsTemplateNameDecl(ND)) 2566 ND = TD; 2567 2568 // C++ [class.member.lookup]p3: 2569 // type declarations (including injected-class-names) are replaced by 2570 // the types they designate 2571 if (const TypeDecl *TD = dyn_cast<TypeDecl>(ND->getUnderlyingDecl())) { 2572 QualType T = Context.getTypeDeclType(TD); 2573 return T.getCanonicalType().getAsOpaquePtr(); 2574 } 2575 2576 return ND->getUnderlyingDecl()->getCanonicalDecl(); 2577 } 2578 return nullptr; 2579 }; 2580 2581 // We'll often find the declarations are in the same order. Handle this 2582 // case (and the special case of only one declaration) efficiently. 2583 Iterator AIt = A, BIt = B, AEnd, BEnd; 2584 while (true) { 2585 Result AResult = Next(AIt, AEnd); 2586 Result BResult = Next(BIt, BEnd); 2587 if (!AResult && !BResult) 2588 return true; 2589 if (!AResult || !BResult) 2590 return false; 2591 if (AResult != BResult) { 2592 // Found a mismatch; carefully check both lists, accounting for the 2593 // possibility of declarations appearing more than once. 2594 llvm::SmallDenseMap<Result, bool, 32> AResults; 2595 for (; AResult; AResult = Next(AIt, AEnd)) 2596 AResults.insert({AResult, /*FoundInB*/false}); 2597 unsigned Found = 0; 2598 for (; BResult; BResult = Next(BIt, BEnd)) { 2599 auto It = AResults.find(BResult); 2600 if (It == AResults.end()) 2601 return false; 2602 if (!It->second) { 2603 It->second = true; 2604 ++Found; 2605 } 2606 } 2607 return AResults.size() == Found; 2608 } 2609 } 2610 }; 2611 2612 for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end(); 2613 Path != PathEnd; ++Path) { 2614 const CXXBasePathElement &PathElement = Path->back(); 2615 2616 // Pick the best (i.e. most permissive i.e. numerically lowest) access 2617 // across all paths. 2618 SubobjectAccess = std::min(SubobjectAccess, Path->Access); 2619 2620 // Determine whether we're looking at a distinct sub-object or not. 2621 if (SubobjectType.isNull()) { 2622 // This is the first subobject we've looked at. Record its type. 2623 SubobjectType = Context.getCanonicalType(PathElement.Base->getType()); 2624 SubobjectNumber = PathElement.SubobjectNumber; 2625 continue; 2626 } 2627 2628 if (SubobjectType != 2629 Context.getCanonicalType(PathElement.Base->getType())) { 2630 // We found members of the given name in two subobjects of 2631 // different types. If the declaration sets aren't the same, this 2632 // lookup is ambiguous. 2633 // 2634 // FIXME: The language rule says that this applies irrespective of 2635 // whether the sets contain only static members. 2636 if (HasOnlyStaticMembers(Path->Decls) && 2637 HasSameDeclarations(Paths.begin()->Decls, Path->Decls)) 2638 continue; 2639 2640 R.setAmbiguousBaseSubobjectTypes(Paths); 2641 return true; 2642 } 2643 2644 // FIXME: This language rule no longer exists. Checking for ambiguous base 2645 // subobjects should be done as part of formation of a class member access 2646 // expression (when converting the object parameter to the member's type). 2647 if (SubobjectNumber != PathElement.SubobjectNumber) { 2648 // We have a different subobject of the same type. 2649 2650 // C++ [class.member.lookup]p5: 2651 // A static member, a nested type or an enumerator defined in 2652 // a base class T can unambiguously be found even if an object 2653 // has more than one base class subobject of type T. 2654 if (HasOnlyStaticMembers(Path->Decls)) 2655 continue; 2656 2657 // We have found a nonstatic member name in multiple, distinct 2658 // subobjects. Name lookup is ambiguous. 2659 R.setAmbiguousBaseSubobjects(Paths); 2660 return true; 2661 } 2662 } 2663 2664 // Lookup in a base class succeeded; return these results. 2665 2666 for (DeclContext::lookup_iterator I = Paths.front().Decls, E = I.end(); 2667 I != E; ++I) { 2668 AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess, 2669 (*I)->getAccess()); 2670 if (NamedDecl *ND = R.getAcceptableDecl(*I)) 2671 R.addDecl(ND, AS); 2672 } 2673 R.resolveKind(); 2674 return true; 2675 } 2676 2677 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, 2678 CXXScopeSpec &SS) { 2679 auto *NNS = SS.getScopeRep(); 2680 if (NNS && NNS->getKind() == NestedNameSpecifier::Super) 2681 return LookupInSuper(R, NNS->getAsRecordDecl()); 2682 else 2683 2684 return LookupQualifiedName(R, LookupCtx); 2685 } 2686 2687 bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS, 2688 QualType ObjectType, bool AllowBuiltinCreation, 2689 bool EnteringContext) { 2690 // When the scope specifier is invalid, don't even look for anything. 2691 if (SS && SS->isInvalid()) 2692 return false; 2693 2694 // Determine where to perform name lookup 2695 DeclContext *DC = nullptr; 2696 bool IsDependent = false; 2697 if (!ObjectType.isNull()) { 2698 // This nested-name-specifier occurs in a member access expression, e.g., 2699 // x->B::f, and we are looking into the type of the object. 2700 assert((!SS || SS->isEmpty()) && 2701 "ObjectType and scope specifier cannot coexist"); 2702 DC = computeDeclContext(ObjectType); 2703 IsDependent = !DC && ObjectType->isDependentType(); 2704 assert(((!DC && ObjectType->isDependentType()) || 2705 !ObjectType->isIncompleteType() || !ObjectType->getAs<TagType>() || 2706 ObjectType->castAs<TagType>()->isBeingDefined()) && 2707 "Caller should have completed object type"); 2708 } else if (SS && SS->isNotEmpty()) { 2709 // This nested-name-specifier occurs after another nested-name-specifier, 2710 // so long into the context associated with the prior nested-name-specifier. 2711 if ((DC = computeDeclContext(*SS, EnteringContext))) { 2712 // The declaration context must be complete. 2713 if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC)) 2714 return false; 2715 R.setContextRange(SS->getRange()); 2716 // FIXME: '__super' lookup semantics could be implemented by a 2717 // LookupResult::isSuperLookup flag which skips the initial search of 2718 // the lookup context in LookupQualified. 2719 if (NestedNameSpecifier *NNS = SS->getScopeRep(); 2720 NNS->getKind() == NestedNameSpecifier::Super) 2721 return LookupInSuper(R, NNS->getAsRecordDecl()); 2722 } 2723 IsDependent = !DC && isDependentScopeSpecifier(*SS); 2724 } else { 2725 // Perform unqualified name lookup starting in the given scope. 2726 return LookupName(R, S, AllowBuiltinCreation); 2727 } 2728 2729 // If we were able to compute a declaration context, perform qualified name 2730 // lookup in that context. 2731 if (DC) 2732 return LookupQualifiedName(R, DC); 2733 else if (IsDependent) 2734 // We could not resolve the scope specified to a specific declaration 2735 // context, which means that SS refers to an unknown specialization. 2736 // Name lookup can't find anything in this case. 2737 R.setNotFoundInCurrentInstantiation(); 2738 return false; 2739 } 2740 2741 bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) { 2742 // The access-control rules we use here are essentially the rules for 2743 // doing a lookup in Class that just magically skipped the direct 2744 // members of Class itself. That is, the naming class is Class, and the 2745 // access includes the access of the base. 2746 for (const auto &BaseSpec : Class->bases()) { 2747 CXXRecordDecl *RD = cast<CXXRecordDecl>( 2748 BaseSpec.getType()->castAs<RecordType>()->getDecl()); 2749 LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind()); 2750 Result.setBaseObjectType(Context.getRecordType(Class)); 2751 LookupQualifiedName(Result, RD); 2752 2753 // Copy the lookup results into the target, merging the base's access into 2754 // the path access. 2755 for (auto I = Result.begin(), E = Result.end(); I != E; ++I) { 2756 R.addDecl(I.getDecl(), 2757 CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(), 2758 I.getAccess())); 2759 } 2760 2761 Result.suppressDiagnostics(); 2762 } 2763 2764 R.resolveKind(); 2765 R.setNamingClass(Class); 2766 2767 return !R.empty(); 2768 } 2769 2770 void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) { 2771 assert(Result.isAmbiguous() && "Lookup result must be ambiguous"); 2772 2773 DeclarationName Name = Result.getLookupName(); 2774 SourceLocation NameLoc = Result.getNameLoc(); 2775 SourceRange LookupRange = Result.getContextRange(); 2776 2777 switch (Result.getAmbiguityKind()) { 2778 case LookupResult::AmbiguousBaseSubobjects: { 2779 CXXBasePaths *Paths = Result.getBasePaths(); 2780 QualType SubobjectType = Paths->front().back().Base->getType(); 2781 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects) 2782 << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths) 2783 << LookupRange; 2784 2785 DeclContext::lookup_iterator Found = Paths->front().Decls; 2786 while (isa<CXXMethodDecl>(*Found) && 2787 cast<CXXMethodDecl>(*Found)->isStatic()) 2788 ++Found; 2789 2790 Diag((*Found)->getLocation(), diag::note_ambiguous_member_found); 2791 break; 2792 } 2793 2794 case LookupResult::AmbiguousBaseSubobjectTypes: { 2795 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types) 2796 << Name << LookupRange; 2797 2798 CXXBasePaths *Paths = Result.getBasePaths(); 2799 std::set<const NamedDecl *> DeclsPrinted; 2800 for (CXXBasePaths::paths_iterator Path = Paths->begin(), 2801 PathEnd = Paths->end(); 2802 Path != PathEnd; ++Path) { 2803 const NamedDecl *D = *Path->Decls; 2804 if (!D->isInIdentifierNamespace(Result.getIdentifierNamespace())) 2805 continue; 2806 if (DeclsPrinted.insert(D).second) { 2807 if (const auto *TD = dyn_cast<TypedefNameDecl>(D->getUnderlyingDecl())) 2808 Diag(D->getLocation(), diag::note_ambiguous_member_type_found) 2809 << TD->getUnderlyingType(); 2810 else if (const auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl())) 2811 Diag(D->getLocation(), diag::note_ambiguous_member_type_found) 2812 << Context.getTypeDeclType(TD); 2813 else 2814 Diag(D->getLocation(), diag::note_ambiguous_member_found); 2815 } 2816 } 2817 break; 2818 } 2819 2820 case LookupResult::AmbiguousTagHiding: { 2821 Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange; 2822 2823 llvm::SmallPtrSet<NamedDecl*, 8> TagDecls; 2824 2825 for (auto *D : Result) 2826 if (TagDecl *TD = dyn_cast<TagDecl>(D)) { 2827 TagDecls.insert(TD); 2828 Diag(TD->getLocation(), diag::note_hidden_tag); 2829 } 2830 2831 for (auto *D : Result) 2832 if (!isa<TagDecl>(D)) 2833 Diag(D->getLocation(), diag::note_hiding_object); 2834 2835 // For recovery purposes, go ahead and implement the hiding. 2836 LookupResult::Filter F = Result.makeFilter(); 2837 while (F.hasNext()) { 2838 if (TagDecls.count(F.next())) 2839 F.erase(); 2840 } 2841 F.done(); 2842 break; 2843 } 2844 2845 case LookupResult::AmbiguousReferenceToPlaceholderVariable: { 2846 Diag(NameLoc, diag::err_using_placeholder_variable) << Name << LookupRange; 2847 DeclContext *DC = nullptr; 2848 for (auto *D : Result) { 2849 Diag(D->getLocation(), diag::note_reference_placeholder) << D; 2850 if (DC != nullptr && DC != D->getDeclContext()) 2851 break; 2852 DC = D->getDeclContext(); 2853 } 2854 break; 2855 } 2856 2857 case LookupResult::AmbiguousReference: { 2858 Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange; 2859 2860 for (auto *D : Result) 2861 Diag(D->getLocation(), diag::note_ambiguous_candidate) << D; 2862 break; 2863 } 2864 } 2865 } 2866 2867 namespace { 2868 struct AssociatedLookup { 2869 AssociatedLookup(Sema &S, SourceLocation InstantiationLoc, 2870 Sema::AssociatedNamespaceSet &Namespaces, 2871 Sema::AssociatedClassSet &Classes) 2872 : S(S), Namespaces(Namespaces), Classes(Classes), 2873 InstantiationLoc(InstantiationLoc) { 2874 } 2875 2876 bool addClassTransitive(CXXRecordDecl *RD) { 2877 Classes.insert(RD); 2878 return ClassesTransitive.insert(RD); 2879 } 2880 2881 Sema &S; 2882 Sema::AssociatedNamespaceSet &Namespaces; 2883 Sema::AssociatedClassSet &Classes; 2884 SourceLocation InstantiationLoc; 2885 2886 private: 2887 Sema::AssociatedClassSet ClassesTransitive; 2888 }; 2889 } // end anonymous namespace 2890 2891 static void 2892 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T); 2893 2894 // Given the declaration context \param Ctx of a class, class template or 2895 // enumeration, add the associated namespaces to \param Namespaces as described 2896 // in [basic.lookup.argdep]p2. 2897 static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces, 2898 DeclContext *Ctx) { 2899 // The exact wording has been changed in C++14 as a result of 2900 // CWG 1691 (see also CWG 1690 and CWG 1692). We apply it unconditionally 2901 // to all language versions since it is possible to return a local type 2902 // from a lambda in C++11. 2903 // 2904 // C++14 [basic.lookup.argdep]p2: 2905 // If T is a class type [...]. Its associated namespaces are the innermost 2906 // enclosing namespaces of its associated classes. [...] 2907 // 2908 // If T is an enumeration type, its associated namespace is the innermost 2909 // enclosing namespace of its declaration. [...] 2910 2911 // We additionally skip inline namespaces. The innermost non-inline namespace 2912 // contains all names of all its nested inline namespaces anyway, so we can 2913 // replace the entire inline namespace tree with its root. 2914 while (!Ctx->isFileContext() || Ctx->isInlineNamespace()) 2915 Ctx = Ctx->getParent(); 2916 2917 // Actually it is fine to always do `Namespaces.insert(Ctx);` simply. But it 2918 // may cause more allocations in Namespaces and more unnecessary lookups. So 2919 // we'd like to insert the representative namespace only. 2920 DeclContext *PrimaryCtx = Ctx->getPrimaryContext(); 2921 Decl *PrimaryD = cast<Decl>(PrimaryCtx); 2922 Decl *D = cast<Decl>(Ctx); 2923 ASTContext &AST = D->getASTContext(); 2924 2925 // TODO: Technically it is better to insert one namespace per module. e.g., 2926 // 2927 // ``` 2928 // //--- first.cppm 2929 // export module first; 2930 // namespace ns { ... } // first namespace 2931 // 2932 // //--- m-partA.cppm 2933 // export module m:partA; 2934 // import first; 2935 // 2936 // namespace ns { ... } 2937 // namespace ns { ... } 2938 // 2939 // //--- m-partB.cppm 2940 // export module m:partB; 2941 // import first; 2942 // import :partA; 2943 // 2944 // namespace ns { ... } 2945 // namespace ns { ... } 2946 // 2947 // ... 2948 // 2949 // //--- m-partN.cppm 2950 // export module m:partN; 2951 // import first; 2952 // import :partA; 2953 // ... 2954 // import :part$(N-1); 2955 // 2956 // namespace ns { ... } 2957 // namespace ns { ... } 2958 // 2959 // consume(ns::any_decl); // the lookup 2960 // ``` 2961 // 2962 // We should only insert once for all namespaces in module m. 2963 if (D->isInNamedModule() && 2964 !AST.isInSameModule(D->getOwningModule(), PrimaryD->getOwningModule())) 2965 Namespaces.insert(Ctx); 2966 else 2967 Namespaces.insert(PrimaryCtx); 2968 } 2969 2970 // Add the associated classes and namespaces for argument-dependent 2971 // lookup that involves a template argument (C++ [basic.lookup.argdep]p2). 2972 static void 2973 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, 2974 const TemplateArgument &Arg) { 2975 // C++ [basic.lookup.argdep]p2, last bullet: 2976 // -- [...] ; 2977 switch (Arg.getKind()) { 2978 case TemplateArgument::Null: 2979 break; 2980 2981 case TemplateArgument::Type: 2982 // [...] the namespaces and classes associated with the types of the 2983 // template arguments provided for template type parameters (excluding 2984 // template template parameters) 2985 addAssociatedClassesAndNamespaces(Result, Arg.getAsType()); 2986 break; 2987 2988 case TemplateArgument::Template: 2989 case TemplateArgument::TemplateExpansion: { 2990 // [...] the namespaces in which any template template arguments are 2991 // defined; and the classes in which any member templates used as 2992 // template template arguments are defined. 2993 TemplateName Template = Arg.getAsTemplateOrTemplatePattern(); 2994 if (ClassTemplateDecl *ClassTemplate 2995 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) { 2996 DeclContext *Ctx = ClassTemplate->getDeclContext(); 2997 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) 2998 Result.Classes.insert(EnclosingClass); 2999 // Add the associated namespace for this class. 3000 CollectEnclosingNamespace(Result.Namespaces, Ctx); 3001 } 3002 break; 3003 } 3004 3005 case TemplateArgument::Declaration: 3006 case TemplateArgument::Integral: 3007 case TemplateArgument::Expression: 3008 case TemplateArgument::NullPtr: 3009 case TemplateArgument::StructuralValue: 3010 // [Note: non-type template arguments do not contribute to the set of 3011 // associated namespaces. ] 3012 break; 3013 3014 case TemplateArgument::Pack: 3015 for (const auto &P : Arg.pack_elements()) 3016 addAssociatedClassesAndNamespaces(Result, P); 3017 break; 3018 } 3019 } 3020 3021 // Add the associated classes and namespaces for argument-dependent lookup 3022 // with an argument of class type (C++ [basic.lookup.argdep]p2). 3023 static void 3024 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, 3025 CXXRecordDecl *Class) { 3026 3027 // Just silently ignore anything whose name is __va_list_tag. 3028 if (Class->getDeclName() == Result.S.VAListTagName) 3029 return; 3030 3031 // C++ [basic.lookup.argdep]p2: 3032 // [...] 3033 // -- If T is a class type (including unions), its associated 3034 // classes are: the class itself; the class of which it is a 3035 // member, if any; and its direct and indirect base classes. 3036 // Its associated namespaces are the innermost enclosing 3037 // namespaces of its associated classes. 3038 3039 // Add the class of which it is a member, if any. 3040 DeclContext *Ctx = Class->getDeclContext(); 3041 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) 3042 Result.Classes.insert(EnclosingClass); 3043 3044 // Add the associated namespace for this class. 3045 CollectEnclosingNamespace(Result.Namespaces, Ctx); 3046 3047 // -- If T is a template-id, its associated namespaces and classes are 3048 // the namespace in which the template is defined; for member 3049 // templates, the member template's class; the namespaces and classes 3050 // associated with the types of the template arguments provided for 3051 // template type parameters (excluding template template parameters); the 3052 // namespaces in which any template template arguments are defined; and 3053 // the classes in which any member templates used as template template 3054 // arguments are defined. [Note: non-type template arguments do not 3055 // contribute to the set of associated namespaces. ] 3056 if (ClassTemplateSpecializationDecl *Spec 3057 = dyn_cast<ClassTemplateSpecializationDecl>(Class)) { 3058 DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext(); 3059 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) 3060 Result.Classes.insert(EnclosingClass); 3061 // Add the associated namespace for this class. 3062 CollectEnclosingNamespace(Result.Namespaces, Ctx); 3063 3064 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); 3065 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 3066 addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]); 3067 } 3068 3069 // Add the class itself. If we've already transitively visited this class, 3070 // we don't need to visit base classes. 3071 if (!Result.addClassTransitive(Class)) 3072 return; 3073 3074 // Only recurse into base classes for complete types. 3075 if (!Result.S.isCompleteType(Result.InstantiationLoc, 3076 Result.S.Context.getRecordType(Class))) 3077 return; 3078 3079 // Add direct and indirect base classes along with their associated 3080 // namespaces. 3081 SmallVector<CXXRecordDecl *, 32> Bases; 3082 Bases.push_back(Class); 3083 while (!Bases.empty()) { 3084 // Pop this class off the stack. 3085 Class = Bases.pop_back_val(); 3086 3087 // Visit the base classes. 3088 for (const auto &Base : Class->bases()) { 3089 const RecordType *BaseType = Base.getType()->getAs<RecordType>(); 3090 // In dependent contexts, we do ADL twice, and the first time around, 3091 // the base type might be a dependent TemplateSpecializationType, or a 3092 // TemplateTypeParmType. If that happens, simply ignore it. 3093 // FIXME: If we want to support export, we probably need to add the 3094 // namespace of the template in a TemplateSpecializationType, or even 3095 // the classes and namespaces of known non-dependent arguments. 3096 if (!BaseType) 3097 continue; 3098 CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl()); 3099 if (Result.addClassTransitive(BaseDecl)) { 3100 // Find the associated namespace for this base class. 3101 DeclContext *BaseCtx = BaseDecl->getDeclContext(); 3102 CollectEnclosingNamespace(Result.Namespaces, BaseCtx); 3103 3104 // Make sure we visit the bases of this base class. 3105 if (BaseDecl->bases_begin() != BaseDecl->bases_end()) 3106 Bases.push_back(BaseDecl); 3107 } 3108 } 3109 } 3110 } 3111 3112 // Add the associated classes and namespaces for 3113 // argument-dependent lookup with an argument of type T 3114 // (C++ [basic.lookup.koenig]p2). 3115 static void 3116 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) { 3117 // C++ [basic.lookup.koenig]p2: 3118 // 3119 // For each argument type T in the function call, there is a set 3120 // of zero or more associated namespaces and a set of zero or more 3121 // associated classes to be considered. The sets of namespaces and 3122 // classes is determined entirely by the types of the function 3123 // arguments (and the namespace of any template template 3124 // argument). Typedef names and using-declarations used to specify 3125 // the types do not contribute to this set. The sets of namespaces 3126 // and classes are determined in the following way: 3127 3128 SmallVector<const Type *, 16> Queue; 3129 const Type *T = Ty->getCanonicalTypeInternal().getTypePtr(); 3130 3131 while (true) { 3132 switch (T->getTypeClass()) { 3133 3134 #define TYPE(Class, Base) 3135 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 3136 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 3137 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: 3138 #define ABSTRACT_TYPE(Class, Base) 3139 #include "clang/AST/TypeNodes.inc" 3140 // T is canonical. We can also ignore dependent types because 3141 // we don't need to do ADL at the definition point, but if we 3142 // wanted to implement template export (or if we find some other 3143 // use for associated classes and namespaces...) this would be 3144 // wrong. 3145 break; 3146 3147 // -- If T is a pointer to U or an array of U, its associated 3148 // namespaces and classes are those associated with U. 3149 case Type::Pointer: 3150 T = cast<PointerType>(T)->getPointeeType().getTypePtr(); 3151 continue; 3152 case Type::ConstantArray: 3153 case Type::IncompleteArray: 3154 case Type::VariableArray: 3155 T = cast<ArrayType>(T)->getElementType().getTypePtr(); 3156 continue; 3157 3158 // -- If T is a fundamental type, its associated sets of 3159 // namespaces and classes are both empty. 3160 case Type::Builtin: 3161 break; 3162 3163 // -- If T is a class type (including unions), its associated 3164 // classes are: the class itself; the class of which it is 3165 // a member, if any; and its direct and indirect base classes. 3166 // Its associated namespaces are the innermost enclosing 3167 // namespaces of its associated classes. 3168 case Type::Record: { 3169 CXXRecordDecl *Class = 3170 cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl()); 3171 addAssociatedClassesAndNamespaces(Result, Class); 3172 break; 3173 } 3174 3175 // -- If T is an enumeration type, its associated namespace 3176 // is the innermost enclosing namespace of its declaration. 3177 // If it is a class member, its associated class is the 3178 // member’s class; else it has no associated class. 3179 case Type::Enum: { 3180 EnumDecl *Enum = cast<EnumType>(T)->getDecl(); 3181 3182 DeclContext *Ctx = Enum->getDeclContext(); 3183 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) 3184 Result.Classes.insert(EnclosingClass); 3185 3186 // Add the associated namespace for this enumeration. 3187 CollectEnclosingNamespace(Result.Namespaces, Ctx); 3188 3189 break; 3190 } 3191 3192 // -- If T is a function type, its associated namespaces and 3193 // classes are those associated with the function parameter 3194 // types and those associated with the return type. 3195 case Type::FunctionProto: { 3196 const FunctionProtoType *Proto = cast<FunctionProtoType>(T); 3197 for (const auto &Arg : Proto->param_types()) 3198 Queue.push_back(Arg.getTypePtr()); 3199 // fallthrough 3200 [[fallthrough]]; 3201 } 3202 case Type::FunctionNoProto: { 3203 const FunctionType *FnType = cast<FunctionType>(T); 3204 T = FnType->getReturnType().getTypePtr(); 3205 continue; 3206 } 3207 3208 // -- If T is a pointer to a member function of a class X, its 3209 // associated namespaces and classes are those associated 3210 // with the function parameter types and return type, 3211 // together with those associated with X. 3212 // 3213 // -- If T is a pointer to a data member of class X, its 3214 // associated namespaces and classes are those associated 3215 // with the member type together with those associated with 3216 // X. 3217 case Type::MemberPointer: { 3218 const MemberPointerType *MemberPtr = cast<MemberPointerType>(T); 3219 3220 // Queue up the class type into which this points. 3221 Queue.push_back(MemberPtr->getClass()); 3222 3223 // And directly continue with the pointee type. 3224 T = MemberPtr->getPointeeType().getTypePtr(); 3225 continue; 3226 } 3227 3228 // As an extension, treat this like a normal pointer. 3229 case Type::BlockPointer: 3230 T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr(); 3231 continue; 3232 3233 // References aren't covered by the standard, but that's such an 3234 // obvious defect that we cover them anyway. 3235 case Type::LValueReference: 3236 case Type::RValueReference: 3237 T = cast<ReferenceType>(T)->getPointeeType().getTypePtr(); 3238 continue; 3239 3240 // These are fundamental types. 3241 case Type::Vector: 3242 case Type::ExtVector: 3243 case Type::ConstantMatrix: 3244 case Type::Complex: 3245 case Type::BitInt: 3246 break; 3247 3248 // Non-deduced auto types only get here for error cases. 3249 case Type::Auto: 3250 case Type::DeducedTemplateSpecialization: 3251 break; 3252 3253 // If T is an Objective-C object or interface type, or a pointer to an 3254 // object or interface type, the associated namespace is the global 3255 // namespace. 3256 case Type::ObjCObject: 3257 case Type::ObjCInterface: 3258 case Type::ObjCObjectPointer: 3259 Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl()); 3260 break; 3261 3262 // Atomic types are just wrappers; use the associations of the 3263 // contained type. 3264 case Type::Atomic: 3265 T = cast<AtomicType>(T)->getValueType().getTypePtr(); 3266 continue; 3267 case Type::Pipe: 3268 T = cast<PipeType>(T)->getElementType().getTypePtr(); 3269 continue; 3270 3271 // Array parameter types are treated as fundamental types. 3272 case Type::ArrayParameter: 3273 break; 3274 3275 case Type::HLSLAttributedResource: 3276 T = cast<HLSLAttributedResourceType>(T)->getWrappedType().getTypePtr(); 3277 } 3278 3279 if (Queue.empty()) 3280 break; 3281 T = Queue.pop_back_val(); 3282 } 3283 } 3284 3285 void Sema::FindAssociatedClassesAndNamespaces( 3286 SourceLocation InstantiationLoc, ArrayRef<Expr *> Args, 3287 AssociatedNamespaceSet &AssociatedNamespaces, 3288 AssociatedClassSet &AssociatedClasses) { 3289 AssociatedNamespaces.clear(); 3290 AssociatedClasses.clear(); 3291 3292 AssociatedLookup Result(*this, InstantiationLoc, 3293 AssociatedNamespaces, AssociatedClasses); 3294 3295 // C++ [basic.lookup.koenig]p2: 3296 // For each argument type T in the function call, there is a set 3297 // of zero or more associated namespaces and a set of zero or more 3298 // associated classes to be considered. The sets of namespaces and 3299 // classes is determined entirely by the types of the function 3300 // arguments (and the namespace of any template template 3301 // argument). 3302 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) { 3303 Expr *Arg = Args[ArgIdx]; 3304 3305 if (Arg->getType() != Context.OverloadTy) { 3306 addAssociatedClassesAndNamespaces(Result, Arg->getType()); 3307 continue; 3308 } 3309 3310 // [...] In addition, if the argument is the name or address of a 3311 // set of overloaded functions and/or function templates, its 3312 // associated classes and namespaces are the union of those 3313 // associated with each of the members of the set: the namespace 3314 // in which the function or function template is defined and the 3315 // classes and namespaces associated with its (non-dependent) 3316 // parameter types and return type. 3317 OverloadExpr *OE = OverloadExpr::find(Arg).Expression; 3318 3319 for (const NamedDecl *D : OE->decls()) { 3320 // Look through any using declarations to find the underlying function. 3321 const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction(); 3322 3323 // Add the classes and namespaces associated with the parameter 3324 // types and return type of this function. 3325 addAssociatedClassesAndNamespaces(Result, FDecl->getType()); 3326 } 3327 } 3328 } 3329 3330 NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name, 3331 SourceLocation Loc, 3332 LookupNameKind NameKind, 3333 RedeclarationKind Redecl) { 3334 LookupResult R(*this, Name, Loc, NameKind, Redecl); 3335 LookupName(R, S); 3336 return R.getAsSingle<NamedDecl>(); 3337 } 3338 3339 void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S, 3340 UnresolvedSetImpl &Functions) { 3341 // C++ [over.match.oper]p3: 3342 // -- The set of non-member candidates is the result of the 3343 // unqualified lookup of operator@ in the context of the 3344 // expression according to the usual rules for name lookup in 3345 // unqualified function calls (3.4.2) except that all member 3346 // functions are ignored. 3347 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 3348 LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName); 3349 LookupName(Operators, S); 3350 3351 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous"); 3352 Functions.append(Operators.begin(), Operators.end()); 3353 } 3354 3355 Sema::SpecialMemberOverloadResult 3356 Sema::LookupSpecialMember(CXXRecordDecl *RD, CXXSpecialMemberKind SM, 3357 bool ConstArg, bool VolatileArg, bool RValueThis, 3358 bool ConstThis, bool VolatileThis) { 3359 assert(CanDeclareSpecialMemberFunction(RD) && 3360 "doing special member lookup into record that isn't fully complete"); 3361 RD = RD->getDefinition(); 3362 if (RValueThis || ConstThis || VolatileThis) 3363 assert((SM == CXXSpecialMemberKind::CopyAssignment || 3364 SM == CXXSpecialMemberKind::MoveAssignment) && 3365 "constructors and destructors always have unqualified lvalue this"); 3366 if (ConstArg || VolatileArg) 3367 assert((SM != CXXSpecialMemberKind::DefaultConstructor && 3368 SM != CXXSpecialMemberKind::Destructor) && 3369 "parameter-less special members can't have qualified arguments"); 3370 3371 // FIXME: Get the caller to pass in a location for the lookup. 3372 SourceLocation LookupLoc = RD->getLocation(); 3373 3374 llvm::FoldingSetNodeID ID; 3375 ID.AddPointer(RD); 3376 ID.AddInteger(llvm::to_underlying(SM)); 3377 ID.AddInteger(ConstArg); 3378 ID.AddInteger(VolatileArg); 3379 ID.AddInteger(RValueThis); 3380 ID.AddInteger(ConstThis); 3381 ID.AddInteger(VolatileThis); 3382 3383 void *InsertPoint; 3384 SpecialMemberOverloadResultEntry *Result = 3385 SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint); 3386 3387 // This was already cached 3388 if (Result) 3389 return *Result; 3390 3391 Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>(); 3392 Result = new (Result) SpecialMemberOverloadResultEntry(ID); 3393 SpecialMemberCache.InsertNode(Result, InsertPoint); 3394 3395 if (SM == CXXSpecialMemberKind::Destructor) { 3396 if (RD->needsImplicitDestructor()) { 3397 runWithSufficientStackSpace(RD->getLocation(), [&] { 3398 DeclareImplicitDestructor(RD); 3399 }); 3400 } 3401 CXXDestructorDecl *DD = RD->getDestructor(); 3402 Result->setMethod(DD); 3403 Result->setKind(DD && !DD->isDeleted() 3404 ? SpecialMemberOverloadResult::Success 3405 : SpecialMemberOverloadResult::NoMemberOrDeleted); 3406 return *Result; 3407 } 3408 3409 // Prepare for overload resolution. Here we construct a synthetic argument 3410 // if necessary and make sure that implicit functions are declared. 3411 CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD)); 3412 DeclarationName Name; 3413 Expr *Arg = nullptr; 3414 unsigned NumArgs; 3415 3416 QualType ArgType = CanTy; 3417 ExprValueKind VK = VK_LValue; 3418 3419 if (SM == CXXSpecialMemberKind::DefaultConstructor) { 3420 Name = Context.DeclarationNames.getCXXConstructorName(CanTy); 3421 NumArgs = 0; 3422 if (RD->needsImplicitDefaultConstructor()) { 3423 runWithSufficientStackSpace(RD->getLocation(), [&] { 3424 DeclareImplicitDefaultConstructor(RD); 3425 }); 3426 } 3427 } else { 3428 if (SM == CXXSpecialMemberKind::CopyConstructor || 3429 SM == CXXSpecialMemberKind::MoveConstructor) { 3430 Name = Context.DeclarationNames.getCXXConstructorName(CanTy); 3431 if (RD->needsImplicitCopyConstructor()) { 3432 runWithSufficientStackSpace(RD->getLocation(), [&] { 3433 DeclareImplicitCopyConstructor(RD); 3434 }); 3435 } 3436 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor()) { 3437 runWithSufficientStackSpace(RD->getLocation(), [&] { 3438 DeclareImplicitMoveConstructor(RD); 3439 }); 3440 } 3441 } else { 3442 Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); 3443 if (RD->needsImplicitCopyAssignment()) { 3444 runWithSufficientStackSpace(RD->getLocation(), [&] { 3445 DeclareImplicitCopyAssignment(RD); 3446 }); 3447 } 3448 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment()) { 3449 runWithSufficientStackSpace(RD->getLocation(), [&] { 3450 DeclareImplicitMoveAssignment(RD); 3451 }); 3452 } 3453 } 3454 3455 if (ConstArg) 3456 ArgType.addConst(); 3457 if (VolatileArg) 3458 ArgType.addVolatile(); 3459 3460 // This isn't /really/ specified by the standard, but it's implied 3461 // we should be working from a PRValue in the case of move to ensure 3462 // that we prefer to bind to rvalue references, and an LValue in the 3463 // case of copy to ensure we don't bind to rvalue references. 3464 // Possibly an XValue is actually correct in the case of move, but 3465 // there is no semantic difference for class types in this restricted 3466 // case. 3467 if (SM == CXXSpecialMemberKind::CopyConstructor || 3468 SM == CXXSpecialMemberKind::CopyAssignment) 3469 VK = VK_LValue; 3470 else 3471 VK = VK_PRValue; 3472 } 3473 3474 OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK); 3475 3476 if (SM != CXXSpecialMemberKind::DefaultConstructor) { 3477 NumArgs = 1; 3478 Arg = &FakeArg; 3479 } 3480 3481 // Create the object argument 3482 QualType ThisTy = CanTy; 3483 if (ConstThis) 3484 ThisTy.addConst(); 3485 if (VolatileThis) 3486 ThisTy.addVolatile(); 3487 Expr::Classification Classification = 3488 OpaqueValueExpr(LookupLoc, ThisTy, RValueThis ? VK_PRValue : VK_LValue) 3489 .Classify(Context); 3490 3491 // Now we perform lookup on the name we computed earlier and do overload 3492 // resolution. Lookup is only performed directly into the class since there 3493 // will always be a (possibly implicit) declaration to shadow any others. 3494 OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal); 3495 DeclContext::lookup_result R = RD->lookup(Name); 3496 3497 if (R.empty()) { 3498 // We might have no default constructor because we have a lambda's closure 3499 // type, rather than because there's some other declared constructor. 3500 // Every class has a copy/move constructor, copy/move assignment, and 3501 // destructor. 3502 assert(SM == CXXSpecialMemberKind::DefaultConstructor && 3503 "lookup for a constructor or assignment operator was empty"); 3504 Result->setMethod(nullptr); 3505 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); 3506 return *Result; 3507 } 3508 3509 // Copy the candidates as our processing of them may load new declarations 3510 // from an external source and invalidate lookup_result. 3511 SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end()); 3512 3513 for (NamedDecl *CandDecl : Candidates) { 3514 if (CandDecl->isInvalidDecl()) 3515 continue; 3516 3517 DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public); 3518 auto CtorInfo = getConstructorInfo(Cand); 3519 if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) { 3520 if (SM == CXXSpecialMemberKind::CopyAssignment || 3521 SM == CXXSpecialMemberKind::MoveAssignment) 3522 AddMethodCandidate(M, Cand, RD, ThisTy, Classification, 3523 llvm::ArrayRef(&Arg, NumArgs), OCS, true); 3524 else if (CtorInfo) 3525 AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl, 3526 llvm::ArrayRef(&Arg, NumArgs), OCS, 3527 /*SuppressUserConversions*/ true); 3528 else 3529 AddOverloadCandidate(M, Cand, llvm::ArrayRef(&Arg, NumArgs), OCS, 3530 /*SuppressUserConversions*/ true); 3531 } else if (FunctionTemplateDecl *Tmpl = 3532 dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) { 3533 if (SM == CXXSpecialMemberKind::CopyAssignment || 3534 SM == CXXSpecialMemberKind::MoveAssignment) 3535 AddMethodTemplateCandidate(Tmpl, Cand, RD, nullptr, ThisTy, 3536 Classification, 3537 llvm::ArrayRef(&Arg, NumArgs), OCS, true); 3538 else if (CtorInfo) 3539 AddTemplateOverloadCandidate(CtorInfo.ConstructorTmpl, 3540 CtorInfo.FoundDecl, nullptr, 3541 llvm::ArrayRef(&Arg, NumArgs), OCS, true); 3542 else 3543 AddTemplateOverloadCandidate(Tmpl, Cand, nullptr, 3544 llvm::ArrayRef(&Arg, NumArgs), OCS, true); 3545 } else { 3546 assert(isa<UsingDecl>(Cand.getDecl()) && 3547 "illegal Kind of operator = Decl"); 3548 } 3549 } 3550 3551 OverloadCandidateSet::iterator Best; 3552 switch (OCS.BestViableFunction(*this, LookupLoc, Best)) { 3553 case OR_Success: 3554 Result->setMethod(cast<CXXMethodDecl>(Best->Function)); 3555 Result->setKind(SpecialMemberOverloadResult::Success); 3556 break; 3557 3558 case OR_Deleted: 3559 Result->setMethod(cast<CXXMethodDecl>(Best->Function)); 3560 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); 3561 break; 3562 3563 case OR_Ambiguous: 3564 Result->setMethod(nullptr); 3565 Result->setKind(SpecialMemberOverloadResult::Ambiguous); 3566 break; 3567 3568 case OR_No_Viable_Function: 3569 Result->setMethod(nullptr); 3570 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); 3571 break; 3572 } 3573 3574 return *Result; 3575 } 3576 3577 CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) { 3578 SpecialMemberOverloadResult Result = 3579 LookupSpecialMember(Class, CXXSpecialMemberKind::DefaultConstructor, 3580 false, false, false, false, false); 3581 3582 return cast_or_null<CXXConstructorDecl>(Result.getMethod()); 3583 } 3584 3585 CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class, 3586 unsigned Quals) { 3587 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && 3588 "non-const, non-volatile qualifiers for copy ctor arg"); 3589 SpecialMemberOverloadResult Result = LookupSpecialMember( 3590 Class, CXXSpecialMemberKind::CopyConstructor, Quals & Qualifiers::Const, 3591 Quals & Qualifiers::Volatile, false, false, false); 3592 3593 return cast_or_null<CXXConstructorDecl>(Result.getMethod()); 3594 } 3595 3596 CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class, 3597 unsigned Quals) { 3598 SpecialMemberOverloadResult Result = LookupSpecialMember( 3599 Class, CXXSpecialMemberKind::MoveConstructor, Quals & Qualifiers::Const, 3600 Quals & Qualifiers::Volatile, false, false, false); 3601 3602 return cast_or_null<CXXConstructorDecl>(Result.getMethod()); 3603 } 3604 3605 DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) { 3606 // If the implicit constructors have not yet been declared, do so now. 3607 if (CanDeclareSpecialMemberFunction(Class)) { 3608 runWithSufficientStackSpace(Class->getLocation(), [&] { 3609 if (Class->needsImplicitDefaultConstructor()) 3610 DeclareImplicitDefaultConstructor(Class); 3611 if (Class->needsImplicitCopyConstructor()) 3612 DeclareImplicitCopyConstructor(Class); 3613 if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor()) 3614 DeclareImplicitMoveConstructor(Class); 3615 }); 3616 } 3617 3618 CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class)); 3619 DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T); 3620 return Class->lookup(Name); 3621 } 3622 3623 CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class, 3624 unsigned Quals, bool RValueThis, 3625 unsigned ThisQuals) { 3626 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && 3627 "non-const, non-volatile qualifiers for copy assignment arg"); 3628 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && 3629 "non-const, non-volatile qualifiers for copy assignment this"); 3630 SpecialMemberOverloadResult Result = LookupSpecialMember( 3631 Class, CXXSpecialMemberKind::CopyAssignment, Quals & Qualifiers::Const, 3632 Quals & Qualifiers::Volatile, RValueThis, ThisQuals & Qualifiers::Const, 3633 ThisQuals & Qualifiers::Volatile); 3634 3635 return Result.getMethod(); 3636 } 3637 3638 CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class, 3639 unsigned Quals, 3640 bool RValueThis, 3641 unsigned ThisQuals) { 3642 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && 3643 "non-const, non-volatile qualifiers for copy assignment this"); 3644 SpecialMemberOverloadResult Result = LookupSpecialMember( 3645 Class, CXXSpecialMemberKind::MoveAssignment, Quals & Qualifiers::Const, 3646 Quals & Qualifiers::Volatile, RValueThis, ThisQuals & Qualifiers::Const, 3647 ThisQuals & Qualifiers::Volatile); 3648 3649 return Result.getMethod(); 3650 } 3651 3652 CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) { 3653 return cast_or_null<CXXDestructorDecl>( 3654 LookupSpecialMember(Class, CXXSpecialMemberKind::Destructor, false, false, 3655 false, false, false) 3656 .getMethod()); 3657 } 3658 3659 Sema::LiteralOperatorLookupResult 3660 Sema::LookupLiteralOperator(Scope *S, LookupResult &R, 3661 ArrayRef<QualType> ArgTys, bool AllowRaw, 3662 bool AllowTemplate, bool AllowStringTemplatePack, 3663 bool DiagnoseMissing, StringLiteral *StringLit) { 3664 LookupName(R, S); 3665 assert(R.getResultKind() != LookupResult::Ambiguous && 3666 "literal operator lookup can't be ambiguous"); 3667 3668 // Filter the lookup results appropriately. 3669 LookupResult::Filter F = R.makeFilter(); 3670 3671 bool AllowCooked = true; 3672 bool FoundRaw = false; 3673 bool FoundTemplate = false; 3674 bool FoundStringTemplatePack = false; 3675 bool FoundCooked = false; 3676 3677 while (F.hasNext()) { 3678 Decl *D = F.next(); 3679 if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D)) 3680 D = USD->getTargetDecl(); 3681 3682 // If the declaration we found is invalid, skip it. 3683 if (D->isInvalidDecl()) { 3684 F.erase(); 3685 continue; 3686 } 3687 3688 bool IsRaw = false; 3689 bool IsTemplate = false; 3690 bool IsStringTemplatePack = false; 3691 bool IsCooked = false; 3692 3693 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 3694 if (FD->getNumParams() == 1 && 3695 FD->getParamDecl(0)->getType()->getAs<PointerType>()) 3696 IsRaw = true; 3697 else if (FD->getNumParams() == ArgTys.size()) { 3698 IsCooked = true; 3699 for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) { 3700 QualType ParamTy = FD->getParamDecl(ArgIdx)->getType(); 3701 if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) { 3702 IsCooked = false; 3703 break; 3704 } 3705 } 3706 } 3707 } 3708 if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) { 3709 TemplateParameterList *Params = FD->getTemplateParameters(); 3710 if (Params->size() == 1) { 3711 IsTemplate = true; 3712 if (!Params->getParam(0)->isTemplateParameterPack() && !StringLit) { 3713 // Implied but not stated: user-defined integer and floating literals 3714 // only ever use numeric literal operator templates, not templates 3715 // taking a parameter of class type. 3716 F.erase(); 3717 continue; 3718 } 3719 3720 // A string literal template is only considered if the string literal 3721 // is a well-formed template argument for the template parameter. 3722 if (StringLit) { 3723 SFINAETrap Trap(*this); 3724 CheckTemplateArgumentInfo CTAI; 3725 TemplateArgumentLoc Arg(TemplateArgument(StringLit), StringLit); 3726 if (CheckTemplateArgument( 3727 Params->getParam(0), Arg, FD, R.getNameLoc(), R.getNameLoc(), 3728 /*ArgumentPackIndex=*/0, CTAI, CTAK_Specified) || 3729 Trap.hasErrorOccurred()) 3730 IsTemplate = false; 3731 } 3732 } else { 3733 IsStringTemplatePack = true; 3734 } 3735 } 3736 3737 if (AllowTemplate && StringLit && IsTemplate) { 3738 FoundTemplate = true; 3739 AllowRaw = false; 3740 AllowCooked = false; 3741 AllowStringTemplatePack = false; 3742 if (FoundRaw || FoundCooked || FoundStringTemplatePack) { 3743 F.restart(); 3744 FoundRaw = FoundCooked = FoundStringTemplatePack = false; 3745 } 3746 } else if (AllowCooked && IsCooked) { 3747 FoundCooked = true; 3748 AllowRaw = false; 3749 AllowTemplate = StringLit; 3750 AllowStringTemplatePack = false; 3751 if (FoundRaw || FoundTemplate || FoundStringTemplatePack) { 3752 // Go through again and remove the raw and template decls we've 3753 // already found. 3754 F.restart(); 3755 FoundRaw = FoundTemplate = FoundStringTemplatePack = false; 3756 } 3757 } else if (AllowRaw && IsRaw) { 3758 FoundRaw = true; 3759 } else if (AllowTemplate && IsTemplate) { 3760 FoundTemplate = true; 3761 } else if (AllowStringTemplatePack && IsStringTemplatePack) { 3762 FoundStringTemplatePack = true; 3763 } else { 3764 F.erase(); 3765 } 3766 } 3767 3768 F.done(); 3769 3770 // Per C++20 [lex.ext]p5, we prefer the template form over the non-template 3771 // form for string literal operator templates. 3772 if (StringLit && FoundTemplate) 3773 return LOLR_Template; 3774 3775 // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching 3776 // parameter type, that is used in preference to a raw literal operator 3777 // or literal operator template. 3778 if (FoundCooked) 3779 return LOLR_Cooked; 3780 3781 // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal 3782 // operator template, but not both. 3783 if (FoundRaw && FoundTemplate) { 3784 Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName(); 3785 for (const NamedDecl *D : R) 3786 NoteOverloadCandidate(D, D->getUnderlyingDecl()->getAsFunction()); 3787 return LOLR_Error; 3788 } 3789 3790 if (FoundRaw) 3791 return LOLR_Raw; 3792 3793 if (FoundTemplate) 3794 return LOLR_Template; 3795 3796 if (FoundStringTemplatePack) 3797 return LOLR_StringTemplatePack; 3798 3799 // Didn't find anything we could use. 3800 if (DiagnoseMissing) { 3801 Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator) 3802 << R.getLookupName() << (int)ArgTys.size() << ArgTys[0] 3803 << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw 3804 << (AllowTemplate || AllowStringTemplatePack); 3805 return LOLR_Error; 3806 } 3807 3808 return LOLR_ErrorNoDiagnostic; 3809 } 3810 3811 void ADLResult::insert(NamedDecl *New) { 3812 NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())]; 3813 3814 // If we haven't yet seen a decl for this key, or the last decl 3815 // was exactly this one, we're done. 3816 if (Old == nullptr || Old == New) { 3817 Old = New; 3818 return; 3819 } 3820 3821 // Otherwise, decide which is a more recent redeclaration. 3822 FunctionDecl *OldFD = Old->getAsFunction(); 3823 FunctionDecl *NewFD = New->getAsFunction(); 3824 3825 FunctionDecl *Cursor = NewFD; 3826 while (true) { 3827 Cursor = Cursor->getPreviousDecl(); 3828 3829 // If we got to the end without finding OldFD, OldFD is the newer 3830 // declaration; leave things as they are. 3831 if (!Cursor) return; 3832 3833 // If we do find OldFD, then NewFD is newer. 3834 if (Cursor == OldFD) break; 3835 3836 // Otherwise, keep looking. 3837 } 3838 3839 Old = New; 3840 } 3841 3842 void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc, 3843 ArrayRef<Expr *> Args, ADLResult &Result) { 3844 // Find all of the associated namespaces and classes based on the 3845 // arguments we have. 3846 AssociatedNamespaceSet AssociatedNamespaces; 3847 AssociatedClassSet AssociatedClasses; 3848 FindAssociatedClassesAndNamespaces(Loc, Args, 3849 AssociatedNamespaces, 3850 AssociatedClasses); 3851 3852 // C++ [basic.lookup.argdep]p3: 3853 // Let X be the lookup set produced by unqualified lookup (3.4.1) 3854 // and let Y be the lookup set produced by argument dependent 3855 // lookup (defined as follows). If X contains [...] then Y is 3856 // empty. Otherwise Y is the set of declarations found in the 3857 // namespaces associated with the argument types as described 3858 // below. The set of declarations found by the lookup of the name 3859 // is the union of X and Y. 3860 // 3861 // Here, we compute Y and add its members to the overloaded 3862 // candidate set. 3863 for (auto *NS : AssociatedNamespaces) { 3864 // When considering an associated namespace, the lookup is the 3865 // same as the lookup performed when the associated namespace is 3866 // used as a qualifier (3.4.3.2) except that: 3867 // 3868 // -- Any using-directives in the associated namespace are 3869 // ignored. 3870 // 3871 // -- Any namespace-scope friend functions declared in 3872 // associated classes are visible within their respective 3873 // namespaces even if they are not visible during an ordinary 3874 // lookup (11.4). 3875 // 3876 // C++20 [basic.lookup.argdep] p4.3 3877 // -- are exported, are attached to a named module M, do not appear 3878 // in the translation unit containing the point of the lookup, and 3879 // have the same innermost enclosing non-inline namespace scope as 3880 // a declaration of an associated entity attached to M. 3881 DeclContext::lookup_result R = NS->lookup(Name); 3882 for (auto *D : R) { 3883 auto *Underlying = D; 3884 if (auto *USD = dyn_cast<UsingShadowDecl>(D)) 3885 Underlying = USD->getTargetDecl(); 3886 3887 if (!isa<FunctionDecl>(Underlying) && 3888 !isa<FunctionTemplateDecl>(Underlying)) 3889 continue; 3890 3891 // The declaration is visible to argument-dependent lookup if either 3892 // it's ordinarily visible or declared as a friend in an associated 3893 // class. 3894 bool Visible = false; 3895 for (D = D->getMostRecentDecl(); D; 3896 D = cast_or_null<NamedDecl>(D->getPreviousDecl())) { 3897 if (D->getIdentifierNamespace() & Decl::IDNS_Ordinary) { 3898 if (isVisible(D)) { 3899 Visible = true; 3900 break; 3901 } 3902 3903 if (!getLangOpts().CPlusPlusModules) 3904 continue; 3905 3906 if (D->isInExportDeclContext()) { 3907 Module *FM = D->getOwningModule(); 3908 // C++20 [basic.lookup.argdep] p4.3 .. are exported ... 3909 // exports are only valid in module purview and outside of any 3910 // PMF (although a PMF should not even be present in a module 3911 // with an import). 3912 assert(FM && 3913 (FM->isNamedModule() || FM->isImplicitGlobalModule()) && 3914 !FM->isPrivateModule() && "bad export context"); 3915 // .. are attached to a named module M, do not appear in the 3916 // translation unit containing the point of the lookup.. 3917 if (D->isInAnotherModuleUnit() && 3918 llvm::any_of(AssociatedClasses, [&](auto *E) { 3919 // ... and have the same innermost enclosing non-inline 3920 // namespace scope as a declaration of an associated entity 3921 // attached to M 3922 if (E->getOwningModule() != FM) 3923 return false; 3924 // TODO: maybe this could be cached when generating the 3925 // associated namespaces / entities. 3926 DeclContext *Ctx = E->getDeclContext(); 3927 while (!Ctx->isFileContext() || Ctx->isInlineNamespace()) 3928 Ctx = Ctx->getParent(); 3929 return Ctx == NS; 3930 })) { 3931 Visible = true; 3932 break; 3933 } 3934 } 3935 } else if (D->getFriendObjectKind()) { 3936 auto *RD = cast<CXXRecordDecl>(D->getLexicalDeclContext()); 3937 // [basic.lookup.argdep]p4: 3938 // Argument-dependent lookup finds all declarations of functions and 3939 // function templates that 3940 // - ... 3941 // - are declared as a friend ([class.friend]) of any class with a 3942 // reachable definition in the set of associated entities, 3943 // 3944 // FIXME: If there's a merged definition of D that is reachable, then 3945 // the friend declaration should be considered. 3946 if (AssociatedClasses.count(RD) && isReachable(D)) { 3947 Visible = true; 3948 break; 3949 } 3950 } 3951 } 3952 3953 // FIXME: Preserve D as the FoundDecl. 3954 if (Visible) 3955 Result.insert(Underlying); 3956 } 3957 } 3958 } 3959 3960 //---------------------------------------------------------------------------- 3961 // Search for all visible declarations. 3962 //---------------------------------------------------------------------------- 3963 VisibleDeclConsumer::~VisibleDeclConsumer() { } 3964 3965 bool VisibleDeclConsumer::includeHiddenDecls() const { return false; } 3966 3967 namespace { 3968 3969 class ShadowContextRAII; 3970 3971 class VisibleDeclsRecord { 3972 public: 3973 /// An entry in the shadow map, which is optimized to store a 3974 /// single declaration (the common case) but can also store a list 3975 /// of declarations. 3976 typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry; 3977 3978 private: 3979 /// A mapping from declaration names to the declarations that have 3980 /// this name within a particular scope. 3981 typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap; 3982 3983 /// A list of shadow maps, which is used to model name hiding. 3984 std::list<ShadowMap> ShadowMaps; 3985 3986 /// The declaration contexts we have already visited. 3987 llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts; 3988 3989 friend class ShadowContextRAII; 3990 3991 public: 3992 /// Determine whether we have already visited this context 3993 /// (and, if not, note that we are going to visit that context now). 3994 bool visitedContext(DeclContext *Ctx) { 3995 return !VisitedContexts.insert(Ctx).second; 3996 } 3997 3998 bool alreadyVisitedContext(DeclContext *Ctx) { 3999 return VisitedContexts.count(Ctx); 4000 } 4001 4002 /// Determine whether the given declaration is hidden in the 4003 /// current scope. 4004 /// 4005 /// \returns the declaration that hides the given declaration, or 4006 /// NULL if no such declaration exists. 4007 NamedDecl *checkHidden(NamedDecl *ND); 4008 4009 /// Add a declaration to the current shadow map. 4010 void add(NamedDecl *ND) { 4011 ShadowMaps.back()[ND->getDeclName()].push_back(ND); 4012 } 4013 }; 4014 4015 /// RAII object that records when we've entered a shadow context. 4016 class ShadowContextRAII { 4017 VisibleDeclsRecord &Visible; 4018 4019 typedef VisibleDeclsRecord::ShadowMap ShadowMap; 4020 4021 public: 4022 ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) { 4023 Visible.ShadowMaps.emplace_back(); 4024 } 4025 4026 ~ShadowContextRAII() { 4027 Visible.ShadowMaps.pop_back(); 4028 } 4029 }; 4030 4031 } // end anonymous namespace 4032 4033 NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) { 4034 unsigned IDNS = ND->getIdentifierNamespace(); 4035 std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin(); 4036 for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend(); 4037 SM != SMEnd; ++SM) { 4038 ShadowMap::iterator Pos = SM->find(ND->getDeclName()); 4039 if (Pos == SM->end()) 4040 continue; 4041 4042 for (auto *D : Pos->second) { 4043 // A tag declaration does not hide a non-tag declaration. 4044 if (D->hasTagIdentifierNamespace() && 4045 (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary | 4046 Decl::IDNS_ObjCProtocol))) 4047 continue; 4048 4049 // Protocols are in distinct namespaces from everything else. 4050 if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol) 4051 || (IDNS & Decl::IDNS_ObjCProtocol)) && 4052 D->getIdentifierNamespace() != IDNS) 4053 continue; 4054 4055 // Functions and function templates in the same scope overload 4056 // rather than hide. FIXME: Look for hiding based on function 4057 // signatures! 4058 if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() && 4059 ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() && 4060 SM == ShadowMaps.rbegin()) 4061 continue; 4062 4063 // A shadow declaration that's created by a resolved using declaration 4064 // is not hidden by the same using declaration. 4065 if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) && 4066 cast<UsingShadowDecl>(ND)->getIntroducer() == D) 4067 continue; 4068 4069 // We've found a declaration that hides this one. 4070 return D; 4071 } 4072 } 4073 4074 return nullptr; 4075 } 4076 4077 namespace { 4078 class LookupVisibleHelper { 4079 public: 4080 LookupVisibleHelper(VisibleDeclConsumer &Consumer, bool IncludeDependentBases, 4081 bool LoadExternal) 4082 : Consumer(Consumer), IncludeDependentBases(IncludeDependentBases), 4083 LoadExternal(LoadExternal) {} 4084 4085 void lookupVisibleDecls(Sema &SemaRef, Scope *S, Sema::LookupNameKind Kind, 4086 bool IncludeGlobalScope) { 4087 // Determine the set of using directives available during 4088 // unqualified name lookup. 4089 Scope *Initial = S; 4090 UnqualUsingDirectiveSet UDirs(SemaRef); 4091 if (SemaRef.getLangOpts().CPlusPlus) { 4092 // Find the first namespace or translation-unit scope. 4093 while (S && !isNamespaceOrTranslationUnitScope(S)) 4094 S = S->getParent(); 4095 4096 UDirs.visitScopeChain(Initial, S); 4097 } 4098 UDirs.done(); 4099 4100 // Look for visible declarations. 4101 LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind); 4102 Result.setAllowHidden(Consumer.includeHiddenDecls()); 4103 if (!IncludeGlobalScope) 4104 Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl()); 4105 ShadowContextRAII Shadow(Visited); 4106 lookupInScope(Initial, Result, UDirs); 4107 } 4108 4109 void lookupVisibleDecls(Sema &SemaRef, DeclContext *Ctx, 4110 Sema::LookupNameKind Kind, bool IncludeGlobalScope) { 4111 LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind); 4112 Result.setAllowHidden(Consumer.includeHiddenDecls()); 4113 if (!IncludeGlobalScope) 4114 Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl()); 4115 4116 ShadowContextRAII Shadow(Visited); 4117 lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/true, 4118 /*InBaseClass=*/false); 4119 } 4120 4121 private: 4122 void lookupInDeclContext(DeclContext *Ctx, LookupResult &Result, 4123 bool QualifiedNameLookup, bool InBaseClass) { 4124 if (!Ctx) 4125 return; 4126 4127 // Make sure we don't visit the same context twice. 4128 if (Visited.visitedContext(Ctx->getPrimaryContext())) 4129 return; 4130 4131 Consumer.EnteredContext(Ctx); 4132 4133 // Outside C++, lookup results for the TU live on identifiers. 4134 if (isa<TranslationUnitDecl>(Ctx) && 4135 !Result.getSema().getLangOpts().CPlusPlus) { 4136 auto &S = Result.getSema(); 4137 auto &Idents = S.Context.Idents; 4138 4139 // Ensure all external identifiers are in the identifier table. 4140 if (LoadExternal) 4141 if (IdentifierInfoLookup *External = 4142 Idents.getExternalIdentifierLookup()) { 4143 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers()); 4144 for (StringRef Name = Iter->Next(); !Name.empty(); 4145 Name = Iter->Next()) 4146 Idents.get(Name); 4147 } 4148 4149 // Walk all lookup results in the TU for each identifier. 4150 for (const auto &Ident : Idents) { 4151 for (auto I = S.IdResolver.begin(Ident.getValue()), 4152 E = S.IdResolver.end(); 4153 I != E; ++I) { 4154 if (S.IdResolver.isDeclInScope(*I, Ctx)) { 4155 if (NamedDecl *ND = Result.getAcceptableDecl(*I)) { 4156 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass); 4157 Visited.add(ND); 4158 } 4159 } 4160 } 4161 } 4162 4163 return; 4164 } 4165 4166 if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx)) 4167 Result.getSema().ForceDeclarationOfImplicitMembers(Class); 4168 4169 llvm::SmallVector<NamedDecl *, 4> DeclsToVisit; 4170 // We sometimes skip loading namespace-level results (they tend to be huge). 4171 bool Load = LoadExternal || 4172 !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx)); 4173 // Enumerate all of the results in this context. 4174 for (DeclContextLookupResult R : 4175 Load ? Ctx->lookups() 4176 : Ctx->noload_lookups(/*PreserveInternalState=*/false)) 4177 for (auto *D : R) 4178 // Rather than visit immediately, we put ND into a vector and visit 4179 // all decls, in order, outside of this loop. The reason is that 4180 // Consumer.FoundDecl() and LookupResult::getAcceptableDecl(D) 4181 // may invalidate the iterators used in the two 4182 // loops above. 4183 DeclsToVisit.push_back(D); 4184 4185 for (auto *D : DeclsToVisit) 4186 if (auto *ND = Result.getAcceptableDecl(D)) { 4187 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass); 4188 Visited.add(ND); 4189 } 4190 4191 DeclsToVisit.clear(); 4192 4193 // Traverse using directives for qualified name lookup. 4194 if (QualifiedNameLookup) { 4195 ShadowContextRAII Shadow(Visited); 4196 for (auto *I : Ctx->using_directives()) { 4197 if (!Result.getSema().isVisible(I)) 4198 continue; 4199 lookupInDeclContext(I->getNominatedNamespace(), Result, 4200 QualifiedNameLookup, InBaseClass); 4201 } 4202 } 4203 4204 // Traverse the contexts of inherited C++ classes. 4205 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) { 4206 if (!Record->hasDefinition()) 4207 return; 4208 4209 for (const auto &B : Record->bases()) { 4210 QualType BaseType = B.getType(); 4211 4212 RecordDecl *RD; 4213 if (BaseType->isDependentType()) { 4214 if (!IncludeDependentBases) { 4215 // Don't look into dependent bases, because name lookup can't look 4216 // there anyway. 4217 continue; 4218 } 4219 const auto *TST = BaseType->getAs<TemplateSpecializationType>(); 4220 if (!TST) 4221 continue; 4222 TemplateName TN = TST->getTemplateName(); 4223 const auto *TD = 4224 dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl()); 4225 if (!TD) 4226 continue; 4227 RD = TD->getTemplatedDecl(); 4228 } else { 4229 const auto *Record = BaseType->getAs<RecordType>(); 4230 if (!Record) 4231 continue; 4232 RD = Record->getDecl(); 4233 } 4234 4235 // FIXME: It would be nice to be able to determine whether referencing 4236 // a particular member would be ambiguous. For example, given 4237 // 4238 // struct A { int member; }; 4239 // struct B { int member; }; 4240 // struct C : A, B { }; 4241 // 4242 // void f(C *c) { c->### } 4243 // 4244 // accessing 'member' would result in an ambiguity. However, we 4245 // could be smart enough to qualify the member with the base 4246 // class, e.g., 4247 // 4248 // c->B::member 4249 // 4250 // or 4251 // 4252 // c->A::member 4253 4254 // Find results in this base class (and its bases). 4255 ShadowContextRAII Shadow(Visited); 4256 lookupInDeclContext(RD, Result, QualifiedNameLookup, 4257 /*InBaseClass=*/true); 4258 } 4259 } 4260 4261 // Traverse the contexts of Objective-C classes. 4262 if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) { 4263 // Traverse categories. 4264 for (auto *Cat : IFace->visible_categories()) { 4265 ShadowContextRAII Shadow(Visited); 4266 lookupInDeclContext(Cat, Result, QualifiedNameLookup, 4267 /*InBaseClass=*/false); 4268 } 4269 4270 // Traverse protocols. 4271 for (auto *I : IFace->all_referenced_protocols()) { 4272 ShadowContextRAII Shadow(Visited); 4273 lookupInDeclContext(I, Result, QualifiedNameLookup, 4274 /*InBaseClass=*/false); 4275 } 4276 4277 // Traverse the superclass. 4278 if (IFace->getSuperClass()) { 4279 ShadowContextRAII Shadow(Visited); 4280 lookupInDeclContext(IFace->getSuperClass(), Result, QualifiedNameLookup, 4281 /*InBaseClass=*/true); 4282 } 4283 4284 // If there is an implementation, traverse it. We do this to find 4285 // synthesized ivars. 4286 if (IFace->getImplementation()) { 4287 ShadowContextRAII Shadow(Visited); 4288 lookupInDeclContext(IFace->getImplementation(), Result, 4289 QualifiedNameLookup, InBaseClass); 4290 } 4291 } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) { 4292 for (auto *I : Protocol->protocols()) { 4293 ShadowContextRAII Shadow(Visited); 4294 lookupInDeclContext(I, Result, QualifiedNameLookup, 4295 /*InBaseClass=*/false); 4296 } 4297 } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) { 4298 for (auto *I : Category->protocols()) { 4299 ShadowContextRAII Shadow(Visited); 4300 lookupInDeclContext(I, Result, QualifiedNameLookup, 4301 /*InBaseClass=*/false); 4302 } 4303 4304 // If there is an implementation, traverse it. 4305 if (Category->getImplementation()) { 4306 ShadowContextRAII Shadow(Visited); 4307 lookupInDeclContext(Category->getImplementation(), Result, 4308 QualifiedNameLookup, /*InBaseClass=*/true); 4309 } 4310 } 4311 } 4312 4313 void lookupInScope(Scope *S, LookupResult &Result, 4314 UnqualUsingDirectiveSet &UDirs) { 4315 // No clients run in this mode and it's not supported. Please add tests and 4316 // remove the assertion if you start relying on it. 4317 assert(!IncludeDependentBases && "Unsupported flag for lookupInScope"); 4318 4319 if (!S) 4320 return; 4321 4322 if (!S->getEntity() || 4323 (!S->getParent() && !Visited.alreadyVisitedContext(S->getEntity())) || 4324 (S->getEntity())->isFunctionOrMethod()) { 4325 FindLocalExternScope FindLocals(Result); 4326 // Walk through the declarations in this Scope. The consumer might add new 4327 // decls to the scope as part of deserialization, so make a copy first. 4328 SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end()); 4329 for (Decl *D : ScopeDecls) { 4330 if (NamedDecl *ND = dyn_cast<NamedDecl>(D)) 4331 if ((ND = Result.getAcceptableDecl(ND))) { 4332 Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false); 4333 Visited.add(ND); 4334 } 4335 } 4336 } 4337 4338 DeclContext *Entity = S->getLookupEntity(); 4339 if (Entity) { 4340 // Look into this scope's declaration context, along with any of its 4341 // parent lookup contexts (e.g., enclosing classes), up to the point 4342 // where we hit the context stored in the next outer scope. 4343 DeclContext *OuterCtx = findOuterContext(S); 4344 4345 for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx); 4346 Ctx = Ctx->getLookupParent()) { 4347 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) { 4348 if (Method->isInstanceMethod()) { 4349 // For instance methods, look for ivars in the method's interface. 4350 LookupResult IvarResult(Result.getSema(), Result.getLookupName(), 4351 Result.getNameLoc(), 4352 Sema::LookupMemberName); 4353 if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) { 4354 lookupInDeclContext(IFace, IvarResult, 4355 /*QualifiedNameLookup=*/false, 4356 /*InBaseClass=*/false); 4357 } 4358 } 4359 4360 // We've already performed all of the name lookup that we need 4361 // to for Objective-C methods; the next context will be the 4362 // outer scope. 4363 break; 4364 } 4365 4366 if (Ctx->isFunctionOrMethod()) 4367 continue; 4368 4369 lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/false, 4370 /*InBaseClass=*/false); 4371 } 4372 } else if (!S->getParent()) { 4373 // Look into the translation unit scope. We walk through the translation 4374 // unit's declaration context, because the Scope itself won't have all of 4375 // the declarations if we loaded a precompiled header. 4376 // FIXME: We would like the translation unit's Scope object to point to 4377 // the translation unit, so we don't need this special "if" branch. 4378 // However, doing so would force the normal C++ name-lookup code to look 4379 // into the translation unit decl when the IdentifierInfo chains would 4380 // suffice. Once we fix that problem (which is part of a more general 4381 // "don't look in DeclContexts unless we have to" optimization), we can 4382 // eliminate this. 4383 Entity = Result.getSema().Context.getTranslationUnitDecl(); 4384 lookupInDeclContext(Entity, Result, /*QualifiedNameLookup=*/false, 4385 /*InBaseClass=*/false); 4386 } 4387 4388 if (Entity) { 4389 // Lookup visible declarations in any namespaces found by using 4390 // directives. 4391 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity)) 4392 lookupInDeclContext( 4393 const_cast<DeclContext *>(UUE.getNominatedNamespace()), Result, 4394 /*QualifiedNameLookup=*/false, 4395 /*InBaseClass=*/false); 4396 } 4397 4398 // Lookup names in the parent scope. 4399 ShadowContextRAII Shadow(Visited); 4400 lookupInScope(S->getParent(), Result, UDirs); 4401 } 4402 4403 private: 4404 VisibleDeclsRecord Visited; 4405 VisibleDeclConsumer &Consumer; 4406 bool IncludeDependentBases; 4407 bool LoadExternal; 4408 }; 4409 } // namespace 4410 4411 void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind, 4412 VisibleDeclConsumer &Consumer, 4413 bool IncludeGlobalScope, bool LoadExternal) { 4414 LookupVisibleHelper H(Consumer, /*IncludeDependentBases=*/false, 4415 LoadExternal); 4416 H.lookupVisibleDecls(*this, S, Kind, IncludeGlobalScope); 4417 } 4418 4419 void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind, 4420 VisibleDeclConsumer &Consumer, 4421 bool IncludeGlobalScope, 4422 bool IncludeDependentBases, bool LoadExternal) { 4423 LookupVisibleHelper H(Consumer, IncludeDependentBases, LoadExternal); 4424 H.lookupVisibleDecls(*this, Ctx, Kind, IncludeGlobalScope); 4425 } 4426 4427 LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc, 4428 SourceLocation GnuLabelLoc) { 4429 // Do a lookup to see if we have a label with this name already. 4430 NamedDecl *Res = nullptr; 4431 4432 if (GnuLabelLoc.isValid()) { 4433 // Local label definitions always shadow existing labels. 4434 Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc); 4435 Scope *S = CurScope; 4436 PushOnScopeChains(Res, S, true); 4437 return cast<LabelDecl>(Res); 4438 } 4439 4440 // Not a GNU local label. 4441 Res = LookupSingleName(CurScope, II, Loc, LookupLabel, 4442 RedeclarationKind::NotForRedeclaration); 4443 // If we found a label, check to see if it is in the same context as us. 4444 // When in a Block, we don't want to reuse a label in an enclosing function. 4445 if (Res && Res->getDeclContext() != CurContext) 4446 Res = nullptr; 4447 if (!Res) { 4448 // If not forward referenced or defined already, create the backing decl. 4449 Res = LabelDecl::Create(Context, CurContext, Loc, II); 4450 Scope *S = CurScope->getFnParent(); 4451 assert(S && "Not in a function?"); 4452 PushOnScopeChains(Res, S, true); 4453 } 4454 return cast<LabelDecl>(Res); 4455 } 4456 4457 //===----------------------------------------------------------------------===// 4458 // Typo correction 4459 //===----------------------------------------------------------------------===// 4460 4461 static bool isCandidateViable(CorrectionCandidateCallback &CCC, 4462 TypoCorrection &Candidate) { 4463 Candidate.setCallbackDistance(CCC.RankCandidate(Candidate)); 4464 return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance; 4465 } 4466 4467 static void LookupPotentialTypoResult(Sema &SemaRef, 4468 LookupResult &Res, 4469 IdentifierInfo *Name, 4470 Scope *S, CXXScopeSpec *SS, 4471 DeclContext *MemberContext, 4472 bool EnteringContext, 4473 bool isObjCIvarLookup, 4474 bool FindHidden); 4475 4476 /// Check whether the declarations found for a typo correction are 4477 /// visible. Set the correction's RequiresImport flag to true if none of the 4478 /// declarations are visible, false otherwise. 4479 static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) { 4480 TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end(); 4481 4482 for (/**/; DI != DE; ++DI) 4483 if (!LookupResult::isVisible(SemaRef, *DI)) 4484 break; 4485 // No filtering needed if all decls are visible. 4486 if (DI == DE) { 4487 TC.setRequiresImport(false); 4488 return; 4489 } 4490 4491 llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI); 4492 bool AnyVisibleDecls = !NewDecls.empty(); 4493 4494 for (/**/; DI != DE; ++DI) { 4495 if (LookupResult::isVisible(SemaRef, *DI)) { 4496 if (!AnyVisibleDecls) { 4497 // Found a visible decl, discard all hidden ones. 4498 AnyVisibleDecls = true; 4499 NewDecls.clear(); 4500 } 4501 NewDecls.push_back(*DI); 4502 } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate()) 4503 NewDecls.push_back(*DI); 4504 } 4505 4506 if (NewDecls.empty()) 4507 TC = TypoCorrection(); 4508 else { 4509 TC.setCorrectionDecls(NewDecls); 4510 TC.setRequiresImport(!AnyVisibleDecls); 4511 } 4512 } 4513 4514 // Fill the supplied vector with the IdentifierInfo pointers for each piece of 4515 // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::", 4516 // fill the vector with the IdentifierInfo pointers for "foo" and "bar"). 4517 static void getNestedNameSpecifierIdentifiers( 4518 NestedNameSpecifier *NNS, 4519 SmallVectorImpl<const IdentifierInfo*> &Identifiers) { 4520 if (NestedNameSpecifier *Prefix = NNS->getPrefix()) 4521 getNestedNameSpecifierIdentifiers(Prefix, Identifiers); 4522 else 4523 Identifiers.clear(); 4524 4525 const IdentifierInfo *II = nullptr; 4526 4527 switch (NNS->getKind()) { 4528 case NestedNameSpecifier::Identifier: 4529 II = NNS->getAsIdentifier(); 4530 break; 4531 4532 case NestedNameSpecifier::Namespace: 4533 if (NNS->getAsNamespace()->isAnonymousNamespace()) 4534 return; 4535 II = NNS->getAsNamespace()->getIdentifier(); 4536 break; 4537 4538 case NestedNameSpecifier::NamespaceAlias: 4539 II = NNS->getAsNamespaceAlias()->getIdentifier(); 4540 break; 4541 4542 case NestedNameSpecifier::TypeSpecWithTemplate: 4543 case NestedNameSpecifier::TypeSpec: 4544 II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier(); 4545 break; 4546 4547 case NestedNameSpecifier::Global: 4548 case NestedNameSpecifier::Super: 4549 return; 4550 } 4551 4552 if (II) 4553 Identifiers.push_back(II); 4554 } 4555 4556 void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding, 4557 DeclContext *Ctx, bool InBaseClass) { 4558 // Don't consider hidden names for typo correction. 4559 if (Hiding) 4560 return; 4561 4562 // Only consider entities with identifiers for names, ignoring 4563 // special names (constructors, overloaded operators, selectors, 4564 // etc.). 4565 IdentifierInfo *Name = ND->getIdentifier(); 4566 if (!Name) 4567 return; 4568 4569 // Only consider visible declarations and declarations from modules with 4570 // names that exactly match. 4571 if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo) 4572 return; 4573 4574 FoundName(Name->getName()); 4575 } 4576 4577 void TypoCorrectionConsumer::FoundName(StringRef Name) { 4578 // Compute the edit distance between the typo and the name of this 4579 // entity, and add the identifier to the list of results. 4580 addName(Name, nullptr); 4581 } 4582 4583 void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) { 4584 // Compute the edit distance between the typo and this keyword, 4585 // and add the keyword to the list of results. 4586 addName(Keyword, nullptr, nullptr, true); 4587 } 4588 4589 void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND, 4590 NestedNameSpecifier *NNS, bool isKeyword) { 4591 // Use a simple length-based heuristic to determine the minimum possible 4592 // edit distance. If the minimum isn't good enough, bail out early. 4593 StringRef TypoStr = Typo->getName(); 4594 unsigned MinED = abs((int)Name.size() - (int)TypoStr.size()); 4595 if (MinED && TypoStr.size() / MinED < 3) 4596 return; 4597 4598 // Compute an upper bound on the allowable edit distance, so that the 4599 // edit-distance algorithm can short-circuit. 4600 unsigned UpperBound = (TypoStr.size() + 2) / 3; 4601 unsigned ED = TypoStr.edit_distance(Name, true, UpperBound); 4602 if (ED > UpperBound) return; 4603 4604 TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED); 4605 if (isKeyword) TC.makeKeyword(); 4606 TC.setCorrectionRange(nullptr, Result.getLookupNameInfo()); 4607 addCorrection(TC); 4608 } 4609 4610 static const unsigned MaxTypoDistanceResultSets = 5; 4611 4612 void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) { 4613 StringRef TypoStr = Typo->getName(); 4614 StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName(); 4615 4616 // For very short typos, ignore potential corrections that have a different 4617 // base identifier from the typo or which have a normalized edit distance 4618 // longer than the typo itself. 4619 if (TypoStr.size() < 3 && 4620 (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size())) 4621 return; 4622 4623 // If the correction is resolved but is not viable, ignore it. 4624 if (Correction.isResolved()) { 4625 checkCorrectionVisibility(SemaRef, Correction); 4626 if (!Correction || !isCandidateViable(*CorrectionValidator, Correction)) 4627 return; 4628 } 4629 4630 TypoResultList &CList = 4631 CorrectionResults[Correction.getEditDistance(false)][Name]; 4632 4633 if (!CList.empty() && !CList.back().isResolved()) 4634 CList.pop_back(); 4635 if (NamedDecl *NewND = Correction.getCorrectionDecl()) { 4636 auto RI = llvm::find_if(CList, [NewND](const TypoCorrection &TypoCorr) { 4637 return TypoCorr.getCorrectionDecl() == NewND; 4638 }); 4639 if (RI != CList.end()) { 4640 // The Correction refers to a decl already in the list. No insertion is 4641 // necessary and all further cases will return. 4642 4643 auto IsDeprecated = [](Decl *D) { 4644 while (D) { 4645 if (D->isDeprecated()) 4646 return true; 4647 D = llvm::dyn_cast_or_null<NamespaceDecl>(D->getDeclContext()); 4648 } 4649 return false; 4650 }; 4651 4652 // Prefer non deprecated Corrections over deprecated and only then 4653 // sort using an alphabetical order. 4654 std::pair<bool, std::string> NewKey = { 4655 IsDeprecated(Correction.getFoundDecl()), 4656 Correction.getAsString(SemaRef.getLangOpts())}; 4657 4658 std::pair<bool, std::string> PrevKey = { 4659 IsDeprecated(RI->getFoundDecl()), 4660 RI->getAsString(SemaRef.getLangOpts())}; 4661 4662 if (NewKey < PrevKey) 4663 *RI = Correction; 4664 return; 4665 } 4666 } 4667 if (CList.empty() || Correction.isResolved()) 4668 CList.push_back(Correction); 4669 4670 while (CorrectionResults.size() > MaxTypoDistanceResultSets) 4671 CorrectionResults.erase(std::prev(CorrectionResults.end())); 4672 } 4673 4674 void TypoCorrectionConsumer::addNamespaces( 4675 const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) { 4676 SearchNamespaces = true; 4677 4678 for (auto KNPair : KnownNamespaces) 4679 Namespaces.addNameSpecifier(KNPair.first); 4680 4681 bool SSIsTemplate = false; 4682 if (NestedNameSpecifier *NNS = 4683 (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) { 4684 if (const Type *T = NNS->getAsType()) 4685 SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization; 4686 } 4687 // Do not transform this into an iterator-based loop. The loop body can 4688 // trigger the creation of further types (through lazy deserialization) and 4689 // invalid iterators into this list. 4690 auto &Types = SemaRef.getASTContext().getTypes(); 4691 for (unsigned I = 0; I != Types.size(); ++I) { 4692 const auto *TI = Types[I]; 4693 if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) { 4694 CD = CD->getCanonicalDecl(); 4695 if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() && 4696 !CD->isUnion() && CD->getIdentifier() && 4697 (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) && 4698 (CD->isBeingDefined() || CD->isCompleteDefinition())) 4699 Namespaces.addNameSpecifier(CD); 4700 } 4701 } 4702 } 4703 4704 const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() { 4705 if (++CurrentTCIndex < ValidatedCorrections.size()) 4706 return ValidatedCorrections[CurrentTCIndex]; 4707 4708 CurrentTCIndex = ValidatedCorrections.size(); 4709 while (!CorrectionResults.empty()) { 4710 auto DI = CorrectionResults.begin(); 4711 if (DI->second.empty()) { 4712 CorrectionResults.erase(DI); 4713 continue; 4714 } 4715 4716 auto RI = DI->second.begin(); 4717 if (RI->second.empty()) { 4718 DI->second.erase(RI); 4719 performQualifiedLookups(); 4720 continue; 4721 } 4722 4723 TypoCorrection TC = RI->second.pop_back_val(); 4724 if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) { 4725 ValidatedCorrections.push_back(TC); 4726 return ValidatedCorrections[CurrentTCIndex]; 4727 } 4728 } 4729 return ValidatedCorrections[0]; // The empty correction. 4730 } 4731 4732 bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) { 4733 IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo(); 4734 DeclContext *TempMemberContext = MemberContext; 4735 CXXScopeSpec *TempSS = SS.get(); 4736 retry_lookup: 4737 LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext, 4738 EnteringContext, 4739 CorrectionValidator->IsObjCIvarLookup, 4740 Name == Typo && !Candidate.WillReplaceSpecifier()); 4741 switch (Result.getResultKind()) { 4742 case LookupResult::NotFound: 4743 case LookupResult::NotFoundInCurrentInstantiation: 4744 case LookupResult::FoundUnresolvedValue: 4745 if (TempSS) { 4746 // Immediately retry the lookup without the given CXXScopeSpec 4747 TempSS = nullptr; 4748 Candidate.WillReplaceSpecifier(true); 4749 goto retry_lookup; 4750 } 4751 if (TempMemberContext) { 4752 if (SS && !TempSS) 4753 TempSS = SS.get(); 4754 TempMemberContext = nullptr; 4755 goto retry_lookup; 4756 } 4757 if (SearchNamespaces) 4758 QualifiedResults.push_back(Candidate); 4759 break; 4760 4761 case LookupResult::Ambiguous: 4762 // We don't deal with ambiguities. 4763 break; 4764 4765 case LookupResult::Found: 4766 case LookupResult::FoundOverloaded: 4767 // Store all of the Decls for overloaded symbols 4768 for (auto *TRD : Result) 4769 Candidate.addCorrectionDecl(TRD); 4770 checkCorrectionVisibility(SemaRef, Candidate); 4771 if (!isCandidateViable(*CorrectionValidator, Candidate)) { 4772 if (SearchNamespaces) 4773 QualifiedResults.push_back(Candidate); 4774 break; 4775 } 4776 Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo()); 4777 return true; 4778 } 4779 return false; 4780 } 4781 4782 void TypoCorrectionConsumer::performQualifiedLookups() { 4783 unsigned TypoLen = Typo->getName().size(); 4784 for (const TypoCorrection &QR : QualifiedResults) { 4785 for (const auto &NSI : Namespaces) { 4786 DeclContext *Ctx = NSI.DeclCtx; 4787 const Type *NSType = NSI.NameSpecifier->getAsType(); 4788 4789 // If the current NestedNameSpecifier refers to a class and the 4790 // current correction candidate is the name of that class, then skip 4791 // it as it is unlikely a qualified version of the class' constructor 4792 // is an appropriate correction. 4793 if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() : 4794 nullptr) { 4795 if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo()) 4796 continue; 4797 } 4798 4799 TypoCorrection TC(QR); 4800 TC.ClearCorrectionDecls(); 4801 TC.setCorrectionSpecifier(NSI.NameSpecifier); 4802 TC.setQualifierDistance(NSI.EditDistance); 4803 TC.setCallbackDistance(0); // Reset the callback distance 4804 4805 // If the current correction candidate and namespace combination are 4806 // too far away from the original typo based on the normalized edit 4807 // distance, then skip performing a qualified name lookup. 4808 unsigned TmpED = TC.getEditDistance(true); 4809 if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED && 4810 TypoLen / TmpED < 3) 4811 continue; 4812 4813 Result.clear(); 4814 Result.setLookupName(QR.getCorrectionAsIdentifierInfo()); 4815 if (!SemaRef.LookupQualifiedName(Result, Ctx)) 4816 continue; 4817 4818 // Any corrections added below will be validated in subsequent 4819 // iterations of the main while() loop over the Consumer's contents. 4820 switch (Result.getResultKind()) { 4821 case LookupResult::Found: 4822 case LookupResult::FoundOverloaded: { 4823 if (SS && SS->isValid()) { 4824 std::string NewQualified = TC.getAsString(SemaRef.getLangOpts()); 4825 std::string OldQualified; 4826 llvm::raw_string_ostream OldOStream(OldQualified); 4827 SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy()); 4828 OldOStream << Typo->getName(); 4829 // If correction candidate would be an identical written qualified 4830 // identifier, then the existing CXXScopeSpec probably included a 4831 // typedef that didn't get accounted for properly. 4832 if (OldOStream.str() == NewQualified) 4833 break; 4834 } 4835 for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end(); 4836 TRD != TRDEnd; ++TRD) { 4837 if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(), 4838 NSType ? NSType->getAsCXXRecordDecl() 4839 : nullptr, 4840 TRD.getPair()) == Sema::AR_accessible) 4841 TC.addCorrectionDecl(*TRD); 4842 } 4843 if (TC.isResolved()) { 4844 TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo()); 4845 addCorrection(TC); 4846 } 4847 break; 4848 } 4849 case LookupResult::NotFound: 4850 case LookupResult::NotFoundInCurrentInstantiation: 4851 case LookupResult::Ambiguous: 4852 case LookupResult::FoundUnresolvedValue: 4853 break; 4854 } 4855 } 4856 } 4857 QualifiedResults.clear(); 4858 } 4859 4860 TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet( 4861 ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec) 4862 : Context(Context), CurContextChain(buildContextChain(CurContext)) { 4863 if (NestedNameSpecifier *NNS = 4864 CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) { 4865 llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier); 4866 NNS->print(SpecifierOStream, Context.getPrintingPolicy()); 4867 4868 getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers); 4869 } 4870 // Build the list of identifiers that would be used for an absolute 4871 // (from the global context) NestedNameSpecifier referring to the current 4872 // context. 4873 for (DeclContext *C : llvm::reverse(CurContextChain)) { 4874 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) 4875 CurContextIdentifiers.push_back(ND->getIdentifier()); 4876 } 4877 4878 // Add the global context as a NestedNameSpecifier 4879 SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()), 4880 NestedNameSpecifier::GlobalSpecifier(Context), 1}; 4881 DistanceMap[1].push_back(SI); 4882 } 4883 4884 auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain( 4885 DeclContext *Start) -> DeclContextList { 4886 assert(Start && "Building a context chain from a null context"); 4887 DeclContextList Chain; 4888 for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr; 4889 DC = DC->getLookupParent()) { 4890 NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC); 4891 if (!DC->isInlineNamespace() && !DC->isTransparentContext() && 4892 !(ND && ND->isAnonymousNamespace())) 4893 Chain.push_back(DC->getPrimaryContext()); 4894 } 4895 return Chain; 4896 } 4897 4898 unsigned 4899 TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier( 4900 DeclContextList &DeclChain, NestedNameSpecifier *&NNS) { 4901 unsigned NumSpecifiers = 0; 4902 for (DeclContext *C : llvm::reverse(DeclChain)) { 4903 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) { 4904 NNS = NestedNameSpecifier::Create(Context, NNS, ND); 4905 ++NumSpecifiers; 4906 } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) { 4907 NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(), 4908 RD->getTypeForDecl()); 4909 ++NumSpecifiers; 4910 } 4911 } 4912 return NumSpecifiers; 4913 } 4914 4915 void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier( 4916 DeclContext *Ctx) { 4917 NestedNameSpecifier *NNS = nullptr; 4918 unsigned NumSpecifiers = 0; 4919 DeclContextList NamespaceDeclChain(buildContextChain(Ctx)); 4920 DeclContextList FullNamespaceDeclChain(NamespaceDeclChain); 4921 4922 // Eliminate common elements from the two DeclContext chains. 4923 for (DeclContext *C : llvm::reverse(CurContextChain)) { 4924 if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C) 4925 break; 4926 NamespaceDeclChain.pop_back(); 4927 } 4928 4929 // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain 4930 NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS); 4931 4932 // Add an explicit leading '::' specifier if needed. 4933 if (NamespaceDeclChain.empty()) { 4934 // Rebuild the NestedNameSpecifier as a globally-qualified specifier. 4935 NNS = NestedNameSpecifier::GlobalSpecifier(Context); 4936 NumSpecifiers = 4937 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS); 4938 } else if (NamedDecl *ND = 4939 dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) { 4940 IdentifierInfo *Name = ND->getIdentifier(); 4941 bool SameNameSpecifier = false; 4942 if (llvm::is_contained(CurNameSpecifierIdentifiers, Name)) { 4943 std::string NewNameSpecifier; 4944 llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier); 4945 SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers; 4946 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers); 4947 NNS->print(SpecifierOStream, Context.getPrintingPolicy()); 4948 SameNameSpecifier = NewNameSpecifier == CurNameSpecifier; 4949 } 4950 if (SameNameSpecifier || llvm::is_contained(CurContextIdentifiers, Name)) { 4951 // Rebuild the NestedNameSpecifier as a globally-qualified specifier. 4952 NNS = NestedNameSpecifier::GlobalSpecifier(Context); 4953 NumSpecifiers = 4954 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS); 4955 } 4956 } 4957 4958 // If the built NestedNameSpecifier would be replacing an existing 4959 // NestedNameSpecifier, use the number of component identifiers that 4960 // would need to be changed as the edit distance instead of the number 4961 // of components in the built NestedNameSpecifier. 4962 if (NNS && !CurNameSpecifierIdentifiers.empty()) { 4963 SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers; 4964 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers); 4965 NumSpecifiers = 4966 llvm::ComputeEditDistance(llvm::ArrayRef(CurNameSpecifierIdentifiers), 4967 llvm::ArrayRef(NewNameSpecifierIdentifiers)); 4968 } 4969 4970 SpecifierInfo SI = {Ctx, NNS, NumSpecifiers}; 4971 DistanceMap[NumSpecifiers].push_back(SI); 4972 } 4973 4974 /// Perform name lookup for a possible result for typo correction. 4975 static void LookupPotentialTypoResult(Sema &SemaRef, 4976 LookupResult &Res, 4977 IdentifierInfo *Name, 4978 Scope *S, CXXScopeSpec *SS, 4979 DeclContext *MemberContext, 4980 bool EnteringContext, 4981 bool isObjCIvarLookup, 4982 bool FindHidden) { 4983 Res.suppressDiagnostics(); 4984 Res.clear(); 4985 Res.setLookupName(Name); 4986 Res.setAllowHidden(FindHidden); 4987 if (MemberContext) { 4988 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) { 4989 if (isObjCIvarLookup) { 4990 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) { 4991 Res.addDecl(Ivar); 4992 Res.resolveKind(); 4993 return; 4994 } 4995 } 4996 4997 if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration( 4998 Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) { 4999 Res.addDecl(Prop); 5000 Res.resolveKind(); 5001 return; 5002 } 5003 } 5004 5005 SemaRef.LookupQualifiedName(Res, MemberContext); 5006 return; 5007 } 5008 5009 SemaRef.LookupParsedName(Res, S, SS, 5010 /*ObjectType=*/QualType(), 5011 /*AllowBuiltinCreation=*/false, EnteringContext); 5012 5013 // Fake ivar lookup; this should really be part of 5014 // LookupParsedName. 5015 if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) { 5016 if (Method->isInstanceMethod() && Method->getClassInterface() && 5017 (Res.empty() || 5018 (Res.isSingleResult() && 5019 Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) { 5020 if (ObjCIvarDecl *IV 5021 = Method->getClassInterface()->lookupInstanceVariable(Name)) { 5022 Res.addDecl(IV); 5023 Res.resolveKind(); 5024 } 5025 } 5026 } 5027 } 5028 5029 /// Add keywords to the consumer as possible typo corrections. 5030 static void AddKeywordsToConsumer(Sema &SemaRef, 5031 TypoCorrectionConsumer &Consumer, 5032 Scope *S, CorrectionCandidateCallback &CCC, 5033 bool AfterNestedNameSpecifier) { 5034 if (AfterNestedNameSpecifier) { 5035 // For 'X::', we know exactly which keywords can appear next. 5036 Consumer.addKeywordResult("template"); 5037 if (CCC.WantExpressionKeywords) 5038 Consumer.addKeywordResult("operator"); 5039 return; 5040 } 5041 5042 if (CCC.WantObjCSuper) 5043 Consumer.addKeywordResult("super"); 5044 5045 if (CCC.WantTypeSpecifiers) { 5046 // Add type-specifier keywords to the set of results. 5047 static const char *const CTypeSpecs[] = { 5048 "char", "const", "double", "enum", "float", "int", "long", "short", 5049 "signed", "struct", "union", "unsigned", "void", "volatile", 5050 "_Complex", 5051 // storage-specifiers as well 5052 "extern", "inline", "static", "typedef" 5053 }; 5054 5055 for (const auto *CTS : CTypeSpecs) 5056 Consumer.addKeywordResult(CTS); 5057 5058 if (SemaRef.getLangOpts().C99 && !SemaRef.getLangOpts().C2y) 5059 Consumer.addKeywordResult("_Imaginary"); 5060 5061 if (SemaRef.getLangOpts().C99) 5062 Consumer.addKeywordResult("restrict"); 5063 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) 5064 Consumer.addKeywordResult("bool"); 5065 else if (SemaRef.getLangOpts().C99) 5066 Consumer.addKeywordResult("_Bool"); 5067 5068 if (SemaRef.getLangOpts().CPlusPlus) { 5069 Consumer.addKeywordResult("class"); 5070 Consumer.addKeywordResult("typename"); 5071 Consumer.addKeywordResult("wchar_t"); 5072 5073 if (SemaRef.getLangOpts().CPlusPlus11) { 5074 Consumer.addKeywordResult("char16_t"); 5075 Consumer.addKeywordResult("char32_t"); 5076 Consumer.addKeywordResult("constexpr"); 5077 Consumer.addKeywordResult("decltype"); 5078 Consumer.addKeywordResult("thread_local"); 5079 } 5080 } 5081 5082 if (SemaRef.getLangOpts().GNUKeywords) 5083 Consumer.addKeywordResult("typeof"); 5084 } else if (CCC.WantFunctionLikeCasts) { 5085 static const char *const CastableTypeSpecs[] = { 5086 "char", "double", "float", "int", "long", "short", 5087 "signed", "unsigned", "void" 5088 }; 5089 for (auto *kw : CastableTypeSpecs) 5090 Consumer.addKeywordResult(kw); 5091 } 5092 5093 if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) { 5094 Consumer.addKeywordResult("const_cast"); 5095 Consumer.addKeywordResult("dynamic_cast"); 5096 Consumer.addKeywordResult("reinterpret_cast"); 5097 Consumer.addKeywordResult("static_cast"); 5098 } 5099 5100 if (CCC.WantExpressionKeywords) { 5101 Consumer.addKeywordResult("sizeof"); 5102 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) { 5103 Consumer.addKeywordResult("false"); 5104 Consumer.addKeywordResult("true"); 5105 } 5106 5107 if (SemaRef.getLangOpts().CPlusPlus) { 5108 static const char *const CXXExprs[] = { 5109 "delete", "new", "operator", "throw", "typeid" 5110 }; 5111 for (const auto *CE : CXXExprs) 5112 Consumer.addKeywordResult(CE); 5113 5114 if (isa<CXXMethodDecl>(SemaRef.CurContext) && 5115 cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance()) 5116 Consumer.addKeywordResult("this"); 5117 5118 if (SemaRef.getLangOpts().CPlusPlus11) { 5119 Consumer.addKeywordResult("alignof"); 5120 Consumer.addKeywordResult("nullptr"); 5121 } 5122 } 5123 5124 if (SemaRef.getLangOpts().C11) { 5125 // FIXME: We should not suggest _Alignof if the alignof macro 5126 // is present. 5127 Consumer.addKeywordResult("_Alignof"); 5128 } 5129 } 5130 5131 if (CCC.WantRemainingKeywords) { 5132 if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) { 5133 // Statements. 5134 static const char *const CStmts[] = { 5135 "do", "else", "for", "goto", "if", "return", "switch", "while" }; 5136 for (const auto *CS : CStmts) 5137 Consumer.addKeywordResult(CS); 5138 5139 if (SemaRef.getLangOpts().CPlusPlus) { 5140 Consumer.addKeywordResult("catch"); 5141 Consumer.addKeywordResult("try"); 5142 } 5143 5144 if (S && S->getBreakParent()) 5145 Consumer.addKeywordResult("break"); 5146 5147 if (S && S->getContinueParent()) 5148 Consumer.addKeywordResult("continue"); 5149 5150 if (SemaRef.getCurFunction() && 5151 !SemaRef.getCurFunction()->SwitchStack.empty()) { 5152 Consumer.addKeywordResult("case"); 5153 Consumer.addKeywordResult("default"); 5154 } 5155 } else { 5156 if (SemaRef.getLangOpts().CPlusPlus) { 5157 Consumer.addKeywordResult("namespace"); 5158 Consumer.addKeywordResult("template"); 5159 } 5160 5161 if (S && S->isClassScope()) { 5162 Consumer.addKeywordResult("explicit"); 5163 Consumer.addKeywordResult("friend"); 5164 Consumer.addKeywordResult("mutable"); 5165 Consumer.addKeywordResult("private"); 5166 Consumer.addKeywordResult("protected"); 5167 Consumer.addKeywordResult("public"); 5168 Consumer.addKeywordResult("virtual"); 5169 } 5170 } 5171 5172 if (SemaRef.getLangOpts().CPlusPlus) { 5173 Consumer.addKeywordResult("using"); 5174 5175 if (SemaRef.getLangOpts().CPlusPlus11) 5176 Consumer.addKeywordResult("static_assert"); 5177 } 5178 } 5179 } 5180 5181 std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer( 5182 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind, 5183 Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, 5184 DeclContext *MemberContext, bool EnteringContext, 5185 const ObjCObjectPointerType *OPT, bool ErrorRecovery) { 5186 5187 if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking || 5188 DisableTypoCorrection) 5189 return nullptr; 5190 5191 // In Microsoft mode, don't perform typo correction in a template member 5192 // function dependent context because it interferes with the "lookup into 5193 // dependent bases of class templates" feature. 5194 if (getLangOpts().MSVCCompat && CurContext->isDependentContext() && 5195 isa<CXXMethodDecl>(CurContext)) 5196 return nullptr; 5197 5198 // We only attempt to correct typos for identifiers. 5199 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); 5200 if (!Typo) 5201 return nullptr; 5202 5203 // If the scope specifier itself was invalid, don't try to correct 5204 // typos. 5205 if (SS && SS->isInvalid()) 5206 return nullptr; 5207 5208 // Never try to correct typos during any kind of code synthesis. 5209 if (!CodeSynthesisContexts.empty()) 5210 return nullptr; 5211 5212 // Don't try to correct 'super'. 5213 if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier()) 5214 return nullptr; 5215 5216 // Abort if typo correction already failed for this specific typo. 5217 IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo); 5218 if (locs != TypoCorrectionFailures.end() && 5219 locs->second.count(TypoName.getLoc())) 5220 return nullptr; 5221 5222 // Don't try to correct the identifier "vector" when in AltiVec mode. 5223 // TODO: Figure out why typo correction misbehaves in this case, fix it, and 5224 // remove this workaround. 5225 if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector")) 5226 return nullptr; 5227 5228 // Provide a stop gap for files that are just seriously broken. Trying 5229 // to correct all typos can turn into a HUGE performance penalty, causing 5230 // some files to take minutes to get rejected by the parser. 5231 unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit; 5232 if (Limit && TyposCorrected >= Limit) 5233 return nullptr; 5234 ++TyposCorrected; 5235 5236 // If we're handling a missing symbol error, using modules, and the 5237 // special search all modules option is used, look for a missing import. 5238 if (ErrorRecovery && getLangOpts().Modules && 5239 getLangOpts().ModulesSearchAll) { 5240 // The following has the side effect of loading the missing module. 5241 getModuleLoader().lookupMissingImports(Typo->getName(), 5242 TypoName.getBeginLoc()); 5243 } 5244 5245 // Extend the lifetime of the callback. We delayed this until here 5246 // to avoid allocations in the hot path (which is where no typo correction 5247 // occurs). Note that CorrectionCandidateCallback is polymorphic and 5248 // initially stack-allocated. 5249 std::unique_ptr<CorrectionCandidateCallback> ClonedCCC = CCC.clone(); 5250 auto Consumer = std::make_unique<TypoCorrectionConsumer>( 5251 *this, TypoName, LookupKind, S, SS, std::move(ClonedCCC), MemberContext, 5252 EnteringContext); 5253 5254 // Perform name lookup to find visible, similarly-named entities. 5255 bool IsUnqualifiedLookup = false; 5256 DeclContext *QualifiedDC = MemberContext; 5257 if (MemberContext) { 5258 LookupVisibleDecls(MemberContext, LookupKind, *Consumer); 5259 5260 // Look in qualified interfaces. 5261 if (OPT) { 5262 for (auto *I : OPT->quals()) 5263 LookupVisibleDecls(I, LookupKind, *Consumer); 5264 } 5265 } else if (SS && SS->isSet()) { 5266 QualifiedDC = computeDeclContext(*SS, EnteringContext); 5267 if (!QualifiedDC) 5268 return nullptr; 5269 5270 LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer); 5271 } else { 5272 IsUnqualifiedLookup = true; 5273 } 5274 5275 // Determine whether we are going to search in the various namespaces for 5276 // corrections. 5277 bool SearchNamespaces 5278 = getLangOpts().CPlusPlus && 5279 (IsUnqualifiedLookup || (SS && SS->isSet())); 5280 5281 if (IsUnqualifiedLookup || SearchNamespaces) { 5282 // For unqualified lookup, look through all of the names that we have 5283 // seen in this translation unit. 5284 // FIXME: Re-add the ability to skip very unlikely potential corrections. 5285 for (const auto &I : Context.Idents) 5286 Consumer->FoundName(I.getKey()); 5287 5288 // Walk through identifiers in external identifier sources. 5289 // FIXME: Re-add the ability to skip very unlikely potential corrections. 5290 if (IdentifierInfoLookup *External 5291 = Context.Idents.getExternalIdentifierLookup()) { 5292 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers()); 5293 do { 5294 StringRef Name = Iter->Next(); 5295 if (Name.empty()) 5296 break; 5297 5298 Consumer->FoundName(Name); 5299 } while (true); 5300 } 5301 } 5302 5303 AddKeywordsToConsumer(*this, *Consumer, S, 5304 *Consumer->getCorrectionValidator(), 5305 SS && SS->isNotEmpty()); 5306 5307 // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going 5308 // to search those namespaces. 5309 if (SearchNamespaces) { 5310 // Load any externally-known namespaces. 5311 if (ExternalSource && !LoadedExternalKnownNamespaces) { 5312 SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces; 5313 LoadedExternalKnownNamespaces = true; 5314 ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces); 5315 for (auto *N : ExternalKnownNamespaces) 5316 KnownNamespaces[N] = true; 5317 } 5318 5319 Consumer->addNamespaces(KnownNamespaces); 5320 } 5321 5322 return Consumer; 5323 } 5324 5325 TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName, 5326 Sema::LookupNameKind LookupKind, 5327 Scope *S, CXXScopeSpec *SS, 5328 CorrectionCandidateCallback &CCC, 5329 CorrectTypoKind Mode, 5330 DeclContext *MemberContext, 5331 bool EnteringContext, 5332 const ObjCObjectPointerType *OPT, 5333 bool RecordFailure) { 5334 // Always let the ExternalSource have the first chance at correction, even 5335 // if we would otherwise have given up. 5336 if (ExternalSource) { 5337 if (TypoCorrection Correction = 5338 ExternalSource->CorrectTypo(TypoName, LookupKind, S, SS, CCC, 5339 MemberContext, EnteringContext, OPT)) 5340 return Correction; 5341 } 5342 5343 // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver; 5344 // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for 5345 // some instances of CTC_Unknown, while WantRemainingKeywords is true 5346 // for CTC_Unknown but not for CTC_ObjCMessageReceiver. 5347 bool ObjCMessageReceiver = CCC.WantObjCSuper && !CCC.WantRemainingKeywords; 5348 5349 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); 5350 auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC, 5351 MemberContext, EnteringContext, 5352 OPT, Mode == CTK_ErrorRecovery); 5353 5354 if (!Consumer) 5355 return TypoCorrection(); 5356 5357 // If we haven't found anything, we're done. 5358 if (Consumer->empty()) 5359 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); 5360 5361 // Make sure the best edit distance (prior to adding any namespace qualifiers) 5362 // is not more that about a third of the length of the typo's identifier. 5363 unsigned ED = Consumer->getBestEditDistance(true); 5364 unsigned TypoLen = Typo->getName().size(); 5365 if (ED > 0 && TypoLen / ED < 3) 5366 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); 5367 5368 TypoCorrection BestTC = Consumer->getNextCorrection(); 5369 TypoCorrection SecondBestTC = Consumer->getNextCorrection(); 5370 if (!BestTC) 5371 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); 5372 5373 ED = BestTC.getEditDistance(); 5374 5375 if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) { 5376 // If this was an unqualified lookup and we believe the callback 5377 // object wouldn't have filtered out possible corrections, note 5378 // that no correction was found. 5379 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); 5380 } 5381 5382 // If only a single name remains, return that result. 5383 if (!SecondBestTC || 5384 SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) { 5385 const TypoCorrection &Result = BestTC; 5386 5387 // Don't correct to a keyword that's the same as the typo; the keyword 5388 // wasn't actually in scope. 5389 if (ED == 0 && Result.isKeyword()) 5390 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); 5391 5392 TypoCorrection TC = Result; 5393 TC.setCorrectionRange(SS, TypoName); 5394 checkCorrectionVisibility(*this, TC); 5395 return TC; 5396 } else if (SecondBestTC && ObjCMessageReceiver) { 5397 // Prefer 'super' when we're completing in a message-receiver 5398 // context. 5399 5400 if (BestTC.getCorrection().getAsString() != "super") { 5401 if (SecondBestTC.getCorrection().getAsString() == "super") 5402 BestTC = SecondBestTC; 5403 else if ((*Consumer)["super"].front().isKeyword()) 5404 BestTC = (*Consumer)["super"].front(); 5405 } 5406 // Don't correct to a keyword that's the same as the typo; the keyword 5407 // wasn't actually in scope. 5408 if (BestTC.getEditDistance() == 0 || 5409 BestTC.getCorrection().getAsString() != "super") 5410 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); 5411 5412 BestTC.setCorrectionRange(SS, TypoName); 5413 return BestTC; 5414 } 5415 5416 // Record the failure's location if needed and return an empty correction. If 5417 // this was an unqualified lookup and we believe the callback object did not 5418 // filter out possible corrections, also cache the failure for the typo. 5419 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC); 5420 } 5421 5422 TypoExpr *Sema::CorrectTypoDelayed( 5423 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind, 5424 Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, 5425 TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode, 5426 DeclContext *MemberContext, bool EnteringContext, 5427 const ObjCObjectPointerType *OPT) { 5428 auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC, 5429 MemberContext, EnteringContext, 5430 OPT, Mode == CTK_ErrorRecovery); 5431 5432 // Give the external sema source a chance to correct the typo. 5433 TypoCorrection ExternalTypo; 5434 if (ExternalSource && Consumer) { 5435 ExternalTypo = ExternalSource->CorrectTypo( 5436 TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(), 5437 MemberContext, EnteringContext, OPT); 5438 if (ExternalTypo) 5439 Consumer->addCorrection(ExternalTypo); 5440 } 5441 5442 if (!Consumer || Consumer->empty()) 5443 return nullptr; 5444 5445 // Make sure the best edit distance (prior to adding any namespace qualifiers) 5446 // is not more that about a third of the length of the typo's identifier. 5447 unsigned ED = Consumer->getBestEditDistance(true); 5448 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); 5449 if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3) 5450 return nullptr; 5451 ExprEvalContexts.back().NumTypos++; 5452 return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC), 5453 TypoName.getLoc()); 5454 } 5455 5456 void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) { 5457 if (!CDecl) return; 5458 5459 if (isKeyword()) 5460 CorrectionDecls.clear(); 5461 5462 CorrectionDecls.push_back(CDecl); 5463 5464 if (!CorrectionName) 5465 CorrectionName = CDecl->getDeclName(); 5466 } 5467 5468 std::string TypoCorrection::getAsString(const LangOptions &LO) const { 5469 if (CorrectionNameSpec) { 5470 std::string tmpBuffer; 5471 llvm::raw_string_ostream PrefixOStream(tmpBuffer); 5472 CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO)); 5473 PrefixOStream << CorrectionName; 5474 return PrefixOStream.str(); 5475 } 5476 5477 return CorrectionName.getAsString(); 5478 } 5479 5480 bool CorrectionCandidateCallback::ValidateCandidate( 5481 const TypoCorrection &candidate) { 5482 if (!candidate.isResolved()) 5483 return true; 5484 5485 if (candidate.isKeyword()) 5486 return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts || 5487 WantRemainingKeywords || WantObjCSuper; 5488 5489 bool HasNonType = false; 5490 bool HasStaticMethod = false; 5491 bool HasNonStaticMethod = false; 5492 for (Decl *D : candidate) { 5493 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D)) 5494 D = FTD->getTemplatedDecl(); 5495 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 5496 if (Method->isStatic()) 5497 HasStaticMethod = true; 5498 else 5499 HasNonStaticMethod = true; 5500 } 5501 if (!isa<TypeDecl>(D)) 5502 HasNonType = true; 5503 } 5504 5505 if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod && 5506 !candidate.getCorrectionSpecifier()) 5507 return false; 5508 5509 return WantTypeSpecifiers || HasNonType; 5510 } 5511 5512 FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs, 5513 bool HasExplicitTemplateArgs, 5514 MemberExpr *ME) 5515 : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs), 5516 CurContext(SemaRef.CurContext), MemberFn(ME) { 5517 WantTypeSpecifiers = false; 5518 WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus && 5519 !HasExplicitTemplateArgs && NumArgs == 1; 5520 WantCXXNamedCasts = HasExplicitTemplateArgs && NumArgs == 1; 5521 WantRemainingKeywords = false; 5522 } 5523 5524 bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) { 5525 if (!candidate.getCorrectionDecl()) 5526 return candidate.isKeyword(); 5527 5528 for (auto *C : candidate) { 5529 FunctionDecl *FD = nullptr; 5530 NamedDecl *ND = C->getUnderlyingDecl(); 5531 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 5532 FD = FTD->getTemplatedDecl(); 5533 if (!HasExplicitTemplateArgs && !FD) { 5534 if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) { 5535 // If the Decl is neither a function nor a template function, 5536 // determine if it is a pointer or reference to a function. If so, 5537 // check against the number of arguments expected for the pointee. 5538 QualType ValType = cast<ValueDecl>(ND)->getType(); 5539 if (ValType.isNull()) 5540 continue; 5541 if (ValType->isAnyPointerType() || ValType->isReferenceType()) 5542 ValType = ValType->getPointeeType(); 5543 if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>()) 5544 if (FPT->getNumParams() == NumArgs) 5545 return true; 5546 } 5547 } 5548 5549 // A typo for a function-style cast can look like a function call in C++. 5550 if ((HasExplicitTemplateArgs ? getAsTypeTemplateDecl(ND) != nullptr 5551 : isa<TypeDecl>(ND)) && 5552 CurContext->getParentASTContext().getLangOpts().CPlusPlus) 5553 // Only a class or class template can take two or more arguments. 5554 return NumArgs <= 1 || HasExplicitTemplateArgs || isa<CXXRecordDecl>(ND); 5555 5556 // Skip the current candidate if it is not a FunctionDecl or does not accept 5557 // the current number of arguments. 5558 if (!FD || !(FD->getNumParams() >= NumArgs && 5559 FD->getMinRequiredArguments() <= NumArgs)) 5560 continue; 5561 5562 // If the current candidate is a non-static C++ method, skip the candidate 5563 // unless the method being corrected--or the current DeclContext, if the 5564 // function being corrected is not a method--is a method in the same class 5565 // or a descendent class of the candidate's parent class. 5566 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) { 5567 if (MemberFn || !MD->isStatic()) { 5568 const auto *CurMD = 5569 MemberFn 5570 ? dyn_cast_if_present<CXXMethodDecl>(MemberFn->getMemberDecl()) 5571 : dyn_cast_if_present<CXXMethodDecl>(CurContext); 5572 const CXXRecordDecl *CurRD = 5573 CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr; 5574 const CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl(); 5575 if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD))) 5576 continue; 5577 } 5578 } 5579 return true; 5580 } 5581 return false; 5582 } 5583 5584 void Sema::diagnoseTypo(const TypoCorrection &Correction, 5585 const PartialDiagnostic &TypoDiag, 5586 bool ErrorRecovery) { 5587 diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl), 5588 ErrorRecovery); 5589 } 5590 5591 /// Find which declaration we should import to provide the definition of 5592 /// the given declaration. 5593 static const NamedDecl *getDefinitionToImport(const NamedDecl *D) { 5594 if (const auto *VD = dyn_cast<VarDecl>(D)) 5595 return VD->getDefinition(); 5596 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 5597 return FD->getDefinition(); 5598 if (const auto *TD = dyn_cast<TagDecl>(D)) 5599 return TD->getDefinition(); 5600 if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(D)) 5601 return ID->getDefinition(); 5602 if (const auto *PD = dyn_cast<ObjCProtocolDecl>(D)) 5603 return PD->getDefinition(); 5604 if (const auto *TD = dyn_cast<TemplateDecl>(D)) 5605 if (const NamedDecl *TTD = TD->getTemplatedDecl()) 5606 return getDefinitionToImport(TTD); 5607 return nullptr; 5608 } 5609 5610 void Sema::diagnoseMissingImport(SourceLocation Loc, const NamedDecl *Decl, 5611 MissingImportKind MIK, bool Recover) { 5612 // Suggest importing a module providing the definition of this entity, if 5613 // possible. 5614 const NamedDecl *Def = getDefinitionToImport(Decl); 5615 if (!Def) 5616 Def = Decl; 5617 5618 Module *Owner = getOwningModule(Def); 5619 assert(Owner && "definition of hidden declaration is not in a module"); 5620 5621 llvm::SmallVector<Module*, 8> OwningModules; 5622 OwningModules.push_back(Owner); 5623 auto Merged = Context.getModulesWithMergedDefinition(Def); 5624 OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end()); 5625 5626 diagnoseMissingImport(Loc, Def, Def->getLocation(), OwningModules, MIK, 5627 Recover); 5628 } 5629 5630 /// Get a "quoted.h" or <angled.h> include path to use in a diagnostic 5631 /// suggesting the addition of a #include of the specified file. 5632 static std::string getHeaderNameForHeader(Preprocessor &PP, FileEntryRef E, 5633 llvm::StringRef IncludingFile) { 5634 bool IsAngled = false; 5635 auto Path = PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics( 5636 E, IncludingFile, &IsAngled); 5637 return (IsAngled ? '<' : '"') + Path + (IsAngled ? '>' : '"'); 5638 } 5639 5640 void Sema::diagnoseMissingImport(SourceLocation UseLoc, const NamedDecl *Decl, 5641 SourceLocation DeclLoc, 5642 ArrayRef<Module *> Modules, 5643 MissingImportKind MIK, bool Recover) { 5644 assert(!Modules.empty()); 5645 5646 // See https://github.com/llvm/llvm-project/issues/73893. It is generally 5647 // confusing than helpful to show the namespace is not visible. 5648 if (isa<NamespaceDecl>(Decl)) 5649 return; 5650 5651 auto NotePrevious = [&] { 5652 // FIXME: Suppress the note backtrace even under 5653 // -fdiagnostics-show-note-include-stack. We don't care how this 5654 // declaration was previously reached. 5655 Diag(DeclLoc, diag::note_unreachable_entity) << (int)MIK; 5656 }; 5657 5658 // Weed out duplicates from module list. 5659 llvm::SmallVector<Module*, 8> UniqueModules; 5660 llvm::SmallDenseSet<Module*, 8> UniqueModuleSet; 5661 for (auto *M : Modules) { 5662 if (M->isExplicitGlobalModule() || M->isPrivateModule()) 5663 continue; 5664 if (UniqueModuleSet.insert(M).second) 5665 UniqueModules.push_back(M); 5666 } 5667 5668 // Try to find a suitable header-name to #include. 5669 std::string HeaderName; 5670 if (OptionalFileEntryRef Header = 5671 PP.getHeaderToIncludeForDiagnostics(UseLoc, DeclLoc)) { 5672 if (const FileEntry *FE = 5673 SourceMgr.getFileEntryForID(SourceMgr.getFileID(UseLoc))) 5674 HeaderName = 5675 getHeaderNameForHeader(PP, *Header, FE->tryGetRealPathName()); 5676 } 5677 5678 // If we have a #include we should suggest, or if all definition locations 5679 // were in global module fragments, don't suggest an import. 5680 if (!HeaderName.empty() || UniqueModules.empty()) { 5681 // FIXME: Find a smart place to suggest inserting a #include, and add 5682 // a FixItHint there. 5683 Diag(UseLoc, diag::err_module_unimported_use_header) 5684 << (int)MIK << Decl << !HeaderName.empty() << HeaderName; 5685 // Produce a note showing where the entity was declared. 5686 NotePrevious(); 5687 if (Recover) 5688 createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]); 5689 return; 5690 } 5691 5692 Modules = UniqueModules; 5693 5694 auto GetModuleNameForDiagnostic = [this](const Module *M) -> std::string { 5695 if (M->isModuleMapModule()) 5696 return M->getFullModuleName(); 5697 5698 if (M->isImplicitGlobalModule()) 5699 M = M->getTopLevelModule(); 5700 5701 // If the current module unit is in the same module with M, it is OK to show 5702 // the partition name. Otherwise, it'll be sufficient to show the primary 5703 // module name. 5704 if (getASTContext().isInSameModule(M, getCurrentModule())) 5705 return M->getTopLevelModuleName().str(); 5706 else 5707 return M->getPrimaryModuleInterfaceName().str(); 5708 }; 5709 5710 if (Modules.size() > 1) { 5711 std::string ModuleList; 5712 unsigned N = 0; 5713 for (const auto *M : Modules) { 5714 ModuleList += "\n "; 5715 if (++N == 5 && N != Modules.size()) { 5716 ModuleList += "[...]"; 5717 break; 5718 } 5719 ModuleList += GetModuleNameForDiagnostic(M); 5720 } 5721 5722 Diag(UseLoc, diag::err_module_unimported_use_multiple) 5723 << (int)MIK << Decl << ModuleList; 5724 } else { 5725 // FIXME: Add a FixItHint that imports the corresponding module. 5726 Diag(UseLoc, diag::err_module_unimported_use) 5727 << (int)MIK << Decl << GetModuleNameForDiagnostic(Modules[0]); 5728 } 5729 5730 NotePrevious(); 5731 5732 // Try to recover by implicitly importing this module. 5733 if (Recover) 5734 createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]); 5735 } 5736 5737 void Sema::diagnoseTypo(const TypoCorrection &Correction, 5738 const PartialDiagnostic &TypoDiag, 5739 const PartialDiagnostic &PrevNote, 5740 bool ErrorRecovery) { 5741 std::string CorrectedStr = Correction.getAsString(getLangOpts()); 5742 std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts()); 5743 FixItHint FixTypo = FixItHint::CreateReplacement( 5744 Correction.getCorrectionRange(), CorrectedStr); 5745 5746 // Maybe we're just missing a module import. 5747 if (Correction.requiresImport()) { 5748 NamedDecl *Decl = Correction.getFoundDecl(); 5749 assert(Decl && "import required but no declaration to import"); 5750 5751 diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl, 5752 MissingImportKind::Declaration, ErrorRecovery); 5753 return; 5754 } 5755 5756 Diag(Correction.getCorrectionRange().getBegin(), TypoDiag) 5757 << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint()); 5758 5759 NamedDecl *ChosenDecl = 5760 Correction.isKeyword() ? nullptr : Correction.getFoundDecl(); 5761 5762 // For builtin functions which aren't declared anywhere in source, 5763 // don't emit the "declared here" note. 5764 if (const auto *FD = dyn_cast_if_present<FunctionDecl>(ChosenDecl); 5765 FD && FD->getBuiltinID() && 5766 PrevNote.getDiagID() == diag::note_previous_decl && 5767 Correction.getCorrectionRange().getBegin() == FD->getBeginLoc()) { 5768 ChosenDecl = nullptr; 5769 } 5770 5771 if (PrevNote.getDiagID() && ChosenDecl) 5772 Diag(ChosenDecl->getLocation(), PrevNote) 5773 << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo); 5774 5775 // Add any extra diagnostics. 5776 for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics()) 5777 Diag(Correction.getCorrectionRange().getBegin(), PD); 5778 } 5779 5780 TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC, 5781 TypoDiagnosticGenerator TDG, 5782 TypoRecoveryCallback TRC, 5783 SourceLocation TypoLoc) { 5784 assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer"); 5785 auto TE = new (Context) TypoExpr(Context.DependentTy, TypoLoc); 5786 auto &State = DelayedTypos[TE]; 5787 State.Consumer = std::move(TCC); 5788 State.DiagHandler = std::move(TDG); 5789 State.RecoveryHandler = std::move(TRC); 5790 if (TE) 5791 TypoExprs.push_back(TE); 5792 return TE; 5793 } 5794 5795 const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const { 5796 auto Entry = DelayedTypos.find(TE); 5797 assert(Entry != DelayedTypos.end() && 5798 "Failed to get the state for a TypoExpr!"); 5799 return Entry->second; 5800 } 5801 5802 void Sema::clearDelayedTypo(TypoExpr *TE) { 5803 DelayedTypos.erase(TE); 5804 } 5805 5806 void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) { 5807 DeclarationNameInfo Name(II, IILoc); 5808 LookupResult R(*this, Name, LookupAnyName, 5809 RedeclarationKind::NotForRedeclaration); 5810 R.suppressDiagnostics(); 5811 R.setHideTags(false); 5812 LookupName(R, S); 5813 R.dump(); 5814 } 5815 5816 void Sema::ActOnPragmaDump(Expr *E) { 5817 E->dump(); 5818 } 5819 5820 RedeclarationKind Sema::forRedeclarationInCurContext() const { 5821 // A declaration with an owning module for linkage can never link against 5822 // anything that is not visible. We don't need to check linkage here; if 5823 // the context has internal linkage, redeclaration lookup won't find things 5824 // from other TUs, and we can't safely compute linkage yet in general. 5825 if (cast<Decl>(CurContext)->getOwningModuleForLinkage()) 5826 return RedeclarationKind::ForVisibleRedeclaration; 5827 return RedeclarationKind::ForExternalRedeclaration; 5828 } 5829