xref: /llvm-project/llvm/include/llvm/ADT/PostOrderIterator.h (revision 797330e96c5abf0f1c623c1eb5ca69de28b484be)
1 //===- llvm/ADT/PostOrderIterator.h - PostOrder iterator --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file builds on the ADT/GraphTraits.h file to build a generic graph
11 /// post order iterator.  This should work over any graph type that has a
12 /// GraphTraits specialization.
13 ///
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_ADT_POSTORDERITERATOR_H
17 #define LLVM_ADT_POSTORDERITERATOR_H
18 
19 #include "llvm/ADT/GraphTraits.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include <iterator>
24 #include <optional>
25 #include <set>
26 #include <type_traits>
27 #include <utility>
28 
29 namespace llvm {
30 
31 // The po_iterator_storage template provides access to the set of already
32 // visited nodes during the po_iterator's depth-first traversal.
33 //
34 // The default implementation simply contains a set of visited nodes, while
35 // the External=true version uses a reference to an external set.
36 //
37 // It is possible to prune the depth-first traversal in several ways:
38 //
39 // - When providing an external set that already contains some graph nodes,
40 //   those nodes won't be visited again. This is useful for restarting a
41 //   post-order traversal on a graph with nodes that aren't dominated by a
42 //   single node.
43 //
44 // - By providing a custom SetType class, unwanted graph nodes can be excluded
45 //   by having the insert() function return false. This could for example
46 //   confine a CFG traversal to blocks in a specific loop.
47 //
48 // - Finally, by specializing the po_iterator_storage template itself, graph
49 //   edges can be pruned by returning false in the insertEdge() function. This
50 //   could be used to remove loop back-edges from the CFG seen by po_iterator.
51 //
52 // A specialized po_iterator_storage class can observe both the pre-order and
53 // the post-order. The insertEdge() function is called in a pre-order, while
54 // the finishPostorder() function is called just before the po_iterator moves
55 // on to the next node.
56 
57 /// Default po_iterator_storage implementation with an internal set object.
58 template<class SetType, bool External>
59 class po_iterator_storage {
60   SetType Visited;
61 
62 public:
63   // Return true if edge destination should be visited.
64   template <typename NodeRef>
65   bool insertEdge(std::optional<NodeRef> From, NodeRef To) {
66     return Visited.insert(To).second;
67   }
68 
69   // Called after all children of BB have been visited.
70   template <typename NodeRef> void finishPostorder(NodeRef BB) {}
71 };
72 
73 /// Specialization of po_iterator_storage that references an external set.
74 template<class SetType>
75 class po_iterator_storage<SetType, true> {
76   SetType &Visited;
77 
78 public:
79   po_iterator_storage(SetType &VSet) : Visited(VSet) {}
80   po_iterator_storage(const po_iterator_storage &S) : Visited(S.Visited) {}
81 
82   // Return true if edge destination should be visited, called with From = 0 for
83   // the root node.
84   // Graph edges can be pruned by specializing this function.
85   template <class NodeRef>
86   bool insertEdge(std::optional<NodeRef> From, NodeRef To) {
87     return Visited.insert(To).second;
88   }
89 
90   // Called after all children of BB have been visited.
91   template <class NodeRef> void finishPostorder(NodeRef BB) {}
92 };
93 
94 template <class GraphT,
95           class SetType = SmallPtrSet<typename GraphTraits<GraphT>::NodeRef, 8>,
96           bool ExtStorage = false, class GT = GraphTraits<GraphT>>
97 class po_iterator : public po_iterator_storage<SetType, ExtStorage> {
98 public:
99   // When External storage is used we are not multi-pass safe.
100   using iterator_category =
101       std::conditional_t<ExtStorage, std::input_iterator_tag,
102                          std::forward_iterator_tag>;
103   using value_type = typename GT::NodeRef;
104   using difference_type = std::ptrdiff_t;
105   using pointer = value_type *;
106   using reference = const value_type &;
107 
108 private:
109   using NodeRef = typename GT::NodeRef;
110   using ChildItTy = typename GT::ChildIteratorType;
111 
112   /// Used to maintain the ordering.
113   /// First element is basic block pointer, second is iterator for the next
114   /// child to visit, third is the end iterator.
115   SmallVector<std::tuple<NodeRef, ChildItTy, ChildItTy>, 8> VisitStack;
116 
117   po_iterator(NodeRef BB) {
118     this->insertEdge(std::optional<NodeRef>(), BB);
119     VisitStack.emplace_back(BB, GT::child_begin(BB), GT::child_end(BB));
120     traverseChild();
121   }
122 
123   po_iterator() = default; // End is when stack is empty.
124 
125   po_iterator(NodeRef BB, SetType &S)
126       : po_iterator_storage<SetType, ExtStorage>(S) {
127     if (this->insertEdge(std::optional<NodeRef>(), BB)) {
128       VisitStack.emplace_back(BB, GT::child_begin(BB), GT::child_end(BB));
129       traverseChild();
130     }
131   }
132 
133   po_iterator(SetType &S)
134       : po_iterator_storage<SetType, ExtStorage>(S) {
135   } // End is when stack is empty.
136 
137   void traverseChild() {
138     while (true) {
139       auto &Entry = VisitStack.back();
140       if (std::get<1>(Entry) == std::get<2>(Entry))
141         break;
142       NodeRef BB = *std::get<1>(Entry)++;
143       if (this->insertEdge(std::optional<NodeRef>(std::get<0>(Entry)), BB)) {
144         // If the block is not visited...
145         VisitStack.emplace_back(BB, GT::child_begin(BB), GT::child_end(BB));
146       }
147     }
148   }
149 
150 public:
151   // Provide static "constructors"...
152   static po_iterator begin(const GraphT &G) {
153     return po_iterator(GT::getEntryNode(G));
154   }
155   static po_iterator end(const GraphT &G) { return po_iterator(); }
156 
157   static po_iterator begin(const GraphT &G, SetType &S) {
158     return po_iterator(GT::getEntryNode(G), S);
159   }
160   static po_iterator end(const GraphT &G, SetType &S) { return po_iterator(S); }
161 
162   bool operator==(const po_iterator &x) const {
163     return VisitStack == x.VisitStack;
164   }
165   bool operator!=(const po_iterator &x) const { return !(*this == x); }
166 
167   reference operator*() const { return std::get<0>(VisitStack.back()); }
168 
169   // This is a nonstandard operator-> that dereferences the pointer an extra
170   // time... so that you can actually call methods ON the BasicBlock, because
171   // the contained type is a pointer.  This allows BBIt->getTerminator() f.e.
172   //
173   NodeRef operator->() const { return **this; }
174 
175   po_iterator &operator++() { // Preincrement
176     this->finishPostorder(std::get<0>(VisitStack.back()));
177     VisitStack.pop_back();
178     if (!VisitStack.empty())
179       traverseChild();
180     return *this;
181   }
182 
183   po_iterator operator++(int) { // Postincrement
184     po_iterator tmp = *this;
185     ++*this;
186     return tmp;
187   }
188 };
189 
190 // Provide global constructors that automatically figure out correct types...
191 //
192 template <class T>
193 po_iterator<T> po_begin(const T &G) { return po_iterator<T>::begin(G); }
194 template <class T>
195 po_iterator<T> po_end  (const T &G) { return po_iterator<T>::end(G); }
196 
197 template <class T> iterator_range<po_iterator<T>> post_order(const T &G) {
198   return make_range(po_begin(G), po_end(G));
199 }
200 
201 // Provide global definitions of external postorder iterators...
202 template <class T, class SetType = std::set<typename GraphTraits<T>::NodeRef>>
203 struct po_ext_iterator : public po_iterator<T, SetType, true> {
204   po_ext_iterator(const po_iterator<T, SetType, true> &V) :
205   po_iterator<T, SetType, true>(V) {}
206 };
207 
208 template<class T, class SetType>
209 po_ext_iterator<T, SetType> po_ext_begin(T G, SetType &S) {
210   return po_ext_iterator<T, SetType>::begin(G, S);
211 }
212 
213 template<class T, class SetType>
214 po_ext_iterator<T, SetType> po_ext_end(T G, SetType &S) {
215   return po_ext_iterator<T, SetType>::end(G, S);
216 }
217 
218 template <class T, class SetType>
219 iterator_range<po_ext_iterator<T, SetType>> post_order_ext(const T &G, SetType &S) {
220   return make_range(po_ext_begin(G, S), po_ext_end(G, S));
221 }
222 
223 // Provide global definitions of inverse post order iterators...
224 template <class T, class SetType = std::set<typename GraphTraits<T>::NodeRef>,
225           bool External = false>
226 struct ipo_iterator : public po_iterator<Inverse<T>, SetType, External> {
227   ipo_iterator(const po_iterator<Inverse<T>, SetType, External> &V) :
228      po_iterator<Inverse<T>, SetType, External> (V) {}
229 };
230 
231 template <class T>
232 ipo_iterator<T> ipo_begin(const T &G) {
233   return ipo_iterator<T>::begin(G);
234 }
235 
236 template <class T>
237 ipo_iterator<T> ipo_end(const T &G){
238   return ipo_iterator<T>::end(G);
239 }
240 
241 template <class T>
242 iterator_range<ipo_iterator<T>> inverse_post_order(const T &G) {
243   return make_range(ipo_begin(G), ipo_end(G));
244 }
245 
246 // Provide global definitions of external inverse postorder iterators...
247 template <class T, class SetType = std::set<typename GraphTraits<T>::NodeRef>>
248 struct ipo_ext_iterator : public ipo_iterator<T, SetType, true> {
249   ipo_ext_iterator(const ipo_iterator<T, SetType, true> &V) :
250     ipo_iterator<T, SetType, true>(V) {}
251   ipo_ext_iterator(const po_iterator<Inverse<T>, SetType, true> &V) :
252     ipo_iterator<T, SetType, true>(V) {}
253 };
254 
255 template <class T, class SetType>
256 ipo_ext_iterator<T, SetType> ipo_ext_begin(const T &G, SetType &S) {
257   return ipo_ext_iterator<T, SetType>::begin(G, S);
258 }
259 
260 template <class T, class SetType>
261 ipo_ext_iterator<T, SetType> ipo_ext_end(const T &G, SetType &S) {
262   return ipo_ext_iterator<T, SetType>::end(G, S);
263 }
264 
265 template <class T, class SetType>
266 iterator_range<ipo_ext_iterator<T, SetType>>
267 inverse_post_order_ext(const T &G, SetType &S) {
268   return make_range(ipo_ext_begin(G, S), ipo_ext_end(G, S));
269 }
270 
271 //===--------------------------------------------------------------------===//
272 // Reverse Post Order CFG iterator code
273 //===--------------------------------------------------------------------===//
274 //
275 // This is used to visit basic blocks in a method in reverse post order.  This
276 // class is awkward to use because I don't know a good incremental algorithm to
277 // computer RPO from a graph.  Because of this, the construction of the
278 // ReversePostOrderTraversal object is expensive (it must walk the entire graph
279 // with a postorder iterator to build the data structures).  The moral of this
280 // story is: Don't create more ReversePostOrderTraversal classes than necessary.
281 //
282 // Because it does the traversal in its constructor, it won't invalidate when
283 // BasicBlocks are removed, *but* it may contain erased blocks. Some places
284 // rely on this behavior (i.e. GVN).
285 //
286 // This class should be used like this:
287 // {
288 //   ReversePostOrderTraversal<Function*> RPOT(FuncPtr); // Expensive to create
289 //   for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
290 //      ...
291 //   }
292 //   for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
293 //      ...
294 //   }
295 // }
296 //
297 
298 template<class GraphT, class GT = GraphTraits<GraphT>>
299 class ReversePostOrderTraversal {
300   using NodeRef = typename GT::NodeRef;
301 
302   using VecTy = SmallVector<NodeRef, 8>;
303   VecTy Blocks; // Block list in normal PO order
304 
305   void Initialize(const GraphT &G) {
306     std::copy(po_begin(G), po_end(G), std::back_inserter(Blocks));
307   }
308 
309 public:
310   using rpo_iterator = typename VecTy::reverse_iterator;
311   using const_rpo_iterator = typename VecTy::const_reverse_iterator;
312 
313   ReversePostOrderTraversal(const GraphT &G) { Initialize(G); }
314 
315   // Because we want a reverse post order, use reverse iterators from the vector
316   rpo_iterator begin() { return Blocks.rbegin(); }
317   const_rpo_iterator begin() const { return Blocks.rbegin(); }
318   rpo_iterator end() { return Blocks.rend(); }
319   const_rpo_iterator end() const { return Blocks.rend(); }
320 };
321 
322 } // end namespace llvm
323 
324 #endif // LLVM_ADT_POSTORDERITERATOR_H
325