1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 #include <stdio.h>
26 #include <stdlib.h>
27 #include <string.h>
28 #include <errno.h>
29 #include <fcntl.h>
30 #include <unistd.h>
31 #include <stropts.h>
32 #include <sys/sockio.h>
33 #include <sys/types.h>
34 #include <sys/stat.h>
35 #include <sys/socket.h>
36 #include <net/route.h>
37 #include <netinet/in.h>
38 #include <inet/ip.h>
39 #include <arpa/inet.h>
40 #include <libintl.h>
41 #include <libdlpi.h>
42 #include <libinetutil.h>
43 #include <libdladm.h>
44 #include <libdllink.h>
45 #include <libdliptun.h>
46 #include <strings.h>
47 #include <zone.h>
48 #include <ctype.h>
49 #include <limits.h>
50 #include <assert.h>
51 #include <netdb.h>
52 #include <pwd.h>
53 #include <auth_attr.h>
54 #include <secdb.h>
55 #include <nss_dbdefs.h>
56 #include "libipadm_impl.h"
57
58 /* error codes and text description */
59 static struct ipadm_error_info {
60 ipadm_status_t error_code;
61 const char *error_desc;
62 } ipadm_errors[] = {
63 { IPADM_SUCCESS, "Operation succeeded" },
64 { IPADM_FAILURE, "Operation failed" },
65 { IPADM_EAUTH, "Insufficient user authorizations" },
66 { IPADM_EPERM, "Permission denied" },
67 { IPADM_NO_BUFS, "No buffer space available" },
68 { IPADM_NO_MEMORY, "Insufficient memory" },
69 { IPADM_BAD_ADDR, "Invalid address" },
70 { IPADM_BAD_PROTOCOL, "Incorrect protocol family for operation" },
71 { IPADM_DAD_FOUND, "Duplicate address detected" },
72 { IPADM_EXISTS, "Already exists" },
73 { IPADM_IF_EXISTS, "Interface already exists" },
74 { IPADM_ADDROBJ_EXISTS, "Address object already exists" },
75 { IPADM_ADDRCONF_EXISTS, "Addrconf already in progress" },
76 { IPADM_ENXIO, "Interface does not exist" },
77 { IPADM_GRP_NOTEMPTY, "IPMP group is not empty" },
78 { IPADM_INVALID_ARG, "Invalid argument provided" },
79 { IPADM_INVALID_NAME, "Invalid name" },
80 { IPADM_DLPI_FAILURE, "Could not open DLPI link" },
81 { IPADM_DLADM_FAILURE, "Datalink does not exist" },
82 { IPADM_PROP_UNKNOWN, "Unknown property" },
83 { IPADM_ERANGE, "Value is outside the allowed range" },
84 { IPADM_ESRCH, "Value does not exist" },
85 { IPADM_EOVERFLOW, "Number of values exceeds the allowed limit" },
86 { IPADM_NOTFOUND, "Object not found" },
87 { IPADM_IF_INUSE, "Interface already in use" },
88 { IPADM_ADDR_INUSE, "Address already in use" },
89 { IPADM_BAD_HOSTNAME, "Hostname maps to multiple IP addresses" },
90 { IPADM_ADDR_NOTAVAIL, "Can't assign requested address" },
91 { IPADM_ALL_ADDRS_NOT_ENABLED, "All addresses could not be enabled" },
92 { IPADM_NDPD_NOT_RUNNING, "IPv6 autoconf daemon in.ndpd not running" },
93 { IPADM_DHCP_START_ERROR, "Could not start dhcpagent" },
94 { IPADM_DHCP_IPC_ERROR, "Could not communicate with dhcpagent" },
95 { IPADM_DHCP_IPC_TIMEOUT, "Communication with dhcpagent timed out" },
96 { IPADM_TEMPORARY_OBJ, "Persistent operation on temporary object" },
97 { IPADM_IPC_ERROR, "Could not communicate with ipmgmtd" },
98 { IPADM_NOTSUP, "Operation not supported" },
99 { IPADM_OP_DISABLE_OBJ, "Operation not supported on disabled object" },
100 { IPADM_EBADE, "Invalid data exchange with daemon" },
101 { IPADM_GZ_PERM, "Operation not permitted on from-gz interface"}
102 };
103
104 #define IPADM_NUM_ERRORS (sizeof (ipadm_errors) / sizeof (*ipadm_errors))
105
106 ipadm_status_t
ipadm_errno2status(int error)107 ipadm_errno2status(int error)
108 {
109 switch (error) {
110 case 0:
111 return (IPADM_SUCCESS);
112 case ENXIO:
113 return (IPADM_ENXIO);
114 case ENOMEM:
115 return (IPADM_NO_MEMORY);
116 case ENOBUFS:
117 return (IPADM_NO_BUFS);
118 case EINVAL:
119 return (IPADM_INVALID_ARG);
120 case EBUSY:
121 return (IPADM_IF_INUSE);
122 case EEXIST:
123 return (IPADM_EXISTS);
124 case EADDRNOTAVAIL:
125 return (IPADM_ADDR_NOTAVAIL);
126 case EADDRINUSE:
127 return (IPADM_ADDR_INUSE);
128 case ENOENT:
129 return (IPADM_NOTFOUND);
130 case ERANGE:
131 return (IPADM_ERANGE);
132 case EPERM:
133 return (IPADM_EPERM);
134 case ENOTSUP:
135 case EOPNOTSUPP:
136 return (IPADM_NOTSUP);
137 case EBADF:
138 return (IPADM_IPC_ERROR);
139 case EBADE:
140 return (IPADM_EBADE);
141 case ESRCH:
142 return (IPADM_ESRCH);
143 case EOVERFLOW:
144 return (IPADM_EOVERFLOW);
145 default:
146 return (IPADM_FAILURE);
147 }
148 }
149
150 /*
151 * Returns a message string for the given libipadm error status.
152 */
153 const char *
ipadm_status2str(ipadm_status_t status)154 ipadm_status2str(ipadm_status_t status)
155 {
156 int i;
157
158 for (i = 0; i < IPADM_NUM_ERRORS; i++) {
159 if (status == ipadm_errors[i].error_code)
160 return (dgettext(TEXT_DOMAIN,
161 ipadm_errors[i].error_desc));
162 }
163
164 return (dgettext(TEXT_DOMAIN, "<unknown error>"));
165 }
166
167 /*
168 * Opens a handle to libipadm.
169 * Possible values for flags:
170 * IPH_VRRP: Used by VRRP daemon to set the socket option SO_VRRP.
171 * IPH_LEGACY: This is used whenever an application needs to provide a
172 * logical interface name while creating or deleting
173 * interfaces and static addresses.
174 * IPH_INIT: Used by ipadm_init_prop(), to initialize protocol properties
175 * on reboot.
176 */
177 ipadm_status_t
ipadm_open(ipadm_handle_t * handle,uint32_t flags)178 ipadm_open(ipadm_handle_t *handle, uint32_t flags)
179 {
180 ipadm_handle_t iph;
181 ipadm_status_t status = IPADM_SUCCESS;
182 zoneid_t zoneid;
183 ushort_t zflags;
184 int on = B_TRUE;
185
186 if (handle == NULL)
187 return (IPADM_INVALID_ARG);
188 *handle = NULL;
189
190 if (flags & ~(IPH_VRRP|IPH_LEGACY|IPH_INIT|IPH_IPMGMTD))
191 return (IPADM_INVALID_ARG);
192
193 if ((iph = calloc(1, sizeof (struct ipadm_handle))) == NULL)
194 return (IPADM_NO_MEMORY);
195 iph->iph_sock = -1;
196 iph->iph_sock6 = -1;
197 iph->iph_door_fd = -1;
198 iph->iph_rtsock = -1;
199 iph->iph_flags = flags;
200 (void) pthread_mutex_init(&iph->iph_lock, NULL);
201
202 if ((iph->iph_sock = socket(AF_INET, SOCK_DGRAM, 0)) < 0 ||
203 (iph->iph_sock6 = socket(AF_INET6, SOCK_DGRAM, 0)) < 0) {
204 goto errnofail;
205 }
206
207 /*
208 * We open a handle to libdladm here, to facilitate some daemons (like
209 * nwamd) which opens handle to libipadm before devfsadmd installs the
210 * right device permissions into the kernel and requires "all"
211 * privileges to open DLD_CONTROL_DEV.
212 *
213 * In a non-global shared-ip zone there will be no DLD_CONTROL_DEV node
214 * and dladm_open() will fail. So, we avoid this by not calling
215 * dladm_open() for such zones.
216 */
217 zoneid = getzoneid();
218 iph->iph_zoneid = zoneid;
219 if (zoneid != GLOBAL_ZONEID) {
220 if (zone_getattr(zoneid, ZONE_ATTR_FLAGS, &zflags,
221 sizeof (zflags)) < 0) {
222 goto errnofail;
223 }
224 }
225 if ((zoneid == GLOBAL_ZONEID) || (zflags & ZF_NET_EXCL)) {
226 if (dladm_open(&iph->iph_dlh) != DLADM_STATUS_OK) {
227 ipadm_close(iph);
228 return (IPADM_DLADM_FAILURE);
229 }
230 if (zoneid != GLOBAL_ZONEID) {
231 iph->iph_rtsock = socket(PF_ROUTE, SOCK_RAW, 0);
232 /*
233 * Failure to open rtsock is ignored as this is
234 * only used in non-global zones to initialize
235 * routing socket information.
236 */
237 }
238 } else {
239 assert(zoneid != GLOBAL_ZONEID);
240 iph->iph_dlh = NULL;
241 }
242 if (flags & IPH_VRRP) {
243 if (setsockopt(iph->iph_sock6, SOL_SOCKET, SO_VRRP, &on,
244 sizeof (on)) < 0 || setsockopt(iph->iph_sock, SOL_SOCKET,
245 SO_VRRP, &on, sizeof (on)) < 0) {
246 goto errnofail;
247 }
248 }
249 *handle = iph;
250 return (status);
251
252 errnofail:
253 status = ipadm_errno2status(errno);
254 ipadm_close(iph);
255 return (status);
256 }
257
258 /*
259 * Closes and frees the libipadm handle.
260 */
261 void
ipadm_close(ipadm_handle_t iph)262 ipadm_close(ipadm_handle_t iph)
263 {
264 if (iph == NULL)
265 return;
266 if (iph->iph_sock != -1)
267 (void) close(iph->iph_sock);
268 if (iph->iph_sock6 != -1)
269 (void) close(iph->iph_sock6);
270 if (iph->iph_rtsock != -1)
271 (void) close(iph->iph_rtsock);
272 if (iph->iph_door_fd != -1)
273 (void) close(iph->iph_door_fd);
274 dladm_close(iph->iph_dlh);
275 (void) pthread_mutex_destroy(&iph->iph_lock);
276 free(iph);
277 }
278
279 /*
280 * Checks if the caller has the authorization to configure network
281 * interfaces.
282 */
283 boolean_t
ipadm_check_auth(void)284 ipadm_check_auth(void)
285 {
286 struct passwd pwd;
287 char buf[NSS_BUFLEN_PASSWD];
288
289 /* get the password entry for the given user ID */
290 if (getpwuid_r(getuid(), &pwd, buf, sizeof (buf)) == NULL)
291 return (B_FALSE);
292
293 /* check for presence of given authorization */
294 return (chkauthattr(NETWORK_INTERFACE_CONFIG_AUTH, pwd.pw_name) != 0);
295 }
296
297 /*
298 * Stores the index value of the interface in `ifname' for the address
299 * family `af' into the buffer pointed to by `index'.
300 */
301 static ipadm_status_t
i_ipadm_get_index(ipadm_handle_t iph,const char * ifname,sa_family_t af,int * index)302 i_ipadm_get_index(ipadm_handle_t iph, const char *ifname, sa_family_t af,
303 int *index)
304 {
305 struct lifreq lifr;
306 int sock;
307
308 bzero(&lifr, sizeof (lifr));
309 (void) strlcpy(lifr.lifr_name, ifname, sizeof (lifr.lifr_name));
310 if (af == AF_INET)
311 sock = iph->iph_sock;
312 else
313 sock = iph->iph_sock6;
314
315 if (ioctl(sock, SIOCGLIFINDEX, (caddr_t)&lifr) < 0)
316 return (ipadm_errno2status(errno));
317 *index = lifr.lifr_index;
318
319 return (IPADM_SUCCESS);
320 }
321
322 /*
323 * Maximum amount of time (in milliseconds) to wait for Duplicate Address
324 * Detection to complete in the kernel.
325 */
326 #define DAD_WAIT_TIME 1000
327
328 /*
329 * Any time that flags are changed on an interface where either the new or the
330 * existing flags have IFF_UP set, we'll get a RTM_NEWADDR message to
331 * announce the new address added and its flag status.
332 * We wait here for that message and look for IFF_UP.
333 * If something's amiss with the kernel, though, we don't wait forever.
334 * (Note that IFF_DUPLICATE is a high-order bit, and we cannot see
335 * it in the routing socket messages.)
336 */
337 static ipadm_status_t
i_ipadm_dad_wait(ipadm_handle_t handle,const char * lifname,sa_family_t af,int rtsock)338 i_ipadm_dad_wait(ipadm_handle_t handle, const char *lifname, sa_family_t af,
339 int rtsock)
340 {
341 struct pollfd fds[1];
342 union {
343 struct if_msghdr ifm;
344 char buf[1024];
345 } msg;
346 int index;
347 ipadm_status_t retv;
348 uint64_t flags;
349 hrtime_t starttime, now;
350
351 fds[0].fd = rtsock;
352 fds[0].events = POLLIN;
353 fds[0].revents = 0;
354
355 retv = i_ipadm_get_index(handle, lifname, af, &index);
356 if (retv != IPADM_SUCCESS)
357 return (retv);
358
359 starttime = gethrtime();
360 for (;;) {
361 now = gethrtime();
362 now = (now - starttime) / 1000000;
363 if (now >= DAD_WAIT_TIME)
364 break;
365 if (poll(fds, 1, DAD_WAIT_TIME - (int)now) <= 0)
366 break;
367 if (read(rtsock, &msg, sizeof (msg)) <= 0)
368 break;
369 if (msg.ifm.ifm_type != RTM_NEWADDR)
370 continue;
371 /* Note that ifm_index is just 16 bits */
372 if (index == msg.ifm.ifm_index && (msg.ifm.ifm_flags & IFF_UP))
373 return (IPADM_SUCCESS);
374 }
375
376 retv = i_ipadm_get_flags(handle, lifname, af, &flags);
377 if (retv != IPADM_SUCCESS)
378 return (retv);
379 if (flags & IFF_DUPLICATE)
380 return (IPADM_DAD_FOUND);
381
382 return (IPADM_SUCCESS);
383 }
384
385 /*
386 * Sets the flags `on_flags' and resets the flags `off_flags' for the logical
387 * interface in `lifname'.
388 *
389 * If the new flags value will transition the interface from "down" to "up"
390 * then duplicate address detection is performed by the kernel. This routine
391 * waits to get the outcome of that test.
392 */
393 ipadm_status_t
i_ipadm_set_flags(ipadm_handle_t iph,const char * lifname,sa_family_t af,uint64_t on_flags,uint64_t off_flags)394 i_ipadm_set_flags(ipadm_handle_t iph, const char *lifname, sa_family_t af,
395 uint64_t on_flags, uint64_t off_flags)
396 {
397 struct lifreq lifr;
398 uint64_t oflags;
399 ipadm_status_t ret;
400 int rtsock = -1;
401 int sock, err;
402
403 ret = i_ipadm_get_flags(iph, lifname, af, &oflags);
404 if (ret != IPADM_SUCCESS)
405 return (ret);
406
407 sock = (af == AF_INET ? iph->iph_sock : iph->iph_sock6);
408
409 /*
410 * Any time flags are changed on an interface that has IFF_UP set,
411 * we get a routing socket message. We care about the status,
412 * though, only when the new flags are marked "up."
413 */
414 if (!(oflags & IFF_UP) && (on_flags & IFF_UP))
415 rtsock = socket(PF_ROUTE, SOCK_RAW, af);
416
417 oflags |= on_flags;
418 oflags &= ~off_flags;
419 bzero(&lifr, sizeof (lifr));
420 (void) strlcpy(lifr.lifr_name, lifname, sizeof (lifr.lifr_name));
421 lifr.lifr_flags = oflags;
422 if (ioctl(sock, SIOCSLIFFLAGS, (caddr_t)&lifr) < 0) {
423 err = errno;
424 if (rtsock != -1)
425 (void) close(rtsock);
426 return (ipadm_errno2status(err));
427 }
428 if (rtsock == -1) {
429 return (IPADM_SUCCESS);
430 } else {
431 /* Wait for DAD to complete. */
432 ret = i_ipadm_dad_wait(iph, lifname, af, rtsock);
433 (void) close(rtsock);
434 return (ret);
435 }
436 }
437
438 /*
439 * Returns the flags value for the logical interface in `lifname'
440 * in the buffer pointed to by `flags'.
441 */
442 ipadm_status_t
i_ipadm_get_flags(ipadm_handle_t iph,const char * lifname,sa_family_t af,uint64_t * flags)443 i_ipadm_get_flags(ipadm_handle_t iph, const char *lifname, sa_family_t af,
444 uint64_t *flags)
445 {
446 struct lifreq lifr;
447 int sock;
448
449 bzero(&lifr, sizeof (lifr));
450 (void) strlcpy(lifr.lifr_name, lifname, sizeof (lifr.lifr_name));
451 if (af == AF_INET)
452 sock = iph->iph_sock;
453 else
454 sock = iph->iph_sock6;
455
456 if (ioctl(sock, SIOCGLIFFLAGS, (caddr_t)&lifr) < 0) {
457 return (ipadm_errno2status(errno));
458 }
459 *flags = lifr.lifr_flags;
460
461 return (IPADM_SUCCESS);
462 }
463
464 /*
465 * Determines whether or not an interface name represents a loopback
466 * interface, before the interface has been plumbed.
467 * It is assumed that the interface name in `ifname' is of correct format
468 * as verified by ifparse_ifspec().
469 *
470 * Returns: B_TRUE if loopback, B_FALSE if not.
471 */
472 boolean_t
i_ipadm_is_loopback(const char * ifname)473 i_ipadm_is_loopback(const char *ifname)
474 {
475 int len = strlen(LOOPBACK_IF);
476
477 return (strncmp(ifname, LOOPBACK_IF, len) == 0 &&
478 (ifname[len] == '\0' || ifname[len] == IPADM_LOGICAL_SEP));
479 }
480
481 /*
482 * Determines whether or not an interface name represents a vni
483 * interface, before the interface has been plumbed.
484 * It is assumed that the interface name in `ifname' is of correct format
485 * as verified by ifparse_ifspec().
486 *
487 * Returns: B_TRUE if vni, B_FALSE if not.
488 */
489 boolean_t
i_ipadm_is_vni(const char * ifname)490 i_ipadm_is_vni(const char *ifname)
491 {
492 ifspec_t ifsp;
493
494 return (ifparse_ifspec(ifname, &ifsp) &&
495 strcmp(ifsp.ifsp_devnm, "vni") == 0);
496 }
497
498 /*
499 * Returns B_TRUE if `ifname' is an IP interface on a 6to4 tunnel.
500 */
501 boolean_t
i_ipadm_is_6to4(ipadm_handle_t iph,char * ifname)502 i_ipadm_is_6to4(ipadm_handle_t iph, char *ifname)
503 {
504 dladm_status_t dlstatus;
505 datalink_class_t class;
506 iptun_params_t params;
507 datalink_id_t linkid;
508
509 if (iph->iph_dlh == NULL) {
510 assert(iph->iph_zoneid != GLOBAL_ZONEID);
511 return (B_FALSE);
512 }
513 dlstatus = dladm_name2info(iph->iph_dlh, ifname, &linkid, NULL,
514 &class, NULL);
515 if (dlstatus == DLADM_STATUS_OK && class == DATALINK_CLASS_IPTUN) {
516 params.iptun_param_linkid = linkid;
517 dlstatus = dladm_iptun_getparams(iph->iph_dlh, ¶ms,
518 DLADM_OPT_ACTIVE);
519 if (dlstatus == DLADM_STATUS_OK &&
520 params.iptun_param_type == IPTUN_TYPE_6TO4) {
521 return (B_TRUE);
522 }
523 }
524 return (B_FALSE);
525 }
526
527 /*
528 * Returns B_TRUE if `ifname' represents an IPMP underlying interface.
529 */
530 boolean_t
i_ipadm_is_under_ipmp(ipadm_handle_t iph,const char * ifname)531 i_ipadm_is_under_ipmp(ipadm_handle_t iph, const char *ifname)
532 {
533 struct lifreq lifr;
534
535 (void) strlcpy(lifr.lifr_name, ifname, sizeof (lifr.lifr_name));
536 if (ioctl(iph->iph_sock, SIOCGLIFGROUPNAME, (caddr_t)&lifr) < 0) {
537 if (ioctl(iph->iph_sock6, SIOCGLIFGROUPNAME,
538 (caddr_t)&lifr) < 0) {
539 return (B_FALSE);
540 }
541 }
542 return (lifr.lifr_groupname[0] != '\0');
543 }
544
545 /*
546 * Returns B_TRUE if `ifname' represents an IPMP meta-interface.
547 */
548 boolean_t
i_ipadm_is_ipmp(ipadm_handle_t iph,const char * ifname)549 i_ipadm_is_ipmp(ipadm_handle_t iph, const char *ifname)
550 {
551 uint64_t flags;
552
553 if (i_ipadm_get_flags(iph, ifname, AF_INET, &flags) != IPADM_SUCCESS &&
554 i_ipadm_get_flags(iph, ifname, AF_INET6, &flags) != IPADM_SUCCESS)
555 return (B_FALSE);
556
557 return ((flags & IFF_IPMP) != 0);
558 }
559
560 /*
561 * For a given interface name, ipadm_if_enabled() checks if v4
562 * or v6 or both IP interfaces exist in the active configuration.
563 */
564 boolean_t
ipadm_if_enabled(ipadm_handle_t iph,const char * ifname,sa_family_t af)565 ipadm_if_enabled(ipadm_handle_t iph, const char *ifname, sa_family_t af)
566 {
567 struct lifreq lifr;
568 int s4 = iph->iph_sock;
569 int s6 = iph->iph_sock6;
570
571 bzero(&lifr, sizeof (lifr));
572 (void) strlcpy(lifr.lifr_name, ifname, sizeof (lifr.lifr_name));
573 switch (af) {
574 case AF_INET:
575 if (ioctl(s4, SIOCGLIFFLAGS, (caddr_t)&lifr) == 0)
576 return (B_TRUE);
577 break;
578 case AF_INET6:
579 if (ioctl(s6, SIOCGLIFFLAGS, (caddr_t)&lifr) == 0)
580 return (B_TRUE);
581 break;
582 case AF_UNSPEC:
583 if (ioctl(s4, SIOCGLIFFLAGS, (caddr_t)&lifr) == 0 ||
584 ioctl(s6, SIOCGLIFFLAGS, (caddr_t)&lifr) == 0) {
585 return (B_TRUE);
586 }
587 }
588 return (B_FALSE);
589 }
590
591 /*
592 * Apply the interface property by retrieving information from nvl.
593 */
594 static ipadm_status_t
i_ipadm_init_ifprop(ipadm_handle_t iph,nvlist_t * nvl)595 i_ipadm_init_ifprop(ipadm_handle_t iph, nvlist_t *nvl)
596 {
597 nvpair_t *nvp;
598 char *name, *pname = NULL;
599 char *protostr = NULL, *ifname = NULL, *pval = NULL;
600 uint_t proto;
601 int err = 0;
602
603 for (nvp = nvlist_next_nvpair(nvl, NULL); nvp != NULL;
604 nvp = nvlist_next_nvpair(nvl, nvp)) {
605 name = nvpair_name(nvp);
606 if (strcmp(name, IPADM_NVP_IFNAME) == 0) {
607 if ((err = nvpair_value_string(nvp, &ifname)) != 0)
608 break;
609 } else if (strcmp(name, IPADM_NVP_PROTONAME) == 0) {
610 if ((err = nvpair_value_string(nvp, &protostr)) != 0)
611 break;
612 } else {
613 assert(!IPADM_PRIV_NVP(name));
614 pname = name;
615 if ((err = nvpair_value_string(nvp, &pval)) != 0)
616 break;
617 }
618 }
619 if (err != 0)
620 return (ipadm_errno2status(err));
621 proto = ipadm_str2proto(protostr);
622 return (ipadm_set_ifprop(iph, ifname, pname, pval, proto,
623 IPADM_OPT_ACTIVE));
624 }
625
626 /*
627 * Instantiate the address object or set the address object property by
628 * retrieving the configuration from the nvlist `nvl'.
629 */
630 ipadm_status_t
i_ipadm_init_addrobj(ipadm_handle_t iph,nvlist_t * nvl)631 i_ipadm_init_addrobj(ipadm_handle_t iph, nvlist_t *nvl)
632 {
633 nvpair_t *nvp;
634 char *name;
635 char *aobjname = NULL, *pval = NULL, *ifname = NULL;
636 sa_family_t af = AF_UNSPEC;
637 ipadm_addr_type_t atype = IPADM_ADDR_NONE;
638 int err = 0;
639 ipadm_status_t status = IPADM_SUCCESS;
640
641 for (nvp = nvlist_next_nvpair(nvl, NULL); nvp != NULL;
642 nvp = nvlist_next_nvpair(nvl, nvp)) {
643 name = nvpair_name(nvp);
644 if (strcmp(name, IPADM_NVP_IFNAME) == 0) {
645 if ((err = nvpair_value_string(nvp, &ifname)) != 0)
646 break;
647 } else if (strcmp(name, IPADM_NVP_AOBJNAME) == 0) {
648 if ((err = nvpair_value_string(nvp, &aobjname)) != 0)
649 break;
650 } else if (i_ipadm_name2atype(name, &af, &atype)) {
651 break;
652 } else {
653 assert(!IPADM_PRIV_NVP(name));
654 err = nvpair_value_string(nvp, &pval);
655 break;
656 }
657 }
658 if (err != 0)
659 return (ipadm_errno2status(err));
660
661 switch (atype) {
662 case IPADM_ADDR_STATIC:
663 status = i_ipadm_enable_static(iph, ifname, nvl, af);
664 break;
665 case IPADM_ADDR_DHCP:
666 status = i_ipadm_enable_dhcp(iph, ifname, nvl);
667 if (status == IPADM_DHCP_IPC_TIMEOUT)
668 status = IPADM_SUCCESS;
669 break;
670 case IPADM_ADDR_IPV6_ADDRCONF:
671 status = i_ipadm_enable_addrconf(iph, ifname, nvl);
672 break;
673 case IPADM_ADDR_NONE:
674 status = ipadm_set_addrprop(iph, name, pval, aobjname,
675 IPADM_OPT_ACTIVE);
676 break;
677 }
678
679 return (status);
680 }
681
682 /*
683 * Instantiate the interface object by retrieving the configuration from
684 * `ifnvl'. The nvlist `ifnvl' contains all the persistent configuration
685 * (interface properties and address objects on that interface) for the
686 * given `ifname'.
687 */
688 ipadm_status_t
i_ipadm_init_ifobj(ipadm_handle_t iph,const char * ifname,nvlist_t * ifnvl)689 i_ipadm_init_ifobj(ipadm_handle_t iph, const char *ifname, nvlist_t *ifnvl)
690 {
691 nvlist_t *nvl = NULL;
692 nvpair_t *nvp;
693 char *afstr;
694 ipadm_status_t status;
695 ipadm_status_t ret_status = IPADM_SUCCESS;
696 char newifname[LIFNAMSIZ];
697 char *aobjstr;
698 sa_family_t af = AF_UNSPEC;
699 boolean_t is_ngz = (iph->iph_zoneid != GLOBAL_ZONEID);
700
701 (void) strlcpy(newifname, ifname, sizeof (newifname));
702 /*
703 * First plumb the given interface and then apply all the persistent
704 * interface properties and then instantiate any persistent addresses
705 * objects on that interface.
706 */
707 for (nvp = nvlist_next_nvpair(ifnvl, NULL); nvp != NULL;
708 nvp = nvlist_next_nvpair(ifnvl, nvp)) {
709 if (nvpair_value_nvlist(nvp, &nvl) != 0)
710 continue;
711
712 if (nvlist_lookup_string(nvl, IPADM_NVP_FAMILY, &afstr) == 0) {
713 status = i_ipadm_plumb_if(iph, newifname, atoi(afstr),
714 IPADM_OPT_ACTIVE);
715 /*
716 * If the interface is already plumbed, we should
717 * ignore this error because there might be address
718 * address objects on that interface that needs to
719 * be enabled again.
720 */
721 if (status == IPADM_IF_EXISTS)
722 status = IPADM_SUCCESS;
723
724 if (is_ngz)
725 af = atoi(afstr);
726 } else if (nvlist_lookup_string(nvl, IPADM_NVP_AOBJNAME,
727 &aobjstr) == 0) {
728 /*
729 * For a static address, we need to search for
730 * the prefixlen in the nvlist `ifnvl'.
731 */
732 if (nvlist_exists(nvl, IPADM_NVP_IPV4ADDR) ||
733 nvlist_exists(nvl, IPADM_NVP_IPV6ADDR)) {
734 status = i_ipadm_merge_prefixlen_from_nvl(ifnvl,
735 nvl, aobjstr);
736 if (status != IPADM_SUCCESS)
737 continue;
738 }
739 status = i_ipadm_init_addrobj(iph, nvl);
740 /*
741 * If this address is in use on some other interface,
742 * we want to record an error to be returned as
743 * a soft error and continue processing the rest of
744 * the addresses.
745 */
746 if (status == IPADM_ADDR_NOTAVAIL) {
747 ret_status = IPADM_ALL_ADDRS_NOT_ENABLED;
748 status = IPADM_SUCCESS;
749 }
750 } else {
751 assert(nvlist_exists(nvl, IPADM_NVP_PROTONAME));
752 status = i_ipadm_init_ifprop(iph, nvl);
753 }
754 if (status != IPADM_SUCCESS)
755 return (status);
756 }
757
758 if (is_ngz && af != AF_UNSPEC)
759 ret_status = ipadm_init_net_from_gz(iph, newifname, NULL);
760 return (ret_status);
761 }
762
763 /*
764 * Retrieves the persistent configuration for the given interface(s) in `ifs'
765 * by contacting the daemon and dumps the information in `allifs'.
766 */
767 ipadm_status_t
i_ipadm_init_ifs(ipadm_handle_t iph,const char * ifs,nvlist_t ** allifs)768 i_ipadm_init_ifs(ipadm_handle_t iph, const char *ifs, nvlist_t **allifs)
769 {
770 nvlist_t *nvl = NULL;
771 size_t nvlsize, bufsize;
772 ipmgmt_initif_arg_t *iargp;
773 char *buf = NULL, *nvlbuf = NULL;
774 ipmgmt_get_rval_t *rvalp = NULL;
775 int err;
776 ipadm_status_t status = IPADM_SUCCESS;
777
778 if ((err = ipadm_str2nvlist(ifs, &nvl, IPADM_NORVAL)) != 0)
779 return (ipadm_errno2status(err));
780
781 err = nvlist_pack(nvl, &nvlbuf, &nvlsize, NV_ENCODE_NATIVE, 0);
782 if (err != 0) {
783 status = ipadm_errno2status(err);
784 goto done;
785 }
786 bufsize = sizeof (*iargp) + nvlsize;
787 if ((buf = malloc(bufsize)) == NULL) {
788 status = ipadm_errno2status(errno);
789 goto done;
790 }
791
792 /* populate the door_call argument structure */
793 iargp = (void *)buf;
794 iargp->ia_cmd = IPMGMT_CMD_INITIF;
795 iargp->ia_flags = 0;
796 iargp->ia_family = AF_UNSPEC;
797 iargp->ia_nvlsize = nvlsize;
798 (void) bcopy(nvlbuf, buf + sizeof (*iargp), nvlsize);
799
800 if ((rvalp = malloc(sizeof (ipmgmt_get_rval_t))) == NULL) {
801 status = ipadm_errno2status(errno);
802 goto done;
803 }
804 if ((err = ipadm_door_call(iph, iargp, bufsize, (void **)&rvalp,
805 sizeof (*rvalp), B_TRUE)) != 0) {
806 status = ipadm_errno2status(err);
807 goto done;
808 }
809 nvlsize = rvalp->ir_nvlsize;
810 nvlbuf = (char *)rvalp + sizeof (ipmgmt_get_rval_t);
811
812 /*
813 * nvlbuf contains a list of nvlists, each of which represents
814 * configuration information for the given interface(s)
815 */
816 err = nvlist_unpack(nvlbuf, nvlsize, allifs, NV_ENCODE_NATIVE);
817 if (err != 0)
818 status = ipadm_errno2status(err);
819 done:
820 nvlist_free(nvl);
821 free(buf);
822 free(nvlbuf);
823 free(rvalp);
824 return (status);
825 }
826
827 /*
828 * Returns B_FALSE if
829 * (1) `ifname' is NULL or has no string or has a string of invalid length
830 * (2) ifname is a logical interface and IPH_LEGACY is not set, or
831 */
832 boolean_t
i_ipadm_validate_ifname(ipadm_handle_t iph,const char * ifname)833 i_ipadm_validate_ifname(ipadm_handle_t iph, const char *ifname)
834 {
835 ifspec_t ifsp;
836
837 if (ifname == NULL || ifname[0] == '\0' ||
838 !ifparse_ifspec(ifname, &ifsp))
839 return (B_FALSE);
840 if (ifsp.ifsp_lunvalid)
841 return (ifsp.ifsp_lun > 0 && (iph->iph_flags & IPH_LEGACY));
842 return (B_TRUE);
843 }
844
845 /*
846 * Wrapper for sending a non-transparent I_STR ioctl().
847 * Returns: Result from ioctl().
848 */
849 int
i_ipadm_strioctl(int s,int cmd,char * buf,int buflen)850 i_ipadm_strioctl(int s, int cmd, char *buf, int buflen)
851 {
852 struct strioctl ioc;
853
854 (void) memset(&ioc, 0, sizeof (ioc));
855 ioc.ic_cmd = cmd;
856 ioc.ic_timout = 0;
857 ioc.ic_len = buflen;
858 ioc.ic_dp = buf;
859
860 return (ioctl(s, I_STR, (char *)&ioc));
861 }
862
863 /*
864 * Make a door call to the server and checks if the door call succeeded or not.
865 * `is_varsize' specifies that the data returned by ipmgmtd daemon is of
866 * variable size and door will allocate buffer using mmap(). In such cases
867 * we re-allocate the required memory,n assign it to `rbufp', copy the data to
868 * `rbufp' and then call munmap() (see below).
869 *
870 * It also checks to see if the server side procedure ran successfully by
871 * checking for ir_err. Therefore, for some callers who just care about the
872 * return status can set `rbufp' to NULL and set `rsize' to 0.
873 */
874 int
ipadm_door_call(ipadm_handle_t iph,void * arg,size_t asize,void ** rbufp,size_t rsize,boolean_t is_varsize)875 ipadm_door_call(ipadm_handle_t iph, void *arg, size_t asize, void **rbufp,
876 size_t rsize, boolean_t is_varsize)
877 {
878 door_arg_t darg;
879 int err;
880 ipmgmt_retval_t rval, *rvalp;
881 boolean_t reopen = B_FALSE;
882
883 if (rbufp == NULL) {
884 rvalp = &rval;
885 rbufp = (void **)&rvalp;
886 rsize = sizeof (rval);
887 }
888
889 darg.data_ptr = arg;
890 darg.data_size = asize;
891 darg.desc_ptr = NULL;
892 darg.desc_num = 0;
893 darg.rbuf = *rbufp;
894 darg.rsize = rsize;
895
896 reopen:
897 (void) pthread_mutex_lock(&iph->iph_lock);
898 /* The door descriptor is opened if it isn't already */
899 if (iph->iph_door_fd == -1) {
900 if ((iph->iph_door_fd = open(IPMGMT_DOOR, O_RDONLY)) < 0) {
901 err = errno;
902 (void) pthread_mutex_unlock(&iph->iph_lock);
903 return (err);
904 }
905 }
906 (void) pthread_mutex_unlock(&iph->iph_lock);
907
908 if (door_call(iph->iph_door_fd, &darg) == -1) {
909 /*
910 * Stale door descriptor is possible if ipmgmtd was restarted
911 * since last iph_door_fd was opened, so try re-opening door
912 * descriptor.
913 */
914 if (!reopen && errno == EBADF) {
915 (void) close(iph->iph_door_fd);
916 iph->iph_door_fd = -1;
917 reopen = B_TRUE;
918 goto reopen;
919 }
920 return (errno);
921 }
922 err = ((ipmgmt_retval_t *)(void *)(darg.rbuf))->ir_err;
923 if (darg.rbuf != *rbufp) {
924 /*
925 * if the caller is expecting the result to fit in specified
926 * buffer then return failure.
927 */
928 if (!is_varsize)
929 err = EBADE;
930 /*
931 * The size of the buffer `*rbufp' was not big enough
932 * and the door itself allocated buffer, for us. We will
933 * hit this, on several occasion as for some cases
934 * we cannot predict the size of the return structure.
935 * Reallocate the buffer `*rbufp' and memcpy() the contents
936 * to new buffer.
937 */
938 if (err == 0) {
939 void *newp;
940
941 /* allocated memory will be freed by the caller */
942 if ((newp = realloc(*rbufp, darg.rsize)) == NULL) {
943 err = ENOMEM;
944 } else {
945 *rbufp = newp;
946 (void) memcpy(*rbufp, darg.rbuf, darg.rsize);
947 }
948 }
949 /* munmap() the door buffer */
950 (void) munmap(darg.rbuf, darg.rsize);
951 } else {
952 if (darg.rsize != rsize)
953 err = EBADE;
954 }
955 return (err);
956 }
957