1 /* Interprocedural Identical Code Folding pass
2 Copyright (C) 2014-2022 Free Software Foundation, Inc.
3
4 Contributed by Jan Hubicka <hubicka@ucw.cz> and Martin Liska <mliska@suse.cz>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Interprocedural Identical Code Folding for functions and
23 read-only variables.
24
25 The goal of this transformation is to discover functions and read-only
26 variables which do have exactly the same semantics.
27
28 In case of functions,
29 we could either create a virtual clone or do a simple function wrapper
30 that will call equivalent function. If the function is just locally visible,
31 all function calls can be redirected. For read-only variables, we create
32 aliases if possible.
33
34 Optimization pass arranges as follows:
35 1) All functions and read-only variables are visited and internal
36 data structure, either sem_function or sem_variables is created.
37 2) For every symbol from the previous step, VAR_DECL and FUNCTION_DECL are
38 saved and matched to corresponding sem_items.
39 3) These declaration are ignored for equality check and are solved
40 by Value Numbering algorithm published by Alpert, Zadeck in 1992.
41 4) We compute hash value for each symbol.
42 5) Congruence classes are created based on hash value. If hash value are
43 equal, equals function is called and symbols are deeply compared.
44 We must prove that all SSA names, declarations and other items
45 correspond.
46 6) Value Numbering is executed for these classes. At the end of the process
47 all symbol members in remaining classes can be merged.
48 7) Merge operation creates alias in case of read-only variables. For
49 callgraph node, we must decide if we can redirect local calls,
50 create an alias or a thunk.
51
52 */
53
54 #include "config.h"
55 #include "system.h"
56 #include "coretypes.h"
57 #include "backend.h"
58 #include "target.h"
59 #include "rtl.h"
60 #include "tree.h"
61 #include "gimple.h"
62 #include "alloc-pool.h"
63 #include "tree-pass.h"
64 #include "ssa.h"
65 #include "cgraph.h"
66 #include "coverage.h"
67 #include "gimple-pretty-print.h"
68 #include "data-streamer.h"
69 #include "tree-streamer.h"
70 #include "fold-const.h"
71 #include "calls.h"
72 #include "varasm.h"
73 #include "gimple-iterator.h"
74 #include "tree-cfg.h"
75 #include "symbol-summary.h"
76 #include "ipa-prop.h"
77 #include "ipa-fnsummary.h"
78 #include "except.h"
79 #include "attribs.h"
80 #include "print-tree.h"
81 #include "ipa-utils.h"
82 #include "tree-ssa-alias-compare.h"
83 #include "ipa-icf-gimple.h"
84 #include "fibonacci_heap.h"
85 #include "ipa-icf.h"
86 #include "stor-layout.h"
87 #include "dbgcnt.h"
88 #include "tree-vector-builder.h"
89 #include "symtab-thunks.h"
90 #include "alias.h"
91 #include "asan.h"
92
93 using namespace ipa_icf_gimple;
94
95 namespace ipa_icf {
96
97 /* Initialization and computation of symtab node hash, there data
98 are propagated later on. */
99
100 static sem_item_optimizer *optimizer = NULL;
101
102 /* Constructor. */
103
symbol_compare_collection(symtab_node * node)104 symbol_compare_collection::symbol_compare_collection (symtab_node *node)
105 {
106 m_references.create (0);
107 m_interposables.create (0);
108
109 ipa_ref *ref;
110
111 if (is_a <varpool_node *> (node) && DECL_VIRTUAL_P (node->decl))
112 return;
113
114 for (unsigned i = 0; node->iterate_reference (i, ref); i++)
115 {
116 if (ref->address_matters_p ())
117 m_references.safe_push (ref->referred);
118
119 if (ref->referred->get_availability () <= AVAIL_INTERPOSABLE)
120 {
121 if (ref->address_matters_p ())
122 m_references.safe_push (ref->referred);
123 else
124 m_interposables.safe_push (ref->referred);
125 }
126 }
127
128 if (is_a <cgraph_node *> (node))
129 {
130 cgraph_node *cnode = dyn_cast <cgraph_node *> (node);
131
132 for (cgraph_edge *e = cnode->callees; e; e = e->next_callee)
133 if (e->callee->get_availability () <= AVAIL_INTERPOSABLE)
134 m_interposables.safe_push (e->callee);
135 }
136 }
137
138 /* Constructor for key value pair, where _ITEM is key and _INDEX is a target. */
139
sem_usage_pair(sem_item * _item,unsigned int _index)140 sem_usage_pair::sem_usage_pair (sem_item *_item, unsigned int _index)
141 : item (_item), index (_index)
142 {
143 }
144
sem_item(sem_item_type _type,bitmap_obstack * stack)145 sem_item::sem_item (sem_item_type _type, bitmap_obstack *stack)
146 : type (_type), referenced_by_count (0), m_hash (-1), m_hash_set (false)
147 {
148 setup (stack);
149 }
150
sem_item(sem_item_type _type,symtab_node * _node,bitmap_obstack * stack)151 sem_item::sem_item (sem_item_type _type, symtab_node *_node,
152 bitmap_obstack *stack)
153 : type (_type), node (_node), referenced_by_count (0), m_hash (-1),
154 m_hash_set (false)
155 {
156 decl = node->decl;
157 setup (stack);
158 }
159
160 /* Add reference to a semantic TARGET. */
161
162 void
add_reference(ref_map * refs,sem_item * target)163 sem_item::add_reference (ref_map *refs,
164 sem_item *target)
165 {
166 unsigned index = reference_count++;
167 bool existed;
168
169 sem_usage_pair *pair = new sem_usage_pair (target, index);
170 vec<sem_item *> &v = refs->get_or_insert (pair, &existed);
171 if (existed)
172 delete pair;
173
174 v.safe_push (this);
175 bitmap_set_bit (target->usage_index_bitmap, index);
176 refs_set.add (target->node);
177 ++target->referenced_by_count;
178 }
179
180 /* Initialize internal data structures. Bitmap STACK is used for
181 bitmap memory allocation process. */
182
183 void
setup(bitmap_obstack * stack)184 sem_item::setup (bitmap_obstack *stack)
185 {
186 gcc_checking_assert (node);
187
188 reference_count = 0;
189 tree_refs.create (0);
190 usage_index_bitmap = BITMAP_ALLOC (stack);
191 }
192
~sem_item()193 sem_item::~sem_item ()
194 {
195 tree_refs.release ();
196
197 BITMAP_FREE (usage_index_bitmap);
198 }
199
200 /* Dump function for debugging purpose. */
201
202 DEBUG_FUNCTION void
dump(void)203 sem_item::dump (void)
204 {
205 if (dump_file)
206 {
207 fprintf (dump_file, "[%s] %s (tree:%p)\n", type == FUNC ? "func" : "var",
208 node->dump_name (), (void *) node->decl);
209 fprintf (dump_file, " hash: %u\n", get_hash ());
210 }
211 }
212
213 /* Return true if target supports alias symbols. */
214
215 bool
target_supports_symbol_aliases_p(void)216 sem_item::target_supports_symbol_aliases_p (void)
217 {
218 #if !defined (ASM_OUTPUT_DEF) || (!defined(ASM_OUTPUT_WEAK_ALIAS) && !defined (ASM_WEAKEN_DECL))
219 return false;
220 #else
221 return true;
222 #endif
223 }
224
set_hash(hashval_t hash)225 void sem_item::set_hash (hashval_t hash)
226 {
227 m_hash = hash;
228 m_hash_set = true;
229 }
230
231 hash_map<const_tree, hashval_t> sem_item::m_type_hash_cache;
232
233 /* Semantic function constructor that uses STACK as bitmap memory stack. */
234
sem_function(bitmap_obstack * stack)235 sem_function::sem_function (bitmap_obstack *stack)
236 : sem_item (FUNC, stack), memory_access_types (), m_alias_sets_hash (0),
237 m_checker (NULL), m_compared_func (NULL)
238 {
239 bb_sizes.create (0);
240 bb_sorted.create (0);
241 }
242
sem_function(cgraph_node * node,bitmap_obstack * stack)243 sem_function::sem_function (cgraph_node *node, bitmap_obstack *stack)
244 : sem_item (FUNC, node, stack), memory_access_types (),
245 m_alias_sets_hash (0), m_checker (NULL), m_compared_func (NULL)
246 {
247 bb_sizes.create (0);
248 bb_sorted.create (0);
249 }
250
~sem_function()251 sem_function::~sem_function ()
252 {
253 for (unsigned i = 0; i < bb_sorted.length (); i++)
254 delete (bb_sorted[i]);
255
256 bb_sizes.release ();
257 bb_sorted.release ();
258 }
259
260 /* Calculates hash value based on a BASIC_BLOCK. */
261
262 hashval_t
get_bb_hash(const sem_bb * basic_block)263 sem_function::get_bb_hash (const sem_bb *basic_block)
264 {
265 inchash::hash hstate;
266
267 hstate.add_int (basic_block->nondbg_stmt_count);
268 hstate.add_int (basic_block->edge_count);
269
270 return hstate.end ();
271 }
272
273 /* References independent hash function. */
274
275 hashval_t
get_hash(void)276 sem_function::get_hash (void)
277 {
278 if (!m_hash_set)
279 {
280 inchash::hash hstate;
281 hstate.add_int (177454); /* Random number for function type. */
282
283 hstate.add_int (arg_count);
284 hstate.add_int (cfg_checksum);
285 hstate.add_int (gcode_hash);
286
287 for (unsigned i = 0; i < bb_sorted.length (); i++)
288 hstate.merge_hash (get_bb_hash (bb_sorted[i]));
289
290 for (unsigned i = 0; i < bb_sizes.length (); i++)
291 hstate.add_int (bb_sizes[i]);
292
293 /* Add common features of declaration itself. */
294 if (DECL_FUNCTION_SPECIFIC_TARGET (decl))
295 hstate.add_hwi
296 (cl_target_option_hash
297 (TREE_TARGET_OPTION (DECL_FUNCTION_SPECIFIC_TARGET (decl))));
298 if (DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl))
299 hstate.add_hwi
300 (cl_optimization_hash
301 (TREE_OPTIMIZATION (DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl))));
302 hstate.add_flag (DECL_CXX_CONSTRUCTOR_P (decl));
303 hstate.add_flag (DECL_CXX_DESTRUCTOR_P (decl));
304
305 set_hash (hstate.end ());
306 }
307
308 return m_hash;
309 }
310
311 /* Compare properties of symbols N1 and N2 that does not affect semantics of
312 symbol itself but affects semantics of its references from USED_BY (which
313 may be NULL if it is unknown). If comparison is false, symbols
314 can still be merged but any symbols referring them can't.
315
316 If ADDRESS is true, do extra checking needed for IPA_REF_ADDR.
317
318 TODO: We can also split attributes to those that determine codegen of
319 a function body/variable constructor itself and those that are used when
320 referring to it. */
321
322 bool
compare_referenced_symbol_properties(symtab_node * used_by,symtab_node * n1,symtab_node * n2,bool address)323 sem_item::compare_referenced_symbol_properties (symtab_node *used_by,
324 symtab_node *n1,
325 symtab_node *n2,
326 bool address)
327 {
328 if (is_a <cgraph_node *> (n1))
329 {
330 /* Inline properties matters: we do now want to merge uses of inline
331 function to uses of normal function because inline hint would be lost.
332 We however can merge inline function to noinline because the alias
333 will keep its DECL_DECLARED_INLINE flag.
334
335 Also ignore inline flag when optimizing for size or when function
336 is known to not be inlinable.
337
338 TODO: the optimize_size checks can also be assumed to be true if
339 unit has no !optimize_size functions. */
340
341 if ((!used_by || address || !is_a <cgraph_node *> (used_by)
342 || !opt_for_fn (used_by->decl, optimize_size))
343 && !opt_for_fn (n1->decl, optimize_size)
344 && n1->get_availability () > AVAIL_INTERPOSABLE
345 && (!DECL_UNINLINABLE (n1->decl) || !DECL_UNINLINABLE (n2->decl)))
346 {
347 if (DECL_DISREGARD_INLINE_LIMITS (n1->decl)
348 != DECL_DISREGARD_INLINE_LIMITS (n2->decl))
349 return return_false_with_msg
350 ("DECL_DISREGARD_INLINE_LIMITS are different");
351
352 if (DECL_DECLARED_INLINE_P (n1->decl)
353 != DECL_DECLARED_INLINE_P (n2->decl))
354 return return_false_with_msg ("inline attributes are different");
355 }
356
357 if (DECL_IS_OPERATOR_NEW_P (n1->decl)
358 != DECL_IS_OPERATOR_NEW_P (n2->decl))
359 return return_false_with_msg ("operator new flags are different");
360
361 if (DECL_IS_REPLACEABLE_OPERATOR (n1->decl)
362 != DECL_IS_REPLACEABLE_OPERATOR (n2->decl))
363 return return_false_with_msg ("replaceable operator flags are different");
364 }
365
366 /* Merging two definitions with a reference to equivalent vtables, but
367 belonging to a different type may result in ipa-polymorphic-call analysis
368 giving a wrong answer about the dynamic type of instance. */
369 if (is_a <varpool_node *> (n1))
370 {
371 if ((DECL_VIRTUAL_P (n1->decl) || DECL_VIRTUAL_P (n2->decl))
372 && (DECL_VIRTUAL_P (n1->decl) != DECL_VIRTUAL_P (n2->decl)
373 || !types_must_be_same_for_odr (DECL_CONTEXT (n1->decl),
374 DECL_CONTEXT (n2->decl)))
375 && (!used_by || !is_a <cgraph_node *> (used_by) || address
376 || opt_for_fn (used_by->decl, flag_devirtualize)))
377 return return_false_with_msg
378 ("references to virtual tables cannot be merged");
379
380 if (address && DECL_ALIGN (n1->decl) != DECL_ALIGN (n2->decl))
381 return return_false_with_msg ("alignment mismatch");
382
383 /* For functions we compare attributes in equals_wpa, because we do
384 not know what attributes may cause codegen differences, but for
385 variables just compare attributes for references - the codegen
386 for constructors is affected only by those attributes that we lower
387 to explicit representation (such as DECL_ALIGN or DECL_SECTION). */
388 if (!attribute_list_equal (DECL_ATTRIBUTES (n1->decl),
389 DECL_ATTRIBUTES (n2->decl)))
390 return return_false_with_msg ("different var decl attributes");
391 if (comp_type_attributes (TREE_TYPE (n1->decl),
392 TREE_TYPE (n2->decl)) != 1)
393 return return_false_with_msg ("different var type attributes");
394 }
395
396 /* When matching virtual tables, be sure to also match information
397 relevant for polymorphic call analysis. */
398 if (used_by && is_a <varpool_node *> (used_by)
399 && DECL_VIRTUAL_P (used_by->decl))
400 {
401 if (DECL_VIRTUAL_P (n1->decl) != DECL_VIRTUAL_P (n2->decl))
402 return return_false_with_msg ("virtual flag mismatch");
403 if (DECL_VIRTUAL_P (n1->decl) && is_a <cgraph_node *> (n1)
404 && (DECL_FINAL_P (n1->decl) != DECL_FINAL_P (n2->decl)))
405 return return_false_with_msg ("final flag mismatch");
406 }
407 return true;
408 }
409
410 /* Hash properties that are compared by compare_referenced_symbol_properties. */
411
412 void
hash_referenced_symbol_properties(symtab_node * ref,inchash::hash & hstate,bool address)413 sem_item::hash_referenced_symbol_properties (symtab_node *ref,
414 inchash::hash &hstate,
415 bool address)
416 {
417 if (is_a <cgraph_node *> (ref))
418 {
419 if ((type != FUNC || address || !opt_for_fn (decl, optimize_size))
420 && !opt_for_fn (ref->decl, optimize_size)
421 && !DECL_UNINLINABLE (ref->decl))
422 {
423 hstate.add_flag (DECL_DISREGARD_INLINE_LIMITS (ref->decl));
424 hstate.add_flag (DECL_DECLARED_INLINE_P (ref->decl));
425 }
426 hstate.add_flag (DECL_IS_OPERATOR_NEW_P (ref->decl));
427 }
428 else if (is_a <varpool_node *> (ref))
429 {
430 hstate.add_flag (DECL_VIRTUAL_P (ref->decl));
431 if (address)
432 hstate.add_int (DECL_ALIGN (ref->decl));
433 }
434 }
435
436
437 /* For a given symbol table nodes N1 and N2, we check that FUNCTION_DECLs
438 point to a same function. Comparison can be skipped if IGNORED_NODES
439 contains these nodes. ADDRESS indicate if address is taken. */
440
441 bool
compare_symbol_references(hash_map<symtab_node *,sem_item * > & ignored_nodes,symtab_node * n1,symtab_node * n2,bool address)442 sem_item::compare_symbol_references (
443 hash_map <symtab_node *, sem_item *> &ignored_nodes,
444 symtab_node *n1, symtab_node *n2, bool address)
445 {
446 enum availability avail1, avail2;
447
448 if (n1 == n2)
449 return true;
450
451 /* Never match variable and function. */
452 if (is_a <varpool_node *> (n1) != is_a <varpool_node *> (n2))
453 return false;
454
455 if (!compare_referenced_symbol_properties (node, n1, n2, address))
456 return false;
457 if (address && n1->equal_address_to (n2) == 1)
458 return true;
459 if (!address && n1->semantically_equivalent_p (n2))
460 return true;
461
462 n1 = n1->ultimate_alias_target (&avail1);
463 n2 = n2->ultimate_alias_target (&avail2);
464
465 if (avail1 > AVAIL_INTERPOSABLE && ignored_nodes.get (n1)
466 && avail2 > AVAIL_INTERPOSABLE && ignored_nodes.get (n2))
467 return true;
468
469 return return_false_with_msg ("different references");
470 }
471
472 /* If cgraph edges E1 and E2 are indirect calls, verify that
473 ECF flags are the same. */
474
compare_edge_flags(cgraph_edge * e1,cgraph_edge * e2)475 bool sem_function::compare_edge_flags (cgraph_edge *e1, cgraph_edge *e2)
476 {
477 if (e1->indirect_info && e2->indirect_info)
478 {
479 int e1_flags = e1->indirect_info->ecf_flags;
480 int e2_flags = e2->indirect_info->ecf_flags;
481
482 if (e1_flags != e2_flags)
483 return return_false_with_msg ("ICF flags are different");
484 }
485 else if (e1->indirect_info || e2->indirect_info)
486 return false;
487
488 return true;
489 }
490
491 /* Return true if parameter I may be used. */
492
493 bool
param_used_p(unsigned int i)494 sem_function::param_used_p (unsigned int i)
495 {
496 if (ipa_node_params_sum == NULL)
497 return true;
498
499 ipa_node_params *parms_info = ipa_node_params_sum->get (get_node ());
500
501 if (!parms_info || vec_safe_length (parms_info->descriptors) <= i)
502 return true;
503
504 return ipa_is_param_used (parms_info, i);
505 }
506
507 /* Perform additional check needed to match types function parameters that are
508 used. Unlike for normal decls it matters if type is TYPE_RESTRICT and we
509 make an assumption that REFERENCE_TYPE parameters are always non-NULL. */
510
511 bool
compatible_parm_types_p(tree parm1,tree parm2)512 sem_function::compatible_parm_types_p (tree parm1, tree parm2)
513 {
514 /* Be sure that parameters are TBAA compatible. */
515 if (!func_checker::compatible_types_p (parm1, parm2))
516 return return_false_with_msg ("parameter type is not compatible");
517
518 if (POINTER_TYPE_P (parm1)
519 && (TYPE_RESTRICT (parm1) != TYPE_RESTRICT (parm2)))
520 return return_false_with_msg ("argument restrict flag mismatch");
521
522 /* nonnull_arg_p implies non-zero range to REFERENCE types. */
523 if (POINTER_TYPE_P (parm1)
524 && TREE_CODE (parm1) != TREE_CODE (parm2)
525 && opt_for_fn (decl, flag_delete_null_pointer_checks))
526 return return_false_with_msg ("pointer wrt reference mismatch");
527
528 return true;
529 }
530
531 /* Fast equality function based on knowledge known in WPA. */
532
533 bool
equals_wpa(sem_item * item,hash_map<symtab_node *,sem_item * > & ignored_nodes)534 sem_function::equals_wpa (sem_item *item,
535 hash_map <symtab_node *, sem_item *> &ignored_nodes)
536 {
537 gcc_assert (item->type == FUNC);
538 cgraph_node *cnode = dyn_cast <cgraph_node *> (node);
539 cgraph_node *cnode2 = dyn_cast <cgraph_node *> (item->node);
540
541 m_compared_func = static_cast<sem_function *> (item);
542
543 if (cnode->thunk != cnode2->thunk)
544 return return_false_with_msg ("thunk mismatch");
545 if (cnode->former_thunk_p () != cnode2->former_thunk_p ())
546 return return_false_with_msg ("former_thunk_p mismatch");
547
548 if ((cnode->thunk || cnode->former_thunk_p ())
549 && thunk_info::get (cnode) != thunk_info::get (cnode2))
550 return return_false_with_msg ("thunk_info mismatch");
551
552 /* Compare special function DECL attributes. */
553 if (DECL_FUNCTION_PERSONALITY (decl)
554 != DECL_FUNCTION_PERSONALITY (item->decl))
555 return return_false_with_msg ("function personalities are different");
556
557 if (DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (decl)
558 != DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (item->decl))
559 return return_false_with_msg ("instrument function entry exit "
560 "attributes are different");
561
562 if (DECL_NO_LIMIT_STACK (decl) != DECL_NO_LIMIT_STACK (item->decl))
563 return return_false_with_msg ("no stack limit attributes are different");
564
565 if (DECL_CXX_CONSTRUCTOR_P (decl) != DECL_CXX_CONSTRUCTOR_P (item->decl))
566 return return_false_with_msg ("DECL_CXX_CONSTRUCTOR mismatch");
567
568 if (DECL_CXX_DESTRUCTOR_P (decl) != DECL_CXX_DESTRUCTOR_P (item->decl))
569 return return_false_with_msg ("DECL_CXX_DESTRUCTOR mismatch");
570
571 /* TODO: pure/const flags mostly matters only for references, except for
572 the fact that codegen takes LOOPING flag as a hint that loops are
573 finite. We may arrange the code to always pick leader that has least
574 specified flags and then this can go into comparing symbol properties. */
575 if (flags_from_decl_or_type (decl) != flags_from_decl_or_type (item->decl))
576 return return_false_with_msg ("decl_or_type flags are different");
577
578 /* Do not match polymorphic constructors of different types. They calls
579 type memory location for ipa-polymorphic-call and we do not want
580 it to get confused by wrong type. */
581 if (DECL_CXX_CONSTRUCTOR_P (decl)
582 && opt_for_fn (decl, flag_devirtualize)
583 && TREE_CODE (TREE_TYPE (decl)) == METHOD_TYPE)
584 {
585 if (TREE_CODE (TREE_TYPE (item->decl)) != METHOD_TYPE)
586 return return_false_with_msg ("DECL_CXX_CONSTRUCTOR type mismatch");
587 else if (!func_checker::compatible_polymorphic_types_p
588 (TYPE_METHOD_BASETYPE (TREE_TYPE (decl)),
589 TYPE_METHOD_BASETYPE (TREE_TYPE (item->decl)), false))
590 return return_false_with_msg ("ctor polymorphic type mismatch");
591 }
592
593 /* Checking function TARGET and OPTIMIZATION flags. */
594 cl_target_option *tar1 = target_opts_for_fn (decl);
595 cl_target_option *tar2 = target_opts_for_fn (item->decl);
596
597 if (tar1 != tar2 && !cl_target_option_eq (tar1, tar2))
598 {
599 if (dump_file && (dump_flags & TDF_DETAILS))
600 {
601 fprintf (dump_file, "target flags difference");
602 cl_target_option_print_diff (dump_file, 2, tar1, tar2);
603 }
604
605 return return_false_with_msg ("Target flags are different");
606 }
607
608 cl_optimization *opt1 = opts_for_fn (decl);
609 cl_optimization *opt2 = opts_for_fn (item->decl);
610
611 if (opt1 != opt2 && !cl_optimization_option_eq (opt1, opt2))
612 {
613 if (dump_file && (dump_flags & TDF_DETAILS))
614 {
615 fprintf (dump_file, "optimization flags difference");
616 cl_optimization_print_diff (dump_file, 2, opt1, opt2);
617 }
618
619 return return_false_with_msg ("optimization flags are different");
620 }
621
622 /* Result type checking. */
623 if (!func_checker::compatible_types_p
624 (TREE_TYPE (TREE_TYPE (decl)),
625 TREE_TYPE (TREE_TYPE (m_compared_func->decl))))
626 return return_false_with_msg ("result types are different");
627
628 /* Checking types of arguments. */
629 tree list1 = TYPE_ARG_TYPES (TREE_TYPE (decl)),
630 list2 = TYPE_ARG_TYPES (TREE_TYPE (m_compared_func->decl));
631 for (unsigned i = 0; list1 && list2;
632 list1 = TREE_CHAIN (list1), list2 = TREE_CHAIN (list2), i++)
633 {
634 tree parm1 = TREE_VALUE (list1);
635 tree parm2 = TREE_VALUE (list2);
636
637 /* This guard is here for function pointer with attributes (pr59927.c). */
638 if (!parm1 || !parm2)
639 return return_false_with_msg ("NULL argument type");
640
641 /* Verify that types are compatible to ensure that both functions
642 have same calling conventions. */
643 if (!types_compatible_p (parm1, parm2))
644 return return_false_with_msg ("parameter types are not compatible");
645
646 if (!param_used_p (i))
647 continue;
648
649 /* Perform additional checks for used parameters. */
650 if (!compatible_parm_types_p (parm1, parm2))
651 return false;
652 }
653
654 if (list1 || list2)
655 return return_false_with_msg ("Mismatched number of parameters");
656
657 if (node->num_references () != item->node->num_references ())
658 return return_false_with_msg ("different number of references");
659
660 /* Checking function attributes.
661 This is quadratic in number of attributes */
662 if (comp_type_attributes (TREE_TYPE (decl),
663 TREE_TYPE (item->decl)) != 1)
664 return return_false_with_msg ("different type attributes");
665 if (!attribute_list_equal (DECL_ATTRIBUTES (decl),
666 DECL_ATTRIBUTES (item->decl)))
667 return return_false_with_msg ("different decl attributes");
668
669 /* The type of THIS pointer type memory location for
670 ipa-polymorphic-call-analysis. */
671 if (opt_for_fn (decl, flag_devirtualize)
672 && (TREE_CODE (TREE_TYPE (decl)) == METHOD_TYPE
673 || TREE_CODE (TREE_TYPE (item->decl)) == METHOD_TYPE)
674 && param_used_p (0)
675 && compare_polymorphic_p ())
676 {
677 if (TREE_CODE (TREE_TYPE (decl)) != TREE_CODE (TREE_TYPE (item->decl)))
678 return return_false_with_msg ("METHOD_TYPE and FUNCTION_TYPE mismatch");
679 if (!func_checker::compatible_polymorphic_types_p
680 (TYPE_METHOD_BASETYPE (TREE_TYPE (decl)),
681 TYPE_METHOD_BASETYPE (TREE_TYPE (item->decl)), false))
682 return return_false_with_msg ("THIS pointer ODR type mismatch");
683 }
684
685 ipa_ref *ref = NULL, *ref2 = NULL;
686 for (unsigned i = 0; node->iterate_reference (i, ref); i++)
687 {
688 item->node->iterate_reference (i, ref2);
689
690 if (ref->use != ref2->use)
691 return return_false_with_msg ("reference use mismatch");
692
693 if (!compare_symbol_references (ignored_nodes, ref->referred,
694 ref2->referred,
695 ref->address_matters_p ()))
696 return false;
697 }
698
699 cgraph_edge *e1 = dyn_cast <cgraph_node *> (node)->callees;
700 cgraph_edge *e2 = dyn_cast <cgraph_node *> (item->node)->callees;
701
702 while (e1 && e2)
703 {
704 if (!compare_symbol_references (ignored_nodes, e1->callee,
705 e2->callee, false))
706 return false;
707 if (!compare_edge_flags (e1, e2))
708 return false;
709
710 e1 = e1->next_callee;
711 e2 = e2->next_callee;
712 }
713
714 if (e1 || e2)
715 return return_false_with_msg ("different number of calls");
716
717 e1 = dyn_cast <cgraph_node *> (node)->indirect_calls;
718 e2 = dyn_cast <cgraph_node *> (item->node)->indirect_calls;
719
720 while (e1 && e2)
721 {
722 if (!compare_edge_flags (e1, e2))
723 return false;
724
725 e1 = e1->next_callee;
726 e2 = e2->next_callee;
727 }
728
729 if (e1 || e2)
730 return return_false_with_msg ("different number of indirect calls");
731
732 return true;
733 }
734
735 /* Update hash by address sensitive references. We iterate over all
736 sensitive references (address_matters_p) and we hash ultimate alias
737 target of these nodes, which can improve a semantic item hash.
738
739 Also hash in referenced symbols properties. This can be done at any time
740 (as the properties should not change), but it is convenient to do it here
741 while we walk the references anyway. */
742
743 void
update_hash_by_addr_refs(hash_map<symtab_node *,sem_item * > & m_symtab_node_map)744 sem_item::update_hash_by_addr_refs (hash_map <symtab_node *,
745 sem_item *> &m_symtab_node_map)
746 {
747 ipa_ref* ref;
748 inchash::hash hstate (get_hash ());
749
750 for (unsigned i = 0; node->iterate_reference (i, ref); i++)
751 {
752 hstate.add_int (ref->use);
753 hash_referenced_symbol_properties (ref->referred, hstate,
754 ref->use == IPA_REF_ADDR);
755 if (ref->address_matters_p () || !m_symtab_node_map.get (ref->referred))
756 hstate.add_int (ref->referred->ultimate_alias_target ()->order);
757 }
758
759 if (is_a <cgraph_node *> (node))
760 {
761 for (cgraph_edge *e = dyn_cast <cgraph_node *> (node)->callers; e;
762 e = e->next_caller)
763 {
764 sem_item **result = m_symtab_node_map.get (e->callee);
765 hash_referenced_symbol_properties (e->callee, hstate, false);
766 if (!result)
767 hstate.add_int (e->callee->ultimate_alias_target ()->order);
768 }
769 }
770
771 set_hash (hstate.end ());
772 }
773
774 /* Update hash by computed local hash values taken from different
775 semantic items.
776 TODO: stronger SCC based hashing would be desirable here. */
777
778 void
update_hash_by_local_refs(hash_map<symtab_node *,sem_item * > & m_symtab_node_map)779 sem_item::update_hash_by_local_refs (hash_map <symtab_node *,
780 sem_item *> &m_symtab_node_map)
781 {
782 ipa_ref* ref;
783 inchash::hash state (get_hash ());
784
785 for (unsigned j = 0; node->iterate_reference (j, ref); j++)
786 {
787 sem_item **result = m_symtab_node_map.get (ref->referring);
788 if (result)
789 state.merge_hash ((*result)->get_hash ());
790 }
791
792 if (type == FUNC)
793 {
794 for (cgraph_edge *e = dyn_cast <cgraph_node *> (node)->callees; e;
795 e = e->next_callee)
796 {
797 sem_item **result = m_symtab_node_map.get (e->caller);
798 if (result)
799 state.merge_hash ((*result)->get_hash ());
800 }
801 }
802
803 global_hash = state.end ();
804 }
805
806 /* Returns true if the item equals to ITEM given as argument. */
807
808 bool
equals(sem_item * item,hash_map<symtab_node *,sem_item * > &)809 sem_function::equals (sem_item *item,
810 hash_map <symtab_node *, sem_item *> &)
811 {
812 gcc_assert (item->type == FUNC);
813 bool eq = equals_private (item);
814
815 if (m_checker != NULL)
816 {
817 delete m_checker;
818 m_checker = NULL;
819 }
820
821 if (dump_file && (dump_flags & TDF_DETAILS))
822 fprintf (dump_file,
823 "Equals called for: %s:%s with result: %s\n\n",
824 node->dump_name (),
825 item->node->dump_name (),
826 eq ? "true" : "false");
827
828 return eq;
829 }
830
831 /* Processes function equality comparison. */
832
833 bool
equals_private(sem_item * item)834 sem_function::equals_private (sem_item *item)
835 {
836 if (item->type != FUNC)
837 return false;
838
839 basic_block bb1, bb2;
840 edge e1, e2;
841 edge_iterator ei1, ei2;
842 bool result = true;
843 tree arg1, arg2;
844
845 m_compared_func = static_cast<sem_function *> (item);
846
847 gcc_assert (decl != item->decl);
848
849 if (bb_sorted.length () != m_compared_func->bb_sorted.length ()
850 || edge_count != m_compared_func->edge_count
851 || cfg_checksum != m_compared_func->cfg_checksum)
852 return return_false ();
853
854 m_checker = new func_checker (decl, m_compared_func->decl,
855 false,
856 opt_for_fn (m_compared_func->decl,
857 flag_strict_aliasing),
858 &refs_set,
859 &m_compared_func->refs_set);
860 arg1 = DECL_ARGUMENTS (decl);
861 arg2 = DECL_ARGUMENTS (m_compared_func->decl);
862 for (unsigned i = 0;
863 arg1 && arg2; arg1 = DECL_CHAIN (arg1), arg2 = DECL_CHAIN (arg2), i++)
864 {
865 if (!types_compatible_p (TREE_TYPE (arg1), TREE_TYPE (arg2)))
866 return return_false_with_msg ("argument types are not compatible");
867 if (!param_used_p (i))
868 continue;
869 /* Perform additional checks for used parameters. */
870 if (!compatible_parm_types_p (TREE_TYPE (arg1), TREE_TYPE (arg2)))
871 return false;
872 if (!m_checker->compare_decl (arg1, arg2))
873 return return_false ();
874 }
875 if (arg1 || arg2)
876 return return_false_with_msg ("Mismatched number of arguments");
877
878 if (!dyn_cast <cgraph_node *> (node)->has_gimple_body_p ())
879 return true;
880
881 /* Fill-up label dictionary. */
882 for (unsigned i = 0; i < bb_sorted.length (); ++i)
883 {
884 m_checker->parse_labels (bb_sorted[i]);
885 m_checker->parse_labels (m_compared_func->bb_sorted[i]);
886 }
887
888 /* Checking all basic blocks. */
889 for (unsigned i = 0; i < bb_sorted.length (); ++i)
890 if(!m_checker->compare_bb (bb_sorted[i], m_compared_func->bb_sorted[i]))
891 return return_false ();
892
893 auto_vec <int> bb_dict;
894
895 /* Basic block edges check. */
896 for (unsigned i = 0; i < bb_sorted.length (); ++i)
897 {
898 bb1 = bb_sorted[i]->bb;
899 bb2 = m_compared_func->bb_sorted[i]->bb;
900
901 ei2 = ei_start (bb2->preds);
902
903 for (ei1 = ei_start (bb1->preds); ei_cond (ei1, &e1); ei_next (&ei1))
904 {
905 ei_cond (ei2, &e2);
906
907 if (e1->flags != e2->flags)
908 return return_false_with_msg ("flags comparison returns false");
909
910 if (!bb_dict_test (&bb_dict, e1->src->index, e2->src->index))
911 return return_false_with_msg ("edge comparison returns false");
912
913 if (!bb_dict_test (&bb_dict, e1->dest->index, e2->dest->index))
914 return return_false_with_msg ("BB comparison returns false");
915
916 if (!m_checker->compare_edge (e1, e2))
917 return return_false_with_msg ("edge comparison returns false");
918
919 ei_next (&ei2);
920 }
921 }
922
923 /* Basic block PHI nodes comparison. */
924 for (unsigned i = 0; i < bb_sorted.length (); i++)
925 if (!compare_phi_node (bb_sorted[i]->bb, m_compared_func->bb_sorted[i]->bb))
926 return return_false_with_msg ("PHI node comparison returns false");
927
928 return result;
929 }
930
931 /* Set LOCAL_P of NODE to true if DATA is non-NULL.
932 Helper for call_for_symbol_thunks_and_aliases. */
933
934 static bool
set_local(cgraph_node * node,void * data)935 set_local (cgraph_node *node, void *data)
936 {
937 node->local = data != NULL;
938 return false;
939 }
940
941 /* TREE_ADDRESSABLE of NODE to true.
942 Helper for call_for_symbol_thunks_and_aliases. */
943
944 static bool
set_addressable(varpool_node * node,void *)945 set_addressable (varpool_node *node, void *)
946 {
947 TREE_ADDRESSABLE (node->decl) = 1;
948 return false;
949 }
950
951 /* Clear DECL_RTL of NODE.
952 Helper for call_for_symbol_thunks_and_aliases. */
953
954 static bool
clear_decl_rtl(symtab_node * node,void *)955 clear_decl_rtl (symtab_node *node, void *)
956 {
957 SET_DECL_RTL (node->decl, NULL);
958 return false;
959 }
960
961 /* Redirect all callers of N and its aliases to TO. Remove aliases if
962 possible. Return number of redirections made. */
963
964 static int
redirect_all_callers(cgraph_node * n,cgraph_node * to)965 redirect_all_callers (cgraph_node *n, cgraph_node *to)
966 {
967 int nredirected = 0;
968 ipa_ref *ref;
969 cgraph_edge *e = n->callers;
970
971 while (e)
972 {
973 /* Redirecting thunks to interposable symbols or symbols in other sections
974 may not be supported by target output code. Play safe for now and
975 punt on redirection. */
976 if (!e->caller->thunk)
977 {
978 struct cgraph_edge *nexte = e->next_caller;
979 e->redirect_callee (to);
980 e = nexte;
981 nredirected++;
982 }
983 else
984 e = e->next_callee;
985 }
986 for (unsigned i = 0; n->iterate_direct_aliases (i, ref);)
987 {
988 bool removed = false;
989 cgraph_node *n_alias = dyn_cast <cgraph_node *> (ref->referring);
990
991 if ((DECL_COMDAT_GROUP (n->decl)
992 && (DECL_COMDAT_GROUP (n->decl)
993 == DECL_COMDAT_GROUP (n_alias->decl)))
994 || (n_alias->get_availability () > AVAIL_INTERPOSABLE
995 && n->get_availability () > AVAIL_INTERPOSABLE))
996 {
997 nredirected += redirect_all_callers (n_alias, to);
998 if (n_alias->can_remove_if_no_direct_calls_p ()
999 && !n_alias->call_for_symbol_and_aliases (cgraph_node::has_thunk_p,
1000 NULL, true)
1001 && !n_alias->has_aliases_p ())
1002 n_alias->remove ();
1003 }
1004 if (!removed)
1005 i++;
1006 }
1007 return nredirected;
1008 }
1009
1010 /* Merges instance with an ALIAS_ITEM, where alias, thunk or redirection can
1011 be applied. */
1012
1013 bool
merge(sem_item * alias_item)1014 sem_function::merge (sem_item *alias_item)
1015 {
1016 gcc_assert (alias_item->type == FUNC);
1017
1018 sem_function *alias_func = static_cast<sem_function *> (alias_item);
1019
1020 cgraph_node *original = get_node ();
1021 cgraph_node *local_original = NULL;
1022 cgraph_node *alias = alias_func->get_node ();
1023
1024 bool create_wrapper = false;
1025 bool create_alias = false;
1026 bool redirect_callers = false;
1027 bool remove = false;
1028
1029 bool original_discardable = false;
1030 bool original_discarded = false;
1031
1032 bool original_address_matters = original->address_matters_p ();
1033 bool alias_address_matters = alias->address_matters_p ();
1034
1035 AUTO_DUMP_SCOPE ("merge",
1036 dump_user_location_t::from_function_decl (decl));
1037
1038 if (DECL_EXTERNAL (alias->decl))
1039 {
1040 if (dump_enabled_p ())
1041 dump_printf (MSG_MISSED_OPTIMIZATION,
1042 "Not unifying; alias is external.\n");
1043 return false;
1044 }
1045
1046 if (DECL_NO_INLINE_WARNING_P (original->decl)
1047 != DECL_NO_INLINE_WARNING_P (alias->decl))
1048 {
1049 if (dump_enabled_p ())
1050 dump_printf (MSG_MISSED_OPTIMIZATION,
1051 "Not unifying; DECL_NO_INLINE_WARNING mismatch.\n");
1052 return false;
1053 }
1054
1055 /* Do not attempt to mix functions from different user sections;
1056 we do not know what user intends with those. */
1057 if (((DECL_SECTION_NAME (original->decl) && !original->implicit_section)
1058 || (DECL_SECTION_NAME (alias->decl) && !alias->implicit_section))
1059 && DECL_SECTION_NAME (original->decl) != DECL_SECTION_NAME (alias->decl))
1060 {
1061 if (dump_enabled_p ())
1062 dump_printf (MSG_MISSED_OPTIMIZATION,
1063 "Not unifying; "
1064 "original and alias are in different sections.\n");
1065 return false;
1066 }
1067
1068 if (!original->in_same_comdat_group_p (alias)
1069 || original->comdat_local_p ())
1070 {
1071 if (dump_enabled_p ())
1072 dump_printf (MSG_MISSED_OPTIMIZATION,
1073 "Not unifying; alias nor wrapper cannot be created; "
1074 "across comdat group boundary\n");
1075 return false;
1076 }
1077
1078 /* See if original is in a section that can be discarded if the main
1079 symbol is not used. */
1080
1081 if (original->can_be_discarded_p ())
1082 original_discardable = true;
1083 /* Also consider case where we have resolution info and we know that
1084 original's definition is not going to be used. In this case we cannot
1085 create alias to original. */
1086 if (node->resolution != LDPR_UNKNOWN
1087 && !decl_binds_to_current_def_p (node->decl))
1088 original_discardable = original_discarded = true;
1089
1090 /* Creating a symtab alias is the optimal way to merge.
1091 It however cannot be used in the following cases:
1092
1093 1) if ORIGINAL and ALIAS may be possibly compared for address equality.
1094 2) if ORIGINAL is in a section that may be discarded by linker or if
1095 it is an external functions where we cannot create an alias
1096 (ORIGINAL_DISCARDABLE)
1097 3) if target do not support symbol aliases.
1098 4) original and alias lie in different comdat groups.
1099
1100 If we cannot produce alias, we will turn ALIAS into WRAPPER of ORIGINAL
1101 and/or redirect all callers from ALIAS to ORIGINAL. */
1102 if ((original_address_matters && alias_address_matters)
1103 || (original_discardable
1104 && (!DECL_COMDAT_GROUP (alias->decl)
1105 || (DECL_COMDAT_GROUP (alias->decl)
1106 != DECL_COMDAT_GROUP (original->decl))))
1107 || original_discarded
1108 || !sem_item::target_supports_symbol_aliases_p ()
1109 || DECL_COMDAT_GROUP (alias->decl) != DECL_COMDAT_GROUP (original->decl))
1110 {
1111 /* First see if we can produce wrapper. */
1112
1113 /* Symbol properties that matter for references must be preserved.
1114 TODO: We can produce wrapper, but we need to produce alias of ORIGINAL
1115 with proper properties. */
1116 if (!sem_item::compare_referenced_symbol_properties (NULL, original, alias,
1117 alias->address_taken))
1118 {
1119 if (dump_enabled_p ())
1120 dump_printf (MSG_MISSED_OPTIMIZATION,
1121 "Wrapper cannot be created because referenced symbol "
1122 "properties mismatch\n");
1123 }
1124 /* Do not turn function in one comdat group into wrapper to another
1125 comdat group. Other compiler producing the body of the
1126 another comdat group may make opposite decision and with unfortunate
1127 linker choices this may close a loop. */
1128 else if (DECL_COMDAT_GROUP (original->decl)
1129 && DECL_COMDAT_GROUP (alias->decl)
1130 && (DECL_COMDAT_GROUP (alias->decl)
1131 != DECL_COMDAT_GROUP (original->decl)))
1132 {
1133 if (dump_enabled_p ())
1134 dump_printf (MSG_MISSED_OPTIMIZATION,
1135 "Wrapper cannot be created because of COMDAT\n");
1136 }
1137 else if (DECL_STATIC_CHAIN (alias->decl)
1138 || DECL_STATIC_CHAIN (original->decl))
1139 {
1140 if (dump_enabled_p ())
1141 dump_printf (MSG_MISSED_OPTIMIZATION,
1142 "Cannot create wrapper of nested function.\n");
1143 }
1144 /* TODO: We can also deal with variadic functions never calling
1145 VA_START. */
1146 else if (stdarg_p (TREE_TYPE (alias->decl)))
1147 {
1148 if (dump_enabled_p ())
1149 dump_printf (MSG_MISSED_OPTIMIZATION,
1150 "cannot create wrapper of stdarg function.\n");
1151 }
1152 else if (ipa_fn_summaries
1153 && ipa_size_summaries->get (alias) != NULL
1154 && ipa_size_summaries->get (alias)->self_size <= 2)
1155 {
1156 if (dump_enabled_p ())
1157 dump_printf (MSG_MISSED_OPTIMIZATION, "Wrapper creation is not "
1158 "profitable (function is too small).\n");
1159 }
1160 /* If user paid attention to mark function noinline, assume it is
1161 somewhat special and do not try to turn it into a wrapper that
1162 cannot be undone by inliner. */
1163 else if (lookup_attribute ("noinline", DECL_ATTRIBUTES (alias->decl)))
1164 {
1165 if (dump_enabled_p ())
1166 dump_printf (MSG_MISSED_OPTIMIZATION,
1167 "Wrappers are not created for noinline.\n");
1168 }
1169 else
1170 create_wrapper = true;
1171
1172 /* We can redirect local calls in the case both alias and original
1173 are not interposable. */
1174 redirect_callers
1175 = alias->get_availability () > AVAIL_INTERPOSABLE
1176 && original->get_availability () > AVAIL_INTERPOSABLE;
1177 /* TODO: We can redirect, but we need to produce alias of ORIGINAL
1178 with proper properties. */
1179 if (!sem_item::compare_referenced_symbol_properties (NULL, original, alias,
1180 alias->address_taken))
1181 redirect_callers = false;
1182
1183 if (!redirect_callers && !create_wrapper)
1184 {
1185 if (dump_enabled_p ())
1186 dump_printf (MSG_MISSED_OPTIMIZATION,
1187 "Not unifying; cannot redirect callers nor "
1188 "produce wrapper\n");
1189 return false;
1190 }
1191
1192 /* Work out the symbol the wrapper should call.
1193 If ORIGINAL is interposable, we need to call a local alias.
1194 Also produce local alias (if possible) as an optimization.
1195
1196 Local aliases cannot be created inside comdat groups because that
1197 prevents inlining. */
1198 if (!original_discardable && !original->get_comdat_group ())
1199 {
1200 local_original
1201 = dyn_cast <cgraph_node *> (original->noninterposable_alias ());
1202 if (!local_original
1203 && original->get_availability () > AVAIL_INTERPOSABLE)
1204 local_original = original;
1205 }
1206 /* If we cannot use local alias, fallback to the original
1207 when possible. */
1208 else if (original->get_availability () > AVAIL_INTERPOSABLE)
1209 local_original = original;
1210
1211 /* If original is COMDAT local, we cannot really redirect calls outside
1212 of its comdat group to it. */
1213 if (original->comdat_local_p ())
1214 redirect_callers = false;
1215 if (!local_original)
1216 {
1217 if (dump_enabled_p ())
1218 dump_printf (MSG_MISSED_OPTIMIZATION,
1219 "Not unifying; cannot produce local alias.\n");
1220 return false;
1221 }
1222
1223 if (!redirect_callers && !create_wrapper)
1224 {
1225 if (dump_enabled_p ())
1226 dump_printf (MSG_MISSED_OPTIMIZATION,
1227 "Not unifying; "
1228 "cannot redirect callers nor produce a wrapper\n");
1229 return false;
1230 }
1231 if (!create_wrapper
1232 && !alias->call_for_symbol_and_aliases (cgraph_node::has_thunk_p,
1233 NULL, true)
1234 && !alias->can_remove_if_no_direct_calls_p ())
1235 {
1236 if (dump_enabled_p ())
1237 dump_printf (MSG_MISSED_OPTIMIZATION,
1238 "Not unifying; cannot make wrapper and "
1239 "function has other uses than direct calls\n");
1240 return false;
1241 }
1242 }
1243 else
1244 create_alias = true;
1245
1246 if (redirect_callers)
1247 {
1248 int nredirected = redirect_all_callers (alias, local_original);
1249
1250 if (nredirected)
1251 {
1252 alias->icf_merged = true;
1253 local_original->icf_merged = true;
1254
1255 if (dump_enabled_p ())
1256 dump_printf (MSG_NOTE,
1257 "%i local calls have been "
1258 "redirected.\n", nredirected);
1259 }
1260
1261 /* If all callers was redirected, do not produce wrapper. */
1262 if (alias->can_remove_if_no_direct_calls_p ()
1263 && !DECL_VIRTUAL_P (alias->decl)
1264 && !alias->has_aliases_p ())
1265 {
1266 create_wrapper = false;
1267 remove = true;
1268 }
1269 gcc_assert (!create_alias);
1270 }
1271 else if (create_alias)
1272 {
1273 alias->icf_merged = true;
1274
1275 /* Remove the function's body. */
1276 ipa_merge_profiles (original, alias);
1277 symtab->call_cgraph_removal_hooks (alias);
1278 alias->release_body (true);
1279 alias->reset ();
1280 /* Notice global symbol possibly produced RTL. */
1281 ((symtab_node *)alias)->call_for_symbol_and_aliases (clear_decl_rtl,
1282 NULL, true);
1283
1284 /* Create the alias. */
1285 cgraph_node::create_alias (alias_func->decl, decl);
1286 alias->resolve_alias (original);
1287
1288 original->call_for_symbol_thunks_and_aliases
1289 (set_local, (void *)(size_t) original->local_p (), true);
1290
1291 if (dump_enabled_p ())
1292 dump_printf (MSG_OPTIMIZED_LOCATIONS,
1293 "Unified; Function alias has been created.\n");
1294 }
1295 if (create_wrapper)
1296 {
1297 gcc_assert (!create_alias);
1298 alias->icf_merged = true;
1299 symtab->call_cgraph_removal_hooks (alias);
1300 local_original->icf_merged = true;
1301
1302 /* FIXME update local_original counts. */
1303 ipa_merge_profiles (original, alias, true);
1304 alias->create_wrapper (local_original);
1305 symtab->call_cgraph_insertion_hooks (alias);
1306
1307 if (dump_enabled_p ())
1308 dump_printf (MSG_OPTIMIZED_LOCATIONS,
1309 "Unified; Wrapper has been created.\n");
1310 }
1311
1312 /* It's possible that redirection can hit thunks that block
1313 redirection opportunities. */
1314 gcc_assert (alias->icf_merged || remove || redirect_callers);
1315 original->icf_merged = true;
1316
1317 /* We use merged flag to track cases where COMDAT function is known to be
1318 compatible its callers. If we merged in non-COMDAT, we need to give up
1319 on this optimization. */
1320 if (original->merged_comdat && !alias->merged_comdat)
1321 {
1322 if (dump_enabled_p ())
1323 dump_printf (MSG_NOTE, "Dropping merged_comdat flag.\n");
1324 if (local_original)
1325 local_original->merged_comdat = false;
1326 original->merged_comdat = false;
1327 }
1328
1329 if (remove)
1330 {
1331 ipa_merge_profiles (original, alias);
1332 alias->release_body ();
1333 alias->reset ();
1334 alias->body_removed = true;
1335 alias->icf_merged = true;
1336 if (dump_enabled_p ())
1337 dump_printf (MSG_OPTIMIZED_LOCATIONS,
1338 "Unified; Function body was removed.\n");
1339 }
1340
1341 return true;
1342 }
1343
1344 /* Semantic item initialization function. */
1345
1346 void
init(ipa_icf_gimple::func_checker * checker)1347 sem_function::init (ipa_icf_gimple::func_checker *checker)
1348 {
1349 m_checker = checker;
1350 if (in_lto_p)
1351 get_node ()->get_untransformed_body ();
1352
1353 tree fndecl = node->decl;
1354 function *func = DECL_STRUCT_FUNCTION (fndecl);
1355
1356 gcc_assert (func);
1357 gcc_assert (SSANAMES (func));
1358
1359 ssa_names_size = SSANAMES (func)->length ();
1360 node = node;
1361
1362 decl = fndecl;
1363 region_tree = func->eh->region_tree;
1364
1365 /* iterating all function arguments. */
1366 arg_count = count_formal_params (fndecl);
1367
1368 edge_count = n_edges_for_fn (func);
1369 cgraph_node *cnode = dyn_cast <cgraph_node *> (node);
1370 if (!cnode->thunk)
1371 {
1372 cfg_checksum = coverage_compute_cfg_checksum (func);
1373
1374 inchash::hash hstate;
1375
1376 basic_block bb;
1377 FOR_EACH_BB_FN (bb, func)
1378 {
1379 unsigned nondbg_stmt_count = 0;
1380
1381 edge e;
1382 for (edge_iterator ei = ei_start (bb->preds); ei_cond (ei, &e);
1383 ei_next (&ei))
1384 cfg_checksum = iterative_hash_host_wide_int (e->flags,
1385 cfg_checksum);
1386
1387 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
1388 gsi_next (&gsi))
1389 {
1390 gimple *stmt = gsi_stmt (gsi);
1391
1392 if (gimple_code (stmt) != GIMPLE_DEBUG
1393 && gimple_code (stmt) != GIMPLE_PREDICT)
1394 {
1395 hash_stmt (stmt, hstate);
1396 nondbg_stmt_count++;
1397 }
1398 }
1399
1400 hstate.commit_flag ();
1401 gcode_hash = hstate.end ();
1402 bb_sizes.safe_push (nondbg_stmt_count);
1403
1404 /* Inserting basic block to hash table. */
1405 sem_bb *semantic_bb = new sem_bb (bb, nondbg_stmt_count,
1406 EDGE_COUNT (bb->preds)
1407 + EDGE_COUNT (bb->succs));
1408
1409 bb_sorted.safe_push (semantic_bb);
1410 }
1411 }
1412 else
1413 {
1414 cfg_checksum = 0;
1415 gcode_hash = thunk_info::get (cnode)->hash ();
1416 }
1417
1418 m_checker = NULL;
1419 }
1420
1421 /* Improve accumulated hash for HSTATE based on a gimple statement STMT. */
1422
1423 void
hash_stmt(gimple * stmt,inchash::hash & hstate)1424 sem_function::hash_stmt (gimple *stmt, inchash::hash &hstate)
1425 {
1426 enum gimple_code code = gimple_code (stmt);
1427
1428 hstate.add_int (code);
1429
1430 switch (code)
1431 {
1432 case GIMPLE_SWITCH:
1433 m_checker->hash_operand (gimple_switch_index (as_a <gswitch *> (stmt)),
1434 hstate, 0, func_checker::OP_NORMAL);
1435 break;
1436 case GIMPLE_ASSIGN:
1437 hstate.add_int (gimple_assign_rhs_code (stmt));
1438 /* fall through */
1439 case GIMPLE_CALL:
1440 case GIMPLE_ASM:
1441 case GIMPLE_COND:
1442 case GIMPLE_GOTO:
1443 case GIMPLE_RETURN:
1444 {
1445 func_checker::operand_access_type_map map (5);
1446 func_checker::classify_operands (stmt, &map);
1447
1448 /* All these statements are equivalent if their operands are. */
1449 for (unsigned i = 0; i < gimple_num_ops (stmt); ++i)
1450 {
1451 func_checker::operand_access_type
1452 access_type = func_checker::get_operand_access_type
1453 (&map, gimple_op (stmt, i));
1454 m_checker->hash_operand (gimple_op (stmt, i), hstate, 0,
1455 access_type);
1456 /* For memory accesses when hasing for LTO stremaing record
1457 base and ref alias ptr types so we can compare them at WPA
1458 time without having to read actual function body. */
1459 if (access_type == func_checker::OP_MEMORY
1460 && lto_streaming_expected_p ()
1461 && flag_strict_aliasing)
1462 {
1463 ao_ref ref;
1464
1465 ao_ref_init (&ref, gimple_op (stmt, i));
1466 tree t = ao_ref_alias_ptr_type (&ref);
1467 if (!variably_modified_type_p (t, NULL_TREE))
1468 memory_access_types.safe_push (t);
1469 t = ao_ref_base_alias_ptr_type (&ref);
1470 if (!variably_modified_type_p (t, NULL_TREE))
1471 memory_access_types.safe_push (t);
1472 }
1473 }
1474 /* Consider nocf_check attribute in hash as it affects code
1475 generation. */
1476 if (code == GIMPLE_CALL
1477 && flag_cf_protection & CF_BRANCH)
1478 hstate.add_flag (gimple_call_nocf_check_p (as_a <gcall *> (stmt)));
1479 }
1480 break;
1481 default:
1482 break;
1483 }
1484 }
1485
1486
1487 /* Return true if polymorphic comparison must be processed. */
1488
1489 bool
compare_polymorphic_p(void)1490 sem_function::compare_polymorphic_p (void)
1491 {
1492 struct cgraph_edge *e;
1493
1494 if (!opt_for_fn (get_node ()->decl, flag_devirtualize))
1495 return false;
1496 if (get_node ()->indirect_calls != NULL)
1497 return true;
1498 /* TODO: We can do simple propagation determining what calls may lead to
1499 a polymorphic call. */
1500 for (e = get_node ()->callees; e; e = e->next_callee)
1501 if (e->callee->definition
1502 && opt_for_fn (e->callee->decl, flag_devirtualize))
1503 return true;
1504 return false;
1505 }
1506
1507 /* For a given call graph NODE, the function constructs new
1508 semantic function item. */
1509
1510 sem_function *
parse(cgraph_node * node,bitmap_obstack * stack,func_checker * checker)1511 sem_function::parse (cgraph_node *node, bitmap_obstack *stack,
1512 func_checker *checker)
1513 {
1514 tree fndecl = node->decl;
1515 function *func = DECL_STRUCT_FUNCTION (fndecl);
1516
1517 if (!func || (!node->has_gimple_body_p () && !node->thunk))
1518 return NULL;
1519
1520 if (lookup_attribute_by_prefix ("omp ", DECL_ATTRIBUTES (node->decl)) != NULL)
1521 return NULL;
1522
1523 if (lookup_attribute_by_prefix ("oacc ",
1524 DECL_ATTRIBUTES (node->decl)) != NULL)
1525 return NULL;
1526
1527 /* PR ipa/70306. */
1528 if (DECL_STATIC_CONSTRUCTOR (node->decl)
1529 || DECL_STATIC_DESTRUCTOR (node->decl))
1530 return NULL;
1531
1532 sem_function *f = new sem_function (node, stack);
1533 f->init (checker);
1534
1535 return f;
1536 }
1537
1538 /* For given basic blocks BB1 and BB2 (from functions FUNC1 and FUNC),
1539 return true if phi nodes are semantically equivalent in these blocks . */
1540
1541 bool
compare_phi_node(basic_block bb1,basic_block bb2)1542 sem_function::compare_phi_node (basic_block bb1, basic_block bb2)
1543 {
1544 gphi_iterator si1, si2;
1545 gphi *phi1, *phi2;
1546 unsigned size1, size2, i;
1547 tree t1, t2;
1548 edge e1, e2;
1549
1550 gcc_assert (bb1 != NULL);
1551 gcc_assert (bb2 != NULL);
1552
1553 si2 = gsi_start_nonvirtual_phis (bb2);
1554 for (si1 = gsi_start_nonvirtual_phis (bb1); !gsi_end_p (si1);
1555 gsi_next_nonvirtual_phi (&si1))
1556 {
1557 if (gsi_end_p (si1) && gsi_end_p (si2))
1558 break;
1559
1560 if (gsi_end_p (si1) || gsi_end_p (si2))
1561 return return_false();
1562
1563 phi1 = si1.phi ();
1564 phi2 = si2.phi ();
1565
1566 tree phi_result1 = gimple_phi_result (phi1);
1567 tree phi_result2 = gimple_phi_result (phi2);
1568
1569 if (!m_checker->compare_operand (phi_result1, phi_result2,
1570 func_checker::OP_NORMAL))
1571 return return_false_with_msg ("PHI results are different");
1572
1573 size1 = gimple_phi_num_args (phi1);
1574 size2 = gimple_phi_num_args (phi2);
1575
1576 if (size1 != size2)
1577 return return_false ();
1578
1579 for (i = 0; i < size1; ++i)
1580 {
1581 t1 = gimple_phi_arg (phi1, i)->def;
1582 t2 = gimple_phi_arg (phi2, i)->def;
1583
1584 if (!m_checker->compare_operand (t1, t2, func_checker::OP_NORMAL))
1585 return return_false ();
1586
1587 e1 = gimple_phi_arg_edge (phi1, i);
1588 e2 = gimple_phi_arg_edge (phi2, i);
1589
1590 if (!m_checker->compare_edge (e1, e2))
1591 return return_false ();
1592 }
1593
1594 gsi_next_nonvirtual_phi (&si2);
1595 }
1596
1597 return true;
1598 }
1599
1600 /* Basic blocks dictionary BB_DICT returns true if SOURCE index BB
1601 corresponds to TARGET. */
1602
1603 bool
bb_dict_test(vec<int> * bb_dict,int source,int target)1604 sem_function::bb_dict_test (vec<int> *bb_dict, int source, int target)
1605 {
1606 source++;
1607 target++;
1608
1609 if (bb_dict->length () <= (unsigned)source)
1610 bb_dict->safe_grow_cleared (source + 1, true);
1611
1612 if ((*bb_dict)[source] == 0)
1613 {
1614 (*bb_dict)[source] = target;
1615 return true;
1616 }
1617 else
1618 return (*bb_dict)[source] == target;
1619 }
1620
sem_variable(bitmap_obstack * stack)1621 sem_variable::sem_variable (bitmap_obstack *stack): sem_item (VAR, stack)
1622 {
1623 }
1624
sem_variable(varpool_node * node,bitmap_obstack * stack)1625 sem_variable::sem_variable (varpool_node *node, bitmap_obstack *stack)
1626 : sem_item (VAR, node, stack)
1627 {
1628 gcc_checking_assert (node);
1629 gcc_checking_assert (get_node ());
1630 }
1631
1632 /* Fast equality function based on knowledge known in WPA. */
1633
1634 bool
equals_wpa(sem_item * item,hash_map<symtab_node *,sem_item * > & ignored_nodes)1635 sem_variable::equals_wpa (sem_item *item,
1636 hash_map <symtab_node *, sem_item *> &ignored_nodes)
1637 {
1638 gcc_assert (item->type == VAR);
1639
1640 if (node->num_references () != item->node->num_references ())
1641 return return_false_with_msg ("different number of references");
1642
1643 if (DECL_TLS_MODEL (decl) || DECL_TLS_MODEL (item->decl))
1644 return return_false_with_msg ("TLS model");
1645
1646 /* DECL_ALIGN is safe to merge, because we will always chose the largest
1647 alignment out of all aliases. */
1648
1649 if (DECL_VIRTUAL_P (decl) != DECL_VIRTUAL_P (item->decl))
1650 return return_false_with_msg ("Virtual flag mismatch");
1651
1652 if (DECL_SIZE (decl) != DECL_SIZE (item->decl)
1653 && ((!DECL_SIZE (decl) || !DECL_SIZE (item->decl))
1654 || !operand_equal_p (DECL_SIZE (decl),
1655 DECL_SIZE (item->decl), OEP_ONLY_CONST)))
1656 return return_false_with_msg ("size mismatch");
1657
1658 /* Do not attempt to mix data from different user sections;
1659 we do not know what user intends with those. */
1660 if (((DECL_SECTION_NAME (decl) && !node->implicit_section)
1661 || (DECL_SECTION_NAME (item->decl) && !item->node->implicit_section))
1662 && DECL_SECTION_NAME (decl) != DECL_SECTION_NAME (item->decl))
1663 return return_false_with_msg ("user section mismatch");
1664
1665 if (DECL_IN_TEXT_SECTION (decl) != DECL_IN_TEXT_SECTION (item->decl))
1666 return return_false_with_msg ("text section");
1667
1668 ipa_ref *ref = NULL, *ref2 = NULL;
1669 for (unsigned i = 0; node->iterate_reference (i, ref); i++)
1670 {
1671 item->node->iterate_reference (i, ref2);
1672
1673 if (ref->use != ref2->use)
1674 return return_false_with_msg ("reference use mismatch");
1675
1676 if (!compare_symbol_references (ignored_nodes,
1677 ref->referred, ref2->referred,
1678 ref->address_matters_p ()))
1679 return false;
1680 }
1681
1682 return true;
1683 }
1684
1685 /* Returns true if the item equals to ITEM given as argument. */
1686
1687 bool
equals(sem_item * item,hash_map<symtab_node *,sem_item * > &)1688 sem_variable::equals (sem_item *item,
1689 hash_map <symtab_node *, sem_item *> &)
1690 {
1691 gcc_assert (item->type == VAR);
1692 bool ret;
1693
1694 if (DECL_INITIAL (decl) == error_mark_node && in_lto_p)
1695 dyn_cast <varpool_node *>(node)->get_constructor ();
1696 if (DECL_INITIAL (item->decl) == error_mark_node && in_lto_p)
1697 dyn_cast <varpool_node *>(item->node)->get_constructor ();
1698
1699 /* As seen in PR ipa/65303 we have to compare variables types. */
1700 if (!func_checker::compatible_types_p (TREE_TYPE (decl),
1701 TREE_TYPE (item->decl)))
1702 return return_false_with_msg ("variables types are different");
1703
1704 ret = sem_variable::equals (DECL_INITIAL (decl),
1705 DECL_INITIAL (item->node->decl));
1706 if (dump_file && (dump_flags & TDF_DETAILS))
1707 fprintf (dump_file,
1708 "Equals called for vars: %s:%s with result: %s\n\n",
1709 node->dump_name (), item->node->dump_name (),
1710 ret ? "true" : "false");
1711
1712 return ret;
1713 }
1714
1715 /* Compares trees T1 and T2 for semantic equality. */
1716
1717 bool
equals(tree t1,tree t2)1718 sem_variable::equals (tree t1, tree t2)
1719 {
1720 if (!t1 || !t2)
1721 return return_with_debug (t1 == t2);
1722 if (t1 == t2)
1723 return true;
1724 tree_code tc1 = TREE_CODE (t1);
1725 tree_code tc2 = TREE_CODE (t2);
1726
1727 if (tc1 != tc2)
1728 return return_false_with_msg ("TREE_CODE mismatch");
1729
1730 switch (tc1)
1731 {
1732 case CONSTRUCTOR:
1733 {
1734 vec<constructor_elt, va_gc> *v1, *v2;
1735 unsigned HOST_WIDE_INT idx;
1736
1737 enum tree_code typecode = TREE_CODE (TREE_TYPE (t1));
1738 if (typecode != TREE_CODE (TREE_TYPE (t2)))
1739 return return_false_with_msg ("constructor type mismatch");
1740
1741 if (typecode == ARRAY_TYPE)
1742 {
1743 HOST_WIDE_INT size_1 = int_size_in_bytes (TREE_TYPE (t1));
1744 /* For arrays, check that the sizes all match. */
1745 if (TYPE_MODE (TREE_TYPE (t1)) != TYPE_MODE (TREE_TYPE (t2))
1746 || size_1 == -1
1747 || size_1 != int_size_in_bytes (TREE_TYPE (t2)))
1748 return return_false_with_msg ("constructor array size mismatch");
1749 }
1750 else if (!func_checker::compatible_types_p (TREE_TYPE (t1),
1751 TREE_TYPE (t2)))
1752 return return_false_with_msg ("constructor type incompatible");
1753
1754 v1 = CONSTRUCTOR_ELTS (t1);
1755 v2 = CONSTRUCTOR_ELTS (t2);
1756 if (vec_safe_length (v1) != vec_safe_length (v2))
1757 return return_false_with_msg ("constructor number of elts mismatch");
1758
1759 for (idx = 0; idx < vec_safe_length (v1); ++idx)
1760 {
1761 constructor_elt *c1 = &(*v1)[idx];
1762 constructor_elt *c2 = &(*v2)[idx];
1763
1764 /* Check that each value is the same... */
1765 if (!sem_variable::equals (c1->value, c2->value))
1766 return false;
1767 /* ... and that they apply to the same fields! */
1768 if (!sem_variable::equals (c1->index, c2->index))
1769 return false;
1770 }
1771 return true;
1772 }
1773 case MEM_REF:
1774 {
1775 tree x1 = TREE_OPERAND (t1, 0);
1776 tree x2 = TREE_OPERAND (t2, 0);
1777 tree y1 = TREE_OPERAND (t1, 1);
1778 tree y2 = TREE_OPERAND (t2, 1);
1779
1780 if (!func_checker::compatible_types_p (TREE_TYPE (x1), TREE_TYPE (x2)))
1781 return return_false ();
1782
1783 /* Type of the offset on MEM_REF does not matter. */
1784 return return_with_debug (sem_variable::equals (x1, x2)
1785 && known_eq (wi::to_poly_offset (y1),
1786 wi::to_poly_offset (y2)));
1787 }
1788 case ADDR_EXPR:
1789 case FDESC_EXPR:
1790 {
1791 tree op1 = TREE_OPERAND (t1, 0);
1792 tree op2 = TREE_OPERAND (t2, 0);
1793 return sem_variable::equals (op1, op2);
1794 }
1795 /* References to other vars/decls are compared using ipa-ref. */
1796 case FUNCTION_DECL:
1797 case VAR_DECL:
1798 if (decl_in_symtab_p (t1) && decl_in_symtab_p (t2))
1799 return true;
1800 return return_false_with_msg ("Declaration mismatch");
1801 case CONST_DECL:
1802 /* TODO: We can check CONST_DECL by its DECL_INITIAL, but for that we
1803 need to process its VAR/FUNCTION references without relying on ipa-ref
1804 compare. */
1805 case FIELD_DECL:
1806 case LABEL_DECL:
1807 return return_false_with_msg ("Declaration mismatch");
1808 case INTEGER_CST:
1809 /* Integer constants are the same only if the same width of type. */
1810 if (TYPE_PRECISION (TREE_TYPE (t1)) != TYPE_PRECISION (TREE_TYPE (t2)))
1811 return return_false_with_msg ("INTEGER_CST precision mismatch");
1812 if (TYPE_MODE (TREE_TYPE (t1)) != TYPE_MODE (TREE_TYPE (t2)))
1813 return return_false_with_msg ("INTEGER_CST mode mismatch");
1814 return return_with_debug (tree_int_cst_equal (t1, t2));
1815 case STRING_CST:
1816 if (TYPE_MODE (TREE_TYPE (t1)) != TYPE_MODE (TREE_TYPE (t2)))
1817 return return_false_with_msg ("STRING_CST mode mismatch");
1818 if (TREE_STRING_LENGTH (t1) != TREE_STRING_LENGTH (t2))
1819 return return_false_with_msg ("STRING_CST length mismatch");
1820 if (memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
1821 TREE_STRING_LENGTH (t1)))
1822 return return_false_with_msg ("STRING_CST mismatch");
1823 return true;
1824 case FIXED_CST:
1825 /* Fixed constants are the same only if the same width of type. */
1826 if (TYPE_PRECISION (TREE_TYPE (t1)) != TYPE_PRECISION (TREE_TYPE (t2)))
1827 return return_false_with_msg ("FIXED_CST precision mismatch");
1828
1829 return return_with_debug (FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1),
1830 TREE_FIXED_CST (t2)));
1831 case COMPLEX_CST:
1832 return (sem_variable::equals (TREE_REALPART (t1), TREE_REALPART (t2))
1833 && sem_variable::equals (TREE_IMAGPART (t1), TREE_IMAGPART (t2)));
1834 case REAL_CST:
1835 /* Real constants are the same only if the same width of type. */
1836 if (TYPE_PRECISION (TREE_TYPE (t1)) != TYPE_PRECISION (TREE_TYPE (t2)))
1837 return return_false_with_msg ("REAL_CST precision mismatch");
1838 return return_with_debug (real_identical (&TREE_REAL_CST (t1),
1839 &TREE_REAL_CST (t2)));
1840 case VECTOR_CST:
1841 {
1842 if (maybe_ne (VECTOR_CST_NELTS (t1), VECTOR_CST_NELTS (t2)))
1843 return return_false_with_msg ("VECTOR_CST nelts mismatch");
1844
1845 unsigned int count
1846 = tree_vector_builder::binary_encoded_nelts (t1, t2);
1847 for (unsigned int i = 0; i < count; ++i)
1848 if (!sem_variable::equals (VECTOR_CST_ENCODED_ELT (t1, i),
1849 VECTOR_CST_ENCODED_ELT (t2, i)))
1850 return false;
1851
1852 return true;
1853 }
1854 case ARRAY_REF:
1855 case ARRAY_RANGE_REF:
1856 {
1857 tree x1 = TREE_OPERAND (t1, 0);
1858 tree x2 = TREE_OPERAND (t2, 0);
1859 tree y1 = TREE_OPERAND (t1, 1);
1860 tree y2 = TREE_OPERAND (t2, 1);
1861
1862 if (!sem_variable::equals (x1, x2) || !sem_variable::equals (y1, y2))
1863 return false;
1864 if (!sem_variable::equals (array_ref_low_bound (t1),
1865 array_ref_low_bound (t2)))
1866 return false;
1867 if (!sem_variable::equals (array_ref_element_size (t1),
1868 array_ref_element_size (t2)))
1869 return false;
1870 return true;
1871 }
1872
1873 case COMPONENT_REF:
1874 case POINTER_PLUS_EXPR:
1875 case PLUS_EXPR:
1876 case MINUS_EXPR:
1877 case RANGE_EXPR:
1878 {
1879 tree x1 = TREE_OPERAND (t1, 0);
1880 tree x2 = TREE_OPERAND (t2, 0);
1881 tree y1 = TREE_OPERAND (t1, 1);
1882 tree y2 = TREE_OPERAND (t2, 1);
1883
1884 return sem_variable::equals (x1, x2) && sem_variable::equals (y1, y2);
1885 }
1886
1887 CASE_CONVERT:
1888 case VIEW_CONVERT_EXPR:
1889 if (!func_checker::compatible_types_p (TREE_TYPE (t1), TREE_TYPE (t2)))
1890 return return_false ();
1891 return sem_variable::equals (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
1892 case ERROR_MARK:
1893 return return_false_with_msg ("ERROR_MARK");
1894 default:
1895 return return_false_with_msg ("Unknown TREE code reached");
1896 }
1897 }
1898
1899 /* Parser function that visits a varpool NODE. */
1900
1901 sem_variable *
parse(varpool_node * node,bitmap_obstack * stack,func_checker * checker)1902 sem_variable::parse (varpool_node *node, bitmap_obstack *stack,
1903 func_checker *checker)
1904 {
1905 if (TREE_THIS_VOLATILE (node->decl) || DECL_HARD_REGISTER (node->decl)
1906 || node->alias)
1907 return NULL;
1908
1909 sem_variable *v = new sem_variable (node, stack);
1910 v->init (checker);
1911
1912 return v;
1913 }
1914
1915 /* Semantic variable initialization function. */
1916
1917 void
init(ipa_icf_gimple::func_checker * checker)1918 sem_variable::init (ipa_icf_gimple::func_checker *checker)
1919 {
1920 decl = get_node ()->decl;
1921
1922 /* All WPA streamed in symbols should have their hashes computed at compile
1923 time. At this point, the constructor may not be in memory at all.
1924 DECL_INITIAL (decl) would be error_mark_node in that case. */
1925 if (!m_hash_set)
1926 {
1927 gcc_assert (!node->lto_file_data);
1928 inchash::hash hstate;
1929 hstate.add_int (456346417);
1930 checker->hash_operand (DECL_INITIAL (decl), hstate, 0);
1931 set_hash (hstate.end ());
1932 }
1933 }
1934
1935 /* References independent hash function. */
1936
1937 hashval_t
get_hash(void)1938 sem_variable::get_hash (void)
1939 {
1940 gcc_checking_assert (m_hash_set);
1941 return m_hash;
1942 }
1943
1944 /* Merges instance with an ALIAS_ITEM, where alias, thunk or redirection can
1945 be applied. */
1946
1947 bool
merge(sem_item * alias_item)1948 sem_variable::merge (sem_item *alias_item)
1949 {
1950 gcc_assert (alias_item->type == VAR);
1951
1952 AUTO_DUMP_SCOPE ("merge",
1953 dump_user_location_t::from_function_decl (decl));
1954 if (!sem_item::target_supports_symbol_aliases_p ())
1955 {
1956 if (dump_enabled_p ())
1957 dump_printf (MSG_MISSED_OPTIMIZATION, "Not unifying; "
1958 "Symbol aliases are not supported by target\n");
1959 return false;
1960 }
1961
1962 if (DECL_EXTERNAL (alias_item->decl))
1963 {
1964 if (dump_enabled_p ())
1965 dump_printf (MSG_MISSED_OPTIMIZATION,
1966 "Not unifying; alias is external.\n");
1967 return false;
1968 }
1969
1970 sem_variable *alias_var = static_cast<sem_variable *> (alias_item);
1971
1972 varpool_node *original = get_node ();
1973 varpool_node *alias = alias_var->get_node ();
1974 bool original_discardable = false;
1975
1976 bool alias_address_matters = alias->address_matters_p ();
1977
1978 /* See if original is in a section that can be discarded if the main
1979 symbol is not used.
1980 Also consider case where we have resolution info and we know that
1981 original's definition is not going to be used. In this case we cannot
1982 create alias to original. */
1983 if (original->can_be_discarded_p ()
1984 || (node->resolution != LDPR_UNKNOWN
1985 && !decl_binds_to_current_def_p (node->decl)))
1986 original_discardable = true;
1987
1988 gcc_assert (!TREE_ASM_WRITTEN (alias->decl));
1989
1990 /* Constant pool machinery is not quite ready for aliases.
1991 TODO: varasm code contains logic for merging DECL_IN_CONSTANT_POOL.
1992 For LTO merging does not happen that is an important missing feature.
1993 We can enable merging with LTO if the DECL_IN_CONSTANT_POOL
1994 flag is dropped and non-local symbol name is assigned. */
1995 if (DECL_IN_CONSTANT_POOL (alias->decl)
1996 || DECL_IN_CONSTANT_POOL (original->decl))
1997 {
1998 if (dump_enabled_p ())
1999 dump_printf (MSG_MISSED_OPTIMIZATION,
2000 "Not unifying; constant pool variables.\n");
2001 return false;
2002 }
2003
2004 /* Do not attempt to mix functions from different user sections;
2005 we do not know what user intends with those. */
2006 if (((DECL_SECTION_NAME (original->decl) && !original->implicit_section)
2007 || (DECL_SECTION_NAME (alias->decl) && !alias->implicit_section))
2008 && DECL_SECTION_NAME (original->decl) != DECL_SECTION_NAME (alias->decl))
2009 {
2010 if (dump_enabled_p ())
2011 dump_printf (MSG_MISSED_OPTIMIZATION,
2012 "Not unifying; "
2013 "original and alias are in different sections.\n");
2014 return false;
2015 }
2016
2017 /* We cannot merge if address comparison matters. */
2018 if (alias_address_matters && flag_merge_constants < 2)
2019 {
2020 if (dump_enabled_p ())
2021 dump_printf (MSG_MISSED_OPTIMIZATION,
2022 "Not unifying; address of original may be compared.\n");
2023 return false;
2024 }
2025
2026 if (DECL_ALIGN (original->decl) != DECL_ALIGN (alias->decl)
2027 && (sanitize_flags_p (SANITIZE_ADDRESS, original->decl)
2028 || sanitize_flags_p (SANITIZE_ADDRESS, alias->decl)))
2029 {
2030 if (dump_enabled_p ())
2031 dump_printf (MSG_MISSED_OPTIMIZATION,
2032 "Not unifying; "
2033 "ASAN requires equal alignments for original and alias\n");
2034
2035 return false;
2036 }
2037
2038 if (DECL_ALIGN (original->decl) < DECL_ALIGN (alias->decl))
2039 {
2040 if (dump_enabled_p ())
2041 dump_printf (MSG_MISSED_OPTIMIZATION,
2042 "Not unifying; "
2043 "original and alias have incompatible alignments\n");
2044
2045 return false;
2046 }
2047
2048 if (DECL_COMDAT_GROUP (original->decl) != DECL_COMDAT_GROUP (alias->decl))
2049 {
2050 if (dump_enabled_p ())
2051 dump_printf (MSG_MISSED_OPTIMIZATION,
2052 "Not unifying; alias cannot be created; "
2053 "across comdat group boundary\n");
2054
2055 return false;
2056 }
2057
2058 if (original_discardable)
2059 {
2060 if (dump_enabled_p ())
2061 dump_printf (MSG_MISSED_OPTIMIZATION,
2062 "Not unifying; alias cannot be created; "
2063 "target is discardable\n");
2064
2065 return false;
2066 }
2067 else
2068 {
2069 gcc_assert (!original->alias);
2070 gcc_assert (!alias->alias);
2071
2072 alias->analyzed = false;
2073
2074 DECL_INITIAL (alias->decl) = NULL;
2075 ((symtab_node *)alias)->call_for_symbol_and_aliases (clear_decl_rtl,
2076 NULL, true);
2077 alias->remove_all_references ();
2078 if (TREE_ADDRESSABLE (alias->decl))
2079 original->call_for_symbol_and_aliases (set_addressable, NULL, true);
2080
2081 varpool_node::create_alias (alias_var->decl, decl);
2082 alias->resolve_alias (original);
2083
2084 if (dump_enabled_p ())
2085 dump_printf (MSG_OPTIMIZED_LOCATIONS,
2086 "Unified; Variable alias has been created.\n");
2087
2088 return true;
2089 }
2090 }
2091
2092 /* Dump symbol to FILE. */
2093
2094 void
dump_to_file(FILE * file)2095 sem_variable::dump_to_file (FILE *file)
2096 {
2097 gcc_assert (file);
2098
2099 print_node (file, "", decl, 0);
2100 fprintf (file, "\n\n");
2101 }
2102
2103 unsigned int sem_item_optimizer::class_id = 0;
2104
sem_item_optimizer()2105 sem_item_optimizer::sem_item_optimizer ()
2106 : worklist (0), m_classes (0), m_classes_count (0), m_cgraph_node_hooks (NULL),
2107 m_varpool_node_hooks (NULL), m_merged_variables (), m_references ()
2108 {
2109 m_items.create (0);
2110 bitmap_obstack_initialize (&m_bmstack);
2111 }
2112
~sem_item_optimizer()2113 sem_item_optimizer::~sem_item_optimizer ()
2114 {
2115 for (unsigned int i = 0; i < m_items.length (); i++)
2116 delete m_items[i];
2117
2118
2119 for (hash_table<congruence_class_hash>::iterator it = m_classes.begin ();
2120 it != m_classes.end (); ++it)
2121 {
2122 for (unsigned int i = 0; i < (*it)->classes.length (); i++)
2123 delete (*it)->classes[i];
2124
2125 (*it)->classes.release ();
2126 free (*it);
2127 }
2128
2129 m_items.release ();
2130
2131 bitmap_obstack_release (&m_bmstack);
2132 m_merged_variables.release ();
2133 }
2134
2135 /* Write IPA ICF summary for symbols. */
2136
2137 void
write_summary(void)2138 sem_item_optimizer::write_summary (void)
2139 {
2140 unsigned int count = 0;
2141
2142 output_block *ob = create_output_block (LTO_section_ipa_icf);
2143 lto_symtab_encoder_t encoder = ob->decl_state->symtab_node_encoder;
2144 ob->symbol = NULL;
2145
2146 /* Calculate number of symbols to be serialized. */
2147 for (lto_symtab_encoder_iterator lsei = lsei_start_in_partition (encoder);
2148 !lsei_end_p (lsei);
2149 lsei_next_in_partition (&lsei))
2150 {
2151 symtab_node *node = lsei_node (lsei);
2152
2153 if (m_symtab_node_map.get (node))
2154 count++;
2155 }
2156
2157 streamer_write_uhwi (ob, count);
2158
2159 /* Process all of the symbols. */
2160 for (lto_symtab_encoder_iterator lsei = lsei_start_in_partition (encoder);
2161 !lsei_end_p (lsei);
2162 lsei_next_in_partition (&lsei))
2163 {
2164 symtab_node *node = lsei_node (lsei);
2165
2166 sem_item **item = m_symtab_node_map.get (node);
2167
2168 if (item && *item)
2169 {
2170 int node_ref = lto_symtab_encoder_encode (encoder, node);
2171 streamer_write_uhwi_stream (ob->main_stream, node_ref);
2172
2173 streamer_write_uhwi (ob, (*item)->get_hash ());
2174
2175 if ((*item)->type == FUNC)
2176 {
2177 sem_function *fn = static_cast<sem_function *> (*item);
2178 streamer_write_uhwi (ob, fn->memory_access_types.length ());
2179 for (unsigned i = 0; i < fn->memory_access_types.length (); i++)
2180 stream_write_tree (ob, fn->memory_access_types[i], true);
2181 }
2182 }
2183 }
2184
2185 streamer_write_char_stream (ob->main_stream, 0);
2186 produce_asm (ob, NULL);
2187 destroy_output_block (ob);
2188 }
2189
2190 /* Reads a section from LTO stream file FILE_DATA. Input block for DATA
2191 contains LEN bytes. */
2192
2193 void
read_section(lto_file_decl_data * file_data,const char * data,size_t len)2194 sem_item_optimizer::read_section (lto_file_decl_data *file_data,
2195 const char *data, size_t len)
2196 {
2197 const lto_function_header *header
2198 = (const lto_function_header *) data;
2199 const int cfg_offset = sizeof (lto_function_header);
2200 const int main_offset = cfg_offset + header->cfg_size;
2201 const int string_offset = main_offset + header->main_size;
2202 data_in *data_in;
2203 unsigned int i;
2204 unsigned int count;
2205
2206 lto_input_block ib_main ((const char *) data + main_offset, 0,
2207 header->main_size, file_data->mode_table);
2208
2209 data_in
2210 = lto_data_in_create (file_data, (const char *) data + string_offset,
2211 header->string_size, vNULL);
2212
2213 count = streamer_read_uhwi (&ib_main);
2214
2215 for (i = 0; i < count; i++)
2216 {
2217 unsigned int index;
2218 symtab_node *node;
2219 lto_symtab_encoder_t encoder;
2220
2221 index = streamer_read_uhwi (&ib_main);
2222 encoder = file_data->symtab_node_encoder;
2223 node = lto_symtab_encoder_deref (encoder, index);
2224
2225 hashval_t hash = streamer_read_uhwi (&ib_main);
2226 gcc_assert (node->definition);
2227
2228 if (is_a<cgraph_node *> (node))
2229 {
2230 cgraph_node *cnode = dyn_cast <cgraph_node *> (node);
2231
2232 sem_function *fn = new sem_function (cnode, &m_bmstack);
2233 unsigned count = streamer_read_uhwi (&ib_main);
2234 inchash::hash hstate (0);
2235 if (flag_incremental_link == INCREMENTAL_LINK_LTO)
2236 fn->memory_access_types.reserve_exact (count);
2237 for (unsigned i = 0; i < count; i++)
2238 {
2239 tree type = stream_read_tree (&ib_main, data_in);
2240 hstate.add_int (get_deref_alias_set (type));
2241 if (flag_incremental_link == INCREMENTAL_LINK_LTO)
2242 fn->memory_access_types.quick_push (type);
2243 }
2244 fn->m_alias_sets_hash = hstate.end ();
2245 fn->set_hash (hash);
2246 m_items.safe_push (fn);
2247 }
2248 else
2249 {
2250 varpool_node *vnode = dyn_cast <varpool_node *> (node);
2251
2252 sem_variable *var = new sem_variable (vnode, &m_bmstack);
2253 var->set_hash (hash);
2254 m_items.safe_push (var);
2255 }
2256 }
2257
2258 lto_free_section_data (file_data, LTO_section_ipa_icf, NULL, data,
2259 len);
2260 lto_data_in_delete (data_in);
2261 }
2262
2263 /* Read IPA ICF summary for symbols. */
2264
2265 void
read_summary(void)2266 sem_item_optimizer::read_summary (void)
2267 {
2268 lto_file_decl_data **file_data_vec = lto_get_file_decl_data ();
2269 lto_file_decl_data *file_data;
2270 unsigned int j = 0;
2271
2272 while ((file_data = file_data_vec[j++]))
2273 {
2274 size_t len;
2275 const char *data
2276 = lto_get_summary_section_data (file_data, LTO_section_ipa_icf, &len);
2277 if (data)
2278 read_section (file_data, data, len);
2279 }
2280 }
2281
2282 /* Register callgraph and varpool hooks. */
2283
2284 void
register_hooks(void)2285 sem_item_optimizer::register_hooks (void)
2286 {
2287 if (!m_cgraph_node_hooks)
2288 m_cgraph_node_hooks = symtab->add_cgraph_removal_hook
2289 (&sem_item_optimizer::cgraph_removal_hook, this);
2290
2291 if (!m_varpool_node_hooks)
2292 m_varpool_node_hooks = symtab->add_varpool_removal_hook
2293 (&sem_item_optimizer::varpool_removal_hook, this);
2294 }
2295
2296 /* Unregister callgraph and varpool hooks. */
2297
2298 void
unregister_hooks(void)2299 sem_item_optimizer::unregister_hooks (void)
2300 {
2301 if (m_cgraph_node_hooks)
2302 symtab->remove_cgraph_removal_hook (m_cgraph_node_hooks);
2303
2304 if (m_varpool_node_hooks)
2305 symtab->remove_varpool_removal_hook (m_varpool_node_hooks);
2306 }
2307
2308 /* Adds a CLS to hashtable associated by hash value. */
2309
2310 void
add_class(congruence_class * cls)2311 sem_item_optimizer::add_class (congruence_class *cls)
2312 {
2313 gcc_assert (cls->members.length ());
2314
2315 congruence_class_group *group
2316 = get_group_by_hash (cls->members[0]->get_hash (),
2317 cls->members[0]->type);
2318 group->classes.safe_push (cls);
2319 }
2320
2321 /* Gets a congruence class group based on given HASH value and TYPE. */
2322
2323 congruence_class_group *
get_group_by_hash(hashval_t hash,sem_item_type type)2324 sem_item_optimizer::get_group_by_hash (hashval_t hash, sem_item_type type)
2325 {
2326 congruence_class_group *item = XNEW (congruence_class_group);
2327 item->hash = hash;
2328 item->type = type;
2329
2330 congruence_class_group **slot = m_classes.find_slot (item, INSERT);
2331
2332 if (*slot)
2333 free (item);
2334 else
2335 {
2336 item->classes.create (1);
2337 *slot = item;
2338 }
2339
2340 return *slot;
2341 }
2342
2343 /* Callgraph removal hook called for a NODE with a custom DATA. */
2344
2345 void
cgraph_removal_hook(cgraph_node * node,void * data)2346 sem_item_optimizer::cgraph_removal_hook (cgraph_node *node, void *data)
2347 {
2348 sem_item_optimizer *optimizer = (sem_item_optimizer *) data;
2349 optimizer->remove_symtab_node (node);
2350 }
2351
2352 /* Varpool removal hook called for a NODE with a custom DATA. */
2353
2354 void
varpool_removal_hook(varpool_node * node,void * data)2355 sem_item_optimizer::varpool_removal_hook (varpool_node *node, void *data)
2356 {
2357 sem_item_optimizer *optimizer = (sem_item_optimizer *) data;
2358 optimizer->remove_symtab_node (node);
2359 }
2360
2361 /* Remove symtab NODE triggered by symtab removal hooks. */
2362
2363 void
remove_symtab_node(symtab_node * node)2364 sem_item_optimizer::remove_symtab_node (symtab_node *node)
2365 {
2366 gcc_assert (m_classes.is_empty ());
2367
2368 m_removed_items_set.add (node);
2369 }
2370
2371 void
remove_item(sem_item * item)2372 sem_item_optimizer::remove_item (sem_item *item)
2373 {
2374 if (m_symtab_node_map.get (item->node))
2375 m_symtab_node_map.remove (item->node);
2376 delete item;
2377 }
2378
2379 /* Removes all callgraph and varpool nodes that are marked by symtab
2380 as deleted. */
2381
2382 void
filter_removed_items(void)2383 sem_item_optimizer::filter_removed_items (void)
2384 {
2385 auto_vec <sem_item *> filtered;
2386
2387 for (unsigned int i = 0; i < m_items.length(); i++)
2388 {
2389 sem_item *item = m_items[i];
2390
2391 if (m_removed_items_set.contains (item->node))
2392 {
2393 remove_item (item);
2394 continue;
2395 }
2396
2397 if (item->type == FUNC)
2398 {
2399 cgraph_node *cnode = static_cast <sem_function *>(item)->get_node ();
2400
2401 if (in_lto_p && (cnode->alias || cnode->body_removed))
2402 remove_item (item);
2403 else
2404 filtered.safe_push (item);
2405 }
2406 else /* VAR. */
2407 {
2408 if (!flag_ipa_icf_variables)
2409 remove_item (item);
2410 else
2411 {
2412 /* Filter out non-readonly variables. */
2413 tree decl = item->decl;
2414 varpool_node *vnode = static_cast <sem_variable *>(item)->get_node ();
2415 if (!TREE_READONLY (decl) || vnode->body_removed)
2416 remove_item (item);
2417 else
2418 filtered.safe_push (item);
2419 }
2420 }
2421 }
2422
2423 /* Clean-up of released semantic items. */
2424
2425 m_items.release ();
2426 for (unsigned int i = 0; i < filtered.length(); i++)
2427 m_items.safe_push (filtered[i]);
2428 }
2429
2430 /* Optimizer entry point which returns true in case it processes
2431 a merge operation. True is returned if there's a merge operation
2432 processed. */
2433
2434 bool
execute(void)2435 sem_item_optimizer::execute (void)
2436 {
2437 filter_removed_items ();
2438 unregister_hooks ();
2439
2440 build_graph ();
2441 update_hash_by_addr_refs ();
2442 update_hash_by_memory_access_type ();
2443 build_hash_based_classes ();
2444
2445 if (dump_file)
2446 fprintf (dump_file, "Dump after hash based groups\n");
2447 dump_cong_classes ();
2448
2449 subdivide_classes_by_equality (true);
2450
2451 if (dump_file)
2452 fprintf (dump_file, "Dump after WPA based types groups\n");
2453
2454 dump_cong_classes ();
2455
2456 process_cong_reduction ();
2457 checking_verify_classes ();
2458
2459 if (dump_file)
2460 fprintf (dump_file, "Dump after callgraph-based congruence reduction\n");
2461
2462 dump_cong_classes ();
2463
2464 unsigned int loaded_symbols = parse_nonsingleton_classes ();
2465 subdivide_classes_by_equality ();
2466
2467 if (dump_file)
2468 fprintf (dump_file, "Dump after full equality comparison of groups\n");
2469
2470 dump_cong_classes ();
2471
2472 unsigned int prev_class_count = m_classes_count;
2473
2474 process_cong_reduction ();
2475 dump_cong_classes ();
2476 checking_verify_classes ();
2477 bool merged_p = merge_classes (prev_class_count, loaded_symbols);
2478
2479 if (dump_file && (dump_flags & TDF_DETAILS))
2480 symtab->dump (dump_file);
2481
2482 return merged_p;
2483 }
2484
2485 /* Function responsible for visiting all potential functions and
2486 read-only variables that can be merged. */
2487
2488 void
parse_funcs_and_vars(void)2489 sem_item_optimizer::parse_funcs_and_vars (void)
2490 {
2491 cgraph_node *cnode;
2492
2493 /* Create dummy func_checker for hashing purpose. */
2494 func_checker checker;
2495
2496 if (flag_ipa_icf_functions)
2497 FOR_EACH_DEFINED_FUNCTION (cnode)
2498 {
2499 sem_function *f = sem_function::parse (cnode, &m_bmstack, &checker);
2500 if (f)
2501 {
2502 m_items.safe_push (f);
2503 m_symtab_node_map.put (cnode, f);
2504 }
2505 }
2506
2507 varpool_node *vnode;
2508
2509 if (flag_ipa_icf_variables)
2510 FOR_EACH_DEFINED_VARIABLE (vnode)
2511 {
2512 sem_variable *v = sem_variable::parse (vnode, &m_bmstack, &checker);
2513
2514 if (v)
2515 {
2516 m_items.safe_push (v);
2517 m_symtab_node_map.put (vnode, v);
2518 }
2519 }
2520 }
2521
2522 /* Makes pairing between a congruence class CLS and semantic ITEM. */
2523
2524 void
add_item_to_class(congruence_class * cls,sem_item * item)2525 sem_item_optimizer::add_item_to_class (congruence_class *cls, sem_item *item)
2526 {
2527 item->index_in_class = cls->members.length ();
2528 cls->members.safe_push (item);
2529 cls->referenced_by_count += item->referenced_by_count;
2530 item->cls = cls;
2531 }
2532
2533 /* For each semantic item, append hash values of references. */
2534
2535 void
update_hash_by_addr_refs()2536 sem_item_optimizer::update_hash_by_addr_refs ()
2537 {
2538 /* First, append to hash sensitive references and class type if it need to
2539 be matched for ODR. */
2540 for (unsigned i = 0; i < m_items.length (); i++)
2541 {
2542 m_items[i]->update_hash_by_addr_refs (m_symtab_node_map);
2543 if (m_items[i]->type == FUNC)
2544 {
2545 if (TREE_CODE (TREE_TYPE (m_items[i]->decl)) == METHOD_TYPE
2546 && contains_polymorphic_type_p
2547 (TYPE_METHOD_BASETYPE (TREE_TYPE (m_items[i]->decl)))
2548 && (DECL_CXX_CONSTRUCTOR_P (m_items[i]->decl)
2549 || (static_cast<sem_function *> (m_items[i])->param_used_p (0)
2550 && static_cast<sem_function *> (m_items[i])
2551 ->compare_polymorphic_p ())))
2552 {
2553 tree class_type
2554 = TYPE_METHOD_BASETYPE (TREE_TYPE (m_items[i]->decl));
2555 inchash::hash hstate (m_items[i]->get_hash ());
2556
2557 /* Hash ODR types by mangled name if it is defined.
2558 If not we know that type is anonymous of free_lang_data
2559 was not run and in that case type main variants are
2560 unique. */
2561 if (TYPE_NAME (class_type)
2562 && DECL_ASSEMBLER_NAME_SET_P (TYPE_NAME (class_type))
2563 && !type_in_anonymous_namespace_p
2564 (class_type))
2565 hstate.add_hwi
2566 (IDENTIFIER_HASH_VALUE
2567 (DECL_ASSEMBLER_NAME (TYPE_NAME (class_type))));
2568 else
2569 {
2570 gcc_checking_assert
2571 (!in_lto_p
2572 || type_in_anonymous_namespace_p (class_type));
2573 hstate.add_hwi (TYPE_UID (TYPE_MAIN_VARIANT (class_type)));
2574 }
2575
2576 m_items[i]->set_hash (hstate.end ());
2577 }
2578 }
2579 }
2580
2581 /* Once all symbols have enhanced hash value, we can append
2582 hash values of symbols that are seen by IPA ICF and are
2583 references by a semantic item. Newly computed values
2584 are saved to global_hash member variable. */
2585 for (unsigned i = 0; i < m_items.length (); i++)
2586 m_items[i]->update_hash_by_local_refs (m_symtab_node_map);
2587
2588 /* Global hash value replace current hash values. */
2589 for (unsigned i = 0; i < m_items.length (); i++)
2590 m_items[i]->set_hash (m_items[i]->global_hash);
2591 }
2592
2593 void
update_hash_by_memory_access_type()2594 sem_item_optimizer::update_hash_by_memory_access_type ()
2595 {
2596 for (unsigned i = 0; i < m_items.length (); i++)
2597 {
2598 if (m_items[i]->type == FUNC)
2599 {
2600 sem_function *fn = static_cast<sem_function *> (m_items[i]);
2601 inchash::hash hstate (fn->get_hash ());
2602 hstate.add_int (fn->m_alias_sets_hash);
2603 fn->set_hash (hstate.end ());
2604 }
2605 }
2606 }
2607
2608 /* Congruence classes are built by hash value. */
2609
2610 void
build_hash_based_classes(void)2611 sem_item_optimizer::build_hash_based_classes (void)
2612 {
2613 for (unsigned i = 0; i < m_items.length (); i++)
2614 {
2615 sem_item *item = m_items[i];
2616
2617 congruence_class_group *group
2618 = get_group_by_hash (item->get_hash (), item->type);
2619
2620 if (!group->classes.length ())
2621 {
2622 m_classes_count++;
2623 group->classes.safe_push (new congruence_class (class_id++));
2624 }
2625
2626 add_item_to_class (group->classes[0], item);
2627 }
2628 }
2629
2630 /* Build references according to call graph. */
2631
2632 void
build_graph(void)2633 sem_item_optimizer::build_graph (void)
2634 {
2635 for (unsigned i = 0; i < m_items.length (); i++)
2636 {
2637 sem_item *item = m_items[i];
2638 m_symtab_node_map.put (item->node, item);
2639
2640 /* Initialize hash values if we are not in LTO mode. */
2641 if (!in_lto_p)
2642 item->get_hash ();
2643 }
2644
2645 for (unsigned i = 0; i < m_items.length (); i++)
2646 {
2647 sem_item *item = m_items[i];
2648
2649 if (item->type == FUNC)
2650 {
2651 cgraph_node *cnode = dyn_cast <cgraph_node *> (item->node);
2652
2653 cgraph_edge *e = cnode->callees;
2654 while (e)
2655 {
2656 sem_item **slot = m_symtab_node_map.get
2657 (e->callee->ultimate_alias_target ());
2658 if (slot)
2659 item->add_reference (&m_references, *slot);
2660
2661 e = e->next_callee;
2662 }
2663 }
2664
2665 ipa_ref *ref = NULL;
2666 for (unsigned i = 0; item->node->iterate_reference (i, ref); i++)
2667 {
2668 sem_item **slot = m_symtab_node_map.get
2669 (ref->referred->ultimate_alias_target ());
2670 if (slot)
2671 item->add_reference (&m_references, *slot);
2672 }
2673 }
2674 }
2675
2676 /* Semantic items in classes having more than one element and initialized.
2677 In case of WPA, we load function body. */
2678
2679 unsigned int
parse_nonsingleton_classes(void)2680 sem_item_optimizer::parse_nonsingleton_classes (void)
2681 {
2682 unsigned int counter = 0;
2683
2684 /* Create dummy func_checker for hashing purpose. */
2685 func_checker checker;
2686
2687 for (unsigned i = 0; i < m_items.length (); i++)
2688 if (m_items[i]->cls->members.length () > 1)
2689 {
2690 m_items[i]->init (&checker);
2691 ++counter;
2692 }
2693
2694 if (dump_file)
2695 {
2696 float f = m_items.length () ? 100.0f * counter / m_items.length () : 0.0f;
2697 fprintf (dump_file, "Init called for %u items (%.2f%%).\n", counter, f);
2698 }
2699
2700 return counter;
2701 }
2702
2703 /* Equality function for semantic items is used to subdivide existing
2704 classes. If IN_WPA, fast equality function is invoked. */
2705
2706 void
subdivide_classes_by_equality(bool in_wpa)2707 sem_item_optimizer::subdivide_classes_by_equality (bool in_wpa)
2708 {
2709 for (hash_table <congruence_class_hash>::iterator it = m_classes.begin ();
2710 it != m_classes.end (); ++it)
2711 {
2712 unsigned int class_count = (*it)->classes.length ();
2713
2714 for (unsigned i = 0; i < class_count; i++)
2715 {
2716 congruence_class *c = (*it)->classes[i];
2717
2718 if (c->members.length() > 1)
2719 {
2720 auto_vec <sem_item *> new_vector;
2721
2722 sem_item *first = c->members[0];
2723 new_vector.safe_push (first);
2724
2725 unsigned class_split_first = (*it)->classes.length ();
2726
2727 for (unsigned j = 1; j < c->members.length (); j++)
2728 {
2729 sem_item *item = c->members[j];
2730
2731 bool equals
2732 = in_wpa ? first->equals_wpa (item, m_symtab_node_map)
2733 : first->equals (item, m_symtab_node_map);
2734
2735 if (equals)
2736 new_vector.safe_push (item);
2737 else
2738 {
2739 bool integrated = false;
2740
2741 for (unsigned k = class_split_first;
2742 k < (*it)->classes.length (); k++)
2743 {
2744 sem_item *x = (*it)->classes[k]->members[0];
2745 bool equals
2746 = in_wpa ? x->equals_wpa (item, m_symtab_node_map)
2747 : x->equals (item, m_symtab_node_map);
2748
2749 if (equals)
2750 {
2751 integrated = true;
2752 add_item_to_class ((*it)->classes[k], item);
2753
2754 break;
2755 }
2756 }
2757
2758 if (!integrated)
2759 {
2760 congruence_class *c
2761 = new congruence_class (class_id++);
2762 m_classes_count++;
2763 add_item_to_class (c, item);
2764
2765 (*it)->classes.safe_push (c);
2766 }
2767 }
2768 }
2769
2770 // We replace newly created new_vector for the class we've just
2771 // splitted.
2772 c->members.release ();
2773 c->members.create (new_vector.length ());
2774
2775 for (unsigned int j = 0; j < new_vector.length (); j++)
2776 add_item_to_class (c, new_vector[j]);
2777 }
2778 }
2779 }
2780
2781 checking_verify_classes ();
2782 }
2783
2784 /* Subdivide classes by address references that members of the class
2785 reference. Example can be a pair of functions that have an address
2786 taken from a function. If these addresses are different the class
2787 is split. */
2788
2789 unsigned
subdivide_classes_by_sensitive_refs()2790 sem_item_optimizer::subdivide_classes_by_sensitive_refs ()
2791 {
2792 typedef hash_map <symbol_compare_hash, vec <sem_item *> > subdivide_hash_map;
2793
2794 unsigned newly_created_classes = 0;
2795
2796 for (hash_table <congruence_class_hash>::iterator it = m_classes.begin ();
2797 it != m_classes.end (); ++it)
2798 {
2799 unsigned int class_count = (*it)->classes.length ();
2800 auto_vec<congruence_class *> new_classes;
2801
2802 for (unsigned i = 0; i < class_count; i++)
2803 {
2804 congruence_class *c = (*it)->classes[i];
2805
2806 if (c->members.length() > 1)
2807 {
2808 subdivide_hash_map split_map;
2809
2810 for (unsigned j = 0; j < c->members.length (); j++)
2811 {
2812 sem_item *source_node = c->members[j];
2813
2814 symbol_compare_collection *collection
2815 = new symbol_compare_collection (source_node->node);
2816
2817 bool existed;
2818 vec <sem_item *> *slot
2819 = &split_map.get_or_insert (collection, &existed);
2820 gcc_checking_assert (slot);
2821
2822 slot->safe_push (source_node);
2823
2824 if (existed)
2825 delete collection;
2826 }
2827
2828 /* If the map contains more than one key, we have to split
2829 the map appropriately. */
2830 if (split_map.elements () != 1)
2831 {
2832 bool first_class = true;
2833
2834 for (subdivide_hash_map::iterator it2 = split_map.begin ();
2835 it2 != split_map.end (); ++it2)
2836 {
2837 congruence_class *new_cls;
2838 new_cls = new congruence_class (class_id++);
2839
2840 for (unsigned k = 0; k < (*it2).second.length (); k++)
2841 add_item_to_class (new_cls, (*it2).second[k]);
2842
2843 worklist_push (new_cls);
2844 newly_created_classes++;
2845
2846 if (first_class)
2847 {
2848 (*it)->classes[i] = new_cls;
2849 first_class = false;
2850 }
2851 else
2852 {
2853 new_classes.safe_push (new_cls);
2854 m_classes_count++;
2855 }
2856 }
2857 }
2858
2859 /* Release memory. */
2860 for (subdivide_hash_map::iterator it2 = split_map.begin ();
2861 it2 != split_map.end (); ++it2)
2862 {
2863 delete (*it2).first;
2864 (*it2).second.release ();
2865 }
2866 }
2867 }
2868
2869 for (unsigned i = 0; i < new_classes.length (); i++)
2870 (*it)->classes.safe_push (new_classes[i]);
2871 }
2872
2873 return newly_created_classes;
2874 }
2875
2876 /* Verify congruence classes, if checking is enabled. */
2877
2878 void
checking_verify_classes(void)2879 sem_item_optimizer::checking_verify_classes (void)
2880 {
2881 if (flag_checking)
2882 verify_classes ();
2883 }
2884
2885 /* Verify congruence classes. */
2886
2887 void
verify_classes(void)2888 sem_item_optimizer::verify_classes (void)
2889 {
2890 for (hash_table<congruence_class_hash>::iterator it = m_classes.begin ();
2891 it != m_classes.end (); ++it)
2892 {
2893 for (unsigned int i = 0; i < (*it)->classes.length (); i++)
2894 {
2895 congruence_class *cls = (*it)->classes[i];
2896
2897 gcc_assert (cls);
2898 gcc_assert (cls->members.length () > 0);
2899
2900 for (unsigned int j = 0; j < cls->members.length (); j++)
2901 {
2902 sem_item *item = cls->members[j];
2903
2904 gcc_assert (item);
2905 gcc_assert (item->cls == cls);
2906 }
2907 }
2908 }
2909 }
2910
2911 /* Disposes split map traverse function. CLS_PTR is pointer to congruence
2912 class, BSLOT is bitmap slot we want to release. DATA is mandatory,
2913 but unused argument. */
2914
2915 bool
release_split_map(congruence_class * const &,bitmap const & b,traverse_split_pair *)2916 sem_item_optimizer::release_split_map (congruence_class * const &,
2917 bitmap const &b, traverse_split_pair *)
2918 {
2919 bitmap bmp = b;
2920
2921 BITMAP_FREE (bmp);
2922
2923 return true;
2924 }
2925
2926 /* Process split operation for a class given as pointer CLS_PTR,
2927 where bitmap B splits congruence class members. DATA is used
2928 as argument of split pair. */
2929
2930 bool
traverse_congruence_split(congruence_class * const & cls,bitmap const & b,traverse_split_pair * pair)2931 sem_item_optimizer::traverse_congruence_split (congruence_class * const &cls,
2932 bitmap const &b,
2933 traverse_split_pair *pair)
2934 {
2935 sem_item_optimizer *optimizer = pair->optimizer;
2936 const congruence_class *splitter_cls = pair->cls;
2937
2938 /* If counted bits are greater than zero and less than the number of members
2939 a group will be splitted. */
2940 unsigned popcount = bitmap_count_bits (b);
2941
2942 if (popcount > 0 && popcount < cls->members.length ())
2943 {
2944 auto_vec <congruence_class *, 2> newclasses;
2945 newclasses.quick_push (new congruence_class (class_id++));
2946 newclasses.quick_push (new congruence_class (class_id++));
2947
2948 for (unsigned int i = 0; i < cls->members.length (); i++)
2949 {
2950 int target = bitmap_bit_p (b, i);
2951 congruence_class *tc = newclasses[target];
2952
2953 add_item_to_class (tc, cls->members[i]);
2954 }
2955
2956 if (flag_checking)
2957 {
2958 for (unsigned int i = 0; i < 2; i++)
2959 gcc_assert (newclasses[i]->members.length ());
2960 }
2961
2962 if (splitter_cls == cls)
2963 optimizer->splitter_class_removed = true;
2964
2965 /* Remove old class from worklist if presented. */
2966 bool in_worklist = cls->in_worklist;
2967
2968 if (in_worklist)
2969 cls->in_worklist = false;
2970
2971 congruence_class_group g;
2972 g.hash = cls->members[0]->get_hash ();
2973 g.type = cls->members[0]->type;
2974
2975 congruence_class_group *slot = optimizer->m_classes.find (&g);
2976
2977 for (unsigned int i = 0; i < slot->classes.length (); i++)
2978 if (slot->classes[i] == cls)
2979 {
2980 slot->classes.ordered_remove (i);
2981 break;
2982 }
2983
2984 /* New class will be inserted and integrated to work list. */
2985 for (unsigned int i = 0; i < 2; i++)
2986 optimizer->add_class (newclasses[i]);
2987
2988 /* Two classes replace one, so that increment just by one. */
2989 optimizer->m_classes_count++;
2990
2991 /* If OLD class was presented in the worklist, we remove the class
2992 and replace it will both newly created classes. */
2993 if (in_worklist)
2994 for (unsigned int i = 0; i < 2; i++)
2995 optimizer->worklist_push (newclasses[i]);
2996 else /* Just smaller class is inserted. */
2997 {
2998 unsigned int smaller_index
2999 = (newclasses[0]->members.length ()
3000 < newclasses[1]->members.length ()
3001 ? 0 : 1);
3002 optimizer->worklist_push (newclasses[smaller_index]);
3003 }
3004
3005 if (dump_file && (dump_flags & TDF_DETAILS))
3006 {
3007 fprintf (dump_file, " congruence class splitted:\n");
3008 cls->dump (dump_file, 4);
3009
3010 fprintf (dump_file, " newly created groups:\n");
3011 for (unsigned int i = 0; i < 2; i++)
3012 newclasses[i]->dump (dump_file, 4);
3013 }
3014
3015 /* Release class if not presented in work list. */
3016 if (!in_worklist)
3017 delete cls;
3018
3019 return true;
3020 }
3021
3022 return false;
3023 }
3024
3025 /* Compare function for sorting pairs in do_congruence_step_f. */
3026
3027 int
sort_congruence_split(const void * a_,const void * b_)3028 sem_item_optimizer::sort_congruence_split (const void *a_, const void *b_)
3029 {
3030 const std::pair<congruence_class *, bitmap> *a
3031 = (const std::pair<congruence_class *, bitmap> *)a_;
3032 const std::pair<congruence_class *, bitmap> *b
3033 = (const std::pair<congruence_class *, bitmap> *)b_;
3034 if (a->first->id < b->first->id)
3035 return -1;
3036 else if (a->first->id > b->first->id)
3037 return 1;
3038 return 0;
3039 }
3040
3041 /* Tests if a class CLS used as INDEXth splits any congruence classes.
3042 Bitmap stack BMSTACK is used for bitmap allocation. */
3043
3044 bool
do_congruence_step_for_index(congruence_class * cls,unsigned int index)3045 sem_item_optimizer::do_congruence_step_for_index (congruence_class *cls,
3046 unsigned int index)
3047 {
3048 hash_map <congruence_class *, bitmap> split_map;
3049
3050 for (unsigned int i = 0; i < cls->members.length (); i++)
3051 {
3052 sem_item *item = cls->members[i];
3053 sem_usage_pair needle (item, index);
3054 vec<sem_item *> *callers = m_references.get (&needle);
3055 if (callers == NULL)
3056 continue;
3057
3058 for (unsigned int j = 0; j < callers->length (); j++)
3059 {
3060 sem_item *caller = (*callers)[j];
3061 if (caller->cls->members.length () < 2)
3062 continue;
3063 bitmap *slot = split_map.get (caller->cls);
3064 bitmap b;
3065
3066 if(!slot)
3067 {
3068 b = BITMAP_ALLOC (&m_bmstack);
3069 split_map.put (caller->cls, b);
3070 }
3071 else
3072 b = *slot;
3073
3074 gcc_checking_assert (caller->cls);
3075 gcc_checking_assert (caller->index_in_class
3076 < caller->cls->members.length ());
3077
3078 bitmap_set_bit (b, caller->index_in_class);
3079 }
3080 }
3081
3082 auto_vec<std::pair<congruence_class *, bitmap> > to_split;
3083 to_split.reserve_exact (split_map.elements ());
3084 for (hash_map <congruence_class *, bitmap>::iterator i = split_map.begin ();
3085 i != split_map.end (); ++i)
3086 to_split.safe_push (*i);
3087 to_split.qsort (sort_congruence_split);
3088
3089 traverse_split_pair pair;
3090 pair.optimizer = this;
3091 pair.cls = cls;
3092
3093 splitter_class_removed = false;
3094 bool r = false;
3095 for (unsigned i = 0; i < to_split.length (); ++i)
3096 r |= traverse_congruence_split (to_split[i].first, to_split[i].second,
3097 &pair);
3098
3099 /* Bitmap clean-up. */
3100 split_map.traverse <traverse_split_pair *,
3101 sem_item_optimizer::release_split_map> (NULL);
3102
3103 return r;
3104 }
3105
3106 /* Every usage of a congruence class CLS is a candidate that can split the
3107 collection of classes. Bitmap stack BMSTACK is used for bitmap
3108 allocation. */
3109
3110 void
do_congruence_step(congruence_class * cls)3111 sem_item_optimizer::do_congruence_step (congruence_class *cls)
3112 {
3113 bitmap_iterator bi;
3114 unsigned int i;
3115
3116 bitmap usage = BITMAP_ALLOC (&m_bmstack);
3117
3118 for (unsigned int i = 0; i < cls->members.length (); i++)
3119 bitmap_ior_into (usage, cls->members[i]->usage_index_bitmap);
3120
3121 EXECUTE_IF_SET_IN_BITMAP (usage, 0, i, bi)
3122 {
3123 if (dump_file && (dump_flags & TDF_DETAILS))
3124 fprintf (dump_file, " processing congruence step for class: %u "
3125 "(%u items, %u references), index: %u\n", cls->id,
3126 cls->referenced_by_count, cls->members.length (), i);
3127 do_congruence_step_for_index (cls, i);
3128
3129 if (splitter_class_removed)
3130 break;
3131 }
3132
3133 BITMAP_FREE (usage);
3134 }
3135
3136 /* Adds a newly created congruence class CLS to worklist. */
3137
3138 void
worklist_push(congruence_class * cls)3139 sem_item_optimizer::worklist_push (congruence_class *cls)
3140 {
3141 /* Return if the class CLS is already presented in work list. */
3142 if (cls->in_worklist)
3143 return;
3144
3145 cls->in_worklist = true;
3146 worklist.insert (cls->referenced_by_count, cls);
3147 }
3148
3149 /* Pops a class from worklist. */
3150
3151 congruence_class *
worklist_pop(void)3152 sem_item_optimizer::worklist_pop (void)
3153 {
3154 congruence_class *cls;
3155
3156 while (!worklist.empty ())
3157 {
3158 cls = worklist.extract_min ();
3159 if (cls->in_worklist)
3160 {
3161 cls->in_worklist = false;
3162
3163 return cls;
3164 }
3165 else
3166 {
3167 /* Work list item was already intended to be removed.
3168 The only reason for doing it is to split a class.
3169 Thus, the class CLS is deleted. */
3170 delete cls;
3171 }
3172 }
3173
3174 return NULL;
3175 }
3176
3177 /* Iterative congruence reduction function. */
3178
3179 void
process_cong_reduction(void)3180 sem_item_optimizer::process_cong_reduction (void)
3181 {
3182 for (hash_table<congruence_class_hash>::iterator it = m_classes.begin ();
3183 it != m_classes.end (); ++it)
3184 for (unsigned i = 0; i < (*it)->classes.length (); i++)
3185 if ((*it)->classes[i]->is_class_used ())
3186 worklist_push ((*it)->classes[i]);
3187
3188 if (dump_file)
3189 fprintf (dump_file, "Worklist has been filled with: %lu\n",
3190 (unsigned long) worklist.nodes ());
3191
3192 if (dump_file && (dump_flags & TDF_DETAILS))
3193 fprintf (dump_file, "Congruence class reduction\n");
3194
3195 congruence_class *cls;
3196
3197 /* Process complete congruence reduction. */
3198 while ((cls = worklist_pop ()) != NULL)
3199 do_congruence_step (cls);
3200
3201 /* Subdivide newly created classes according to references. */
3202 unsigned new_classes = subdivide_classes_by_sensitive_refs ();
3203
3204 if (dump_file)
3205 fprintf (dump_file, "Address reference subdivision created: %u "
3206 "new classes.\n", new_classes);
3207 }
3208
3209 /* Debug function prints all informations about congruence classes. */
3210
3211 void
dump_cong_classes(void)3212 sem_item_optimizer::dump_cong_classes (void)
3213 {
3214 if (!dump_file)
3215 return;
3216
3217 /* Histogram calculation. */
3218 unsigned int max_index = 0;
3219 unsigned int single_element_classes = 0;
3220 unsigned int* histogram = XCNEWVEC (unsigned int, m_items.length () + 1);
3221
3222 for (hash_table<congruence_class_hash>::iterator it = m_classes.begin ();
3223 it != m_classes.end (); ++it)
3224 for (unsigned i = 0; i < (*it)->classes.length (); i++)
3225 {
3226 unsigned int c = (*it)->classes[i]->members.length ();
3227 histogram[c]++;
3228
3229 if (c > max_index)
3230 max_index = c;
3231
3232 if (c == 1)
3233 ++single_element_classes;
3234 }
3235
3236 fprintf (dump_file,
3237 "Congruence classes: %lu with total: %u items (in a non-singular "
3238 "class: %u)\n", (unsigned long) m_classes.elements (),
3239 m_items.length (), m_items.length () - single_element_classes);
3240 fprintf (dump_file,
3241 "Class size histogram [number of members]: number of classes\n");
3242 for (unsigned int i = 0; i <= max_index; i++)
3243 if (histogram[i])
3244 fprintf (dump_file, "%6u: %6u\n", i, histogram[i]);
3245
3246 if (dump_flags & TDF_DETAILS)
3247 for (hash_table<congruence_class_hash>::iterator it = m_classes.begin ();
3248 it != m_classes.end (); ++it)
3249 {
3250 fprintf (dump_file, " group: with %u classes:\n",
3251 (*it)->classes.length ());
3252
3253 for (unsigned i = 0; i < (*it)->classes.length (); i++)
3254 {
3255 (*it)->classes[i]->dump (dump_file, 4);
3256
3257 if (i < (*it)->classes.length () - 1)
3258 fprintf (dump_file, " ");
3259 }
3260 }
3261
3262 free (histogram);
3263 }
3264
3265 /* Sort pair of sem_items A and B by DECL_UID. */
3266
3267 static int
sort_sem_items_by_decl_uid(const void * a,const void * b)3268 sort_sem_items_by_decl_uid (const void *a, const void *b)
3269 {
3270 const sem_item *i1 = *(const sem_item * const *)a;
3271 const sem_item *i2 = *(const sem_item * const *)b;
3272
3273 int uid1 = DECL_UID (i1->decl);
3274 int uid2 = DECL_UID (i2->decl);
3275 return uid1 - uid2;
3276 }
3277
3278 /* Sort pair of congruence_classes A and B by DECL_UID of the first member. */
3279
3280 static int
sort_congruence_classes_by_decl_uid(const void * a,const void * b)3281 sort_congruence_classes_by_decl_uid (const void *a, const void *b)
3282 {
3283 const congruence_class *c1 = *(const congruence_class * const *)a;
3284 const congruence_class *c2 = *(const congruence_class * const *)b;
3285
3286 int uid1 = DECL_UID (c1->members[0]->decl);
3287 int uid2 = DECL_UID (c2->members[0]->decl);
3288 return uid1 - uid2;
3289 }
3290
3291 /* Sort pair of congruence_class_groups A and B by
3292 DECL_UID of the first member of a first group. */
3293
3294 static int
sort_congruence_class_groups_by_decl_uid(const void * a,const void * b)3295 sort_congruence_class_groups_by_decl_uid (const void *a, const void *b)
3296 {
3297 const std::pair<congruence_class_group *, int> *g1
3298 = (const std::pair<congruence_class_group *, int> *) a;
3299 const std::pair<congruence_class_group *, int> *g2
3300 = (const std::pair<congruence_class_group *, int> *) b;
3301 return g1->second - g2->second;
3302 }
3303
3304 /* After reduction is done, we can declare all items in a group
3305 to be equal. PREV_CLASS_COUNT is start number of classes
3306 before reduction. True is returned if there's a merge operation
3307 processed. LOADED_SYMBOLS is number of symbols that were loaded
3308 in WPA. */
3309
3310 bool
merge_classes(unsigned int prev_class_count,unsigned int loaded_symbols)3311 sem_item_optimizer::merge_classes (unsigned int prev_class_count,
3312 unsigned int loaded_symbols)
3313 {
3314 unsigned int item_count = m_items.length ();
3315 unsigned int class_count = m_classes_count;
3316 unsigned int equal_items = item_count - class_count;
3317
3318 unsigned int non_singular_classes_count = 0;
3319 unsigned int non_singular_classes_sum = 0;
3320
3321 bool merged_p = false;
3322
3323 /* PR lto/78211
3324 Sort functions in congruence classes by DECL_UID and do the same
3325 for the classes to not to break -fcompare-debug. */
3326
3327 for (hash_table<congruence_class_hash>::iterator it = m_classes.begin ();
3328 it != m_classes.end (); ++it)
3329 {
3330 for (unsigned int i = 0; i < (*it)->classes.length (); i++)
3331 {
3332 congruence_class *c = (*it)->classes[i];
3333 c->members.qsort (sort_sem_items_by_decl_uid);
3334 }
3335
3336 (*it)->classes.qsort (sort_congruence_classes_by_decl_uid);
3337 }
3338
3339 for (hash_table<congruence_class_hash>::iterator it = m_classes.begin ();
3340 it != m_classes.end (); ++it)
3341 for (unsigned int i = 0; i < (*it)->classes.length (); i++)
3342 {
3343 congruence_class *c = (*it)->classes[i];
3344 if (c->members.length () > 1)
3345 {
3346 non_singular_classes_count++;
3347 non_singular_classes_sum += c->members.length ();
3348 }
3349 }
3350
3351 auto_vec<std::pair<congruence_class_group *, int> > classes (
3352 m_classes.elements ());
3353 for (hash_table<congruence_class_hash>::iterator it = m_classes.begin ();
3354 it != m_classes.end (); ++it)
3355 {
3356 int uid = DECL_UID ((*it)->classes[0]->members[0]->decl);
3357 classes.quick_push (std::pair<congruence_class_group *, int> (*it, uid));
3358 }
3359
3360 classes.qsort (sort_congruence_class_groups_by_decl_uid);
3361
3362 if (dump_file)
3363 {
3364 fprintf (dump_file, "\nItem count: %u\n", item_count);
3365 fprintf (dump_file, "Congruent classes before: %u, after: %u\n",
3366 prev_class_count, class_count);
3367 fprintf (dump_file, "Average class size before: %.2f, after: %.2f\n",
3368 prev_class_count ? 1.0f * item_count / prev_class_count : 0.0f,
3369 class_count ? 1.0f * item_count / class_count : 0.0f);
3370 fprintf (dump_file, "Average non-singular class size: %.2f, count: %u\n",
3371 non_singular_classes_count ? 1.0f * non_singular_classes_sum /
3372 non_singular_classes_count : 0.0f,
3373 non_singular_classes_count);
3374 fprintf (dump_file, "Equal symbols: %u\n", equal_items);
3375 unsigned total = equal_items + non_singular_classes_count;
3376 fprintf (dump_file, "Totally needed symbols: %u"
3377 ", fraction of loaded symbols: %.2f%%\n\n", total,
3378 loaded_symbols ? 100.0f * total / loaded_symbols: 0.0f);
3379 }
3380
3381 unsigned int l;
3382 std::pair<congruence_class_group *, int> *it;
3383 FOR_EACH_VEC_ELT (classes, l, it)
3384 for (unsigned int i = 0; i < it->first->classes.length (); i++)
3385 {
3386 congruence_class *c = it->first->classes[i];
3387
3388 if (c->members.length () == 1)
3389 continue;
3390
3391 sem_item *source = c->members[0];
3392 bool this_merged_p = false;
3393
3394 if (DECL_NAME (source->decl)
3395 && MAIN_NAME_P (DECL_NAME (source->decl)))
3396 /* If merge via wrappers, picking main as the target can be
3397 problematic. */
3398 source = c->members[1];
3399
3400 for (unsigned int j = 0; j < c->members.length (); j++)
3401 {
3402 sem_item *alias = c->members[j];
3403
3404 if (alias == source)
3405 continue;
3406
3407 dump_user_location_t loc
3408 = dump_user_location_t::from_function_decl (source->decl);
3409 if (dump_enabled_p ())
3410 {
3411 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, loc,
3412 "Semantic equality hit:%s->%s\n",
3413 source->node->dump_name (),
3414 alias->node->dump_name ());
3415 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, loc,
3416 "Assembler symbol names:%s->%s\n",
3417 source->node->dump_asm_name (),
3418 alias->node->dump_asm_name ());
3419 }
3420
3421 if (lookup_attribute ("no_icf", DECL_ATTRIBUTES (alias->decl)))
3422 {
3423 if (dump_enabled_p ())
3424 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, loc,
3425 "Merge operation is skipped due to no_icf "
3426 "attribute.\n");
3427 continue;
3428 }
3429
3430 if (dump_file && (dump_flags & TDF_DETAILS))
3431 {
3432 source->dump_to_file (dump_file);
3433 alias->dump_to_file (dump_file);
3434 }
3435
3436 if (dbg_cnt (merged_ipa_icf))
3437 {
3438 bool merged = source->merge (alias);
3439 this_merged_p |= merged;
3440
3441 if (merged && alias->type == VAR)
3442 {
3443 symtab_pair p = symtab_pair (source->node, alias->node);
3444 m_merged_variables.safe_push (p);
3445 }
3446 }
3447 }
3448
3449 merged_p |= this_merged_p;
3450 if (this_merged_p
3451 && source->type == FUNC
3452 && (!flag_wpa || flag_checking))
3453 {
3454 unsigned i;
3455 tree name;
3456 FOR_EACH_SSA_NAME (i, name, DECL_STRUCT_FUNCTION (source->decl))
3457 {
3458 /* We need to either merge or reset SSA_NAME_*_INFO.
3459 For merging we don't preserve the mapping between
3460 original and alias SSA_NAMEs from successful equals
3461 calls. */
3462 if (POINTER_TYPE_P (TREE_TYPE (name)))
3463 {
3464 if (SSA_NAME_PTR_INFO (name))
3465 {
3466 gcc_checking_assert (!flag_wpa);
3467 SSA_NAME_PTR_INFO (name) = NULL;
3468 }
3469 }
3470 else if (SSA_NAME_RANGE_INFO (name))
3471 {
3472 gcc_checking_assert (!flag_wpa);
3473 SSA_NAME_RANGE_INFO (name) = NULL;
3474 }
3475 }
3476 }
3477 }
3478
3479 if (!m_merged_variables.is_empty ())
3480 fixup_points_to_sets ();
3481
3482 return merged_p;
3483 }
3484
3485 /* Fixup points to set PT. */
3486
3487 void
fixup_pt_set(struct pt_solution * pt)3488 sem_item_optimizer::fixup_pt_set (struct pt_solution *pt)
3489 {
3490 if (pt->vars == NULL)
3491 return;
3492
3493 unsigned i;
3494 symtab_pair *item;
3495 FOR_EACH_VEC_ELT (m_merged_variables, i, item)
3496 if (bitmap_bit_p (pt->vars, DECL_UID (item->second->decl)))
3497 bitmap_set_bit (pt->vars, DECL_UID (item->first->decl));
3498 }
3499
3500 /* Set all points-to UIDs of aliases pointing to node N as UID. */
3501
3502 static void
set_alias_uids(symtab_node * n,int uid)3503 set_alias_uids (symtab_node *n, int uid)
3504 {
3505 ipa_ref *ref;
3506 FOR_EACH_ALIAS (n, ref)
3507 {
3508 if (dump_file)
3509 fprintf (dump_file, " Setting points-to UID of [%s] as %d\n",
3510 ref->referring->dump_asm_name (), uid);
3511
3512 SET_DECL_PT_UID (ref->referring->decl, uid);
3513 set_alias_uids (ref->referring, uid);
3514 }
3515 }
3516
3517 /* Fixup points to analysis info. */
3518
3519 void
fixup_points_to_sets(void)3520 sem_item_optimizer::fixup_points_to_sets (void)
3521 {
3522 /* TODO: remove in GCC 9 and trigger PTA re-creation after IPA passes. */
3523 cgraph_node *cnode;
3524
3525 FOR_EACH_DEFINED_FUNCTION (cnode)
3526 {
3527 tree name;
3528 unsigned i;
3529 function *fn = DECL_STRUCT_FUNCTION (cnode->decl);
3530 if (!gimple_in_ssa_p (fn))
3531 continue;
3532
3533 FOR_EACH_SSA_NAME (i, name, fn)
3534 if (POINTER_TYPE_P (TREE_TYPE (name))
3535 && SSA_NAME_PTR_INFO (name))
3536 fixup_pt_set (&SSA_NAME_PTR_INFO (name)->pt);
3537 fixup_pt_set (&fn->gimple_df->escaped);
3538
3539 /* The above gets us to 99% I guess, at least catching the
3540 address compares. Below also gets us aliasing correct
3541 but as said we're giving leeway to the situation with
3542 readonly vars anyway, so ... */
3543 basic_block bb;
3544 FOR_EACH_BB_FN (bb, fn)
3545 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
3546 gsi_next (&gsi))
3547 {
3548 gcall *call = dyn_cast<gcall *> (gsi_stmt (gsi));
3549 if (call)
3550 {
3551 fixup_pt_set (gimple_call_use_set (call));
3552 fixup_pt_set (gimple_call_clobber_set (call));
3553 }
3554 }
3555 }
3556
3557 unsigned i;
3558 symtab_pair *item;
3559 FOR_EACH_VEC_ELT (m_merged_variables, i, item)
3560 set_alias_uids (item->first, DECL_UID (item->first->decl));
3561 }
3562
3563 /* Dump function prints all class members to a FILE with an INDENT. */
3564
3565 void
dump(FILE * file,unsigned int indent) const3566 congruence_class::dump (FILE *file, unsigned int indent) const
3567 {
3568 FPRINTF_SPACES (file, indent, "class with id: %u, hash: %u, items: %u\n",
3569 id, members[0]->get_hash (), members.length ());
3570
3571 FPUTS_SPACES (file, indent + 2, "");
3572 for (unsigned i = 0; i < members.length (); i++)
3573 fprintf (file, "%s ", members[i]->node->dump_asm_name ());
3574
3575 fprintf (file, "\n");
3576 }
3577
3578 /* Returns true if there's a member that is used from another group. */
3579
3580 bool
is_class_used(void)3581 congruence_class::is_class_used (void)
3582 {
3583 for (unsigned int i = 0; i < members.length (); i++)
3584 if (members[i]->referenced_by_count)
3585 return true;
3586
3587 return false;
3588 }
3589
3590 /* Generate pass summary for IPA ICF pass. */
3591
3592 static void
ipa_icf_generate_summary(void)3593 ipa_icf_generate_summary (void)
3594 {
3595 if (!optimizer)
3596 optimizer = new sem_item_optimizer ();
3597
3598 optimizer->register_hooks ();
3599 optimizer->parse_funcs_and_vars ();
3600 }
3601
3602 /* Write pass summary for IPA ICF pass. */
3603
3604 static void
ipa_icf_write_summary(void)3605 ipa_icf_write_summary (void)
3606 {
3607 gcc_assert (optimizer);
3608
3609 optimizer->write_summary ();
3610 }
3611
3612 /* Read pass summary for IPA ICF pass. */
3613
3614 static void
ipa_icf_read_summary(void)3615 ipa_icf_read_summary (void)
3616 {
3617 if (!optimizer)
3618 optimizer = new sem_item_optimizer ();
3619
3620 optimizer->read_summary ();
3621 optimizer->register_hooks ();
3622 }
3623
3624 /* Semantic equality execution function. */
3625
3626 static unsigned int
ipa_icf_driver(void)3627 ipa_icf_driver (void)
3628 {
3629 gcc_assert (optimizer);
3630
3631 bool merged_p = optimizer->execute ();
3632
3633 delete optimizer;
3634 optimizer = NULL;
3635
3636 return merged_p ? TODO_remove_functions : 0;
3637 }
3638
3639 const pass_data pass_data_ipa_icf =
3640 {
3641 IPA_PASS, /* type */
3642 "icf", /* name */
3643 OPTGROUP_IPA, /* optinfo_flags */
3644 TV_IPA_ICF, /* tv_id */
3645 0, /* properties_required */
3646 0, /* properties_provided */
3647 0, /* properties_destroyed */
3648 0, /* todo_flags_start */
3649 0, /* todo_flags_finish */
3650 };
3651
3652 class pass_ipa_icf : public ipa_opt_pass_d
3653 {
3654 public:
pass_ipa_icf(gcc::context * ctxt)3655 pass_ipa_icf (gcc::context *ctxt)
3656 : ipa_opt_pass_d (pass_data_ipa_icf, ctxt,
3657 ipa_icf_generate_summary, /* generate_summary */
3658 ipa_icf_write_summary, /* write_summary */
3659 ipa_icf_read_summary, /* read_summary */
3660 NULL, /*
3661 write_optimization_summary */
3662 NULL, /*
3663 read_optimization_summary */
3664 NULL, /* stmt_fixup */
3665 0, /* function_transform_todo_flags_start */
3666 NULL, /* function_transform */
3667 NULL) /* variable_transform */
3668 {}
3669
3670 /* opt_pass methods: */
gate(function *)3671 virtual bool gate (function *)
3672 {
3673 return in_lto_p || flag_ipa_icf_variables || flag_ipa_icf_functions;
3674 }
3675
execute(function *)3676 virtual unsigned int execute (function *)
3677 {
3678 return ipa_icf_driver();
3679 }
3680 }; // class pass_ipa_icf
3681
3682 } // ipa_icf namespace
3683
3684 ipa_opt_pass_d *
make_pass_ipa_icf(gcc::context * ctxt)3685 make_pass_ipa_icf (gcc::context *ctxt)
3686 {
3687 return new ipa_icf::pass_ipa_icf (ctxt);
3688 }
3689