1 //===- IntervalIterator.h - Interval Iterator Declaration -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines an iterator that enumerates the intervals in a control flow
10 // graph of some sort. This iterator is parametric, allowing iterator over the
11 // following types of graphs:
12 //
13 // 1. A Function* object, composed of BasicBlock nodes.
14 // 2. An IntervalPartition& object, composed of Interval nodes.
15 //
16 // This iterator is defined to walk the control flow graph, returning intervals
17 // in depth first order. These intervals are completely filled in except for
18 // the predecessor fields (the successor information is filled in however).
19 //
20 // By default, the intervals created by this iterator are deleted after they
21 // are no longer any use to the iterator. This behavior can be changed by
22 // passing a false value into the intervals_begin() function. This causes the
23 // IOwnMem member to be set, and the intervals to not be deleted.
24 //
25 // It is only safe to use this if all of the intervals are deleted by the caller
26 // and all of the intervals are processed. However, the user of the iterator is
27 // not allowed to modify or delete the intervals until after the iterator has
28 // been used completely. The IntervalPartition class uses this functionality.
29 //
30 //===----------------------------------------------------------------------===//
31
32 #ifndef LLVM_ANALYSIS_INTERVALITERATOR_H
33 #define LLVM_ANALYSIS_INTERVALITERATOR_H
34
35 #include "llvm/ADT/GraphTraits.h"
36 #include "llvm/Analysis/Interval.h"
37 #include "llvm/Analysis/IntervalPartition.h"
38 #include "llvm/IR/CFG.h"
39 #include <algorithm>
40 #include <cassert>
41 #include <iterator>
42 #include <set>
43 #include <utility>
44 #include <vector>
45
46 namespace llvm {
47
48 class BasicBlock;
49 class Function;
50
51 // getNodeHeader - Given a source graph node and the source graph, return the
52 // BasicBlock that is the header node. This is the opposite of
53 // getSourceGraphNode.
getNodeHeader(BasicBlock * BB)54 inline BasicBlock *getNodeHeader(BasicBlock *BB) { return BB; }
getNodeHeader(Interval * I)55 inline BasicBlock *getNodeHeader(Interval *I) { return I->getHeaderNode(); }
56
57 // getSourceGraphNode - Given a BasicBlock and the source graph, return the
58 // source graph node that corresponds to the BasicBlock. This is the opposite
59 // of getNodeHeader.
getSourceGraphNode(Function *,BasicBlock * BB)60 inline BasicBlock *getSourceGraphNode(Function *, BasicBlock *BB) {
61 return BB;
62 }
getSourceGraphNode(IntervalPartition * IP,BasicBlock * BB)63 inline Interval *getSourceGraphNode(IntervalPartition *IP, BasicBlock *BB) {
64 return IP->getBlockInterval(BB);
65 }
66
67 // addNodeToInterval - This method exists to assist the generic ProcessNode
68 // with the task of adding a node to the new interval, depending on the
69 // type of the source node. In the case of a CFG source graph (BasicBlock
70 // case), the BasicBlock itself is added to the interval.
addNodeToInterval(Interval * Int,BasicBlock * BB)71 inline void addNodeToInterval(Interval *Int, BasicBlock *BB) {
72 Int->Nodes.push_back(BB);
73 }
74
75 // addNodeToInterval - This method exists to assist the generic ProcessNode
76 // with the task of adding a node to the new interval, depending on the
77 // type of the source node. In the case of a CFG source graph (BasicBlock
78 // case), the BasicBlock itself is added to the interval. In the case of
79 // an IntervalPartition source graph (Interval case), all of the member
80 // BasicBlocks are added to the interval.
addNodeToInterval(Interval * Int,Interval * I)81 inline void addNodeToInterval(Interval *Int, Interval *I) {
82 // Add all of the nodes in I as new nodes in Int.
83 llvm::append_range(Int->Nodes, I->Nodes);
84 }
85
86 template<class NodeTy, class OrigContainer_t, class GT = GraphTraits<NodeTy *>,
87 class IGT = GraphTraits<Inverse<NodeTy *>>>
88 class IntervalIterator {
89 std::vector<std::pair<Interval *, typename Interval::succ_iterator>> IntStack;
90 std::set<BasicBlock *> Visited;
91 OrigContainer_t *OrigContainer;
92 bool IOwnMem; // If True, delete intervals when done with them
93 // See file header for conditions of use
94
95 public:
96 using iterator_category = std::forward_iterator_tag;
97
98 IntervalIterator() = default; // End iterator, empty stack
99
IntervalIterator(Function * M,bool OwnMemory)100 IntervalIterator(Function *M, bool OwnMemory) : IOwnMem(OwnMemory) {
101 OrigContainer = M;
102 if (!ProcessInterval(&M->front())) {
103 llvm_unreachable("ProcessInterval should never fail for first interval!");
104 }
105 }
106
IntervalIterator(IntervalIterator && x)107 IntervalIterator(IntervalIterator &&x)
108 : IntStack(std::move(x.IntStack)), Visited(std::move(x.Visited)),
109 OrigContainer(x.OrigContainer), IOwnMem(x.IOwnMem) {
110 x.IOwnMem = false;
111 }
112
IntervalIterator(IntervalPartition & IP,bool OwnMemory)113 IntervalIterator(IntervalPartition &IP, bool OwnMemory) : IOwnMem(OwnMemory) {
114 OrigContainer = &IP;
115 if (!ProcessInterval(IP.getRootInterval())) {
116 llvm_unreachable("ProcessInterval should never fail for first interval!");
117 }
118 }
119
~IntervalIterator()120 ~IntervalIterator() {
121 if (IOwnMem)
122 while (!IntStack.empty()) {
123 delete operator*();
124 IntStack.pop_back();
125 }
126 }
127
128 bool operator==(const IntervalIterator &x) const {
129 return IntStack == x.IntStack;
130 }
131 bool operator!=(const IntervalIterator &x) const { return !(*this == x); }
132
133 const Interval *operator*() const { return IntStack.back().first; }
134 Interval *operator*() { return IntStack.back().first; }
135 const Interval *operator->() const { return operator*(); }
136 Interval *operator->() { return operator*(); }
137
138 IntervalIterator &operator++() { // Preincrement
139 assert(!IntStack.empty() && "Attempting to use interval iterator at end!");
140 do {
141 // All of the intervals on the stack have been visited. Try visiting
142 // their successors now.
143 Interval::succ_iterator &SuccIt = IntStack.back().second,
144 EndIt = succ_end(IntStack.back().first);
145 while (SuccIt != EndIt) { // Loop over all interval succs
146 bool Done = ProcessInterval(getSourceGraphNode(OrigContainer, *SuccIt));
147 ++SuccIt; // Increment iterator
148 if (Done) return *this; // Found a new interval! Use it!
149 }
150
151 // Free interval memory... if necessary
152 if (IOwnMem) delete IntStack.back().first;
153
154 // We ran out of successors for this interval... pop off the stack
155 IntStack.pop_back();
156 } while (!IntStack.empty());
157
158 return *this;
159 }
160
161 IntervalIterator operator++(int) { // Postincrement
162 IntervalIterator tmp = *this;
163 ++*this;
164 return tmp;
165 }
166
167 private:
168 // ProcessInterval - This method is used during the construction of the
169 // interval graph. It walks through the source graph, recursively creating
170 // an interval per invocation until the entire graph is covered. This uses
171 // the ProcessNode method to add all of the nodes to the interval.
172 //
173 // This method is templated because it may operate on two different source
174 // graphs: a basic block graph, or a preexisting interval graph.
ProcessInterval(NodeTy * Node)175 bool ProcessInterval(NodeTy *Node) {
176 BasicBlock *Header = getNodeHeader(Node);
177 if (!Visited.insert(Header).second)
178 return false;
179
180 Interval *Int = new Interval(Header);
181
182 // Check all of our successors to see if they are in the interval...
183 for (typename GT::ChildIteratorType I = GT::child_begin(Node),
184 E = GT::child_end(Node); I != E; ++I)
185 ProcessNode(Int, getSourceGraphNode(OrigContainer, *I));
186
187 IntStack.push_back(std::make_pair(Int, succ_begin(Int)));
188 return true;
189 }
190
191 // ProcessNode - This method is called by ProcessInterval to add nodes to the
192 // interval being constructed, and it is also called recursively as it walks
193 // the source graph. A node is added to the current interval only if all of
194 // its predecessors are already in the graph. This also takes care of keeping
195 // the successor set of an interval up to date.
196 //
197 // This method is templated because it may operate on two different source
198 // graphs: a basic block graph, or a preexisting interval graph.
ProcessNode(Interval * Int,NodeTy * Node)199 void ProcessNode(Interval *Int, NodeTy *Node) {
200 assert(Int && "Null interval == bad!");
201 assert(Node && "Null Node == bad!");
202
203 BasicBlock *NodeHeader = getNodeHeader(Node);
204
205 if (Visited.count(NodeHeader)) { // Node already been visited?
206 if (Int->contains(NodeHeader)) { // Already in this interval...
207 return;
208 } else { // In other interval, add as successor
209 if (!Int->isSuccessor(NodeHeader)) // Add only if not already in set
210 Int->Successors.push_back(NodeHeader);
211 }
212 } else { // Otherwise, not in interval yet
213 for (typename IGT::ChildIteratorType I = IGT::child_begin(Node),
214 E = IGT::child_end(Node); I != E; ++I) {
215 if (!Int->contains(*I)) { // If pred not in interval, we can't be
216 if (!Int->isSuccessor(NodeHeader)) // Add only if not already in set
217 Int->Successors.push_back(NodeHeader);
218 return; // See you later
219 }
220 }
221
222 // If we get here, then all of the predecessors of BB are in the interval
223 // already. In this case, we must add BB to the interval!
224 addNodeToInterval(Int, Node);
225 Visited.insert(NodeHeader); // The node has now been visited!
226
227 if (Int->isSuccessor(NodeHeader)) {
228 // If we were in the successor list from before... remove from succ list
229 llvm::erase_value(Int->Successors, NodeHeader);
230 }
231
232 // Now that we have discovered that Node is in the interval, perhaps some
233 // of its successors are as well?
234 for (typename GT::ChildIteratorType It = GT::child_begin(Node),
235 End = GT::child_end(Node); It != End; ++It)
236 ProcessNode(Int, getSourceGraphNode(OrigContainer, *It));
237 }
238 }
239 };
240
241 using function_interval_iterator = IntervalIterator<BasicBlock, Function>;
242 using interval_part_interval_iterator =
243 IntervalIterator<Interval, IntervalPartition>;
244
245 inline function_interval_iterator intervals_begin(Function *F,
246 bool DeleteInts = true) {
247 return function_interval_iterator(F, DeleteInts);
248 }
intervals_end(Function *)249 inline function_interval_iterator intervals_end(Function *) {
250 return function_interval_iterator();
251 }
252
253 inline interval_part_interval_iterator
254 intervals_begin(IntervalPartition &IP, bool DeleteIntervals = true) {
255 return interval_part_interval_iterator(IP, DeleteIntervals);
256 }
257
intervals_end(IntervalPartition & IP)258 inline interval_part_interval_iterator intervals_end(IntervalPartition &IP) {
259 return interval_part_interval_iterator();
260 }
261
262 } // end namespace llvm
263
264 #endif // LLVM_ANALYSIS_INTERVALITERATOR_H
265