1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1996, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "expr.h"
33 #include "output.h"
34 #include "diagnostic-core.h"
35 #include "ggc.h"
36 #include "target.h"
37 #include "langhooks.h"
38 #include "regs.h"
39 #include "params.h"
40 #include "cgraph.h"
41 #include "tree-inline.h"
42 #include "tree-dump.h"
43 #include "gimple.h"
44
45 /* Data type for the expressions representing sizes of data types.
46 It is the first integer type laid out. */
47 tree sizetype_tab[(int) TYPE_KIND_LAST];
48
49 /* If nonzero, this is an upper limit on alignment of structure fields.
50 The value is measured in bits. */
51 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
52
53 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be allocated
54 in the address spaces' address_mode, not pointer_mode. Set only by
55 internal_reference_types called only by a front end. */
56 static int reference_types_internal = 0;
57
58 static tree self_referential_size (tree);
59 static void finalize_record_size (record_layout_info);
60 static void finalize_type_size (tree);
61 static void place_union_field (record_layout_info, tree);
62 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
63 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
64 HOST_WIDE_INT, tree);
65 #endif
66 extern void debug_rli (record_layout_info);
67
68 /* Show that REFERENCE_TYPES are internal and should use address_mode.
69 Called only by front end. */
70
71 void
internal_reference_types(void)72 internal_reference_types (void)
73 {
74 reference_types_internal = 1;
75 }
76
77 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
78 to serve as the actual size-expression for a type or decl. */
79
80 tree
variable_size(tree size)81 variable_size (tree size)
82 {
83 /* Obviously. */
84 if (TREE_CONSTANT (size))
85 return size;
86
87 /* If the size is self-referential, we can't make a SAVE_EXPR (see
88 save_expr for the rationale). But we can do something else. */
89 if (CONTAINS_PLACEHOLDER_P (size))
90 return self_referential_size (size);
91
92 /* If we are in the global binding level, we can't make a SAVE_EXPR
93 since it may end up being shared across functions, so it is up
94 to the front-end to deal with this case. */
95 if (lang_hooks.decls.global_bindings_p ())
96 return size;
97
98 return save_expr (size);
99 }
100
101 /* An array of functions used for self-referential size computation. */
102 static GTY(()) VEC (tree, gc) *size_functions;
103
104 /* Look inside EXPR into simple arithmetic operations involving constants.
105 Return the outermost non-arithmetic or non-constant node. */
106
107 static tree
skip_simple_constant_arithmetic(tree expr)108 skip_simple_constant_arithmetic (tree expr)
109 {
110 while (true)
111 {
112 if (UNARY_CLASS_P (expr))
113 expr = TREE_OPERAND (expr, 0);
114 else if (BINARY_CLASS_P (expr))
115 {
116 if (TREE_CONSTANT (TREE_OPERAND (expr, 1)))
117 expr = TREE_OPERAND (expr, 0);
118 else if (TREE_CONSTANT (TREE_OPERAND (expr, 0)))
119 expr = TREE_OPERAND (expr, 1);
120 else
121 break;
122 }
123 else
124 break;
125 }
126
127 return expr;
128 }
129
130 /* Similar to copy_tree_r but do not copy component references involving
131 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
132 and substituted in substitute_in_expr. */
133
134 static tree
copy_self_referential_tree_r(tree * tp,int * walk_subtrees,void * data)135 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
136 {
137 enum tree_code code = TREE_CODE (*tp);
138
139 /* Stop at types, decls, constants like copy_tree_r. */
140 if (TREE_CODE_CLASS (code) == tcc_type
141 || TREE_CODE_CLASS (code) == tcc_declaration
142 || TREE_CODE_CLASS (code) == tcc_constant)
143 {
144 *walk_subtrees = 0;
145 return NULL_TREE;
146 }
147
148 /* This is the pattern built in ada/make_aligning_type. */
149 else if (code == ADDR_EXPR
150 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
151 {
152 *walk_subtrees = 0;
153 return NULL_TREE;
154 }
155
156 /* Default case: the component reference. */
157 else if (code == COMPONENT_REF)
158 {
159 tree inner;
160 for (inner = TREE_OPERAND (*tp, 0);
161 REFERENCE_CLASS_P (inner);
162 inner = TREE_OPERAND (inner, 0))
163 ;
164
165 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
166 {
167 *walk_subtrees = 0;
168 return NULL_TREE;
169 }
170 }
171
172 /* We're not supposed to have them in self-referential size trees
173 because we wouldn't properly control when they are evaluated.
174 However, not creating superfluous SAVE_EXPRs requires accurate
175 tracking of readonly-ness all the way down to here, which we
176 cannot always guarantee in practice. So punt in this case. */
177 else if (code == SAVE_EXPR)
178 return error_mark_node;
179
180 else if (code == STATEMENT_LIST)
181 gcc_unreachable ();
182
183 return copy_tree_r (tp, walk_subtrees, data);
184 }
185
186 /* Given a SIZE expression that is self-referential, return an equivalent
187 expression to serve as the actual size expression for a type. */
188
189 static tree
self_referential_size(tree size)190 self_referential_size (tree size)
191 {
192 static unsigned HOST_WIDE_INT fnno = 0;
193 VEC (tree, heap) *self_refs = NULL;
194 tree param_type_list = NULL, param_decl_list = NULL;
195 tree t, ref, return_type, fntype, fnname, fndecl;
196 unsigned int i;
197 char buf[128];
198 VEC(tree,gc) *args = NULL;
199
200 /* Do not factor out simple operations. */
201 t = skip_simple_constant_arithmetic (size);
202 if (TREE_CODE (t) == CALL_EXPR)
203 return size;
204
205 /* Collect the list of self-references in the expression. */
206 find_placeholder_in_expr (size, &self_refs);
207 gcc_assert (VEC_length (tree, self_refs) > 0);
208
209 /* Obtain a private copy of the expression. */
210 t = size;
211 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
212 return size;
213 size = t;
214
215 /* Build the parameter and argument lists in parallel; also
216 substitute the former for the latter in the expression. */
217 args = VEC_alloc (tree, gc, VEC_length (tree, self_refs));
218 FOR_EACH_VEC_ELT (tree, self_refs, i, ref)
219 {
220 tree subst, param_name, param_type, param_decl;
221
222 if (DECL_P (ref))
223 {
224 /* We shouldn't have true variables here. */
225 gcc_assert (TREE_READONLY (ref));
226 subst = ref;
227 }
228 /* This is the pattern built in ada/make_aligning_type. */
229 else if (TREE_CODE (ref) == ADDR_EXPR)
230 subst = ref;
231 /* Default case: the component reference. */
232 else
233 subst = TREE_OPERAND (ref, 1);
234
235 sprintf (buf, "p%d", i);
236 param_name = get_identifier (buf);
237 param_type = TREE_TYPE (ref);
238 param_decl
239 = build_decl (input_location, PARM_DECL, param_name, param_type);
240 if (targetm.calls.promote_prototypes (NULL_TREE)
241 && INTEGRAL_TYPE_P (param_type)
242 && TYPE_PRECISION (param_type) < TYPE_PRECISION (integer_type_node))
243 DECL_ARG_TYPE (param_decl) = integer_type_node;
244 else
245 DECL_ARG_TYPE (param_decl) = param_type;
246 DECL_ARTIFICIAL (param_decl) = 1;
247 TREE_READONLY (param_decl) = 1;
248
249 size = substitute_in_expr (size, subst, param_decl);
250
251 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
252 param_decl_list = chainon (param_decl, param_decl_list);
253 VEC_quick_push (tree, args, ref);
254 }
255
256 VEC_free (tree, heap, self_refs);
257
258 /* Append 'void' to indicate that the number of parameters is fixed. */
259 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
260
261 /* The 3 lists have been created in reverse order. */
262 param_type_list = nreverse (param_type_list);
263 param_decl_list = nreverse (param_decl_list);
264
265 /* Build the function type. */
266 return_type = TREE_TYPE (size);
267 fntype = build_function_type (return_type, param_type_list);
268
269 /* Build the function declaration. */
270 sprintf (buf, "SZ"HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
271 fnname = get_file_function_name (buf);
272 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
273 for (t = param_decl_list; t; t = DECL_CHAIN (t))
274 DECL_CONTEXT (t) = fndecl;
275 DECL_ARGUMENTS (fndecl) = param_decl_list;
276 DECL_RESULT (fndecl)
277 = build_decl (input_location, RESULT_DECL, 0, return_type);
278 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
279
280 /* The function has been created by the compiler and we don't
281 want to emit debug info for it. */
282 DECL_ARTIFICIAL (fndecl) = 1;
283 DECL_IGNORED_P (fndecl) = 1;
284
285 /* It is supposed to be "const" and never throw. */
286 TREE_READONLY (fndecl) = 1;
287 TREE_NOTHROW (fndecl) = 1;
288
289 /* We want it to be inlined when this is deemed profitable, as
290 well as discarded if every call has been integrated. */
291 DECL_DECLARED_INLINE_P (fndecl) = 1;
292
293 /* It is made up of a unique return statement. */
294 DECL_INITIAL (fndecl) = make_node (BLOCK);
295 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
296 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
297 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
298 TREE_STATIC (fndecl) = 1;
299
300 /* Put it onto the list of size functions. */
301 VEC_safe_push (tree, gc, size_functions, fndecl);
302
303 /* Replace the original expression with a call to the size function. */
304 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
305 }
306
307 /* Take, queue and compile all the size functions. It is essential that
308 the size functions be gimplified at the very end of the compilation
309 in order to guarantee transparent handling of self-referential sizes.
310 Otherwise the GENERIC inliner would not be able to inline them back
311 at each of their call sites, thus creating artificial non-constant
312 size expressions which would trigger nasty problems later on. */
313
314 void
finalize_size_functions(void)315 finalize_size_functions (void)
316 {
317 unsigned int i;
318 tree fndecl;
319
320 for (i = 0; VEC_iterate(tree, size_functions, i, fndecl); i++)
321 {
322 dump_function (TDI_original, fndecl);
323 gimplify_function_tree (fndecl);
324 dump_function (TDI_generic, fndecl);
325 cgraph_finalize_function (fndecl, false);
326 }
327
328 VEC_free (tree, gc, size_functions);
329 }
330
331 /* Return the machine mode to use for a nonscalar of SIZE bits. The
332 mode must be in class MCLASS, and have exactly that many value bits;
333 it may have padding as well. If LIMIT is nonzero, modes of wider
334 than MAX_FIXED_MODE_SIZE will not be used. */
335
336 enum machine_mode
mode_for_size(unsigned int size,enum mode_class mclass,int limit)337 mode_for_size (unsigned int size, enum mode_class mclass, int limit)
338 {
339 enum machine_mode mode;
340
341 if (limit && size > MAX_FIXED_MODE_SIZE)
342 return BLKmode;
343
344 /* Get the first mode which has this size, in the specified class. */
345 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
346 mode = GET_MODE_WIDER_MODE (mode))
347 if (GET_MODE_PRECISION (mode) == size)
348 return mode;
349
350 return BLKmode;
351 }
352
353 /* Similar, except passed a tree node. */
354
355 enum machine_mode
mode_for_size_tree(const_tree size,enum mode_class mclass,int limit)356 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
357 {
358 unsigned HOST_WIDE_INT uhwi;
359 unsigned int ui;
360
361 if (!host_integerp (size, 1))
362 return BLKmode;
363 uhwi = tree_low_cst (size, 1);
364 ui = uhwi;
365 if (uhwi != ui)
366 return BLKmode;
367 return mode_for_size (ui, mclass, limit);
368 }
369
370 /* Similar, but never return BLKmode; return the narrowest mode that
371 contains at least the requested number of value bits. */
372
373 enum machine_mode
smallest_mode_for_size(unsigned int size,enum mode_class mclass)374 smallest_mode_for_size (unsigned int size, enum mode_class mclass)
375 {
376 enum machine_mode mode;
377
378 /* Get the first mode which has at least this size, in the
379 specified class. */
380 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
381 mode = GET_MODE_WIDER_MODE (mode))
382 if (GET_MODE_PRECISION (mode) >= size)
383 return mode;
384
385 gcc_unreachable ();
386 }
387
388 /* Find an integer mode of the exact same size, or BLKmode on failure. */
389
390 enum machine_mode
int_mode_for_mode(enum machine_mode mode)391 int_mode_for_mode (enum machine_mode mode)
392 {
393 switch (GET_MODE_CLASS (mode))
394 {
395 case MODE_INT:
396 case MODE_PARTIAL_INT:
397 break;
398
399 case MODE_COMPLEX_INT:
400 case MODE_COMPLEX_FLOAT:
401 case MODE_FLOAT:
402 case MODE_DECIMAL_FLOAT:
403 case MODE_VECTOR_INT:
404 case MODE_VECTOR_FLOAT:
405 case MODE_FRACT:
406 case MODE_ACCUM:
407 case MODE_UFRACT:
408 case MODE_UACCUM:
409 case MODE_VECTOR_FRACT:
410 case MODE_VECTOR_ACCUM:
411 case MODE_VECTOR_UFRACT:
412 case MODE_VECTOR_UACCUM:
413 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
414 break;
415
416 case MODE_RANDOM:
417 if (mode == BLKmode)
418 break;
419
420 /* ... fall through ... */
421
422 case MODE_CC:
423 default:
424 gcc_unreachable ();
425 }
426
427 return mode;
428 }
429
430 /* Find a mode that is suitable for representing a vector with
431 NUNITS elements of mode INNERMODE. Returns BLKmode if there
432 is no suitable mode. */
433
434 enum machine_mode
mode_for_vector(enum machine_mode innermode,unsigned nunits)435 mode_for_vector (enum machine_mode innermode, unsigned nunits)
436 {
437 enum machine_mode mode;
438
439 /* First, look for a supported vector type. */
440 if (SCALAR_FLOAT_MODE_P (innermode))
441 mode = MIN_MODE_VECTOR_FLOAT;
442 else if (SCALAR_FRACT_MODE_P (innermode))
443 mode = MIN_MODE_VECTOR_FRACT;
444 else if (SCALAR_UFRACT_MODE_P (innermode))
445 mode = MIN_MODE_VECTOR_UFRACT;
446 else if (SCALAR_ACCUM_MODE_P (innermode))
447 mode = MIN_MODE_VECTOR_ACCUM;
448 else if (SCALAR_UACCUM_MODE_P (innermode))
449 mode = MIN_MODE_VECTOR_UACCUM;
450 else
451 mode = MIN_MODE_VECTOR_INT;
452
453 /* Do not check vector_mode_supported_p here. We'll do that
454 later in vector_type_mode. */
455 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
456 if (GET_MODE_NUNITS (mode) == nunits
457 && GET_MODE_INNER (mode) == innermode)
458 break;
459
460 /* For integers, try mapping it to a same-sized scalar mode. */
461 if (mode == VOIDmode
462 && GET_MODE_CLASS (innermode) == MODE_INT)
463 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
464 MODE_INT, 0);
465
466 if (mode == VOIDmode
467 || (GET_MODE_CLASS (mode) == MODE_INT
468 && !have_regs_of_mode[mode]))
469 return BLKmode;
470
471 return mode;
472 }
473
474 /* Return the alignment of MODE. This will be bounded by 1 and
475 BIGGEST_ALIGNMENT. */
476
477 unsigned int
get_mode_alignment(enum machine_mode mode)478 get_mode_alignment (enum machine_mode mode)
479 {
480 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
481 }
482
483 /* Return the natural mode of an array, given that it is SIZE bytes in
484 total and has elements of type ELEM_TYPE. */
485
486 static enum machine_mode
mode_for_array(tree elem_type,tree size)487 mode_for_array (tree elem_type, tree size)
488 {
489 tree elem_size;
490 unsigned HOST_WIDE_INT int_size, int_elem_size;
491 bool limit_p;
492
493 /* One-element arrays get the component type's mode. */
494 elem_size = TYPE_SIZE (elem_type);
495 if (simple_cst_equal (size, elem_size))
496 return TYPE_MODE (elem_type);
497
498 limit_p = true;
499 if (host_integerp (size, 1) && host_integerp (elem_size, 1))
500 {
501 int_size = tree_low_cst (size, 1);
502 int_elem_size = tree_low_cst (elem_size, 1);
503 if (int_elem_size > 0
504 && int_size % int_elem_size == 0
505 && targetm.array_mode_supported_p (TYPE_MODE (elem_type),
506 int_size / int_elem_size))
507 limit_p = false;
508 }
509 return mode_for_size_tree (size, MODE_INT, limit_p);
510 }
511
512 /* Subroutine of layout_decl: Force alignment required for the data type.
513 But if the decl itself wants greater alignment, don't override that. */
514
515 static inline void
do_type_align(tree type,tree decl)516 do_type_align (tree type, tree decl)
517 {
518 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
519 {
520 DECL_ALIGN (decl) = TYPE_ALIGN (type);
521 if (TREE_CODE (decl) == FIELD_DECL)
522 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
523 }
524 }
525
526 /* Set the size, mode and alignment of a ..._DECL node.
527 TYPE_DECL does need this for C++.
528 Note that LABEL_DECL and CONST_DECL nodes do not need this,
529 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
530 Don't call layout_decl for them.
531
532 KNOWN_ALIGN is the amount of alignment we can assume this
533 decl has with no special effort. It is relevant only for FIELD_DECLs
534 and depends on the previous fields.
535 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
536 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
537 the record will be aligned to suit. */
538
539 void
layout_decl(tree decl,unsigned int known_align)540 layout_decl (tree decl, unsigned int known_align)
541 {
542 tree type = TREE_TYPE (decl);
543 enum tree_code code = TREE_CODE (decl);
544 rtx rtl = NULL_RTX;
545 location_t loc = DECL_SOURCE_LOCATION (decl);
546
547 if (code == CONST_DECL)
548 return;
549
550 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
551 || code == TYPE_DECL ||code == FIELD_DECL);
552
553 rtl = DECL_RTL_IF_SET (decl);
554
555 if (type == error_mark_node)
556 type = void_type_node;
557
558 /* Usually the size and mode come from the data type without change,
559 however, the front-end may set the explicit width of the field, so its
560 size may not be the same as the size of its type. This happens with
561 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
562 also happens with other fields. For example, the C++ front-end creates
563 zero-sized fields corresponding to empty base classes, and depends on
564 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
565 size in bytes from the size in bits. If we have already set the mode,
566 don't set it again since we can be called twice for FIELD_DECLs. */
567
568 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
569 if (DECL_MODE (decl) == VOIDmode)
570 DECL_MODE (decl) = TYPE_MODE (type);
571
572 if (DECL_SIZE (decl) == 0)
573 {
574 DECL_SIZE (decl) = TYPE_SIZE (type);
575 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
576 }
577 else if (DECL_SIZE_UNIT (decl) == 0)
578 DECL_SIZE_UNIT (decl)
579 = fold_convert_loc (loc, sizetype,
580 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
581 bitsize_unit_node));
582
583 if (code != FIELD_DECL)
584 /* For non-fields, update the alignment from the type. */
585 do_type_align (type, decl);
586 else
587 /* For fields, it's a bit more complicated... */
588 {
589 bool old_user_align = DECL_USER_ALIGN (decl);
590 bool zero_bitfield = false;
591 bool packed_p = DECL_PACKED (decl);
592 unsigned int mfa;
593
594 if (DECL_BIT_FIELD (decl))
595 {
596 DECL_BIT_FIELD_TYPE (decl) = type;
597
598 /* A zero-length bit-field affects the alignment of the next
599 field. In essence such bit-fields are not influenced by
600 any packing due to #pragma pack or attribute packed. */
601 if (integer_zerop (DECL_SIZE (decl))
602 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
603 {
604 zero_bitfield = true;
605 packed_p = false;
606 #ifdef PCC_BITFIELD_TYPE_MATTERS
607 if (PCC_BITFIELD_TYPE_MATTERS)
608 do_type_align (type, decl);
609 else
610 #endif
611 {
612 #ifdef EMPTY_FIELD_BOUNDARY
613 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
614 {
615 DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
616 DECL_USER_ALIGN (decl) = 0;
617 }
618 #endif
619 }
620 }
621
622 /* See if we can use an ordinary integer mode for a bit-field.
623 Conditions are: a fixed size that is correct for another mode,
624 occupying a complete byte or bytes on proper boundary,
625 and not -fstrict-volatile-bitfields. If the latter is set,
626 we unfortunately can't check TREE_THIS_VOLATILE, as a cast
627 may make a volatile object later. */
628 if (TYPE_SIZE (type) != 0
629 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
630 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT
631 && flag_strict_volatile_bitfields <= 0)
632 {
633 enum machine_mode xmode
634 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
635 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
636
637 if (xmode != BLKmode
638 && !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
639 && (known_align == 0 || known_align >= xalign))
640 {
641 DECL_ALIGN (decl) = MAX (xalign, DECL_ALIGN (decl));
642 DECL_MODE (decl) = xmode;
643 DECL_BIT_FIELD (decl) = 0;
644 }
645 }
646
647 /* Turn off DECL_BIT_FIELD if we won't need it set. */
648 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
649 && known_align >= TYPE_ALIGN (type)
650 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
651 DECL_BIT_FIELD (decl) = 0;
652 }
653 else if (packed_p && DECL_USER_ALIGN (decl))
654 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
655 round up; we'll reduce it again below. We want packing to
656 supersede USER_ALIGN inherited from the type, but defer to
657 alignment explicitly specified on the field decl. */;
658 else
659 do_type_align (type, decl);
660
661 /* If the field is packed and not explicitly aligned, give it the
662 minimum alignment. Note that do_type_align may set
663 DECL_USER_ALIGN, so we need to check old_user_align instead. */
664 if (packed_p
665 && !old_user_align)
666 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
667
668 if (! packed_p && ! DECL_USER_ALIGN (decl))
669 {
670 /* Some targets (i.e. i386, VMS) limit struct field alignment
671 to a lower boundary than alignment of variables unless
672 it was overridden by attribute aligned. */
673 #ifdef BIGGEST_FIELD_ALIGNMENT
674 DECL_ALIGN (decl)
675 = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
676 #endif
677 #ifdef ADJUST_FIELD_ALIGN
678 DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
679 #endif
680 }
681
682 if (zero_bitfield)
683 mfa = initial_max_fld_align * BITS_PER_UNIT;
684 else
685 mfa = maximum_field_alignment;
686 /* Should this be controlled by DECL_USER_ALIGN, too? */
687 if (mfa != 0)
688 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), mfa);
689 }
690
691 /* Evaluate nonconstant size only once, either now or as soon as safe. */
692 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
693 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
694 if (DECL_SIZE_UNIT (decl) != 0
695 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
696 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
697
698 /* If requested, warn about definitions of large data objects. */
699 if (warn_larger_than
700 && (code == VAR_DECL || code == PARM_DECL)
701 && ! DECL_EXTERNAL (decl))
702 {
703 tree size = DECL_SIZE_UNIT (decl);
704
705 if (size != 0 && TREE_CODE (size) == INTEGER_CST
706 && compare_tree_int (size, larger_than_size) > 0)
707 {
708 int size_as_int = TREE_INT_CST_LOW (size);
709
710 if (compare_tree_int (size, size_as_int) == 0)
711 warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
712 else
713 warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
714 decl, larger_than_size);
715 }
716 }
717
718 /* If the RTL was already set, update its mode and mem attributes. */
719 if (rtl)
720 {
721 PUT_MODE (rtl, DECL_MODE (decl));
722 SET_DECL_RTL (decl, 0);
723 set_mem_attributes (rtl, decl, 1);
724 SET_DECL_RTL (decl, rtl);
725 }
726 }
727
728 /* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
729 a previous call to layout_decl and calls it again. */
730
731 void
relayout_decl(tree decl)732 relayout_decl (tree decl)
733 {
734 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
735 DECL_MODE (decl) = VOIDmode;
736 if (!DECL_USER_ALIGN (decl))
737 DECL_ALIGN (decl) = 0;
738 SET_DECL_RTL (decl, 0);
739
740 layout_decl (decl, 0);
741 }
742
743 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
744 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
745 is to be passed to all other layout functions for this record. It is the
746 responsibility of the caller to call `free' for the storage returned.
747 Note that garbage collection is not permitted until we finish laying
748 out the record. */
749
750 record_layout_info
start_record_layout(tree t)751 start_record_layout (tree t)
752 {
753 record_layout_info rli = XNEW (struct record_layout_info_s);
754
755 rli->t = t;
756
757 /* If the type has a minimum specified alignment (via an attribute
758 declaration, for example) use it -- otherwise, start with a
759 one-byte alignment. */
760 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
761 rli->unpacked_align = rli->record_align;
762 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
763
764 #ifdef STRUCTURE_SIZE_BOUNDARY
765 /* Packed structures don't need to have minimum size. */
766 if (! TYPE_PACKED (t))
767 {
768 unsigned tmp;
769
770 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
771 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
772 if (maximum_field_alignment != 0)
773 tmp = MIN (tmp, maximum_field_alignment);
774 rli->record_align = MAX (rli->record_align, tmp);
775 }
776 #endif
777
778 rli->offset = size_zero_node;
779 rli->bitpos = bitsize_zero_node;
780 rli->prev_field = 0;
781 rli->pending_statics = NULL;
782 rli->packed_maybe_necessary = 0;
783 rli->remaining_in_alignment = 0;
784
785 return rli;
786 }
787
788 /* These four routines perform computations that convert between
789 the offset/bitpos forms and byte and bit offsets. */
790
791 tree
bit_from_pos(tree offset,tree bitpos)792 bit_from_pos (tree offset, tree bitpos)
793 {
794 return size_binop (PLUS_EXPR, bitpos,
795 size_binop (MULT_EXPR,
796 fold_convert (bitsizetype, offset),
797 bitsize_unit_node));
798 }
799
800 tree
byte_from_pos(tree offset,tree bitpos)801 byte_from_pos (tree offset, tree bitpos)
802 {
803 return size_binop (PLUS_EXPR, offset,
804 fold_convert (sizetype,
805 size_binop (TRUNC_DIV_EXPR, bitpos,
806 bitsize_unit_node)));
807 }
808
809 void
pos_from_bit(tree * poffset,tree * pbitpos,unsigned int off_align,tree pos)810 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
811 tree pos)
812 {
813 *poffset = size_binop (MULT_EXPR,
814 fold_convert (sizetype,
815 size_binop (FLOOR_DIV_EXPR, pos,
816 bitsize_int (off_align))),
817 size_int (off_align / BITS_PER_UNIT));
818 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, bitsize_int (off_align));
819 }
820
821 /* Given a pointer to bit and byte offsets and an offset alignment,
822 normalize the offsets so they are within the alignment. */
823
824 void
normalize_offset(tree * poffset,tree * pbitpos,unsigned int off_align)825 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
826 {
827 /* If the bit position is now larger than it should be, adjust it
828 downwards. */
829 if (compare_tree_int (*pbitpos, off_align) >= 0)
830 {
831 tree extra_aligns = size_binop (FLOOR_DIV_EXPR, *pbitpos,
832 bitsize_int (off_align));
833
834 *poffset
835 = size_binop (PLUS_EXPR, *poffset,
836 size_binop (MULT_EXPR,
837 fold_convert (sizetype, extra_aligns),
838 size_int (off_align / BITS_PER_UNIT)));
839
840 *pbitpos
841 = size_binop (FLOOR_MOD_EXPR, *pbitpos, bitsize_int (off_align));
842 }
843 }
844
845 /* Print debugging information about the information in RLI. */
846
847 DEBUG_FUNCTION void
debug_rli(record_layout_info rli)848 debug_rli (record_layout_info rli)
849 {
850 print_node_brief (stderr, "type", rli->t, 0);
851 print_node_brief (stderr, "\noffset", rli->offset, 0);
852 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
853
854 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
855 rli->record_align, rli->unpacked_align,
856 rli->offset_align);
857
858 /* The ms_struct code is the only that uses this. */
859 if (targetm.ms_bitfield_layout_p (rli->t))
860 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
861
862 if (rli->packed_maybe_necessary)
863 fprintf (stderr, "packed may be necessary\n");
864
865 if (!VEC_empty (tree, rli->pending_statics))
866 {
867 fprintf (stderr, "pending statics:\n");
868 debug_vec_tree (rli->pending_statics);
869 }
870 }
871
872 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
873 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
874
875 void
normalize_rli(record_layout_info rli)876 normalize_rli (record_layout_info rli)
877 {
878 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
879 }
880
881 /* Returns the size in bytes allocated so far. */
882
883 tree
rli_size_unit_so_far(record_layout_info rli)884 rli_size_unit_so_far (record_layout_info rli)
885 {
886 return byte_from_pos (rli->offset, rli->bitpos);
887 }
888
889 /* Returns the size in bits allocated so far. */
890
891 tree
rli_size_so_far(record_layout_info rli)892 rli_size_so_far (record_layout_info rli)
893 {
894 return bit_from_pos (rli->offset, rli->bitpos);
895 }
896
897 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
898 the next available location within the record is given by KNOWN_ALIGN.
899 Update the variable alignment fields in RLI, and return the alignment
900 to give the FIELD. */
901
902 unsigned int
update_alignment_for_field(record_layout_info rli,tree field,unsigned int known_align)903 update_alignment_for_field (record_layout_info rli, tree field,
904 unsigned int known_align)
905 {
906 /* The alignment required for FIELD. */
907 unsigned int desired_align;
908 /* The type of this field. */
909 tree type = TREE_TYPE (field);
910 /* True if the field was explicitly aligned by the user. */
911 bool user_align;
912 bool is_bitfield;
913
914 /* Do not attempt to align an ERROR_MARK node */
915 if (TREE_CODE (type) == ERROR_MARK)
916 return 0;
917
918 /* Lay out the field so we know what alignment it needs. */
919 layout_decl (field, known_align);
920 desired_align = DECL_ALIGN (field);
921 user_align = DECL_USER_ALIGN (field);
922
923 is_bitfield = (type != error_mark_node
924 && DECL_BIT_FIELD_TYPE (field)
925 && ! integer_zerop (TYPE_SIZE (type)));
926
927 /* Record must have at least as much alignment as any field.
928 Otherwise, the alignment of the field within the record is
929 meaningless. */
930 if (targetm.ms_bitfield_layout_p (rli->t))
931 {
932 /* Here, the alignment of the underlying type of a bitfield can
933 affect the alignment of a record; even a zero-sized field
934 can do this. The alignment should be to the alignment of
935 the type, except that for zero-size bitfields this only
936 applies if there was an immediately prior, nonzero-size
937 bitfield. (That's the way it is, experimentally.) */
938 if ((!is_bitfield && !DECL_PACKED (field))
939 || ((DECL_SIZE (field) == NULL_TREE
940 || !integer_zerop (DECL_SIZE (field)))
941 ? !DECL_PACKED (field)
942 : (rli->prev_field
943 && DECL_BIT_FIELD_TYPE (rli->prev_field)
944 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
945 {
946 unsigned int type_align = TYPE_ALIGN (type);
947 type_align = MAX (type_align, desired_align);
948 if (maximum_field_alignment != 0)
949 type_align = MIN (type_align, maximum_field_alignment);
950 rli->record_align = MAX (rli->record_align, type_align);
951 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
952 }
953 }
954 #ifdef PCC_BITFIELD_TYPE_MATTERS
955 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
956 {
957 /* Named bit-fields cause the entire structure to have the
958 alignment implied by their type. Some targets also apply the same
959 rules to unnamed bitfields. */
960 if (DECL_NAME (field) != 0
961 || targetm.align_anon_bitfield ())
962 {
963 unsigned int type_align = TYPE_ALIGN (type);
964
965 #ifdef ADJUST_FIELD_ALIGN
966 if (! TYPE_USER_ALIGN (type))
967 type_align = ADJUST_FIELD_ALIGN (field, type_align);
968 #endif
969
970 /* Targets might chose to handle unnamed and hence possibly
971 zero-width bitfield. Those are not influenced by #pragmas
972 or packed attributes. */
973 if (integer_zerop (DECL_SIZE (field)))
974 {
975 if (initial_max_fld_align)
976 type_align = MIN (type_align,
977 initial_max_fld_align * BITS_PER_UNIT);
978 }
979 else if (maximum_field_alignment != 0)
980 type_align = MIN (type_align, maximum_field_alignment);
981 else if (DECL_PACKED (field))
982 type_align = MIN (type_align, BITS_PER_UNIT);
983
984 /* The alignment of the record is increased to the maximum
985 of the current alignment, the alignment indicated on the
986 field (i.e., the alignment specified by an __aligned__
987 attribute), and the alignment indicated by the type of
988 the field. */
989 rli->record_align = MAX (rli->record_align, desired_align);
990 rli->record_align = MAX (rli->record_align, type_align);
991
992 if (warn_packed)
993 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
994 user_align |= TYPE_USER_ALIGN (type);
995 }
996 }
997 #endif
998 else
999 {
1000 rli->record_align = MAX (rli->record_align, desired_align);
1001 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1002 }
1003
1004 TYPE_USER_ALIGN (rli->t) |= user_align;
1005
1006 return desired_align;
1007 }
1008
1009 /* Called from place_field to handle unions. */
1010
1011 static void
place_union_field(record_layout_info rli,tree field)1012 place_union_field (record_layout_info rli, tree field)
1013 {
1014 update_alignment_for_field (rli, field, /*known_align=*/0);
1015
1016 DECL_FIELD_OFFSET (field) = size_zero_node;
1017 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1018 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1019
1020 /* If this is an ERROR_MARK return *after* having set the
1021 field at the start of the union. This helps when parsing
1022 invalid fields. */
1023 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1024 return;
1025
1026 /* We assume the union's size will be a multiple of a byte so we don't
1027 bother with BITPOS. */
1028 if (TREE_CODE (rli->t) == UNION_TYPE)
1029 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1030 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1031 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1032 DECL_SIZE_UNIT (field), rli->offset);
1033 }
1034
1035 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
1036 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1037 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1038 units of alignment than the underlying TYPE. */
1039 static int
excess_unit_span(HOST_WIDE_INT byte_offset,HOST_WIDE_INT bit_offset,HOST_WIDE_INT size,HOST_WIDE_INT align,tree type)1040 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1041 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1042 {
1043 /* Note that the calculation of OFFSET might overflow; we calculate it so
1044 that we still get the right result as long as ALIGN is a power of two. */
1045 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1046
1047 offset = offset % align;
1048 return ((offset + size + align - 1) / align
1049 > ((unsigned HOST_WIDE_INT) tree_low_cst (TYPE_SIZE (type), 1)
1050 / align));
1051 }
1052 #endif
1053
1054 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1055 is a FIELD_DECL to be added after those fields already present in
1056 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1057 callers that desire that behavior must manually perform that step.) */
1058
1059 void
place_field(record_layout_info rli,tree field)1060 place_field (record_layout_info rli, tree field)
1061 {
1062 /* The alignment required for FIELD. */
1063 unsigned int desired_align;
1064 /* The alignment FIELD would have if we just dropped it into the
1065 record as it presently stands. */
1066 unsigned int known_align;
1067 unsigned int actual_align;
1068 /* The type of this field. */
1069 tree type = TREE_TYPE (field);
1070
1071 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1072
1073 /* If FIELD is static, then treat it like a separate variable, not
1074 really like a structure field. If it is a FUNCTION_DECL, it's a
1075 method. In both cases, all we do is lay out the decl, and we do
1076 it *after* the record is laid out. */
1077 if (TREE_CODE (field) == VAR_DECL)
1078 {
1079 VEC_safe_push (tree, gc, rli->pending_statics, field);
1080 return;
1081 }
1082
1083 /* Enumerators and enum types which are local to this class need not
1084 be laid out. Likewise for initialized constant fields. */
1085 else if (TREE_CODE (field) != FIELD_DECL)
1086 return;
1087
1088 /* Unions are laid out very differently than records, so split
1089 that code off to another function. */
1090 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1091 {
1092 place_union_field (rli, field);
1093 return;
1094 }
1095
1096 else if (TREE_CODE (type) == ERROR_MARK)
1097 {
1098 /* Place this field at the current allocation position, so we
1099 maintain monotonicity. */
1100 DECL_FIELD_OFFSET (field) = rli->offset;
1101 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1102 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1103 return;
1104 }
1105
1106 /* Work out the known alignment so far. Note that A & (-A) is the
1107 value of the least-significant bit in A that is one. */
1108 if (! integer_zerop (rli->bitpos))
1109 known_align = (tree_low_cst (rli->bitpos, 1)
1110 & - tree_low_cst (rli->bitpos, 1));
1111 else if (integer_zerop (rli->offset))
1112 known_align = 0;
1113 else if (host_integerp (rli->offset, 1))
1114 known_align = (BITS_PER_UNIT
1115 * (tree_low_cst (rli->offset, 1)
1116 & - tree_low_cst (rli->offset, 1)));
1117 else
1118 known_align = rli->offset_align;
1119
1120 desired_align = update_alignment_for_field (rli, field, known_align);
1121 if (known_align == 0)
1122 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1123
1124 if (warn_packed && DECL_PACKED (field))
1125 {
1126 if (known_align >= TYPE_ALIGN (type))
1127 {
1128 if (TYPE_ALIGN (type) > desired_align)
1129 {
1130 if (STRICT_ALIGNMENT)
1131 warning (OPT_Wattributes, "packed attribute causes "
1132 "inefficient alignment for %q+D", field);
1133 /* Don't warn if DECL_PACKED was set by the type. */
1134 else if (!TYPE_PACKED (rli->t))
1135 warning (OPT_Wattributes, "packed attribute is "
1136 "unnecessary for %q+D", field);
1137 }
1138 }
1139 else
1140 rli->packed_maybe_necessary = 1;
1141 }
1142
1143 /* Does this field automatically have alignment it needs by virtue
1144 of the fields that precede it and the record's own alignment? */
1145 if (known_align < desired_align)
1146 {
1147 /* No, we need to skip space before this field.
1148 Bump the cumulative size to multiple of field alignment. */
1149
1150 if (!targetm.ms_bitfield_layout_p (rli->t)
1151 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1152 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1153
1154 /* If the alignment is still within offset_align, just align
1155 the bit position. */
1156 if (desired_align < rli->offset_align)
1157 rli->bitpos = round_up (rli->bitpos, desired_align);
1158 else
1159 {
1160 /* First adjust OFFSET by the partial bits, then align. */
1161 rli->offset
1162 = size_binop (PLUS_EXPR, rli->offset,
1163 fold_convert (sizetype,
1164 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1165 bitsize_unit_node)));
1166 rli->bitpos = bitsize_zero_node;
1167
1168 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1169 }
1170
1171 if (! TREE_CONSTANT (rli->offset))
1172 rli->offset_align = desired_align;
1173 if (targetm.ms_bitfield_layout_p (rli->t))
1174 rli->prev_field = NULL;
1175 }
1176
1177 /* Handle compatibility with PCC. Note that if the record has any
1178 variable-sized fields, we need not worry about compatibility. */
1179 #ifdef PCC_BITFIELD_TYPE_MATTERS
1180 if (PCC_BITFIELD_TYPE_MATTERS
1181 && ! targetm.ms_bitfield_layout_p (rli->t)
1182 && TREE_CODE (field) == FIELD_DECL
1183 && type != error_mark_node
1184 && DECL_BIT_FIELD (field)
1185 && (! DECL_PACKED (field)
1186 /* Enter for these packed fields only to issue a warning. */
1187 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1188 && maximum_field_alignment == 0
1189 && ! integer_zerop (DECL_SIZE (field))
1190 && host_integerp (DECL_SIZE (field), 1)
1191 && host_integerp (rli->offset, 1)
1192 && host_integerp (TYPE_SIZE (type), 1))
1193 {
1194 unsigned int type_align = TYPE_ALIGN (type);
1195 tree dsize = DECL_SIZE (field);
1196 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
1197 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
1198 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
1199
1200 #ifdef ADJUST_FIELD_ALIGN
1201 if (! TYPE_USER_ALIGN (type))
1202 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1203 #endif
1204
1205 /* A bit field may not span more units of alignment of its type
1206 than its type itself. Advance to next boundary if necessary. */
1207 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1208 {
1209 if (DECL_PACKED (field))
1210 {
1211 if (warn_packed_bitfield_compat == 1)
1212 inform
1213 (input_location,
1214 "offset of packed bit-field %qD has changed in GCC 4.4",
1215 field);
1216 }
1217 else
1218 rli->bitpos = round_up (rli->bitpos, type_align);
1219 }
1220
1221 if (! DECL_PACKED (field))
1222 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1223 }
1224 #endif
1225
1226 #ifdef BITFIELD_NBYTES_LIMITED
1227 if (BITFIELD_NBYTES_LIMITED
1228 && ! targetm.ms_bitfield_layout_p (rli->t)
1229 && TREE_CODE (field) == FIELD_DECL
1230 && type != error_mark_node
1231 && DECL_BIT_FIELD_TYPE (field)
1232 && ! DECL_PACKED (field)
1233 && ! integer_zerop (DECL_SIZE (field))
1234 && host_integerp (DECL_SIZE (field), 1)
1235 && host_integerp (rli->offset, 1)
1236 && host_integerp (TYPE_SIZE (type), 1))
1237 {
1238 unsigned int type_align = TYPE_ALIGN (type);
1239 tree dsize = DECL_SIZE (field);
1240 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
1241 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
1242 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
1243
1244 #ifdef ADJUST_FIELD_ALIGN
1245 if (! TYPE_USER_ALIGN (type))
1246 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1247 #endif
1248
1249 if (maximum_field_alignment != 0)
1250 type_align = MIN (type_align, maximum_field_alignment);
1251 /* ??? This test is opposite the test in the containing if
1252 statement, so this code is unreachable currently. */
1253 else if (DECL_PACKED (field))
1254 type_align = MIN (type_align, BITS_PER_UNIT);
1255
1256 /* A bit field may not span the unit of alignment of its type.
1257 Advance to next boundary if necessary. */
1258 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1259 rli->bitpos = round_up (rli->bitpos, type_align);
1260
1261 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1262 }
1263 #endif
1264
1265 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1266 A subtlety:
1267 When a bit field is inserted into a packed record, the whole
1268 size of the underlying type is used by one or more same-size
1269 adjacent bitfields. (That is, if its long:3, 32 bits is
1270 used in the record, and any additional adjacent long bitfields are
1271 packed into the same chunk of 32 bits. However, if the size
1272 changes, a new field of that size is allocated.) In an unpacked
1273 record, this is the same as using alignment, but not equivalent
1274 when packing.
1275
1276 Note: for compatibility, we use the type size, not the type alignment
1277 to determine alignment, since that matches the documentation */
1278
1279 if (targetm.ms_bitfield_layout_p (rli->t))
1280 {
1281 tree prev_saved = rli->prev_field;
1282 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1283
1284 /* This is a bitfield if it exists. */
1285 if (rli->prev_field)
1286 {
1287 /* If both are bitfields, nonzero, and the same size, this is
1288 the middle of a run. Zero declared size fields are special
1289 and handled as "end of run". (Note: it's nonzero declared
1290 size, but equal type sizes!) (Since we know that both
1291 the current and previous fields are bitfields by the
1292 time we check it, DECL_SIZE must be present for both.) */
1293 if (DECL_BIT_FIELD_TYPE (field)
1294 && !integer_zerop (DECL_SIZE (field))
1295 && !integer_zerop (DECL_SIZE (rli->prev_field))
1296 && host_integerp (DECL_SIZE (rli->prev_field), 0)
1297 && host_integerp (TYPE_SIZE (type), 0)
1298 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1299 {
1300 /* We're in the middle of a run of equal type size fields; make
1301 sure we realign if we run out of bits. (Not decl size,
1302 type size!) */
1303 HOST_WIDE_INT bitsize = tree_low_cst (DECL_SIZE (field), 1);
1304
1305 if (rli->remaining_in_alignment < bitsize)
1306 {
1307 HOST_WIDE_INT typesize = tree_low_cst (TYPE_SIZE (type), 1);
1308
1309 /* out of bits; bump up to next 'word'. */
1310 rli->bitpos
1311 = size_binop (PLUS_EXPR, rli->bitpos,
1312 bitsize_int (rli->remaining_in_alignment));
1313 rli->prev_field = field;
1314 if (typesize < bitsize)
1315 rli->remaining_in_alignment = 0;
1316 else
1317 rli->remaining_in_alignment = typesize - bitsize;
1318 }
1319 else
1320 rli->remaining_in_alignment -= bitsize;
1321 }
1322 else
1323 {
1324 /* End of a run: if leaving a run of bitfields of the same type
1325 size, we have to "use up" the rest of the bits of the type
1326 size.
1327
1328 Compute the new position as the sum of the size for the prior
1329 type and where we first started working on that type.
1330 Note: since the beginning of the field was aligned then
1331 of course the end will be too. No round needed. */
1332
1333 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1334 {
1335 rli->bitpos
1336 = size_binop (PLUS_EXPR, rli->bitpos,
1337 bitsize_int (rli->remaining_in_alignment));
1338 }
1339 else
1340 /* We "use up" size zero fields; the code below should behave
1341 as if the prior field was not a bitfield. */
1342 prev_saved = NULL;
1343
1344 /* Cause a new bitfield to be captured, either this time (if
1345 currently a bitfield) or next time we see one. */
1346 if (!DECL_BIT_FIELD_TYPE(field)
1347 || integer_zerop (DECL_SIZE (field)))
1348 rli->prev_field = NULL;
1349 }
1350
1351 normalize_rli (rli);
1352 }
1353
1354 /* If we're starting a new run of same size type bitfields
1355 (or a run of non-bitfields), set up the "first of the run"
1356 fields.
1357
1358 That is, if the current field is not a bitfield, or if there
1359 was a prior bitfield the type sizes differ, or if there wasn't
1360 a prior bitfield the size of the current field is nonzero.
1361
1362 Note: we must be sure to test ONLY the type size if there was
1363 a prior bitfield and ONLY for the current field being zero if
1364 there wasn't. */
1365
1366 if (!DECL_BIT_FIELD_TYPE (field)
1367 || (prev_saved != NULL
1368 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1369 : !integer_zerop (DECL_SIZE (field)) ))
1370 {
1371 /* Never smaller than a byte for compatibility. */
1372 unsigned int type_align = BITS_PER_UNIT;
1373
1374 /* (When not a bitfield), we could be seeing a flex array (with
1375 no DECL_SIZE). Since we won't be using remaining_in_alignment
1376 until we see a bitfield (and come by here again) we just skip
1377 calculating it. */
1378 if (DECL_SIZE (field) != NULL
1379 && host_integerp (TYPE_SIZE (TREE_TYPE (field)), 1)
1380 && host_integerp (DECL_SIZE (field), 1))
1381 {
1382 unsigned HOST_WIDE_INT bitsize
1383 = tree_low_cst (DECL_SIZE (field), 1);
1384 unsigned HOST_WIDE_INT typesize
1385 = tree_low_cst (TYPE_SIZE (TREE_TYPE (field)), 1);
1386
1387 if (typesize < bitsize)
1388 rli->remaining_in_alignment = 0;
1389 else
1390 rli->remaining_in_alignment = typesize - bitsize;
1391 }
1392
1393 /* Now align (conventionally) for the new type. */
1394 type_align = TYPE_ALIGN (TREE_TYPE (field));
1395
1396 if (maximum_field_alignment != 0)
1397 type_align = MIN (type_align, maximum_field_alignment);
1398
1399 rli->bitpos = round_up (rli->bitpos, type_align);
1400
1401 /* If we really aligned, don't allow subsequent bitfields
1402 to undo that. */
1403 rli->prev_field = NULL;
1404 }
1405 }
1406
1407 /* Offset so far becomes the position of this field after normalizing. */
1408 normalize_rli (rli);
1409 DECL_FIELD_OFFSET (field) = rli->offset;
1410 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1411 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1412
1413 /* If this field ended up more aligned than we thought it would be (we
1414 approximate this by seeing if its position changed), lay out the field
1415 again; perhaps we can use an integral mode for it now. */
1416 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1417 actual_align = (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1418 & - tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1));
1419 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1420 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1421 else if (host_integerp (DECL_FIELD_OFFSET (field), 1))
1422 actual_align = (BITS_PER_UNIT
1423 * (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1424 & - tree_low_cst (DECL_FIELD_OFFSET (field), 1)));
1425 else
1426 actual_align = DECL_OFFSET_ALIGN (field);
1427 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1428 store / extract bit field operations will check the alignment of the
1429 record against the mode of bit fields. */
1430
1431 if (known_align != actual_align)
1432 layout_decl (field, actual_align);
1433
1434 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1435 rli->prev_field = field;
1436
1437 /* Now add size of this field to the size of the record. If the size is
1438 not constant, treat the field as being a multiple of bytes and just
1439 adjust the offset, resetting the bit position. Otherwise, apportion the
1440 size amongst the bit position and offset. First handle the case of an
1441 unspecified size, which can happen when we have an invalid nested struct
1442 definition, such as struct j { struct j { int i; } }. The error message
1443 is printed in finish_struct. */
1444 if (DECL_SIZE (field) == 0)
1445 /* Do nothing. */;
1446 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1447 || TREE_OVERFLOW (DECL_SIZE (field)))
1448 {
1449 rli->offset
1450 = size_binop (PLUS_EXPR, rli->offset,
1451 fold_convert (sizetype,
1452 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1453 bitsize_unit_node)));
1454 rli->offset
1455 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1456 rli->bitpos = bitsize_zero_node;
1457 rli->offset_align = MIN (rli->offset_align, desired_align);
1458 }
1459 else if (targetm.ms_bitfield_layout_p (rli->t))
1460 {
1461 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1462
1463 /* If we ended a bitfield before the full length of the type then
1464 pad the struct out to the full length of the last type. */
1465 if ((DECL_CHAIN (field) == NULL
1466 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1467 && DECL_BIT_FIELD_TYPE (field)
1468 && !integer_zerop (DECL_SIZE (field)))
1469 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1470 bitsize_int (rli->remaining_in_alignment));
1471
1472 normalize_rli (rli);
1473 }
1474 else
1475 {
1476 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1477 normalize_rli (rli);
1478 }
1479 }
1480
1481 /* Assuming that all the fields have been laid out, this function uses
1482 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1483 indicated by RLI. */
1484
1485 static void
finalize_record_size(record_layout_info rli)1486 finalize_record_size (record_layout_info rli)
1487 {
1488 tree unpadded_size, unpadded_size_unit;
1489
1490 /* Now we want just byte and bit offsets, so set the offset alignment
1491 to be a byte and then normalize. */
1492 rli->offset_align = BITS_PER_UNIT;
1493 normalize_rli (rli);
1494
1495 /* Determine the desired alignment. */
1496 #ifdef ROUND_TYPE_ALIGN
1497 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1498 rli->record_align);
1499 #else
1500 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1501 #endif
1502
1503 /* Compute the size so far. Be sure to allow for extra bits in the
1504 size in bytes. We have guaranteed above that it will be no more
1505 than a single byte. */
1506 unpadded_size = rli_size_so_far (rli);
1507 unpadded_size_unit = rli_size_unit_so_far (rli);
1508 if (! integer_zerop (rli->bitpos))
1509 unpadded_size_unit
1510 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1511
1512 /* Round the size up to be a multiple of the required alignment. */
1513 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1514 TYPE_SIZE_UNIT (rli->t)
1515 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1516
1517 if (TREE_CONSTANT (unpadded_size)
1518 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1519 && input_location != BUILTINS_LOCATION)
1520 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1521
1522 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1523 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1524 && TREE_CONSTANT (unpadded_size))
1525 {
1526 tree unpacked_size;
1527
1528 #ifdef ROUND_TYPE_ALIGN
1529 rli->unpacked_align
1530 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1531 #else
1532 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1533 #endif
1534
1535 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1536 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1537 {
1538 if (TYPE_NAME (rli->t))
1539 {
1540 tree name;
1541
1542 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1543 name = TYPE_NAME (rli->t);
1544 else
1545 name = DECL_NAME (TYPE_NAME (rli->t));
1546
1547 if (STRICT_ALIGNMENT)
1548 warning (OPT_Wpacked, "packed attribute causes inefficient "
1549 "alignment for %qE", name);
1550 else
1551 warning (OPT_Wpacked,
1552 "packed attribute is unnecessary for %qE", name);
1553 }
1554 else
1555 {
1556 if (STRICT_ALIGNMENT)
1557 warning (OPT_Wpacked,
1558 "packed attribute causes inefficient alignment");
1559 else
1560 warning (OPT_Wpacked, "packed attribute is unnecessary");
1561 }
1562 }
1563 }
1564 }
1565
1566 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1567
1568 void
compute_record_mode(tree type)1569 compute_record_mode (tree type)
1570 {
1571 tree field;
1572 enum machine_mode mode = VOIDmode;
1573
1574 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1575 However, if possible, we use a mode that fits in a register
1576 instead, in order to allow for better optimization down the
1577 line. */
1578 SET_TYPE_MODE (type, BLKmode);
1579
1580 if (! host_integerp (TYPE_SIZE (type), 1))
1581 return;
1582
1583 /* A record which has any BLKmode members must itself be
1584 BLKmode; it can't go in a register. Unless the member is
1585 BLKmode only because it isn't aligned. */
1586 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1587 {
1588 if (TREE_CODE (field) != FIELD_DECL)
1589 continue;
1590
1591 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1592 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1593 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1594 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1595 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1596 || ! host_integerp (bit_position (field), 1)
1597 || DECL_SIZE (field) == 0
1598 || ! host_integerp (DECL_SIZE (field), 1))
1599 return;
1600
1601 /* If this field is the whole struct, remember its mode so
1602 that, say, we can put a double in a class into a DF
1603 register instead of forcing it to live in the stack. */
1604 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1605 mode = DECL_MODE (field);
1606
1607 #ifdef MEMBER_TYPE_FORCES_BLK
1608 /* With some targets, eg. c4x, it is sub-optimal
1609 to access an aligned BLKmode structure as a scalar. */
1610
1611 if (MEMBER_TYPE_FORCES_BLK (field, mode))
1612 return;
1613 #endif /* MEMBER_TYPE_FORCES_BLK */
1614 }
1615
1616 /* If we only have one real field; use its mode if that mode's size
1617 matches the type's size. This only applies to RECORD_TYPE. This
1618 does not apply to unions. */
1619 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1620 && host_integerp (TYPE_SIZE (type), 1)
1621 && GET_MODE_BITSIZE (mode) == TREE_INT_CST_LOW (TYPE_SIZE (type)))
1622 SET_TYPE_MODE (type, mode);
1623 else
1624 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));
1625
1626 /* If structure's known alignment is less than what the scalar
1627 mode would need, and it matters, then stick with BLKmode. */
1628 if (TYPE_MODE (type) != BLKmode
1629 && STRICT_ALIGNMENT
1630 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1631 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1632 {
1633 /* If this is the only reason this type is BLKmode, then
1634 don't force containing types to be BLKmode. */
1635 TYPE_NO_FORCE_BLK (type) = 1;
1636 SET_TYPE_MODE (type, BLKmode);
1637 }
1638 }
1639
1640 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1641 out. */
1642
1643 static void
finalize_type_size(tree type)1644 finalize_type_size (tree type)
1645 {
1646 /* Normally, use the alignment corresponding to the mode chosen.
1647 However, where strict alignment is not required, avoid
1648 over-aligning structures, since most compilers do not do this
1649 alignment. */
1650
1651 if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
1652 && (STRICT_ALIGNMENT
1653 || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
1654 && TREE_CODE (type) != QUAL_UNION_TYPE
1655 && TREE_CODE (type) != ARRAY_TYPE)))
1656 {
1657 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1658
1659 /* Don't override a larger alignment requirement coming from a user
1660 alignment of one of the fields. */
1661 if (mode_align >= TYPE_ALIGN (type))
1662 {
1663 TYPE_ALIGN (type) = mode_align;
1664 TYPE_USER_ALIGN (type) = 0;
1665 }
1666 }
1667
1668 /* Do machine-dependent extra alignment. */
1669 #ifdef ROUND_TYPE_ALIGN
1670 TYPE_ALIGN (type)
1671 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1672 #endif
1673
1674 /* If we failed to find a simple way to calculate the unit size
1675 of the type, find it by division. */
1676 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1677 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1678 result will fit in sizetype. We will get more efficient code using
1679 sizetype, so we force a conversion. */
1680 TYPE_SIZE_UNIT (type)
1681 = fold_convert (sizetype,
1682 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1683 bitsize_unit_node));
1684
1685 if (TYPE_SIZE (type) != 0)
1686 {
1687 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1688 TYPE_SIZE_UNIT (type)
1689 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1690 }
1691
1692 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1693 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1694 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1695 if (TYPE_SIZE_UNIT (type) != 0
1696 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1697 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1698
1699 /* Also layout any other variants of the type. */
1700 if (TYPE_NEXT_VARIANT (type)
1701 || type != TYPE_MAIN_VARIANT (type))
1702 {
1703 tree variant;
1704 /* Record layout info of this variant. */
1705 tree size = TYPE_SIZE (type);
1706 tree size_unit = TYPE_SIZE_UNIT (type);
1707 unsigned int align = TYPE_ALIGN (type);
1708 unsigned int user_align = TYPE_USER_ALIGN (type);
1709 enum machine_mode mode = TYPE_MODE (type);
1710
1711 /* Copy it into all variants. */
1712 for (variant = TYPE_MAIN_VARIANT (type);
1713 variant != 0;
1714 variant = TYPE_NEXT_VARIANT (variant))
1715 {
1716 TYPE_SIZE (variant) = size;
1717 TYPE_SIZE_UNIT (variant) = size_unit;
1718 TYPE_ALIGN (variant) = align;
1719 TYPE_USER_ALIGN (variant) = user_align;
1720 SET_TYPE_MODE (variant, mode);
1721 }
1722 }
1723 }
1724
1725 /* Return a new underlying object for a bitfield started with FIELD. */
1726
1727 static tree
start_bitfield_representative(tree field)1728 start_bitfield_representative (tree field)
1729 {
1730 tree repr = make_node (FIELD_DECL);
1731 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1732 /* Force the representative to begin at a BITS_PER_UNIT aligned
1733 boundary - C++ may use tail-padding of a base object to
1734 continue packing bits so the bitfield region does not start
1735 at bit zero (see g++.dg/abi/bitfield5.C for example).
1736 Unallocated bits may happen for other reasons as well,
1737 for example Ada which allows explicit bit-granular structure layout. */
1738 DECL_FIELD_BIT_OFFSET (repr)
1739 = size_binop (BIT_AND_EXPR,
1740 DECL_FIELD_BIT_OFFSET (field),
1741 bitsize_int (~(BITS_PER_UNIT - 1)));
1742 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1743 DECL_SIZE (repr) = DECL_SIZE (field);
1744 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1745 DECL_PACKED (repr) = DECL_PACKED (field);
1746 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1747 return repr;
1748 }
1749
1750 /* Finish up a bitfield group that was started by creating the underlying
1751 object REPR with the last field in the bitfield group FIELD. */
1752
1753 static void
finish_bitfield_representative(tree repr,tree field)1754 finish_bitfield_representative (tree repr, tree field)
1755 {
1756 unsigned HOST_WIDE_INT bitsize, maxbitsize;
1757 enum machine_mode mode;
1758 tree nextf, size;
1759
1760 size = size_diffop (DECL_FIELD_OFFSET (field),
1761 DECL_FIELD_OFFSET (repr));
1762 gcc_assert (host_integerp (size, 1));
1763 bitsize = (tree_low_cst (size, 1) * BITS_PER_UNIT
1764 + tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1765 - tree_low_cst (DECL_FIELD_BIT_OFFSET (repr), 1)
1766 + tree_low_cst (DECL_SIZE (field), 1));
1767
1768 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1769 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1770
1771 /* Now nothing tells us how to pad out bitsize ... */
1772 nextf = DECL_CHAIN (field);
1773 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
1774 nextf = DECL_CHAIN (nextf);
1775 if (nextf)
1776 {
1777 tree maxsize;
1778 /* If there was an error, the field may be not laid out
1779 correctly. Don't bother to do anything. */
1780 if (TREE_TYPE (nextf) == error_mark_node)
1781 return;
1782 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
1783 DECL_FIELD_OFFSET (repr));
1784 if (host_integerp (maxsize, 1))
1785 {
1786 maxbitsize = (tree_low_cst (maxsize, 1) * BITS_PER_UNIT
1787 + tree_low_cst (DECL_FIELD_BIT_OFFSET (nextf), 1)
1788 - tree_low_cst (DECL_FIELD_BIT_OFFSET (repr), 1));
1789 /* If the group ends within a bitfield nextf does not need to be
1790 aligned to BITS_PER_UNIT. Thus round up. */
1791 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1792 }
1793 else
1794 maxbitsize = bitsize;
1795 }
1796 else
1797 {
1798 /* ??? If you consider that tail-padding of this struct might be
1799 re-used when deriving from it we cannot really do the following
1800 and thus need to set maxsize to bitsize? Also we cannot
1801 generally rely on maxsize to fold to an integer constant, so
1802 use bitsize as fallback for this case. */
1803 tree maxsize = size_diffop (TYPE_SIZE_UNIT (DECL_CONTEXT (field)),
1804 DECL_FIELD_OFFSET (repr));
1805 if (host_integerp (maxsize, 1))
1806 maxbitsize = (tree_low_cst (maxsize, 1) * BITS_PER_UNIT
1807 - tree_low_cst (DECL_FIELD_BIT_OFFSET (repr), 1));
1808 else
1809 maxbitsize = bitsize;
1810 }
1811
1812 /* Only if we don't artificially break up the representative in
1813 the middle of a large bitfield with different possibly
1814 overlapping representatives. And all representatives start
1815 at byte offset. */
1816 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
1817
1818 /* Find the smallest nice mode to use. */
1819 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1820 mode = GET_MODE_WIDER_MODE (mode))
1821 if (GET_MODE_BITSIZE (mode) >= bitsize)
1822 break;
1823 if (mode != VOIDmode
1824 && (GET_MODE_BITSIZE (mode) > maxbitsize
1825 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE))
1826 mode = VOIDmode;
1827
1828 if (mode == VOIDmode)
1829 {
1830 /* We really want a BLKmode representative only as a last resort,
1831 considering the member b in
1832 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1833 Otherwise we simply want to split the representative up
1834 allowing for overlaps within the bitfield region as required for
1835 struct { int a : 7; int b : 7;
1836 int c : 10; int d; } __attribute__((packed));
1837 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1838 DECL_SIZE (repr) = bitsize_int (bitsize);
1839 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
1840 DECL_MODE (repr) = BLKmode;
1841 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
1842 bitsize / BITS_PER_UNIT);
1843 }
1844 else
1845 {
1846 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
1847 DECL_SIZE (repr) = bitsize_int (modesize);
1848 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
1849 DECL_MODE (repr) = mode;
1850 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
1851 }
1852
1853 /* Remember whether the bitfield group is at the end of the
1854 structure or not. */
1855 DECL_CHAIN (repr) = nextf;
1856 }
1857
1858 /* Compute and set FIELD_DECLs for the underlying objects we should
1859 use for bitfield access for the structure laid out with RLI. */
1860
1861 static void
finish_bitfield_layout(record_layout_info rli)1862 finish_bitfield_layout (record_layout_info rli)
1863 {
1864 tree field, prev;
1865 tree repr = NULL_TREE;
1866
1867 /* Unions would be special, for the ease of type-punning optimizations
1868 we could use the underlying type as hint for the representative
1869 if the bitfield would fit and the representative would not exceed
1870 the union in size. */
1871 if (TREE_CODE (rli->t) != RECORD_TYPE)
1872 return;
1873
1874 for (prev = NULL_TREE, field = TYPE_FIELDS (rli->t);
1875 field; field = DECL_CHAIN (field))
1876 {
1877 if (TREE_CODE (field) != FIELD_DECL)
1878 continue;
1879
1880 /* In the C++ memory model, consecutive bit fields in a structure are
1881 considered one memory location and updating a memory location
1882 may not store into adjacent memory locations. */
1883 if (!repr
1884 && DECL_BIT_FIELD_TYPE (field))
1885 {
1886 /* Start new representative. */
1887 repr = start_bitfield_representative (field);
1888 }
1889 else if (repr
1890 && ! DECL_BIT_FIELD_TYPE (field))
1891 {
1892 /* Finish off new representative. */
1893 finish_bitfield_representative (repr, prev);
1894 repr = NULL_TREE;
1895 }
1896 else if (DECL_BIT_FIELD_TYPE (field))
1897 {
1898 gcc_assert (repr != NULL_TREE);
1899
1900 /* Zero-size bitfields finish off a representative and
1901 do not have a representative themselves. This is
1902 required by the C++ memory model. */
1903 if (integer_zerop (DECL_SIZE (field)))
1904 {
1905 finish_bitfield_representative (repr, prev);
1906 repr = NULL_TREE;
1907 }
1908
1909 /* We assume that either DECL_FIELD_OFFSET of the representative
1910 and each bitfield member is a constant or they are equal.
1911 This is because we need to be able to compute the bit-offset
1912 of each field relative to the representative in get_bit_range
1913 during RTL expansion.
1914 If these constraints are not met, simply force a new
1915 representative to be generated. That will at most
1916 generate worse code but still maintain correctness with
1917 respect to the C++ memory model. */
1918 else if (!((host_integerp (DECL_FIELD_OFFSET (repr), 1)
1919 && host_integerp (DECL_FIELD_OFFSET (field), 1))
1920 || operand_equal_p (DECL_FIELD_OFFSET (repr),
1921 DECL_FIELD_OFFSET (field), 0)))
1922 {
1923 finish_bitfield_representative (repr, prev);
1924 repr = start_bitfield_representative (field);
1925 }
1926 }
1927 else
1928 continue;
1929
1930 if (repr)
1931 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
1932
1933 prev = field;
1934 }
1935
1936 if (repr)
1937 finish_bitfield_representative (repr, prev);
1938 }
1939
1940 /* Do all of the work required to layout the type indicated by RLI,
1941 once the fields have been laid out. This function will call `free'
1942 for RLI, unless FREE_P is false. Passing a value other than false
1943 for FREE_P is bad practice; this option only exists to support the
1944 G++ 3.2 ABI. */
1945
1946 void
finish_record_layout(record_layout_info rli,int free_p)1947 finish_record_layout (record_layout_info rli, int free_p)
1948 {
1949 tree variant;
1950
1951 /* Compute the final size. */
1952 finalize_record_size (rli);
1953
1954 /* Compute the TYPE_MODE for the record. */
1955 compute_record_mode (rli->t);
1956
1957 /* Perform any last tweaks to the TYPE_SIZE, etc. */
1958 finalize_type_size (rli->t);
1959
1960 /* Compute bitfield representatives. */
1961 finish_bitfield_layout (rli);
1962
1963 /* Propagate TYPE_PACKED to variants. With C++ templates,
1964 handle_packed_attribute is too early to do this. */
1965 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
1966 variant = TYPE_NEXT_VARIANT (variant))
1967 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
1968
1969 /* Lay out any static members. This is done now because their type
1970 may use the record's type. */
1971 while (!VEC_empty (tree, rli->pending_statics))
1972 layout_decl (VEC_pop (tree, rli->pending_statics), 0);
1973
1974 /* Clean up. */
1975 if (free_p)
1976 {
1977 VEC_free (tree, gc, rli->pending_statics);
1978 free (rli);
1979 }
1980 }
1981
1982
1983 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
1984 NAME, its fields are chained in reverse on FIELDS.
1985
1986 If ALIGN_TYPE is non-null, it is given the same alignment as
1987 ALIGN_TYPE. */
1988
1989 void
finish_builtin_struct(tree type,const char * name,tree fields,tree align_type)1990 finish_builtin_struct (tree type, const char *name, tree fields,
1991 tree align_type)
1992 {
1993 tree tail, next;
1994
1995 for (tail = NULL_TREE; fields; tail = fields, fields = next)
1996 {
1997 DECL_FIELD_CONTEXT (fields) = type;
1998 next = DECL_CHAIN (fields);
1999 DECL_CHAIN (fields) = tail;
2000 }
2001 TYPE_FIELDS (type) = tail;
2002
2003 if (align_type)
2004 {
2005 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
2006 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2007 }
2008
2009 layout_type (type);
2010 #if 0 /* not yet, should get fixed properly later */
2011 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2012 #else
2013 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2014 TYPE_DECL, get_identifier (name), type);
2015 #endif
2016 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2017 layout_decl (TYPE_NAME (type), 0);
2018 }
2019
2020 /* Calculate the mode, size, and alignment for TYPE.
2021 For an array type, calculate the element separation as well.
2022 Record TYPE on the chain of permanent or temporary types
2023 so that dbxout will find out about it.
2024
2025 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2026 layout_type does nothing on such a type.
2027
2028 If the type is incomplete, its TYPE_SIZE remains zero. */
2029
2030 void
layout_type(tree type)2031 layout_type (tree type)
2032 {
2033 gcc_assert (type);
2034
2035 if (type == error_mark_node)
2036 return;
2037
2038 /* Do nothing if type has been laid out before. */
2039 if (TYPE_SIZE (type))
2040 return;
2041
2042 switch (TREE_CODE (type))
2043 {
2044 case LANG_TYPE:
2045 /* This kind of type is the responsibility
2046 of the language-specific code. */
2047 gcc_unreachable ();
2048
2049 case BOOLEAN_TYPE: /* Used for Java, Pascal, and Chill. */
2050 if (TYPE_PRECISION (type) == 0)
2051 TYPE_PRECISION (type) = 1; /* default to one byte/boolean. */
2052
2053 /* ... fall through ... */
2054
2055 case INTEGER_TYPE:
2056 case ENUMERAL_TYPE:
2057 if (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
2058 && tree_int_cst_sgn (TYPE_MIN_VALUE (type)) >= 0)
2059 TYPE_UNSIGNED (type) = 1;
2060
2061 SET_TYPE_MODE (type,
2062 smallest_mode_for_size (TYPE_PRECISION (type), MODE_INT));
2063 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2064 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2065 break;
2066
2067 case REAL_TYPE:
2068 SET_TYPE_MODE (type,
2069 mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0));
2070 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2071 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2072 break;
2073
2074 case FIXED_POINT_TYPE:
2075 /* TYPE_MODE (type) has been set already. */
2076 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2077 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2078 break;
2079
2080 case COMPLEX_TYPE:
2081 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2082 SET_TYPE_MODE (type,
2083 mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
2084 (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE
2085 ? MODE_COMPLEX_FLOAT : MODE_COMPLEX_INT),
2086 0));
2087 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2088 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2089 break;
2090
2091 case VECTOR_TYPE:
2092 {
2093 int nunits = TYPE_VECTOR_SUBPARTS (type);
2094 tree innertype = TREE_TYPE (type);
2095
2096 gcc_assert (!(nunits & (nunits - 1)));
2097
2098 /* Find an appropriate mode for the vector type. */
2099 if (TYPE_MODE (type) == VOIDmode)
2100 SET_TYPE_MODE (type,
2101 mode_for_vector (TYPE_MODE (innertype), nunits));
2102
2103 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2104 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2105 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2106 TYPE_SIZE_UNIT (innertype),
2107 size_int (nunits));
2108 TYPE_SIZE (type) = int_const_binop (MULT_EXPR, TYPE_SIZE (innertype),
2109 bitsize_int (nunits));
2110
2111 /* For vector types, we do not default to the mode's alignment.
2112 Instead, query a target hook, defaulting to natural alignment.
2113 This prevents ABI changes depending on whether or not native
2114 vector modes are supported. */
2115 TYPE_ALIGN (type) = targetm.vector_alignment (type);
2116
2117 /* However, if the underlying mode requires a bigger alignment than
2118 what the target hook provides, we cannot use the mode. For now,
2119 simply reject that case. */
2120 gcc_assert (TYPE_ALIGN (type)
2121 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2122 break;
2123 }
2124
2125 case VOID_TYPE:
2126 /* This is an incomplete type and so doesn't have a size. */
2127 TYPE_ALIGN (type) = 1;
2128 TYPE_USER_ALIGN (type) = 0;
2129 SET_TYPE_MODE (type, VOIDmode);
2130 break;
2131
2132 case OFFSET_TYPE:
2133 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2134 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE / BITS_PER_UNIT);
2135 /* A pointer might be MODE_PARTIAL_INT,
2136 but ptrdiff_t must be integral. */
2137 SET_TYPE_MODE (type, mode_for_size (POINTER_SIZE, MODE_INT, 0));
2138 TYPE_PRECISION (type) = POINTER_SIZE;
2139 break;
2140
2141 case FUNCTION_TYPE:
2142 case METHOD_TYPE:
2143 /* It's hard to see what the mode and size of a function ought to
2144 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2145 make it consistent with that. */
2146 SET_TYPE_MODE (type, mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0));
2147 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2148 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2149 break;
2150
2151 case POINTER_TYPE:
2152 case REFERENCE_TYPE:
2153 {
2154 enum machine_mode mode = TYPE_MODE (type);
2155 if (TREE_CODE (type) == REFERENCE_TYPE && reference_types_internal)
2156 {
2157 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (type));
2158 mode = targetm.addr_space.address_mode (as);
2159 }
2160
2161 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2162 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2163 TYPE_UNSIGNED (type) = 1;
2164 TYPE_PRECISION (type) = GET_MODE_BITSIZE (mode);
2165 }
2166 break;
2167
2168 case ARRAY_TYPE:
2169 {
2170 tree index = TYPE_DOMAIN (type);
2171 tree element = TREE_TYPE (type);
2172
2173 build_pointer_type (element);
2174
2175 /* We need to know both bounds in order to compute the size. */
2176 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2177 && TYPE_SIZE (element))
2178 {
2179 tree ub = TYPE_MAX_VALUE (index);
2180 tree lb = TYPE_MIN_VALUE (index);
2181 tree element_size = TYPE_SIZE (element);
2182 tree length;
2183
2184 /* Make sure that an array of zero-sized element is zero-sized
2185 regardless of its extent. */
2186 if (integer_zerop (element_size))
2187 length = size_zero_node;
2188
2189 /* The computation should happen in the original signedness so
2190 that (possible) negative values are handled appropriately
2191 when determining overflow. */
2192 else
2193 length
2194 = fold_convert (sizetype,
2195 size_binop (PLUS_EXPR,
2196 build_int_cst (TREE_TYPE (lb), 1),
2197 size_binop (MINUS_EXPR, ub, lb)));
2198
2199 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2200 fold_convert (bitsizetype,
2201 length));
2202
2203 /* If we know the size of the element, calculate the total size
2204 directly, rather than do some division thing below. This
2205 optimization helps Fortran assumed-size arrays (where the
2206 size of the array is determined at runtime) substantially. */
2207 if (TYPE_SIZE_UNIT (element))
2208 TYPE_SIZE_UNIT (type)
2209 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2210 }
2211
2212 /* Now round the alignment and size,
2213 using machine-dependent criteria if any. */
2214
2215 #ifdef ROUND_TYPE_ALIGN
2216 TYPE_ALIGN (type)
2217 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
2218 #else
2219 TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
2220 #endif
2221 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2222 SET_TYPE_MODE (type, BLKmode);
2223 if (TYPE_SIZE (type) != 0
2224 #ifdef MEMBER_TYPE_FORCES_BLK
2225 && ! MEMBER_TYPE_FORCES_BLK (type, VOIDmode)
2226 #endif
2227 /* BLKmode elements force BLKmode aggregate;
2228 else extract/store fields may lose. */
2229 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2230 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2231 {
2232 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2233 TYPE_SIZE (type)));
2234 if (TYPE_MODE (type) != BLKmode
2235 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2236 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2237 {
2238 TYPE_NO_FORCE_BLK (type) = 1;
2239 SET_TYPE_MODE (type, BLKmode);
2240 }
2241 }
2242 /* When the element size is constant, check that it is at least as
2243 large as the element alignment. */
2244 if (TYPE_SIZE_UNIT (element)
2245 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2246 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2247 TYPE_ALIGN_UNIT. */
2248 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2249 && !integer_zerop (TYPE_SIZE_UNIT (element))
2250 && compare_tree_int (TYPE_SIZE_UNIT (element),
2251 TYPE_ALIGN_UNIT (element)) < 0)
2252 error ("alignment of array elements is greater than element size");
2253 break;
2254 }
2255
2256 case RECORD_TYPE:
2257 case UNION_TYPE:
2258 case QUAL_UNION_TYPE:
2259 {
2260 tree field;
2261 record_layout_info rli;
2262
2263 /* Initialize the layout information. */
2264 rli = start_record_layout (type);
2265
2266 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2267 in the reverse order in building the COND_EXPR that denotes
2268 its size. We reverse them again later. */
2269 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2270 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2271
2272 /* Place all the fields. */
2273 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2274 place_field (rli, field);
2275
2276 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2277 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2278
2279 /* Finish laying out the record. */
2280 finish_record_layout (rli, /*free_p=*/true);
2281 }
2282 break;
2283
2284 default:
2285 gcc_unreachable ();
2286 }
2287
2288 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2289 records and unions, finish_record_layout already called this
2290 function. */
2291 if (TREE_CODE (type) != RECORD_TYPE
2292 && TREE_CODE (type) != UNION_TYPE
2293 && TREE_CODE (type) != QUAL_UNION_TYPE)
2294 finalize_type_size (type);
2295
2296 /* We should never see alias sets on incomplete aggregates. And we
2297 should not call layout_type on not incomplete aggregates. */
2298 if (AGGREGATE_TYPE_P (type))
2299 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2300 }
2301
2302 /* Vector types need to re-check the target flags each time we report
2303 the machine mode. We need to do this because attribute target can
2304 change the result of vector_mode_supported_p and have_regs_of_mode
2305 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2306 change on a per-function basis. */
2307 /* ??? Possibly a better solution is to run through all the types
2308 referenced by a function and re-compute the TYPE_MODE once, rather
2309 than make the TYPE_MODE macro call a function. */
2310
2311 enum machine_mode
vector_type_mode(const_tree t)2312 vector_type_mode (const_tree t)
2313 {
2314 enum machine_mode mode;
2315
2316 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
2317
2318 mode = t->type_common.mode;
2319 if (VECTOR_MODE_P (mode)
2320 && (!targetm.vector_mode_supported_p (mode)
2321 || !have_regs_of_mode[mode]))
2322 {
2323 enum machine_mode innermode = TREE_TYPE (t)->type_common.mode;
2324
2325 /* For integers, try mapping it to a same-sized scalar mode. */
2326 if (GET_MODE_CLASS (innermode) == MODE_INT)
2327 {
2328 mode = mode_for_size (TYPE_VECTOR_SUBPARTS (t)
2329 * GET_MODE_BITSIZE (innermode), MODE_INT, 0);
2330
2331 if (mode != VOIDmode && have_regs_of_mode[mode])
2332 return mode;
2333 }
2334
2335 return BLKmode;
2336 }
2337
2338 return mode;
2339 }
2340
2341 /* Create and return a type for signed integers of PRECISION bits. */
2342
2343 tree
make_signed_type(int precision)2344 make_signed_type (int precision)
2345 {
2346 tree type = make_node (INTEGER_TYPE);
2347
2348 TYPE_PRECISION (type) = precision;
2349
2350 fixup_signed_type (type);
2351 return type;
2352 }
2353
2354 /* Create and return a type for unsigned integers of PRECISION bits. */
2355
2356 tree
make_unsigned_type(int precision)2357 make_unsigned_type (int precision)
2358 {
2359 tree type = make_node (INTEGER_TYPE);
2360
2361 TYPE_PRECISION (type) = precision;
2362
2363 fixup_unsigned_type (type);
2364 return type;
2365 }
2366
2367 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2368 and SATP. */
2369
2370 tree
make_fract_type(int precision,int unsignedp,int satp)2371 make_fract_type (int precision, int unsignedp, int satp)
2372 {
2373 tree type = make_node (FIXED_POINT_TYPE);
2374
2375 TYPE_PRECISION (type) = precision;
2376
2377 if (satp)
2378 TYPE_SATURATING (type) = 1;
2379
2380 /* Lay out the type: set its alignment, size, etc. */
2381 if (unsignedp)
2382 {
2383 TYPE_UNSIGNED (type) = 1;
2384 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UFRACT, 0));
2385 }
2386 else
2387 SET_TYPE_MODE (type, mode_for_size (precision, MODE_FRACT, 0));
2388 layout_type (type);
2389
2390 return type;
2391 }
2392
2393 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2394 and SATP. */
2395
2396 tree
make_accum_type(int precision,int unsignedp,int satp)2397 make_accum_type (int precision, int unsignedp, int satp)
2398 {
2399 tree type = make_node (FIXED_POINT_TYPE);
2400
2401 TYPE_PRECISION (type) = precision;
2402
2403 if (satp)
2404 TYPE_SATURATING (type) = 1;
2405
2406 /* Lay out the type: set its alignment, size, etc. */
2407 if (unsignedp)
2408 {
2409 TYPE_UNSIGNED (type) = 1;
2410 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UACCUM, 0));
2411 }
2412 else
2413 SET_TYPE_MODE (type, mode_for_size (precision, MODE_ACCUM, 0));
2414 layout_type (type);
2415
2416 return type;
2417 }
2418
2419 /* Initialize sizetypes so layout_type can use them. */
2420
2421 void
initialize_sizetypes(void)2422 initialize_sizetypes (void)
2423 {
2424 int precision, bprecision;
2425
2426 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2427 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
2428 precision = INT_TYPE_SIZE;
2429 else if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
2430 precision = LONG_TYPE_SIZE;
2431 else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0)
2432 precision = LONG_LONG_TYPE_SIZE;
2433 else if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
2434 precision = SHORT_TYPE_SIZE;
2435 else
2436 gcc_unreachable ();
2437
2438 bprecision
2439 = MIN (precision + BITS_PER_UNIT_LOG + 1, MAX_FIXED_MODE_SIZE);
2440 bprecision
2441 = GET_MODE_PRECISION (smallest_mode_for_size (bprecision, MODE_INT));
2442 if (bprecision > HOST_BITS_PER_WIDE_INT * 2)
2443 bprecision = HOST_BITS_PER_WIDE_INT * 2;
2444
2445 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2446 sizetype = make_node (INTEGER_TYPE);
2447 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2448 TYPE_PRECISION (sizetype) = precision;
2449 TYPE_UNSIGNED (sizetype) = 1;
2450 TYPE_IS_SIZETYPE (sizetype) = 1;
2451 bitsizetype = make_node (INTEGER_TYPE);
2452 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2453 TYPE_PRECISION (bitsizetype) = bprecision;
2454 TYPE_UNSIGNED (bitsizetype) = 1;
2455 TYPE_IS_SIZETYPE (bitsizetype) = 1;
2456
2457 /* Now layout both types manually. */
2458 SET_TYPE_MODE (sizetype, smallest_mode_for_size (precision, MODE_INT));
2459 TYPE_ALIGN (sizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (sizetype));
2460 TYPE_SIZE (sizetype) = bitsize_int (precision);
2461 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (TYPE_MODE (sizetype)));
2462 set_min_and_max_values_for_integral_type (sizetype, precision,
2463 /*is_unsigned=*/true);
2464 /* sizetype is unsigned but we need to fix TYPE_MAX_VALUE so that it is
2465 sign-extended in a way consistent with force_fit_type. */
2466 TYPE_MAX_VALUE (sizetype)
2467 = double_int_to_tree (sizetype,
2468 tree_to_double_int (TYPE_MAX_VALUE (sizetype)));
2469
2470 SET_TYPE_MODE (bitsizetype, smallest_mode_for_size (bprecision, MODE_INT));
2471 TYPE_ALIGN (bitsizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype));
2472 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2473 TYPE_SIZE_UNIT (bitsizetype)
2474 = size_int (GET_MODE_SIZE (TYPE_MODE (bitsizetype)));
2475 set_min_and_max_values_for_integral_type (bitsizetype, bprecision,
2476 /*is_unsigned=*/true);
2477 /* bitsizetype is unsigned but we need to fix TYPE_MAX_VALUE so that it is
2478 sign-extended in a way consistent with force_fit_type. */
2479 TYPE_MAX_VALUE (bitsizetype)
2480 = double_int_to_tree (bitsizetype,
2481 tree_to_double_int (TYPE_MAX_VALUE (bitsizetype)));
2482
2483 /* Create the signed variants of *sizetype. */
2484 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2485 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2486 TYPE_IS_SIZETYPE (ssizetype) = 1;
2487 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2488 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2489 TYPE_IS_SIZETYPE (sbitsizetype) = 1;
2490 }
2491
2492 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2493 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2494 for TYPE, based on the PRECISION and whether or not the TYPE
2495 IS_UNSIGNED. PRECISION need not correspond to a width supported
2496 natively by the hardware; for example, on a machine with 8-bit,
2497 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2498 61. */
2499
2500 void
set_min_and_max_values_for_integral_type(tree type,int precision,bool is_unsigned)2501 set_min_and_max_values_for_integral_type (tree type,
2502 int precision,
2503 bool is_unsigned)
2504 {
2505 tree min_value;
2506 tree max_value;
2507
2508 if (is_unsigned)
2509 {
2510 min_value = build_int_cst (type, 0);
2511 max_value
2512 = build_int_cst_wide (type, precision - HOST_BITS_PER_WIDE_INT >= 0
2513 ? -1
2514 : ((HOST_WIDE_INT) 1 << precision) - 1,
2515 precision - HOST_BITS_PER_WIDE_INT > 0
2516 ? ((unsigned HOST_WIDE_INT) ~0
2517 >> (HOST_BITS_PER_WIDE_INT
2518 - (precision - HOST_BITS_PER_WIDE_INT)))
2519 : 0);
2520 }
2521 else
2522 {
2523 min_value
2524 = build_int_cst_wide (type,
2525 (precision - HOST_BITS_PER_WIDE_INT > 0
2526 ? 0
2527 : (HOST_WIDE_INT) (-1) << (precision - 1)),
2528 (((HOST_WIDE_INT) (-1)
2529 << (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2530 ? precision - HOST_BITS_PER_WIDE_INT - 1
2531 : 0))));
2532 max_value
2533 = build_int_cst_wide (type,
2534 (precision - HOST_BITS_PER_WIDE_INT > 0
2535 ? -1
2536 : ((HOST_WIDE_INT) 1 << (precision - 1)) - 1),
2537 (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2538 ? (((HOST_WIDE_INT) 1
2539 << (precision - HOST_BITS_PER_WIDE_INT - 1))) - 1
2540 : 0));
2541 }
2542
2543 TYPE_MIN_VALUE (type) = min_value;
2544 TYPE_MAX_VALUE (type) = max_value;
2545 }
2546
2547 /* Set the extreme values of TYPE based on its precision in bits,
2548 then lay it out. Used when make_signed_type won't do
2549 because the tree code is not INTEGER_TYPE.
2550 E.g. for Pascal, when the -fsigned-char option is given. */
2551
2552 void
fixup_signed_type(tree type)2553 fixup_signed_type (tree type)
2554 {
2555 int precision = TYPE_PRECISION (type);
2556
2557 /* We can not represent properly constants greater then
2558 2 * HOST_BITS_PER_WIDE_INT, still we need the types
2559 as they are used by i386 vector extensions and friends. */
2560 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2561 precision = HOST_BITS_PER_WIDE_INT * 2;
2562
2563 set_min_and_max_values_for_integral_type (type, precision,
2564 /*is_unsigned=*/false);
2565
2566 /* Lay out the type: set its alignment, size, etc. */
2567 layout_type (type);
2568 }
2569
2570 /* Set the extreme values of TYPE based on its precision in bits,
2571 then lay it out. This is used both in `make_unsigned_type'
2572 and for enumeral types. */
2573
2574 void
fixup_unsigned_type(tree type)2575 fixup_unsigned_type (tree type)
2576 {
2577 int precision = TYPE_PRECISION (type);
2578
2579 /* We can not represent properly constants greater then
2580 2 * HOST_BITS_PER_WIDE_INT, still we need the types
2581 as they are used by i386 vector extensions and friends. */
2582 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2583 precision = HOST_BITS_PER_WIDE_INT * 2;
2584
2585 TYPE_UNSIGNED (type) = 1;
2586
2587 set_min_and_max_values_for_integral_type (type, precision,
2588 /*is_unsigned=*/true);
2589
2590 /* Lay out the type: set its alignment, size, etc. */
2591 layout_type (type);
2592 }
2593
2594 /* Find the best machine mode to use when referencing a bit field of length
2595 BITSIZE bits starting at BITPOS.
2596
2597 BITREGION_START is the bit position of the first bit in this
2598 sequence of bit fields. BITREGION_END is the last bit in this
2599 sequence. If these two fields are non-zero, we should restrict the
2600 memory access to a maximum sized chunk of
2601 BITREGION_END - BITREGION_START + 1. Otherwise, we are allowed to touch
2602 any adjacent non bit-fields.
2603
2604 The underlying object is known to be aligned to a boundary of ALIGN bits.
2605 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2606 larger than LARGEST_MODE (usually SImode).
2607
2608 If no mode meets all these conditions, we return VOIDmode.
2609
2610 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2611 smallest mode meeting these conditions.
2612
2613 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2614 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2615 all the conditions.
2616
2617 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2618 decide which of the above modes should be used. */
2619
2620 enum machine_mode
get_best_mode(int bitsize,int bitpos,unsigned HOST_WIDE_INT bitregion_start,unsigned HOST_WIDE_INT bitregion_end,unsigned int align,enum machine_mode largest_mode,int volatilep)2621 get_best_mode (int bitsize, int bitpos,
2622 unsigned HOST_WIDE_INT bitregion_start,
2623 unsigned HOST_WIDE_INT bitregion_end,
2624 unsigned int align,
2625 enum machine_mode largest_mode, int volatilep)
2626 {
2627 enum machine_mode mode;
2628 unsigned int unit = 0;
2629 unsigned HOST_WIDE_INT maxbits;
2630
2631 /* If unset, no restriction. */
2632 if (!bitregion_end)
2633 maxbits = MAX_FIXED_MODE_SIZE;
2634 else
2635 maxbits = bitregion_end - bitregion_start + 1;
2636
2637 /* Find the narrowest integer mode that contains the bit field. */
2638 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2639 mode = GET_MODE_WIDER_MODE (mode))
2640 {
2641 unit = GET_MODE_BITSIZE (mode);
2642 if (unit == GET_MODE_PRECISION (mode)
2643 && (bitpos % unit) + bitsize <= unit)
2644 break;
2645 }
2646
2647 if (mode == VOIDmode
2648 /* It is tempting to omit the following line
2649 if STRICT_ALIGNMENT is true.
2650 But that is incorrect, since if the bitfield uses part of 3 bytes
2651 and we use a 4-byte mode, we could get a spurious segv
2652 if the extra 4th byte is past the end of memory.
2653 (Though at least one Unix compiler ignores this problem:
2654 that on the Sequent 386 machine. */
2655 || MIN (unit, BIGGEST_ALIGNMENT) > align
2656 || (largest_mode != VOIDmode && unit > GET_MODE_BITSIZE (largest_mode))
2657 || unit > maxbits
2658 || (bitregion_end
2659 && bitpos - (bitpos % unit) + unit > bitregion_end + 1))
2660 return VOIDmode;
2661
2662 if ((SLOW_BYTE_ACCESS && ! volatilep)
2663 || (volatilep && !targetm.narrow_volatile_bitfield ()))
2664 {
2665 enum machine_mode wide_mode = VOIDmode, tmode;
2666
2667 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT); tmode != VOIDmode;
2668 tmode = GET_MODE_WIDER_MODE (tmode))
2669 {
2670 unit = GET_MODE_BITSIZE (tmode);
2671 if (unit == GET_MODE_PRECISION (tmode)
2672 && bitpos / unit == (bitpos + bitsize - 1) / unit
2673 && unit <= BITS_PER_WORD
2674 && unit <= MIN (align, BIGGEST_ALIGNMENT)
2675 && unit <= maxbits
2676 && (largest_mode == VOIDmode
2677 || unit <= GET_MODE_BITSIZE (largest_mode))
2678 && (bitregion_end == 0
2679 || bitpos - (bitpos % unit) + unit <= bitregion_end + 1))
2680 wide_mode = tmode;
2681 }
2682
2683 if (wide_mode != VOIDmode)
2684 return wide_mode;
2685 }
2686
2687 return mode;
2688 }
2689
2690 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2691 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2692
2693 void
get_mode_bounds(enum machine_mode mode,int sign,enum machine_mode target_mode,rtx * mmin,rtx * mmax)2694 get_mode_bounds (enum machine_mode mode, int sign,
2695 enum machine_mode target_mode,
2696 rtx *mmin, rtx *mmax)
2697 {
2698 unsigned size = GET_MODE_BITSIZE (mode);
2699 unsigned HOST_WIDE_INT min_val, max_val;
2700
2701 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2702
2703 if (sign)
2704 {
2705 min_val = -((unsigned HOST_WIDE_INT) 1 << (size - 1));
2706 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1;
2707 }
2708 else
2709 {
2710 min_val = 0;
2711 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1;
2712 }
2713
2714 *mmin = gen_int_mode (min_val, target_mode);
2715 *mmax = gen_int_mode (max_val, target_mode);
2716 }
2717
2718 #include "gt-stor-layout.h"
2719