xref: /netbsd-src/sys/external/bsd/drm2/dist/drm/i915/gt/intel_ring_submission.c (revision 9e5fbd4f7f25d0a357b482f4591196ee62d90ed5)
1 /*	$NetBSD: intel_ring_submission.c,v 1.3 2021/12/19 11:49:11 riastradh Exp $	*/
2 
3 /*
4  * Copyright © 2008-2010 Intel Corporation
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
23  * IN THE SOFTWARE.
24  *
25  * Authors:
26  *    Eric Anholt <eric@anholt.net>
27  *    Zou Nan hai <nanhai.zou@intel.com>
28  *    Xiang Hai hao<haihao.xiang@intel.com>
29  *
30  */
31 
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: intel_ring_submission.c,v 1.3 2021/12/19 11:49:11 riastradh Exp $");
34 
35 #include <linux/log2.h>
36 
37 #include <drm/i915_drm.h>
38 
39 #include "gem/i915_gem_context.h"
40 
41 #include "gen6_ppgtt.h"
42 #include "i915_drv.h"
43 #include "i915_trace.h"
44 #include "intel_context.h"
45 #include "intel_gt.h"
46 #include "intel_gt_irq.h"
47 #include "intel_gt_pm_irq.h"
48 #include "intel_reset.h"
49 #include "intel_ring.h"
50 #include "intel_workarounds.h"
51 
52 /* Rough estimate of the typical request size, performing a flush,
53  * set-context and then emitting the batch.
54  */
55 #define LEGACY_REQUEST_SIZE 200
56 
57 static int
gen2_render_ring_flush(struct i915_request * rq,u32 mode)58 gen2_render_ring_flush(struct i915_request *rq, u32 mode)
59 {
60 	unsigned int num_store_dw;
61 	u32 cmd, *cs;
62 
63 	cmd = MI_FLUSH;
64 	num_store_dw = 0;
65 	if (mode & EMIT_INVALIDATE)
66 		cmd |= MI_READ_FLUSH;
67 	if (mode & EMIT_FLUSH)
68 		num_store_dw = 4;
69 
70 	cs = intel_ring_begin(rq, 2 + 3 * num_store_dw);
71 	if (IS_ERR(cs))
72 		return PTR_ERR(cs);
73 
74 	*cs++ = cmd;
75 	while (num_store_dw--) {
76 		*cs++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
77 		*cs++ = intel_gt_scratch_offset(rq->engine->gt,
78 						INTEL_GT_SCRATCH_FIELD_DEFAULT);
79 		*cs++ = 0;
80 	}
81 	*cs++ = MI_FLUSH | MI_NO_WRITE_FLUSH;
82 
83 	intel_ring_advance(rq, cs);
84 
85 	return 0;
86 }
87 
88 static int
gen4_render_ring_flush(struct i915_request * rq,u32 mode)89 gen4_render_ring_flush(struct i915_request *rq, u32 mode)
90 {
91 	u32 cmd, *cs;
92 	int i;
93 
94 	/*
95 	 * read/write caches:
96 	 *
97 	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
98 	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
99 	 * also flushed at 2d versus 3d pipeline switches.
100 	 *
101 	 * read-only caches:
102 	 *
103 	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
104 	 * MI_READ_FLUSH is set, and is always flushed on 965.
105 	 *
106 	 * I915_GEM_DOMAIN_COMMAND may not exist?
107 	 *
108 	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
109 	 * invalidated when MI_EXE_FLUSH is set.
110 	 *
111 	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
112 	 * invalidated with every MI_FLUSH.
113 	 *
114 	 * TLBs:
115 	 *
116 	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
117 	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
118 	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
119 	 * are flushed at any MI_FLUSH.
120 	 */
121 
122 	cmd = MI_FLUSH;
123 	if (mode & EMIT_INVALIDATE) {
124 		cmd |= MI_EXE_FLUSH;
125 		if (IS_G4X(rq->i915) || IS_GEN(rq->i915, 5))
126 			cmd |= MI_INVALIDATE_ISP;
127 	}
128 
129 	i = 2;
130 	if (mode & EMIT_INVALIDATE)
131 		i += 20;
132 
133 	cs = intel_ring_begin(rq, i);
134 	if (IS_ERR(cs))
135 		return PTR_ERR(cs);
136 
137 	*cs++ = cmd;
138 
139 	/*
140 	 * A random delay to let the CS invalidate take effect? Without this
141 	 * delay, the GPU relocation path fails as the CS does not see
142 	 * the updated contents. Just as important, if we apply the flushes
143 	 * to the EMIT_FLUSH branch (i.e. immediately after the relocation
144 	 * write and before the invalidate on the next batch), the relocations
145 	 * still fail. This implies that is a delay following invalidation
146 	 * that is required to reset the caches as opposed to a delay to
147 	 * ensure the memory is written.
148 	 */
149 	if (mode & EMIT_INVALIDATE) {
150 		*cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
151 		*cs++ = intel_gt_scratch_offset(rq->engine->gt,
152 						INTEL_GT_SCRATCH_FIELD_DEFAULT) |
153 			PIPE_CONTROL_GLOBAL_GTT;
154 		*cs++ = 0;
155 		*cs++ = 0;
156 
157 		for (i = 0; i < 12; i++)
158 			*cs++ = MI_FLUSH;
159 
160 		*cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
161 		*cs++ = intel_gt_scratch_offset(rq->engine->gt,
162 						INTEL_GT_SCRATCH_FIELD_DEFAULT) |
163 			PIPE_CONTROL_GLOBAL_GTT;
164 		*cs++ = 0;
165 		*cs++ = 0;
166 	}
167 
168 	*cs++ = cmd;
169 
170 	intel_ring_advance(rq, cs);
171 
172 	return 0;
173 }
174 
175 /*
176  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
177  * implementing two workarounds on gen6.  From section 1.4.7.1
178  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
179  *
180  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
181  * produced by non-pipelined state commands), software needs to first
182  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
183  * 0.
184  *
185  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
186  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
187  *
188  * And the workaround for these two requires this workaround first:
189  *
190  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
191  * BEFORE the pipe-control with a post-sync op and no write-cache
192  * flushes.
193  *
194  * And this last workaround is tricky because of the requirements on
195  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
196  * volume 2 part 1:
197  *
198  *     "1 of the following must also be set:
199  *      - Render Target Cache Flush Enable ([12] of DW1)
200  *      - Depth Cache Flush Enable ([0] of DW1)
201  *      - Stall at Pixel Scoreboard ([1] of DW1)
202  *      - Depth Stall ([13] of DW1)
203  *      - Post-Sync Operation ([13] of DW1)
204  *      - Notify Enable ([8] of DW1)"
205  *
206  * The cache flushes require the workaround flush that triggered this
207  * one, so we can't use it.  Depth stall would trigger the same.
208  * Post-sync nonzero is what triggered this second workaround, so we
209  * can't use that one either.  Notify enable is IRQs, which aren't
210  * really our business.  That leaves only stall at scoreboard.
211  */
212 static int
gen6_emit_post_sync_nonzero_flush(struct i915_request * rq)213 gen6_emit_post_sync_nonzero_flush(struct i915_request *rq)
214 {
215 	u32 scratch_addr =
216 		intel_gt_scratch_offset(rq->engine->gt,
217 					INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
218 	u32 *cs;
219 
220 	cs = intel_ring_begin(rq, 6);
221 	if (IS_ERR(cs))
222 		return PTR_ERR(cs);
223 
224 	*cs++ = GFX_OP_PIPE_CONTROL(5);
225 	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
226 	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
227 	*cs++ = 0; /* low dword */
228 	*cs++ = 0; /* high dword */
229 	*cs++ = MI_NOOP;
230 	intel_ring_advance(rq, cs);
231 
232 	cs = intel_ring_begin(rq, 6);
233 	if (IS_ERR(cs))
234 		return PTR_ERR(cs);
235 
236 	*cs++ = GFX_OP_PIPE_CONTROL(5);
237 	*cs++ = PIPE_CONTROL_QW_WRITE;
238 	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
239 	*cs++ = 0;
240 	*cs++ = 0;
241 	*cs++ = MI_NOOP;
242 	intel_ring_advance(rq, cs);
243 
244 	return 0;
245 }
246 
247 static int
gen6_render_ring_flush(struct i915_request * rq,u32 mode)248 gen6_render_ring_flush(struct i915_request *rq, u32 mode)
249 {
250 	u32 scratch_addr =
251 		intel_gt_scratch_offset(rq->engine->gt,
252 					INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
253 	u32 *cs, flags = 0;
254 	int ret;
255 
256 	/* Force SNB workarounds for PIPE_CONTROL flushes */
257 	ret = gen6_emit_post_sync_nonzero_flush(rq);
258 	if (ret)
259 		return ret;
260 
261 	/* Just flush everything.  Experiments have shown that reducing the
262 	 * number of bits based on the write domains has little performance
263 	 * impact.
264 	 */
265 	if (mode & EMIT_FLUSH) {
266 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
267 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
268 		/*
269 		 * Ensure that any following seqno writes only happen
270 		 * when the render cache is indeed flushed.
271 		 */
272 		flags |= PIPE_CONTROL_CS_STALL;
273 	}
274 	if (mode & EMIT_INVALIDATE) {
275 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
276 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
277 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
278 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
279 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
280 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
281 		/*
282 		 * TLB invalidate requires a post-sync write.
283 		 */
284 		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
285 	}
286 
287 	cs = intel_ring_begin(rq, 4);
288 	if (IS_ERR(cs))
289 		return PTR_ERR(cs);
290 
291 	*cs++ = GFX_OP_PIPE_CONTROL(4);
292 	*cs++ = flags;
293 	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
294 	*cs++ = 0;
295 	intel_ring_advance(rq, cs);
296 
297 	return 0;
298 }
299 
gen6_rcs_emit_breadcrumb(struct i915_request * rq,u32 * cs)300 static u32 *gen6_rcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
301 {
302 	/* First we do the gen6_emit_post_sync_nonzero_flush w/a */
303 	*cs++ = GFX_OP_PIPE_CONTROL(4);
304 	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
305 	*cs++ = 0;
306 	*cs++ = 0;
307 
308 	*cs++ = GFX_OP_PIPE_CONTROL(4);
309 	*cs++ = PIPE_CONTROL_QW_WRITE;
310 	*cs++ = intel_gt_scratch_offset(rq->engine->gt,
311 					INTEL_GT_SCRATCH_FIELD_DEFAULT) |
312 		PIPE_CONTROL_GLOBAL_GTT;
313 	*cs++ = 0;
314 
315 	/* Finally we can flush and with it emit the breadcrumb */
316 	*cs++ = GFX_OP_PIPE_CONTROL(4);
317 	*cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
318 		 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
319 		 PIPE_CONTROL_DC_FLUSH_ENABLE |
320 		 PIPE_CONTROL_QW_WRITE |
321 		 PIPE_CONTROL_CS_STALL);
322 	*cs++ = i915_request_active_timeline(rq)->hwsp_offset |
323 		PIPE_CONTROL_GLOBAL_GTT;
324 	*cs++ = rq->fence.seqno;
325 
326 	*cs++ = MI_USER_INTERRUPT;
327 	*cs++ = MI_NOOP;
328 
329 	rq->tail = intel_ring_offset(rq, cs);
330 	assert_ring_tail_valid(rq->ring, rq->tail);
331 
332 	return cs;
333 }
334 
335 static int
gen7_render_ring_cs_stall_wa(struct i915_request * rq)336 gen7_render_ring_cs_stall_wa(struct i915_request *rq)
337 {
338 	u32 *cs;
339 
340 	cs = intel_ring_begin(rq, 4);
341 	if (IS_ERR(cs))
342 		return PTR_ERR(cs);
343 
344 	*cs++ = GFX_OP_PIPE_CONTROL(4);
345 	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
346 	*cs++ = 0;
347 	*cs++ = 0;
348 	intel_ring_advance(rq, cs);
349 
350 	return 0;
351 }
352 
353 static int
gen7_render_ring_flush(struct i915_request * rq,u32 mode)354 gen7_render_ring_flush(struct i915_request *rq, u32 mode)
355 {
356 	u32 scratch_addr =
357 		intel_gt_scratch_offset(rq->engine->gt,
358 					INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
359 	u32 *cs, flags = 0;
360 
361 	/*
362 	 * Ensure that any following seqno writes only happen when the render
363 	 * cache is indeed flushed.
364 	 *
365 	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
366 	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
367 	 * don't try to be clever and just set it unconditionally.
368 	 */
369 	flags |= PIPE_CONTROL_CS_STALL;
370 
371 	/*
372 	 * CS_STALL suggests at least a post-sync write.
373 	 */
374 	flags |= PIPE_CONTROL_QW_WRITE;
375 	flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
376 
377 	/* Just flush everything.  Experiments have shown that reducing the
378 	 * number of bits based on the write domains has little performance
379 	 * impact.
380 	 */
381 	if (mode & EMIT_FLUSH) {
382 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
383 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
384 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
385 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
386 	}
387 	if (mode & EMIT_INVALIDATE) {
388 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
389 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
390 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
391 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
392 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
393 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
394 		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
395 
396 		/* Workaround: we must issue a pipe_control with CS-stall bit
397 		 * set before a pipe_control command that has the state cache
398 		 * invalidate bit set. */
399 		gen7_render_ring_cs_stall_wa(rq);
400 	}
401 
402 	cs = intel_ring_begin(rq, 4);
403 	if (IS_ERR(cs))
404 		return PTR_ERR(cs);
405 
406 	*cs++ = GFX_OP_PIPE_CONTROL(4);
407 	*cs++ = flags;
408 	*cs++ = scratch_addr;
409 	*cs++ = 0;
410 	intel_ring_advance(rq, cs);
411 
412 	return 0;
413 }
414 
gen7_rcs_emit_breadcrumb(struct i915_request * rq,u32 * cs)415 static u32 *gen7_rcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
416 {
417 	*cs++ = GFX_OP_PIPE_CONTROL(4);
418 	*cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
419 		 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
420 		 PIPE_CONTROL_DC_FLUSH_ENABLE |
421 		 PIPE_CONTROL_FLUSH_ENABLE |
422 		 PIPE_CONTROL_QW_WRITE |
423 		 PIPE_CONTROL_GLOBAL_GTT_IVB |
424 		 PIPE_CONTROL_CS_STALL);
425 	*cs++ = i915_request_active_timeline(rq)->hwsp_offset;
426 	*cs++ = rq->fence.seqno;
427 
428 	*cs++ = MI_USER_INTERRUPT;
429 	*cs++ = MI_NOOP;
430 
431 	rq->tail = intel_ring_offset(rq, cs);
432 	assert_ring_tail_valid(rq->ring, rq->tail);
433 
434 	return cs;
435 }
436 
gen6_xcs_emit_breadcrumb(struct i915_request * rq,u32 * cs)437 static u32 *gen6_xcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
438 {
439 	GEM_BUG_ON(i915_request_active_timeline(rq)->hwsp_ggtt != rq->engine->status_page.vma);
440 	GEM_BUG_ON(offset_in_page(i915_request_active_timeline(rq)->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
441 
442 	*cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
443 	*cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT;
444 	*cs++ = rq->fence.seqno;
445 
446 	*cs++ = MI_USER_INTERRUPT;
447 
448 	rq->tail = intel_ring_offset(rq, cs);
449 	assert_ring_tail_valid(rq->ring, rq->tail);
450 
451 	return cs;
452 }
453 
454 #define GEN7_XCS_WA 32
gen7_xcs_emit_breadcrumb(struct i915_request * rq,u32 * cs)455 static u32 *gen7_xcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
456 {
457 	int i;
458 
459 	GEM_BUG_ON(i915_request_active_timeline(rq)->hwsp_ggtt != rq->engine->status_page.vma);
460 	GEM_BUG_ON(offset_in_page(i915_request_active_timeline(rq)->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
461 
462 	*cs++ = MI_FLUSH_DW | MI_INVALIDATE_TLB |
463 		MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
464 	*cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT;
465 	*cs++ = rq->fence.seqno;
466 
467 	for (i = 0; i < GEN7_XCS_WA; i++) {
468 		*cs++ = MI_STORE_DWORD_INDEX;
469 		*cs++ = I915_GEM_HWS_SEQNO_ADDR;
470 		*cs++ = rq->fence.seqno;
471 	}
472 
473 	*cs++ = MI_FLUSH_DW;
474 	*cs++ = 0;
475 	*cs++ = 0;
476 
477 	*cs++ = MI_USER_INTERRUPT;
478 	*cs++ = MI_NOOP;
479 
480 	rq->tail = intel_ring_offset(rq, cs);
481 	assert_ring_tail_valid(rq->ring, rq->tail);
482 
483 	return cs;
484 }
485 #undef GEN7_XCS_WA
486 
set_hwstam(struct intel_engine_cs * engine,u32 mask)487 static void set_hwstam(struct intel_engine_cs *engine, u32 mask)
488 {
489 	/*
490 	 * Keep the render interrupt unmasked as this papers over
491 	 * lost interrupts following a reset.
492 	 */
493 	if (engine->class == RENDER_CLASS) {
494 		if (INTEL_GEN(engine->i915) >= 6)
495 			mask &= ~BIT(0);
496 		else
497 			mask &= ~I915_USER_INTERRUPT;
498 	}
499 
500 	intel_engine_set_hwsp_writemask(engine, mask);
501 }
502 
set_hws_pga(struct intel_engine_cs * engine,phys_addr_t phys)503 static void set_hws_pga(struct intel_engine_cs *engine, phys_addr_t phys)
504 {
505 	u32 addr;
506 
507 	addr = lower_32_bits(phys);
508 	if (INTEL_GEN(engine->i915) >= 4)
509 		addr |= (phys >> 28) & 0xf0;
510 
511 	intel_uncore_write(engine->uncore, HWS_PGA, addr);
512 }
513 
514 #ifdef __NetBSD__
515 static void
ring_setup_phys_status_page(struct intel_engine_cs * engine)516 ring_setup_phys_status_page(struct intel_engine_cs *engine)
517 {
518 	struct drm_i915_gem_object *obj = engine->status_page.vma->obj;
519 	bus_addr_t addr;
520 
521 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
522 	addr = obj->mm.pages->sgl[0].sg_dmamap->dm_segs[0].ds_addr;
523 	set_hws_pga(engine, addr);
524 	set_hwstam(engine, ~0u);
525 }
526 #else
status_page(struct intel_engine_cs * engine)527 static struct page *status_page(struct intel_engine_cs *engine)
528 {
529 	struct drm_i915_gem_object *obj = engine->status_page.vma->obj;
530 
531 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
532 	return sg_page(obj->mm.pages->sgl);
533 }
534 
ring_setup_phys_status_page(struct intel_engine_cs * engine)535 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
536 {
537 	set_hws_pga(engine, PFN_PHYS(page_to_pfn(status_page(engine))));
538 	set_hwstam(engine, ~0u);
539 }
540 #endif
541 
set_hwsp(struct intel_engine_cs * engine,u32 offset)542 static void set_hwsp(struct intel_engine_cs *engine, u32 offset)
543 {
544 	i915_reg_t hwsp;
545 
546 	/*
547 	 * The ring status page addresses are no longer next to the rest of
548 	 * the ring registers as of gen7.
549 	 */
550 	if (IS_GEN(engine->i915, 7)) {
551 		switch (engine->id) {
552 		/*
553 		 * No more rings exist on Gen7. Default case is only to shut up
554 		 * gcc switch check warning.
555 		 */
556 		default:
557 			GEM_BUG_ON(engine->id);
558 			/* fallthrough */
559 		case RCS0:
560 			hwsp = RENDER_HWS_PGA_GEN7;
561 			break;
562 		case BCS0:
563 			hwsp = BLT_HWS_PGA_GEN7;
564 			break;
565 		case VCS0:
566 			hwsp = BSD_HWS_PGA_GEN7;
567 			break;
568 		case VECS0:
569 			hwsp = VEBOX_HWS_PGA_GEN7;
570 			break;
571 		}
572 	} else if (IS_GEN(engine->i915, 6)) {
573 		hwsp = RING_HWS_PGA_GEN6(engine->mmio_base);
574 	} else {
575 		hwsp = RING_HWS_PGA(engine->mmio_base);
576 	}
577 
578 	intel_uncore_write(engine->uncore, hwsp, offset);
579 	intel_uncore_posting_read(engine->uncore, hwsp);
580 }
581 
flush_cs_tlb(struct intel_engine_cs * engine)582 static void flush_cs_tlb(struct intel_engine_cs *engine)
583 {
584 	struct drm_i915_private *dev_priv = engine->i915;
585 
586 	if (!IS_GEN_RANGE(dev_priv, 6, 7))
587 		return;
588 
589 	/* ring should be idle before issuing a sync flush*/
590 	WARN_ON((ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE) == 0);
591 
592 	ENGINE_WRITE(engine, RING_INSTPM,
593 		     _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
594 					INSTPM_SYNC_FLUSH));
595 	if (intel_wait_for_register(engine->uncore,
596 				    RING_INSTPM(engine->mmio_base),
597 				    INSTPM_SYNC_FLUSH, 0,
598 				    1000))
599 		DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
600 			  engine->name);
601 }
602 
ring_setup_status_page(struct intel_engine_cs * engine)603 static void ring_setup_status_page(struct intel_engine_cs *engine)
604 {
605 	set_hwsp(engine, i915_ggtt_offset(engine->status_page.vma));
606 	set_hwstam(engine, ~0u);
607 
608 	flush_cs_tlb(engine);
609 }
610 
stop_ring(struct intel_engine_cs * engine)611 static bool stop_ring(struct intel_engine_cs *engine)
612 {
613 	struct drm_i915_private *dev_priv = engine->i915;
614 
615 	if (INTEL_GEN(dev_priv) > 2) {
616 		ENGINE_WRITE(engine,
617 			     RING_MI_MODE, _MASKED_BIT_ENABLE(STOP_RING));
618 		if (intel_wait_for_register(engine->uncore,
619 					    RING_MI_MODE(engine->mmio_base),
620 					    MODE_IDLE,
621 					    MODE_IDLE,
622 					    1000)) {
623 			DRM_ERROR("%s : timed out trying to stop ring\n",
624 				  engine->name);
625 
626 			/*
627 			 * Sometimes we observe that the idle flag is not
628 			 * set even though the ring is empty. So double
629 			 * check before giving up.
630 			 */
631 			if (ENGINE_READ(engine, RING_HEAD) !=
632 			    ENGINE_READ(engine, RING_TAIL))
633 				return false;
634 		}
635 	}
636 
637 	ENGINE_WRITE(engine, RING_HEAD, ENGINE_READ(engine, RING_TAIL));
638 
639 	ENGINE_WRITE(engine, RING_HEAD, 0);
640 	ENGINE_WRITE(engine, RING_TAIL, 0);
641 
642 	/* The ring must be empty before it is disabled */
643 	ENGINE_WRITE(engine, RING_CTL, 0);
644 
645 	return (ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) == 0;
646 }
647 
xcs_resume(struct intel_engine_cs * engine)648 static int xcs_resume(struct intel_engine_cs *engine)
649 {
650 	struct drm_i915_private *dev_priv = engine->i915;
651 	struct intel_ring *ring = engine->legacy.ring;
652 	int ret = 0;
653 
654 	ENGINE_TRACE(engine, "ring:{HEAD:%04x, TAIL:%04x}\n",
655 		     ring->head, ring->tail);
656 
657 	intel_uncore_forcewake_get(engine->uncore, FORCEWAKE_ALL);
658 
659 	/* WaClearRingBufHeadRegAtInit:ctg,elk */
660 	if (!stop_ring(engine)) {
661 		/* G45 ring initialization often fails to reset head to zero */
662 		DRM_DEBUG_DRIVER("%s head not reset to zero "
663 				"ctl %08x head %08x tail %08x start %08x\n",
664 				engine->name,
665 				ENGINE_READ(engine, RING_CTL),
666 				ENGINE_READ(engine, RING_HEAD),
667 				ENGINE_READ(engine, RING_TAIL),
668 				ENGINE_READ(engine, RING_START));
669 
670 		if (!stop_ring(engine)) {
671 			DRM_ERROR("failed to set %s head to zero "
672 				  "ctl %08x head %08x tail %08x start %08x\n",
673 				  engine->name,
674 				  ENGINE_READ(engine, RING_CTL),
675 				  ENGINE_READ(engine, RING_HEAD),
676 				  ENGINE_READ(engine, RING_TAIL),
677 				  ENGINE_READ(engine, RING_START));
678 			ret = -EIO;
679 			goto out;
680 		}
681 	}
682 
683 	if (HWS_NEEDS_PHYSICAL(dev_priv))
684 		ring_setup_phys_status_page(engine);
685 	else
686 		ring_setup_status_page(engine);
687 
688 	intel_engine_reset_breadcrumbs(engine);
689 
690 	/* Enforce ordering by reading HEAD register back */
691 	ENGINE_POSTING_READ(engine, RING_HEAD);
692 
693 	/*
694 	 * Initialize the ring. This must happen _after_ we've cleared the ring
695 	 * registers with the above sequence (the readback of the HEAD registers
696 	 * also enforces ordering), otherwise the hw might lose the new ring
697 	 * register values.
698 	 */
699 	ENGINE_WRITE(engine, RING_START, i915_ggtt_offset(ring->vma));
700 
701 	/* Check that the ring offsets point within the ring! */
702 	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
703 	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
704 	intel_ring_update_space(ring);
705 
706 	/* First wake the ring up to an empty/idle ring */
707 	ENGINE_WRITE(engine, RING_HEAD, ring->head);
708 	ENGINE_WRITE(engine, RING_TAIL, ring->head);
709 	ENGINE_POSTING_READ(engine, RING_TAIL);
710 
711 	ENGINE_WRITE(engine, RING_CTL, RING_CTL_SIZE(ring->size) | RING_VALID);
712 
713 	/* If the head is still not zero, the ring is dead */
714 	if (intel_wait_for_register(engine->uncore,
715 				    RING_CTL(engine->mmio_base),
716 				    RING_VALID, RING_VALID,
717 				    50)) {
718 		DRM_ERROR("%s initialization failed "
719 			  "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
720 			  engine->name,
721 			  ENGINE_READ(engine, RING_CTL),
722 			  ENGINE_READ(engine, RING_CTL) & RING_VALID,
723 			  ENGINE_READ(engine, RING_HEAD), ring->head,
724 			  ENGINE_READ(engine, RING_TAIL), ring->tail,
725 			  ENGINE_READ(engine, RING_START),
726 			  i915_ggtt_offset(ring->vma));
727 		ret = -EIO;
728 		goto out;
729 	}
730 
731 	if (INTEL_GEN(dev_priv) > 2)
732 		ENGINE_WRITE(engine,
733 			     RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
734 
735 	/* Now awake, let it get started */
736 	if (ring->tail != ring->head) {
737 		ENGINE_WRITE(engine, RING_TAIL, ring->tail);
738 		ENGINE_POSTING_READ(engine, RING_TAIL);
739 	}
740 
741 	/* Papering over lost _interrupts_ immediately following the restart */
742 	intel_engine_signal_breadcrumbs(engine);
743 out:
744 	intel_uncore_forcewake_put(engine->uncore, FORCEWAKE_ALL);
745 
746 	return ret;
747 }
748 
reset_prepare(struct intel_engine_cs * engine)749 static void reset_prepare(struct intel_engine_cs *engine)
750 {
751 	struct intel_uncore *uncore = engine->uncore;
752 	const u32 base = engine->mmio_base;
753 
754 	/*
755 	 * We stop engines, otherwise we might get failed reset and a
756 	 * dead gpu (on elk). Also as modern gpu as kbl can suffer
757 	 * from system hang if batchbuffer is progressing when
758 	 * the reset is issued, regardless of READY_TO_RESET ack.
759 	 * Thus assume it is best to stop engines on all gens
760 	 * where we have a gpu reset.
761 	 *
762 	 * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
763 	 *
764 	 * WaMediaResetMainRingCleanup:ctg,elk (presumably)
765 	 *
766 	 * FIXME: Wa for more modern gens needs to be validated
767 	 */
768 	ENGINE_TRACE(engine, "\n");
769 
770 	if (intel_engine_stop_cs(engine))
771 		ENGINE_TRACE(engine, "timed out on STOP_RING\n");
772 
773 	intel_uncore_write_fw(uncore,
774 			      RING_HEAD(base),
775 			      intel_uncore_read_fw(uncore, RING_TAIL(base)));
776 	intel_uncore_posting_read_fw(uncore, RING_HEAD(base)); /* paranoia */
777 
778 	intel_uncore_write_fw(uncore, RING_HEAD(base), 0);
779 	intel_uncore_write_fw(uncore, RING_TAIL(base), 0);
780 	intel_uncore_posting_read_fw(uncore, RING_TAIL(base));
781 
782 	/* The ring must be empty before it is disabled */
783 	intel_uncore_write_fw(uncore, RING_CTL(base), 0);
784 
785 	/* Check acts as a post */
786 	if (intel_uncore_read_fw(uncore, RING_HEAD(base)))
787 		ENGINE_TRACE(engine, "ring head [%x] not parked\n",
788 			     intel_uncore_read_fw(uncore, RING_HEAD(base)));
789 }
790 
reset_rewind(struct intel_engine_cs * engine,bool stalled)791 static void reset_rewind(struct intel_engine_cs *engine, bool stalled)
792 {
793 	struct i915_request *pos, *rq;
794 	unsigned long flags;
795 	u32 head;
796 
797 	rq = NULL;
798 	spin_lock_irqsave(&engine->active.lock, flags);
799 	list_for_each_entry(pos, &engine->active.requests, sched.link) {
800 		if (!i915_request_completed(pos)) {
801 			rq = pos;
802 			break;
803 		}
804 	}
805 
806 	/*
807 	 * The guilty request will get skipped on a hung engine.
808 	 *
809 	 * Users of client default contexts do not rely on logical
810 	 * state preserved between batches so it is safe to execute
811 	 * queued requests following the hang. Non default contexts
812 	 * rely on preserved state, so skipping a batch loses the
813 	 * evolution of the state and it needs to be considered corrupted.
814 	 * Executing more queued batches on top of corrupted state is
815 	 * risky. But we take the risk by trying to advance through
816 	 * the queued requests in order to make the client behaviour
817 	 * more predictable around resets, by not throwing away random
818 	 * amount of batches it has prepared for execution. Sophisticated
819 	 * clients can use gem_reset_stats_ioctl and dma fence status
820 	 * (exported via sync_file info ioctl on explicit fences) to observe
821 	 * when it loses the context state and should rebuild accordingly.
822 	 *
823 	 * The context ban, and ultimately the client ban, mechanism are safety
824 	 * valves if client submission ends up resulting in nothing more than
825 	 * subsequent hangs.
826 	 */
827 
828 	if (rq) {
829 		/*
830 		 * Try to restore the logical GPU state to match the
831 		 * continuation of the request queue. If we skip the
832 		 * context/PD restore, then the next request may try to execute
833 		 * assuming that its context is valid and loaded on the GPU and
834 		 * so may try to access invalid memory, prompting repeated GPU
835 		 * hangs.
836 		 *
837 		 * If the request was guilty, we still restore the logical
838 		 * state in case the next request requires it (e.g. the
839 		 * aliasing ppgtt), but skip over the hung batch.
840 		 *
841 		 * If the request was innocent, we try to replay the request
842 		 * with the restored context.
843 		 */
844 		__i915_request_reset(rq, stalled);
845 
846 		GEM_BUG_ON(rq->ring != engine->legacy.ring);
847 		head = rq->head;
848 	} else {
849 		head = engine->legacy.ring->tail;
850 	}
851 	engine->legacy.ring->head = intel_ring_wrap(engine->legacy.ring, head);
852 
853 	spin_unlock_irqrestore(&engine->active.lock, flags);
854 }
855 
reset_finish(struct intel_engine_cs * engine)856 static void reset_finish(struct intel_engine_cs *engine)
857 {
858 }
859 
rcs_resume(struct intel_engine_cs * engine)860 static int rcs_resume(struct intel_engine_cs *engine)
861 {
862 	struct drm_i915_private *i915 = engine->i915;
863 	struct intel_uncore *uncore = engine->uncore;
864 
865 	/*
866 	 * Disable CONSTANT_BUFFER before it is loaded from the context
867 	 * image. For as it is loaded, it is executed and the stored
868 	 * address may no longer be valid, leading to a GPU hang.
869 	 *
870 	 * This imposes the requirement that userspace reload their
871 	 * CONSTANT_BUFFER on every batch, fortunately a requirement
872 	 * they are already accustomed to from before contexts were
873 	 * enabled.
874 	 */
875 	if (IS_GEN(i915, 4))
876 		intel_uncore_write(uncore, ECOSKPD,
877 			   _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE));
878 
879 	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
880 	if (IS_GEN_RANGE(i915, 4, 6))
881 		intel_uncore_write(uncore, MI_MODE,
882 				   _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
883 
884 	/* We need to disable the AsyncFlip performance optimisations in order
885 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
886 	 * programmed to '1' on all products.
887 	 *
888 	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
889 	 */
890 	if (IS_GEN_RANGE(i915, 6, 7))
891 		intel_uncore_write(uncore, MI_MODE,
892 				   _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
893 
894 	/* Required for the hardware to program scanline values for waiting */
895 	/* WaEnableFlushTlbInvalidationMode:snb */
896 	if (IS_GEN(i915, 6))
897 		intel_uncore_write(uncore, GFX_MODE,
898 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
899 
900 	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
901 	if (IS_GEN(i915, 7))
902 		intel_uncore_write(uncore, GFX_MODE_GEN7,
903 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
904 			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
905 
906 	if (IS_GEN(i915, 6)) {
907 		/* From the Sandybridge PRM, volume 1 part 3, page 24:
908 		 * "If this bit is set, STCunit will have LRA as replacement
909 		 *  policy. [...] This bit must be reset.  LRA replacement
910 		 *  policy is not supported."
911 		 */
912 		intel_uncore_write(uncore, CACHE_MODE_0,
913 			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
914 	}
915 
916 	if (IS_GEN_RANGE(i915, 6, 7))
917 		intel_uncore_write(uncore, INSTPM,
918 				   _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
919 
920 	return xcs_resume(engine);
921 }
922 
reset_cancel(struct intel_engine_cs * engine)923 static void reset_cancel(struct intel_engine_cs *engine)
924 {
925 	struct i915_request *request;
926 	unsigned long flags;
927 
928 	spin_lock_irqsave(&engine->active.lock, flags);
929 
930 	/* Mark all submitted requests as skipped. */
931 	list_for_each_entry(request, &engine->active.requests, sched.link) {
932 		if (!i915_request_signaled(request))
933 			dma_fence_set_error(&request->fence, -EIO);
934 
935 		i915_request_mark_complete(request);
936 	}
937 
938 	/* Remaining _unready_ requests will be nop'ed when submitted */
939 
940 	spin_unlock_irqrestore(&engine->active.lock, flags);
941 }
942 
i9xx_submit_request(struct i915_request * request)943 static void i9xx_submit_request(struct i915_request *request)
944 {
945 	i915_request_submit(request);
946 	wmb(); /* paranoid flush writes out of the WCB before mmio */
947 
948 	ENGINE_WRITE(request->engine, RING_TAIL,
949 		     intel_ring_set_tail(request->ring, request->tail));
950 }
951 
i9xx_emit_breadcrumb(struct i915_request * rq,u32 * cs)952 static u32 *i9xx_emit_breadcrumb(struct i915_request *rq, u32 *cs)
953 {
954 	GEM_BUG_ON(i915_request_active_timeline(rq)->hwsp_ggtt != rq->engine->status_page.vma);
955 	GEM_BUG_ON(offset_in_page(i915_request_active_timeline(rq)->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
956 
957 	*cs++ = MI_FLUSH;
958 
959 	*cs++ = MI_STORE_DWORD_INDEX;
960 	*cs++ = I915_GEM_HWS_SEQNO_ADDR;
961 	*cs++ = rq->fence.seqno;
962 
963 	*cs++ = MI_USER_INTERRUPT;
964 	*cs++ = MI_NOOP;
965 
966 	rq->tail = intel_ring_offset(rq, cs);
967 	assert_ring_tail_valid(rq->ring, rq->tail);
968 
969 	return cs;
970 }
971 
972 #define GEN5_WA_STORES 8 /* must be at least 1! */
gen5_emit_breadcrumb(struct i915_request * rq,u32 * cs)973 static u32 *gen5_emit_breadcrumb(struct i915_request *rq, u32 *cs)
974 {
975 	int i;
976 
977 	GEM_BUG_ON(i915_request_active_timeline(rq)->hwsp_ggtt != rq->engine->status_page.vma);
978 	GEM_BUG_ON(offset_in_page(i915_request_active_timeline(rq)->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
979 
980 	*cs++ = MI_FLUSH;
981 
982 	BUILD_BUG_ON(GEN5_WA_STORES < 1);
983 	for (i = 0; i < GEN5_WA_STORES; i++) {
984 		*cs++ = MI_STORE_DWORD_INDEX;
985 		*cs++ = I915_GEM_HWS_SEQNO_ADDR;
986 		*cs++ = rq->fence.seqno;
987 	}
988 
989 	*cs++ = MI_USER_INTERRUPT;
990 
991 	rq->tail = intel_ring_offset(rq, cs);
992 	assert_ring_tail_valid(rq->ring, rq->tail);
993 
994 	return cs;
995 }
996 #undef GEN5_WA_STORES
997 
998 static void
gen5_irq_enable(struct intel_engine_cs * engine)999 gen5_irq_enable(struct intel_engine_cs *engine)
1000 {
1001 	gen5_gt_enable_irq(engine->gt, engine->irq_enable_mask);
1002 }
1003 
1004 static void
gen5_irq_disable(struct intel_engine_cs * engine)1005 gen5_irq_disable(struct intel_engine_cs *engine)
1006 {
1007 	gen5_gt_disable_irq(engine->gt, engine->irq_enable_mask);
1008 }
1009 
1010 static void
i9xx_irq_enable(struct intel_engine_cs * engine)1011 i9xx_irq_enable(struct intel_engine_cs *engine)
1012 {
1013 	engine->i915->irq_mask &= ~engine->irq_enable_mask;
1014 	intel_uncore_write(engine->uncore, GEN2_IMR, engine->i915->irq_mask);
1015 	intel_uncore_posting_read_fw(engine->uncore, GEN2_IMR);
1016 }
1017 
1018 static void
i9xx_irq_disable(struct intel_engine_cs * engine)1019 i9xx_irq_disable(struct intel_engine_cs *engine)
1020 {
1021 	engine->i915->irq_mask |= engine->irq_enable_mask;
1022 	intel_uncore_write(engine->uncore, GEN2_IMR, engine->i915->irq_mask);
1023 }
1024 
1025 static void
i8xx_irq_enable(struct intel_engine_cs * engine)1026 i8xx_irq_enable(struct intel_engine_cs *engine)
1027 {
1028 	struct drm_i915_private *i915 = engine->i915;
1029 
1030 	i915->irq_mask &= ~engine->irq_enable_mask;
1031 	intel_uncore_write16(&i915->uncore, GEN2_IMR, i915->irq_mask);
1032 	ENGINE_POSTING_READ16(engine, RING_IMR);
1033 }
1034 
1035 static void
i8xx_irq_disable(struct intel_engine_cs * engine)1036 i8xx_irq_disable(struct intel_engine_cs *engine)
1037 {
1038 	struct drm_i915_private *i915 = engine->i915;
1039 
1040 	i915->irq_mask |= engine->irq_enable_mask;
1041 	intel_uncore_write16(&i915->uncore, GEN2_IMR, i915->irq_mask);
1042 }
1043 
1044 static int
bsd_ring_flush(struct i915_request * rq,u32 mode)1045 bsd_ring_flush(struct i915_request *rq, u32 mode)
1046 {
1047 	u32 *cs;
1048 
1049 	cs = intel_ring_begin(rq, 2);
1050 	if (IS_ERR(cs))
1051 		return PTR_ERR(cs);
1052 
1053 	*cs++ = MI_FLUSH;
1054 	*cs++ = MI_NOOP;
1055 	intel_ring_advance(rq, cs);
1056 	return 0;
1057 }
1058 
1059 static void
gen6_irq_enable(struct intel_engine_cs * engine)1060 gen6_irq_enable(struct intel_engine_cs *engine)
1061 {
1062 	ENGINE_WRITE(engine, RING_IMR,
1063 		     ~(engine->irq_enable_mask | engine->irq_keep_mask));
1064 
1065 	/* Flush/delay to ensure the RING_IMR is active before the GT IMR */
1066 	ENGINE_POSTING_READ(engine, RING_IMR);
1067 
1068 	gen5_gt_enable_irq(engine->gt, engine->irq_enable_mask);
1069 }
1070 
1071 static void
gen6_irq_disable(struct intel_engine_cs * engine)1072 gen6_irq_disable(struct intel_engine_cs *engine)
1073 {
1074 	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
1075 	gen5_gt_disable_irq(engine->gt, engine->irq_enable_mask);
1076 }
1077 
1078 static void
hsw_vebox_irq_enable(struct intel_engine_cs * engine)1079 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
1080 {
1081 	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_enable_mask);
1082 
1083 	/* Flush/delay to ensure the RING_IMR is active before the GT IMR */
1084 	ENGINE_POSTING_READ(engine, RING_IMR);
1085 
1086 	gen6_gt_pm_unmask_irq(engine->gt, engine->irq_enable_mask);
1087 }
1088 
1089 static void
hsw_vebox_irq_disable(struct intel_engine_cs * engine)1090 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
1091 {
1092 	ENGINE_WRITE(engine, RING_IMR, ~0);
1093 	gen6_gt_pm_mask_irq(engine->gt, engine->irq_enable_mask);
1094 }
1095 
1096 static int
i965_emit_bb_start(struct i915_request * rq,u64 offset,u32 length,unsigned int dispatch_flags)1097 i965_emit_bb_start(struct i915_request *rq,
1098 		   u64 offset, u32 length,
1099 		   unsigned int dispatch_flags)
1100 {
1101 	u32 *cs;
1102 
1103 	cs = intel_ring_begin(rq, 2);
1104 	if (IS_ERR(cs))
1105 		return PTR_ERR(cs);
1106 
1107 	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
1108 		I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
1109 	*cs++ = offset;
1110 	intel_ring_advance(rq, cs);
1111 
1112 	return 0;
1113 }
1114 
1115 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1116 #define I830_BATCH_LIMIT SZ_256K
1117 #define I830_TLB_ENTRIES (2)
1118 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1119 static int
i830_emit_bb_start(struct i915_request * rq,u64 offset,u32 len,unsigned int dispatch_flags)1120 i830_emit_bb_start(struct i915_request *rq,
1121 		   u64 offset, u32 len,
1122 		   unsigned int dispatch_flags)
1123 {
1124 	u32 *cs, cs_offset =
1125 		intel_gt_scratch_offset(rq->engine->gt,
1126 					INTEL_GT_SCRATCH_FIELD_DEFAULT);
1127 
1128 	GEM_BUG_ON(rq->engine->gt->scratch->size < I830_WA_SIZE);
1129 
1130 	cs = intel_ring_begin(rq, 6);
1131 	if (IS_ERR(cs))
1132 		return PTR_ERR(cs);
1133 
1134 	/* Evict the invalid PTE TLBs */
1135 	*cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
1136 	*cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
1137 	*cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
1138 	*cs++ = cs_offset;
1139 	*cs++ = 0xdeadbeef;
1140 	*cs++ = MI_NOOP;
1141 	intel_ring_advance(rq, cs);
1142 
1143 	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1144 		if (len > I830_BATCH_LIMIT)
1145 			return -ENOSPC;
1146 
1147 		cs = intel_ring_begin(rq, 6 + 2);
1148 		if (IS_ERR(cs))
1149 			return PTR_ERR(cs);
1150 
1151 		/* Blit the batch (which has now all relocs applied) to the
1152 		 * stable batch scratch bo area (so that the CS never
1153 		 * stumbles over its tlb invalidation bug) ...
1154 		 */
1155 		*cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA | (6 - 2);
1156 		*cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
1157 		*cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
1158 		*cs++ = cs_offset;
1159 		*cs++ = 4096;
1160 		*cs++ = offset;
1161 
1162 		*cs++ = MI_FLUSH;
1163 		*cs++ = MI_NOOP;
1164 		intel_ring_advance(rq, cs);
1165 
1166 		/* ... and execute it. */
1167 		offset = cs_offset;
1168 	}
1169 
1170 	cs = intel_ring_begin(rq, 2);
1171 	if (IS_ERR(cs))
1172 		return PTR_ERR(cs);
1173 
1174 	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1175 	*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1176 		MI_BATCH_NON_SECURE);
1177 	intel_ring_advance(rq, cs);
1178 
1179 	return 0;
1180 }
1181 
1182 static int
i915_emit_bb_start(struct i915_request * rq,u64 offset,u32 len,unsigned int dispatch_flags)1183 i915_emit_bb_start(struct i915_request *rq,
1184 		   u64 offset, u32 len,
1185 		   unsigned int dispatch_flags)
1186 {
1187 	u32 *cs;
1188 
1189 	cs = intel_ring_begin(rq, 2);
1190 	if (IS_ERR(cs))
1191 		return PTR_ERR(cs);
1192 
1193 	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1194 	*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1195 		MI_BATCH_NON_SECURE);
1196 	intel_ring_advance(rq, cs);
1197 
1198 	return 0;
1199 }
1200 
__ring_context_fini(struct intel_context * ce)1201 static void __ring_context_fini(struct intel_context *ce)
1202 {
1203 	i915_vma_put(ce->state);
1204 }
1205 
ring_context_destroy(struct kref * ref)1206 static void ring_context_destroy(struct kref *ref)
1207 {
1208 	struct intel_context *ce = container_of(ref, typeof(*ce), ref);
1209 
1210 	GEM_BUG_ON(intel_context_is_pinned(ce));
1211 
1212 	if (ce->state)
1213 		__ring_context_fini(ce);
1214 
1215 	intel_context_fini(ce);
1216 	intel_context_free(ce);
1217 }
1218 
vm_alias(struct intel_context * ce)1219 static struct i915_address_space *vm_alias(struct intel_context *ce)
1220 {
1221 	struct i915_address_space *vm;
1222 
1223 	vm = ce->vm;
1224 	if (i915_is_ggtt(vm))
1225 		vm = &i915_vm_to_ggtt(vm)->alias->vm;
1226 
1227 	return vm;
1228 }
1229 
__context_pin_ppgtt(struct intel_context * ce)1230 static int __context_pin_ppgtt(struct intel_context *ce)
1231 {
1232 	struct i915_address_space *vm;
1233 	int err = 0;
1234 
1235 	vm = vm_alias(ce);
1236 	if (vm)
1237 		err = gen6_ppgtt_pin(i915_vm_to_ppgtt((vm)));
1238 
1239 	return err;
1240 }
1241 
__context_unpin_ppgtt(struct intel_context * ce)1242 static void __context_unpin_ppgtt(struct intel_context *ce)
1243 {
1244 	struct i915_address_space *vm;
1245 
1246 	vm = vm_alias(ce);
1247 	if (vm)
1248 		gen6_ppgtt_unpin(i915_vm_to_ppgtt(vm));
1249 }
1250 
ring_context_unpin(struct intel_context * ce)1251 static void ring_context_unpin(struct intel_context *ce)
1252 {
1253 	__context_unpin_ppgtt(ce);
1254 }
1255 
1256 static struct i915_vma *
alloc_context_vma(struct intel_engine_cs * engine)1257 alloc_context_vma(struct intel_engine_cs *engine)
1258 {
1259 	struct drm_i915_private *i915 = engine->i915;
1260 	struct drm_i915_gem_object *obj;
1261 	struct i915_vma *vma;
1262 	int err;
1263 
1264 	obj = i915_gem_object_create_shmem(i915, engine->context_size);
1265 	if (IS_ERR(obj))
1266 		return ERR_CAST(obj);
1267 
1268 	/*
1269 	 * Try to make the context utilize L3 as well as LLC.
1270 	 *
1271 	 * On VLV we don't have L3 controls in the PTEs so we
1272 	 * shouldn't touch the cache level, especially as that
1273 	 * would make the object snooped which might have a
1274 	 * negative performance impact.
1275 	 *
1276 	 * Snooping is required on non-llc platforms in execlist
1277 	 * mode, but since all GGTT accesses use PAT entry 0 we
1278 	 * get snooping anyway regardless of cache_level.
1279 	 *
1280 	 * This is only applicable for Ivy Bridge devices since
1281 	 * later platforms don't have L3 control bits in the PTE.
1282 	 */
1283 	if (IS_IVYBRIDGE(i915))
1284 		i915_gem_object_set_cache_coherency(obj, I915_CACHE_L3_LLC);
1285 
1286 	if (engine->default_state) {
1287 		void *defaults, *vaddr;
1288 
1289 		vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1290 		if (IS_ERR(vaddr)) {
1291 			err = PTR_ERR(vaddr);
1292 			goto err_obj;
1293 		}
1294 
1295 		defaults = i915_gem_object_pin_map(engine->default_state,
1296 						   I915_MAP_WB);
1297 		if (IS_ERR(defaults)) {
1298 			err = PTR_ERR(defaults);
1299 			goto err_map;
1300 		}
1301 
1302 		memcpy(vaddr, defaults, engine->context_size);
1303 		i915_gem_object_unpin_map(engine->default_state);
1304 
1305 		i915_gem_object_flush_map(obj);
1306 		i915_gem_object_unpin_map(obj);
1307 	}
1308 
1309 	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1310 	if (IS_ERR(vma)) {
1311 		err = PTR_ERR(vma);
1312 		goto err_obj;
1313 	}
1314 
1315 	return vma;
1316 
1317 err_map:
1318 	i915_gem_object_unpin_map(obj);
1319 err_obj:
1320 	i915_gem_object_put(obj);
1321 	return ERR_PTR(err);
1322 }
1323 
ring_context_alloc(struct intel_context * ce)1324 static int ring_context_alloc(struct intel_context *ce)
1325 {
1326 	struct intel_engine_cs *engine = ce->engine;
1327 
1328 	/* One ringbuffer to rule them all */
1329 	GEM_BUG_ON(!engine->legacy.ring);
1330 	ce->ring = engine->legacy.ring;
1331 	ce->timeline = intel_timeline_get(engine->legacy.timeline);
1332 
1333 	GEM_BUG_ON(ce->state);
1334 	if (engine->context_size) {
1335 		struct i915_vma *vma;
1336 
1337 		vma = alloc_context_vma(engine);
1338 		if (IS_ERR(vma))
1339 			return PTR_ERR(vma);
1340 
1341 		ce->state = vma;
1342 		if (engine->default_state)
1343 			__set_bit(CONTEXT_VALID_BIT, &ce->flags);
1344 	}
1345 
1346 	return 0;
1347 }
1348 
ring_context_pin(struct intel_context * ce)1349 static int ring_context_pin(struct intel_context *ce)
1350 {
1351 	return __context_pin_ppgtt(ce);
1352 }
1353 
ring_context_reset(struct intel_context * ce)1354 static void ring_context_reset(struct intel_context *ce)
1355 {
1356 	intel_ring_reset(ce->ring, ce->ring->emit);
1357 }
1358 
1359 static const struct intel_context_ops ring_context_ops = {
1360 	.alloc = ring_context_alloc,
1361 
1362 	.pin = ring_context_pin,
1363 	.unpin = ring_context_unpin,
1364 
1365 	.enter = intel_context_enter_engine,
1366 	.exit = intel_context_exit_engine,
1367 
1368 	.reset = ring_context_reset,
1369 	.destroy = ring_context_destroy,
1370 };
1371 
load_pd_dir(struct i915_request * rq,const struct i915_ppgtt * ppgtt,u32 valid)1372 static int load_pd_dir(struct i915_request *rq,
1373 		       const struct i915_ppgtt *ppgtt,
1374 		       u32 valid)
1375 {
1376 	const struct intel_engine_cs * const engine = rq->engine;
1377 	u32 *cs;
1378 
1379 	cs = intel_ring_begin(rq, 12);
1380 	if (IS_ERR(cs))
1381 		return PTR_ERR(cs);
1382 
1383 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1384 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine->mmio_base));
1385 	*cs++ = valid;
1386 
1387 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1388 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine->mmio_base));
1389 	*cs++ = px_base(ppgtt->pd)->ggtt_offset << 10;
1390 
1391 	/* Stall until the page table load is complete? */
1392 	*cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1393 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine->mmio_base));
1394 	*cs++ = intel_gt_scratch_offset(engine->gt,
1395 					INTEL_GT_SCRATCH_FIELD_DEFAULT);
1396 
1397 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1398 	*cs++ = i915_mmio_reg_offset(RING_INSTPM(engine->mmio_base));
1399 	*cs++ = _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE);
1400 
1401 	intel_ring_advance(rq, cs);
1402 
1403 	return rq->engine->emit_flush(rq, EMIT_FLUSH);
1404 }
1405 
mi_set_context(struct i915_request * rq,u32 flags)1406 static inline int mi_set_context(struct i915_request *rq, u32 flags)
1407 {
1408 	struct drm_i915_private *i915 = rq->i915;
1409 	struct intel_engine_cs *engine = rq->engine;
1410 	enum intel_engine_id id;
1411 	const int num_engines =
1412 		IS_HASWELL(i915) ? RUNTIME_INFO(i915)->num_engines - 1 : 0;
1413 	bool force_restore = false;
1414 	int len;
1415 	u32 *cs;
1416 
1417 	len = 4;
1418 	if (IS_GEN(i915, 7))
1419 		len += 2 + (num_engines ? 4 * num_engines + 6 : 0);
1420 	else if (IS_GEN(i915, 5))
1421 		len += 2;
1422 	if (flags & MI_FORCE_RESTORE) {
1423 		GEM_BUG_ON(flags & MI_RESTORE_INHIBIT);
1424 		flags &= ~MI_FORCE_RESTORE;
1425 		force_restore = true;
1426 		len += 2;
1427 	}
1428 
1429 	cs = intel_ring_begin(rq, len);
1430 	if (IS_ERR(cs))
1431 		return PTR_ERR(cs);
1432 
1433 	/* WaProgramMiArbOnOffAroundMiSetContext:ivb,vlv,hsw,bdw,chv */
1434 	if (IS_GEN(i915, 7)) {
1435 		*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1436 		if (num_engines) {
1437 			struct intel_engine_cs *signaller;
1438 
1439 			*cs++ = MI_LOAD_REGISTER_IMM(num_engines);
1440 			for_each_engine(signaller, engine->gt, id) {
1441 				if (signaller == engine)
1442 					continue;
1443 
1444 				*cs++ = i915_mmio_reg_offset(
1445 					   RING_PSMI_CTL(signaller->mmio_base));
1446 				*cs++ = _MASKED_BIT_ENABLE(
1447 						GEN6_PSMI_SLEEP_MSG_DISABLE);
1448 			}
1449 		}
1450 	} else if (IS_GEN(i915, 5)) {
1451 		/*
1452 		 * This w/a is only listed for pre-production ilk a/b steppings,
1453 		 * but is also mentioned for programming the powerctx. To be
1454 		 * safe, just apply the workaround; we do not use SyncFlush so
1455 		 * this should never take effect and so be a no-op!
1456 		 */
1457 		*cs++ = MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN;
1458 	}
1459 
1460 	if (force_restore) {
1461 		/*
1462 		 * The HW doesn't handle being told to restore the current
1463 		 * context very well. Quite often it likes goes to go off and
1464 		 * sulk, especially when it is meant to be reloading PP_DIR.
1465 		 * A very simple fix to force the reload is to simply switch
1466 		 * away from the current context and back again.
1467 		 *
1468 		 * Note that the kernel_context will contain random state
1469 		 * following the INHIBIT_RESTORE. We accept this since we
1470 		 * never use the kernel_context state; it is merely a
1471 		 * placeholder we use to flush other contexts.
1472 		 */
1473 		*cs++ = MI_SET_CONTEXT;
1474 		*cs++ = i915_ggtt_offset(engine->kernel_context->state) |
1475 			MI_MM_SPACE_GTT |
1476 			MI_RESTORE_INHIBIT;
1477 	}
1478 
1479 	*cs++ = MI_NOOP;
1480 	*cs++ = MI_SET_CONTEXT;
1481 	*cs++ = i915_ggtt_offset(rq->context->state) | flags;
1482 	/*
1483 	 * w/a: MI_SET_CONTEXT must always be followed by MI_NOOP
1484 	 * WaMiSetContext_Hang:snb,ivb,vlv
1485 	 */
1486 	*cs++ = MI_NOOP;
1487 
1488 	if (IS_GEN(i915, 7)) {
1489 		if (num_engines) {
1490 			struct intel_engine_cs *signaller;
1491 			i915_reg_t last_reg = {}; /* keep gcc quiet */
1492 
1493 			*cs++ = MI_LOAD_REGISTER_IMM(num_engines);
1494 			for_each_engine(signaller, engine->gt, id) {
1495 				if (signaller == engine)
1496 					continue;
1497 
1498 				last_reg = RING_PSMI_CTL(signaller->mmio_base);
1499 				*cs++ = i915_mmio_reg_offset(last_reg);
1500 				*cs++ = _MASKED_BIT_DISABLE(
1501 						GEN6_PSMI_SLEEP_MSG_DISABLE);
1502 			}
1503 
1504 			/* Insert a delay before the next switch! */
1505 			*cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1506 			*cs++ = i915_mmio_reg_offset(last_reg);
1507 			*cs++ = intel_gt_scratch_offset(engine->gt,
1508 							INTEL_GT_SCRATCH_FIELD_DEFAULT);
1509 			*cs++ = MI_NOOP;
1510 		}
1511 		*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1512 	} else if (IS_GEN(i915, 5)) {
1513 		*cs++ = MI_SUSPEND_FLUSH;
1514 	}
1515 
1516 	intel_ring_advance(rq, cs);
1517 
1518 	return 0;
1519 }
1520 
remap_l3_slice(struct i915_request * rq,int slice)1521 static int remap_l3_slice(struct i915_request *rq, int slice)
1522 {
1523 	u32 *cs, *remap_info = rq->i915->l3_parity.remap_info[slice];
1524 	int i;
1525 
1526 	if (!remap_info)
1527 		return 0;
1528 
1529 	cs = intel_ring_begin(rq, GEN7_L3LOG_SIZE/4 * 2 + 2);
1530 	if (IS_ERR(cs))
1531 		return PTR_ERR(cs);
1532 
1533 	/*
1534 	 * Note: We do not worry about the concurrent register cacheline hang
1535 	 * here because no other code should access these registers other than
1536 	 * at initialization time.
1537 	 */
1538 	*cs++ = MI_LOAD_REGISTER_IMM(GEN7_L3LOG_SIZE/4);
1539 	for (i = 0; i < GEN7_L3LOG_SIZE/4; i++) {
1540 		*cs++ = i915_mmio_reg_offset(GEN7_L3LOG(slice, i));
1541 		*cs++ = remap_info[i];
1542 	}
1543 	*cs++ = MI_NOOP;
1544 	intel_ring_advance(rq, cs);
1545 
1546 	return 0;
1547 }
1548 
remap_l3(struct i915_request * rq)1549 static int remap_l3(struct i915_request *rq)
1550 {
1551 	struct i915_gem_context *ctx = i915_request_gem_context(rq);
1552 	int i, err;
1553 
1554 	if (!ctx || !ctx->remap_slice)
1555 		return 0;
1556 
1557 	for (i = 0; i < MAX_L3_SLICES; i++) {
1558 		if (!(ctx->remap_slice & BIT(i)))
1559 			continue;
1560 
1561 		err = remap_l3_slice(rq, i);
1562 		if (err)
1563 			return err;
1564 	}
1565 
1566 	ctx->remap_slice = 0;
1567 	return 0;
1568 }
1569 
switch_mm(struct i915_request * rq,struct i915_address_space * vm)1570 static int switch_mm(struct i915_request *rq, struct i915_address_space *vm)
1571 {
1572 	int ret;
1573 
1574 	if (!vm)
1575 		return 0;
1576 
1577 	ret = rq->engine->emit_flush(rq, EMIT_FLUSH);
1578 	if (ret)
1579 		return ret;
1580 
1581 	/*
1582 	 * Not only do we need a full barrier (post-sync write) after
1583 	 * invalidating the TLBs, but we need to wait a little bit
1584 	 * longer. Whether this is merely delaying us, or the
1585 	 * subsequent flush is a key part of serialising with the
1586 	 * post-sync op, this extra pass appears vital before a
1587 	 * mm switch!
1588 	 */
1589 	ret = load_pd_dir(rq, i915_vm_to_ppgtt(vm), PP_DIR_DCLV_2G);
1590 	if (ret)
1591 		return ret;
1592 
1593 	return rq->engine->emit_flush(rq, EMIT_INVALIDATE);
1594 }
1595 
switch_context(struct i915_request * rq)1596 static int switch_context(struct i915_request *rq)
1597 {
1598 	struct intel_context *ce = rq->context;
1599 	int ret;
1600 
1601 	GEM_BUG_ON(HAS_EXECLISTS(rq->i915));
1602 
1603 	ret = switch_mm(rq, vm_alias(ce));
1604 	if (ret)
1605 		return ret;
1606 
1607 	if (ce->state) {
1608 		u32 flags;
1609 
1610 		GEM_BUG_ON(rq->engine->id != RCS0);
1611 
1612 		/* For resource streamer on HSW+ and power context elsewhere */
1613 		BUILD_BUG_ON(HSW_MI_RS_SAVE_STATE_EN != MI_SAVE_EXT_STATE_EN);
1614 		BUILD_BUG_ON(HSW_MI_RS_RESTORE_STATE_EN != MI_RESTORE_EXT_STATE_EN);
1615 
1616 		flags = MI_SAVE_EXT_STATE_EN | MI_MM_SPACE_GTT;
1617 		if (test_bit(CONTEXT_VALID_BIT, &ce->flags))
1618 			flags |= MI_RESTORE_EXT_STATE_EN;
1619 		else
1620 			flags |= MI_RESTORE_INHIBIT;
1621 
1622 		ret = mi_set_context(rq, flags);
1623 		if (ret)
1624 			return ret;
1625 	}
1626 
1627 	ret = remap_l3(rq);
1628 	if (ret)
1629 		return ret;
1630 
1631 	return 0;
1632 }
1633 
ring_request_alloc(struct i915_request * request)1634 static int ring_request_alloc(struct i915_request *request)
1635 {
1636 	int ret;
1637 
1638 	GEM_BUG_ON(!intel_context_is_pinned(request->context));
1639 	GEM_BUG_ON(i915_request_timeline(request)->has_initial_breadcrumb);
1640 
1641 	/*
1642 	 * Flush enough space to reduce the likelihood of waiting after
1643 	 * we start building the request - in which case we will just
1644 	 * have to repeat work.
1645 	 */
1646 	request->reserved_space += LEGACY_REQUEST_SIZE;
1647 
1648 	/* Unconditionally invalidate GPU caches and TLBs. */
1649 	ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
1650 	if (ret)
1651 		return ret;
1652 
1653 	ret = switch_context(request);
1654 	if (ret)
1655 		return ret;
1656 
1657 	request->reserved_space -= LEGACY_REQUEST_SIZE;
1658 	return 0;
1659 }
1660 
gen6_bsd_submit_request(struct i915_request * request)1661 static void gen6_bsd_submit_request(struct i915_request *request)
1662 {
1663 	struct intel_uncore *uncore = request->engine->uncore;
1664 
1665 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1666 
1667        /* Every tail move must follow the sequence below */
1668 
1669 	/* Disable notification that the ring is IDLE. The GT
1670 	 * will then assume that it is busy and bring it out of rc6.
1671 	 */
1672 	intel_uncore_write_fw(uncore, GEN6_BSD_SLEEP_PSMI_CONTROL,
1673 			      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1674 
1675 	/* Clear the context id. Here be magic! */
1676 	intel_uncore_write64_fw(uncore, GEN6_BSD_RNCID, 0x0);
1677 
1678 	/* Wait for the ring not to be idle, i.e. for it to wake up. */
1679 	if (__intel_wait_for_register_fw(uncore,
1680 					 GEN6_BSD_SLEEP_PSMI_CONTROL,
1681 					 GEN6_BSD_SLEEP_INDICATOR,
1682 					 0,
1683 					 1000, 0, NULL))
1684 		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1685 
1686 	/* Now that the ring is fully powered up, update the tail */
1687 	i9xx_submit_request(request);
1688 
1689 	/* Let the ring send IDLE messages to the GT again,
1690 	 * and so let it sleep to conserve power when idle.
1691 	 */
1692 	intel_uncore_write_fw(uncore, GEN6_BSD_SLEEP_PSMI_CONTROL,
1693 			      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1694 
1695 	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1696 }
1697 
mi_flush_dw(struct i915_request * rq,u32 flags)1698 static int mi_flush_dw(struct i915_request *rq, u32 flags)
1699 {
1700 	u32 cmd, *cs;
1701 
1702 	cs = intel_ring_begin(rq, 4);
1703 	if (IS_ERR(cs))
1704 		return PTR_ERR(cs);
1705 
1706 	cmd = MI_FLUSH_DW;
1707 
1708 	/*
1709 	 * We always require a command barrier so that subsequent
1710 	 * commands, such as breadcrumb interrupts, are strictly ordered
1711 	 * wrt the contents of the write cache being flushed to memory
1712 	 * (and thus being coherent from the CPU).
1713 	 */
1714 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1715 
1716 	/*
1717 	 * Bspec vol 1c.3 - blitter engine command streamer:
1718 	 * "If ENABLED, all TLBs will be invalidated once the flush
1719 	 * operation is complete. This bit is only valid when the
1720 	 * Post-Sync Operation field is a value of 1h or 3h."
1721 	 */
1722 	cmd |= flags;
1723 
1724 	*cs++ = cmd;
1725 	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1726 	*cs++ = 0;
1727 	*cs++ = MI_NOOP;
1728 
1729 	intel_ring_advance(rq, cs);
1730 
1731 	return 0;
1732 }
1733 
gen6_flush_dw(struct i915_request * rq,u32 mode,u32 invflags)1734 static int gen6_flush_dw(struct i915_request *rq, u32 mode, u32 invflags)
1735 {
1736 	return mi_flush_dw(rq, mode & EMIT_INVALIDATE ? invflags : 0);
1737 }
1738 
gen6_bsd_ring_flush(struct i915_request * rq,u32 mode)1739 static int gen6_bsd_ring_flush(struct i915_request *rq, u32 mode)
1740 {
1741 	return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB | MI_INVALIDATE_BSD);
1742 }
1743 
1744 static int
hsw_emit_bb_start(struct i915_request * rq,u64 offset,u32 len,unsigned int dispatch_flags)1745 hsw_emit_bb_start(struct i915_request *rq,
1746 		  u64 offset, u32 len,
1747 		  unsigned int dispatch_flags)
1748 {
1749 	u32 *cs;
1750 
1751 	cs = intel_ring_begin(rq, 2);
1752 	if (IS_ERR(cs))
1753 		return PTR_ERR(cs);
1754 
1755 	*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
1756 		0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW);
1757 	/* bit0-7 is the length on GEN6+ */
1758 	*cs++ = offset;
1759 	intel_ring_advance(rq, cs);
1760 
1761 	return 0;
1762 }
1763 
1764 static int
gen6_emit_bb_start(struct i915_request * rq,u64 offset,u32 len,unsigned int dispatch_flags)1765 gen6_emit_bb_start(struct i915_request *rq,
1766 		   u64 offset, u32 len,
1767 		   unsigned int dispatch_flags)
1768 {
1769 	u32 *cs;
1770 
1771 	cs = intel_ring_begin(rq, 2);
1772 	if (IS_ERR(cs))
1773 		return PTR_ERR(cs);
1774 
1775 	*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
1776 		0 : MI_BATCH_NON_SECURE_I965);
1777 	/* bit0-7 is the length on GEN6+ */
1778 	*cs++ = offset;
1779 	intel_ring_advance(rq, cs);
1780 
1781 	return 0;
1782 }
1783 
1784 /* Blitter support (SandyBridge+) */
1785 
gen6_ring_flush(struct i915_request * rq,u32 mode)1786 static int gen6_ring_flush(struct i915_request *rq, u32 mode)
1787 {
1788 	return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB);
1789 }
1790 
i9xx_set_default_submission(struct intel_engine_cs * engine)1791 static void i9xx_set_default_submission(struct intel_engine_cs *engine)
1792 {
1793 	engine->submit_request = i9xx_submit_request;
1794 
1795 	engine->park = NULL;
1796 	engine->unpark = NULL;
1797 }
1798 
gen6_bsd_set_default_submission(struct intel_engine_cs * engine)1799 static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
1800 {
1801 	i9xx_set_default_submission(engine);
1802 	engine->submit_request = gen6_bsd_submit_request;
1803 }
1804 
ring_release(struct intel_engine_cs * engine)1805 static void ring_release(struct intel_engine_cs *engine)
1806 {
1807 	struct drm_i915_private *dev_priv = engine->i915;
1808 
1809 	WARN_ON(INTEL_GEN(dev_priv) > 2 &&
1810 		(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE) == 0);
1811 
1812 	intel_engine_cleanup_common(engine);
1813 
1814 	intel_ring_unpin(engine->legacy.ring);
1815 	intel_ring_put(engine->legacy.ring);
1816 
1817 	intel_timeline_unpin(engine->legacy.timeline);
1818 	intel_timeline_put(engine->legacy.timeline);
1819 }
1820 
setup_irq(struct intel_engine_cs * engine)1821 static void setup_irq(struct intel_engine_cs *engine)
1822 {
1823 	struct drm_i915_private *i915 = engine->i915;
1824 
1825 	if (INTEL_GEN(i915) >= 6) {
1826 		engine->irq_enable = gen6_irq_enable;
1827 		engine->irq_disable = gen6_irq_disable;
1828 	} else if (INTEL_GEN(i915) >= 5) {
1829 		engine->irq_enable = gen5_irq_enable;
1830 		engine->irq_disable = gen5_irq_disable;
1831 	} else if (INTEL_GEN(i915) >= 3) {
1832 		engine->irq_enable = i9xx_irq_enable;
1833 		engine->irq_disable = i9xx_irq_disable;
1834 	} else {
1835 		engine->irq_enable = i8xx_irq_enable;
1836 		engine->irq_disable = i8xx_irq_disable;
1837 	}
1838 }
1839 
setup_common(struct intel_engine_cs * engine)1840 static void setup_common(struct intel_engine_cs *engine)
1841 {
1842 	struct drm_i915_private *i915 = engine->i915;
1843 
1844 	/* gen8+ are only supported with execlists */
1845 	GEM_BUG_ON(INTEL_GEN(i915) >= 8);
1846 
1847 	setup_irq(engine);
1848 
1849 	engine->resume = xcs_resume;
1850 	engine->reset.prepare = reset_prepare;
1851 	engine->reset.rewind = reset_rewind;
1852 	engine->reset.cancel = reset_cancel;
1853 	engine->reset.finish = reset_finish;
1854 
1855 	engine->cops = &ring_context_ops;
1856 	engine->request_alloc = ring_request_alloc;
1857 
1858 	/*
1859 	 * Using a global execution timeline; the previous final breadcrumb is
1860 	 * equivalent to our next initial bread so we can elide
1861 	 * engine->emit_init_breadcrumb().
1862 	 */
1863 	engine->emit_fini_breadcrumb = i9xx_emit_breadcrumb;
1864 	if (IS_GEN(i915, 5))
1865 		engine->emit_fini_breadcrumb = gen5_emit_breadcrumb;
1866 
1867 	engine->set_default_submission = i9xx_set_default_submission;
1868 
1869 	if (INTEL_GEN(i915) >= 6)
1870 		engine->emit_bb_start = gen6_emit_bb_start;
1871 	else if (INTEL_GEN(i915) >= 4)
1872 		engine->emit_bb_start = i965_emit_bb_start;
1873 	else if (IS_I830(i915) || IS_I845G(i915))
1874 		engine->emit_bb_start = i830_emit_bb_start;
1875 	else
1876 		engine->emit_bb_start = i915_emit_bb_start;
1877 }
1878 
setup_rcs(struct intel_engine_cs * engine)1879 static void setup_rcs(struct intel_engine_cs *engine)
1880 {
1881 	struct drm_i915_private *i915 = engine->i915;
1882 
1883 	if (HAS_L3_DPF(i915))
1884 		engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1885 
1886 	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
1887 
1888 	if (INTEL_GEN(i915) >= 7) {
1889 		engine->emit_flush = gen7_render_ring_flush;
1890 		engine->emit_fini_breadcrumb = gen7_rcs_emit_breadcrumb;
1891 	} else if (IS_GEN(i915, 6)) {
1892 		engine->emit_flush = gen6_render_ring_flush;
1893 		engine->emit_fini_breadcrumb = gen6_rcs_emit_breadcrumb;
1894 	} else if (IS_GEN(i915, 5)) {
1895 		engine->emit_flush = gen4_render_ring_flush;
1896 	} else {
1897 		if (INTEL_GEN(i915) < 4)
1898 			engine->emit_flush = gen2_render_ring_flush;
1899 		else
1900 			engine->emit_flush = gen4_render_ring_flush;
1901 		engine->irq_enable_mask = I915_USER_INTERRUPT;
1902 	}
1903 
1904 	if (IS_HASWELL(i915))
1905 		engine->emit_bb_start = hsw_emit_bb_start;
1906 
1907 	engine->resume = rcs_resume;
1908 }
1909 
setup_vcs(struct intel_engine_cs * engine)1910 static void setup_vcs(struct intel_engine_cs *engine)
1911 {
1912 	struct drm_i915_private *i915 = engine->i915;
1913 
1914 	if (INTEL_GEN(i915) >= 6) {
1915 		/* gen6 bsd needs a special wa for tail updates */
1916 		if (IS_GEN(i915, 6))
1917 			engine->set_default_submission = gen6_bsd_set_default_submission;
1918 		engine->emit_flush = gen6_bsd_ring_flush;
1919 		engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
1920 
1921 		if (IS_GEN(i915, 6))
1922 			engine->emit_fini_breadcrumb = gen6_xcs_emit_breadcrumb;
1923 		else
1924 			engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
1925 	} else {
1926 		engine->emit_flush = bsd_ring_flush;
1927 		if (IS_GEN(i915, 5))
1928 			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
1929 		else
1930 			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
1931 	}
1932 }
1933 
setup_bcs(struct intel_engine_cs * engine)1934 static void setup_bcs(struct intel_engine_cs *engine)
1935 {
1936 	struct drm_i915_private *i915 = engine->i915;
1937 
1938 	engine->emit_flush = gen6_ring_flush;
1939 	engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
1940 
1941 	if (IS_GEN(i915, 6))
1942 		engine->emit_fini_breadcrumb = gen6_xcs_emit_breadcrumb;
1943 	else
1944 		engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
1945 }
1946 
setup_vecs(struct intel_engine_cs * engine)1947 static void setup_vecs(struct intel_engine_cs *engine)
1948 {
1949 	struct drm_i915_private *i915 = engine->i915;
1950 
1951 	GEM_BUG_ON(INTEL_GEN(i915) < 7);
1952 
1953 	engine->emit_flush = gen6_ring_flush;
1954 	engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
1955 	engine->irq_enable = hsw_vebox_irq_enable;
1956 	engine->irq_disable = hsw_vebox_irq_disable;
1957 
1958 	engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
1959 }
1960 
intel_ring_submission_setup(struct intel_engine_cs * engine)1961 int intel_ring_submission_setup(struct intel_engine_cs *engine)
1962 {
1963 	struct intel_timeline *timeline;
1964 	struct intel_ring *ring;
1965 	int err;
1966 
1967 	setup_common(engine);
1968 
1969 	switch (engine->class) {
1970 	case RENDER_CLASS:
1971 		setup_rcs(engine);
1972 		break;
1973 	case VIDEO_DECODE_CLASS:
1974 		setup_vcs(engine);
1975 		break;
1976 	case COPY_ENGINE_CLASS:
1977 		setup_bcs(engine);
1978 		break;
1979 	case VIDEO_ENHANCEMENT_CLASS:
1980 		setup_vecs(engine);
1981 		break;
1982 	default:
1983 		MISSING_CASE(engine->class);
1984 		return -ENODEV;
1985 	}
1986 
1987 	timeline = intel_timeline_create(engine->gt, engine->status_page.vma);
1988 	if (IS_ERR(timeline)) {
1989 		err = PTR_ERR(timeline);
1990 		goto err;
1991 	}
1992 	GEM_BUG_ON(timeline->has_initial_breadcrumb);
1993 
1994 	err = intel_timeline_pin(timeline);
1995 	if (err)
1996 		goto err_timeline;
1997 
1998 	ring = intel_engine_create_ring(engine, SZ_16K);
1999 	if (IS_ERR(ring)) {
2000 		err = PTR_ERR(ring);
2001 		goto err_timeline_unpin;
2002 	}
2003 
2004 	err = intel_ring_pin(ring);
2005 	if (err)
2006 		goto err_ring;
2007 
2008 	GEM_BUG_ON(engine->legacy.ring);
2009 	engine->legacy.ring = ring;
2010 	engine->legacy.timeline = timeline;
2011 
2012 	GEM_BUG_ON(timeline->hwsp_ggtt != engine->status_page.vma);
2013 
2014 	/* Finally, take ownership and responsibility for cleanup! */
2015 	engine->release = ring_release;
2016 
2017 	return 0;
2018 
2019 err_ring:
2020 	intel_ring_put(ring);
2021 err_timeline_unpin:
2022 	intel_timeline_unpin(timeline);
2023 err_timeline:
2024 	intel_timeline_put(timeline);
2025 err:
2026 	intel_engine_cleanup_common(engine);
2027 	return err;
2028 }
2029