xref: /openbsd-src/gnu/gcc/gcc/regclass.c (revision 404b540a9034ac75a6199ad1a32d1bbc7a0d4210)
1 /* Compute register class preferences for pseudo-registers.
2    Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3    1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4    Free Software Foundation, Inc.
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12 
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING.  If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA.  */
22 
23 
24 /* This file contains two passes of the compiler: reg_scan and reg_class.
25    It also defines some tables of information about the hardware registers
26    and a function init_reg_sets to initialize the tables.  */
27 
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "hard-reg-set.h"
33 #include "rtl.h"
34 #include "expr.h"
35 #include "tm_p.h"
36 #include "flags.h"
37 #include "basic-block.h"
38 #include "regs.h"
39 #include "addresses.h"
40 #include "function.h"
41 #include "insn-config.h"
42 #include "recog.h"
43 #include "reload.h"
44 #include "real.h"
45 #include "toplev.h"
46 #include "output.h"
47 #include "ggc.h"
48 #include "timevar.h"
49 #include "hashtab.h"
50 #include "target.h"
51 
52 static void init_reg_sets_1 (void);
53 static void init_reg_autoinc (void);
54 
55 /* If we have auto-increment or auto-decrement and we can have secondary
56    reloads, we are not allowed to use classes requiring secondary
57    reloads for pseudos auto-incremented since reload can't handle it.  */
58 /* We leave it to target hooks to decide if we have secondary reloads, so
59    assume that we might have them.  */
60 #if defined(AUTO_INC_DEC) /* */
61 #define FORBIDDEN_INC_DEC_CLASSES
62 #endif
63 
64 /* Register tables used by many passes.  */
65 
66 /* Indexed by hard register number, contains 1 for registers
67    that are fixed use (stack pointer, pc, frame pointer, etc.).
68    These are the registers that cannot be used to allocate
69    a pseudo reg for general use.  */
70 
71 char fixed_regs[FIRST_PSEUDO_REGISTER];
72 
73 /* Same info as a HARD_REG_SET.  */
74 
75 HARD_REG_SET fixed_reg_set;
76 
77 /* Data for initializing the above.  */
78 
79 static const char initial_fixed_regs[] = FIXED_REGISTERS;
80 
81 /* Indexed by hard register number, contains 1 for registers
82    that are fixed use or are clobbered by function calls.
83    These are the registers that cannot be used to allocate
84    a pseudo reg whose life crosses calls unless we are able
85    to save/restore them across the calls.  */
86 
87 char call_used_regs[FIRST_PSEUDO_REGISTER];
88 
89 /* Same info as a HARD_REG_SET.  */
90 
91 HARD_REG_SET call_used_reg_set;
92 
93 /* HARD_REG_SET of registers we want to avoid caller saving.  */
94 HARD_REG_SET losing_caller_save_reg_set;
95 
96 /* Data for initializing the above.  */
97 
98 static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
99 
100 /* This is much like call_used_regs, except it doesn't have to
101    be a superset of FIXED_REGISTERS. This vector indicates
102    what is really call clobbered, and is used when defining
103    regs_invalidated_by_call.  */
104 
105 #ifdef CALL_REALLY_USED_REGISTERS
106 char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
107 #endif
108 
109 #ifdef CALL_REALLY_USED_REGISTERS
110 #define CALL_REALLY_USED_REGNO_P(X)  call_really_used_regs[X]
111 #else
112 #define CALL_REALLY_USED_REGNO_P(X)  call_used_regs[X]
113 #endif
114 
115 
116 /* Indexed by hard register number, contains 1 for registers that are
117    fixed use or call used registers that cannot hold quantities across
118    calls even if we are willing to save and restore them.  call fixed
119    registers are a subset of call used registers.  */
120 
121 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
122 
123 /* The same info as a HARD_REG_SET.  */
124 
125 HARD_REG_SET call_fixed_reg_set;
126 
127 /* Indexed by hard register number, contains 1 for registers
128    that are being used for global register decls.
129    These must be exempt from ordinary flow analysis
130    and are also considered fixed.  */
131 
132 char global_regs[FIRST_PSEUDO_REGISTER];
133 
134 /* Contains 1 for registers that are set or clobbered by calls.  */
135 /* ??? Ideally, this would be just call_used_regs plus global_regs, but
136    for someone's bright idea to have call_used_regs strictly include
137    fixed_regs.  Which leaves us guessing as to the set of fixed_regs
138    that are actually preserved.  We know for sure that those associated
139    with the local stack frame are safe, but scant others.  */
140 
141 HARD_REG_SET regs_invalidated_by_call;
142 
143 /* Table of register numbers in the order in which to try to use them.  */
144 #ifdef REG_ALLOC_ORDER
145 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
146 
147 /* The inverse of reg_alloc_order.  */
148 int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
149 #endif
150 
151 /* For each reg class, a HARD_REG_SET saying which registers are in it.  */
152 
153 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
154 
155 /* The same information, but as an array of unsigned ints.  We copy from
156    these unsigned ints to the table above.  We do this so the tm.h files
157    do not have to be aware of the wordsize for machines with <= 64 regs.
158    Note that we hard-code 32 here, not HOST_BITS_PER_INT.  */
159 
160 #define N_REG_INTS  \
161   ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
162 
163 static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
164   = REG_CLASS_CONTENTS;
165 
166 /* For each reg class, number of regs it contains.  */
167 
168 unsigned int reg_class_size[N_REG_CLASSES];
169 
170 /* For each reg class, table listing all the containing classes.  */
171 
172 static enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
173 
174 /* For each reg class, table listing all the classes contained in it.  */
175 
176 static enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
177 
178 /* For each pair of reg classes,
179    a largest reg class contained in their union.  */
180 
181 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
182 
183 /* For each pair of reg classes,
184    the smallest reg class containing their union.  */
185 
186 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
187 
188 /* Array containing all of the register names.  */
189 
190 const char * reg_names[] = REGISTER_NAMES;
191 
192 /* Array containing all of the register class names.  */
193 
194 const char * reg_class_names[] = REG_CLASS_NAMES;
195 
196 /* For each hard register, the widest mode object that it can contain.
197    This will be a MODE_INT mode if the register can hold integers.  Otherwise
198    it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
199    register.  */
200 
201 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
202 
203 /* 1 if there is a register of given mode.  */
204 
205 bool have_regs_of_mode [MAX_MACHINE_MODE];
206 
207 /* 1 if class does contain register of given mode.  */
208 
209 static char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
210 
211 /* Maximum cost of moving from a register in one class to a register in
212    another class.  Based on REGISTER_MOVE_COST.  */
213 
214 static int move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
215 
216 /* Similar, but here we don't have to move if the first index is a subset
217    of the second so in that case the cost is zero.  */
218 
219 static int may_move_in_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
220 
221 /* Similar, but here we don't have to move if the first index is a superset
222    of the second so in that case the cost is zero.  */
223 
224 static int may_move_out_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
225 
226 #ifdef FORBIDDEN_INC_DEC_CLASSES
227 
228 /* These are the classes that regs which are auto-incremented or decremented
229    cannot be put in.  */
230 
231 static int forbidden_inc_dec_class[N_REG_CLASSES];
232 
233 /* Indexed by n, is nonzero if (REG n) is used in an auto-inc or auto-dec
234    context.  */
235 
236 static char *in_inc_dec;
237 
238 #endif /* FORBIDDEN_INC_DEC_CLASSES */
239 
240 /* Sample MEM values for use by memory_move_secondary_cost.  */
241 
242 static GTY(()) rtx top_of_stack[MAX_MACHINE_MODE];
243 
244 /* Linked list of reg_info structures allocated for reg_n_info array.
245    Grouping all of the allocated structures together in one lump
246    means only one call to bzero to clear them, rather than n smaller
247    calls.  */
248 struct reg_info_data {
249   struct reg_info_data *next;	/* next set of reg_info structures */
250   size_t min_index;		/* minimum index # */
251   size_t max_index;		/* maximum index # */
252   char used_p;			/* nonzero if this has been used previously */
253   reg_info data[1];		/* beginning of the reg_info data */
254 };
255 
256 static struct reg_info_data *reg_info_head;
257 
258 /* No more global register variables may be declared; true once
259    regclass has been initialized.  */
260 
261 static int no_global_reg_vars = 0;
262 
263 /* Specify number of hard registers given machine mode occupy.  */
264 unsigned char hard_regno_nregs[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];
265 
266 /* Function called only once to initialize the above data on reg usage.
267    Once this is done, various switches may override.  */
268 
269 void
init_reg_sets(void)270 init_reg_sets (void)
271 {
272   int i, j;
273 
274   /* First copy the register information from the initial int form into
275      the regsets.  */
276 
277   for (i = 0; i < N_REG_CLASSES; i++)
278     {
279       CLEAR_HARD_REG_SET (reg_class_contents[i]);
280 
281       /* Note that we hard-code 32 here, not HOST_BITS_PER_INT.  */
282       for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
283 	if (int_reg_class_contents[i][j / 32]
284 	    & ((unsigned) 1 << (j % 32)))
285 	  SET_HARD_REG_BIT (reg_class_contents[i], j);
286     }
287 
288   /* Sanity check: make sure the target macros FIXED_REGISTERS and
289      CALL_USED_REGISTERS had the right number of initializers.  */
290   gcc_assert (sizeof fixed_regs == sizeof initial_fixed_regs);
291   gcc_assert (sizeof call_used_regs == sizeof initial_call_used_regs);
292 
293   memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
294   memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
295   memset (global_regs, 0, sizeof global_regs);
296 
297 #ifdef REG_ALLOC_ORDER
298   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
299     inv_reg_alloc_order[reg_alloc_order[i]] = i;
300 #endif
301 }
302 
303 /* After switches have been processed, which perhaps alter
304    `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs.  */
305 
306 static void
init_reg_sets_1(void)307 init_reg_sets_1 (void)
308 {
309   unsigned int i, j;
310   unsigned int /* enum machine_mode */ m;
311 
312   /* This macro allows the fixed or call-used registers
313      and the register classes to depend on target flags.  */
314 
315 #ifdef CONDITIONAL_REGISTER_USAGE
316   CONDITIONAL_REGISTER_USAGE;
317 #endif
318 
319   /* Compute number of hard regs in each class.  */
320 
321   memset (reg_class_size, 0, sizeof reg_class_size);
322   for (i = 0; i < N_REG_CLASSES; i++)
323     for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
324       if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
325 	reg_class_size[i]++;
326 
327   /* Initialize the table of subunions.
328      reg_class_subunion[I][J] gets the largest-numbered reg-class
329      that is contained in the union of classes I and J.  */
330 
331   for (i = 0; i < N_REG_CLASSES; i++)
332     {
333       for (j = 0; j < N_REG_CLASSES; j++)
334 	{
335 	  HARD_REG_SET c;
336 	  int k;
337 
338 	  COPY_HARD_REG_SET (c, reg_class_contents[i]);
339 	  IOR_HARD_REG_SET (c, reg_class_contents[j]);
340 	  for (k = 0; k < N_REG_CLASSES; k++)
341 	    {
342 	      GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
343 				     subclass1);
344 	      continue;
345 
346 	    subclass1:
347 	      /* Keep the largest subclass.  */		/* SPEE 900308 */
348 	      GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
349 				     reg_class_contents[(int) reg_class_subunion[i][j]],
350 				     subclass2);
351 	      reg_class_subunion[i][j] = (enum reg_class) k;
352 	    subclass2:
353 	      ;
354 	    }
355 	}
356     }
357 
358   /* Initialize the table of superunions.
359      reg_class_superunion[I][J] gets the smallest-numbered reg-class
360      containing the union of classes I and J.  */
361 
362   for (i = 0; i < N_REG_CLASSES; i++)
363     {
364       for (j = 0; j < N_REG_CLASSES; j++)
365 	{
366 	  HARD_REG_SET c;
367 	  int k;
368 
369 	  COPY_HARD_REG_SET (c, reg_class_contents[i]);
370 	  IOR_HARD_REG_SET (c, reg_class_contents[j]);
371 	  for (k = 0; k < N_REG_CLASSES; k++)
372 	    GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
373 
374 	superclass:
375 	  reg_class_superunion[i][j] = (enum reg_class) k;
376 	}
377     }
378 
379   /* Initialize the tables of subclasses and superclasses of each reg class.
380      First clear the whole table, then add the elements as they are found.  */
381 
382   for (i = 0; i < N_REG_CLASSES; i++)
383     {
384       for (j = 0; j < N_REG_CLASSES; j++)
385 	{
386 	  reg_class_superclasses[i][j] = LIM_REG_CLASSES;
387 	  reg_class_subclasses[i][j] = LIM_REG_CLASSES;
388 	}
389     }
390 
391   for (i = 0; i < N_REG_CLASSES; i++)
392     {
393       if (i == (int) NO_REGS)
394 	continue;
395 
396       for (j = i + 1; j < N_REG_CLASSES; j++)
397 	{
398 	  enum reg_class *p;
399 
400 	  GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
401 				 subclass);
402 	  continue;
403 	subclass:
404 	  /* Reg class I is a subclass of J.
405 	     Add J to the table of superclasses of I.  */
406 	  p = &reg_class_superclasses[i][0];
407 	  while (*p != LIM_REG_CLASSES) p++;
408 	  *p = (enum reg_class) j;
409 	  /* Add I to the table of superclasses of J.  */
410 	  p = &reg_class_subclasses[j][0];
411 	  while (*p != LIM_REG_CLASSES) p++;
412 	  *p = (enum reg_class) i;
413 	}
414     }
415 
416   /* Initialize "constant" tables.  */
417 
418   CLEAR_HARD_REG_SET (fixed_reg_set);
419   CLEAR_HARD_REG_SET (call_used_reg_set);
420   CLEAR_HARD_REG_SET (call_fixed_reg_set);
421   CLEAR_HARD_REG_SET (regs_invalidated_by_call);
422 
423   memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
424 
425   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
426     {
427       /* call_used_regs must include fixed_regs.  */
428       gcc_assert (!fixed_regs[i] || call_used_regs[i]);
429 #ifdef CALL_REALLY_USED_REGISTERS
430       /* call_used_regs must include call_really_used_regs.  */
431       gcc_assert (!call_really_used_regs[i] || call_used_regs[i]);
432 #endif
433 
434       if (fixed_regs[i])
435 	SET_HARD_REG_BIT (fixed_reg_set, i);
436 
437       if (call_used_regs[i])
438 	SET_HARD_REG_BIT (call_used_reg_set, i);
439       if (call_fixed_regs[i])
440 	SET_HARD_REG_BIT (call_fixed_reg_set, i);
441       if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
442 	SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
443 
444       /* There are a couple of fixed registers that we know are safe to
445 	 exclude from being clobbered by calls:
446 
447 	 The frame pointer is always preserved across calls.  The arg pointer
448 	 is if it is fixed.  The stack pointer usually is, unless
449 	 RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
450 	 If we are generating PIC code, the PIC offset table register is
451 	 preserved across calls, though the target can override that.  */
452 
453       if (i == STACK_POINTER_REGNUM)
454 	;
455       else if (global_regs[i])
456 	SET_HARD_REG_BIT (regs_invalidated_by_call, i);
457       else if (i == FRAME_POINTER_REGNUM)
458 	;
459 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
460       else if (i == HARD_FRAME_POINTER_REGNUM)
461 	;
462 #endif
463 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
464       else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
465 	;
466 #endif
467 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
468       else if (i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
469 	;
470 #endif
471       else if (CALL_REALLY_USED_REGNO_P (i))
472 	SET_HARD_REG_BIT (regs_invalidated_by_call, i);
473     }
474 
475   memset (have_regs_of_mode, 0, sizeof (have_regs_of_mode));
476   memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
477   for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
478     for (i = 0; i < N_REG_CLASSES; i++)
479       if ((unsigned) CLASS_MAX_NREGS (i, m) <= reg_class_size[i])
480 	for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
481 	  if (!fixed_regs [j] && TEST_HARD_REG_BIT (reg_class_contents[i], j)
482 	      && HARD_REGNO_MODE_OK (j, m))
483 	     {
484 	       contains_reg_of_mode [i][m] = 1;
485 	       have_regs_of_mode [m] = 1;
486 	       break;
487 	     }
488 
489   /* Initialize the move cost table.  Find every subset of each class
490      and take the maximum cost of moving any subset to any other.  */
491 
492   for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
493     if (have_regs_of_mode [m])
494       {
495 	for (i = 0; i < N_REG_CLASSES; i++)
496 	  if (contains_reg_of_mode [i][m])
497 	    for (j = 0; j < N_REG_CLASSES; j++)
498 	      {
499 		int cost;
500 		enum reg_class *p1, *p2;
501 
502 		if (!contains_reg_of_mode [j][m])
503 		  {
504 		    move_cost[m][i][j] = 65536;
505 		    may_move_in_cost[m][i][j] = 65536;
506 		    may_move_out_cost[m][i][j] = 65536;
507 		  }
508 		else
509 		  {
510 		    cost = REGISTER_MOVE_COST (m, i, j);
511 
512 		    for (p2 = &reg_class_subclasses[j][0];
513 			 *p2 != LIM_REG_CLASSES;
514 			 p2++)
515 		      if (*p2 != i && contains_reg_of_mode [*p2][m])
516 			cost = MAX (cost, move_cost [m][i][*p2]);
517 
518 		    for (p1 = &reg_class_subclasses[i][0];
519 			 *p1 != LIM_REG_CLASSES;
520 			 p1++)
521 		      if (*p1 != j && contains_reg_of_mode [*p1][m])
522 			cost = MAX (cost, move_cost [m][*p1][j]);
523 
524 		    move_cost[m][i][j] = cost;
525 
526 		    if (reg_class_subset_p (i, j))
527 		      may_move_in_cost[m][i][j] = 0;
528 		    else
529 		      may_move_in_cost[m][i][j] = cost;
530 
531 		    if (reg_class_subset_p (j, i))
532 		      may_move_out_cost[m][i][j] = 0;
533 		    else
534 		      may_move_out_cost[m][i][j] = cost;
535 		  }
536 	      }
537 	  else
538 	    for (j = 0; j < N_REG_CLASSES; j++)
539 	      {
540 		move_cost[m][i][j] = 65536;
541 		may_move_in_cost[m][i][j] = 65536;
542 		may_move_out_cost[m][i][j] = 65536;
543 	      }
544       }
545 }
546 
547 /* Compute the table of register modes.
548    These values are used to record death information for individual registers
549    (as opposed to a multi-register mode).  */
550 
551 void
init_reg_modes_once(void)552 init_reg_modes_once (void)
553 {
554   int i, j;
555 
556   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
557     for (j = 0; j < MAX_MACHINE_MODE; j++)
558       hard_regno_nregs[i][j] = HARD_REGNO_NREGS(i, (enum machine_mode)j);
559 
560   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
561     {
562       reg_raw_mode[i] = choose_hard_reg_mode (i, 1, false);
563 
564       /* If we couldn't find a valid mode, just use the previous mode.
565          ??? One situation in which we need to do this is on the mips where
566 	 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2.  Ideally we'd like
567 	 to use DF mode for the even registers and VOIDmode for the odd
568 	 (for the cpu models where the odd ones are inaccessible).  */
569       if (reg_raw_mode[i] == VOIDmode)
570 	reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
571     }
572 }
573 
574 /* Finish initializing the register sets and
575    initialize the register modes.  */
576 
577 void
init_regs(void)578 init_regs (void)
579 {
580   /* This finishes what was started by init_reg_sets, but couldn't be done
581      until after register usage was specified.  */
582   init_reg_sets_1 ();
583 
584   init_reg_autoinc ();
585 }
586 
587 /* Initialize some fake stack-frame MEM references for use in
588    memory_move_secondary_cost.  */
589 
590 void
init_fake_stack_mems(void)591 init_fake_stack_mems (void)
592 {
593   {
594     int i;
595 
596     for (i = 0; i < MAX_MACHINE_MODE; i++)
597       top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
598   }
599 }
600 
601 
602 /* Compute extra cost of moving registers to/from memory due to reloads.
603    Only needed if secondary reloads are required for memory moves.  */
604 
605 int
memory_move_secondary_cost(enum machine_mode mode,enum reg_class class,int in)606 memory_move_secondary_cost (enum machine_mode mode, enum reg_class class, int in)
607 {
608   enum reg_class altclass;
609   int partial_cost = 0;
610   /* We need a memory reference to feed to SECONDARY... macros.  */
611   /* mem may be unused even if the SECONDARY_ macros are defined.  */
612   rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
613 
614 
615   altclass = secondary_reload_class (in ? 1 : 0, class, mode, mem);
616 
617   if (altclass == NO_REGS)
618     return 0;
619 
620   if (in)
621     partial_cost = REGISTER_MOVE_COST (mode, altclass, class);
622   else
623     partial_cost = REGISTER_MOVE_COST (mode, class, altclass);
624 
625   if (class == altclass)
626     /* This isn't simply a copy-to-temporary situation.  Can't guess
627        what it is, so MEMORY_MOVE_COST really ought not to be calling
628        here in that case.
629 
630        I'm tempted to put in an assert here, but returning this will
631        probably only give poor estimates, which is what we would've
632        had before this code anyways.  */
633     return partial_cost;
634 
635   /* Check if the secondary reload register will also need a
636      secondary reload.  */
637   return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
638 }
639 
640 /* Return a machine mode that is legitimate for hard reg REGNO and large
641    enough to save nregs.  If we can't find one, return VOIDmode.
642    If CALL_SAVED is true, only consider modes that are call saved.  */
643 
644 enum machine_mode
choose_hard_reg_mode(unsigned int regno ATTRIBUTE_UNUSED,unsigned int nregs,bool call_saved)645 choose_hard_reg_mode (unsigned int regno ATTRIBUTE_UNUSED,
646 		      unsigned int nregs, bool call_saved)
647 {
648   unsigned int /* enum machine_mode */ m;
649   enum machine_mode found_mode = VOIDmode, mode;
650 
651   /* We first look for the largest integer mode that can be validly
652      held in REGNO.  If none, we look for the largest floating-point mode.
653      If we still didn't find a valid mode, try CCmode.  */
654 
655   for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
656        mode != VOIDmode;
657        mode = GET_MODE_WIDER_MODE (mode))
658     if ((unsigned) hard_regno_nregs[regno][mode] == nregs
659 	&& HARD_REGNO_MODE_OK (regno, mode)
660 	&& (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
661       found_mode = mode;
662 
663   if (found_mode != VOIDmode)
664     return found_mode;
665 
666   for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
667        mode != VOIDmode;
668        mode = GET_MODE_WIDER_MODE (mode))
669     if ((unsigned) hard_regno_nregs[regno][mode] == nregs
670 	&& HARD_REGNO_MODE_OK (regno, mode)
671 	&& (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
672       found_mode = mode;
673 
674   if (found_mode != VOIDmode)
675     return found_mode;
676 
677   for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
678        mode != VOIDmode;
679        mode = GET_MODE_WIDER_MODE (mode))
680     if ((unsigned) hard_regno_nregs[regno][mode] == nregs
681 	&& HARD_REGNO_MODE_OK (regno, mode)
682 	&& (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
683       found_mode = mode;
684 
685   if (found_mode != VOIDmode)
686     return found_mode;
687 
688   for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
689        mode != VOIDmode;
690        mode = GET_MODE_WIDER_MODE (mode))
691     if ((unsigned) hard_regno_nregs[regno][mode] == nregs
692 	&& HARD_REGNO_MODE_OK (regno, mode)
693 	&& (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
694       found_mode = mode;
695 
696   if (found_mode != VOIDmode)
697     return found_mode;
698 
699   /* Iterate over all of the CCmodes.  */
700   for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
701     {
702       mode = (enum machine_mode) m;
703       if ((unsigned) hard_regno_nregs[regno][mode] == nregs
704 	  && HARD_REGNO_MODE_OK (regno, mode)
705 	  && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
706 	return mode;
707     }
708 
709   /* We can't find a mode valid for this register.  */
710   return VOIDmode;
711 }
712 
713 /* Specify the usage characteristics of the register named NAME.
714    It should be a fixed register if FIXED and a
715    call-used register if CALL_USED.  */
716 
717 void
fix_register(const char * name,int fixed,int call_used)718 fix_register (const char *name, int fixed, int call_used)
719 {
720   int i;
721 
722   /* Decode the name and update the primary form of
723      the register info.  */
724 
725   if ((i = decode_reg_name (name)) >= 0)
726     {
727       if ((i == STACK_POINTER_REGNUM
728 #ifdef HARD_FRAME_POINTER_REGNUM
729 	   || i == HARD_FRAME_POINTER_REGNUM
730 #else
731 	   || i == FRAME_POINTER_REGNUM
732 #endif
733 	   )
734 	  && (fixed == 0 || call_used == 0))
735 	{
736 	  static const char * const what_option[2][2] = {
737 	    { "call-saved", "call-used" },
738 	    { "no-such-option", "fixed" }};
739 
740 	  error ("can't use '%s' as a %s register", name,
741 		 what_option[fixed][call_used]);
742 	}
743       else
744 	{
745 	  fixed_regs[i] = fixed;
746 	  call_used_regs[i] = call_used;
747 #ifdef CALL_REALLY_USED_REGISTERS
748 	  if (fixed == 0)
749 	    call_really_used_regs[i] = call_used;
750 #endif
751 	}
752     }
753   else
754     {
755       warning (0, "unknown register name: %s", name);
756     }
757 }
758 
759 /* Mark register number I as global.  */
760 
761 void
globalize_reg(int i)762 globalize_reg (int i)
763 {
764   if (fixed_regs[i] == 0 && no_global_reg_vars)
765     error ("global register variable follows a function definition");
766 
767   if (global_regs[i])
768     {
769       warning (0, "register used for two global register variables");
770       return;
771     }
772 
773   if (call_used_regs[i] && ! fixed_regs[i])
774     warning (0, "call-clobbered register used for global register variable");
775 
776   global_regs[i] = 1;
777 
778   /* If we're globalizing the frame pointer, we need to set the
779      appropriate regs_invalidated_by_call bit, even if it's already
780      set in fixed_regs.  */
781   if (i != STACK_POINTER_REGNUM)
782     SET_HARD_REG_BIT (regs_invalidated_by_call, i);
783 
784   /* If already fixed, nothing else to do.  */
785   if (fixed_regs[i])
786     return;
787 
788   fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
789 #ifdef CALL_REALLY_USED_REGISTERS
790   call_really_used_regs[i] = 1;
791 #endif
792 
793   SET_HARD_REG_BIT (fixed_reg_set, i);
794   SET_HARD_REG_BIT (call_used_reg_set, i);
795   SET_HARD_REG_BIT (call_fixed_reg_set, i);
796 }
797 
798 /* Now the data and code for the `regclass' pass, which happens
799    just before local-alloc.  */
800 
801 /* The `costs' struct records the cost of using a hard register of each class
802    and of using memory for each pseudo.  We use this data to set up
803    register class preferences.  */
804 
805 struct costs
806 {
807   int cost[N_REG_CLASSES];
808   int mem_cost;
809 };
810 
811 /* Structure used to record preferences of given pseudo.  */
812 struct reg_pref
813 {
814   /* (enum reg_class) prefclass is the preferred class.  May be
815      NO_REGS if no class is better than memory.  */
816   char prefclass;
817 
818   /* altclass is a register class that we should use for allocating
819      pseudo if no register in the preferred class is available.
820      If no register in this class is available, memory is preferred.
821 
822      It might appear to be more general to have a bitmask of classes here,
823      but since it is recommended that there be a class corresponding to the
824      union of most major pair of classes, that generality is not required.  */
825   char altclass;
826 };
827 
828 /* Record the cost of each class for each pseudo.  */
829 
830 static struct costs *costs;
831 
832 /* Initialized once, and used to initialize cost values for each insn.  */
833 
834 static struct costs init_cost;
835 
836 /* Record preferences of each pseudo.
837    This is available after `regclass' is run.  */
838 
839 static struct reg_pref *reg_pref;
840 
841 /* Allocated buffers for reg_pref.  */
842 
843 static struct reg_pref *reg_pref_buffer;
844 
845 /* Frequency of executions of current insn.  */
846 
847 static int frequency;
848 
849 static rtx scan_one_insn (rtx, int);
850 static void record_operand_costs (rtx, struct costs *, struct reg_pref *);
851 static void dump_regclass (FILE *);
852 static void record_reg_classes (int, int, rtx *, enum machine_mode *,
853 				const char **, rtx, struct costs *,
854 				struct reg_pref *);
855 static int copy_cost (rtx, enum machine_mode, enum reg_class, int,
856 		      secondary_reload_info *);
857 static void record_address_regs (enum machine_mode, rtx, int, enum rtx_code,
858 				 enum rtx_code, int);
859 #ifdef FORBIDDEN_INC_DEC_CLASSES
860 static int auto_inc_dec_reg_p (rtx, enum machine_mode);
861 #endif
862 static void reg_scan_mark_refs (rtx, rtx, int);
863 
864 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers.  */
865 
866 static inline bool
ok_for_index_p_nonstrict(rtx reg)867 ok_for_index_p_nonstrict (rtx reg)
868 {
869   unsigned regno = REGNO (reg);
870   return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
871 }
872 
873 /* A version of regno_ok_for_base_p for use during regclass, when all pseudos
874    should count as OK.  Arguments as for regno_ok_for_base_p.  */
875 
876 static inline bool
ok_for_base_p_nonstrict(rtx reg,enum machine_mode mode,enum rtx_code outer_code,enum rtx_code index_code)877 ok_for_base_p_nonstrict (rtx reg, enum machine_mode mode,
878 			 enum rtx_code outer_code, enum rtx_code index_code)
879 {
880   unsigned regno = REGNO (reg);
881   if (regno >= FIRST_PSEUDO_REGISTER)
882     return true;
883 
884   return ok_for_base_p_1 (regno, mode, outer_code, index_code);
885 }
886 
887 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
888    This function is sometimes called before the info has been computed.
889    When that happens, just return GENERAL_REGS, which is innocuous.  */
890 
891 enum reg_class
reg_preferred_class(int regno)892 reg_preferred_class (int regno)
893 {
894   if (reg_pref == 0)
895     return GENERAL_REGS;
896   return (enum reg_class) reg_pref[regno].prefclass;
897 }
898 
899 enum reg_class
reg_alternate_class(int regno)900 reg_alternate_class (int regno)
901 {
902   if (reg_pref == 0)
903     return ALL_REGS;
904 
905   return (enum reg_class) reg_pref[regno].altclass;
906 }
907 
908 /* Initialize some global data for this pass.  */
909 
910 void
regclass_init(void)911 regclass_init (void)
912 {
913   int i;
914 
915   init_cost.mem_cost = 10000;
916   for (i = 0; i < N_REG_CLASSES; i++)
917     init_cost.cost[i] = 10000;
918 
919   /* This prevents dump_flow_info from losing if called
920      before regclass is run.  */
921   reg_pref = NULL;
922 
923   /* No more global register variables may be declared.  */
924   no_global_reg_vars = 1;
925 }
926 
927 /* Dump register costs.  */
928 static void
dump_regclass(FILE * dump)929 dump_regclass (FILE *dump)
930 {
931   int i;
932   for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
933     {
934       int /* enum reg_class */ class;
935       if (REG_N_REFS (i))
936 	{
937 	  fprintf (dump, "  Register %i costs:", i);
938 	  for (class = 0; class < (int) N_REG_CLASSES; class++)
939 	    if (contains_reg_of_mode [(enum reg_class) class][PSEUDO_REGNO_MODE (i)]
940 #ifdef FORBIDDEN_INC_DEC_CLASSES
941 		&& (!in_inc_dec[i]
942 		    || !forbidden_inc_dec_class[(enum reg_class) class])
943 #endif
944 #ifdef CANNOT_CHANGE_MODE_CLASS
945 		&& ! invalid_mode_change_p (i, (enum reg_class) class,
946 					    PSEUDO_REGNO_MODE (i))
947 #endif
948 		)
949 	    fprintf (dump, " %s:%i", reg_class_names[class],
950 		     costs[i].cost[(enum reg_class) class]);
951 	  fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
952 	}
953     }
954 }
955 
956 
957 /* Calculate the costs of insn operands.  */
958 
959 static void
record_operand_costs(rtx insn,struct costs * op_costs,struct reg_pref * reg_pref)960 record_operand_costs (rtx insn, struct costs *op_costs,
961 		      struct reg_pref *reg_pref)
962 {
963   const char *constraints[MAX_RECOG_OPERANDS];
964   enum machine_mode modes[MAX_RECOG_OPERANDS];
965   int i;
966 
967   for (i = 0; i < recog_data.n_operands; i++)
968     {
969       constraints[i] = recog_data.constraints[i];
970       modes[i] = recog_data.operand_mode[i];
971     }
972 
973   /* If we get here, we are set up to record the costs of all the
974      operands for this insn.  Start by initializing the costs.
975      Then handle any address registers.  Finally record the desired
976      classes for any pseudos, doing it twice if some pair of
977      operands are commutative.  */
978 
979   for (i = 0; i < recog_data.n_operands; i++)
980     {
981       op_costs[i] = init_cost;
982 
983       if (GET_CODE (recog_data.operand[i]) == SUBREG)
984 	recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
985 
986       if (MEM_P (recog_data.operand[i]))
987 	record_address_regs (GET_MODE (recog_data.operand[i]),
988 			     XEXP (recog_data.operand[i], 0),
989 			     0, MEM, SCRATCH, frequency * 2);
990       else if (constraints[i][0] == 'p'
991 	       || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
992 	record_address_regs (VOIDmode, recog_data.operand[i], 0, ADDRESS,
993 			     SCRATCH, frequency * 2);
994     }
995 
996   /* Check for commutative in a separate loop so everything will
997      have been initialized.  We must do this even if one operand
998      is a constant--see addsi3 in m68k.md.  */
999 
1000   for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1001     if (constraints[i][0] == '%')
1002       {
1003 	const char *xconstraints[MAX_RECOG_OPERANDS];
1004 	int j;
1005 
1006 	/* Handle commutative operands by swapping the constraints.
1007 	   We assume the modes are the same.  */
1008 
1009 	for (j = 0; j < recog_data.n_operands; j++)
1010 	  xconstraints[j] = constraints[j];
1011 
1012 	xconstraints[i] = constraints[i+1];
1013 	xconstraints[i+1] = constraints[i];
1014 	record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1015 			    recog_data.operand, modes,
1016 			    xconstraints, insn, op_costs, reg_pref);
1017       }
1018 
1019   record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1020 		      recog_data.operand, modes,
1021 		      constraints, insn, op_costs, reg_pref);
1022 }
1023 
1024 /* Subroutine of regclass, processes one insn INSN.  Scan it and record each
1025    time it would save code to put a certain register in a certain class.
1026    PASS, when nonzero, inhibits some optimizations which need only be done
1027    once.
1028    Return the last insn processed, so that the scan can be continued from
1029    there.  */
1030 
1031 static rtx
scan_one_insn(rtx insn,int pass)1032 scan_one_insn (rtx insn, int pass)
1033 {
1034   enum rtx_code pat_code;
1035   rtx set, note;
1036   int i, j;
1037   struct costs op_costs[MAX_RECOG_OPERANDS];
1038 
1039   if (!INSN_P (insn))
1040     return insn;
1041 
1042   pat_code = GET_CODE (PATTERN (insn));
1043   if (pat_code == USE
1044       || pat_code == CLOBBER
1045       || pat_code == ASM_INPUT
1046       || pat_code == ADDR_VEC
1047       || pat_code == ADDR_DIFF_VEC)
1048     return insn;
1049 
1050   set = single_set (insn);
1051   extract_insn (insn);
1052 
1053   /* If this insn loads a parameter from its stack slot, then
1054      it represents a savings, rather than a cost, if the
1055      parameter is stored in memory.  Record this fact.  */
1056 
1057   if (set != 0 && REG_P (SET_DEST (set))
1058       && MEM_P (SET_SRC (set))
1059       && (note = find_reg_note (insn, REG_EQUIV,
1060 				NULL_RTX)) != 0
1061       && MEM_P (XEXP (note, 0)))
1062     {
1063       costs[REGNO (SET_DEST (set))].mem_cost
1064 	-= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
1065 			      GENERAL_REGS, 1)
1066 	    * frequency);
1067       record_address_regs (GET_MODE (SET_SRC (set)), XEXP (SET_SRC (set), 0),
1068 			   0, MEM, SCRATCH, frequency * 2);
1069       return insn;
1070     }
1071 
1072   /* Improve handling of two-address insns such as
1073      (set X (ashift CONST Y)) where CONST must be made to
1074      match X. Change it into two insns: (set X CONST)
1075      (set X (ashift X Y)).  If we left this for reloading, it
1076      would probably get three insns because X and Y might go
1077      in the same place. This prevents X and Y from receiving
1078      the same hard reg.
1079 
1080      We can only do this if the modes of operands 0 and 1
1081      (which might not be the same) are tieable and we only need
1082      do this during our first pass.  */
1083 
1084   if (pass == 0 && optimize
1085       && recog_data.n_operands >= 3
1086       && recog_data.constraints[1][0] == '0'
1087       && recog_data.constraints[1][1] == 0
1088       && CONSTANT_P (recog_data.operand[1])
1089       && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
1090       && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
1091       && REG_P (recog_data.operand[0])
1092       && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
1093 			  recog_data.operand_mode[1]))
1094     {
1095       rtx previnsn = prev_real_insn (insn);
1096       rtx dest
1097 	= gen_lowpart (recog_data.operand_mode[1],
1098 		       recog_data.operand[0]);
1099       rtx newinsn
1100 	= emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
1101 
1102       /* If this insn was the start of a basic block,
1103 	 include the new insn in that block.
1104 	 We need not check for code_label here;
1105 	 while a basic block can start with a code_label,
1106 	 INSN could not be at the beginning of that block.  */
1107       if (previnsn == 0 || JUMP_P (previnsn))
1108 	{
1109 	  basic_block b;
1110 	  FOR_EACH_BB (b)
1111 	    if (insn == BB_HEAD (b))
1112 	      BB_HEAD (b) = newinsn;
1113 	}
1114 
1115       /* This makes one more setting of new insns's dest.  */
1116       REG_N_SETS (REGNO (recog_data.operand[0]))++;
1117       REG_N_REFS (REGNO (recog_data.operand[0]))++;
1118       REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1119 
1120       *recog_data.operand_loc[1] = recog_data.operand[0];
1121       REG_N_REFS (REGNO (recog_data.operand[0]))++;
1122       REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1123       for (i = recog_data.n_dups - 1; i >= 0; i--)
1124 	if (recog_data.dup_num[i] == 1)
1125 	  {
1126 	    *recog_data.dup_loc[i] = recog_data.operand[0];
1127 	    REG_N_REFS (REGNO (recog_data.operand[0]))++;
1128 	    REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1129 	  }
1130 
1131       return PREV_INSN (newinsn);
1132     }
1133 
1134   record_operand_costs (insn, op_costs, reg_pref);
1135 
1136   /* Now add the cost for each operand to the total costs for
1137      its register.  */
1138 
1139   for (i = 0; i < recog_data.n_operands; i++)
1140     if (REG_P (recog_data.operand[i])
1141 	&& REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1142       {
1143 	int regno = REGNO (recog_data.operand[i]);
1144 	struct costs *p = &costs[regno], *q = &op_costs[i];
1145 
1146 	p->mem_cost += q->mem_cost * frequency;
1147 	for (j = 0; j < N_REG_CLASSES; j++)
1148 	  p->cost[j] += q->cost[j] * frequency;
1149       }
1150 
1151   return insn;
1152 }
1153 
1154 /* Initialize information about which register classes can be used for
1155    pseudos that are auto-incremented or auto-decremented.  */
1156 
1157 static void
init_reg_autoinc(void)1158 init_reg_autoinc (void)
1159 {
1160 #ifdef FORBIDDEN_INC_DEC_CLASSES
1161   int i;
1162 
1163   for (i = 0; i < N_REG_CLASSES; i++)
1164     {
1165       rtx r = gen_rtx_raw_REG (VOIDmode, 0);
1166       enum machine_mode m;
1167       int j;
1168 
1169       for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1170 	if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1171 	  {
1172 	    REGNO (r) = j;
1173 
1174 	    for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
1175 		 m = (enum machine_mode) ((int) m + 1))
1176 	      if (HARD_REGNO_MODE_OK (j, m))
1177 		{
1178 		  /* ??? There are two assumptions here; that the base class does not
1179 		     depend on the exact outer code (POST_INC vs. PRE_INC etc.), and
1180 		     that it does not depend on the machine mode of the memory
1181 		     reference.  */
1182 		  enum reg_class base_class
1183 		    = base_reg_class (VOIDmode, POST_INC, SCRATCH);
1184 
1185 		  PUT_MODE (r, m);
1186 
1187 		  /* If a register is not directly suitable for an
1188 		     auto-increment or decrement addressing mode and
1189 		     requires secondary reloads, disallow its class from
1190 		     being used in such addresses.  */
1191 
1192 		  if ((secondary_reload_class (1, base_class, m, r)
1193 		       || secondary_reload_class (1, base_class, m, r))
1194 		      && ! auto_inc_dec_reg_p (r, m))
1195 		    forbidden_inc_dec_class[i] = 1;
1196 		}
1197 	  }
1198     }
1199 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1200 }
1201 
1202 /* This is a pass of the compiler that scans all instructions
1203    and calculates the preferred class for each pseudo-register.
1204    This information can be accessed later by calling `reg_preferred_class'.
1205    This pass comes just before local register allocation.  */
1206 
1207 void
regclass(rtx f,int nregs)1208 regclass (rtx f, int nregs)
1209 {
1210   rtx insn;
1211   int i;
1212   int pass;
1213 
1214   init_recog ();
1215 
1216   costs = XNEWVEC (struct costs, nregs);
1217 
1218 #ifdef FORBIDDEN_INC_DEC_CLASSES
1219 
1220   in_inc_dec = XNEWVEC (char, nregs);
1221 
1222 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1223 
1224   /* Normally we scan the insns once and determine the best class to use for
1225      each register.  However, if -fexpensive_optimizations are on, we do so
1226      twice, the second time using the tentative best classes to guide the
1227      selection.  */
1228 
1229   for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1230     {
1231       basic_block bb;
1232 
1233       if (dump_file)
1234 	fprintf (dump_file, "\n\nPass %i\n\n",pass);
1235       /* Zero out our accumulation of the cost of each class for each reg.  */
1236 
1237       memset (costs, 0, nregs * sizeof (struct costs));
1238 
1239 #ifdef FORBIDDEN_INC_DEC_CLASSES
1240       memset (in_inc_dec, 0, nregs);
1241 #endif
1242 
1243       /* Scan the instructions and record each time it would
1244 	 save code to put a certain register in a certain class.  */
1245 
1246       if (!optimize)
1247 	{
1248 	  frequency = REG_FREQ_MAX;
1249 	  for (insn = f; insn; insn = NEXT_INSN (insn))
1250 	    insn = scan_one_insn (insn, pass);
1251 	}
1252       else
1253 	FOR_EACH_BB (bb)
1254 	  {
1255 	    /* Show that an insn inside a loop is likely to be executed three
1256 	       times more than insns outside a loop.  This is much more
1257 	       aggressive than the assumptions made elsewhere and is being
1258 	       tried as an experiment.  */
1259 	    frequency = REG_FREQ_FROM_BB (bb);
1260 	    for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
1261 	      {
1262 		insn = scan_one_insn (insn, pass);
1263 		if (insn == BB_END (bb))
1264 		  break;
1265 	      }
1266 	  }
1267 
1268       /* Now for each register look at how desirable each class is
1269 	 and find which class is preferred.  Store that in
1270 	 `prefclass'.  Record in `altclass' the largest register
1271 	 class any of whose registers is better than memory.  */
1272 
1273       if (pass == 0)
1274 	reg_pref = reg_pref_buffer;
1275 
1276       if (dump_file)
1277 	{
1278 	  dump_regclass (dump_file);
1279 	  fprintf (dump_file,"\n");
1280 	}
1281       for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1282 	{
1283 	  int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1284 	  enum reg_class best = ALL_REGS, alt = NO_REGS;
1285 	  /* This is an enum reg_class, but we call it an int
1286 	     to save lots of casts.  */
1287 	  int class;
1288 	  struct costs *p = &costs[i];
1289 
1290 	  /* In non-optimizing compilation REG_N_REFS is not initialized
1291 	     yet.  */
1292 	  if (optimize && !REG_N_REFS (i) && !REG_N_SETS (i))
1293 	    continue;
1294 
1295 	  for (class = (int) ALL_REGS - 1; class > 0; class--)
1296 	    {
1297 	      /* Ignore classes that are too small for this operand or
1298 		 invalid for an operand that was auto-incremented.  */
1299 	      if (!contains_reg_of_mode [class][PSEUDO_REGNO_MODE (i)]
1300 #ifdef FORBIDDEN_INC_DEC_CLASSES
1301 		  || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1302 #endif
1303 #ifdef CANNOT_CHANGE_MODE_CLASS
1304 		  || invalid_mode_change_p (i, (enum reg_class) class,
1305 					    PSEUDO_REGNO_MODE (i))
1306 #endif
1307 		  )
1308 		;
1309 	      else if (p->cost[class] < best_cost)
1310 		{
1311 		  best_cost = p->cost[class];
1312 		  best = (enum reg_class) class;
1313 		}
1314 	      else if (p->cost[class] == best_cost)
1315 		best = reg_class_subunion[(int) best][class];
1316 	    }
1317 
1318 	  /* If no register class is better than memory, use memory. */
1319 	  if (p->mem_cost < best_cost)
1320 	    best = NO_REGS;
1321 
1322 	  /* Record the alternate register class; i.e., a class for which
1323 	     every register in it is better than using memory.  If adding a
1324 	     class would make a smaller class (i.e., no union of just those
1325 	     classes exists), skip that class.  The major unions of classes
1326 	     should be provided as a register class.  Don't do this if we
1327 	     will be doing it again later.  */
1328 
1329 	  if ((pass == 1  || dump_file) || ! flag_expensive_optimizations)
1330 	    for (class = 0; class < N_REG_CLASSES; class++)
1331 	      if (p->cost[class] < p->mem_cost
1332 		  && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1333 		      > reg_class_size[(int) alt])
1334 #ifdef FORBIDDEN_INC_DEC_CLASSES
1335 		  && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1336 #endif
1337 #ifdef CANNOT_CHANGE_MODE_CLASS
1338 		  && ! invalid_mode_change_p (i, (enum reg_class) class,
1339 					      PSEUDO_REGNO_MODE (i))
1340 #endif
1341 		  )
1342 		alt = reg_class_subunion[(int) alt][class];
1343 
1344 	  /* If we don't add any classes, nothing to try.  */
1345 	  if (alt == best)
1346 	    alt = NO_REGS;
1347 
1348 	  if (dump_file
1349 	      && (reg_pref[i].prefclass != (int) best
1350 		  || reg_pref[i].altclass != (int) alt))
1351 	    {
1352 	      fprintf (dump_file, "  Register %i", i);
1353 	      if (alt == ALL_REGS || best == ALL_REGS)
1354 		fprintf (dump_file, " pref %s\n", reg_class_names[(int) best]);
1355 	      else if (alt == NO_REGS)
1356 		fprintf (dump_file, " pref %s or none\n", reg_class_names[(int) best]);
1357 	      else
1358 		fprintf (dump_file, " pref %s, else %s\n",
1359 			 reg_class_names[(int) best],
1360 			 reg_class_names[(int) alt]);
1361 	    }
1362 
1363 	  /* We cast to (int) because (char) hits bugs in some compilers.  */
1364 	  reg_pref[i].prefclass = (int) best;
1365 	  reg_pref[i].altclass = (int) alt;
1366 	}
1367     }
1368 
1369 #ifdef FORBIDDEN_INC_DEC_CLASSES
1370   free (in_inc_dec);
1371 #endif
1372   free (costs);
1373 }
1374 
1375 /* Record the cost of using memory or registers of various classes for
1376    the operands in INSN.
1377 
1378    N_ALTS is the number of alternatives.
1379 
1380    N_OPS is the number of operands.
1381 
1382    OPS is an array of the operands.
1383 
1384    MODES are the modes of the operands, in case any are VOIDmode.
1385 
1386    CONSTRAINTS are the constraints to use for the operands.  This array
1387    is modified by this procedure.
1388 
1389    This procedure works alternative by alternative.  For each alternative
1390    we assume that we will be able to allocate all pseudos to their ideal
1391    register class and calculate the cost of using that alternative.  Then
1392    we compute for each operand that is a pseudo-register, the cost of
1393    having the pseudo allocated to each register class and using it in that
1394    alternative.  To this cost is added the cost of the alternative.
1395 
1396    The cost of each class for this insn is its lowest cost among all the
1397    alternatives.  */
1398 
1399 static void
record_reg_classes(int n_alts,int n_ops,rtx * ops,enum machine_mode * modes,const char ** constraints,rtx insn,struct costs * op_costs,struct reg_pref * reg_pref)1400 record_reg_classes (int n_alts, int n_ops, rtx *ops,
1401 		    enum machine_mode *modes, const char **constraints,
1402 		    rtx insn, struct costs *op_costs,
1403 		    struct reg_pref *reg_pref)
1404 {
1405   int alt;
1406   int i, j;
1407   rtx set;
1408 
1409   /* Process each alternative, each time minimizing an operand's cost with
1410      the cost for each operand in that alternative.  */
1411 
1412   for (alt = 0; alt < n_alts; alt++)
1413     {
1414       struct costs this_op_costs[MAX_RECOG_OPERANDS];
1415       int alt_fail = 0;
1416       int alt_cost = 0;
1417       enum reg_class classes[MAX_RECOG_OPERANDS];
1418       int allows_mem[MAX_RECOG_OPERANDS];
1419       int class;
1420 
1421       for (i = 0; i < n_ops; i++)
1422 	{
1423 	  const char *p = constraints[i];
1424 	  rtx op = ops[i];
1425 	  enum machine_mode mode = modes[i];
1426 	  int allows_addr = 0;
1427 	  int win = 0;
1428 	  unsigned char c;
1429 
1430 	  /* Initially show we know nothing about the register class.  */
1431 	  classes[i] = NO_REGS;
1432 	  allows_mem[i] = 0;
1433 
1434 	  /* If this operand has no constraints at all, we can conclude
1435 	     nothing about it since anything is valid.  */
1436 
1437 	  if (*p == 0)
1438 	    {
1439 	      if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1440 		memset (&this_op_costs[i], 0, sizeof this_op_costs[i]);
1441 
1442 	      continue;
1443 	    }
1444 
1445 	  /* If this alternative is only relevant when this operand
1446 	     matches a previous operand, we do different things depending
1447 	     on whether this operand is a pseudo-reg or not.  We must process
1448 	     any modifiers for the operand before we can make this test.  */
1449 
1450 	  while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
1451 	    p++;
1452 
1453 	  if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1454 	    {
1455 	      /* Copy class and whether memory is allowed from the matching
1456 		 alternative.  Then perform any needed cost computations
1457 		 and/or adjustments.  */
1458 	      j = p[0] - '0';
1459 	      classes[i] = classes[j];
1460 	      allows_mem[i] = allows_mem[j];
1461 
1462 	      if (!REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
1463 		{
1464 		  /* If this matches the other operand, we have no added
1465 		     cost and we win.  */
1466 		  if (rtx_equal_p (ops[j], op))
1467 		    win = 1;
1468 
1469 		  /* If we can put the other operand into a register, add to
1470 		     the cost of this alternative the cost to copy this
1471 		     operand to the register used for the other operand.  */
1472 
1473 		  else if (classes[j] != NO_REGS)
1474 		    {
1475 		      alt_cost += copy_cost (op, mode, classes[j], 1, NULL);
1476 		      win = 1;
1477 		    }
1478 		}
1479 	      else if (!REG_P (ops[j])
1480 		       || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1481 		{
1482 		  /* This op is a pseudo but the one it matches is not.  */
1483 
1484 		  /* If we can't put the other operand into a register, this
1485 		     alternative can't be used.  */
1486 
1487 		  if (classes[j] == NO_REGS)
1488 		    alt_fail = 1;
1489 
1490 		  /* Otherwise, add to the cost of this alternative the cost
1491 		     to copy the other operand to the register used for this
1492 		     operand.  */
1493 
1494 		  else
1495 		    alt_cost += copy_cost (ops[j], mode, classes[j], 1, NULL);
1496 		}
1497 	      else
1498 		{
1499 		  /* The costs of this operand are not the same as the other
1500 		     operand since move costs are not symmetric.  Moreover,
1501 		     if we cannot tie them, this alternative needs to do a
1502 		     copy, which is one instruction.  */
1503 
1504 		  struct costs *pp = &this_op_costs[i];
1505 
1506 		  for (class = 0; class < N_REG_CLASSES; class++)
1507 		    pp->cost[class]
1508 		      = ((recog_data.operand_type[i] != OP_OUT
1509 			  ? may_move_in_cost[mode][class][(int) classes[i]]
1510 			  : 0)
1511 			 + (recog_data.operand_type[i] != OP_IN
1512 			    ? may_move_out_cost[mode][(int) classes[i]][class]
1513 			    : 0));
1514 
1515 		  /* If the alternative actually allows memory, make things
1516 		     a bit cheaper since we won't need an extra insn to
1517 		     load it.  */
1518 
1519 		  pp->mem_cost
1520 		    = ((recog_data.operand_type[i] != OP_IN
1521 		        ? MEMORY_MOVE_COST (mode, classes[i], 0)
1522 			: 0)
1523 		       + (recog_data.operand_type[i] != OP_OUT
1524 			  ? MEMORY_MOVE_COST (mode, classes[i], 1)
1525 			  : 0) - allows_mem[i]);
1526 
1527 		  /* If we have assigned a class to this register in our
1528 		     first pass, add a cost to this alternative corresponding
1529 		     to what we would add if this register were not in the
1530 		     appropriate class.  */
1531 
1532 		  if (reg_pref && reg_pref[REGNO (op)].prefclass != NO_REGS)
1533 		    alt_cost
1534 		      += (may_move_in_cost[mode]
1535 			  [(unsigned char) reg_pref[REGNO (op)].prefclass]
1536 			  [(int) classes[i]]);
1537 
1538 		  if (REGNO (ops[i]) != REGNO (ops[j])
1539 		      && ! find_reg_note (insn, REG_DEAD, op))
1540 		    alt_cost += 2;
1541 
1542 		  /* This is in place of ordinary cost computation
1543 		     for this operand, so skip to the end of the
1544 		     alternative (should be just one character).  */
1545 		  while (*p && *p++ != ',')
1546 		    ;
1547 
1548 		  constraints[i] = p;
1549 		  continue;
1550 		}
1551 	    }
1552 
1553 	  /* Scan all the constraint letters.  See if the operand matches
1554 	     any of the constraints.  Collect the valid register classes
1555 	     and see if this operand accepts memory.  */
1556 
1557 	  while ((c = *p))
1558 	    {
1559 	      switch (c)
1560 		{
1561 		case ',':
1562 		  break;
1563 		case '*':
1564 		  /* Ignore the next letter for this pass.  */
1565 		  c = *++p;
1566 		  break;
1567 
1568 		case '?':
1569 		  alt_cost += 2;
1570 		case '!':  case '#':  case '&':
1571 		case '0':  case '1':  case '2':  case '3':  case '4':
1572 		case '5':  case '6':  case '7':  case '8':  case '9':
1573 		  break;
1574 
1575 		case 'p':
1576 		  allows_addr = 1;
1577 		  win = address_operand (op, GET_MODE (op));
1578 		  /* We know this operand is an address, so we want it to be
1579 		     allocated to a register that can be the base of an
1580 		     address, i.e. BASE_REG_CLASS.  */
1581 		  classes[i]
1582 		    = reg_class_subunion[(int) classes[i]]
1583 		    [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1584 		  break;
1585 
1586 		case 'm':  case 'o':  case 'V':
1587 		  /* It doesn't seem worth distinguishing between offsettable
1588 		     and non-offsettable addresses here.  */
1589 		  allows_mem[i] = 1;
1590 		  if (MEM_P (op))
1591 		    win = 1;
1592 		  break;
1593 
1594 		case '<':
1595 		  if (MEM_P (op)
1596 		      && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1597 			  || GET_CODE (XEXP (op, 0)) == POST_DEC))
1598 		    win = 1;
1599 		  break;
1600 
1601 		case '>':
1602 		  if (MEM_P (op)
1603 		      && (GET_CODE (XEXP (op, 0)) == PRE_INC
1604 			  || GET_CODE (XEXP (op, 0)) == POST_INC))
1605 		    win = 1;
1606 		  break;
1607 
1608 		case 'E':
1609 		case 'F':
1610 		  if (GET_CODE (op) == CONST_DOUBLE
1611 		      || (GET_CODE (op) == CONST_VECTOR
1612 			  && (GET_MODE_CLASS (GET_MODE (op))
1613 			      == MODE_VECTOR_FLOAT)))
1614 		    win = 1;
1615 		  break;
1616 
1617 		case 'G':
1618 		case 'H':
1619 		  if (GET_CODE (op) == CONST_DOUBLE
1620 		      && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
1621 		    win = 1;
1622 		  break;
1623 
1624 		case 's':
1625 		  if (GET_CODE (op) == CONST_INT
1626 		      || (GET_CODE (op) == CONST_DOUBLE
1627 			  && GET_MODE (op) == VOIDmode))
1628 		    break;
1629 		case 'i':
1630 		  if (CONSTANT_P (op)
1631 		      && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
1632 		    win = 1;
1633 		  break;
1634 
1635 		case 'n':
1636 		  if (GET_CODE (op) == CONST_INT
1637 		      || (GET_CODE (op) == CONST_DOUBLE
1638 			  && GET_MODE (op) == VOIDmode))
1639 		    win = 1;
1640 		  break;
1641 
1642 		case 'I':
1643 		case 'J':
1644 		case 'K':
1645 		case 'L':
1646 		case 'M':
1647 		case 'N':
1648 		case 'O':
1649 		case 'P':
1650 		  if (GET_CODE (op) == CONST_INT
1651 		      && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
1652 		    win = 1;
1653 		  break;
1654 
1655 		case 'X':
1656 		  win = 1;
1657 		  break;
1658 
1659 		case 'g':
1660 		  if (MEM_P (op)
1661 		      || (CONSTANT_P (op)
1662 			  && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
1663 		    win = 1;
1664 		  allows_mem[i] = 1;
1665 		case 'r':
1666 		  classes[i]
1667 		    = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1668 		  break;
1669 
1670 		default:
1671 		  if (REG_CLASS_FROM_CONSTRAINT (c, p) != NO_REGS)
1672 		    classes[i]
1673 		      = reg_class_subunion[(int) classes[i]]
1674 			[(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1675 #ifdef EXTRA_CONSTRAINT_STR
1676 		  else if (EXTRA_CONSTRAINT_STR (op, c, p))
1677 		    win = 1;
1678 
1679 		  if (EXTRA_MEMORY_CONSTRAINT (c, p))
1680 		    {
1681 		      /* Every MEM can be reloaded to fit.  */
1682 		      allows_mem[i] = 1;
1683 		      if (MEM_P (op))
1684 			win = 1;
1685 		    }
1686 		  if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1687 		    {
1688 		      /* Every address can be reloaded to fit.  */
1689 		      allows_addr = 1;
1690 		      if (address_operand (op, GET_MODE (op)))
1691 			win = 1;
1692 		      /* We know this operand is an address, so we want it to
1693 			 be allocated to a register that can be the base of an
1694 			 address, i.e. BASE_REG_CLASS.  */
1695 		      classes[i]
1696 			= reg_class_subunion[(int) classes[i]]
1697 			[(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1698 		    }
1699 #endif
1700 		  break;
1701 		}
1702 	      p += CONSTRAINT_LEN (c, p);
1703 	      if (c == ',')
1704 		break;
1705 	    }
1706 
1707 	  constraints[i] = p;
1708 
1709 	  /* How we account for this operand now depends on whether it is  a
1710 	     pseudo register or not.  If it is, we first check if any
1711 	     register classes are valid.  If not, we ignore this alternative,
1712 	     since we want to assume that all pseudos get allocated for
1713 	     register preferencing.  If some register class is valid, compute
1714 	     the costs of moving the pseudo into that class.  */
1715 
1716 	  if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1717 	    {
1718 	      if (classes[i] == NO_REGS)
1719 		{
1720 		  /* We must always fail if the operand is a REG, but
1721 		     we did not find a suitable class.
1722 
1723 		     Otherwise we may perform an uninitialized read
1724 		     from this_op_costs after the `continue' statement
1725 		     below.  */
1726 		  alt_fail = 1;
1727 		}
1728 	      else
1729 		{
1730 		  struct costs *pp = &this_op_costs[i];
1731 
1732 		  for (class = 0; class < N_REG_CLASSES; class++)
1733 		    pp->cost[class]
1734 		      = ((recog_data.operand_type[i] != OP_OUT
1735 			  ? may_move_in_cost[mode][class][(int) classes[i]]
1736 			  : 0)
1737 			 + (recog_data.operand_type[i] != OP_IN
1738 			    ? may_move_out_cost[mode][(int) classes[i]][class]
1739 			    : 0));
1740 
1741 		  /* If the alternative actually allows memory, make things
1742 		     a bit cheaper since we won't need an extra insn to
1743 		     load it.  */
1744 
1745 		  pp->mem_cost
1746 		    = ((recog_data.operand_type[i] != OP_IN
1747 		        ? MEMORY_MOVE_COST (mode, classes[i], 0)
1748 			: 0)
1749 		       + (recog_data.operand_type[i] != OP_OUT
1750 			  ? MEMORY_MOVE_COST (mode, classes[i], 1)
1751 			  : 0) - allows_mem[i]);
1752 
1753 		  /* If we have assigned a class to this register in our
1754 		     first pass, add a cost to this alternative corresponding
1755 		     to what we would add if this register were not in the
1756 		     appropriate class.  */
1757 
1758 		  if (reg_pref && reg_pref[REGNO (op)].prefclass != NO_REGS)
1759 		    alt_cost
1760 		      += (may_move_in_cost[mode]
1761 			  [(unsigned char) reg_pref[REGNO (op)].prefclass]
1762 			  [(int) classes[i]]);
1763 		}
1764 	    }
1765 
1766 	  /* Otherwise, if this alternative wins, either because we
1767 	     have already determined that or if we have a hard register of
1768 	     the proper class, there is no cost for this alternative.  */
1769 
1770 	  else if (win
1771 		   || (REG_P (op)
1772 		       && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1773 	    ;
1774 
1775 	  /* If registers are valid, the cost of this alternative includes
1776 	     copying the object to and/or from a register.  */
1777 
1778 	  else if (classes[i] != NO_REGS)
1779 	    {
1780 	      if (recog_data.operand_type[i] != OP_OUT)
1781 		alt_cost += copy_cost (op, mode, classes[i], 1, NULL);
1782 
1783 	      if (recog_data.operand_type[i] != OP_IN)
1784 		alt_cost += copy_cost (op, mode, classes[i], 0, NULL);
1785 	    }
1786 
1787 	  /* The only other way this alternative can be used is if this is a
1788 	     constant that could be placed into memory.  */
1789 
1790 	  else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1791 	    alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1792 	  else
1793 	    alt_fail = 1;
1794 	}
1795 
1796       if (alt_fail)
1797 	continue;
1798 
1799       /* Finally, update the costs with the information we've calculated
1800 	 about this alternative.  */
1801 
1802       for (i = 0; i < n_ops; i++)
1803 	if (REG_P (ops[i])
1804 	    && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1805 	  {
1806 	    struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1807 	    int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1808 
1809 	    pp->mem_cost = MIN (pp->mem_cost,
1810 				(qq->mem_cost + alt_cost) * scale);
1811 
1812 	    for (class = 0; class < N_REG_CLASSES; class++)
1813 	      pp->cost[class] = MIN (pp->cost[class],
1814 				     (qq->cost[class] + alt_cost) * scale);
1815 	  }
1816     }
1817 
1818   /* If this insn is a single set copying operand 1 to operand 0
1819      and one operand is a pseudo with the other a hard reg or a pseudo
1820      that prefers a register that is in its own register class then
1821      we may want to adjust the cost of that register class to -1.
1822 
1823      Avoid the adjustment if the source does not die to avoid stressing of
1824      register allocator by preferrencing two colliding registers into single
1825      class.
1826 
1827      Also avoid the adjustment if a copy between registers of the class
1828      is expensive (ten times the cost of a default copy is considered
1829      arbitrarily expensive).  This avoids losing when the preferred class
1830      is very expensive as the source of a copy instruction.  */
1831 
1832   if ((set = single_set (insn)) != 0
1833       && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1834       && REG_P (ops[0]) && REG_P (ops[1])
1835       && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
1836     for (i = 0; i <= 1; i++)
1837       if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1838 	{
1839 	  unsigned int regno = REGNO (ops[!i]);
1840 	  enum machine_mode mode = GET_MODE (ops[!i]);
1841 	  int class;
1842 	  unsigned int nr;
1843 
1844 	  if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0
1845 	      && reg_pref[regno].prefclass != NO_REGS)
1846 	    {
1847 	      enum reg_class pref = reg_pref[regno].prefclass;
1848 
1849 	      if ((reg_class_size[(unsigned char) pref]
1850 		   == (unsigned) CLASS_MAX_NREGS (pref, mode))
1851 		  && REGISTER_MOVE_COST (mode, pref, pref) < 10 * 2)
1852 		op_costs[i].cost[(unsigned char) pref] = -1;
1853 	    }
1854 	  else if (regno < FIRST_PSEUDO_REGISTER)
1855 	    for (class = 0; class < N_REG_CLASSES; class++)
1856 	      if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1857 		  && reg_class_size[class] == (unsigned) CLASS_MAX_NREGS (class, mode))
1858 		{
1859 		  if (reg_class_size[class] == 1)
1860 		    op_costs[i].cost[class] = -1;
1861 		  else
1862 		    {
1863 		      for (nr = 0; nr < (unsigned) hard_regno_nregs[regno][mode]; nr++)
1864 			{
1865 			  if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1866 						   regno + nr))
1867 			    break;
1868 			}
1869 
1870 		      if (nr == (unsigned) hard_regno_nregs[regno][mode])
1871 			op_costs[i].cost[class] = -1;
1872 		    }
1873 		}
1874 	}
1875 }
1876 
1877 /* Compute the cost of loading X into (if TO_P is nonzero) or from (if
1878    TO_P is zero) a register of class CLASS in mode MODE.
1879 
1880    X must not be a pseudo.  */
1881 
1882 static int
copy_cost(rtx x,enum machine_mode mode,enum reg_class class,int to_p,secondary_reload_info * prev_sri)1883 copy_cost (rtx x, enum machine_mode mode, enum reg_class class, int to_p,
1884 	   secondary_reload_info *prev_sri)
1885 {
1886   enum reg_class secondary_class = NO_REGS;
1887   secondary_reload_info sri;
1888 
1889   /* If X is a SCRATCH, there is actually nothing to move since we are
1890      assuming optimal allocation.  */
1891 
1892   if (GET_CODE (x) == SCRATCH)
1893     return 0;
1894 
1895   /* Get the class we will actually use for a reload.  */
1896   class = PREFERRED_RELOAD_CLASS (x, class);
1897 
1898   /* If we need a secondary reload for an intermediate, the
1899      cost is that to load the input into the intermediate register, then
1900      to copy it.  */
1901 
1902   sri.prev_sri = prev_sri;
1903   sri.extra_cost = 0;
1904   secondary_class = targetm.secondary_reload (to_p, x, class, mode, &sri);
1905 
1906   if (secondary_class != NO_REGS)
1907     return (move_cost[mode][(int) secondary_class][(int) class]
1908 	    + sri.extra_cost
1909 	    + copy_cost (x, mode, secondary_class, to_p, &sri));
1910 
1911   /* For memory, use the memory move cost, for (hard) registers, use the
1912      cost to move between the register classes, and use 2 for everything
1913      else (constants).  */
1914 
1915   if (MEM_P (x) || class == NO_REGS)
1916     return sri.extra_cost + MEMORY_MOVE_COST (mode, class, to_p);
1917 
1918   else if (REG_P (x))
1919     return (sri.extra_cost
1920 	    + move_cost[mode][(int) REGNO_REG_CLASS (REGNO (x))][(int) class]);
1921 
1922   else
1923     /* If this is a constant, we may eventually want to call rtx_cost here.  */
1924     return sri.extra_cost + COSTS_N_INSNS (1);
1925 }
1926 
1927 /* Record the pseudo registers we must reload into hard registers
1928    in a subexpression of a memory address, X.
1929 
1930    If CONTEXT is 0, we are looking at the base part of an address, otherwise we
1931    are looking at the index part.
1932 
1933    MODE is the mode of the memory reference; OUTER_CODE and INDEX_CODE
1934    give the context that the rtx appears in.  These three arguments are
1935    passed down to base_reg_class.
1936 
1937    SCALE is twice the amount to multiply the cost by (it is twice so we
1938    can represent half-cost adjustments).  */
1939 
1940 static void
record_address_regs(enum machine_mode mode,rtx x,int context,enum rtx_code outer_code,enum rtx_code index_code,int scale)1941 record_address_regs (enum machine_mode mode, rtx x, int context,
1942 		     enum rtx_code outer_code, enum rtx_code index_code,
1943 		     int scale)
1944 {
1945   enum rtx_code code = GET_CODE (x);
1946   enum reg_class class;
1947 
1948   if (context == 1)
1949     class = INDEX_REG_CLASS;
1950   else
1951     class = base_reg_class (mode, outer_code, index_code);
1952 
1953   switch (code)
1954     {
1955     case CONST_INT:
1956     case CONST:
1957     case CC0:
1958     case PC:
1959     case SYMBOL_REF:
1960     case LABEL_REF:
1961       return;
1962 
1963     case PLUS:
1964       /* When we have an address that is a sum,
1965 	 we must determine whether registers are "base" or "index" regs.
1966 	 If there is a sum of two registers, we must choose one to be
1967 	 the "base".  Luckily, we can use the REG_POINTER to make a good
1968 	 choice most of the time.  We only need to do this on machines
1969 	 that can have two registers in an address and where the base
1970 	 and index register classes are different.
1971 
1972 	 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1973 	 that seems bogus since it should only be set when we are sure
1974 	 the register is being used as a pointer.  */
1975 
1976       {
1977 	rtx arg0 = XEXP (x, 0);
1978 	rtx arg1 = XEXP (x, 1);
1979 	enum rtx_code code0 = GET_CODE (arg0);
1980 	enum rtx_code code1 = GET_CODE (arg1);
1981 
1982 	/* Look inside subregs.  */
1983 	if (code0 == SUBREG)
1984 	  arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1985 	if (code1 == SUBREG)
1986 	  arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1987 
1988 	/* If this machine only allows one register per address, it must
1989 	   be in the first operand.  */
1990 
1991 	if (MAX_REGS_PER_ADDRESS == 1)
1992 	  record_address_regs (mode, arg0, 0, PLUS, code1, scale);
1993 
1994 	/* If index and base registers are the same on this machine, just
1995 	   record registers in any non-constant operands.  We assume here,
1996 	   as well as in the tests below, that all addresses are in
1997 	   canonical form.  */
1998 
1999 	else if (INDEX_REG_CLASS == base_reg_class (VOIDmode, PLUS, SCRATCH))
2000 	  {
2001 	    record_address_regs (mode, arg0, context, PLUS, code1, scale);
2002 	    if (! CONSTANT_P (arg1))
2003 	      record_address_regs (mode, arg1, context, PLUS, code0, scale);
2004 	  }
2005 
2006 	/* If the second operand is a constant integer, it doesn't change
2007 	   what class the first operand must be.  */
2008 
2009 	else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
2010 	  record_address_regs (mode, arg0, context, PLUS, code1, scale);
2011 
2012 	/* If the second operand is a symbolic constant, the first operand
2013 	   must be an index register.  */
2014 
2015 	else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
2016 	  record_address_regs (mode, arg0, 1, PLUS, code1, scale);
2017 
2018 	/* If both operands are registers but one is already a hard register
2019 	   of index or reg-base class, give the other the class that the
2020 	   hard register is not.  */
2021 
2022 	else if (code0 == REG && code1 == REG
2023 		 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
2024 		 && (ok_for_base_p_nonstrict (arg0, mode, PLUS, REG)
2025 		     || ok_for_index_p_nonstrict (arg0)))
2026 	  record_address_regs (mode, arg1,
2027 			       ok_for_base_p_nonstrict (arg0, mode, PLUS, REG)
2028 			       ? 1 : 0,
2029 			       PLUS, REG, scale);
2030 	else if (code0 == REG && code1 == REG
2031 		 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
2032 		 && (ok_for_base_p_nonstrict (arg1, mode, PLUS, REG)
2033 		     || ok_for_index_p_nonstrict (arg1)))
2034 	  record_address_regs (mode, arg0,
2035 			       ok_for_base_p_nonstrict (arg1, mode, PLUS, REG)
2036 			       ? 1 : 0,
2037 			       PLUS, REG, scale);
2038 
2039 	/* If one operand is known to be a pointer, it must be the base
2040 	   with the other operand the index.  Likewise if the other operand
2041 	   is a MULT.  */
2042 
2043 	else if ((code0 == REG && REG_POINTER (arg0))
2044 		 || code1 == MULT)
2045 	  {
2046 	    record_address_regs (mode, arg0, 0, PLUS, code1, scale);
2047 	    record_address_regs (mode, arg1, 1, PLUS, code0, scale);
2048 	  }
2049 	else if ((code1 == REG && REG_POINTER (arg1))
2050 		 || code0 == MULT)
2051 	  {
2052 	    record_address_regs (mode, arg0, 1, PLUS, code1, scale);
2053 	    record_address_regs (mode, arg1, 0, PLUS, code0, scale);
2054 	  }
2055 
2056 	/* Otherwise, count equal chances that each might be a base
2057 	   or index register.  This case should be rare.  */
2058 
2059 	else
2060 	  {
2061 	    record_address_regs (mode, arg0, 0, PLUS, code1, scale / 2);
2062 	    record_address_regs (mode, arg0, 1, PLUS, code1, scale / 2);
2063 	    record_address_regs (mode, arg1, 0, PLUS, code0, scale / 2);
2064 	    record_address_regs (mode, arg1, 1, PLUS, code0, scale / 2);
2065 	  }
2066       }
2067       break;
2068 
2069       /* Double the importance of a pseudo register that is incremented
2070 	 or decremented, since it would take two extra insns
2071 	 if it ends up in the wrong place.  */
2072     case POST_MODIFY:
2073     case PRE_MODIFY:
2074       record_address_regs (mode, XEXP (x, 0), 0, code,
2075 			   GET_CODE (XEXP (XEXP (x, 1), 1)), 2 * scale);
2076       if (REG_P (XEXP (XEXP (x, 1), 1)))
2077 	record_address_regs (mode, XEXP (XEXP (x, 1), 1), 1, code, REG,
2078 			     2 * scale);
2079       break;
2080 
2081     case POST_INC:
2082     case PRE_INC:
2083     case POST_DEC:
2084     case PRE_DEC:
2085       /* Double the importance of a pseudo register that is incremented
2086 	 or decremented, since it would take two extra insns
2087 	 if it ends up in the wrong place.  If the operand is a pseudo,
2088 	 show it is being used in an INC_DEC context.  */
2089 
2090 #ifdef FORBIDDEN_INC_DEC_CLASSES
2091       if (REG_P (XEXP (x, 0))
2092 	  && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
2093 	in_inc_dec[REGNO (XEXP (x, 0))] = 1;
2094 #endif
2095 
2096       record_address_regs (mode, XEXP (x, 0), 0, code, SCRATCH, 2 * scale);
2097       break;
2098 
2099     case REG:
2100       {
2101 	struct costs *pp = &costs[REGNO (x)];
2102 	int i;
2103 
2104 	pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
2105 
2106 	for (i = 0; i < N_REG_CLASSES; i++)
2107 	  pp->cost[i] += (may_move_in_cost[Pmode][i][(int) class] * scale) / 2;
2108       }
2109       break;
2110 
2111     default:
2112       {
2113 	const char *fmt = GET_RTX_FORMAT (code);
2114 	int i;
2115 	for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2116 	  if (fmt[i] == 'e')
2117 	    record_address_regs (mode, XEXP (x, i), context, code, SCRATCH,
2118 				 scale);
2119       }
2120     }
2121 }
2122 
2123 #ifdef FORBIDDEN_INC_DEC_CLASSES
2124 
2125 /* Return 1 if REG is valid as an auto-increment memory reference
2126    to an object of MODE.  */
2127 
2128 static int
auto_inc_dec_reg_p(rtx reg,enum machine_mode mode)2129 auto_inc_dec_reg_p (rtx reg, enum machine_mode mode)
2130 {
2131   if (HAVE_POST_INCREMENT
2132       && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
2133     return 1;
2134 
2135   if (HAVE_POST_DECREMENT
2136       && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
2137     return 1;
2138 
2139   if (HAVE_PRE_INCREMENT
2140       && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
2141     return 1;
2142 
2143   if (HAVE_PRE_DECREMENT
2144       && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
2145     return 1;
2146 
2147   return 0;
2148 }
2149 #endif
2150 
2151 static short *renumber;
2152 static size_t regno_allocated;
2153 static unsigned int reg_n_max;
2154 
2155 /* Allocate enough space to hold NUM_REGS registers for the tables used for
2156    reg_scan and flow_analysis that are indexed by the register number.  If
2157    NEW_P is nonzero, initialize all of the registers, otherwise only
2158    initialize the new registers allocated.  The same table is kept from
2159    function to function, only reallocating it when we need more room.  If
2160    RENUMBER_P is nonzero, allocate the reg_renumber array also.  */
2161 
2162 void
allocate_reg_info(size_t num_regs,int new_p,int renumber_p)2163 allocate_reg_info (size_t num_regs, int new_p, int renumber_p)
2164 {
2165   size_t size_info;
2166   size_t size_renumber;
2167   size_t min = (new_p) ? 0 : reg_n_max;
2168   struct reg_info_data *reg_data;
2169 
2170   if (num_regs > regno_allocated)
2171     {
2172       size_t old_allocated = regno_allocated;
2173 
2174       regno_allocated = num_regs + (num_regs / 20);	/* Add some slop space.  */
2175       size_renumber = regno_allocated * sizeof (short);
2176 
2177       if (!reg_n_info)
2178 	{
2179 	  reg_n_info = VEC_alloc (reg_info_p, heap, regno_allocated);
2180 	  VEC_safe_grow (reg_info_p, heap, reg_n_info, regno_allocated);
2181 	  memset (VEC_address (reg_info_p, reg_n_info), 0,
2182 		  sizeof (reg_info_p) * regno_allocated);
2183 	  renumber = xmalloc (size_renumber);
2184 	  reg_pref_buffer = XNEWVEC (struct reg_pref, regno_allocated);
2185 	}
2186       else
2187 	{
2188 	  size_t old_length = VEC_length (reg_info_p, reg_n_info);
2189 	  if (old_length < regno_allocated)
2190 	    {
2191 	      reg_info_p *addr;
2192 	      VEC_safe_grow (reg_info_p, heap, reg_n_info, regno_allocated);
2193 	      addr = VEC_address (reg_info_p, reg_n_info);
2194 	      memset (&addr[old_length], 0,
2195 		      sizeof (reg_info_p) * (regno_allocated - old_length));
2196 	    }
2197 	  else if (regno_allocated < old_length)
2198 	    {
2199 	      VEC_truncate (reg_info_p, reg_n_info, regno_allocated);
2200 	    }
2201 
2202 	  if (new_p)		/* If we're zapping everything, no need to realloc.  */
2203 	    {
2204 	      free ((char *) renumber);
2205 	      free ((char *) reg_pref);
2206 	      renumber = xmalloc (size_renumber);
2207 	      reg_pref_buffer = XNEWVEC (struct reg_pref, regno_allocated);
2208 	    }
2209 
2210 	  else
2211 	    {
2212 	      renumber = xrealloc (renumber, size_renumber);
2213 	      reg_pref_buffer = (struct reg_pref *) xrealloc (reg_pref_buffer,
2214 					  regno_allocated
2215 					  * sizeof (struct reg_pref));
2216 	    }
2217 	}
2218 
2219       size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2220 	+ sizeof (struct reg_info_data) - sizeof (reg_info);
2221       reg_data = xcalloc (size_info, 1);
2222       reg_data->min_index = old_allocated;
2223       reg_data->max_index = regno_allocated - 1;
2224       reg_data->next = reg_info_head;
2225       reg_info_head = reg_data;
2226     }
2227 
2228   reg_n_max = num_regs;
2229   if (min < num_regs)
2230     {
2231       /* Loop through each of the segments allocated for the actual
2232 	 reg_info pages, and set up the pointers, zero the pages, etc.  */
2233       for (reg_data = reg_info_head;
2234 	   reg_data && reg_data->max_index >= min;
2235 	   reg_data = reg_data->next)
2236 	{
2237 	  size_t min_index = reg_data->min_index;
2238 	  size_t max_index = reg_data->max_index;
2239 	  size_t max = MIN (max_index, num_regs);
2240 	  size_t local_min = min - min_index;
2241 	  size_t i;
2242 
2243 	  if (reg_data->min_index > num_regs)
2244 	    continue;
2245 
2246 	  if (min < min_index)
2247 	    local_min = 0;
2248 	  if (!reg_data->used_p)	/* page just allocated with calloc */
2249 	    reg_data->used_p = 1;	/* no need to zero */
2250 	  else
2251 	    memset (&reg_data->data[local_min], 0,
2252 		    sizeof (reg_info) * (max - min_index - local_min + 1));
2253 
2254 	  for (i = min_index+local_min; i <= max; i++)
2255 	    {
2256 	      VEC_replace (reg_info_p, reg_n_info, i,
2257 			   &reg_data->data[i-min_index]);
2258 	      REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2259 	      renumber[i] = -1;
2260 	      reg_pref_buffer[i].prefclass = (char) NO_REGS;
2261 	      reg_pref_buffer[i].altclass = (char) NO_REGS;
2262 	    }
2263 	}
2264     }
2265 
2266   /* If {pref,alt}class have already been allocated, update the pointers to
2267      the newly realloced ones.  */
2268   if (reg_pref)
2269     reg_pref = reg_pref_buffer;
2270 
2271   if (renumber_p)
2272     reg_renumber = renumber;
2273 }
2274 
2275 /* Free up the space allocated by allocate_reg_info.  */
2276 void
free_reg_info(void)2277 free_reg_info (void)
2278 {
2279   if (reg_n_info)
2280     {
2281       struct reg_info_data *reg_data;
2282       struct reg_info_data *reg_next;
2283 
2284       VEC_free (reg_info_p, heap, reg_n_info);
2285       for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2286 	{
2287 	  reg_next = reg_data->next;
2288 	  free ((char *) reg_data);
2289 	}
2290 
2291       free (reg_pref_buffer);
2292       reg_pref_buffer = (struct reg_pref *) 0;
2293       reg_info_head = (struct reg_info_data *) 0;
2294       renumber = (short *) 0;
2295     }
2296   regno_allocated = 0;
2297   reg_n_max = 0;
2298 }
2299 
2300 /* This is the `regscan' pass of the compiler, run just before cse
2301    and again just before loop.
2302 
2303    It finds the first and last use of each pseudo-register
2304    and records them in the vectors regno_first_uid, regno_last_uid
2305    and counts the number of sets in the vector reg_n_sets.
2306 
2307    REPEAT is nonzero the second time this is called.  */
2308 
2309 /* Maximum number of parallel sets and clobbers in any insn in this fn.
2310    Always at least 3, since the combiner could put that many together
2311    and we want this to remain correct for all the remaining passes.
2312    This corresponds to the maximum number of times note_stores will call
2313    a function for any insn.  */
2314 
2315 int max_parallel;
2316 
2317 /* Used as a temporary to record the largest number of registers in
2318    PARALLEL in a SET_DEST.  This is added to max_parallel.  */
2319 
2320 static int max_set_parallel;
2321 
2322 void
reg_scan(rtx f,unsigned int nregs)2323 reg_scan (rtx f, unsigned int nregs)
2324 {
2325   rtx insn;
2326 
2327   timevar_push (TV_REG_SCAN);
2328 
2329   allocate_reg_info (nregs, TRUE, FALSE);
2330   max_parallel = 3;
2331   max_set_parallel = 0;
2332 
2333   for (insn = f; insn; insn = NEXT_INSN (insn))
2334     if (INSN_P (insn))
2335       {
2336 	rtx pat = PATTERN (insn);
2337 	if (GET_CODE (pat) == PARALLEL
2338 	    && XVECLEN (pat, 0) > max_parallel)
2339 	  max_parallel = XVECLEN (pat, 0);
2340 	reg_scan_mark_refs (pat, insn, 0);
2341 
2342 	if (REG_NOTES (insn))
2343 	  reg_scan_mark_refs (REG_NOTES (insn), insn, 1);
2344       }
2345 
2346   max_parallel += max_set_parallel;
2347 
2348   timevar_pop (TV_REG_SCAN);
2349 }
2350 
2351 /* X is the expression to scan.  INSN is the insn it appears in.
2352    NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.  */
2353 
2354 static void
reg_scan_mark_refs(rtx x,rtx insn,int note_flag)2355 reg_scan_mark_refs (rtx x, rtx insn, int note_flag)
2356 {
2357   enum rtx_code code;
2358   rtx dest;
2359   rtx note;
2360 
2361   if (!x)
2362     return;
2363   code = GET_CODE (x);
2364   switch (code)
2365     {
2366     case CONST:
2367     case CONST_INT:
2368     case CONST_DOUBLE:
2369     case CONST_VECTOR:
2370     case CC0:
2371     case PC:
2372     case SYMBOL_REF:
2373     case LABEL_REF:
2374     case ADDR_VEC:
2375     case ADDR_DIFF_VEC:
2376       return;
2377 
2378     case REG:
2379       {
2380 	unsigned int regno = REGNO (x);
2381 
2382 	if (!note_flag)
2383 	  REGNO_LAST_UID (regno) = INSN_UID (insn);
2384 	if (REGNO_FIRST_UID (regno) == 0)
2385 	  REGNO_FIRST_UID (regno) = INSN_UID (insn);
2386       }
2387       break;
2388 
2389     case EXPR_LIST:
2390       if (XEXP (x, 0))
2391 	reg_scan_mark_refs (XEXP (x, 0), insn, note_flag);
2392       if (XEXP (x, 1))
2393 	reg_scan_mark_refs (XEXP (x, 1), insn, note_flag);
2394       break;
2395 
2396     case INSN_LIST:
2397       if (XEXP (x, 1))
2398 	reg_scan_mark_refs (XEXP (x, 1), insn, note_flag);
2399       break;
2400 
2401     case CLOBBER:
2402       {
2403 	rtx reg = XEXP (x, 0);
2404 	if (REG_P (reg))
2405 	  {
2406 	    REG_N_SETS (REGNO (reg))++;
2407 	    REG_N_REFS (REGNO (reg))++;
2408 	  }
2409 	else if (MEM_P (reg))
2410 	  reg_scan_mark_refs (XEXP (reg, 0), insn, note_flag);
2411       }
2412       break;
2413 
2414     case SET:
2415       /* Count a set of the destination if it is a register.  */
2416       for (dest = SET_DEST (x);
2417 	   GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2418 	   || GET_CODE (dest) == ZERO_EXTEND;
2419 	   dest = XEXP (dest, 0))
2420 	;
2421 
2422       /* For a PARALLEL, record the number of things (less the usual one for a
2423 	 SET) that are set.  */
2424       if (GET_CODE (dest) == PARALLEL)
2425 	max_set_parallel = MAX (max_set_parallel, XVECLEN (dest, 0) - 1);
2426 
2427       if (REG_P (dest))
2428 	{
2429 	  REG_N_SETS (REGNO (dest))++;
2430 	  REG_N_REFS (REGNO (dest))++;
2431 	}
2432 
2433       /* If this is setting a pseudo from another pseudo or the sum of a
2434 	 pseudo and a constant integer and the other pseudo is known to be
2435 	 a pointer, set the destination to be a pointer as well.
2436 
2437 	 Likewise if it is setting the destination from an address or from a
2438 	 value equivalent to an address or to the sum of an address and
2439 	 something else.
2440 
2441 	 But don't do any of this if the pseudo corresponds to a user
2442 	 variable since it should have already been set as a pointer based
2443 	 on the type.  */
2444 
2445       if (REG_P (SET_DEST (x))
2446 	  && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2447 	  /* If the destination pseudo is set more than once, then other
2448 	     sets might not be to a pointer value (consider access to a
2449 	     union in two threads of control in the presence of global
2450 	     optimizations).  So only set REG_POINTER on the destination
2451 	     pseudo if this is the only set of that pseudo.  */
2452 	  && REG_N_SETS (REGNO (SET_DEST (x))) == 1
2453 	  && ! REG_USERVAR_P (SET_DEST (x))
2454 	  && ! REG_POINTER (SET_DEST (x))
2455 	  && ((REG_P (SET_SRC (x))
2456 	       && REG_POINTER (SET_SRC (x)))
2457 	      || ((GET_CODE (SET_SRC (x)) == PLUS
2458 		   || GET_CODE (SET_SRC (x)) == LO_SUM)
2459 		  && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2460 		  && REG_P (XEXP (SET_SRC (x), 0))
2461 		  && REG_POINTER (XEXP (SET_SRC (x), 0)))
2462 	      || GET_CODE (SET_SRC (x)) == CONST
2463 	      || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2464 	      || GET_CODE (SET_SRC (x)) == LABEL_REF
2465 	      || (GET_CODE (SET_SRC (x)) == HIGH
2466 		  && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2467 		      || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2468 		      || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2469 	      || ((GET_CODE (SET_SRC (x)) == PLUS
2470 		   || GET_CODE (SET_SRC (x)) == LO_SUM)
2471 		  && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2472 		      || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2473 		      || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2474 	      || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2475 		  && (GET_CODE (XEXP (note, 0)) == CONST
2476 		      || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2477 		      || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2478 	REG_POINTER (SET_DEST (x)) = 1;
2479 
2480       /* If this is setting a register from a register or from a simple
2481 	 conversion of a register, propagate REG_EXPR.  */
2482       if (REG_P (dest))
2483 	{
2484 	  rtx src = SET_SRC (x);
2485 
2486 	  while (GET_CODE (src) == SIGN_EXTEND
2487 		 || GET_CODE (src) == ZERO_EXTEND
2488 		 || GET_CODE (src) == TRUNCATE
2489 		 || (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
2490 	    src = XEXP (src, 0);
2491 
2492 	  if (!REG_ATTRS (dest) && REG_P (src))
2493 	    REG_ATTRS (dest) = REG_ATTRS (src);
2494 	  if (!REG_ATTRS (dest) && MEM_P (src))
2495 	    set_reg_attrs_from_mem (dest, src);
2496 	}
2497 
2498       /* ... fall through ...  */
2499 
2500     default:
2501       {
2502 	const char *fmt = GET_RTX_FORMAT (code);
2503 	int i;
2504 	for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2505 	  {
2506 	    if (fmt[i] == 'e')
2507 	      reg_scan_mark_refs (XEXP (x, i), insn, note_flag);
2508 	    else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2509 	      {
2510 		int j;
2511 		for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2512 		  reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag);
2513 	      }
2514 	  }
2515       }
2516     }
2517 }
2518 
2519 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2520    is also in C2.  */
2521 
2522 int
reg_class_subset_p(enum reg_class c1,enum reg_class c2)2523 reg_class_subset_p (enum reg_class c1, enum reg_class c2)
2524 {
2525   if (c1 == c2) return 1;
2526 
2527   if (c2 == ALL_REGS)
2528   win:
2529     return 1;
2530   GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) c1],
2531 			 reg_class_contents[(int) c2],
2532 			 win);
2533   return 0;
2534 }
2535 
2536 /* Return nonzero if there is a register that is in both C1 and C2.  */
2537 
2538 int
reg_classes_intersect_p(enum reg_class c1,enum reg_class c2)2539 reg_classes_intersect_p (enum reg_class c1, enum reg_class c2)
2540 {
2541   HARD_REG_SET c;
2542 
2543   if (c1 == c2) return 1;
2544 
2545   if (c1 == ALL_REGS || c2 == ALL_REGS)
2546     return 1;
2547 
2548   COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2549   AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2550 
2551   GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2552   return 1;
2553 
2554  lose:
2555   return 0;
2556 }
2557 
2558 #ifdef CANNOT_CHANGE_MODE_CLASS
2559 
2560 struct subregs_of_mode_node
2561 {
2562   unsigned int block;
2563   unsigned char modes[MAX_MACHINE_MODE];
2564 };
2565 
2566 static htab_t subregs_of_mode;
2567 
2568 static hashval_t
som_hash(const void * x)2569 som_hash (const void *x)
2570 {
2571   const struct subregs_of_mode_node *a = x;
2572   return a->block;
2573 }
2574 
2575 static int
som_eq(const void * x,const void * y)2576 som_eq (const void *x, const void *y)
2577 {
2578   const struct subregs_of_mode_node *a = x;
2579   const struct subregs_of_mode_node *b = y;
2580   return a->block == b->block;
2581 }
2582 
2583 void
init_subregs_of_mode(void)2584 init_subregs_of_mode (void)
2585 {
2586   if (subregs_of_mode)
2587     htab_empty (subregs_of_mode);
2588   else
2589     subregs_of_mode = htab_create (100, som_hash, som_eq, free);
2590 }
2591 
2592 void
record_subregs_of_mode(rtx subreg)2593 record_subregs_of_mode (rtx subreg)
2594 {
2595   struct subregs_of_mode_node dummy, *node;
2596   enum machine_mode mode;
2597   unsigned int regno;
2598   void **slot;
2599 
2600   if (!REG_P (SUBREG_REG (subreg)))
2601     return;
2602 
2603   regno = REGNO (SUBREG_REG (subreg));
2604   mode = GET_MODE (subreg);
2605 
2606   if (regno < FIRST_PSEUDO_REGISTER)
2607     return;
2608 
2609   dummy.block = regno & -8;
2610   slot = htab_find_slot_with_hash (subregs_of_mode, &dummy,
2611 				   dummy.block, INSERT);
2612   node = *slot;
2613   if (node == NULL)
2614     {
2615       node = XCNEW (struct subregs_of_mode_node);
2616       node->block = regno & -8;
2617       *slot = node;
2618     }
2619 
2620   node->modes[mode] |= 1 << (regno & 7);
2621 }
2622 
2623 /* Set bits in *USED which correspond to registers which can't change
2624    their mode from FROM to any mode in which REGNO was encountered.  */
2625 
2626 void
cannot_change_mode_set_regs(HARD_REG_SET * used,enum machine_mode from,unsigned int regno)2627 cannot_change_mode_set_regs (HARD_REG_SET *used, enum machine_mode from,
2628 			     unsigned int regno)
2629 {
2630   struct subregs_of_mode_node dummy, *node;
2631   enum machine_mode to;
2632   unsigned char mask;
2633   unsigned int i;
2634 
2635   dummy.block = regno & -8;
2636   node = htab_find_with_hash (subregs_of_mode, &dummy, dummy.block);
2637   if (node == NULL)
2638     return;
2639 
2640   mask = 1 << (regno & 7);
2641   for (to = VOIDmode; to < NUM_MACHINE_MODES; to++)
2642     if (node->modes[to] & mask)
2643       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2644 	if (!TEST_HARD_REG_BIT (*used, i)
2645 	    && REG_CANNOT_CHANGE_MODE_P (i, from, to))
2646 	  SET_HARD_REG_BIT (*used, i);
2647 }
2648 
2649 /* Return 1 if REGNO has had an invalid mode change in CLASS from FROM
2650    mode.  */
2651 
2652 bool
invalid_mode_change_p(unsigned int regno,enum reg_class class,enum machine_mode from)2653 invalid_mode_change_p (unsigned int regno, enum reg_class class,
2654 		       enum machine_mode from)
2655 {
2656   struct subregs_of_mode_node dummy, *node;
2657   enum machine_mode to;
2658   unsigned char mask;
2659 
2660   dummy.block = regno & -8;
2661   node = htab_find_with_hash (subregs_of_mode, &dummy, dummy.block);
2662   if (node == NULL)
2663     return false;
2664 
2665   mask = 1 << (regno & 7);
2666   for (to = VOIDmode; to < NUM_MACHINE_MODES; to++)
2667     if (node->modes[to] & mask)
2668       if (CANNOT_CHANGE_MODE_CLASS (from, to, class))
2669 	return true;
2670 
2671   return false;
2672 }
2673 #endif /* CANNOT_CHANGE_MODE_CLASS */
2674 
2675 #include "gt-regclass.h"
2676