xref: /netbsd-src/sys/net80211/ieee80211_crypto_wep.c (revision 676286b5eaac22a400505fcd7c7f2a7411e65ec6)
1 /*	$NetBSD: ieee80211_crypto_wep.c,v 1.14 2023/06/24 05:12:03 msaitoh Exp $	*/
2 
3 /*
4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the author may not be used to endorse or promote products
16  *    derived from this software without specific prior written permission.
17  *
18  * Alternatively, this software may be distributed under the terms of the
19  * GNU General Public License ("GPL") version 2 as published by the Free
20  * Software Foundation.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 #ifdef __FreeBSD__
36 __FBSDID("$FreeBSD: src/sys/net80211/ieee80211_crypto_wep.c,v 1.7 2005/06/10 16:11:24 sam Exp $");
37 #endif
38 #ifdef __NetBSD__
39 __KERNEL_RCSID(0, "$NetBSD: ieee80211_crypto_wep.c,v 1.14 2023/06/24 05:12:03 msaitoh Exp $");
40 #endif
41 
42 /*
43  * IEEE 802.11 WEP crypto support.
44  */
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/mbuf.h>
48 #include <sys/kmem.h>
49 #include <sys/kernel.h>
50 #include <sys/endian.h>
51 
52 #include <sys/socket.h>
53 
54 #include <net/if.h>
55 #include <net/if_ether.h>
56 #include <net/if_media.h>
57 
58 #include <net80211/ieee80211_var.h>
59 
60 static	void *wep_attach(struct ieee80211com *, struct ieee80211_key *);
61 static	void wep_detach(struct ieee80211_key *);
62 static	int wep_setkey(struct ieee80211_key *);
63 static	int wep_encap(struct ieee80211_key *, struct mbuf *, u_int8_t keyid);
64 static	int wep_decap(struct ieee80211_key *, struct mbuf *, int hdrlen);
65 static	int wep_enmic(struct ieee80211_key *, struct mbuf *, int);
66 static	int wep_demic(struct ieee80211_key *, struct mbuf *, int);
67 
68 const struct ieee80211_cipher ieee80211_cipher_wep = {
69 	.ic_name	= "WEP",
70 	.ic_cipher	= IEEE80211_CIPHER_WEP,
71 	.ic_header	= IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN,
72 	.ic_trailer	= IEEE80211_WEP_CRCLEN,
73 	.ic_miclen	= 0,
74 	.ic_attach	= wep_attach,
75 	.ic_detach	= wep_detach,
76 	.ic_setkey	= wep_setkey,
77 	.ic_encap	= wep_encap,
78 	.ic_decap	= wep_decap,
79 	.ic_enmic	= wep_enmic,
80 	.ic_demic	= wep_demic,
81 };
82 
83 #define	wep	ieee80211_cipher_wep
84 
85 static	int wep_encrypt(struct ieee80211_key *, struct mbuf *, int hdrlen);
86 static	int wep_decrypt(struct ieee80211_key *, struct mbuf *, int hdrlen);
87 
88 struct wep_ctx {
89 	struct ieee80211com *wc_ic;	/* for diagnostics */
90 	u_int32_t	wc_iv;		/* initial vector for crypto */
91 };
92 
93 static void *
wep_attach(struct ieee80211com * ic,struct ieee80211_key * k)94 wep_attach(struct ieee80211com *ic, struct ieee80211_key *k)
95 {
96 	struct wep_ctx *ctx;
97 
98 	ctx = kmem_intr_zalloc(sizeof(struct wep_ctx), KM_NOSLEEP);
99 	if (ctx == NULL) {
100 		ic->ic_stats.is_crypto_nomem++;
101 		return NULL;
102 	}
103 
104 	ctx->wc_ic = ic;
105 	get_random_bytes(&ctx->wc_iv, sizeof(ctx->wc_iv));
106 	return ctx;
107 }
108 
109 static void
wep_detach(struct ieee80211_key * k)110 wep_detach(struct ieee80211_key *k)
111 {
112 	struct wep_ctx *ctx = k->wk_private;
113 
114 	kmem_intr_free(ctx, sizeof(struct wep_ctx));
115 }
116 
117 static int
wep_setkey(struct ieee80211_key * k)118 wep_setkey(struct ieee80211_key *k)
119 {
120 	return k->wk_keylen >= 40/NBBY;
121 }
122 
123 /*
124  * Add privacy headers appropriate for the specified key.
125  */
126 static int
wep_encap(struct ieee80211_key * k,struct mbuf * m,u_int8_t keyid)127 wep_encap(struct ieee80211_key *k, struct mbuf *m, u_int8_t keyid)
128 {
129 	struct wep_ctx *ctx = k->wk_private;
130 	struct ieee80211com *ic = ctx->wc_ic;
131 	u_int32_t iv;
132 	u_int8_t *ivp;
133 	int hdrlen;
134 
135 	hdrlen = ieee80211_hdrspace(ic, mtod(m, void *));
136 	ivp = mtod(m, u_int8_t *) + hdrlen;
137 
138 	/*
139 	 * XXX
140 	 * IV must not duplicate during the lifetime of the key.
141 	 * But no mechanism to renew keys is defined in IEEE 802.11
142 	 * for WEP.  And the IV may be duplicated at other stations
143 	 * because the session key itself is shared.  So we use a
144 	 * pseudo random IV for now, though it is not the right way.
145 	 *
146 	 * NB: Rather than use a strictly random IV we select a
147 	 * random one to start and then increment the value for
148 	 * each frame.  This is an explicit tradeoff between
149 	 * overhead and security.  Given the basic insecurity of
150 	 * WEP this seems worthwhile.
151 	 */
152 
153 	/*
154 	 * Skip 'bad' IVs from Fluhrer/Mantin/Shamir:
155 	 * (B, 255, N) with 3 <= B < 16 and 0 <= N <= 255
156 	 */
157 	iv = ctx->wc_iv;
158 	if ((iv & 0xff00) == 0xff00) {
159 		int B = (iv & 0xff0000) >> 16;
160 		if (3 <= B && B < 16)
161 			iv += 0x0100;
162 	}
163 	ctx->wc_iv = iv + 1;
164 
165 	/*
166 	 * NB: Preserve byte order of IV for packet
167 	 *     sniffers; it doesn't matter otherwise.
168 	 */
169 #if _BYTE_ORDER == _BIG_ENDIAN
170 	ivp[0] = iv >> 0;
171 	ivp[1] = iv >> 8;
172 	ivp[2] = iv >> 16;
173 #else
174 	ivp[2] = iv >> 0;
175 	ivp[1] = iv >> 8;
176 	ivp[0] = iv >> 16;
177 #endif
178 	ivp[3] = keyid;
179 
180 	/*
181 	 * Finally, do software encrypt if need.
182 	 */
183 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) &&
184 	    !wep_encrypt(k, m, hdrlen))
185 		return 0;
186 
187 	return 1;
188 }
189 
190 /*
191  * Add MIC to the frame as needed.
192  */
193 static int
wep_enmic(struct ieee80211_key * k,struct mbuf * m,int force)194 wep_enmic(struct ieee80211_key *k, struct mbuf *m, int force)
195 {
196 
197 	return 1;
198 }
199 
200 /*
201  * Validate and strip privacy headers (and trailer) for a
202  * received frame.  If necessary, decrypt the frame using
203  * the specified key.
204  */
205 static int
wep_decap(struct ieee80211_key * k,struct mbuf * m,int hdrlen)206 wep_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen)
207 {
208 	struct wep_ctx *ctx = k->wk_private;
209 	struct ieee80211_frame *wh;
210 
211 	wh = mtod(m, struct ieee80211_frame *);
212 
213 	/*
214 	 * Check if the device handled the decrypt in hardware.
215 	 * If so we just strip the header; otherwise we need to
216 	 * handle the decrypt in software.
217 	 */
218 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) &&
219 	    !wep_decrypt(k, m, hdrlen)) {
220 		IEEE80211_DPRINTF(ctx->wc_ic, IEEE80211_MSG_CRYPTO,
221 		    "[%s] WEP ICV mismatch on decrypt\n",
222 		    ether_sprintf(wh->i_addr2));
223 		ctx->wc_ic->ic_stats.is_rx_wepfail++;
224 		return 0;
225 	}
226 
227 	/*
228 	 * Copy up 802.11 header and strip crypto bits.
229 	 */
230 	memmove(mtod(m, u_int8_t *) + wep.ic_header, mtod(m, void *), hdrlen);
231 	m_adj(m, wep.ic_header);
232 	m_adj(m, -wep.ic_trailer);
233 
234 	return 1;
235 }
236 
237 /*
238  * Verify and strip MIC from the frame.
239  */
240 static int
wep_demic(struct ieee80211_key * k,struct mbuf * skb,int force)241 wep_demic(struct ieee80211_key *k, struct mbuf *skb,
242     int force)
243 {
244 	return 1;
245 }
246 
247 static const uint32_t crc32_table[256] = {
248 	0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L,
249 	0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L,
250 	0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L,
251 	0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL,
252 	0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L,
253 	0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L,
254 	0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L,
255 	0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL,
256 	0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L,
257 	0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL,
258 	0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L,
259 	0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L,
260 	0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L,
261 	0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL,
262 	0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL,
263 	0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L,
264 	0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL,
265 	0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L,
266 	0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L,
267 	0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L,
268 	0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL,
269 	0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L,
270 	0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L,
271 	0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL,
272 	0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L,
273 	0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L,
274 	0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L,
275 	0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L,
276 	0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L,
277 	0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL,
278 	0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL,
279 	0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L,
280 	0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L,
281 	0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL,
282 	0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL,
283 	0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L,
284 	0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL,
285 	0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L,
286 	0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL,
287 	0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L,
288 	0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL,
289 	0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L,
290 	0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L,
291 	0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL,
292 	0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L,
293 	0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L,
294 	0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L,
295 	0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L,
296 	0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L,
297 	0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L,
298 	0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL,
299 	0x2d02ef8dL
300 };
301 
302 static int
wep_encrypt(struct ieee80211_key * key,struct mbuf * m0,int hdrlen)303 wep_encrypt(struct ieee80211_key *key, struct mbuf *m0, int hdrlen)
304 {
305 #define S_SWAP(a,b) do { uint8_t t = S[a]; S[a] = S[b]; S[b] = t; } while(0)
306 	struct wep_ctx *ctx = key->wk_private;
307 	struct mbuf *m = m0;
308 	u_int8_t rc4key[IEEE80211_WEP_IVLEN + IEEE80211_KEYBUF_SIZE];
309 	uint8_t icv[IEEE80211_WEP_CRCLEN];
310 	uint32_t i, j, k, crc;
311 	size_t buflen, data_len;
312 	uint8_t S[256];
313 	uint8_t *pos;
314 	u_int off, keylen;
315 
316 	ctx->wc_ic->ic_stats.is_crypto_wep++;
317 
318 	/*
319 	 * NB: this assumes the header was pulled up; it was done in
320 	 * ieee80211_crypto_encap().
321 	 */
322 	memcpy(rc4key, mtod(m, u_int8_t *) + hdrlen, IEEE80211_WEP_IVLEN);
323 	memcpy(rc4key + IEEE80211_WEP_IVLEN, key->wk_key, key->wk_keylen);
324 
325 	/* Setup RC4 state */
326 	for (i = 0; i < 256; i++)
327 		S[i] = i;
328 	j = 0;
329 	keylen = key->wk_keylen + IEEE80211_WEP_IVLEN;
330 	for (i = 0; i < 256; i++) {
331 		j = (j + S[i] + rc4key[i % keylen]) & 0xff;
332 		S_SWAP(i, j);
333 	}
334 
335 	off = hdrlen + wep.ic_header;
336 	data_len = m->m_pkthdr.len - off;
337 
338 	/* Compute CRC32 over unencrypted data and apply RC4 to data */
339 	crc = ~0;
340 	i = j = 0;
341 	pos = mtod(m, uint8_t *) + off;
342 	buflen = m->m_len - off;
343 	for (;;) {
344 		if (buflen > data_len)
345 			buflen = data_len;
346 		data_len -= buflen;
347 		for (k = 0; k < buflen; k++) {
348 			crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8);
349 			i = (i + 1) & 0xff;
350 			j = (j + S[i]) & 0xff;
351 			S_SWAP(i, j);
352 			*pos++ ^= S[(S[i] + S[j]) & 0xff];
353 		}
354 		if (m->m_next == NULL) {
355 			if (data_len != 0) {		/* out of data */
356 				IEEE80211_DPRINTF(ctx->wc_ic,
357 				    IEEE80211_MSG_CRYPTO,
358 				    "[%s] out of data for WEP (data_len %zu)\n",
359 				    ether_sprintf(mtod(m0,
360 					struct ieee80211_frame *)->i_addr2),
361 				    data_len);
362 				return 0;
363 			}
364 			break;
365 		}
366 		m = m->m_next;
367 		pos = mtod(m, uint8_t *);
368 		buflen = m->m_len;
369 	}
370 	crc = ~crc;
371 
372 	/* Append little-endian CRC32 and encrypt it to produce ICV */
373 	icv[0] = crc;
374 	icv[1] = crc >> 8;
375 	icv[2] = crc >> 16;
376 	icv[3] = crc >> 24;
377 	for (k = 0; k < IEEE80211_WEP_CRCLEN; k++) {
378 		i = (i + 1) & 0xff;
379 		j = (j + S[i]) & 0xff;
380 		S_SWAP(i, j);
381 		icv[k] ^= S[(S[i] + S[j]) & 0xff];
382 	}
383 	return m_append(m0, IEEE80211_WEP_CRCLEN, icv);
384 #undef S_SWAP
385 }
386 
387 static int
wep_decrypt(struct ieee80211_key * key,struct mbuf * m0,int hdrlen)388 wep_decrypt(struct ieee80211_key *key, struct mbuf *m0, int hdrlen)
389 {
390 #define S_SWAP(a,b) do { uint8_t t = S[a]; S[a] = S[b]; S[b] = t; } while(0)
391 	struct wep_ctx *ctx = key->wk_private;
392 	struct mbuf *m = m0;
393 	u_int8_t rc4key[IEEE80211_WEP_IVLEN + IEEE80211_KEYBUF_SIZE];
394 	uint8_t icv[IEEE80211_WEP_CRCLEN];
395 	uint32_t i, j, k, crc;
396 	size_t buflen, data_len;
397 	uint8_t S[256];
398 	uint8_t *pos;
399 	u_int off, keylen;
400 
401 	ctx->wc_ic->ic_stats.is_crypto_wep++;
402 
403 	/* NB: this assumes the header was pulled up */
404 	memcpy(rc4key, mtod(m, u_int8_t *) + hdrlen, IEEE80211_WEP_IVLEN);
405 	memcpy(rc4key + IEEE80211_WEP_IVLEN, key->wk_key, key->wk_keylen);
406 
407 	/* Setup RC4 state */
408 	for (i = 0; i < 256; i++)
409 		S[i] = i;
410 	j = 0;
411 	keylen = key->wk_keylen + IEEE80211_WEP_IVLEN;
412 	for (i = 0; i < 256; i++) {
413 		j = (j + S[i] + rc4key[i % keylen]) & 0xff;
414 		S_SWAP(i, j);
415 	}
416 
417 	off = hdrlen + wep.ic_header;
418 	data_len = m->m_pkthdr.len - (off + wep.ic_trailer);
419 
420 	/* Compute CRC32 over unencrypted data and apply RC4 to data */
421 	crc = ~0;
422 	i = j = 0;
423 	pos = mtod(m, uint8_t *) + off;
424 	buflen = m->m_len - off;
425 	for (;;) {
426 		if (buflen > data_len)
427 			buflen = data_len;
428 		data_len -= buflen;
429 		for (k = 0; k < buflen; k++) {
430 			i = (i + 1) & 0xff;
431 			j = (j + S[i]) & 0xff;
432 			S_SWAP(i, j);
433 			*pos ^= S[(S[i] + S[j]) & 0xff];
434 			crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8);
435 			pos++;
436 		}
437 		m = m->m_next;
438 		if (m == NULL) {
439 			if (data_len != 0) {		/* out of data */
440 				IEEE80211_DPRINTF(ctx->wc_ic,
441 				    IEEE80211_MSG_CRYPTO,
442 				    "[%s] out of data for WEP (data_len %zu)\n",
443 				    ether_sprintf(mtod(m0,
444 					struct ieee80211_frame *)->i_addr2),
445 				    data_len);
446 				return 0;
447 			}
448 			break;
449 		}
450 		pos = mtod(m, uint8_t *);
451 		buflen = m->m_len;
452 	}
453 	crc = ~crc;
454 
455 	/*
456 	 * Encrypt little-endian CRC32 and verify that it matches with
457 	 * received ICV
458 	 */
459 	icv[0] = crc;
460 	icv[1] = crc >> 8;
461 	icv[2] = crc >> 16;
462 	icv[3] = crc >> 24;
463 	for (k = 0; k < IEEE80211_WEP_CRCLEN; k++) {
464 		i = (i + 1) & 0xff;
465 		j = (j + S[i]) & 0xff;
466 		S_SWAP(i, j);
467 		/* XXX assumes ICV is contiguous in mbuf */
468 		if ((icv[k] ^ S[(S[i] + S[j]) & 0xff]) != *pos++) {
469 			/* ICV mismatch - drop frame */
470 			return 0;
471 		}
472 	}
473 	return 1;
474 #undef S_SWAP
475 }
476 
IEEE80211_CRYPTO_SETUP(wep_register)477 IEEE80211_CRYPTO_SETUP(wep_register)
478 {
479 	ieee80211_crypto_register(&wep);
480 }
481