xref: /netbsd-src/sys/net80211/ieee80211_crypto_tkip.c (revision 676286b5eaac22a400505fcd7c7f2a7411e65ec6)
1 /*	$NetBSD: ieee80211_crypto_tkip.c,v 1.18 2023/06/24 05:12:03 msaitoh Exp $	*/
2 
3 /*
4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the author may not be used to endorse or promote products
16  *    derived from this software without specific prior written permission.
17  *
18  * Alternatively, this software may be distributed under the terms of the
19  * GNU General Public License ("GPL") version 2 as published by the Free
20  * Software Foundation.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 #ifdef __FreeBSD__
36 __FBSDID("$FreeBSD: src/sys/net80211/ieee80211_crypto_tkip.c,v 1.10 2005/08/08 18:46:35 sam Exp $");
37 #endif
38 #ifdef __NetBSD__
39 __KERNEL_RCSID(0, "$NetBSD: ieee80211_crypto_tkip.c,v 1.18 2023/06/24 05:12:03 msaitoh Exp $");
40 #endif
41 
42 /*
43  * IEEE 802.11i TKIP crypto support.
44  *
45  * Part of this module is derived from similar code in the Host
46  * AP driver. The code is used with the consent of the author and
47  * its license is included below.
48  */
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/mbuf.h>
52 #include <sys/kmem.h>
53 #include <sys/kernel.h>
54 #include <sys/endian.h>
55 
56 #include <sys/socket.h>
57 
58 #include <net/if.h>
59 #include <net/if_ether.h>
60 #include <net/if_media.h>
61 
62 #include <net80211/ieee80211_var.h>
63 
64 static	void *tkip_attach(struct ieee80211com *, struct ieee80211_key *);
65 static	void tkip_detach(struct ieee80211_key *);
66 static	int tkip_setkey(struct ieee80211_key *);
67 static	int tkip_encap(struct ieee80211_key *, struct mbuf *m, u_int8_t keyid);
68 static	int tkip_enmic(struct ieee80211_key *, struct mbuf *, int);
69 static	int tkip_decap(struct ieee80211_key *, struct mbuf *, int);
70 static	int tkip_demic(struct ieee80211_key *, struct mbuf *, int);
71 
72 const struct ieee80211_cipher ieee80211_cipher_tkip  = {
73 	.ic_name	= "TKIP",
74 	.ic_cipher	= IEEE80211_CIPHER_TKIP,
75 	.ic_header	= IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
76 			  IEEE80211_WEP_EXTIVLEN,
77 	.ic_trailer	= IEEE80211_WEP_CRCLEN,
78 	.ic_miclen	= IEEE80211_WEP_MICLEN,
79 	.ic_attach	= tkip_attach,
80 	.ic_detach	= tkip_detach,
81 	.ic_setkey	= tkip_setkey,
82 	.ic_encap	= tkip_encap,
83 	.ic_decap	= tkip_decap,
84 	.ic_enmic	= tkip_enmic,
85 	.ic_demic	= tkip_demic,
86 };
87 
88 #define	tkip	ieee80211_cipher_tkip
89 
90 typedef	uint8_t u8;
91 typedef	uint16_t u16;
92 typedef	uint32_t __u32;
93 typedef	uint32_t u32;
94 
95 struct tkip_ctx {
96 	struct ieee80211com *tc_ic;	/* for diagnostics */
97 
98 	u16	tx_ttak[5];
99 	int	tx_phase1_done;
100 	u8	tx_rc4key[16];		/* XXX for test module; make locals? */
101 
102 	u16	rx_ttak[5];
103 	int	rx_phase1_done;
104 	u8	rx_rc4key[16];		/* XXX for test module; make locals? */
105 	uint64_t rx_rsc;		/* held until MIC verified */
106 };
107 
108 static	void michael_mic(struct tkip_ctx *, const u8 *key,
109 		struct mbuf *m, u_int off, size_t data_len,
110 		u8 mic[IEEE80211_WEP_MICLEN]);
111 static	int tkip_encrypt(struct tkip_ctx *, struct ieee80211_key *,
112 		struct mbuf *, int hdr_len);
113 static	int tkip_decrypt(struct tkip_ctx *, struct ieee80211_key *,
114 		struct mbuf *, int hdr_len);
115 
116 static void *
tkip_attach(struct ieee80211com * ic,struct ieee80211_key * k)117 tkip_attach(struct ieee80211com *ic, struct ieee80211_key *k)
118 {
119 	struct tkip_ctx *ctx;
120 
121 	ctx = kmem_intr_zalloc(sizeof(struct tkip_ctx), KM_NOSLEEP);
122 	if (ctx == NULL) {
123 		ic->ic_stats.is_crypto_nomem++;
124 		return NULL;
125 	}
126 
127 	ctx->tc_ic = ic;
128 	return ctx;
129 }
130 
131 static void
tkip_detach(struct ieee80211_key * k)132 tkip_detach(struct ieee80211_key *k)
133 {
134 	struct tkip_ctx *ctx = k->wk_private;
135 
136 	kmem_intr_free(ctx, sizeof(struct tkip_ctx));
137 }
138 
139 static int
tkip_setkey(struct ieee80211_key * k)140 tkip_setkey(struct ieee80211_key *k)
141 {
142 	struct tkip_ctx *ctx = k->wk_private;
143 
144 	if (k->wk_keylen != (128/NBBY)) {
145 		(void) ctx;		/* XXX */
146 		IEEE80211_DPRINTF(ctx->tc_ic, IEEE80211_MSG_CRYPTO,
147 			"%s: Invalid key length %u, expecting %u\n",
148 			__func__, k->wk_keylen, 128/NBBY);
149 		return 0;
150 	}
151 	k->wk_keytsc = 1;		/* TSC starts at 1 */
152 	return 1;
153 }
154 
155 /*
156  * Add privacy headers and do any s/w encryption required.
157  */
158 static int
tkip_encap(struct ieee80211_key * k,struct mbuf * m,u_int8_t keyid)159 tkip_encap(struct ieee80211_key *k, struct mbuf *m, u_int8_t keyid)
160 {
161 	struct tkip_ctx *ctx = k->wk_private;
162 	struct ieee80211com *ic = ctx->tc_ic;
163 	u_int8_t *ivp;
164 	int hdrlen;
165 
166 	/*
167 	 * Handle TKIP counter measures requirement.
168 	 */
169 	if (ic->ic_flags & IEEE80211_F_COUNTERM) {
170 #ifdef IEEE80211_DEBUG
171 		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
172 #endif
173 
174 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
175 			"[%s] Discard frame due to countermeasures (%s)\n",
176 			ether_sprintf(wh->i_addr2), __func__);
177 		ic->ic_stats.is_crypto_tkipcm++;
178 		return 0;
179 	}
180 
181 	hdrlen = ieee80211_hdrspace(ic, mtod(m, void *));
182 	ivp = mtod(m, u_int8_t *) + hdrlen;
183 
184 	ivp[0] = k->wk_keytsc >> 8;		/* TSC1 */
185 	ivp[1] = (ivp[0] | 0x20) & 0x7f;	/* WEP seed */
186 	ivp[2] = k->wk_keytsc >> 0;		/* TSC0 */
187 	ivp[3] = keyid | IEEE80211_WEP_EXTIV;	/* KeyID | ExtID */
188 	ivp[4] = k->wk_keytsc >> 16;		/* TSC2 */
189 	ivp[5] = k->wk_keytsc >> 24;		/* TSC3 */
190 	ivp[6] = k->wk_keytsc >> 32;		/* TSC4 */
191 	ivp[7] = k->wk_keytsc >> 40;		/* TSC5 */
192 
193 	/*
194 	 * Finally, do software encrypt if need.
195 	 */
196 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
197 		if (!tkip_encrypt(ctx, k, m, hdrlen))
198 			return 0;
199 		/* NB: tkip_encrypt handles wk_keytsc */
200 	} else
201 		k->wk_keytsc++;
202 
203 	return 1;
204 }
205 
206 /*
207  * Add MIC to the frame as needed.
208  */
209 static int
tkip_enmic(struct ieee80211_key * k,struct mbuf * m,int force)210 tkip_enmic(struct ieee80211_key *k, struct mbuf *m, int force)
211 {
212 	struct tkip_ctx *ctx = k->wk_private;
213 
214 	if (force || (k->wk_flags & IEEE80211_KEY_SWMIC)) {
215 		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
216 		struct ieee80211com *ic = ctx->tc_ic;
217 		int hdrlen;
218 		uint8_t mic[IEEE80211_WEP_MICLEN];
219 
220 		ic->ic_stats.is_crypto_tkipenmic++;
221 
222 		hdrlen = ieee80211_hdrspace(ic, wh);
223 
224 		michael_mic(ctx, k->wk_txmic,
225 			m, hdrlen, m->m_pkthdr.len - hdrlen, mic);
226 		return m_append(m, tkip.ic_miclen, mic);
227 	}
228 	return 1;
229 }
230 
231 static __inline uint64_t
READ_6(uint8_t b0,uint8_t b1,uint8_t b2,uint8_t b3,uint8_t b4,uint8_t b5)232 READ_6(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3, uint8_t b4, uint8_t b5)
233 {
234 	uint32_t iv32 = (b0 << 0) | (b1 << 8) | (b2 << 16) | ((u32)b3 << 24);
235 	uint16_t iv16 = (b4 << 0) | (b5 << 8);
236 	return (((uint64_t)iv16) << 32) | iv32;
237 }
238 
239 /*
240  * Validate and strip privacy headers (and trailer) for a
241  * received frame.  If necessary, decrypt the frame using
242  * the specified key.
243  */
244 static int
tkip_decap(struct ieee80211_key * k,struct mbuf * m,int hdrlen)245 tkip_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen)
246 {
247 	struct tkip_ctx *ctx = k->wk_private;
248 	struct ieee80211com *ic = ctx->tc_ic;
249 	struct ieee80211_frame *wh;
250 	uint8_t *ivp;
251 
252 	/*
253 	 * Header should have extended IV and sequence number;
254 	 * verify the former and validate the latter.
255 	 */
256 	wh = mtod(m, struct ieee80211_frame *);
257 	ivp = mtod(m, uint8_t *) + hdrlen;
258 	if ((ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) == 0) {
259 		/*
260 		 * No extended IV; discard frame.
261 		 */
262 		IEEE80211_DPRINTF(ctx->tc_ic, IEEE80211_MSG_CRYPTO,
263 			"[%s] missing ExtIV for TKIP cipher\n",
264 			ether_sprintf(wh->i_addr2));
265 		ctx->tc_ic->ic_stats.is_rx_tkipformat++;
266 		return 0;
267 	}
268 	/*
269 	 * Handle TKIP counter measures requirement.
270 	 */
271 	if (ic->ic_flags & IEEE80211_F_COUNTERM) {
272 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
273 			"[%s] discard frame due to countermeasures (%s)\n",
274 			ether_sprintf(wh->i_addr2), __func__);
275 		ic->ic_stats.is_crypto_tkipcm++;
276 		return 0;
277 	}
278 
279 	ctx->rx_rsc = READ_6(ivp[2], ivp[0], ivp[4], ivp[5], ivp[6], ivp[7]);
280 	if (ctx->rx_rsc <= k->wk_keyrsc) {
281 		/*
282 		 * Replay violation; notify upper layer.
283 		 */
284 		ieee80211_notify_replay_failure(ctx->tc_ic, wh, k, ctx->rx_rsc);
285 		ctx->tc_ic->ic_stats.is_rx_tkipreplay++;
286 		return 0;
287 	}
288 	/*
289 	 * NB: We can't update the rsc in the key until MIC is verified.
290 	 *
291 	 * We assume we are not preempted between doing the check above
292 	 * and updating wk_keyrsc when stripping the MIC in tkip_demic.
293 	 * Otherwise we might process another packet and discard it as
294 	 * a replay.
295 	 */
296 
297 	/*
298 	 * Check if the device handled the decrypt in hardware.
299 	 * If so we just strip the header; otherwise we need to
300 	 * handle the decrypt in software.
301 	 */
302 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) &&
303 	    !tkip_decrypt(ctx, k, m, hdrlen))
304 		return 0;
305 
306 	/*
307 	 * Copy up 802.11 header and strip crypto bits.
308 	 */
309 	memmove(mtod(m, uint8_t *) + tkip.ic_header, mtod(m, void *), hdrlen);
310 	m_adj(m, tkip.ic_header);
311 	m_adj(m, -tkip.ic_trailer);
312 
313 	return 1;
314 }
315 
316 /*
317  * Verify and strip MIC from the frame.
318  */
319 static int
tkip_demic(struct ieee80211_key * k,struct mbuf * m,int force)320 tkip_demic(struct ieee80211_key *k, struct mbuf *m, int force)
321 {
322 	struct tkip_ctx *ctx = k->wk_private;
323 
324 	if (force || (k->wk_flags & IEEE80211_KEY_SWMIC)) {
325 		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
326 		struct ieee80211com *ic = ctx->tc_ic;
327 		int hdrlen = ieee80211_hdrspace(ic, wh);
328 		u8 mic[IEEE80211_WEP_MICLEN];
329 		u8 mic0[IEEE80211_WEP_MICLEN];
330 
331 		ic->ic_stats.is_crypto_tkipdemic++;
332 
333 		michael_mic(ctx, k->wk_rxmic,
334 			m, hdrlen, m->m_pkthdr.len - (hdrlen + tkip.ic_miclen),
335 			mic);
336 		m_copydata(m, m->m_pkthdr.len - tkip.ic_miclen,
337 			tkip.ic_miclen, mic0);
338 		if (memcmp(mic, mic0, tkip.ic_miclen)) {
339 			/* NB: 802.11 layer handles statistic and debug msg */
340 			ieee80211_notify_michael_failure(ic, wh,
341 				k->wk_rxkeyix != IEEE80211_KEYIX_NONE ?
342 					k->wk_rxkeyix : k->wk_keyix);
343 			return 0;
344 		}
345 	}
346 	/*
347 	 * Strip MIC from the tail.
348 	 */
349 	m_adj(m, -tkip.ic_miclen);
350 
351 	/*
352 	 * Ok to update rsc now that MIC has been verified.
353 	 */
354 	k->wk_keyrsc = ctx->rx_rsc;
355 
356 	return 1;
357 }
358 
359 /*
360  * Host AP crypt: host-based TKIP encryption implementation for Host AP driver
361  *
362  * Copyright (c) 2003-2004, Jouni Malinen <jkmaline@cc.hut.fi>
363  *
364  * This program is free software; you can redistribute it and/or modify
365  * it under the terms of the GNU General Public License version 2 as
366  * published by the Free Software Foundation. See README and COPYING for
367  * more details.
368  *
369  * Alternatively, this software may be distributed under the terms of BSD
370  * license.
371  */
372 
373 static const __u32 crc32_table[256] = {
374 	0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L,
375 	0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L,
376 	0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L,
377 	0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL,
378 	0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L,
379 	0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L,
380 	0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L,
381 	0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL,
382 	0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L,
383 	0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL,
384 	0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L,
385 	0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L,
386 	0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L,
387 	0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL,
388 	0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL,
389 	0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L,
390 	0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL,
391 	0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L,
392 	0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L,
393 	0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L,
394 	0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL,
395 	0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L,
396 	0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L,
397 	0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL,
398 	0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L,
399 	0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L,
400 	0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L,
401 	0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L,
402 	0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L,
403 	0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL,
404 	0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL,
405 	0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L,
406 	0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L,
407 	0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL,
408 	0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL,
409 	0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L,
410 	0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL,
411 	0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L,
412 	0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL,
413 	0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L,
414 	0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL,
415 	0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L,
416 	0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L,
417 	0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL,
418 	0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L,
419 	0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L,
420 	0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L,
421 	0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L,
422 	0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L,
423 	0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L,
424 	0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL,
425 	0x2d02ef8dL
426 };
427 
RotR1(u16 val)428 static __inline u16 RotR1(u16 val)
429 {
430 	return (val >> 1) | (val << 15);
431 }
432 
Lo8(u16 val)433 static __inline u8 Lo8(u16 val)
434 {
435 	return val & 0xff;
436 }
437 
Hi8(u16 val)438 static __inline u8 Hi8(u16 val)
439 {
440 	return val >> 8;
441 }
442 
Lo16(u32 val)443 static __inline u16 Lo16(u32 val)
444 {
445 	return val & 0xffff;
446 }
447 
Hi16(u32 val)448 static __inline u16 Hi16(u32 val)
449 {
450 	return val >> 16;
451 }
452 
Mk16(u8 hi,u8 lo)453 static __inline u16 Mk16(u8 hi, u8 lo)
454 {
455 	return lo | (((u16) hi) << 8);
456 }
457 
Mk16_le(const u16 * v)458 static __inline u16 Mk16_le(const u16 *v)
459 {
460 	return le16toh(*v);
461 }
462 
463 static const u16 Sbox[256] = {
464 	0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
465 	0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
466 	0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
467 	0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
468 	0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
469 	0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
470 	0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
471 	0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
472 	0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
473 	0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
474 	0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
475 	0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
476 	0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
477 	0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
478 	0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
479 	0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
480 	0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
481 	0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
482 	0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
483 	0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
484 	0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
485 	0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
486 	0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
487 	0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
488 	0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
489 	0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
490 	0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
491 	0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
492 	0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
493 	0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
494 	0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
495 	0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
496 };
497 
_S_(u16 v)498 static __inline u16 _S_(u16 v)
499 {
500 	u16 t = Sbox[Hi8(v)];
501 	return Sbox[Lo8(v)] ^ ((t << 8) | (t >> 8));
502 }
503 
504 #define PHASE1_LOOP_COUNT 8
505 
tkip_mixing_phase1(u16 * TTAK,const u8 * TK,const u8 * TA,u32 IV32)506 static void tkip_mixing_phase1(u16 *TTAK, const u8 *TK, const u8 *TA, u32 IV32)
507 {
508 	int i, j;
509 
510 	/* Initialize the 80-bit TTAK from TSC (IV32) and TA[0..5] */
511 	TTAK[0] = Lo16(IV32);
512 	TTAK[1] = Hi16(IV32);
513 	TTAK[2] = Mk16(TA[1], TA[0]);
514 	TTAK[3] = Mk16(TA[3], TA[2]);
515 	TTAK[4] = Mk16(TA[5], TA[4]);
516 
517 	for (i = 0; i < PHASE1_LOOP_COUNT; i++) {
518 		j = 2 * (i & 1);
519 		TTAK[0] += _S_(TTAK[4] ^ Mk16(TK[1 + j], TK[0 + j]));
520 		TTAK[1] += _S_(TTAK[0] ^ Mk16(TK[5 + j], TK[4 + j]));
521 		TTAK[2] += _S_(TTAK[1] ^ Mk16(TK[9 + j], TK[8 + j]));
522 		TTAK[3] += _S_(TTAK[2] ^ Mk16(TK[13 + j], TK[12 + j]));
523 		TTAK[4] += _S_(TTAK[3] ^ Mk16(TK[1 + j], TK[0 + j])) + i;
524 	}
525 }
526 
527 #ifndef _BYTE_ORDER
528 #error "Don't know native byte order"
529 #endif
530 
tkip_mixing_phase2(u8 * WEPSeed,const u8 * TK,const u16 * TTAK,u16 IV16)531 static void tkip_mixing_phase2(u8 *WEPSeed, const u8 *TK, const u16 *TTAK,
532 			       u16 IV16)
533 {
534 	/* Make temporary area overlap WEP seed so that the final copy can be
535 	 * avoided on little endian hosts. */
536 	u16 *PPK = (u16 *) &WEPSeed[4];
537 
538 	/* Step 1 - make copy of TTAK and bring in TSC */
539 	PPK[0] = TTAK[0];
540 	PPK[1] = TTAK[1];
541 	PPK[2] = TTAK[2];
542 	PPK[3] = TTAK[3];
543 	PPK[4] = TTAK[4];
544 	PPK[5] = TTAK[4] + IV16;
545 
546 	/* Step 2 - 96-bit bijective mixing using S-box */
547 	PPK[0] += _S_(PPK[5] ^ Mk16_le((const u16 *) &TK[0]));
548 	PPK[1] += _S_(PPK[0] ^ Mk16_le((const u16 *) &TK[2]));
549 	PPK[2] += _S_(PPK[1] ^ Mk16_le((const u16 *) &TK[4]));
550 	PPK[3] += _S_(PPK[2] ^ Mk16_le((const u16 *) &TK[6]));
551 	PPK[4] += _S_(PPK[3] ^ Mk16_le((const u16 *) &TK[8]));
552 	PPK[5] += _S_(PPK[4] ^ Mk16_le((const u16 *) &TK[10]));
553 
554 	PPK[0] += RotR1(PPK[5] ^ Mk16_le((const u16 *) &TK[12]));
555 	PPK[1] += RotR1(PPK[0] ^ Mk16_le((const u16 *) &TK[14]));
556 	PPK[2] += RotR1(PPK[1]);
557 	PPK[3] += RotR1(PPK[2]);
558 	PPK[4] += RotR1(PPK[3]);
559 	PPK[5] += RotR1(PPK[4]);
560 
561 	/* Step 3 - bring in last of TK bits, assign 24-bit WEP IV value
562 	 * WEPSeed[0..2] is transmitted as WEP IV */
563 	WEPSeed[0] = Hi8(IV16);
564 	WEPSeed[1] = (Hi8(IV16) | 0x20) & 0x7F;
565 	WEPSeed[2] = Lo8(IV16);
566 	WEPSeed[3] = Lo8((PPK[5] ^ Mk16_le((const u16 *) &TK[0])) >> 1);
567 
568 #if _BYTE_ORDER == _BIG_ENDIAN
569 	{
570 		int i;
571 		for (i = 0; i < 6; i++)
572 			PPK[i] = (PPK[i] << 8) | (PPK[i] >> 8);
573 	}
574 #endif
575 }
576 
577 static void
wep_encrypt(u8 * key,struct mbuf * m0,u_int off,size_t data_len,uint8_t icv[IEEE80211_WEP_CRCLEN])578 wep_encrypt(u8 *key, struct mbuf *m0, u_int off, size_t data_len,
579 	uint8_t icv[IEEE80211_WEP_CRCLEN])
580 {
581 	u32 i, j, k, crc;
582 	size_t buflen;
583 	u8 S[256];
584 	u8 *pos;
585 	struct mbuf *m;
586 #define S_SWAP(a,b) do { u8 t = S[a]; S[a] = S[b]; S[b] = t; } while(0)
587 
588 	/* Setup RC4 state */
589 	for (i = 0; i < 256; i++)
590 		S[i] = i;
591 	j = 0;
592 	for (i = 0; i < 256; i++) {
593 		j = (j + S[i] + key[i & 0x0f]) & 0xff;
594 		S_SWAP(i, j);
595 	}
596 
597 	/* Compute CRC32 over unencrypted data and apply RC4 to data */
598 	crc = ~0;
599 	i = j = 0;
600 	m = m0;
601 	pos = mtod(m, uint8_t *) + off;
602 	buflen = m->m_len - off;
603 	for (;;) {
604 		if (buflen > data_len)
605 			buflen = data_len;
606 		data_len -= buflen;
607 		for (k = 0; k < buflen; k++) {
608 			crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8);
609 			i = (i + 1) & 0xff;
610 			j = (j + S[i]) & 0xff;
611 			S_SWAP(i, j);
612 			*pos++ ^= S[(S[i] + S[j]) & 0xff];
613 		}
614 		m = m->m_next;
615 		if (m == NULL) {
616 			IASSERT(data_len == 0,
617 			    ("out of buffers with data_len %zu\n", data_len));
618 			break;
619 		}
620 		pos = mtod(m, uint8_t *);
621 		buflen = m->m_len;
622 	}
623 	crc = ~crc;
624 
625 	/* Append little-endian CRC32 and encrypt it to produce ICV */
626 	icv[0] = crc;
627 	icv[1] = crc >> 8;
628 	icv[2] = crc >> 16;
629 	icv[3] = crc >> 24;
630 	for (k = 0; k < IEEE80211_WEP_CRCLEN; k++) {
631 		i = (i + 1) & 0xff;
632 		j = (j + S[i]) & 0xff;
633 		S_SWAP(i, j);
634 		icv[k] ^= S[(S[i] + S[j]) & 0xff];
635 	}
636 }
637 
638 static int
wep_decrypt(u8 * key,struct mbuf * m,u_int off,size_t data_len)639 wep_decrypt(u8 *key, struct mbuf *m, u_int off, size_t data_len)
640 {
641 	u32 i, j, k, crc;
642 	u8 S[256];
643 	u8 *pos, icv[4];
644 	size_t buflen;
645 
646 	/* Setup RC4 state */
647 	for (i = 0; i < 256; i++)
648 		S[i] = i;
649 	j = 0;
650 	for (i = 0; i < 256; i++) {
651 		j = (j + S[i] + key[i & 0x0f]) & 0xff;
652 		S_SWAP(i, j);
653 	}
654 
655 	/* Apply RC4 to data and compute CRC32 over decrypted data */
656 	crc = ~0;
657 	i = j = 0;
658 	pos = mtod(m, uint8_t *) + off;
659 	buflen = m->m_len - off;
660 	for (;;) {
661 		if (buflen > data_len)
662 			buflen = data_len;
663 		data_len -= buflen;
664 		for (k = 0; k < buflen; k++) {
665 			i = (i + 1) & 0xff;
666 			j = (j + S[i]) & 0xff;
667 			S_SWAP(i, j);
668 			*pos ^= S[(S[i] + S[j]) & 0xff];
669 			crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8);
670 			pos++;
671 		}
672 		m = m->m_next;
673 		if (m == NULL) {
674 			IASSERT(data_len == 0,
675 			    ("out of buffers with data_len %zu\n", data_len));
676 			break;
677 		}
678 		pos = mtod(m, uint8_t *);
679 		buflen = m->m_len;
680 	}
681 	crc = ~crc;
682 
683 	/* Encrypt little-endian CRC32 and verify that it matches with the
684 	 * received ICV */
685 	icv[0] = crc;
686 	icv[1] = crc >> 8;
687 	icv[2] = crc >> 16;
688 	icv[3] = crc >> 24;
689 	for (k = 0; k < 4; k++) {
690 		i = (i + 1) & 0xff;
691 		j = (j + S[i]) & 0xff;
692 		S_SWAP(i, j);
693 		if ((icv[k] ^ S[(S[i] + S[j]) & 0xff]) != *pos++) {
694 			/* ICV mismatch - drop frame */
695 			return -1;
696 		}
697 	}
698 
699 	return 0;
700 }
701 
702 
rotl(u32 val,int bits)703 static __inline u32 rotl(u32 val, int bits)
704 {
705 	return (val << bits) | (val >> (32 - bits));
706 }
707 
708 
rotr(u32 val,int bits)709 static __inline u32 rotr(u32 val, int bits)
710 {
711 	return (val >> bits) | (val << (32 - bits));
712 }
713 
714 
xswap(u32 val)715 static __inline u32 xswap(u32 val)
716 {
717 	return ((val & 0x00ff00ff) << 8) | ((val & 0xff00ff00) >> 8);
718 }
719 
720 
721 #define michael_block(l, r)	\
722 do {				\
723 	r ^= rotl(l, 17);	\
724 	l += r;			\
725 	r ^= xswap(l);		\
726 	l += r;			\
727 	r ^= rotl(l, 3);	\
728 	l += r;			\
729 	r ^= rotr(l, 2);	\
730 	l += r;			\
731 } while (0)
732 
733 
get_le32_split(u8 b0,u8 b1,u8 b2,u8 b3)734 static __inline u32 get_le32_split(u8 b0, u8 b1, u8 b2, u8 b3)
735 {
736 	return b0 | (b1 << 8) | (b2 << 16) | ((u32)b3 << 24);
737 }
738 
get_le32(const u8 * p)739 static __inline u32 get_le32(const u8 *p)
740 {
741 	return get_le32_split(p[0], p[1], p[2], p[3]);
742 }
743 
744 
put_le32(u8 * p,u32 v)745 static __inline void put_le32(u8 *p, u32 v)
746 {
747 	p[0] = v;
748 	p[1] = v >> 8;
749 	p[2] = v >> 16;
750 	p[3] = v >> 24;
751 }
752 
753 /*
754  * Craft pseudo header used to calculate the MIC.
755  */
756 static void
michael_mic_hdr(const struct ieee80211_frame * wh0,uint8_t hdr[16])757 michael_mic_hdr(const struct ieee80211_frame *wh0, uint8_t hdr[16])
758 {
759 	const struct ieee80211_frame_addr4 *wh =
760 		(const struct ieee80211_frame_addr4 *) wh0;
761 
762 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
763 	case IEEE80211_FC1_DIR_NODS:
764 		IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
765 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr2);
766 		break;
767 	case IEEE80211_FC1_DIR_TODS:
768 		IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
769 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr2);
770 		break;
771 	case IEEE80211_FC1_DIR_FROMDS:
772 		IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
773 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr3);
774 		break;
775 	case IEEE80211_FC1_DIR_DSTODS:
776 		IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
777 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr4);
778 		break;
779 	}
780 
781 	if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
782 		const struct ieee80211_qosframe *qwh =
783 			(const struct ieee80211_qosframe *) wh;
784 		hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
785 	} else
786 		hdr[12] = 0;
787 	hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
788 }
789 
790 static void
michael_mic(struct tkip_ctx * ctx,const u8 * key,struct mbuf * m,u_int off,size_t data_len,u8 mic[IEEE80211_WEP_MICLEN])791 michael_mic(struct tkip_ctx *ctx, const u8 *key,
792 	struct mbuf *m, u_int off, size_t data_len,
793 	u8 mic[IEEE80211_WEP_MICLEN])
794 {
795 	uint8_t hdr[16];
796 	u32 l, r;
797 	const uint8_t *data;
798 	u_int space;
799 	uint8_t spill[4];
800 	int nspill = 0;
801 
802 	michael_mic_hdr(mtod(m, struct ieee80211_frame *), hdr);
803 
804 	l = get_le32(key);
805 	r = get_le32(key + 4);
806 
807 	/* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
808 	l ^= get_le32(hdr);
809 	michael_block(l, r);
810 	l ^= get_le32(&hdr[4]);
811 	michael_block(l, r);
812 	l ^= get_le32(&hdr[8]);
813 	michael_block(l, r);
814 	l ^= get_le32(&hdr[12]);
815 	michael_block(l, r);
816 
817 	/* first buffer has special handling */
818 	data = mtod(m, const uint8_t *) + off;
819 	space = m->m_len - off;
820 	for (;;) {
821 		if (space > data_len)
822 			space = data_len;
823 		if (nspill) {
824 			int n = uimin(4 - nspill, space);
825 			memcpy(spill + nspill, data, n);
826 			nspill += n;
827 			data += n;
828 			space -= n;
829 			data_len -= n;
830 			if (nspill == 4) {
831 				l ^= get_le32(spill);
832 				michael_block(l, r);
833 				nspill = 0;
834 			} else
835 				goto next;
836 		}
837 		/* collect 32-bit blocks from current buffer */
838 		while (space >= sizeof(uint32_t)) {
839 			l ^= get_le32(data);
840 			michael_block(l, r);
841 			data += sizeof(uint32_t);
842 			space -= sizeof(uint32_t);
843 			data_len -= sizeof(uint32_t);
844 		}
845 		if (space) {
846 			memcpy(spill, data, space);
847 			nspill = space;
848 			data_len -= space;
849 		}
850 next:
851 		if (!data_len)
852 			break;
853 		m = m->m_next;
854 		KASSERT(m);
855 		/*
856 		 * Setup for next buffer.
857 		 */
858 		data = mtod(m, const uint8_t *);
859 		space = m->m_len;
860 	}
861 	/* Last block and padding (0x5a, 4..7 x 0) */
862 	spill[nspill++] = 0x5a;
863 	for (; nspill < 4; nspill++)
864 		spill[nspill] = 0;
865 	l ^= get_le32(spill);
866 	michael_block(l, r);
867 	/* l ^= 0; */
868 	michael_block(l, r);
869 
870 	put_le32(mic, l);
871 	put_le32(mic + 4, r);
872 }
873 
874 static int
tkip_encrypt(struct tkip_ctx * ctx,struct ieee80211_key * key,struct mbuf * m,int hdrlen)875 tkip_encrypt(struct tkip_ctx *ctx, struct ieee80211_key *key,
876 	struct mbuf *m, int hdrlen)
877 {
878 	struct ieee80211_frame *wh;
879 	uint8_t icv[IEEE80211_WEP_CRCLEN];
880 
881 	ctx->tc_ic->ic_stats.is_crypto_tkip++;
882 
883 	wh = mtod(m, struct ieee80211_frame *);
884 	if (!ctx->tx_phase1_done) {
885 		tkip_mixing_phase1(ctx->tx_ttak, key->wk_key, wh->i_addr2,
886 				   (u32)(key->wk_keytsc >> 16));
887 		ctx->tx_phase1_done = 1;
888 	}
889 	tkip_mixing_phase2(ctx->tx_rc4key, key->wk_key, ctx->tx_ttak,
890 		(u16)key->wk_keytsc);
891 
892 	wep_encrypt(ctx->tx_rc4key,
893 		m, hdrlen + tkip.ic_header,
894 		m->m_pkthdr.len - (hdrlen + tkip.ic_header),
895 		icv);
896 
897 	if (!m_append(m, IEEE80211_WEP_CRCLEN, icv)) {
898 		return 0;
899 	}
900 
901 	key->wk_keytsc++;
902 	if ((u16)(key->wk_keytsc) == 0)
903 		ctx->tx_phase1_done = 0;
904 
905 	return 1;
906 }
907 
908 static int
tkip_decrypt(struct tkip_ctx * ctx,struct ieee80211_key * key,struct mbuf * m,int hdrlen)909 tkip_decrypt(struct tkip_ctx *ctx, struct ieee80211_key *key,
910 	struct mbuf *m, int hdrlen)
911 {
912 	struct ieee80211_frame *wh;
913 	u32 iv32;
914 	u16 iv16;
915 
916 	ctx->tc_ic->ic_stats.is_crypto_tkip++;
917 
918 	wh = mtod(m, struct ieee80211_frame *);
919 	/* NB: tkip_decap already verified header and left seq in rx_rsc */
920 	iv16 = (u16) ctx->rx_rsc;
921 	iv32 = (u32) (ctx->rx_rsc >> 16);
922 
923 	if (iv32 != (u32)(key->wk_keyrsc >> 16) || !ctx->rx_phase1_done) {
924 		tkip_mixing_phase1(ctx->rx_ttak, key->wk_key,
925 			wh->i_addr2, iv32);
926 		ctx->rx_phase1_done = 1;
927 	}
928 	tkip_mixing_phase2(ctx->rx_rc4key, key->wk_key, ctx->rx_ttak, iv16);
929 
930 	/* NB: m is unstripped; deduct headers + ICV to get payload */
931 	if (wep_decrypt(ctx->rx_rc4key, m, hdrlen + tkip.ic_header,
932 	    m->m_pkthdr.len - (hdrlen + tkip.ic_header + tkip.ic_trailer))) {
933 		if (iv32 != (u32)(key->wk_keyrsc >> 16)) {
934 			/* Previously cached Phase1 result was already lost, so
935 			 * it needs to be recalculated for the next packet. */
936 			ctx->rx_phase1_done = 0;
937 		}
938 		IEEE80211_DPRINTF(ctx->tc_ic, IEEE80211_MSG_CRYPTO,
939 		    "[%s] TKIP ICV mismatch on decrypt\n",
940 		    ether_sprintf(wh->i_addr2));
941 		ctx->tc_ic->ic_stats.is_rx_tkipicv++;
942 		return 0;
943 	}
944 
945 	return 1;
946 }
947 
IEEE80211_CRYPTO_SETUP(tkip_register)948 IEEE80211_CRYPTO_SETUP(tkip_register)
949 {
950 	ieee80211_crypto_register(&tkip);
951 }
952