1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1988 AT&T
24 * All Rights Reserved
25 *
26 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
27 */
28
29 /*
30 * Programmatic interface to the run_time linker.
31 */
32
33 #include <sys/debug.h>
34 #include <stdio.h>
35 #include <string.h>
36 #include <dlfcn.h>
37 #include <synch.h>
38 #include <limits.h>
39 #include <debug.h>
40 #include <conv.h>
41 #include "_rtld.h"
42 #include "_audit.h"
43 #include "_elf.h"
44 #include "_inline_gen.h"
45 #include "msg.h"
46
47 /*
48 * Determine who called us - given a pc determine in which object it resides.
49 *
50 * For dlopen() the link map of the caller must be passed to load_so() so that
51 * the appropriate search rules (4.x or 5.0) are used to locate any
52 * dependencies. Also, if we've been called from a 4.x module it may be
53 * necessary to fix the specified pathname so that it conforms with the 5.0 elf
54 * rules.
55 *
56 * For dlsym() the link map of the caller is used to determine RTLD_NEXT
57 * requests, together with requests based off of a dlopen(0).
58 * For dladdr() this routines provides a generic means of scanning all loaded
59 * segments.
60 */
61 Rt_map *
_caller(caddr_t cpc,int flags)62 _caller(caddr_t cpc, int flags)
63 {
64 Lm_list *lml;
65 Aliste idx1;
66
67 for (APLIST_TRAVERSE(dynlm_list, idx1, lml)) {
68 Aliste idx2;
69 Lm_cntl *lmc;
70
71 for (ALIST_TRAVERSE(lml->lm_lists, idx2, lmc)) {
72 Rt_map *lmp;
73
74 for (lmp = lmc->lc_head; lmp;
75 lmp = NEXT_RT_MAP(lmp)) {
76
77 if (find_segment(cpc, lmp))
78 return (lmp);
79 }
80 }
81 }
82
83 /*
84 * No mapping can be determined. If asked for a default, assume this
85 * is from the executable.
86 */
87 if (flags & CL_EXECDEF)
88 return ((Rt_map *)lml_main.lm_head);
89
90 return (0);
91 }
92
93 #pragma weak _dlerror = dlerror
94
95 /*
96 * External entry for dlerror(3dl). Returns a pointer to the string describing
97 * the last occurring error. The last occurring error is cleared.
98 */
99 char *
dlerror()100 dlerror()
101 {
102 char *error;
103 Rt_map *clmp;
104 int entry;
105
106 entry = enter(0);
107
108 clmp = _caller(caller(), CL_EXECDEF);
109
110 DBG_CALL(Dbg_dl_dlerror(clmp, lasterr));
111
112 error = lasterr;
113 lasterr = NULL;
114
115 if (entry)
116 leave(LIST(clmp), 0);
117 return (error);
118 }
119
120 /*
121 * Add a dependency as a group descriptor to a group handle. Returns 0 on
122 * failure. On success, returns the group descriptor, and if alep is non-NULL
123 * the *alep is set to ALE_EXISTS if the dependency already exists, or to
124 * ALE_CREATE if the dependency is newly created.
125 */
126 Grp_desc *
hdl_add(Grp_hdl * ghp,Rt_map * lmp,uint_t dflags,int * alep)127 hdl_add(Grp_hdl *ghp, Rt_map *lmp, uint_t dflags, int *alep)
128 {
129 Grp_desc *gdp;
130 Aliste idx;
131 int ale = ALE_CREATE;
132 uint_t oflags;
133
134 /*
135 * Make sure this dependency hasn't already been recorded.
136 */
137 for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) {
138 if (gdp->gd_depend == lmp) {
139 ale = ALE_EXISTS;
140 break;
141 }
142 }
143
144 if (ale == ALE_CREATE) {
145 Grp_desc gd;
146
147 /*
148 * Create a new handle descriptor.
149 */
150 gd.gd_depend = lmp;
151 gd.gd_flags = 0;
152
153 /*
154 * Indicate this object is a part of this handles group.
155 */
156 if (aplist_append(&GROUPS(lmp), ghp, AL_CNT_GROUPS) == NULL)
157 return (NULL);
158
159 /*
160 * Append the new dependency to this handle.
161 */
162 if ((gdp = alist_append(&ghp->gh_depends, &gd,
163 sizeof (Grp_desc), AL_CNT_DEPENDS)) == NULL)
164 return (NULL);
165 }
166
167 oflags = gdp->gd_flags;
168 gdp->gd_flags |= dflags;
169
170 if (DBG_ENABLED) {
171 if (ale == ALE_CREATE)
172 DBG_CALL(Dbg_file_hdl_action(ghp, lmp, DBG_DEP_ADD,
173 gdp->gd_flags));
174 else if (gdp->gd_flags != oflags)
175 DBG_CALL(Dbg_file_hdl_action(ghp, lmp, DBG_DEP_UPDATE,
176 gdp->gd_flags));
177 }
178
179 if (alep)
180 *alep = ale;
181 return (gdp);
182 }
183
184 /*
185 * Create a handle.
186 *
187 * rlmp - represents the reference link-map for which the handle is being
188 * created.
189 * clmp - represents the caller who is requesting the handle.
190 * hflags - provide group handle flags (GPH_*) that affect the use of the
191 * handle, such as dlopen(0), or use or use of RTLD_FIRST.
192 * rdflags - provide group dependency flags for the reference link-map rlmp,
193 * such as whether the dependency can be used for dlsym(), can be
194 * relocated against, or whether this objects dependencies should
195 * be processed.
196 * cdflags - provide group dependency flags for the caller.
197 */
198 Grp_hdl *
hdl_create(Lm_list * lml,Rt_map * rlmp,Rt_map * clmp,uint_t hflags,uint_t rdflags,uint_t cdflags)199 hdl_create(Lm_list *lml, Rt_map *rlmp, Rt_map *clmp, uint_t hflags,
200 uint_t rdflags, uint_t cdflags)
201 {
202 Grp_hdl *ghp = NULL, *aghp;
203 APlist **alpp;
204 Aliste idx;
205
206 /*
207 * For dlopen(0) the handle is maintained as part of the link-map list,
208 * otherwise the handle is associated with the reference link-map.
209 */
210 if (hflags & GPH_ZERO)
211 alpp = &(lml->lm_handle);
212 else
213 alpp = &(HANDLES(rlmp));
214
215 /*
216 * Objects can contain multiple handles depending on the handle flags
217 * supplied. Most RTLD flags pertain to the object itself and the
218 * bindings that it can achieve. Multiple handles for these flags
219 * don't make sense. But if the flag determines how the handle might
220 * be used, then multiple handles may exist. Presently this only makes
221 * sense for RTLD_FIRST. Determine if an appropriate handle already
222 * exists.
223 */
224 for (APLIST_TRAVERSE(*alpp, idx, aghp)) {
225 if ((aghp->gh_flags & GPH_FIRST) == (hflags & GPH_FIRST)) {
226 ghp = aghp;
227 break;
228 }
229 }
230
231 if (ghp == NULL) {
232 uint_t ndx;
233
234 /*
235 * If this is the first request for this handle, allocate and
236 * initialize a new handle.
237 */
238 DBG_CALL(Dbg_file_hdl_title(DBG_HDL_CREATE));
239
240 if ((ghp = malloc(sizeof (Grp_hdl))) == NULL)
241 return (NULL);
242
243 /*
244 * Associate the handle with the link-map list or the reference
245 * link-map as appropriate.
246 */
247 if (aplist_append(alpp, ghp, AL_CNT_GROUPS) == NULL) {
248 free(ghp);
249 return (NULL);
250 }
251
252 /*
253 * Record the existence of this handle for future verification.
254 */
255 /* LINTED */
256 ndx = (uintptr_t)ghp % HDLIST_SZ;
257
258 if (aplist_append(&hdl_alp[ndx], ghp, AL_CNT_HANDLES) == NULL) {
259 (void) aplist_delete_value(*alpp, ghp);
260 free(ghp);
261 return (NULL);
262 }
263
264 ghp->gh_depends = NULL;
265 ghp->gh_refcnt = 1;
266 ghp->gh_flags = hflags;
267
268 /*
269 * A dlopen(0) handle is identified by the GPH_ZERO flag, the
270 * head of the link-map list is defined as the owner. There is
271 * no need to maintain a list of dependencies, for when this
272 * handle is used (for dlsym()) a dynamic search through the
273 * entire link-map list provides for searching all objects with
274 * GLOBAL visibility.
275 */
276 if (hflags & GPH_ZERO) {
277 ghp->gh_ownlmp = lml->lm_head;
278 ghp->gh_ownlml = lml;
279 } else {
280 ghp->gh_ownlmp = rlmp;
281 ghp->gh_ownlml = LIST(rlmp);
282
283 if (hdl_add(ghp, rlmp, rdflags, NULL) == NULL)
284 return (NULL);
285
286 /*
287 * If this new handle is a private handle, there's no
288 * need to track the caller, so we're done.
289 */
290 if (hflags & GPH_PRIVATE)
291 return (ghp);
292
293 /*
294 * If this new handle is public, and isn't a special
295 * handle representing ld.so.1, indicate that a local
296 * group now exists. This state allows singleton
297 * searches to be optimized.
298 */
299 if ((hflags & GPH_LDSO) == 0)
300 LIST(rlmp)->lm_flags |= LML_FLG_GROUPSEXIST;
301 }
302 } else {
303 /*
304 * If a handle already exists, bump its reference count.
305 *
306 * If the previous reference count was 0, then this is a handle
307 * that an earlier call to dlclose() was unable to remove. Such
308 * handles are put on the orphan list. As this handle is back
309 * in use, it must be removed from the orphan list.
310 *
311 * Note, handles associated with a link-map list itself (i.e.
312 * dlopen(0)) can have a reference count of 0. However, these
313 * handles are never deleted, and therefore are never moved to
314 * the orphan list.
315 */
316 if ((ghp->gh_refcnt++ == 0) &&
317 ((ghp->gh_flags & GPH_ZERO) == 0)) {
318 uint_t ndx;
319
320 /* LINTED */
321 ndx = (uintptr_t)ghp % HDLIST_SZ;
322
323 (void) aplist_delete_value(hdl_alp[HDLIST_ORP], ghp);
324 (void) aplist_append(&hdl_alp[ndx], ghp,
325 AL_CNT_HANDLES);
326
327 if (DBG_ENABLED) {
328 Aliste idx;
329 Grp_desc *gdp;
330
331 DBG_CALL(Dbg_file_hdl_title(DBG_HDL_REINST));
332 for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp))
333 DBG_CALL(Dbg_file_hdl_action(ghp,
334 gdp->gd_depend, DBG_DEP_REINST, 0));
335 }
336 }
337
338 /*
339 * If we've been asked to create a private handle, there's no
340 * need to track the caller.
341 */
342 if (hflags & GPH_PRIVATE) {
343 /*
344 * Negate the reference count increment.
345 */
346 ghp->gh_refcnt--;
347 return (ghp);
348 } else {
349 /*
350 * If a private handle already exists, promote this
351 * handle to public by initializing both the reference
352 * count and the handle flags.
353 */
354 if (ghp->gh_flags & GPH_PRIVATE) {
355 ghp->gh_refcnt = 1;
356 ghp->gh_flags &= ~GPH_PRIVATE;
357 ghp->gh_flags |= hflags;
358 }
359 }
360 }
361
362 /*
363 * Keep track of the parent (caller). As this object can be referenced
364 * by different parents, this processing is carried out every time a
365 * handle is requested.
366 */
367 if (clmp && (hdl_add(ghp, clmp, cdflags, NULL) == NULL))
368 return (NULL);
369
370 return (ghp);
371 }
372
373 /*
374 * Initialize a handle that has been created for an object that is already
375 * loaded. The handle is initialized with the present dependencies of that
376 * object. Once this initialization has occurred, any new objects that might
377 * be loaded as dependencies (lazy-loading) are added to the handle as each new
378 * object is loaded.
379 */
380 int
hdl_initialize(Grp_hdl * ghp,Rt_map * nlmp,int mode,int promote)381 hdl_initialize(Grp_hdl *ghp, Rt_map *nlmp, int mode, int promote)
382 {
383 Aliste idx;
384 Grp_desc *gdp;
385
386 /*
387 * If the handle has already been initialized, and the initial object's
388 * mode hasn't been promoted, there's no need to recompute the modes of
389 * any dependencies. If the object we've added has just been opened,
390 * the objects dependencies will not yet have been processed. These
391 * dependencies will be added on later calls to load_one(). Otherwise,
392 * this object already exists, so add all of its dependencies to the
393 * handle were operating on.
394 */
395 if (((ghp->gh_flags & GPH_INITIAL) && (promote == 0)) ||
396 ((FLAGS(nlmp) & FLG_RT_ANALYZED) == 0)) {
397 ghp->gh_flags |= GPH_INITIAL;
398 return (1);
399 }
400
401 DBG_CALL(Dbg_file_hdl_title(DBG_HDL_ADD));
402 for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) {
403 Rt_map *lmp = gdp->gd_depend;
404 Aliste idx1;
405 Bnd_desc *bdp;
406
407 /*
408 * If this dependency doesn't indicate that its dependencies
409 * should be added to a handle, ignore it. This case identifies
410 * a parent of a dlopen(RTLD_PARENT) request.
411 */
412 if ((gdp->gd_flags & GPD_ADDEPS) == 0)
413 continue;
414
415 for (APLIST_TRAVERSE(DEPENDS(lmp), idx1, bdp)) {
416 Rt_map *dlmp = bdp->b_depend;
417
418 if ((bdp->b_flags & BND_NEEDED) == 0)
419 continue;
420
421 if (hdl_add(ghp, dlmp,
422 (GPD_DLSYM | GPD_RELOC | GPD_ADDEPS), NULL) == NULL)
423 return (0);
424
425 (void) update_mode(dlmp, MODE(dlmp), mode);
426 }
427 }
428 ghp->gh_flags |= GPH_INITIAL;
429 return (1);
430 }
431
432 /*
433 * Sanity check a program-provided handle.
434 */
435 static int
hdl_validate(Grp_hdl * ghp)436 hdl_validate(Grp_hdl *ghp)
437 {
438 Aliste idx;
439 Grp_hdl *lghp;
440 uint_t ndx;
441
442 /* LINTED */
443 ndx = (uintptr_t)ghp % HDLIST_SZ;
444
445 for (APLIST_TRAVERSE(hdl_alp[ndx], idx, lghp)) {
446 if ((lghp == ghp) && (ghp->gh_refcnt != 0))
447 return (1);
448 }
449 return (0);
450 }
451
452 /*
453 * Core dlclose activity.
454 */
455 int
dlclose_core(Grp_hdl * ghp,Rt_map * clmp,Lm_list * lml)456 dlclose_core(Grp_hdl *ghp, Rt_map *clmp, Lm_list *lml)
457 {
458 int error;
459 Rt_map *lmp;
460
461 /*
462 * If we're already at atexit() there's no point processing further,
463 * all objects have already been tsorted for fini processing.
464 */
465 if (rtld_flags & RT_FL_ATEXIT)
466 return (0);
467
468 /*
469 * Diagnose what we're up to.
470 */
471 if (ghp->gh_flags & GPH_ZERO) {
472 DBG_CALL(Dbg_dl_dlclose(clmp, MSG_ORIG(MSG_STR_ZERO),
473 DBG_DLCLOSE_IGNORE));
474 } else {
475 DBG_CALL(Dbg_dl_dlclose(clmp, NAME(ghp->gh_ownlmp),
476 DBG_DLCLOSE_NULL));
477 }
478
479 /*
480 * Decrement reference count of this object.
481 */
482 if (--(ghp->gh_refcnt))
483 return (0);
484
485 /*
486 * If this handle is special (dlopen(0)), then leave it around - it
487 * has little overhead.
488 */
489 if (ghp->gh_flags & GPH_ZERO)
490 return (0);
491
492 /*
493 * If this handle is associated with an object that is not on the base
494 * link-map control list, or it has not yet been relocated, then this
495 * handle must have originated from an auditors interaction, or some
496 * permutation of RTLD_CONFGEN use (crle(1), moe(1), etc.). User code
497 * can only execute and bind to relocated objects on the base link-map
498 * control list. Outside of RTLD_CONFGEN use, a non-relocated object,
499 * or an object on a non-base link-map control list, is in the process
500 * of being loaded, and therefore we do not attempt to remove the
501 * handle.
502 */
503 if (((lmp = ghp->gh_ownlmp) != NULL) &&
504 ((MODE(lmp) & RTLD_CONFGEN) == 0) &&
505 ((CNTL(lmp) != ALIST_OFF_DATA) ||
506 ((FLAGS(lmp) & FLG_RT_RELOCED) == 0)))
507 return (0);
508
509 /*
510 * This handle is no longer being referenced, remove it. If this handle
511 * is part of an alternative link-map list, determine if the whole list
512 * can be removed also.
513 */
514 error = remove_hdl(ghp, clmp, NULL);
515
516 if ((lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) == 0)
517 remove_lml(lml);
518
519 return (error);
520 }
521
522 /*
523 * Internal dlclose activity. Called from user level or directly for internal
524 * error cleanup.
525 */
526 int
dlclose_intn(Grp_hdl * ghp,Rt_map * clmp)527 dlclose_intn(Grp_hdl *ghp, Rt_map *clmp)
528 {
529 Rt_map *nlmp = NULL;
530 Lm_list *olml = NULL;
531 int error;
532
533 /*
534 * Although we're deleting object(s) it's quite possible that additional
535 * objects get loaded from running the .fini section(s) of the objects
536 * being deleted. These objects will have been added to the same
537 * link-map list as those objects being deleted. Remember this list
538 * for later investigation.
539 */
540 olml = ghp->gh_ownlml;
541
542 error = dlclose_core(ghp, clmp, olml);
543
544 /*
545 * Determine whether the original link-map list still exists. In the
546 * case of a dlclose of an alternative (dlmopen) link-map the whole
547 * list may have been removed.
548 */
549 if (olml) {
550 Aliste idx;
551 Lm_list *lml;
552
553 for (APLIST_TRAVERSE(dynlm_list, idx, lml)) {
554 if (olml == lml) {
555 nlmp = olml->lm_head;
556 break;
557 }
558 }
559 }
560 load_completion(nlmp);
561 return (error);
562 }
563
564 /*
565 * Argument checking for dlclose. Only called via external entry.
566 */
567 static int
dlclose_check(void * handle,Rt_map * clmp)568 dlclose_check(void *handle, Rt_map *clmp)
569 {
570 Grp_hdl *ghp = (Grp_hdl *)handle;
571
572 if (hdl_validate(ghp) == 0) {
573 Conv_inv_buf_t inv_buf;
574
575 (void) conv_invalid_val(&inv_buf, EC_NATPTR(ghp), 0);
576 DBG_CALL(Dbg_dl_dlclose(clmp, inv_buf.buf, DBG_DLCLOSE_NULL));
577
578 eprintf(LIST(clmp), ERR_FATAL, MSG_INTL(MSG_ARG_INVHNDL),
579 EC_NATPTR(handle));
580 return (1);
581 }
582 return (dlclose_intn(ghp, clmp));
583 }
584
585 #pragma weak _dlclose = dlclose
586
587 /*
588 * External entry for dlclose(3dl). Returns 0 for success, non-zero otherwise.
589 */
590 int
dlclose(void * handle)591 dlclose(void *handle)
592 {
593 int error, entry;
594 Rt_map *clmp;
595
596 entry = enter(0);
597
598 clmp = _caller(caller(), CL_EXECDEF);
599
600 error = dlclose_check(handle, clmp);
601
602 if (entry)
603 leave(LIST(clmp), 0);
604 return (error);
605 }
606
607 static uint_t lmid = 0;
608
609 /*
610 * The addition of new link-map lists is assumed to be in small quantities.
611 * Here, we assign a unique link-map id for diagnostic use. Simply update the
612 * running link-map count until we max out.
613 */
614 int
newlmid(Lm_list * lml)615 newlmid(Lm_list *lml)
616 {
617 char buffer[MSG_LMID_ALT_SIZE + 12];
618
619 if (lmid == UINT_MAX) {
620 lml->lm_lmid = UINT_MAX;
621 (void) strncpy(buffer, MSG_ORIG(MSG_LMID_MAXED),
622 MSG_LMID_ALT_SIZE + 12);
623 } else {
624 lml->lm_lmid = lmid++;
625 (void) snprintf(buffer, MSG_LMID_ALT_SIZE + 12,
626 MSG_ORIG(MSG_LMID_FMT), MSG_ORIG(MSG_LMID_ALT),
627 lml->lm_lmid);
628 }
629 if ((lml->lm_lmidstr = strdup(buffer)) == NULL)
630 return (0);
631
632 return (1);
633 }
634
635 /*
636 * Core dlopen activity.
637 */
638 static Grp_hdl *
dlmopen_core(Lm_list * lml,Lm_list * olml,const char * path,int mode,Rt_map * clmp,uint_t flags,uint_t orig,int * in_nfavl)639 dlmopen_core(Lm_list *lml, Lm_list *olml, const char *path, int mode,
640 Rt_map *clmp, uint_t flags, uint_t orig, int *in_nfavl)
641 {
642 Alist *palp = NULL;
643 Rt_map *nlmp;
644 Grp_hdl *ghp;
645 Aliste olmco, nlmco;
646
647 DBG_CALL(Dbg_dl_dlopen(clmp,
648 (path ? path : MSG_ORIG(MSG_STR_ZERO)), in_nfavl, mode));
649
650 /*
651 * Having diagnosed the originally defined modes, assign any defaults
652 * or corrections.
653 */
654 if (((mode & (RTLD_GROUP | RTLD_WORLD)) == 0) &&
655 ((mode & RTLD_NOLOAD) == 0))
656 mode |= (RTLD_GROUP | RTLD_WORLD);
657 if ((mode & RTLD_NOW) && (rtld_flags2 & RT_FL2_BINDLAZY)) {
658 mode &= ~RTLD_NOW;
659 mode |= RTLD_LAZY;
660 }
661
662 /*
663 * If the path specified is null then we're operating on global
664 * objects. Associate a dummy handle with the link-map list.
665 */
666 if (path == NULL) {
667 Grp_hdl *ghp;
668 uint_t hflags, rdflags, cdflags;
669 int promote = 0;
670
671 /*
672 * Establish any flags for the handle (Grp_hdl).
673 *
674 * - This is a dummy, public, handle (0) that provides for a
675 * dynamic search of all global objects within the process.
676 * - Use of the RTLD_FIRST mode indicates that only the first
677 * dependency on the handle (the referenced object) can be
678 * used to satisfy dlsym() requests.
679 */
680 hflags = (GPH_PUBLIC | GPH_ZERO);
681 if (mode & RTLD_FIRST)
682 hflags |= GPH_FIRST;
683
684 /*
685 * Establish the flags for the referenced dependency descriptor
686 * (Grp_desc).
687 *
688 * - The referenced object is available for dlsym().
689 * - The referenced object is available to relocate against.
690 * - The referenced object should have it's dependencies
691 * added to this handle.
692 */
693 rdflags = (GPD_DLSYM | GPD_RELOC | GPD_ADDEPS);
694
695 /*
696 * Establish the flags for this callers dependency descriptor
697 * (Grp_desc).
698 *
699 * - The explicit creation of a handle creates a descriptor
700 * for the referenced object and the parent (caller).
701 * - Use of the RTLD_PARENT flag indicates that the parent
702 * can be relocated against.
703 */
704 cdflags = GPD_PARENT;
705 if (mode & RTLD_PARENT)
706 cdflags |= GPD_RELOC;
707
708 if ((ghp = hdl_create(lml, 0, clmp, hflags, rdflags,
709 cdflags)) == NULL)
710 return (NULL);
711
712 /*
713 * Traverse the main link-map control list, updating the mode
714 * of any objects as necessary. Call the relocation engine if
715 * this mode promotes the existing state of any relocations.
716 * crle()'s first pass loads all objects necessary for building
717 * a configuration file, however none of them are relocated.
718 * crle()'s second pass relocates objects in preparation for
719 * dldump()'ing using dlopen(0, RTLD_NOW).
720 */
721 if ((mode & (RTLD_NOW | RTLD_CONFGEN)) == RTLD_CONFGEN)
722 return (ghp);
723
724 for (nlmp = lml->lm_head; nlmp; nlmp = NEXT_RT_MAP(nlmp)) {
725 if (((MODE(nlmp) & RTLD_GLOBAL) == 0) ||
726 (FLAGS(nlmp) & FLG_RT_DELETE))
727 continue;
728
729 if (update_mode(nlmp, MODE(nlmp), mode))
730 promote = 1;
731 }
732 if (promote)
733 (void) relocate_lmc(lml, ALIST_OFF_DATA, clmp,
734 lml->lm_head, in_nfavl);
735
736 return (ghp);
737 }
738
739 /*
740 * Fix the pathname. If this object expands to multiple paths (ie.
741 * $ISALIST or $HWCAP have been used), then make sure the user has also
742 * furnished the RTLD_FIRST flag. As yet, we don't support opening
743 * more than one object at a time, so enforcing the RTLD_FIRST flag
744 * provides flexibility should we be able to support dlopening more
745 * than one object in the future.
746 */
747 if (LM_FIX_NAME(clmp)(path, clmp, &palp, AL_CNT_NEEDED, orig) == NULL)
748 return (NULL);
749
750 if ((palp->al_arritems > 1) && ((mode & RTLD_FIRST) == 0)) {
751 remove_alist(&palp, 1);
752 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLMODE_5));
753 return (NULL);
754 }
755
756 /*
757 * Establish a link-map control list for this request, and load the
758 * associated object.
759 */
760 if ((nlmco = create_cntl(lml, 1)) == NULL) {
761 remove_alist(&palp, 1);
762 return (NULL);
763 }
764 olmco = nlmco;
765
766 nlmp = load_one(lml, nlmco, palp, clmp, mode, (flags | FLG_RT_PUBHDL),
767 &ghp, in_nfavl);
768
769 /*
770 * Remove any expanded pathname infrastructure, and if the dependency
771 * couldn't be loaded, cleanup.
772 */
773 remove_alist(&palp, 1);
774 if (nlmp == NULL) {
775 remove_cntl(lml, olmco);
776 return (NULL);
777 }
778
779 /*
780 * If loading an auditor was requested, and the auditor already existed,
781 * then the link-map returned will be to the original auditor. The new
782 * link-map list that was initially created, and the associated link-map
783 * control list are no longer needed. As the auditor is already loaded,
784 * we're probably done, but fall through in case additional relocations
785 * would be triggered by the mode of the caller.
786 */
787 if ((flags & FLG_RT_AUDIT) && (LIST(nlmp) != lml)) {
788 remove_cntl(lml, olmco);
789 lml = LIST(nlmp);
790 olmco = 0;
791 nlmco = ALIST_OFF_DATA;
792 }
793
794 /*
795 * Finish processing the objects associated with this request.
796 */
797 if (((nlmp = analyze_lmc(lml, nlmco, nlmp, clmp, in_nfavl)) == NULL) ||
798 (relocate_lmc(lml, nlmco, clmp, nlmp, in_nfavl) == 0)) {
799 ghp = NULL;
800 nlmp = NULL;
801 }
802
803 /*
804 * If the dlopen has failed, clean up any objects that might have been
805 * loaded successfully on this new link-map control list.
806 */
807 if (olmco && (nlmp == NULL))
808 remove_lmc(lml, clmp, olmco, path);
809
810 /*
811 * Finally, remove any temporary link-map control list. Note, if this
812 * operation successfully established a new link-map list, then a base
813 * link-map control list will have been created, which must remain.
814 */
815 if (olmco && ((nlmp == NULL) || (olml != (Lm_list *)LM_ID_NEWLM)))
816 remove_cntl(lml, olmco);
817
818 return (ghp);
819 }
820
821 /*
822 * dlopen() and dlsym() operations are the means by which a process can
823 * test for the existence of required dependencies. If the necessary
824 * dependencies don't exist, then associated functionality can't be used.
825 * However, the lack of dependencies can be fixed, and the dlopen() and
826 * dlsym() requests can be repeated. As we use a "not-found" AVL tree to
827 * cache any failed full path loads, secondary dlopen() and dlsym() requests
828 * will fail, even if the dependencies have been installed.
829 *
830 * dlopen() and dlsym() retry any failures by removing the "not-found" AVL
831 * tree. Should any dependencies be found, their names are added to the
832 * FullPath AVL tree. This routine removes any new "not-found" AVL tree,
833 * so that the dlopen() or dlsym() can replace the original "not-found" tree.
834 */
835 inline static void
nfavl_remove(avl_tree_t * avlt)836 nfavl_remove(avl_tree_t *avlt)
837 {
838 PathNode *pnp;
839 void *cookie = NULL;
840
841 if (avlt) {
842 while ((pnp = avl_destroy_nodes(avlt, &cookie)) != NULL)
843 free(pnp);
844
845 avl_destroy(avlt);
846 free(avlt);
847 }
848 }
849
850 /*
851 * Internal dlopen() activity. Called from user level or directly for internal
852 * opens that require a handle.
853 */
854 Grp_hdl *
dlmopen_intn(Lm_list * lml,const char * path,int mode,Rt_map * clmp,uint_t flags,uint_t orig)855 dlmopen_intn(Lm_list *lml, const char *path, int mode, Rt_map *clmp,
856 uint_t flags, uint_t orig)
857 {
858 Lm_list *olml = lml;
859 Rt_map *dlmp = NULL;
860 Grp_hdl *ghp;
861 int in_nfavl = 0;
862
863 /*
864 * Check for magic link-map list values:
865 *
866 * LM_ID_BASE: Operate on the PRIMARY (executables) link map
867 * LM_ID_LDSO: Operation on ld.so.1's link map
868 * LM_ID_NEWLM: Create a new link-map.
869 */
870 if (lml == (Lm_list *)LM_ID_NEWLM) {
871 if ((lml = calloc(sizeof (Lm_list), 1)) == NULL)
872 return (NULL);
873
874 /*
875 * Establish the new link-map flags from the callers and those
876 * explicitly provided.
877 */
878 lml->lm_tflags = LIST(clmp)->lm_tflags;
879 if (flags & FLG_RT_AUDIT) {
880 /*
881 * Unset any auditing flags - an auditor shouldn't be
882 * audited. Insure all audit dependencies are loaded.
883 */
884 lml->lm_tflags &= ~LML_TFLG_AUD_MASK;
885 lml->lm_tflags |= (LML_TFLG_NOLAZYLD |
886 LML_TFLG_LOADFLTR | LML_TFLG_NOAUDIT);
887 }
888
889 if (aplist_append(&dynlm_list, lml, AL_CNT_DYNLIST) == NULL) {
890 free(lml);
891 return (NULL);
892 }
893 if (newlmid(lml) == 0) {
894 (void) aplist_delete_value(dynlm_list, lml);
895 free(lml);
896 return (NULL);
897 }
898 } else if ((uintptr_t)lml < LM_ID_NUM) {
899 if ((uintptr_t)lml == LM_ID_BASE)
900 lml = &lml_main;
901 else if ((uintptr_t)lml == LM_ID_LDSO)
902 lml = &lml_rtld;
903 }
904
905 /*
906 * Open the required object on the associated link-map list.
907 */
908 ghp = dlmopen_core(lml, olml, path, mode, clmp, flags, orig, &in_nfavl);
909
910 /*
911 * If the object could not be found it is possible that the "not-found"
912 * AVL tree had indicated that the file does not exist. In case the
913 * file system has changed since this "not-found" recording was made,
914 * retry the dlopen() with a clean "not-found" AVL tree.
915 */
916 if ((ghp == NULL) && in_nfavl) {
917 avl_tree_t *oavlt = nfavl;
918
919 nfavl = NULL;
920 ghp = dlmopen_core(lml, olml, path, mode, clmp, flags, orig,
921 NULL);
922
923 /*
924 * If the file is found, then its full path name will have been
925 * registered in the FullPath AVL tree. Remove any new
926 * "not-found" AVL information, and restore the former AVL tree.
927 */
928 nfavl_remove(nfavl);
929 nfavl = oavlt;
930 }
931
932 /*
933 * Establish the new link-map from which .init processing will begin.
934 * Ignore .init firing when constructing a configuration file (crle(1)).
935 */
936 if (ghp && ((mode & RTLD_CONFGEN) == 0))
937 dlmp = ghp->gh_ownlmp;
938
939 /*
940 * If loading an auditor was requested, and the auditor already existed,
941 * then the link-map returned will be to the original auditor. Remove
942 * the link-map control list that was created for this request.
943 */
944 if (dlmp && (flags & FLG_RT_AUDIT) && (LIST(dlmp) != lml)) {
945 remove_lml(lml);
946 lml = LIST(dlmp);
947 }
948
949 /*
950 * If this load failed, remove any alternative link-map list.
951 */
952 if ((ghp == NULL) &&
953 ((lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) == 0)) {
954 remove_lml(lml);
955 lml = NULL;
956 }
957
958 /*
959 * Finish this load request. If objects were loaded, .init processing
960 * is computed. Finally, the debuggers are informed of the link-map
961 * lists being stable.
962 */
963 load_completion(dlmp);
964
965 return (ghp);
966 }
967
968 /*
969 * Argument checking for dlopen. Only called via external entry.
970 */
971 static Grp_hdl *
dlmopen_check(Lm_list * lml,const char * path,int mode,Rt_map * clmp)972 dlmopen_check(Lm_list *lml, const char *path, int mode, Rt_map *clmp)
973 {
974 /*
975 * Verify that a valid pathname has been supplied.
976 */
977 if (path && (*path == '\0')) {
978 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLPATH));
979 return (0);
980 }
981
982 /*
983 * Historically we've always verified the mode is either RTLD_NOW or
984 * RTLD_LAZY. RTLD_NOLOAD is valid by itself. Use of LM_ID_NEWLM
985 * requires a specific pathname, and use of RTLD_PARENT is meaningless.
986 */
987 if ((mode & (RTLD_NOW | RTLD_LAZY | RTLD_NOLOAD)) == 0) {
988 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLMODE_1));
989 return (0);
990 }
991 if ((mode & (RTLD_NOW | RTLD_LAZY)) == (RTLD_NOW | RTLD_LAZY)) {
992 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLMODE_2));
993 return (0);
994 }
995 if ((lml == (Lm_list *)LM_ID_NEWLM) && (path == NULL)) {
996 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLMODE_3));
997 return (0);
998 }
999 if ((lml == (Lm_list *)LM_ID_NEWLM) && (mode & RTLD_PARENT)) {
1000 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLMODE_4));
1001 return (0);
1002 }
1003
1004 return (dlmopen_intn(lml, path, mode, clmp, 0, 0));
1005 }
1006
1007 #pragma weak _dlopen = dlopen
1008
1009 /*
1010 * External entry for dlopen(3dl). On success, returns a pointer (handle) to
1011 * the structure containing information about the newly added object, ie. can
1012 * be used by dlsym(). On failure, returns a null pointer.
1013 */
1014 void *
dlopen(const char * path,int mode)1015 dlopen(const char *path, int mode)
1016 {
1017 int entry;
1018 Rt_map *clmp;
1019 Grp_hdl *ghp;
1020 Lm_list *lml;
1021
1022 entry = enter(0);
1023
1024 clmp = _caller(caller(), CL_EXECDEF);
1025 lml = LIST(clmp);
1026
1027 ghp = dlmopen_check(lml, path, mode, clmp);
1028
1029 if (entry)
1030 leave(lml, 0);
1031 return ((void *)ghp);
1032 }
1033
1034 #pragma weak _dlmopen = dlmopen
1035
1036 /*
1037 * External entry for dlmopen(3dl).
1038 */
1039 void *
dlmopen(Lmid_t lmid,const char * path,int mode)1040 dlmopen(Lmid_t lmid, const char *path, int mode)
1041 {
1042 int entry;
1043 Rt_map *clmp;
1044 Grp_hdl *ghp;
1045
1046 entry = enter(0);
1047
1048 clmp = _caller(caller(), CL_EXECDEF);
1049
1050 ghp = dlmopen_check((Lm_list *)lmid, path, mode, clmp);
1051
1052 if (entry)
1053 leave(LIST(clmp), 0);
1054 return ((void *)ghp);
1055 }
1056
1057 /*
1058 * Handle processing for dlsym.
1059 */
1060 int
dlsym_handle(Grp_hdl * ghp,Slookup * slp,Sresult * srp,uint_t * binfo,int * in_nfavl)1061 dlsym_handle(Grp_hdl *ghp, Slookup *slp, Sresult *srp, uint_t *binfo,
1062 int *in_nfavl)
1063 {
1064 Rt_map *nlmp, * lmp = ghp->gh_ownlmp;
1065 Rt_map *clmp = slp->sl_cmap;
1066 const char *name = slp->sl_name;
1067 Slookup sl = *slp;
1068
1069 sl.sl_flags = (LKUP_FIRST | LKUP_DLSYM | LKUP_SPEC);
1070
1071 /*
1072 * Continue processing a dlsym request. Lookup the required symbol in
1073 * each link-map specified by the handle.
1074 *
1075 * To leverage off of lazy loading, dlsym() requests can result in two
1076 * passes. The first descends the link-maps of any objects already in
1077 * the address space. If the symbol isn't located, and lazy
1078 * dependencies still exist, then a second pass is made to load these
1079 * dependencies if applicable. This model means that in the case where
1080 * a symbol exists in more than one object, the one located may not be
1081 * constant - this is the standard issue with lazy loading. In addition,
1082 * attempting to locate a symbol that doesn't exist will result in the
1083 * loading of all lazy dependencies on the given handle, which can
1084 * defeat some of the advantages of lazy loading (look out JVM).
1085 */
1086 if (ghp->gh_flags & GPH_ZERO) {
1087 Lm_list *lml;
1088 uint_t lazy = 0;
1089
1090 /*
1091 * If this symbol lookup is triggered from a dlopen(0) handle,
1092 * traverse the present link-map list looking for promiscuous
1093 * entries.
1094 */
1095 for (nlmp = lmp; nlmp; nlmp = NEXT_RT_MAP(nlmp)) {
1096 /*
1097 * If this handle indicates we're only to look in the
1098 * first object check whether we're done.
1099 */
1100 if ((nlmp != lmp) && (ghp->gh_flags & GPH_FIRST))
1101 return (0);
1102
1103 if (!(MODE(nlmp) & RTLD_GLOBAL))
1104 continue;
1105 if ((FLAGS(nlmp) & FLG_RT_DELETE) &&
1106 ((FLAGS(clmp) & FLG_RT_DELETE) == 0))
1107 continue;
1108
1109 sl.sl_imap = nlmp;
1110 if (LM_LOOKUP_SYM(clmp)(&sl, srp, binfo, in_nfavl))
1111 return (1);
1112
1113 /*
1114 * Keep track of any global pending lazy loads.
1115 */
1116 lazy += LAZY(nlmp);
1117 }
1118
1119 /*
1120 * If we're unable to locate the symbol and this link-map list
1121 * still has pending lazy dependencies, start loading them in an
1122 * attempt to exhaust the search. Note that as we're already
1123 * traversing a dynamic linked list of link-maps there's no
1124 * need for elf_lazy_find_sym() to descend the link-maps itself.
1125 */
1126 lml = LIST(lmp);
1127 if (lazy) {
1128 DBG_CALL(Dbg_syms_lazy_rescan(lml, name));
1129
1130 sl.sl_flags |= LKUP_NODESCENT;
1131
1132 for (nlmp = lmp; nlmp; nlmp = NEXT_RT_MAP(nlmp)) {
1133
1134 if (!(MODE(nlmp) & RTLD_GLOBAL) || !LAZY(nlmp))
1135 continue;
1136 if ((FLAGS(nlmp) & FLG_RT_DELETE) &&
1137 ((FLAGS(clmp) & FLG_RT_DELETE) == 0))
1138 continue;
1139
1140 sl.sl_imap = nlmp;
1141 if (elf_lazy_find_sym(&sl, srp, binfo,
1142 in_nfavl))
1143 return (1);
1144 }
1145 }
1146 } else {
1147 /*
1148 * Traverse the dlopen() handle searching all presently loaded
1149 * link-maps.
1150 */
1151 Grp_desc *gdp;
1152 Aliste idx;
1153 uint_t lazy = 0;
1154
1155 for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) {
1156 nlmp = gdp->gd_depend;
1157
1158 if ((gdp->gd_flags & GPD_DLSYM) == 0)
1159 continue;
1160
1161 sl.sl_imap = nlmp;
1162 if (LM_LOOKUP_SYM(clmp)(&sl, srp, binfo, in_nfavl))
1163 return (1);
1164
1165 if (ghp->gh_flags & GPH_FIRST)
1166 return (0);
1167
1168 /*
1169 * Keep track of any pending lazy loads associated
1170 * with this handle.
1171 */
1172 lazy += LAZY(nlmp);
1173 }
1174
1175 /*
1176 * If we're unable to locate the symbol and this handle still
1177 * has pending lazy dependencies, start loading the lazy
1178 * dependencies, in an attempt to exhaust the search.
1179 */
1180 if (lazy) {
1181 DBG_CALL(Dbg_syms_lazy_rescan(LIST(lmp), name));
1182
1183 for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) {
1184 nlmp = gdp->gd_depend;
1185
1186 if (((gdp->gd_flags & GPD_DLSYM) == 0) ||
1187 (LAZY(nlmp) == 0))
1188 continue;
1189
1190 sl.sl_imap = nlmp;
1191 if (elf_lazy_find_sym(&sl, srp, binfo,
1192 in_nfavl))
1193 return (1);
1194 }
1195 }
1196 }
1197 return (0);
1198 }
1199
1200 /*
1201 * Determine whether a symbol resides in a caller. This may be a reference,
1202 * which is associated with a specific dependency.
1203 */
1204 inline static Sym *
sym_lookup_in_caller(Rt_map * clmp,Slookup * slp,Sresult * srp,uint_t * binfo)1205 sym_lookup_in_caller(Rt_map *clmp, Slookup *slp, Sresult *srp, uint_t *binfo)
1206 {
1207 if (THIS_IS_ELF(clmp) && SYMINTP(clmp)(slp, srp, binfo, NULL)) {
1208 Sym *sym = srp->sr_sym;
1209
1210 slp->sl_rsymndx = (((ulong_t)sym -
1211 (ulong_t)SYMTAB(clmp)) / SYMENT(clmp));
1212 slp->sl_rsym = sym;
1213 return (sym);
1214 }
1215 return (NULL);
1216 }
1217
1218 /*
1219 * Core dlsym activity. Selects symbol lookup method from handle.
1220 */
1221 static void *
dlsym_core(void * handle,const char * name,Rt_map * clmp,Rt_map ** dlmp,int * in_nfavl)1222 dlsym_core(void *handle, const char *name, Rt_map *clmp, Rt_map **dlmp,
1223 int *in_nfavl)
1224 {
1225 Sym *sym;
1226 int ret = 0;
1227 Syminfo *sip;
1228 Slookup sl;
1229 Sresult sr;
1230 uint_t binfo;
1231
1232 /*
1233 * Initialize the symbol lookup data structure.
1234 *
1235 * Standard relocations are evaluated using the symbol index of the
1236 * associated relocation symbol. This index provides for loading
1237 * any lazy dependency and establishing a direct binding if necessary.
1238 * If a dlsym() operation originates from an object that contains a
1239 * symbol table entry for the same name, then we need to establish the
1240 * symbol index so that any dependency requirements can be triggered.
1241 *
1242 * Therefore, the first symbol lookup that is carried out is for the
1243 * symbol name within the calling object. If this symbol exists, the
1244 * symbols index is computed, added to the Slookup data, and thus used
1245 * to seed the real symbol lookup.
1246 */
1247 SLOOKUP_INIT(sl, name, clmp, clmp, ld_entry_cnt, elf_hash(name),
1248 0, 0, 0, LKUP_SYMNDX);
1249 SRESULT_INIT(sr, name);
1250 sym = sym_lookup_in_caller(clmp, &sl, &sr, &binfo);
1251
1252 SRESULT_INIT(sr, name);
1253
1254 if (sym && (ELF_ST_VISIBILITY(sym->st_other) == STV_SINGLETON)) {
1255 Rt_map *hlmp = LIST(clmp)->lm_head;
1256
1257 /*
1258 * If a symbol reference is known, and that reference indicates
1259 * that the symbol is a singleton, then the search for the
1260 * symbol must follow the default search path.
1261 */
1262 DBG_CALL(Dbg_dl_dlsym(clmp, name, in_nfavl, 0,
1263 DBG_DLSYM_SINGLETON));
1264
1265 sl.sl_imap = hlmp;
1266 if (handle == RTLD_PROBE)
1267 sl.sl_flags = LKUP_NOFALLBACK;
1268 else
1269 sl.sl_flags = LKUP_SPEC;
1270 ret = LM_LOOKUP_SYM(clmp)(&sl, &sr, &binfo, in_nfavl);
1271
1272 } else if (handle == RTLD_NEXT) {
1273 Rt_map *nlmp;
1274
1275 /*
1276 * If this handle is RTLD_NEXT determine whether a lazy load
1277 * from the caller might provide the next object. This mimics
1278 * the lazy loading initialization normally carried out by
1279 * lookup_sym(), however here, we must do this up-front, as
1280 * lookup_sym() will be used to inspect the next object.
1281 */
1282 if ((sl.sl_rsymndx) && ((sip = SYMINFO(clmp)) != NULL)) {
1283 /* LINTED */
1284 sip = (Syminfo *)((char *)sip +
1285 (sl.sl_rsymndx * SYMINENT(clmp)));
1286
1287 if ((sip->si_flags & SYMINFO_FLG_DIRECT) &&
1288 (sip->si_boundto < SYMINFO_BT_LOWRESERVE))
1289 (void) elf_lazy_load(clmp, &sl,
1290 sip->si_boundto, name, 0, NULL, in_nfavl);
1291
1292 /*
1293 * Clear the symbol index, so as not to confuse
1294 * lookup_sym() of the next object.
1295 */
1296 sl.sl_rsymndx = 0;
1297 sl.sl_rsym = NULL;
1298 }
1299
1300 /*
1301 * If the handle is RTLD_NEXT, start searching in the next link
1302 * map from the callers. Determine permissions from the
1303 * present link map. Indicate to lookup_sym() that we're on an
1304 * RTLD_NEXT request so that it will use the callers link map to
1305 * start any possible lazy dependency loading.
1306 */
1307 sl.sl_imap = nlmp = NEXT_RT_MAP(clmp);
1308
1309 DBG_CALL(Dbg_dl_dlsym(clmp, name, in_nfavl,
1310 (nlmp ? NAME(nlmp) : MSG_INTL(MSG_STR_NULL)),
1311 DBG_DLSYM_NEXT));
1312
1313 if (nlmp == NULL)
1314 return (0);
1315
1316 sl.sl_flags = LKUP_NEXT;
1317 ret = LM_LOOKUP_SYM(clmp)(&sl, &sr, &binfo, in_nfavl);
1318
1319 } else if (handle == RTLD_SELF) {
1320 /*
1321 * If the handle is RTLD_SELF start searching from the caller.
1322 */
1323 DBG_CALL(Dbg_dl_dlsym(clmp, name, in_nfavl, NAME(clmp),
1324 DBG_DLSYM_SELF));
1325
1326 sl.sl_imap = clmp;
1327 sl.sl_flags = (LKUP_SPEC | LKUP_SELF);
1328 ret = LM_LOOKUP_SYM(clmp)(&sl, &sr, &binfo, in_nfavl);
1329
1330 } else if (handle == RTLD_DEFAULT) {
1331 Rt_map *hlmp = LIST(clmp)->lm_head;
1332
1333 /*
1334 * If the handle is RTLD_DEFAULT mimic the standard symbol
1335 * lookup as would be triggered by a relocation.
1336 */
1337 DBG_CALL(Dbg_dl_dlsym(clmp, name, in_nfavl, 0,
1338 DBG_DLSYM_DEFAULT));
1339
1340 sl.sl_imap = hlmp;
1341 sl.sl_flags = LKUP_SPEC;
1342 ret = LM_LOOKUP_SYM(clmp)(&sl, &sr, &binfo, in_nfavl);
1343
1344 } else if (handle == RTLD_PROBE) {
1345 Rt_map *hlmp = LIST(clmp)->lm_head;
1346
1347 /*
1348 * If the handle is RTLD_PROBE, mimic the standard symbol
1349 * lookup as would be triggered by a relocation, however do
1350 * not fall back to a lazy loading rescan if the symbol can't be
1351 * found within the currently loaded objects. Note, a lazy
1352 * loaded dependency required by the caller might still get
1353 * loaded to satisfy this request, but no exhaustive lazy load
1354 * rescan is carried out.
1355 */
1356 DBG_CALL(Dbg_dl_dlsym(clmp, name, in_nfavl, 0,
1357 DBG_DLSYM_PROBE));
1358
1359 sl.sl_imap = hlmp;
1360 sl.sl_flags = LKUP_NOFALLBACK;
1361 ret = LM_LOOKUP_SYM(clmp)(&sl, &sr, &binfo, in_nfavl);
1362
1363 } else {
1364 Grp_hdl *ghp = (Grp_hdl *)handle;
1365
1366 /*
1367 * Look in the shared object specified by the handle and in all
1368 * of its dependencies.
1369 */
1370 DBG_CALL(Dbg_dl_dlsym(clmp, name, in_nfavl,
1371 NAME(ghp->gh_ownlmp), DBG_DLSYM_DEF));
1372
1373 ret = LM_DLSYM(clmp)(ghp, &sl, &sr, &binfo, in_nfavl);
1374 }
1375
1376 if (ret && ((sym = sr.sr_sym) != NULL)) {
1377 Lm_list *lml = LIST(clmp);
1378 Addr addr = sym->st_value;
1379
1380 *dlmp = sr.sr_dmap;
1381 if (!(FLAGS(*dlmp) & FLG_RT_FIXED))
1382 addr += ADDR(*dlmp);
1383
1384 /*
1385 * Indicate that the defining object is now used.
1386 */
1387 if (*dlmp != clmp)
1388 FLAGS1(*dlmp) |= FL1_RT_USED;
1389
1390 DBG_CALL(Dbg_bind_global(clmp, 0, 0, (Xword)-1, PLT_T_NONE,
1391 *dlmp, addr, sym->st_value, sr.sr_name, binfo));
1392
1393 if ((lml->lm_tflags | AFLAGS(clmp)) & LML_TFLG_AUD_SYMBIND) {
1394 uint_t sb_flags = LA_SYMB_DLSYM;
1395 /* LINTED */
1396 uint_t symndx = (uint_t)(((Xword)sym -
1397 (Xword)SYMTAB(*dlmp)) / SYMENT(*dlmp));
1398 addr = audit_symbind(clmp, *dlmp, sym, symndx, addr,
1399 &sb_flags);
1400 }
1401 return ((void *)addr);
1402 }
1403
1404 return (NULL);
1405 }
1406
1407 /*
1408 * Internal dlsym activity. Called from user level or directly for internal
1409 * symbol lookup.
1410 */
1411 void *
dlsym_intn(void * handle,const char * name,Rt_map * clmp,Rt_map ** dlmp)1412 dlsym_intn(void *handle, const char *name, Rt_map *clmp, Rt_map **dlmp)
1413 {
1414 Rt_map *llmp = NULL;
1415 void *error;
1416 Aliste idx;
1417 Grp_desc *gdp;
1418 int in_nfavl = 0;
1419
1420 /*
1421 * While looking for symbols it's quite possible that additional objects
1422 * get loaded from lazy loading. These objects will have been added to
1423 * the same link-map list as those objects on the handle. Remember this
1424 * list for later investigation.
1425 */
1426 if ((handle == RTLD_NEXT) || (handle == RTLD_DEFAULT) ||
1427 (handle == RTLD_SELF) || (handle == RTLD_PROBE))
1428 llmp = LIST(clmp)->lm_tail;
1429 else {
1430 Grp_hdl *ghp = (Grp_hdl *)handle;
1431
1432 if (ghp->gh_ownlmp)
1433 llmp = LIST(ghp->gh_ownlmp)->lm_tail;
1434 else {
1435 for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) {
1436 if ((llmp =
1437 LIST(gdp->gd_depend)->lm_tail) != NULL)
1438 break;
1439 }
1440 }
1441 }
1442
1443 error = dlsym_core(handle, name, clmp, dlmp, &in_nfavl);
1444
1445 /*
1446 * If the symbol could not be found it is possible that the "not-found"
1447 * AVL tree had indicated that a required file does not exist. In case
1448 * the file system has changed since this "not-found" recording was
1449 * made, retry the dlsym() with a clean "not-found" AVL tree.
1450 */
1451 if ((error == NULL) && in_nfavl) {
1452 avl_tree_t *oavlt = nfavl;
1453
1454 nfavl = NULL;
1455 error = dlsym_core(handle, name, clmp, dlmp, NULL);
1456
1457 /*
1458 * If the symbol is found, then any file that was loaded will
1459 * have had its full path name registered in the FullPath AVL
1460 * tree. Remove any new "not-found" AVL information, and
1461 * restore the former AVL tree.
1462 */
1463 nfavl_remove(nfavl);
1464 nfavl = oavlt;
1465 }
1466
1467 if (error == NULL) {
1468 /*
1469 * Cache the error message, as Java tends to fall through this
1470 * code many times.
1471 */
1472 if (nosym_str == NULL)
1473 nosym_str = MSG_INTL(MSG_GEN_NOSYM);
1474 eprintf(LIST(clmp), ERR_FATAL, nosym_str, name);
1475 }
1476
1477 load_completion(llmp);
1478 return (error);
1479 }
1480
1481 /*
1482 * Argument checking for dlsym. Only called via external entry.
1483 */
1484 static void *
dlsym_check(void * handle,const char * name,Rt_map * clmp,Rt_map ** dlmp)1485 dlsym_check(void *handle, const char *name, Rt_map *clmp, Rt_map **dlmp)
1486 {
1487 /*
1488 * Verify the arguments.
1489 */
1490 if (name == NULL) {
1491 eprintf(LIST(clmp), ERR_FATAL, MSG_INTL(MSG_ARG_ILLSYM));
1492 return (NULL);
1493 }
1494 if ((handle != RTLD_NEXT) && (handle != RTLD_DEFAULT) &&
1495 (handle != RTLD_SELF) && (handle != RTLD_PROBE) &&
1496 (hdl_validate((Grp_hdl *)handle) == 0)) {
1497 eprintf(LIST(clmp), ERR_FATAL, MSG_INTL(MSG_ARG_INVHNDL),
1498 EC_NATPTR(handle));
1499 return (NULL);
1500 }
1501 return (dlsym_intn(handle, name, clmp, dlmp));
1502 }
1503
1504
1505 #pragma weak _dlsym = dlsym
1506
1507 /*
1508 * External entry for dlsym(). On success, returns the address of the specified
1509 * symbol. On error returns a null.
1510 */
1511 void *
dlsym(void * handle,const char * name)1512 dlsym(void *handle, const char *name)
1513 {
1514 int entry;
1515 Rt_map *clmp, *dlmp = NULL;
1516 void *addr;
1517
1518 entry = enter(0);
1519
1520 clmp = _caller(caller(), CL_EXECDEF);
1521
1522 addr = dlsym_check(handle, name, clmp, &dlmp);
1523
1524 if (entry) {
1525 if (dlmp)
1526 is_dep_init(dlmp, clmp);
1527 leave(LIST(clmp), 0);
1528 }
1529 return (addr);
1530 }
1531
1532 /*
1533 * Core dladdr activity.
1534 */
1535 static void
dladdr_core(Rt_map * almp,void * addr,Dl_info_t * dlip,void ** info,int flags)1536 dladdr_core(Rt_map *almp, void *addr, Dl_info_t *dlip, void **info, int flags)
1537 {
1538 /*
1539 * Set up generic information and any defaults.
1540 */
1541 dlip->dli_fname = PATHNAME(almp);
1542
1543 dlip->dli_fbase = (void *)ADDR(almp);
1544 dlip->dli_sname = NULL;
1545 dlip->dli_saddr = NULL;
1546
1547 /*
1548 * Determine the nearest symbol to this address.
1549 */
1550 LM_DLADDR(almp)((ulong_t)addr, almp, dlip, info, flags);
1551 }
1552
1553 #pragma weak _dladdr = dladdr
1554
1555 /*
1556 * External entry for dladdr(3dl) and dladdr1(3dl). Returns an information
1557 * structure that reflects the symbol closest to the address specified.
1558 */
1559 int
dladdr(void * addr,Dl_info_t * dlip)1560 dladdr(void *addr, Dl_info_t *dlip)
1561 {
1562 int entry, ret;
1563 Rt_map *clmp, *almp;
1564 Lm_list *clml;
1565
1566 entry = enter(0);
1567
1568 clmp = _caller(caller(), CL_EXECDEF);
1569 clml = LIST(clmp);
1570
1571 DBG_CALL(Dbg_dl_dladdr(clmp, addr));
1572
1573 /*
1574 * Use our calling technique to determine what object is associated
1575 * with the supplied address. If a caller can't be determined,
1576 * indicate the failure.
1577 */
1578 if ((almp = _caller(addr, CL_NONE)) == NULL) {
1579 eprintf(clml, ERR_FATAL, MSG_INTL(MSG_ARG_INVADDR),
1580 EC_NATPTR(addr));
1581 ret = 0;
1582 } else {
1583 dladdr_core(almp, addr, dlip, 0, 0);
1584 ret = 1;
1585 }
1586
1587 if (entry)
1588 leave(clml, 0);
1589 return (ret);
1590 }
1591
1592 #pragma weak _dladdr1 = dladdr1
1593
1594 int
dladdr1(void * addr,Dl_info_t * dlip,void ** info,int flags)1595 dladdr1(void *addr, Dl_info_t *dlip, void **info, int flags)
1596 {
1597 int entry, ret = 1;
1598 Rt_map *clmp, *almp;
1599 Lm_list *clml;
1600
1601 entry = enter(0);
1602
1603 clmp = _caller(caller(), CL_EXECDEF);
1604 clml = LIST(clmp);
1605
1606 DBG_CALL(Dbg_dl_dladdr(clmp, addr));
1607
1608 /*
1609 * Validate any flags.
1610 */
1611 if (flags) {
1612 int request;
1613
1614 if (((request = (flags & RTLD_DL_MASK)) != RTLD_DL_SYMENT) &&
1615 (request != RTLD_DL_LINKMAP)) {
1616 eprintf(clml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLFLAGS),
1617 flags);
1618 ret = 0;
1619
1620 } else if (info == NULL) {
1621 eprintf(clml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLINFO),
1622 flags);
1623 ret = 0;
1624 }
1625 }
1626
1627 /*
1628 * Use our calling technique to determine what object is associated
1629 * with the supplied address. If a caller can't be determined,
1630 * indicate the failure.
1631 */
1632 if (ret) {
1633 if ((almp = _caller(addr, CL_NONE)) == NULL) {
1634 eprintf(clml, ERR_FATAL, MSG_INTL(MSG_ARG_INVADDR),
1635 EC_NATPTR(addr));
1636 ret = 0;
1637 } else
1638 dladdr_core(almp, addr, dlip, info, flags);
1639 }
1640
1641 if (entry)
1642 leave(clml, 0);
1643 return (ret);
1644 }
1645
1646 /*
1647 * Core dldump activity.
1648 */
1649 static int
dldump_core(Rt_map * clmp,Rt_map * lmp,const char * ipath,const char * opath,int flags)1650 dldump_core(Rt_map *clmp, Rt_map *lmp, const char *ipath, const char *opath,
1651 int flags)
1652 {
1653 Lm_list *lml = LIST(clmp);
1654 Addr addr = 0;
1655
1656 /*
1657 * Verify any arguments first.
1658 */
1659 if ((opath == NULL) || (opath[0] == '\0') ||
1660 ((lmp == NULL) && (ipath[0] == '\0'))) {
1661 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLPATH));
1662 return (1);
1663 }
1664
1665 /*
1666 * If an input file is specified make sure its one of our dependencies
1667 * on the main link-map list. Note, this has really all evolved for
1668 * crle(), which uses libcrle.so on an alternative link-map to trigger
1669 * dumping objects from the main link-map list. If we ever want to
1670 * dump objects from alternative link-maps, this model is going to
1671 * have to be revisited.
1672 */
1673 if (lmp == NULL) {
1674 if ((lmp = is_so_loaded(&lml_main, ipath, NULL)) == NULL) {
1675 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_GEN_NOFILE),
1676 ipath);
1677 return (1);
1678 }
1679 if (FLAGS(lmp) & FLG_RT_ALTER) {
1680 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_GEN_ALTER), ipath);
1681 return (1);
1682 }
1683 if (FLAGS(lmp) & FLG_RT_NODUMP) {
1684 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_GEN_NODUMP),
1685 ipath);
1686 return (1);
1687 }
1688 }
1689
1690 /*
1691 * If the object being dump'ed isn't fixed identify its mapping.
1692 */
1693 if (!(FLAGS(lmp) & FLG_RT_FIXED))
1694 addr = ADDR(lmp);
1695
1696 /*
1697 * As rt_dldump() will effectively lazy load the necessary support
1698 * libraries, make sure ld.so.1 is initialized for plt relocations.
1699 */
1700 if (elf_rtld_load() == 0)
1701 return (0);
1702
1703 /*
1704 * Dump the required image.
1705 */
1706 return (rt_dldump(lmp, opath, flags, addr));
1707 }
1708
1709 #pragma weak _dldump = dldump
1710
1711 /*
1712 * External entry for dldump(3c). Returns 0 on success, non-zero otherwise.
1713 */
1714 int
dldump(const char * ipath,const char * opath,int flags)1715 dldump(const char *ipath, const char *opath, int flags)
1716 {
1717 int error, entry;
1718 Rt_map *clmp, *lmp;
1719
1720 entry = enter(0);
1721
1722 clmp = _caller(caller(), CL_EXECDEF);
1723
1724 if (ipath) {
1725 lmp = NULL;
1726 } else {
1727 lmp = lml_main.lm_head;
1728 ipath = NAME(lmp);
1729 }
1730
1731 DBG_CALL(Dbg_dl_dldump(clmp, ipath, opath, flags));
1732
1733 error = dldump_core(clmp, lmp, ipath, opath, flags);
1734
1735 if (entry)
1736 leave(LIST(clmp), 0);
1737 return (error);
1738 }
1739
1740 /*
1741 * get_linkmap_id() translates Lm_list * pointers to the Link_map id as used by
1742 * the rtld_db and dlmopen() interfaces. It checks to see if the Link_map is
1743 * one of the primary ones and if so returns it's special token:
1744 * LM_ID_BASE
1745 * LM_ID_LDSO
1746 *
1747 * If it's not one of the primary link_map id's it will instead returns a
1748 * pointer to the Lm_list structure which uniquely identifies the Link_map.
1749 */
1750 Lmid_t
get_linkmap_id(Lm_list * lml)1751 get_linkmap_id(Lm_list *lml)
1752 {
1753 if (lml->lm_flags & LML_FLG_BASELM)
1754 return (LM_ID_BASE);
1755 if (lml->lm_flags & LML_FLG_RTLDLM)
1756 return (LM_ID_LDSO);
1757
1758 return ((Lmid_t)lml);
1759 }
1760
1761 /*
1762 * Set a new deferred dependency name.
1763 */
1764 static int
set_def_need(Lm_list * lml,Dyninfo * dyip,const char * name)1765 set_def_need(Lm_list *lml, Dyninfo *dyip, const char *name)
1766 {
1767 /*
1768 * If this dependency has already been established, then this dlinfo()
1769 * call is too late.
1770 */
1771 if (dyip->di_info) {
1772 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_DEF_DEPLOADED),
1773 dyip->di_name);
1774 return (-1);
1775 }
1776
1777 /*
1778 * Assign the new dependency name.
1779 */
1780 DBG_CALL(Dbg_file_deferred(lml, dyip->di_name, name));
1781 dyip->di_flags |= FLG_DI_DEF_DONE;
1782 dyip->di_name = name;
1783 return (0);
1784 }
1785
1786 /*
1787 * Extract information for a dlopen() handle.
1788 */
1789 static int
dlinfo_core(void * handle,int request,void * p,Rt_map * clmp)1790 dlinfo_core(void *handle, int request, void *p, Rt_map *clmp)
1791 {
1792 Conv_inv_buf_t inv_buf;
1793 char *handlename;
1794 Lm_list *lml = LIST(clmp);
1795 Rt_map *lmp = NULL;
1796
1797 /*
1798 * Determine whether a handle is provided. A handle isn't needed for
1799 * all operations, but it is validated here for the initial diagnostic.
1800 */
1801 if (handle == RTLD_SELF) {
1802 lmp = clmp;
1803 } else {
1804 Grp_hdl *ghp = (Grp_hdl *)handle;
1805
1806 if (hdl_validate(ghp))
1807 lmp = ghp->gh_ownlmp;
1808 }
1809 if (lmp) {
1810 handlename = NAME(lmp);
1811 } else {
1812 (void) conv_invalid_val(&inv_buf, EC_NATPTR(handle), 0);
1813 handlename = inv_buf.buf;
1814 }
1815
1816 DBG_CALL(Dbg_dl_dlinfo(clmp, handlename, request, p));
1817
1818 /*
1819 * Validate the request and return buffer.
1820 */
1821 if ((request > RTLD_DI_MAX) || (p == NULL)) {
1822 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLVAL));
1823 return (-1);
1824 }
1825
1826 /*
1827 * Return configuration cache name and address.
1828 */
1829 if (request == RTLD_DI_CONFIGADDR) {
1830 Dl_info_t *dlip = (Dl_info_t *)p;
1831
1832 if ((config->c_name == NULL) || (config->c_bgn == 0) ||
1833 (config->c_end == 0)) {
1834 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_NOCONFIG));
1835 return (-1);
1836 }
1837 dlip->dli_fname = config->c_name;
1838 dlip->dli_fbase = (void *)config->c_bgn;
1839 return (0);
1840 }
1841
1842 /*
1843 * Return profiled object name (used by ldprof audit library).
1844 */
1845 if (request == RTLD_DI_PROFILENAME) {
1846 if (profile_name == NULL) {
1847 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_NOPROFNAME));
1848 return (-1);
1849 }
1850
1851 *(const char **)p = profile_name;
1852 return (0);
1853 }
1854 if (request == RTLD_DI_PROFILEOUT) {
1855 /*
1856 * If a profile destination directory hasn't been specified
1857 * provide a default.
1858 */
1859 if (profile_out == NULL)
1860 profile_out = MSG_ORIG(MSG_PTH_VARTMP);
1861
1862 *(const char **)p = profile_out;
1863 return (0);
1864 }
1865
1866 /*
1867 * Obtain or establish a termination signal.
1868 */
1869 if (request == RTLD_DI_GETSIGNAL) {
1870 *(int *)p = killsig;
1871 return (0);
1872 }
1873
1874 if (request == RTLD_DI_SETSIGNAL) {
1875 sigset_t set;
1876 int sig = *(int *)p;
1877
1878 /*
1879 * Determine whether the signal is in range.
1880 */
1881 (void) sigfillset(&set);
1882 if (sigismember(&set, sig) != 1) {
1883 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_INVSIG), sig);
1884 return (-1);
1885 }
1886
1887 killsig = sig;
1888 return (0);
1889 }
1890
1891 /*
1892 * For any other request a link-map is required. Verify the handle.
1893 */
1894 if (lmp == NULL) {
1895 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_INVHNDL),
1896 EC_NATPTR(handle));
1897 return (-1);
1898 }
1899
1900 /*
1901 * Obtain the process arguments, environment and auxv. Note, as the
1902 * environment can be modified by the user (putenv(3c)), reinitialize
1903 * the environment pointer on each request.
1904 */
1905 if (request == RTLD_DI_ARGSINFO) {
1906 Dl_argsinfo_t *aip = (Dl_argsinfo_t *)p;
1907 Lm_list *lml = LIST(lmp);
1908
1909 *aip = argsinfo;
1910 if (lml->lm_flags & LML_FLG_ENVIRON)
1911 aip->dla_envp = *(lml->lm_environ);
1912
1913 return (0);
1914 }
1915
1916 /*
1917 * Return Lmid_t of the Link-Map list that the specified object is
1918 * loaded on.
1919 */
1920 if (request == RTLD_DI_LMID) {
1921 *(Lmid_t *)p = get_linkmap_id(LIST(lmp));
1922 return (0);
1923 }
1924
1925 /*
1926 * Return a pointer to the Link-Map structure associated with the
1927 * specified object.
1928 */
1929 if (request == RTLD_DI_LINKMAP) {
1930 *(Link_map **)p = (Link_map *)lmp;
1931 return (0);
1932 }
1933
1934 /*
1935 * Return search path information, or the size of the buffer required
1936 * to store the information.
1937 */
1938 if ((request == RTLD_DI_SERINFO) || (request == RTLD_DI_SERINFOSIZE)) {
1939 Spath_desc sd = { search_rules, NULL, 0 };
1940 Pdesc *pdp;
1941 Dl_serinfo_t *info;
1942 Dl_serpath_t *path;
1943 char *strs;
1944 size_t size = sizeof (Dl_serinfo_t);
1945 uint_t cnt = 0;
1946
1947 info = (Dl_serinfo_t *)p;
1948 path = &info->dls_serpath[0];
1949 strs = (char *)&info->dls_serpath[info->dls_cnt];
1950
1951 /*
1952 * Traverse search path entries for this object.
1953 */
1954 while ((pdp = get_next_dir(&sd, lmp, 0)) != NULL) {
1955 size_t _size;
1956
1957 if (pdp->pd_pname == NULL)
1958 continue;
1959
1960 /*
1961 * If configuration information exists, it's possible
1962 * this path has been identified as non-existent, if so
1963 * ignore it.
1964 */
1965 if (pdp->pd_info) {
1966 Rtc_obj *dobj = (Rtc_obj *)pdp->pd_info;
1967 if (dobj->co_flags & RTC_OBJ_NOEXIST)
1968 continue;
1969 }
1970
1971 /*
1972 * Keep track of search path count and total info size.
1973 */
1974 if (cnt++)
1975 size += sizeof (Dl_serpath_t);
1976 _size = pdp->pd_plen + 1;
1977 size += _size;
1978
1979 if (request == RTLD_DI_SERINFOSIZE)
1980 continue;
1981
1982 /*
1983 * If we're filling in search path information, confirm
1984 * there's sufficient space.
1985 */
1986 if (size > info->dls_size) {
1987 eprintf(lml, ERR_FATAL,
1988 MSG_INTL(MSG_ARG_SERSIZE),
1989 EC_OFF(info->dls_size));
1990 return (-1);
1991 }
1992 if (cnt > info->dls_cnt) {
1993 eprintf(lml, ERR_FATAL,
1994 MSG_INTL(MSG_ARG_SERCNT), info->dls_cnt);
1995 return (-1);
1996 }
1997
1998 /*
1999 * Append the path to the information buffer.
2000 */
2001 (void) strcpy(strs, pdp->pd_pname);
2002 path->dls_name = strs;
2003 path->dls_flags = (pdp->pd_flags & LA_SER_MASK);
2004
2005 strs = strs + _size;
2006 path++;
2007 }
2008
2009 /*
2010 * If we're here to size the search buffer fill it in.
2011 */
2012 if (request == RTLD_DI_SERINFOSIZE) {
2013 info->dls_size = size;
2014 info->dls_cnt = cnt;
2015 }
2016
2017 return (0);
2018 }
2019
2020 /*
2021 * Return the origin of the object associated with this link-map.
2022 * Basically return the dirname(1) of the objects fullpath.
2023 */
2024 if (request == RTLD_DI_ORIGIN) {
2025 char *str = (char *)p;
2026
2027 (void) strncpy(str, ORIGNAME(lmp), DIRSZ(lmp));
2028 str += DIRSZ(lmp);
2029 *str = '\0';
2030
2031 return (0);
2032 }
2033
2034 /*
2035 * Return the number of object mappings, or the mapping information for
2036 * this object.
2037 */
2038 if (request == RTLD_DI_MMAPCNT) {
2039 uint_t *cnt = (uint_t *)p;
2040
2041 *cnt = MMAPCNT(lmp);
2042 return (0);
2043 }
2044 if (request == RTLD_DI_MMAPS) {
2045 Dl_mapinfo_t *mip = (Dl_mapinfo_t *)p;
2046
2047 if (mip->dlm_acnt && mip->dlm_maps) {
2048 uint_t cnt = 0;
2049
2050 while ((cnt < mip->dlm_acnt) && (cnt < MMAPCNT(lmp))) {
2051 mip->dlm_maps[cnt] = MMAPS(lmp)[cnt];
2052 cnt++;
2053 }
2054 mip->dlm_rcnt = cnt;
2055 }
2056 return (0);
2057 }
2058
2059 /*
2060 * Assign a new dependency name to a deferred dependency.
2061 */
2062 if ((request == RTLD_DI_DEFERRED) ||
2063 (request == RTLD_DI_DEFERRED_SYM)) {
2064 Dl_definfo_t *dfip = (Dl_definfo_t *)p;
2065 Dyninfo *dyip;
2066 const char *dname, *rname;
2067
2068 /*
2069 * Verify the names.
2070 */
2071 if ((dfip->dld_refname == NULL) ||
2072 (dfip->dld_depname == NULL)) {
2073 eprintf(LIST(clmp), ERR_FATAL,
2074 MSG_INTL(MSG_ARG_ILLNAME));
2075 return (-1);
2076 }
2077
2078 dname = dfip->dld_depname;
2079 rname = dfip->dld_refname;
2080
2081 /*
2082 * A deferred dependency can be determined by referencing a
2083 * symbol family member that is associated to the dependency,
2084 * or by looking for the dependency by its name.
2085 */
2086 if (request == RTLD_DI_DEFERRED_SYM) {
2087 Slookup sl;
2088 Sresult sr;
2089 uint_t binfo;
2090 Syminfo *sip;
2091
2092 /*
2093 * Lookup the symbol in the associated object.
2094 */
2095 SLOOKUP_INIT(sl, rname, lmp, lmp, ld_entry_cnt,
2096 elf_hash(rname), 0, 0, 0, LKUP_SYMNDX);
2097 SRESULT_INIT(sr, rname);
2098 if (sym_lookup_in_caller(clmp, &sl, &sr,
2099 &binfo) == NULL) {
2100 eprintf(LIST(clmp), ERR_FATAL,
2101 MSG_INTL(MSG_DEF_NOSYMFOUND), rname);
2102 return (-1);
2103 }
2104
2105 /*
2106 * Use the symbols index to reference the Syminfo entry
2107 * and thus find the associated dependency.
2108 */
2109 if (sl.sl_rsymndx && ((sip = SYMINFO(clmp)) != NULL)) {
2110 /* LINTED */
2111 sip = (Syminfo *)((char *)sip +
2112 (sl.sl_rsymndx * SYMINENT(lmp)));
2113
2114 if ((sip->si_flags & SYMINFO_FLG_DEFERRED) &&
2115 (sip->si_boundto < SYMINFO_BT_LOWRESERVE) &&
2116 ((dyip = DYNINFO(lmp)) != NULL)) {
2117 dyip += sip->si_boundto;
2118
2119 if (!(dyip->di_flags & FLG_DI_IGNORE))
2120 return (set_def_need(lml,
2121 dyip, dname));
2122 }
2123 }
2124
2125 /*
2126 * No deferred symbol found.
2127 */
2128 eprintf(LIST(clmp), ERR_FATAL,
2129 MSG_INTL(MSG_DEF_NOSYMFOUND), rname);
2130 return (-1);
2131
2132 } else {
2133 Dyn *dyn;
2134
2135 /*
2136 * Using the target objects dependency information, find
2137 * the associated deferred dependency.
2138 */
2139 for (dyn = DYN(lmp), dyip = DYNINFO(lmp);
2140 !(dyip->di_flags & FLG_DI_IGNORE); dyn++, dyip++) {
2141 const char *oname;
2142
2143 if ((dyip->di_flags & FLG_DI_DEFERRED) == 0)
2144 continue;
2145
2146 if (strcmp(rname, dyip->di_name) == 0)
2147 return (set_def_need(lml, dyip, dname));
2148
2149 /*
2150 * If this dependency name has been changed by
2151 * a previous dlinfo(), check the original
2152 * dynamic entry string. The user might be
2153 * attempting to re-change an entry using the
2154 * original name as the reference.
2155 */
2156 if ((dyip->di_flags & FLG_DI_DEF_DONE) == 0)
2157 continue;
2158
2159 oname = STRTAB(lmp) + dyn->d_un.d_val;
2160 if (strcmp(rname, oname) == 0)
2161 return (set_def_need(lml, dyip, dname));
2162 }
2163
2164 /*
2165 * No deferred dependency found.
2166 */
2167 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_DEF_NODEPFOUND),
2168 rname);
2169 return (-1);
2170 }
2171 }
2172 return (0);
2173 }
2174
2175 #pragma weak _dlinfo = dlinfo
2176
2177 /*
2178 * External entry for dlinfo(3dl).
2179 */
2180 int
dlinfo(void * handle,int request,void * p)2181 dlinfo(void *handle, int request, void *p)
2182 {
2183 int error, entry;
2184 Rt_map *clmp;
2185
2186 entry = enter(0);
2187
2188 clmp = _caller(caller(), CL_EXECDEF);
2189
2190 error = dlinfo_core(handle, request, p, clmp);
2191
2192 if (entry)
2193 leave(LIST(clmp), 0);
2194 return (error);
2195 }
2196
2197 /*
2198 * GNU defined function to iterate through the program headers for all
2199 * currently loaded dynamic objects. The caller supplies a callback function
2200 * which is called for each object.
2201 *
2202 * entry:
2203 * callback - Callback function to call. The arguments to the callback
2204 * function are:
2205 * info - Address of dl_phdr_info structure
2206 * size - sizeof (struct dl_phdr_info)
2207 * data - Caller supplied value.
2208 * data - Value supplied by caller, which is passed to callback without
2209 * examination.
2210 *
2211 * exit:
2212 * callback is called for each dynamic ELF object in the process address
2213 * space, halting when a non-zero value is returned, or when the last
2214 * object has been processed. The return value from the last call
2215 * to callback is returned.
2216 *
2217 * note:
2218 * The Linux implementation has added additional fields to the
2219 * dl_phdr_info structure over time. The callback function is
2220 * supposed to use the size field to determine which fields are
2221 * present, and to avoid attempts to access non-existent fields.
2222 * We have added those fields that are compatible with Solaris, and
2223 * which are used by GNU C++ (g++) runtime exception handling support.
2224 *
2225 * note:
2226 * We issue a callback for every ELF object mapped into the process
2227 * address space at the time this routine is entered. These callbacks
2228 * are arbitrary functions that can do anything, including possibly
2229 * causing new objects to be mapped into the process, or unmapped.
2230 * This complicates matters:
2231 *
2232 * - Adding new objects can cause the alists to be reallocated
2233 * or for contents to move. This can happen explicitly via
2234 * dlopen(), or implicitly via lazy loading. One might consider
2235 * simply banning dlopen from a callback, but lazy loading must
2236 * be allowed, in which case there's no reason to ban dlopen().
2237 *
2238 * - Removing objects can leave us holding references to freed
2239 * memory that must not be accessed, and can cause the list
2240 * items to move in a way that would cause us to miss reporting
2241 * one, or double report others.
2242 *
2243 * - We cannot allocate memory to build a separate data structure,
2244 * because the interface to dl_iterate_phdr() does not have a
2245 * way to communicate allocation errors back to the caller.
2246 * Even if we could, it would be difficult to do so efficiently.
2247 *
2248 * - It is possible for dl_iterate_phdr() to be called recursively
2249 * from a callback, and there is no way for us to detect or manage
2250 * this effectively, particularly as the user might use longjmp()
2251 * to skip past us on return. Hence, we must be reentrant
2252 * (stateless), further precluding the option of building a
2253 * separate data structure.
2254 *
2255 * Despite these constraints, we are able to traverse the link-map
2256 * lists safely:
2257 *
2258 * - Once interposer (preload) objects have been processed at
2259 * startup, we know that new objects are always placed at the
2260 * end of the list. Hence, if we are reading a list when that
2261 * happens, the new object will not alter the part of the list
2262 * that we've already processed.
2263 *
2264 * - The alist _TRAVERSE macros recalculate the address of the
2265 * current item from scratch on each iteration, rather than
2266 * incrementing a pointer. Hence, alist additions that occur
2267 * in mid-traverse will not cause confusion.
2268 *
2269 * There is one limitation: We cannot continue operation if an object
2270 * is removed from the process from within a callback. We detect when
2271 * this happens and return immediately with a -1 return value.
2272 *
2273 * note:
2274 * As currently implemented, if a callback causes an object to be loaded,
2275 * that object may or may not be reported by the current invocation of
2276 * dl_iterate_phdr(), based on whether or not we have already processed
2277 * the link-map list that receives it. If we want to prevent this, it
2278 * can be done efficiently by associating the current value of cnt_map
2279 * with each new Rt_map entered into the system. Then this function can
2280 * use that to detect and skip new objects that enter the system in
2281 * mid-iteration. However, the Linux documentation is ambiguous on whether
2282 * this is necessary, and it does not appear to matter in practice.
2283 * We have therefore chosen not to do so at this time.
2284 */
2285 int
dl_iterate_phdr(int (* callback)(struct dl_phdr_info *,size_t,void *),void * data)2286 dl_iterate_phdr(int (*callback)(struct dl_phdr_info *, size_t, void *),
2287 void *data)
2288 {
2289 struct dl_phdr_info info;
2290 u_longlong_t l_cnt_map = cnt_map;
2291 u_longlong_t l_cnt_unmap = cnt_unmap;
2292 Lm_list *lml, *clml;
2293 Lm_cntl *lmc;
2294 Rt_map *lmp, *clmp;
2295 Aliste idx1, idx2;
2296 Ehdr *ehdr;
2297 int ret = 0;
2298 int entry;
2299
2300 entry = enter(0);
2301 clmp = _caller(caller(), CL_EXECDEF);
2302 clml = LIST(clmp);
2303
2304 DBG_CALL(Dbg_dl_iphdr_enter(clmp, cnt_map, cnt_unmap));
2305
2306 /* Issue a callback for each ELF object in the process */
2307 for (APLIST_TRAVERSE(dynlm_list, idx1, lml)) {
2308 for (ALIST_TRAVERSE(lml->lm_lists, idx2, lmc)) {
2309 for (lmp = lmc->lc_head; lmp; lmp = NEXT_RT_MAP(lmp)) {
2310 #if defined(_sparc) && !defined(_LP64)
2311 /*
2312 * On 32-bit sparc, the possibility exists that
2313 * this object is not ELF.
2314 */
2315 if (THIS_IS_NOT_ELF(lmp))
2316 continue;
2317 #endif
2318 /* Prepare the object information structure */
2319 ehdr = (Ehdr *) ADDR(lmp);
2320 info.dlpi_addr = (ehdr->e_type == ET_EXEC) ?
2321 0 : ADDR(lmp);
2322 info.dlpi_name = lmp->rt_pathname;
2323 info.dlpi_phdr = (Phdr *)
2324 (ADDR(lmp) + ehdr->e_phoff);
2325 info.dlpi_phnum = ehdr->e_phnum;
2326 info.dlpi_adds = cnt_map;
2327 info.dlpi_subs = cnt_unmap;
2328
2329 /* Issue the callback */
2330 DBG_CALL(Dbg_dl_iphdr_callback(clml, &info));
2331 leave(clml, thr_flg_reenter);
2332 ret = (* callback)(&info, sizeof (info), data);
2333 (void) enter(thr_flg_reenter);
2334
2335 /* Return immediately on non-zero result */
2336 if (ret != 0)
2337 goto done;
2338
2339 /* Adapt to object mapping changes */
2340 if ((cnt_map == l_cnt_map) &&
2341 (cnt_unmap == l_cnt_unmap))
2342 continue;
2343
2344 DBG_CALL(Dbg_dl_iphdr_mapchange(clml, cnt_map,
2345 cnt_unmap));
2346
2347 /* Stop if an object was unmapped */
2348 if (cnt_unmap == l_cnt_unmap) {
2349 l_cnt_map = cnt_map;
2350 continue;
2351 }
2352
2353 ret = -1;
2354 DBG_CALL(Dbg_dl_iphdr_unmap_ret(clml));
2355 goto done;
2356 }
2357 }
2358 }
2359
2360 done:
2361 if (entry)
2362 leave(LIST(clmp), 0);
2363 return (ret);
2364 }
2365