1 //===-- llvm/ADT/Hashing.h - Utilities for hashing --------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the newly proposed standard C++ interfaces for hashing
10 // arbitrary data and building hash functions for user-defined types. This
11 // interface was originally proposed in N3333[1] and is currently under review
12 // for inclusion in a future TR and/or standard.
13 //
14 // The primary interfaces provide are comprised of one type and three functions:
15 //
16 // -- 'hash_code' class is an opaque type representing the hash code for some
17 // data. It is the intended product of hashing, and can be used to implement
18 // hash tables, checksumming, and other common uses of hashes. It is not an
19 // integer type (although it can be converted to one) because it is risky
20 // to assume much about the internals of a hash_code. In particular, each
21 // execution of the program has a high probability of producing a different
22 // hash_code for a given input. Thus their values are not stable to save or
23 // persist, and should only be used during the execution for the
24 // construction of hashing datastructures.
25 //
26 // -- 'hash_value' is a function designed to be overloaded for each
27 // user-defined type which wishes to be used within a hashing context. It
28 // should be overloaded within the user-defined type's namespace and found
29 // via ADL. Overloads for primitive types are provided by this library.
30 //
31 // -- 'hash_combine' and 'hash_combine_range' are functions designed to aid
32 // programmers in easily and intuitively combining a set of data into
33 // a single hash_code for their object. They should only logically be used
34 // within the implementation of a 'hash_value' routine or similar context.
35 //
36 // Note that 'hash_combine_range' contains very special logic for hashing
37 // a contiguous array of integers or pointers. This logic is *extremely* fast,
38 // on a modern Intel "Gainestown" Xeon (Nehalem uarch) @2.2 GHz, these were
39 // benchmarked at over 6.5 GiB/s for large keys, and <20 cycles/hash for keys
40 // under 32-bytes.
41 //
42 //===----------------------------------------------------------------------===//
43
44 #ifndef LLVM_ADT_HASHING_H
45 #define LLVM_ADT_HASHING_H
46
47 #include "llvm/Support/DataTypes.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/SwapByteOrder.h"
50 #include "llvm/Support/type_traits.h"
51 #include <algorithm>
52 #include <cassert>
53 #include <cstring>
54 #include <optional>
55 #include <string>
56 #include <tuple>
57 #include <utility>
58
59 namespace llvm {
60 template <typename T, typename Enable> struct DenseMapInfo;
61
62 /// An opaque object representing a hash code.
63 ///
64 /// This object represents the result of hashing some entity. It is intended to
65 /// be used to implement hashtables or other hashing-based data structures.
66 /// While it wraps and exposes a numeric value, this value should not be
67 /// trusted to be stable or predictable across processes or executions.
68 ///
69 /// In order to obtain the hash_code for an object 'x':
70 /// \code
71 /// using llvm::hash_value;
72 /// llvm::hash_code code = hash_value(x);
73 /// \endcode
74 class hash_code {
75 size_t value;
76
77 public:
78 /// Default construct a hash_code.
79 /// Note that this leaves the value uninitialized.
80 hash_code() = default;
81
82 /// Form a hash code directly from a numerical value.
hash_code(size_t value)83 hash_code(size_t value) : value(value) {}
84
85 /// Convert the hash code to its numerical value for use.
size_t()86 /*explicit*/ operator size_t() const { return value; }
87
88 friend bool operator==(const hash_code &lhs, const hash_code &rhs) {
89 return lhs.value == rhs.value;
90 }
91 friend bool operator!=(const hash_code &lhs, const hash_code &rhs) {
92 return lhs.value != rhs.value;
93 }
94
95 /// Allow a hash_code to be directly run through hash_value.
hash_value(const hash_code & code)96 friend size_t hash_value(const hash_code &code) { return code.value; }
97 };
98
99 /// Compute a hash_code for any integer value.
100 ///
101 /// Note that this function is intended to compute the same hash_code for
102 /// a particular value without regard to the pre-promotion type. This is in
103 /// contrast to hash_combine which may produce different hash_codes for
104 /// differing argument types even if they would implicit promote to a common
105 /// type without changing the value.
106 template <typename T>
107 std::enable_if_t<is_integral_or_enum<T>::value, hash_code> hash_value(T value);
108
109 /// Compute a hash_code for a pointer's address.
110 ///
111 /// N.B.: This hashes the *address*. Not the value and not the type.
112 template <typename T> hash_code hash_value(const T *ptr);
113
114 /// Compute a hash_code for a pair of objects.
115 template <typename T, typename U>
116 hash_code hash_value(const std::pair<T, U> &arg);
117
118 /// Compute a hash_code for a tuple.
119 template <typename... Ts>
120 hash_code hash_value(const std::tuple<Ts...> &arg);
121
122 /// Compute a hash_code for a standard string.
123 template <typename T>
124 hash_code hash_value(const std::basic_string<T> &arg);
125
126 /// Compute a hash_code for a standard string.
127 template <typename T> hash_code hash_value(const std::optional<T> &arg);
128
129 /// Override the execution seed with a fixed value.
130 ///
131 /// This hashing library uses a per-execution seed designed to change on each
132 /// run with high probability in order to ensure that the hash codes are not
133 /// attackable and to ensure that output which is intended to be stable does
134 /// not rely on the particulars of the hash codes produced.
135 ///
136 /// That said, there are use cases where it is important to be able to
137 /// reproduce *exactly* a specific behavior. To that end, we provide a function
138 /// which will forcibly set the seed to a fixed value. This must be done at the
139 /// start of the program, before any hashes are computed. Also, it cannot be
140 /// undone. This makes it thread-hostile and very hard to use outside of
141 /// immediately on start of a simple program designed for reproducible
142 /// behavior.
143 void set_fixed_execution_hash_seed(uint64_t fixed_value);
144
145
146 // All of the implementation details of actually computing the various hash
147 // code values are held within this namespace. These routines are included in
148 // the header file mainly to allow inlining and constant propagation.
149 namespace hashing {
150 namespace detail {
151
fetch64(const char * p)152 inline uint64_t fetch64(const char *p) {
153 uint64_t result;
154 memcpy(&result, p, sizeof(result));
155 if (sys::IsBigEndianHost)
156 sys::swapByteOrder(result);
157 return result;
158 }
159
fetch32(const char * p)160 inline uint32_t fetch32(const char *p) {
161 uint32_t result;
162 memcpy(&result, p, sizeof(result));
163 if (sys::IsBigEndianHost)
164 sys::swapByteOrder(result);
165 return result;
166 }
167
168 /// Some primes between 2^63 and 2^64 for various uses.
169 static constexpr uint64_t k0 = 0xc3a5c85c97cb3127ULL;
170 static constexpr uint64_t k1 = 0xb492b66fbe98f273ULL;
171 static constexpr uint64_t k2 = 0x9ae16a3b2f90404fULL;
172 static constexpr uint64_t k3 = 0xc949d7c7509e6557ULL;
173
174 /// Bitwise right rotate.
175 /// Normally this will compile to a single instruction, especially if the
176 /// shift is a manifest constant.
rotate(uint64_t val,size_t shift)177 inline uint64_t rotate(uint64_t val, size_t shift) {
178 // Avoid shifting by 64: doing so yields an undefined result.
179 return shift == 0 ? val : ((val >> shift) | (val << (64 - shift)));
180 }
181
shift_mix(uint64_t val)182 inline uint64_t shift_mix(uint64_t val) {
183 return val ^ (val >> 47);
184 }
185
hash_16_bytes(uint64_t low,uint64_t high)186 inline uint64_t hash_16_bytes(uint64_t low, uint64_t high) {
187 // Murmur-inspired hashing.
188 const uint64_t kMul = 0x9ddfea08eb382d69ULL;
189 uint64_t a = (low ^ high) * kMul;
190 a ^= (a >> 47);
191 uint64_t b = (high ^ a) * kMul;
192 b ^= (b >> 47);
193 b *= kMul;
194 return b;
195 }
196
hash_1to3_bytes(const char * s,size_t len,uint64_t seed)197 inline uint64_t hash_1to3_bytes(const char *s, size_t len, uint64_t seed) {
198 uint8_t a = s[0];
199 uint8_t b = s[len >> 1];
200 uint8_t c = s[len - 1];
201 uint32_t y = static_cast<uint32_t>(a) + (static_cast<uint32_t>(b) << 8);
202 uint32_t z = static_cast<uint32_t>(len) + (static_cast<uint32_t>(c) << 2);
203 return shift_mix(y * k2 ^ z * k3 ^ seed) * k2;
204 }
205
hash_4to8_bytes(const char * s,size_t len,uint64_t seed)206 inline uint64_t hash_4to8_bytes(const char *s, size_t len, uint64_t seed) {
207 uint64_t a = fetch32(s);
208 return hash_16_bytes(len + (a << 3), seed ^ fetch32(s + len - 4));
209 }
210
hash_9to16_bytes(const char * s,size_t len,uint64_t seed)211 inline uint64_t hash_9to16_bytes(const char *s, size_t len, uint64_t seed) {
212 uint64_t a = fetch64(s);
213 uint64_t b = fetch64(s + len - 8);
214 return hash_16_bytes(seed ^ a, rotate(b + len, len)) ^ b;
215 }
216
hash_17to32_bytes(const char * s,size_t len,uint64_t seed)217 inline uint64_t hash_17to32_bytes(const char *s, size_t len, uint64_t seed) {
218 uint64_t a = fetch64(s) * k1;
219 uint64_t b = fetch64(s + 8);
220 uint64_t c = fetch64(s + len - 8) * k2;
221 uint64_t d = fetch64(s + len - 16) * k0;
222 return hash_16_bytes(rotate(a - b, 43) + rotate(c ^ seed, 30) + d,
223 a + rotate(b ^ k3, 20) - c + len + seed);
224 }
225
hash_33to64_bytes(const char * s,size_t len,uint64_t seed)226 inline uint64_t hash_33to64_bytes(const char *s, size_t len, uint64_t seed) {
227 uint64_t z = fetch64(s + 24);
228 uint64_t a = fetch64(s) + (len + fetch64(s + len - 16)) * k0;
229 uint64_t b = rotate(a + z, 52);
230 uint64_t c = rotate(a, 37);
231 a += fetch64(s + 8);
232 c += rotate(a, 7);
233 a += fetch64(s + 16);
234 uint64_t vf = a + z;
235 uint64_t vs = b + rotate(a, 31) + c;
236 a = fetch64(s + 16) + fetch64(s + len - 32);
237 z = fetch64(s + len - 8);
238 b = rotate(a + z, 52);
239 c = rotate(a, 37);
240 a += fetch64(s + len - 24);
241 c += rotate(a, 7);
242 a += fetch64(s + len - 16);
243 uint64_t wf = a + z;
244 uint64_t ws = b + rotate(a, 31) + c;
245 uint64_t r = shift_mix((vf + ws) * k2 + (wf + vs) * k0);
246 return shift_mix((seed ^ (r * k0)) + vs) * k2;
247 }
248
hash_short(const char * s,size_t length,uint64_t seed)249 inline uint64_t hash_short(const char *s, size_t length, uint64_t seed) {
250 if (length >= 4 && length <= 8)
251 return hash_4to8_bytes(s, length, seed);
252 if (length > 8 && length <= 16)
253 return hash_9to16_bytes(s, length, seed);
254 if (length > 16 && length <= 32)
255 return hash_17to32_bytes(s, length, seed);
256 if (length > 32)
257 return hash_33to64_bytes(s, length, seed);
258 if (length != 0)
259 return hash_1to3_bytes(s, length, seed);
260
261 return k2 ^ seed;
262 }
263
264 /// The intermediate state used during hashing.
265 /// Currently, the algorithm for computing hash codes is based on CityHash and
266 /// keeps 56 bytes of arbitrary state.
267 struct hash_state {
268 uint64_t h0 = 0, h1 = 0, h2 = 0, h3 = 0, h4 = 0, h5 = 0, h6 = 0;
269
270 /// Create a new hash_state structure and initialize it based on the
271 /// seed and the first 64-byte chunk.
272 /// This effectively performs the initial mix.
createhash_state273 static hash_state create(const char *s, uint64_t seed) {
274 hash_state state = {
275 0, seed, hash_16_bytes(seed, k1), rotate(seed ^ k1, 49),
276 seed * k1, shift_mix(seed), 0 };
277 state.h6 = hash_16_bytes(state.h4, state.h5);
278 state.mix(s);
279 return state;
280 }
281
282 /// Mix 32-bytes from the input sequence into the 16-bytes of 'a'
283 /// and 'b', including whatever is already in 'a' and 'b'.
mix_32_byteshash_state284 static void mix_32_bytes(const char *s, uint64_t &a, uint64_t &b) {
285 a += fetch64(s);
286 uint64_t c = fetch64(s + 24);
287 b = rotate(b + a + c, 21);
288 uint64_t d = a;
289 a += fetch64(s + 8) + fetch64(s + 16);
290 b += rotate(a, 44) + d;
291 a += c;
292 }
293
294 /// Mix in a 64-byte buffer of data.
295 /// We mix all 64 bytes even when the chunk length is smaller, but we
296 /// record the actual length.
mixhash_state297 void mix(const char *s) {
298 h0 = rotate(h0 + h1 + h3 + fetch64(s + 8), 37) * k1;
299 h1 = rotate(h1 + h4 + fetch64(s + 48), 42) * k1;
300 h0 ^= h6;
301 h1 += h3 + fetch64(s + 40);
302 h2 = rotate(h2 + h5, 33) * k1;
303 h3 = h4 * k1;
304 h4 = h0 + h5;
305 mix_32_bytes(s, h3, h4);
306 h5 = h2 + h6;
307 h6 = h1 + fetch64(s + 16);
308 mix_32_bytes(s + 32, h5, h6);
309 std::swap(h2, h0);
310 }
311
312 /// Compute the final 64-bit hash code value based on the current
313 /// state and the length of bytes hashed.
finalizehash_state314 uint64_t finalize(size_t length) {
315 return hash_16_bytes(hash_16_bytes(h3, h5) + shift_mix(h1) * k1 + h2,
316 hash_16_bytes(h4, h6) + shift_mix(length) * k1 + h0);
317 }
318 };
319
320
321 /// A global, fixed seed-override variable.
322 ///
323 /// This variable can be set using the \see llvm::set_fixed_execution_seed
324 /// function. See that function for details. Do not, under any circumstances,
325 /// set or read this variable.
326 extern uint64_t fixed_seed_override;
327
get_execution_seed()328 inline uint64_t get_execution_seed() {
329 // FIXME: This needs to be a per-execution seed. This is just a placeholder
330 // implementation. Switching to a per-execution seed is likely to flush out
331 // instability bugs and so will happen as its own commit.
332 //
333 // However, if there is a fixed seed override set the first time this is
334 // called, return that instead of the per-execution seed.
335 const uint64_t seed_prime = 0xff51afd7ed558ccdULL;
336 static uint64_t seed = fixed_seed_override ? fixed_seed_override : seed_prime;
337 return seed;
338 }
339
340
341 /// Trait to indicate whether a type's bits can be hashed directly.
342 ///
343 /// A type trait which is true if we want to combine values for hashing by
344 /// reading the underlying data. It is false if values of this type must
345 /// first be passed to hash_value, and the resulting hash_codes combined.
346 //
347 // FIXME: We want to replace is_integral_or_enum and is_pointer here with
348 // a predicate which asserts that comparing the underlying storage of two
349 // values of the type for equality is equivalent to comparing the two values
350 // for equality. For all the platforms we care about, this holds for integers
351 // and pointers, but there are platforms where it doesn't and we would like to
352 // support user-defined types which happen to satisfy this property.
353 template <typename T> struct is_hashable_data
354 : std::integral_constant<bool, ((is_integral_or_enum<T>::value ||
355 std::is_pointer<T>::value) &&
356 64 % sizeof(T) == 0)> {};
357
358 // Special case std::pair to detect when both types are viable and when there
359 // is no alignment-derived padding in the pair. This is a bit of a lie because
360 // std::pair isn't truly POD, but it's close enough in all reasonable
361 // implementations for our use case of hashing the underlying data.
362 template <typename T, typename U> struct is_hashable_data<std::pair<T, U> >
363 : std::integral_constant<bool, (is_hashable_data<T>::value &&
364 is_hashable_data<U>::value &&
365 (sizeof(T) + sizeof(U)) ==
366 sizeof(std::pair<T, U>))> {};
367
368 /// Helper to get the hashable data representation for a type.
369 /// This variant is enabled when the type itself can be used.
370 template <typename T>
371 std::enable_if_t<is_hashable_data<T>::value, T>
372 get_hashable_data(const T &value) {
373 return value;
374 }
375 /// Helper to get the hashable data representation for a type.
376 /// This variant is enabled when we must first call hash_value and use the
377 /// result as our data.
378 template <typename T>
379 std::enable_if_t<!is_hashable_data<T>::value, size_t>
380 get_hashable_data(const T &value) {
381 using ::llvm::hash_value;
382 return hash_value(value);
383 }
384
385 /// Helper to store data from a value into a buffer and advance the
386 /// pointer into that buffer.
387 ///
388 /// This routine first checks whether there is enough space in the provided
389 /// buffer, and if not immediately returns false. If there is space, it
390 /// copies the underlying bytes of value into the buffer, advances the
391 /// buffer_ptr past the copied bytes, and returns true.
392 template <typename T>
393 bool store_and_advance(char *&buffer_ptr, char *buffer_end, const T& value,
394 size_t offset = 0) {
395 size_t store_size = sizeof(value) - offset;
396 if (buffer_ptr + store_size > buffer_end)
397 return false;
398 const char *value_data = reinterpret_cast<const char *>(&value);
399 memcpy(buffer_ptr, value_data + offset, store_size);
400 buffer_ptr += store_size;
401 return true;
402 }
403
404 /// Implement the combining of integral values into a hash_code.
405 ///
406 /// This overload is selected when the value type of the iterator is
407 /// integral. Rather than computing a hash_code for each object and then
408 /// combining them, this (as an optimization) directly combines the integers.
409 template <typename InputIteratorT>
410 hash_code hash_combine_range_impl(InputIteratorT first, InputIteratorT last) {
411 const uint64_t seed = get_execution_seed();
412 char buffer[64], *buffer_ptr = buffer;
413 char *const buffer_end = std::end(buffer);
414 while (first != last && store_and_advance(buffer_ptr, buffer_end,
415 get_hashable_data(*first)))
416 ++first;
417 if (first == last)
418 return hash_short(buffer, buffer_ptr - buffer, seed);
419 assert(buffer_ptr == buffer_end);
420
421 hash_state state = state.create(buffer, seed);
422 size_t length = 64;
423 while (first != last) {
424 // Fill up the buffer. We don't clear it, which re-mixes the last round
425 // when only a partial 64-byte chunk is left.
426 buffer_ptr = buffer;
427 while (first != last && store_and_advance(buffer_ptr, buffer_end,
428 get_hashable_data(*first)))
429 ++first;
430
431 // Rotate the buffer if we did a partial fill in order to simulate doing
432 // a mix of the last 64-bytes. That is how the algorithm works when we
433 // have a contiguous byte sequence, and we want to emulate that here.
434 std::rotate(buffer, buffer_ptr, buffer_end);
435
436 // Mix this chunk into the current state.
437 state.mix(buffer);
438 length += buffer_ptr - buffer;
439 };
440
441 return state.finalize(length);
442 }
443
444 /// Implement the combining of integral values into a hash_code.
445 ///
446 /// This overload is selected when the value type of the iterator is integral
447 /// and when the input iterator is actually a pointer. Rather than computing
448 /// a hash_code for each object and then combining them, this (as an
449 /// optimization) directly combines the integers. Also, because the integers
450 /// are stored in contiguous memory, this routine avoids copying each value
451 /// and directly reads from the underlying memory.
452 template <typename ValueT>
453 std::enable_if_t<is_hashable_data<ValueT>::value, hash_code>
454 hash_combine_range_impl(ValueT *first, ValueT *last) {
455 const uint64_t seed = get_execution_seed();
456 const char *s_begin = reinterpret_cast<const char *>(first);
457 const char *s_end = reinterpret_cast<const char *>(last);
458 const size_t length = std::distance(s_begin, s_end);
459 if (length <= 64)
460 return hash_short(s_begin, length, seed);
461
462 const char *s_aligned_end = s_begin + (length & ~63);
463 hash_state state = state.create(s_begin, seed);
464 s_begin += 64;
465 while (s_begin != s_aligned_end) {
466 state.mix(s_begin);
467 s_begin += 64;
468 }
469 if (length & 63)
470 state.mix(s_end - 64);
471
472 return state.finalize(length);
473 }
474
475 } // namespace detail
476 } // namespace hashing
477
478
479 /// Compute a hash_code for a sequence of values.
480 ///
481 /// This hashes a sequence of values. It produces the same hash_code as
482 /// 'hash_combine(a, b, c, ...)', but can run over arbitrary sized sequences
483 /// and is significantly faster given pointers and types which can be hashed as
484 /// a sequence of bytes.
485 template <typename InputIteratorT>
486 hash_code hash_combine_range(InputIteratorT first, InputIteratorT last) {
487 return ::llvm::hashing::detail::hash_combine_range_impl(first, last);
488 }
489
490
491 // Implementation details for hash_combine.
492 namespace hashing {
493 namespace detail {
494
495 /// Helper class to manage the recursive combining of hash_combine
496 /// arguments.
497 ///
498 /// This class exists to manage the state and various calls involved in the
499 /// recursive combining of arguments used in hash_combine. It is particularly
500 /// useful at minimizing the code in the recursive calls to ease the pain
501 /// caused by a lack of variadic functions.
502 struct hash_combine_recursive_helper {
503 char buffer[64] = {};
504 hash_state state;
505 const uint64_t seed;
506
507 public:
508 /// Construct a recursive hash combining helper.
509 ///
510 /// This sets up the state for a recursive hash combine, including getting
511 /// the seed and buffer setup.
512 hash_combine_recursive_helper()
513 : seed(get_execution_seed()) {}
514
515 /// Combine one chunk of data into the current in-flight hash.
516 ///
517 /// This merges one chunk of data into the hash. First it tries to buffer
518 /// the data. If the buffer is full, it hashes the buffer into its
519 /// hash_state, empties it, and then merges the new chunk in. This also
520 /// handles cases where the data straddles the end of the buffer.
521 template <typename T>
522 char *combine_data(size_t &length, char *buffer_ptr, char *buffer_end, T data) {
523 if (!store_and_advance(buffer_ptr, buffer_end, data)) {
524 // Check for skew which prevents the buffer from being packed, and do
525 // a partial store into the buffer to fill it. This is only a concern
526 // with the variadic combine because that formation can have varying
527 // argument types.
528 size_t partial_store_size = buffer_end - buffer_ptr;
529 memcpy(buffer_ptr, &data, partial_store_size);
530
531 // If the store fails, our buffer is full and ready to hash. We have to
532 // either initialize the hash state (on the first full buffer) or mix
533 // this buffer into the existing hash state. Length tracks the *hashed*
534 // length, not the buffered length.
535 if (length == 0) {
536 state = state.create(buffer, seed);
537 length = 64;
538 } else {
539 // Mix this chunk into the current state and bump length up by 64.
540 state.mix(buffer);
541 length += 64;
542 }
543 // Reset the buffer_ptr to the head of the buffer for the next chunk of
544 // data.
545 buffer_ptr = buffer;
546
547 // Try again to store into the buffer -- this cannot fail as we only
548 // store types smaller than the buffer.
549 if (!store_and_advance(buffer_ptr, buffer_end, data,
550 partial_store_size))
551 llvm_unreachable("buffer smaller than stored type");
552 }
553 return buffer_ptr;
554 }
555
556 /// Recursive, variadic combining method.
557 ///
558 /// This function recurses through each argument, combining that argument
559 /// into a single hash.
560 template <typename T, typename ...Ts>
561 hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
562 const T &arg, const Ts &...args) {
563 buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg));
564
565 // Recurse to the next argument.
566 return combine(length, buffer_ptr, buffer_end, args...);
567 }
568
569 /// Base case for recursive, variadic combining.
570 ///
571 /// The base case when combining arguments recursively is reached when all
572 /// arguments have been handled. It flushes the remaining buffer and
573 /// constructs a hash_code.
574 hash_code combine(size_t length, char *buffer_ptr, char *buffer_end) {
575 // Check whether the entire set of values fit in the buffer. If so, we'll
576 // use the optimized short hashing routine and skip state entirely.
577 if (length == 0)
578 return hash_short(buffer, buffer_ptr - buffer, seed);
579
580 // Mix the final buffer, rotating it if we did a partial fill in order to
581 // simulate doing a mix of the last 64-bytes. That is how the algorithm
582 // works when we have a contiguous byte sequence, and we want to emulate
583 // that here.
584 std::rotate(buffer, buffer_ptr, buffer_end);
585
586 // Mix this chunk into the current state.
587 state.mix(buffer);
588 length += buffer_ptr - buffer;
589
590 return state.finalize(length);
591 }
592 };
593
594 } // namespace detail
595 } // namespace hashing
596
597 /// Combine values into a single hash_code.
598 ///
599 /// This routine accepts a varying number of arguments of any type. It will
600 /// attempt to combine them into a single hash_code. For user-defined types it
601 /// attempts to call a \see hash_value overload (via ADL) for the type. For
602 /// integer and pointer types it directly combines their data into the
603 /// resulting hash_code.
604 ///
605 /// The result is suitable for returning from a user's hash_value
606 /// *implementation* for their user-defined type. Consumers of a type should
607 /// *not* call this routine, they should instead call 'hash_value'.
608 template <typename ...Ts> hash_code hash_combine(const Ts &...args) {
609 // Recursively hash each argument using a helper class.
610 ::llvm::hashing::detail::hash_combine_recursive_helper helper;
611 return helper.combine(0, helper.buffer, helper.buffer + 64, args...);
612 }
613
614 // Implementation details for implementations of hash_value overloads provided
615 // here.
616 namespace hashing {
617 namespace detail {
618
619 /// Helper to hash the value of a single integer.
620 ///
621 /// Overloads for smaller integer types are not provided to ensure consistent
622 /// behavior in the presence of integral promotions. Essentially,
623 /// "hash_value('4')" and "hash_value('0' + 4)" should be the same.
624 inline hash_code hash_integer_value(uint64_t value) {
625 // Similar to hash_4to8_bytes but using a seed instead of length.
626 const uint64_t seed = get_execution_seed();
627 const char *s = reinterpret_cast<const char *>(&value);
628 const uint64_t a = fetch32(s);
629 return hash_16_bytes(seed + (a << 3), fetch32(s + 4));
630 }
631
632 } // namespace detail
633 } // namespace hashing
634
635 // Declared and documented above, but defined here so that any of the hashing
636 // infrastructure is available.
637 template <typename T>
638 std::enable_if_t<is_integral_or_enum<T>::value, hash_code> hash_value(T value) {
639 return ::llvm::hashing::detail::hash_integer_value(
640 static_cast<uint64_t>(value));
641 }
642
643 // Declared and documented above, but defined here so that any of the hashing
644 // infrastructure is available.
645 template <typename T> hash_code hash_value(const T *ptr) {
646 return ::llvm::hashing::detail::hash_integer_value(
647 reinterpret_cast<uintptr_t>(ptr));
648 }
649
650 // Declared and documented above, but defined here so that any of the hashing
651 // infrastructure is available.
652 template <typename T, typename U>
653 hash_code hash_value(const std::pair<T, U> &arg) {
654 return hash_combine(arg.first, arg.second);
655 }
656
657 template <typename... Ts> hash_code hash_value(const std::tuple<Ts...> &arg) {
658 return std::apply([](const auto &...xs) { return hash_combine(xs...); }, arg);
659 }
660
661 // Declared and documented above, but defined here so that any of the hashing
662 // infrastructure is available.
663 template <typename T>
664 hash_code hash_value(const std::basic_string<T> &arg) {
665 return hash_combine_range(arg.begin(), arg.end());
666 }
667
668 template <typename T> hash_code hash_value(const std::optional<T> &arg) {
669 return arg ? hash_combine(true, *arg) : hash_value(false);
670 }
671
672 template <> struct DenseMapInfo<hash_code, void> {
673 static inline hash_code getEmptyKey() { return hash_code(-1); }
674 static inline hash_code getTombstoneKey() { return hash_code(-2); }
675 static unsigned getHashValue(hash_code val) { return val; }
676 static bool isEqual(hash_code LHS, hash_code RHS) { return LHS == RHS; }
677 };
678
679 } // namespace llvm
680
681 #endif
682