xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/CodeGen/VirtRegMap.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the VirtRegMap class.
10 //
11 // It also contains implementations of the Spiller interface, which, given a
12 // virtual register map and a machine function, eliminates all virtual
13 // references by replacing them with physical register references - adding spill
14 // code as necessary.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/CodeGen/VirtRegMap.h"
19 #include "LiveDebugVariables.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/LiveInterval.h"
23 #include "llvm/CodeGen/LiveIntervals.h"
24 #include "llvm/CodeGen/LiveStacks.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineFunctionPass.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/SlotIndexes.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetOpcodes.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/CodeGen/TargetSubtargetInfo.h"
37 #include "llvm/Config/llvm-config.h"
38 #include "llvm/MC/LaneBitmask.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <cassert>
44 #include <iterator>
45 #include <utility>
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "regalloc"
50 
51 STATISTIC(NumSpillSlots, "Number of spill slots allocated");
52 STATISTIC(NumIdCopies,   "Number of identity moves eliminated after rewriting");
53 
54 //===----------------------------------------------------------------------===//
55 //  VirtRegMap implementation
56 //===----------------------------------------------------------------------===//
57 
58 char VirtRegMap::ID = 0;
59 
60 INITIALIZE_PASS(VirtRegMap, "virtregmap", "Virtual Register Map", false, false)
61 
runOnMachineFunction(MachineFunction & mf)62 bool VirtRegMap::runOnMachineFunction(MachineFunction &mf) {
63   MRI = &mf.getRegInfo();
64   TII = mf.getSubtarget().getInstrInfo();
65   TRI = mf.getSubtarget().getRegisterInfo();
66   MF = &mf;
67 
68   Virt2PhysMap.clear();
69   Virt2StackSlotMap.clear();
70   Virt2SplitMap.clear();
71   Virt2ShapeMap.clear();
72 
73   grow();
74   return false;
75 }
76 
grow()77 void VirtRegMap::grow() {
78   unsigned NumRegs = MF->getRegInfo().getNumVirtRegs();
79   Virt2PhysMap.resize(NumRegs);
80   Virt2StackSlotMap.resize(NumRegs);
81   Virt2SplitMap.resize(NumRegs);
82 }
83 
assignVirt2Phys(Register virtReg,MCPhysReg physReg)84 void VirtRegMap::assignVirt2Phys(Register virtReg, MCPhysReg physReg) {
85   assert(virtReg.isVirtual() && Register::isPhysicalRegister(physReg));
86   assert(Virt2PhysMap[virtReg.id()] == NO_PHYS_REG &&
87          "attempt to assign physical register to already mapped "
88          "virtual register");
89   assert(!getRegInfo().isReserved(physReg) &&
90          "Attempt to map virtReg to a reserved physReg");
91   Virt2PhysMap[virtReg.id()] = physReg;
92 }
93 
createSpillSlot(const TargetRegisterClass * RC)94 unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) {
95   unsigned Size = TRI->getSpillSize(*RC);
96   Align Alignment = TRI->getSpillAlign(*RC);
97   int SS = MF->getFrameInfo().CreateSpillStackObject(Size, Alignment);
98   ++NumSpillSlots;
99   return SS;
100 }
101 
hasPreferredPhys(Register VirtReg) const102 bool VirtRegMap::hasPreferredPhys(Register VirtReg) const {
103   Register Hint = MRI->getSimpleHint(VirtReg);
104   if (!Hint.isValid())
105     return false;
106   if (Hint.isVirtual())
107     Hint = getPhys(Hint);
108   return Register(getPhys(VirtReg)) == Hint;
109 }
110 
hasKnownPreference(Register VirtReg) const111 bool VirtRegMap::hasKnownPreference(Register VirtReg) const {
112   std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(VirtReg);
113   if (Register::isPhysicalRegister(Hint.second))
114     return true;
115   if (Register::isVirtualRegister(Hint.second))
116     return hasPhys(Hint.second);
117   return false;
118 }
119 
assignVirt2StackSlot(Register virtReg)120 int VirtRegMap::assignVirt2StackSlot(Register virtReg) {
121   assert(virtReg.isVirtual());
122   assert(Virt2StackSlotMap[virtReg.id()] == NO_STACK_SLOT &&
123          "attempt to assign stack slot to already spilled register");
124   const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg);
125   return Virt2StackSlotMap[virtReg.id()] = createSpillSlot(RC);
126 }
127 
assignVirt2StackSlot(Register virtReg,int SS)128 void VirtRegMap::assignVirt2StackSlot(Register virtReg, int SS) {
129   assert(virtReg.isVirtual());
130   assert(Virt2StackSlotMap[virtReg.id()] == NO_STACK_SLOT &&
131          "attempt to assign stack slot to already spilled register");
132   assert((SS >= 0 ||
133           (SS >= MF->getFrameInfo().getObjectIndexBegin())) &&
134          "illegal fixed frame index");
135   Virt2StackSlotMap[virtReg.id()] = SS;
136 }
137 
print(raw_ostream & OS,const Module *) const138 void VirtRegMap::print(raw_ostream &OS, const Module*) const {
139   OS << "********** REGISTER MAP **********\n";
140   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
141     unsigned Reg = Register::index2VirtReg(i);
142     if (Virt2PhysMap[Reg] != (unsigned)VirtRegMap::NO_PHYS_REG) {
143       OS << '[' << printReg(Reg, TRI) << " -> "
144          << printReg(Virt2PhysMap[Reg], TRI) << "] "
145          << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
146     }
147   }
148 
149   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
150     unsigned Reg = Register::index2VirtReg(i);
151     if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) {
152       OS << '[' << printReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg]
153          << "] " << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
154     }
155   }
156   OS << '\n';
157 }
158 
159 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const160 LLVM_DUMP_METHOD void VirtRegMap::dump() const {
161   print(dbgs());
162 }
163 #endif
164 
165 //===----------------------------------------------------------------------===//
166 //                              VirtRegRewriter
167 //===----------------------------------------------------------------------===//
168 //
169 // The VirtRegRewriter is the last of the register allocator passes.
170 // It rewrites virtual registers to physical registers as specified in the
171 // VirtRegMap analysis. It also updates live-in information on basic blocks
172 // according to LiveIntervals.
173 //
174 namespace {
175 
176 class VirtRegRewriter : public MachineFunctionPass {
177   MachineFunction *MF;
178   const TargetRegisterInfo *TRI;
179   const TargetInstrInfo *TII;
180   MachineRegisterInfo *MRI;
181   SlotIndexes *Indexes;
182   LiveIntervals *LIS;
183   VirtRegMap *VRM;
184   DenseSet<Register> RewriteRegs;
185   bool ClearVirtRegs;
186 
187   void rewrite();
188   void addMBBLiveIns();
189   bool readsUndefSubreg(const MachineOperand &MO) const;
190   void addLiveInsForSubRanges(const LiveInterval &LI, MCRegister PhysReg) const;
191   void handleIdentityCopy(MachineInstr &MI);
192   void expandCopyBundle(MachineInstr &MI) const;
193   bool subRegLiveThrough(const MachineInstr &MI, MCRegister SuperPhysReg) const;
194 
195 public:
196   static char ID;
VirtRegRewriter(bool ClearVirtRegs_=true)197   VirtRegRewriter(bool ClearVirtRegs_ = true) :
198     MachineFunctionPass(ID),
199     ClearVirtRegs(ClearVirtRegs_) {}
200 
201   void getAnalysisUsage(AnalysisUsage &AU) const override;
202 
203   bool runOnMachineFunction(MachineFunction&) override;
204 
getSetProperties() const205   MachineFunctionProperties getSetProperties() const override {
206     if (ClearVirtRegs) {
207       return MachineFunctionProperties().set(
208         MachineFunctionProperties::Property::NoVRegs);
209     }
210 
211     return MachineFunctionProperties();
212   }
213 };
214 
215 } // end anonymous namespace
216 
217 char VirtRegRewriter::ID = 0;
218 
219 char &llvm::VirtRegRewriterID = VirtRegRewriter::ID;
220 
221 INITIALIZE_PASS_BEGIN(VirtRegRewriter, "virtregrewriter",
222                       "Virtual Register Rewriter", false, false)
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)223 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
224 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
225 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
226 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
227 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
228 INITIALIZE_PASS_END(VirtRegRewriter, "virtregrewriter",
229                     "Virtual Register Rewriter", false, false)
230 
231 void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const {
232   AU.setPreservesCFG();
233   AU.addRequired<LiveIntervals>();
234   AU.addPreserved<LiveIntervals>();
235   AU.addRequired<SlotIndexes>();
236   AU.addPreserved<SlotIndexes>();
237   AU.addRequired<LiveDebugVariables>();
238   AU.addRequired<LiveStacks>();
239   AU.addPreserved<LiveStacks>();
240   AU.addRequired<VirtRegMap>();
241   MachineFunctionPass::getAnalysisUsage(AU);
242 }
243 
runOnMachineFunction(MachineFunction & fn)244 bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) {
245   MF = &fn;
246   TRI = MF->getSubtarget().getRegisterInfo();
247   TII = MF->getSubtarget().getInstrInfo();
248   MRI = &MF->getRegInfo();
249   Indexes = &getAnalysis<SlotIndexes>();
250   LIS = &getAnalysis<LiveIntervals>();
251   VRM = &getAnalysis<VirtRegMap>();
252   LLVM_DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n"
253                     << "********** Function: " << MF->getName() << '\n');
254   LLVM_DEBUG(VRM->dump());
255 
256   // Add kill flags while we still have virtual registers.
257   LIS->addKillFlags(VRM);
258 
259   // Live-in lists on basic blocks are required for physregs.
260   addMBBLiveIns();
261 
262   // Rewrite virtual registers.
263   rewrite();
264 
265   // Write out new DBG_VALUE instructions.
266   getAnalysis<LiveDebugVariables>().emitDebugValues(VRM);
267 
268   if (ClearVirtRegs) {
269     // All machine operands and other references to virtual registers have been
270     // replaced. Remove the virtual registers and release all the transient data.
271     VRM->clearAllVirt();
272     MRI->clearVirtRegs();
273   }
274 
275   return true;
276 }
277 
addLiveInsForSubRanges(const LiveInterval & LI,MCRegister PhysReg) const278 void VirtRegRewriter::addLiveInsForSubRanges(const LiveInterval &LI,
279                                              MCRegister PhysReg) const {
280   assert(!LI.empty());
281   assert(LI.hasSubRanges());
282 
283   using SubRangeIteratorPair =
284       std::pair<const LiveInterval::SubRange *, LiveInterval::const_iterator>;
285 
286   SmallVector<SubRangeIteratorPair, 4> SubRanges;
287   SlotIndex First;
288   SlotIndex Last;
289   for (const LiveInterval::SubRange &SR : LI.subranges()) {
290     SubRanges.push_back(std::make_pair(&SR, SR.begin()));
291     if (!First.isValid() || SR.segments.front().start < First)
292       First = SR.segments.front().start;
293     if (!Last.isValid() || SR.segments.back().end > Last)
294       Last = SR.segments.back().end;
295   }
296 
297   // Check all mbb start positions between First and Last while
298   // simulatenously advancing an iterator for each subrange.
299   for (SlotIndexes::MBBIndexIterator MBBI = Indexes->findMBBIndex(First);
300        MBBI != Indexes->MBBIndexEnd() && MBBI->first <= Last; ++MBBI) {
301     SlotIndex MBBBegin = MBBI->first;
302     // Advance all subrange iterators so that their end position is just
303     // behind MBBBegin (or the iterator is at the end).
304     LaneBitmask LaneMask;
305     for (auto &RangeIterPair : SubRanges) {
306       const LiveInterval::SubRange *SR = RangeIterPair.first;
307       LiveInterval::const_iterator &SRI = RangeIterPair.second;
308       while (SRI != SR->end() && SRI->end <= MBBBegin)
309         ++SRI;
310       if (SRI == SR->end())
311         continue;
312       if (SRI->start <= MBBBegin)
313         LaneMask |= SR->LaneMask;
314     }
315     if (LaneMask.none())
316       continue;
317     MachineBasicBlock *MBB = MBBI->second;
318     MBB->addLiveIn(PhysReg, LaneMask);
319   }
320 }
321 
322 // Compute MBB live-in lists from virtual register live ranges and their
323 // assignments.
addMBBLiveIns()324 void VirtRegRewriter::addMBBLiveIns() {
325   for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) {
326     Register VirtReg = Register::index2VirtReg(Idx);
327     if (MRI->reg_nodbg_empty(VirtReg))
328       continue;
329     LiveInterval &LI = LIS->getInterval(VirtReg);
330     if (LI.empty() || LIS->intervalIsInOneMBB(LI))
331       continue;
332     // This is a virtual register that is live across basic blocks. Its
333     // assigned PhysReg must be marked as live-in to those blocks.
334     Register PhysReg = VRM->getPhys(VirtReg);
335     if (PhysReg == VirtRegMap::NO_PHYS_REG) {
336       // There may be no physical register assigned if only some register
337       // classes were already allocated.
338       assert(!ClearVirtRegs && "Unmapped virtual register");
339       continue;
340     }
341 
342     if (LI.hasSubRanges()) {
343       addLiveInsForSubRanges(LI, PhysReg);
344     } else {
345       // Go over MBB begin positions and see if we have segments covering them.
346       // The following works because segments and the MBBIndex list are both
347       // sorted by slot indexes.
348       SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin();
349       for (const auto &Seg : LI) {
350         I = Indexes->advanceMBBIndex(I, Seg.start);
351         for (; I != Indexes->MBBIndexEnd() && I->first < Seg.end; ++I) {
352           MachineBasicBlock *MBB = I->second;
353           MBB->addLiveIn(PhysReg);
354         }
355       }
356     }
357   }
358 
359   // Sort and unique MBB LiveIns as we've not checked if SubReg/PhysReg were in
360   // each MBB's LiveIns set before calling addLiveIn on them.
361   for (MachineBasicBlock &MBB : *MF)
362     MBB.sortUniqueLiveIns();
363 }
364 
365 /// Returns true if the given machine operand \p MO only reads undefined lanes.
366 /// The function only works for use operands with a subregister set.
readsUndefSubreg(const MachineOperand & MO) const367 bool VirtRegRewriter::readsUndefSubreg(const MachineOperand &MO) const {
368   // Shortcut if the operand is already marked undef.
369   if (MO.isUndef())
370     return true;
371 
372   Register Reg = MO.getReg();
373   const LiveInterval &LI = LIS->getInterval(Reg);
374   const MachineInstr &MI = *MO.getParent();
375   SlotIndex BaseIndex = LIS->getInstructionIndex(MI);
376   // This code is only meant to handle reading undefined subregisters which
377   // we couldn't properly detect before.
378   assert(LI.liveAt(BaseIndex) &&
379          "Reads of completely dead register should be marked undef already");
380   unsigned SubRegIdx = MO.getSubReg();
381   assert(SubRegIdx != 0 && LI.hasSubRanges());
382   LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(SubRegIdx);
383   // See if any of the relevant subregister liveranges is defined at this point.
384   for (const LiveInterval::SubRange &SR : LI.subranges()) {
385     if ((SR.LaneMask & UseMask).any() && SR.liveAt(BaseIndex))
386       return false;
387   }
388   return true;
389 }
390 
handleIdentityCopy(MachineInstr & MI)391 void VirtRegRewriter::handleIdentityCopy(MachineInstr &MI) {
392   if (!MI.isIdentityCopy())
393     return;
394   LLVM_DEBUG(dbgs() << "Identity copy: " << MI);
395   ++NumIdCopies;
396 
397   Register DstReg = MI.getOperand(0).getReg();
398 
399   // We may have deferred allocation of the virtual register, and the rewrite
400   // regs code doesn't handle the liveness update.
401   if (DstReg.isVirtual())
402     return;
403 
404   RewriteRegs.insert(DstReg);
405 
406   // Copies like:
407   //    %r0 = COPY undef %r0
408   //    %al = COPY %al, implicit-def %eax
409   // give us additional liveness information: The target (super-)register
410   // must not be valid before this point. Replace the COPY with a KILL
411   // instruction to maintain this information.
412   if (MI.getOperand(1).isUndef() || MI.getNumOperands() > 2) {
413     MI.setDesc(TII->get(TargetOpcode::KILL));
414     LLVM_DEBUG(dbgs() << "  replace by: " << MI);
415     return;
416   }
417 
418   if (Indexes)
419     Indexes->removeSingleMachineInstrFromMaps(MI);
420   MI.eraseFromBundle();
421   LLVM_DEBUG(dbgs() << "  deleted.\n");
422 }
423 
424 /// The liverange splitting logic sometimes produces bundles of copies when
425 /// subregisters are involved. Expand these into a sequence of copy instructions
426 /// after processing the last in the bundle. Does not update LiveIntervals
427 /// which we shouldn't need for this instruction anymore.
expandCopyBundle(MachineInstr & MI) const428 void VirtRegRewriter::expandCopyBundle(MachineInstr &MI) const {
429   if (!MI.isCopy() && !MI.isKill())
430     return;
431 
432   if (MI.isBundledWithPred() && !MI.isBundledWithSucc()) {
433     SmallVector<MachineInstr *, 2> MIs({&MI});
434 
435     // Only do this when the complete bundle is made out of COPYs and KILLs.
436     MachineBasicBlock &MBB = *MI.getParent();
437     for (MachineBasicBlock::reverse_instr_iterator I =
438          std::next(MI.getReverseIterator()), E = MBB.instr_rend();
439          I != E && I->isBundledWithSucc(); ++I) {
440       if (!I->isCopy() && !I->isKill())
441         return;
442       MIs.push_back(&*I);
443     }
444     MachineInstr *FirstMI = MIs.back();
445 
446     auto anyRegsAlias = [](const MachineInstr *Dst,
447                            ArrayRef<MachineInstr *> Srcs,
448                            const TargetRegisterInfo *TRI) {
449       for (const MachineInstr *Src : Srcs)
450         if (Src != Dst)
451           if (TRI->regsOverlap(Dst->getOperand(0).getReg(),
452                                Src->getOperand(1).getReg()))
453             return true;
454       return false;
455     };
456 
457     // If any of the destination registers in the bundle of copies alias any of
458     // the source registers, try to schedule the instructions to avoid any
459     // clobbering.
460     for (int E = MIs.size(), PrevE = E; E > 1; PrevE = E) {
461       for (int I = E; I--; )
462         if (!anyRegsAlias(MIs[I], makeArrayRef(MIs).take_front(E), TRI)) {
463           if (I + 1 != E)
464             std::swap(MIs[I], MIs[E - 1]);
465           --E;
466         }
467       if (PrevE == E) {
468         MF->getFunction().getContext().emitError(
469             "register rewriting failed: cycle in copy bundle");
470         break;
471       }
472     }
473 
474     MachineInstr *BundleStart = FirstMI;
475     for (MachineInstr *BundledMI : llvm::reverse(MIs)) {
476       // If instruction is in the middle of the bundle, move it before the
477       // bundle starts, otherwise, just unbundle it. When we get to the last
478       // instruction, the bundle will have been completely undone.
479       if (BundledMI != BundleStart) {
480         BundledMI->removeFromBundle();
481         MBB.insert(BundleStart, BundledMI);
482       } else if (BundledMI->isBundledWithSucc()) {
483         BundledMI->unbundleFromSucc();
484         BundleStart = &*std::next(BundledMI->getIterator());
485       }
486 
487       if (Indexes && BundledMI != FirstMI)
488         Indexes->insertMachineInstrInMaps(*BundledMI);
489     }
490   }
491 }
492 
493 /// Check whether (part of) \p SuperPhysReg is live through \p MI.
494 /// \pre \p MI defines a subregister of a virtual register that
495 /// has been assigned to \p SuperPhysReg.
subRegLiveThrough(const MachineInstr & MI,MCRegister SuperPhysReg) const496 bool VirtRegRewriter::subRegLiveThrough(const MachineInstr &MI,
497                                         MCRegister SuperPhysReg) const {
498   SlotIndex MIIndex = LIS->getInstructionIndex(MI);
499   SlotIndex BeforeMIUses = MIIndex.getBaseIndex();
500   SlotIndex AfterMIDefs = MIIndex.getBoundaryIndex();
501   for (MCRegUnitIterator Unit(SuperPhysReg, TRI); Unit.isValid(); ++Unit) {
502     const LiveRange &UnitRange = LIS->getRegUnit(*Unit);
503     // If the regunit is live both before and after MI,
504     // we assume it is live through.
505     // Generally speaking, this is not true, because something like
506     // "RU = op RU" would match that description.
507     // However, we know that we are trying to assess whether
508     // a def of a virtual reg, vreg, is live at the same time of RU.
509     // If we are in the "RU = op RU" situation, that means that vreg
510     // is defined at the same time as RU (i.e., "vreg, RU = op RU").
511     // Thus, vreg and RU interferes and vreg cannot be assigned to
512     // SuperPhysReg. Therefore, this situation cannot happen.
513     if (UnitRange.liveAt(AfterMIDefs) && UnitRange.liveAt(BeforeMIUses))
514       return true;
515   }
516   return false;
517 }
518 
rewrite()519 void VirtRegRewriter::rewrite() {
520   bool NoSubRegLiveness = !MRI->subRegLivenessEnabled();
521   SmallVector<Register, 8> SuperDeads;
522   SmallVector<Register, 8> SuperDefs;
523   SmallVector<Register, 8> SuperKills;
524 
525   for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
526        MBBI != MBBE; ++MBBI) {
527     LLVM_DEBUG(MBBI->print(dbgs(), Indexes));
528     for (MachineBasicBlock::instr_iterator
529            MII = MBBI->instr_begin(), MIE = MBBI->instr_end(); MII != MIE;) {
530       MachineInstr *MI = &*MII;
531       ++MII;
532 
533       for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
534            MOE = MI->operands_end(); MOI != MOE; ++MOI) {
535         MachineOperand &MO = *MOI;
536 
537         // Make sure MRI knows about registers clobbered by regmasks.
538         if (MO.isRegMask())
539           MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
540 
541         if (!MO.isReg() || !MO.getReg().isVirtual())
542           continue;
543         Register VirtReg = MO.getReg();
544         MCRegister PhysReg = VRM->getPhys(VirtReg);
545         if (PhysReg == VirtRegMap::NO_PHYS_REG)
546           continue;
547 
548         assert(Register(PhysReg).isPhysical());
549 
550         RewriteRegs.insert(PhysReg);
551         assert(!MRI->isReserved(PhysReg) && "Reserved register assignment");
552 
553         // Preserve semantics of sub-register operands.
554         unsigned SubReg = MO.getSubReg();
555         if (SubReg != 0) {
556           if (NoSubRegLiveness || !MRI->shouldTrackSubRegLiveness(VirtReg)) {
557             // A virtual register kill refers to the whole register, so we may
558             // have to add implicit killed operands for the super-register.  A
559             // partial redef always kills and redefines the super-register.
560             if ((MO.readsReg() && (MO.isDef() || MO.isKill())) ||
561                 (MO.isDef() && subRegLiveThrough(*MI, PhysReg)))
562               SuperKills.push_back(PhysReg);
563 
564             if (MO.isDef()) {
565               // Also add implicit defs for the super-register.
566               if (MO.isDead())
567                 SuperDeads.push_back(PhysReg);
568               else
569                 SuperDefs.push_back(PhysReg);
570             }
571           } else {
572             if (MO.isUse()) {
573               if (readsUndefSubreg(MO))
574                 // We need to add an <undef> flag if the subregister is
575                 // completely undefined (and we are not adding super-register
576                 // defs).
577                 MO.setIsUndef(true);
578             } else if (!MO.isDead()) {
579               assert(MO.isDef());
580             }
581           }
582 
583           // The def undef and def internal flags only make sense for
584           // sub-register defs, and we are substituting a full physreg.  An
585           // implicit killed operand from the SuperKills list will represent the
586           // partial read of the super-register.
587           if (MO.isDef()) {
588             MO.setIsUndef(false);
589             MO.setIsInternalRead(false);
590           }
591 
592           // PhysReg operands cannot have subregister indexes.
593           PhysReg = TRI->getSubReg(PhysReg, SubReg);
594           assert(PhysReg.isValid() && "Invalid SubReg for physical register");
595           MO.setSubReg(0);
596         }
597         // Rewrite. Note we could have used MachineOperand::substPhysReg(), but
598         // we need the inlining here.
599         MO.setReg(PhysReg);
600         MO.setIsRenamable(true);
601       }
602 
603       // Add any missing super-register kills after rewriting the whole
604       // instruction.
605       while (!SuperKills.empty())
606         MI->addRegisterKilled(SuperKills.pop_back_val(), TRI, true);
607 
608       while (!SuperDeads.empty())
609         MI->addRegisterDead(SuperDeads.pop_back_val(), TRI, true);
610 
611       while (!SuperDefs.empty())
612         MI->addRegisterDefined(SuperDefs.pop_back_val(), TRI);
613 
614       LLVM_DEBUG(dbgs() << "> " << *MI);
615 
616       expandCopyBundle(*MI);
617 
618       // We can remove identity copies right now.
619       handleIdentityCopy(*MI);
620     }
621   }
622 
623   if (LIS) {
624     // Don't bother maintaining accurate LiveIntervals for registers which were
625     // already allocated.
626     for (Register PhysReg : RewriteRegs) {
627       for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid();
628            ++Units) {
629         LIS->removeRegUnit(*Units);
630       }
631     }
632   }
633 
634   RewriteRegs.clear();
635 }
636 
createVirtRegRewriter(bool ClearVirtRegs)637 FunctionPass *llvm::createVirtRegRewriter(bool ClearVirtRegs) {
638   return new VirtRegRewriter(ClearVirtRegs);
639 }
640