xref: /netbsd-src/sys/external/bsd/drm2/dist/drm/nouveau/nvkm/subdev/ltc/nouveau_nvkm_subdev_ltc_gf100.c (revision 41ec02673d281bbb3d38e6c78504ce6e30c228c1)
1 /*	$NetBSD: nouveau_nvkm_subdev_ltc_gf100.c,v 1.4 2021/12/18 23:45:40 riastradh Exp $	*/
2 
3 /*
4  * Copyright 2012 Red Hat Inc.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Ben Skeggs
25  */
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: nouveau_nvkm_subdev_ltc_gf100.c,v 1.4 2021/12/18 23:45:40 riastradh Exp $");
28 
29 #include "priv.h"
30 
31 #include <core/memory.h>
32 #include <subdev/fb.h>
33 #include <subdev/timer.h>
34 
35 void
gf100_ltc_cbc_clear(struct nvkm_ltc * ltc,u32 start,u32 limit)36 gf100_ltc_cbc_clear(struct nvkm_ltc *ltc, u32 start, u32 limit)
37 {
38 	struct nvkm_device *device = ltc->subdev.device;
39 	nvkm_wr32(device, 0x17e8cc, start);
40 	nvkm_wr32(device, 0x17e8d0, limit);
41 	nvkm_wr32(device, 0x17e8c8, 0x00000004);
42 }
43 
44 void
gf100_ltc_cbc_wait(struct nvkm_ltc * ltc)45 gf100_ltc_cbc_wait(struct nvkm_ltc *ltc)
46 {
47 	struct nvkm_device *device = ltc->subdev.device;
48 	int c, s;
49 	for (c = 0; c < ltc->ltc_nr; c++) {
50 		for (s = 0; s < ltc->lts_nr; s++) {
51 			const u32 addr = 0x1410c8 + (c * 0x2000) + (s * 0x400);
52 			nvkm_msec(device, 2000,
53 				if (!nvkm_rd32(device, addr))
54 					break;
55 			);
56 		}
57 	}
58 }
59 
60 void
gf100_ltc_zbc_clear_color(struct nvkm_ltc * ltc,int i,const u32 color[4])61 gf100_ltc_zbc_clear_color(struct nvkm_ltc *ltc, int i, const u32 color[4])
62 {
63 	struct nvkm_device *device = ltc->subdev.device;
64 	nvkm_mask(device, 0x17ea44, 0x0000000f, i);
65 	nvkm_wr32(device, 0x17ea48, color[0]);
66 	nvkm_wr32(device, 0x17ea4c, color[1]);
67 	nvkm_wr32(device, 0x17ea50, color[2]);
68 	nvkm_wr32(device, 0x17ea54, color[3]);
69 }
70 
71 void
gf100_ltc_zbc_clear_depth(struct nvkm_ltc * ltc,int i,const u32 depth)72 gf100_ltc_zbc_clear_depth(struct nvkm_ltc *ltc, int i, const u32 depth)
73 {
74 	struct nvkm_device *device = ltc->subdev.device;
75 	nvkm_mask(device, 0x17ea44, 0x0000000f, i);
76 	nvkm_wr32(device, 0x17ea58, depth);
77 }
78 
79 const struct nvkm_bitfield
80 gf100_ltc_lts_intr_name[] = {
81 	{ 0x00000001, "IDLE_ERROR_IQ" },
82 	{ 0x00000002, "IDLE_ERROR_CBC" },
83 	{ 0x00000004, "IDLE_ERROR_TSTG" },
84 	{ 0x00000008, "IDLE_ERROR_DSTG" },
85 	{ 0x00000010, "EVICTED_CB" },
86 	{ 0x00000020, "ILLEGAL_COMPSTAT" },
87 	{ 0x00000040, "BLOCKLINEAR_CB" },
88 	{ 0x00000100, "ECC_SEC_ERROR" },
89 	{ 0x00000200, "ECC_DED_ERROR" },
90 	{ 0x00000400, "DEBUG" },
91 	{ 0x00000800, "ATOMIC_TO_Z" },
92 	{ 0x00001000, "ILLEGAL_ATOMIC" },
93 	{ 0x00002000, "BLKACTIVITY_ERR" },
94 	{}
95 };
96 
97 static void
gf100_ltc_lts_intr(struct nvkm_ltc * ltc,int c,int s)98 gf100_ltc_lts_intr(struct nvkm_ltc *ltc, int c, int s)
99 {
100 	struct nvkm_subdev *subdev = &ltc->subdev;
101 	struct nvkm_device *device = subdev->device;
102 	u32 base = 0x141000 + (c * 0x2000) + (s * 0x400);
103 	u32 intr = nvkm_rd32(device, base + 0x020);
104 	u32 stat = intr & 0x0000ffff;
105 	char msg[128];
106 
107 	if (stat) {
108 		nvkm_snprintbf(msg, sizeof(msg), gf100_ltc_lts_intr_name, stat);
109 		nvkm_error(subdev, "LTC%d_LTS%d: %08x [%s]\n", c, s, stat, msg);
110 	}
111 
112 	nvkm_wr32(device, base + 0x020, intr);
113 }
114 
115 void
gf100_ltc_intr(struct nvkm_ltc * ltc)116 gf100_ltc_intr(struct nvkm_ltc *ltc)
117 {
118 	struct nvkm_device *device = ltc->subdev.device;
119 	u32 mask;
120 
121 	mask = nvkm_rd32(device, 0x00017c);
122 	while (mask) {
123 		u32 s, c = __ffs(mask);
124 		for (s = 0; s < ltc->lts_nr; s++)
125 			gf100_ltc_lts_intr(ltc, c, s);
126 		mask &= ~(1 << c);
127 	}
128 }
129 
130 void
gf100_ltc_invalidate(struct nvkm_ltc * ltc)131 gf100_ltc_invalidate(struct nvkm_ltc *ltc)
132 {
133 	struct nvkm_device *device = ltc->subdev.device;
134 	s64 taken;
135 
136 	nvkm_wr32(device, 0x70004, 0x00000001);
137 	taken = nvkm_wait_msec(device, 2000, 0x70004, 0x00000003, 0x00000000);
138 
139 	if (taken > 0)
140 		nvkm_debug(&ltc->subdev, "LTC invalidate took %"PRId64" ns\n", taken);
141 }
142 
143 void
gf100_ltc_flush(struct nvkm_ltc * ltc)144 gf100_ltc_flush(struct nvkm_ltc *ltc)
145 {
146 	struct nvkm_device *device = ltc->subdev.device;
147 	s64 taken;
148 
149 	nvkm_wr32(device, 0x70010, 0x00000001);
150 	taken = nvkm_wait_msec(device, 2000, 0x70010, 0x00000003, 0x00000000);
151 
152 	if (taken > 0)
153 		nvkm_debug(&ltc->subdev, "LTC flush took %"PRId64" ns\n", taken);
154 }
155 
156 /* TODO: Figure out tag memory details and drop the over-cautious allocation.
157  */
158 int
gf100_ltc_oneinit_tag_ram(struct nvkm_ltc * ltc)159 gf100_ltc_oneinit_tag_ram(struct nvkm_ltc *ltc)
160 {
161 	struct nvkm_device *device = ltc->subdev.device;
162 	struct nvkm_fb *fb = device->fb;
163 	struct nvkm_ram *ram = fb->ram;
164 	u32 bits = (nvkm_rd32(device, 0x100c80) & 0x00001000) ? 16 : 17;
165 	u32 tag_size, tag_margin, tag_align;
166 	int ret;
167 
168 	/* No VRAM, no tags for now. */
169 	if (!ram) {
170 		ltc->num_tags = 0;
171 		goto mm_init;
172 	}
173 
174 	/* tags for 1/4 of VRAM should be enough (8192/4 per GiB of VRAM) */
175 	ltc->num_tags = (ram->size >> 17) / 4;
176 	if (ltc->num_tags > (1 << bits))
177 		ltc->num_tags = 1 << bits; /* we have 16/17 bits in PTE */
178 	ltc->num_tags = (ltc->num_tags + 63) & ~63; /* round up to 64 */
179 
180 	tag_align = ltc->ltc_nr * 0x800;
181 	tag_margin = (tag_align < 0x6000) ? 0x6000 : tag_align;
182 
183 	/* 4 part 4 sub: 0x2000 bytes for 56 tags */
184 	/* 3 part 4 sub: 0x6000 bytes for 168 tags */
185 	/*
186 	 * About 147 bytes per tag. Let's be safe and allocate x2, which makes
187 	 * 0x4980 bytes for 64 tags, and round up to 0x6000 bytes for 64 tags.
188 	 *
189 	 * For 4 GiB of memory we'll have 8192 tags which makes 3 MiB, < 0.1 %.
190 	 */
191 	tag_size  = (ltc->num_tags / 64) * 0x6000 + tag_margin;
192 	tag_size += tag_align;
193 
194 	ret = nvkm_ram_get(device, NVKM_RAM_MM_NORMAL, 0x01, 12, tag_size,
195 			   true, true, &ltc->tag_ram);
196 	if (ret) {
197 		ltc->num_tags = 0;
198 	} else {
199 		u64 tag_base = nvkm_memory_addr(ltc->tag_ram) + tag_margin;
200 
201 		tag_base += tag_align - 1;
202 		do_div(tag_base, tag_align);
203 
204 		ltc->tag_base = tag_base;
205 	}
206 
207 mm_init:
208 	nvkm_mm_fini(&fb->tags);
209 	return nvkm_mm_init(&fb->tags, 0, 0, ltc->num_tags, 1);
210 }
211 
212 int
gf100_ltc_oneinit(struct nvkm_ltc * ltc)213 gf100_ltc_oneinit(struct nvkm_ltc *ltc)
214 {
215 	struct nvkm_device *device = ltc->subdev.device;
216 	const u32 parts = nvkm_rd32(device, 0x022438);
217 	const u32  mask = nvkm_rd32(device, 0x022554);
218 	const u32 slice = nvkm_rd32(device, 0x17e8dc) >> 28;
219 	int i;
220 
221 	for (i = 0; i < parts; i++) {
222 		if (!(mask & (1 << i)))
223 			ltc->ltc_nr++;
224 	}
225 	ltc->lts_nr = slice;
226 
227 	return gf100_ltc_oneinit_tag_ram(ltc);
228 }
229 
230 static void
gf100_ltc_init(struct nvkm_ltc * ltc)231 gf100_ltc_init(struct nvkm_ltc *ltc)
232 {
233 	struct nvkm_device *device = ltc->subdev.device;
234 	u32 lpg128 = !(nvkm_rd32(device, 0x100c80) & 0x00000001);
235 
236 	nvkm_mask(device, 0x17e820, 0x00100000, 0x00000000); /* INTR_EN &= ~0x10 */
237 	nvkm_wr32(device, 0x17e8d8, ltc->ltc_nr);
238 	nvkm_wr32(device, 0x17e8d4, ltc->tag_base);
239 	nvkm_mask(device, 0x17e8c0, 0x00000002, lpg128 ? 0x00000002 : 0x00000000);
240 }
241 
242 static const struct nvkm_ltc_func
243 gf100_ltc = {
244 	.oneinit = gf100_ltc_oneinit,
245 	.init = gf100_ltc_init,
246 	.intr = gf100_ltc_intr,
247 	.cbc_clear = gf100_ltc_cbc_clear,
248 	.cbc_wait = gf100_ltc_cbc_wait,
249 	.zbc = 16,
250 	.zbc_clear_color = gf100_ltc_zbc_clear_color,
251 	.zbc_clear_depth = gf100_ltc_zbc_clear_depth,
252 	.invalidate = gf100_ltc_invalidate,
253 	.flush = gf100_ltc_flush,
254 };
255 
256 int
gf100_ltc_new(struct nvkm_device * device,int index,struct nvkm_ltc ** pltc)257 gf100_ltc_new(struct nvkm_device *device, int index, struct nvkm_ltc **pltc)
258 {
259 	return nvkm_ltc_new_(&gf100_ltc, device, index, pltc);
260 }
261